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ABSTRACT

Conditional expression of short hairpin RNAs

(shRNAs) to knock down target genes is a powerful

tool to study gene function. The most common

inducible expression systems are based on tetra-

cycline-regulated RNA polymerase III promoters.

During the last years, several tetracycline-inducible

U6 and H1 promoter variants have been reported in

different experimental settings showing variable

efficiencies. In this study, we compare the most

common variants of these promoters in several

mammalian cell lines. For all cell lines tested, we

find that several inducible U6 and H1 promoters

containing single tetracycline operator (tetO)

sequences show high-transcriptional background

in the non-induced state. Promoter variants con-

taining two tetO sequences show tight suppression

of transcription in the non-induced state, and high

tet responsiveness and high gene knockdown

efficiency upon induction in all cell lines tested.

We report a variant of the H1 promoter containing

two O2-type tetO sequences flanking the TATA box

that shows little transcriptional background in the

non-induced state and up to 90% target knockdown

when the inducer molecule (dox–doxycycline) is

added. This inducible system for RNAi-based gene

silencing is a good candidate for use both in basic

research on gene function and for potential ther-

apeutic applications.

INTRODUCTION

The technology of small interfering RNA (siRNA)-based
gene knockdown has become a common method to study

gene function in mammalian cells (1,2). The introduction
of short double-stranded RNA’s into cells leads to
sequence-specific down regulation of endogenous
mRNAs that match the siRNA. This post-transcriptional
gene suppression process is referred to as RNA inter-
ference or simply RNAi.
RNAi can be induced in mammalian cells either by

introduction of synthetic 21–23 nt siRNA’s or by plasmids
and viral vectors that express the siRNA molecules (3).
In the latter case, siRNA molecules can be produced
intracellularly as two single-stranded complementary
RNA molecules from separate promoters or, more
commonly, from a single promoter as a short hairpin
RNA (shRNA). The shRNA molecule is then further
processed to siRNA by cellular ribonuclease complexes
(4,5). RNA suppression by hairpin siRNA (shRNA) has
been shown to be more efficient than other siRNA
methods tested (6).
Plasmid vector based siRNA expression strategies have

several advantages over other methods. First, the costs of
DNA oligomers for construction are much lower than of
synthetic siRNA molecules. Plasmid vectors encoding a
selectable marker are expected to be more efficiently
transfected into cells than naked RNA molecules. And
last, vector-based siRNA expression strategies offer the
advantage of inducible expression in the cases where gene
knockdown is expected to have a deleterious effect on the
targeted cell. Stable expression of the siRNA can easily
be obtained when selectable plasmids or viral vectors are
used to deliver the expression module into cells. Stable
gene-knockdown studies involving genes essential for cell
growth or survival require a conditional system where
siRNA expression is tightly regulated.
siRNA and shRNA synthesis systems in cells are most

often driven by RNA polymerase III (pol III) promoters.
There are several advantages to using RNA pol
III systems. siRNA transcription is high, and the fact
that it is driven by cis-acting elements found exclusively in
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the 50-flanking region, results in uniform RNA molecules
containing defined 50 and 30 ends (7–9). During the last
years, several inducible promoter systems have been
developed to control expression of small RNAs. Most of
these are based on variants of the U6 and H1 RNA pol III
promoters. Several different strategies exist to make these
promoters respond to external signals: the Cre-loxP
system (10), the ecdysone-inducible system (11), the lac-
repressor system (12) and the tet-repressor system (13).
Tetracycline-responsive variants of both the U6 and H1

RNA pol III promoters have been used in several studies
to drive conditional shRNA production (14–18). In these
systems, a tetracycline operator (tetO) sequence is inserted
near the TATA box of the promoters. TetO sequences are
high-affinity binding sites for the specific binding of the
tetracycline repressor (tetR). Once bound, tetR will
prevent RNA pol III from binding to the promoter and
transcription is prevented. Addition of the inducer
tetracycline or various analogs (e.g. dox), which have
high affinity for tetR, causes the tetR to dissociate from
tetO and transcription to proceed (19).
Previous studies using tetracycline-inducible small

RNA expression systems have reported variable results
regarding background transcription and induction poten-
tial of the systems. We and others have noted that RNA
pol III promoters containing a single tetO sequence
show significant leakiness, resulting in high background
transcription, in the non-induced state (15,17). On the
other hand, similar promoter variants have been used with
considerable success in other studies (14,16,20). Therefore,
we have now performed a comparison of several
tetracycline-inducible U6 and H1 promoter variants
for conditional shRNA expression in a number of
mammalian cell lines. The results show that U6 and H1
promoters containing a single tetO sequence show variable
background transcription levels and response to the
inducing agent depending on the cell line used. Both U6
and H1 promoter variants containing two tetO sequences
show tight regulation of shRNA expression in all cell lines
used in this study. We also describe a variant of the
H1 promoter containing 2 tetO sequences (H1-2O2) that
is almost completely inactive in the non-induced state
and gives high shRNA expression level upon induction
by dox. This inducible system for RNAi-based gene
silencing is a good candidate for use both in basic research
on gene function and for potential therapeutic
applications.

RESULTS AND DISCUSSION

Generation of tet-inducible derivatives of the U6 and
H1 promoters

To compare the effectiveness of conditional
shRNA expression from RNA pol III promoters,
three tetracycline-responsive forms of the U6 and H1
promoters were constructed in addition to the wild-type
(wt) promoters. TetO sequences were inserted to
replace wt promoter sequences adjacent to the TATA
box as indicated in Figure 1. Both promoters were
generated with the tetO sequence in an upstream (US),

downstream (DS) or upstream plus downstream (US/DS)
position relative to the TATA box. Both the U6 and H1
promoters are extremely compact and correct spacings
between the transcriptional start and the essential 50

flanking sequences (TATA box and PSE- proximal
sequence element) are important for proper RNA expres-
sion. Therefore, to preserve the correct spacing in these
promoters, only one complete tetO sequence can be
inserted in each of the abovementioned positions of
these promoters (see Figure 1).

For the tet-inducible U6 promoter, we used three
previously reported variants: U6-O1-US, contains a
O1-type tetO located upstream of the TATA box in the
U6 promoter (13). U6-O2-DS and U6-2O2-US/DS,
contain O2-type tetO in the downstream position (14)
and two O2-type tetO flanking the TATA box (15,20),
respectively.

For the tet-inducible H1 promoter variants
we only included the O2-type operator sequences,

Figure 1. Nucleotide sequence presentation of the tetracycline-inducible
U6 and H1 promoter variants and anti-luc shRNA used in this study.
PSE (proximal sequence element) is shown in italic letters. The TATA
box is shaded in gray. O1 and O2 indicate O1-type and O2-type
tetracycline operator (tetO) sequences, respectively. TetO sequences are
shown in bold letters. The anti-luciferase shRNA sequence is
underlined.
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since Lin et al. (15) had already shown that single O2-type
tetO sequences are tighter regulators than O1-type tetO.
Also, a US/DS inducible H1 promoter/operator variant
containing two O1-type tetO sequences reported earlier
(17), showed moderate transcriptional background and
required high concentrations of the inducer molecule for
high levels of transcription in transient transfection
studies. We therefore set out to test H1-O2 variants.
H1-O2-US was generated with an O2-type tetO upstream
of the TATA box in the H1 promoter. Like for the
U6 promoter, we also constructed an H1 promoter
containing an O2-type tetO in the DS position relative
to the TATA box (H1-O2-DS) (18). Finally, we
constructed H1-2O2-US/DS, which contains two
O2-type tetO sequences flanking the TATA box of the
H1 promoter.

In order to monitor the expression level of the
promoter/operator systems in non-induced and induced
states, we cloned an efficient anti-luciferase (anti-luc)
shRNA construct immediately downstream of the U6 and
H1 transcription start sites (Figure 1). A termination
sequence consisting of six uridine nucleotides was included
to define the 30 end of the shRNA transcript.

We were also interested in examining the characteristics
of the various inducible promoter variants in different
mammalian cell lines. Therefore, we constructed several
cell lines stably expressing tetR. These include several
human neuroblastoma cell lines (SK-N-BE2, SJNB8,
IMR32, Kelly and SK-N-AS), a human cervical carci-
noma cell line (HeLa) and a human osteosarcoma cell line
(Saos-2). In addition, we analyzed inducible shRNA
expression in a human embryonic kidney cell line
(HEK293T-REx) available from Invitrogen, Carlsbad,
CA, USA.

Analysis of the tet-inducible U6 and H1 promoters

The tetR-expressing cell lines were transiently co-trans-
fected with three plasmids; a plasmid constitutively
expressing the firefly luciferase reporter (pGL3-control),
a plasmid constitutively expressing b-galactosidase in
order to correct for variations in transfection efficiencies
(pCMV-b-gal) and a test plasmid expressing the anti-luc
shRNA from various U6 and H1 promoter variants.

Both the wt-U6 and wt-H1 promoters showed very
efficient expression of anti-luc shRNA as seen by a
dramatic reduction of luciferase activity (88–99%, see
Figures 2 and 3). Expression of several different scrambled
shRNA constructs showed no change in reporter activity
as expected (data not shown).

The addition of 1 mg/ml dox (a tetracycline derivative)
to tetR-expressing cells transfected with pGL3-control
and pCMV-b-gal had only minor effects on reporter
expression (PC; positive control in Figures 2 and 3). This
indicates that the measured differences in luciferase
activity between the induced and non-induced states
were due to the effect of the anti-luc shRNA. Addition
of 5 or 10 mg/ml dox resulted in changes in cell
morphology and growth inhibition, so in all other
experiments 1 mg/ml dox was used (data not shown).

U6 promoter variants. As can be seen in Figure 2, the non-
induced U6-O1-US promoter gives high background
transcription of the anti-luc shRNA in all cell lines
tested. This is observed as a dramatic drop in luciferase
activity in the absence of dox compared to the positive
controls (PC). Addition of 1 mg/ml dox had only minor
effects on shRNA expression. Similar results published by
other research groups support our observation that an
O1-type tetO located between the PSE and TATA box of
the U6 promoter is not efficiently regulated by the tetR
protein in transient transfection experiments (15,16,20).
Matsukura et al. (16) were able to show efficient
regulation of the U6-O1-US promoter when stably
transfected HCT116 cells were used. Here, induction of
shRNA synthesis required high levels of dox (10 mg/ml),
which might be due to high tetR levels in these cells.
A difference in regulation between transient and stable
transfection experiments similar to this was not observed
by another research group (15).
When an O2-type tetO is placed between the TATA box

and the transcriptional start of the U6 promoter (U6-O2-
DS), a more variable result is observed. In the SJNB8 TR
(Figure 2B), IMR32 TR (Figure 2C), SK-N-AS TR
(Figure 2D), HeLa TR (Figure 2E) and Kelly TR (data
not shown) cell lines, the U6-O2-DS promoter is poorly
repressed by tetR, while the HEK293T-REx (Figure 2F),
SK-N BE2 TR (Figure 2A) and Saos2 TR (data not
shown) cell lines show a tighter regulation of the
promoter. The observed difference cannot be explained
by different tetR expression levels, since all these cell lines
express similar levels of the tetR protein (data not shown).
Previous reports also indicate a cell type difference in
regulation of a similar U6-O2-DS inducible promoter. Lin
et al. (15) reported low transcription repression from this
promoter in the HeLa-TREx cell line (Invitrogen), while
others have reported tight control of this promoter in
PC-3 and 293T cells (14,20). These observations are
consistent with our results.
Addition of an O2-type tetO in the US position of

U6-O2-DS creates the U6-2O2-US/DS tet-inducible
U6 promoter. When an anti-luc shRNA expressing
plasmid under the control of this promoter is cotransfected
with the reporter plasmid into tetR-expressing cell lines,
high levels of luciferase were measured in the absence of
dox. Addition of dox gave a dramatic reduction of
luciferase activity in all cell lines tested (Figure 2).
Compared to U6-wt promoter activity, the induced
U6-2O2 promoter shows 69, 84, 89, 82, 77 and 78%
reporter knockdown in SK-N-AS TR, SJNB-8 TR, IMR32
TR, SK-N-AS TR, HeLa TR and HEK293-T REx cell
lines, respectively.
Together, these results show that the U6-2O2-US/DS

promoter exhibit the best dox response in all tested cell
lines compared to other tetO containing U6 promoter
variants. These results are in agreement with previous
published data (15), and we here show that this is valid in
a wide variety of different cell lines.

H1 promoter variants. All H1 promoter variants used in
this study contained the O2-type tetO sequence. When this
operator was inserted in the US position (H1-O2-US),
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moderate to high shRNA repression (Figure 3) was seen
in the absence of dox in all cell lines tested. This
indicates low to moderate background transcription in
the non-induced state. In contrast to the U6 promoter
containing tetO in a similar position, H1-O2-US is
responsive to tetR repression. The observed difference
could be explained by the fact that the O2-type tetO is
a tighter regulator than O1-type tetO (15). Addition
of 1 mg/ml dox increased shRNA expression significantly
in all cell lines.
shRNA expression from H1 promoter containing an

O2-type tetO sequence in the DS position (H1-O2-DS) has

previously been reported to give efficient knockdown of
b-catenin in stably transfected CRC cell lines (18).
Significant promoter leakage was observed in non-induced
cell lines that exhibited efficient knockdown upon
induction. Our results show that this promoter variant
gives moderate to high transcriptional background in
all tested cell lines (Figure 3). Induction of anti-luc
shRNA expression by addition of dox efficiently
down-regulates the luciferase reporter to levels below
that observed for the similar U6 promoter variant,
indicating that transcriptional activity of the H1 promoter
variant is higher.
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Figure 2. Conditional shRNA expression from U6 promoter variants. TetR-expressing cells were transfected with 100 ng pCMV-b-gal, 800 ng pGL3-
control (Promega) and 100 ng anti-luc shRNA expressing test plasmids under control of various U6 promoter variants. Several different tetR-
expressing cell lines were used. (A) SK-N-BE (2) TR, (B) SJNB-8 TR, (C) IMR32 TR, (D) SK-N-AS TR, (E) HeLa TR, (F) HEK293-T REx
(Invitrogen). NC: negative control; 100 ng pCMV-b-gal and 800 ng pGL3-basic (no luciferase expression), PC: positive control; 100 ng pCMV-b-gal
and 800 ng pGL3-control (constitutive luciferase expression), þ indicates addition of 1 mg/ml dox 1-day post-transfection. Cells were incubated for
a total of 3 days. Error bars indicate SDs.
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Finally, we created an H1 promoter containing two O2-
type operators in the US and DS positions (H1-2O2-US/
DS). This inducible promoter shows tight shRNA repres-
sion in absence of dox in all tested cell lines (Figure 3).
Addition of 1 mg/ml dox induces shRNA expression
resulting in low levels of luciferase after 2 days of
incubation. This means that the tetR protein efficiently
blocks transcription from the H1-2O2-US/DS promoter.
Compared to H1-wt promoter activity, the induced

H1-2O2 promoter shows 81, 91, 67, 84, 87 and 74%
reporter knockdown in SK-N-AS TR, SJNB-8 TR,
IMR32 TR, SK-N-AS TR, HeLa TR and HEK293-T
REx cell lines, respectively. Matthess et al. (17) have
reported moderate tightness and only a small difference
between the induced and non-induced state of an H1
promoter containing two O1-type tetO sequences (2O1).
This is in agreement with earlier observations showing
that O2-type tetO are tighter regulators of RNA pol III
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Figure 3. Conditional shRNA expression from H1 promoter variants. TetR-expressing cells were transfected with 100 ng pCMV-b-gal, 800 ng pGL3-
control (Promega) and 100 ng anti-luc shRNA expressing test plasmids under control of various H1 promoter variants. Several different tetR-
expressing cell lines were used. (A) SK-N-BE (2) TR, (B) SJNB-8 TR, (C) IMR32 TR, (D) SK-N-AS TR, (E) HeLa TR, (F) HEK293-T REx
(Invitrogen). NC: negative control; 100 ng pCMV-b-gal and 800 ng pGL3-basic (no luciferase expression), PC: positive control; 100 ng pCMV-b-gal
and 800 ng pGL3-control (constitutive luciferase expression), þ indicates addition of 1 mg/ml dox 1-day post-transfection. Cells were incubated for a
total of 3 days. Error bars indicate SDs.
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promoters than O1-type tetO sequences (15). Very
recently, Kappel et al. (21) showed that the background
transcription of the 2O1-US/DS H1 promoter variant is
less pronounced in stably transfected HeLa cells.
As can be seen from Figure 3, down-regulation of the

luciferase reporter is most efficient in the neuroblastoma
SJNB8 cell line (Figure 3B), where 91% reduction
(compared to H1-wt) in luciferase activity was observed
after addition of dox. Importantly, no background
transcription from the promoter was observed in the
non-induced state, indicating that this inducible promoter
system is extremely tight.
In summary, most U6 and H1 promoter variants

containing single tetO sequences are poorly regulated
by tetR. In contrast, both U6-2O2-US/DS and
H1-2O2-US/DS containing two O2-type tetO sequences
are tight regulators of shRNA expression in all
cell lines tested. For the cell lines used in this study,
the H1-2O2-US/DS promoter is slightly more efficient
for shRNA expression upon addition of the inducer
dox than the U6-2O2-US/DS promoter The new
tetO-containing RNA pol III promoters described in
this study will be useful in basic research on gene
function and possibly also for potential therapeutic
applications.
Both single and double tetO inducible shRNA expres-

sion systems exist on the market today. In this work, we
have constructed two new variants of an inducible H1
promoter (H1-O2-US and H1-2O2-US/DS) that show
tight suppression of shRNA expression in the non-induced
state, and high tet responsiveness and high reporter
gene knock-down efficiency upon induction by dox. In
addition, we have performed, for the first time, a detailed
comparison of inducible shRNA expression systems in
several different cell lines. Our results show that U6 and
H1 promoter variants containing double tetO2 sequences

are efficiently regulated by tetR in all cell lines tested, and
we expect these promoter variants to be useful in other
tetR-expressing cell lines as well.

MATERIALS AND METHODS

Molecular cloning

pSHAG-1 and pSHAG-Ff1 (5) contain a wt U6 promoter-
driven expression cassette. pSHAG-Ff1 (U6wt anti-luc
shRNA in this study) encodes an anti-luc shRNA
homologous to nucleotides 1340–1368 of the coding
sequence of the firefly luciferase gene (NCBI accession
number U47296) while pSHAG-1 is the negative control
(NC) without shRNA sequence.

Table 1 shows the sequence of the oligonucleotides used
for molecular cloning in this study.

Plasmids containing variants of the U6 promoter
were constructed by PCR. An U6 promoter containing a
tetO sequence upstream of the TATA box (U6-O1-US)
was made by PCR amplification of the U6 promoter
from pSHAG-1 using ON22 and ON31 (encodes the
operator sequence) as primers. The resulting PCR product
was used as template in a second PCR with ON22 and
ON34 as primers to add the anti-luc shRNA sequence
downstream of the U6-O1 promoter. This PCR product
was digested with NotI/BamHI and ligated into a
NotI/BamH1 cut pSHAG-1 vector to produce pU6-
O1-US anti-luc.

Construction of U6 promoters containing one O2-type
tetO sequence downstream of the TATA box and two
O2-type tetO sequences flanking the TATA box,
were performed with PCR in a similar procedure using
ON22/ON37 and ON22/ON84, respectively. These PCR
products were further amplified using ON22/ON38 and
ON22/ON83 as primers, digested and ligated into

Table 1. Oligonucleotids used in this study

Name Sequence (50–30)

ON22 ATAAGAATGCGGCCGCAAGGTCGGGCAGGAAGAGGGCC
ON31 GATCGGATCCGGTGTTTCGTCCTTTCCACAAGATATATAACTCTATCAATGATAGAGTACTTTCAAGTTA

CGGTAAGCA
ON34 AGTCGGATCCAAAAAATGGATTCCAACTCAGCGAGAGCCACCCGATCAAGCTTCATCAGGTGGCTCCCG

CTGAATTGGAATCCGGTGTTTCGTCCTTTCCAC
ON37 ACGATCTCTATCACTGATAGGGAGATATATAAAGCCAAGAAATCG
ON38 CGGGATCCAAAAAATGGATTCCAACTCAGCGAGAGCCACCCGATCAAGCTTCATCAGGTGGCTCCCGCT

GAATTGGAATCCACGATCTCTATCACTGATAGGGAG
ON46 GATCGAATTCGAACGCTGACGTCATCAAC
ON47 GATCAGATCTGAGTGGTCTCATACAGAACTTATAAGATTCCCAAA
ON75 GATCAGATCTGAGTGGTCTCATACAGAACTTATAAGTCTCTATCACTGATAGGGATTTCACGTTTATGGT

GATTTCCCA
ON76 GATCAGATCTCTATCACTGATAGGGAACTTATAAGTCTCTATCACTGATAGGGATTTCACGTTTATGGTGA

TTTCCCA
ON77 GATCCCGGATTCCAATTCAGCGGGAGCCACCTGATGAAGCTTGACGGGTGGCTCTCGCTGAGTTGGAATC

CATTTTTTGGAAA
ON78 AGCTTTTCCAAAAAATGGATTCCAACTCAGCGAGAGCCACCCGTCAAGCTTCATCAGGTGGCTCCCGCTGA

ATTGGAATCCGG
ON83 GATCGGATCCAAAAAATGGATTCCAACTCAGCGAGAGCCACCCGATCAAGCTTCATCAGGTGGCTCCCGCT

GAATTGGAATCCGGTCTCTATCACTGATAGGGAGATATATAA
ON84 GATCGGATCCGGTCTCTATCACTGATAGGGAGATATATAATCTCTATCACTGATAGGGAGTTTCAAGTTACG

GTAAGCAT
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pSHAG-1 to produce pU6-O2-DS anti-luc and
pU6-2O2-US/DS anti-luc.

H1 variant promoters expressing the anti-luc shRNA
were made as follows: pENTRH1-O2 is a pENTR3c
(Invitrogen)-based plasmid that contains an H1 promoter
with an O2-type tet operator in the DS position, followed
by a BglII/HindIII-removable 750 bp ‘stuffer’ fragment.
The H1 promoter sequence can be removed from
this plasmid by EcoRI/BglII digestion. pENTRH1-wt
(containing a wt H1 promoter) was made by amplifying
the H1 promoter from pENTRH1-O2-DS with ON46
(EcoRI)/ON47 (BglII) as primers, digesting the resulting
PCR product with EcoRI/BglII and ligation into a
EcoRI/BglII digested pENTRH1-O2-DS vector.
pENTRH1-O2-US and pENTRH1-2O2-US/DS
were made in a similar way using ON46/ON75
and ON46/ON76 as PCR primers, respectively. The
BglII/HindIII-removable 750 bp ‘stuffer’ fragment was
then replaced with an anti-luc shRNA sequence
by ligation of annealed primers ON77/ON78 into these
vectors to produce: pH1-wt anti-luc, pH1-O2-US anti-luc,
pH1-O2-DS anti-luc and pH1-2O2-US/DS anti-luc. All
plasmid constructs were verified by DNA sequencing.

Cell culture and transfection

SK-N-BE (2), Kelly, SK-N-AS, Saos-2 and HeLa cells
were grown in RPMI1640 supplemented with 10% FBS.
SJNB8 and IMR32 cells were grown in Dulbecco’s
modified Eagle’s medium supplemented with 10% FBS.
HEK293-TREx cells (Invitrogen) were grown in
Dulbecco’s modified Eagle’s medium supplemented with
10% FBS and 15 mg/ml blasticidin. All cells were
maintained in a humidified 378C incubator with 5%
CO2, supplied with fresh complete medium every 3 days,
and subcultured before confluence was reached.

Also, 4–5� 105 cells were seeded into each well of
a 12-well tissue culture plate and transfection was
performed the following day with Lipofectamin2000
(Invitrogen) according to the manufacturer’s protocol.

Generation of stable cell lines producing tetracyclin
repressor (tetR)

Cell lines were maintained and transfected as described
above with the plasmid pcDNA6TR (Invitrogen) carrying
a gene encoding the selectable marker, blasticidin, and a
gene coding for the tetracycline operon repressor protein
(tetR). Stably transfected cell lines resistant to blasticidin
were selected and cultured in blasticidin-containing media.

Luciferase/b-galactosidase assay

TetR-expressing cells were transfected with the luciferase
reporter plasmid pGL3-control (Promega, Madison, WI,
USA), the b-galactosidase expressing pCMV-b-gal
(Stratagene, La Jolla, CA, USA) and a test-plasmid
expressing the anti-luc shRNA from various U6 and
H1 promoters. HEK293T-REx cells were not transfected
with pCMV-b-gal, since these cells already express
b-galactosidase from the Flp-In cassette. The NC was
transfected with pGL3-Basic (Promega), which lacks a
promoter for expressing the reporter gene.

An aliquot of 1 mg/ml dox was added 24 h
after transfection and cells were harvested after
an additional 48 h of incubation. Luciferase and
b-galactosidase activities were measured in triplicate
immediately using the Dual-LightÕ System (Applied
Biosystems, Foster City, CA, USA) according to the
manufacturer’s instructions. Normalization of luciferase
measurements from HEK293T-REx was done using
total protein. All experiments were performed at least
in triplicate.
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