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2. Abbreviations 

Ago Argonaute 
BMP Bone morphogenetic protein 
bp Base pair 
Cre Cyclization recombination 
DKK Dickkopf 
DNA De-oxy ribonucleic acid 
Dox Doxycycline 
dsRNA Double stranded RNA 
e.g. exempli gratia 

EFS Event free survival 
Endo-siRNA Endogenous siRNA 
Exp5 Exportin 5 
FGF Fibroblast growth factor 
I Intertmediate 
i.e. id est 

INSS International Neuroblastoma Staging System 
Lef lymphocyte enhancer factor 
LOH Loss of heterozygosity 
Lox Locus of X over P1 
LRP low-density lipoprotein receptor-related protein 
miRNA Micro RNA 
MLV Moloney Murine Leukemia Virus 
MNA MYCN Amplified 
mRNA Messenger RNA 
MVD Microvessel density 
N Neuroblastic 
NGF Neural growth factor 
nt nucleotide 
P-body Processing body 
PNA Peptide Nucleic Acid 
Pre-miRNA Precursor micro RNA 
Pri-miRNA Primary micro RNA 
RIIID RNase III domain 
RISC RNA-induced silencing complex 
RNA Ribonucleic acid 
RNAi RNA interference 
S Substrate adherent 
shRNA Short hairpin RNA 
siRNA Small interfering RNA 
ssRNA Single stranded RNA 
TCF T-cell factor 
Tet Tetracycline 
TetO Tetracycline Operator 
TetR Tetracycline Receptor 
TLR Toll-like receptor 
UTR Un-transcribed region 
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3. Introduction 

 

3.1. Small RNAs 

3.1.1. The history of RNAi and miRNA – a summary 

In 1958, Crick presented the idea of the central dogma of molecular biology, which states that 

the information from DNA is passed in a one-way direction via RNA to proteins [1]. Since 

then, one of the most important questions in molecular biology has been how the expression 

of proteins is regulated. The first time RNA was proposed as a regulator of protein expression 

was in 1969, when Britten and Davidson proposed a theory in which RNA might regulate the 

expression of genes using standard Watson-Crick base-pairing rules [2]. However, the idea 

that RNA could govern the expression profile of each cell type was neglected when 

transcription factors were discovered, and for decades transcription factors (there is an 

estimate of ~1500 transcription factors in the human genome [3]) were seen as almost 

exclusive effectors for regulating the mRNA expression profile and the proteome of 

eukaryotic cells.  

It was not until the early 1990s that hints of expressional regulation of one mRNA caused by 

another RNA started to emerge. In 1990, it was reported that the overexpression of exogenous 

DNA encoding an enzyme, producing a purple pigment in petunias, led to white flowers as a 

consequence of a reduced expression of both endogenously and exogenously introduced 

enzyme mRNA [4, 5]. The downregulation of mRNA levels by the introduction of antisense 

RNA was an established technique as early as 1984 [6], but it was shown in 1995 that both 

antisense and surprisingly the synthetically produced sense RNA induced the silencing of 

gene expression in Caenorhabditis elegans [7]. In 1998, Fire and Mello demonstrated that this 

silencing was triggered by dsRNA and that the sequence of the dsRNA determined which 

mRNA was targeted for silencing [8]. Three years later, the same method  was also shown to 

be a functional tool in mammalian cells [9] and that the concept of RNA-based gene silencing 

is functional in all eukaryotic supergroups (with a few exceptions, including budding yeast, 

which seems to have lost this feature during evolution) [reviewed in 10]. This mechanism is 

called RNA interference (RNAi) 
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At the same time as the mechanism of RNAi was discovered, another small RNA started to 

make its appearance. In 1993, Ambros et al. described lin-4 as the first micro RNA (miRNA) 

in the nematode C. elegans. Here, it was shown how the smaller RNA lin-4 seemed to repress 

the translation of the larger mRNA lin-14 and that this repression might be a result of multiple 

RNA-RNA interactions between lin-4 and the 3’ UTR structure of lin-14 [11]. In 2001, 

miRNA was established as a large class of gene regulators in several species including 

humans [12-14], thereby suggesting that miRNA and the proteins involved in its regulation 

are a part of a conserved pathway.  

In 2001, RNAi and miRNA were linked together when it was demonstrated that Dicer, a 

protein that sliced long dsRNAs into smaller effector RNAs called small interfering RNAs 

(siRNAs) [15, 16], also converted longer lin-4 transcripts into smaller mature lin-4 miRNAs 

[17-19]. As a result, it was now apparent that both RNAi and miRNA were regulatory tools 

conserved in most eukaryotes and that they both used the same pathway to exert their 

regulatory effect on mRNAs.  

3.1.2. The miRNA pathway in animals 

There are two main differences between miRNA and siRNA in animals: 

1. MiRNAs are transcribed endogenously from non-protein-coding separate genes. There 

are no dedicated genes for siRNAs. Instead, they are degraded from larger dsRNA 

introduced to the nucleus exogenously (e.g. viral transcripts) or endogenously (e.g. 

transposons) [20]. 

2. SiRNAs have a full complementarity towards their targets, while miRNA show a 

limited complementarity.   

The main features of the miRNA pathway are outlined in Figure 1.  

MiRNA genes are primarily transcribed by RNA polymerase II to form primary miRNA (pri-

miRNA), a structure which is usually several kilobases long, with local stem loop structures 

[21, 22]. They can be encoded in independent transcription units, in polycistronic clusters or 

within introns of protein coding or non-coding genes [reviewed in 23]. The pri-miRNA is 

further processed in the nucleus into a hairpin approximately 60-70 nucleotides long, which is 

known as the precursor miRNA (pre-miRNA) [24]. This processing is done by the 
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Ribonuclease III (RNase III) protein Drosha and its essential co-factor DiGerorge syndrome 

critical region 8 (DGCR8) [25-29]. After processing, the pre-miRNA hairpin contains a 3’ 2 

nt overhang and a 5’ mono-phosphate group [25, 30, 31], a feature that is characteristic of all 

RNAs cleaved by an RNase III protein [32]. Polycistronic clusters are transcribed as a single 

transcript, which is processed into all the separate miRNAs within the cluster by Drosha [12, 

13]. 

Pre-miRNA exits the nucleus through nuclear pore complexes since further processing of the 

pre-miRNA takes place in the cytosol. This transport is executed by the nuclear transport 

receptor exportin-5 (exp5), which recognises dsRNA hairpins with stems >16bp long [33-35]. 

The 3’ overhang of 2 nt further facilitates this process [36].  

Following release into the cytoplasm, the pre-miRNA is recognised by and bound to the 

RNase III enzyme Dicer, which cuts it to generate a mature miRNA [16-19]. Dicer contains 

both an RNase III domain (RIIID) responsible for slicing dsRNA and a highly conserved Piwi 

Argonaute Zwille (PAZ) domain which recognises and binds the 3’ dinucleotide overhang on 

the 3’ end of the pre-miRNAs [15, 37]. This suggests that the 3’ dinucleotide overhang locks 

into the PAZ-domain, bringing the pre-miRNA into position for cleavage by the RIIID of 

Dicer [38]. Human Dicer then cuts the pre-miRNA stem approximately 22 nt from the 3’ end 

docked in the PAZ domain [39]. A crystal structure of Dicer from the parasite Giardia reveals 

that the distance from the PAZ-domain to the RIIID matches the length of the Giardia Dicer 

cleavage products [40], thus suggesting that Dicer itself acts as a molecular ruler which 

generates products defined in length by the fixed distance between its PAZ domain and RIIID. 

The pre-miRNA is now reduced to an approximately 22 nt dsRNA, with a 3’ dinucleotide 

overhang and a 5’ phosphate group at both ends. 

Dicer works together with several other proteins in order to execute its function. Dicer 

containing the sliced dsRNA is recruited by the trans-activation-response RNA-binding 

protein (TRBP) to form a structure known as the RNA-induced silencing complex (RISC) 

loading complex [41, 42]. Here, the mature miRNA is transferred from Dicer to the RISC 

where it binds to an Argonaute (Ago) protein, which is the catalytic entity of the RISC [43, 

44]. Of the two Ago proteins encoded in humans, Ago2 is functioning in the RNAi pathway 

[43, 44]. Ago2 also contain a PAZ domain, which recognises the presence of a 3’ dinucleotide 

overhang and a 5’ phosphate group on dsRNA, both of which are facilitating the incorporation 
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of the miRNA to the RISC [45-47]. After the transfer of the RNA duplex, it is the strand with 

its 5’ end at the least thermodynamically stable end that is preferentially kept bound to Ago2 

[48]. This strand is known as the guide strand, while the complementary passenger strand is 

cleaved and degraded [49]. When bound to the RISC, the guide strand functions as a 

sequence-specific template that leads the RISC to complementary targets through base-pairing 

interactions.  

MiRNAs does not usually have a full complementarity with its targets. When bound to RISC, 

only nucleotides numbered 2-6 of the guide strand (starting from the 5’ end) are exposed to 

such a degree that base-pairing with target RNA is possible [50]. This is in accordance with 

the observation that animal miRNAs contains a seed region ranging from nt 2-8, which is 

critical for the specificity of target recognition [51-53]. MiRNAs usually exert their regulatory 

functions by binding to a complementary seed sequence in the 3’UTR of their target mRNA, 

although binding to the 5’UTR or the coding regions has also been reported [54]. When the 

targeted mRNA is bound to the RISC, it can be moved from the cytosol to cytoplasmic 

complexes called Processing bodies (P-bodies) [55-57]. Here, de-adenylation and de-capping 

of the mRNAs followed by 5’→3’ degradation occurs [56, 58]. In addition, the protein 

translation of the mRNAs is prevented as they become sequestered from the ribosomes 

residing in the cytosol. Nevertheless, degradation of mRNA accounts for the vast majority of 

miRNA induced gene silencing [59]. 

If there is perfect complementarity between the bound guide strand and its target, the target is 

not transported to P-bodies. Instead, Ago2 cuts the target RNA between the 10th and 11th 

nucleotide as measured from the 5’ end of the guide strand [46, 47, 60-62]. 
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Figure 1: The miRNA pathway. MiRNA genes are transcribed to pri-miRNA often several kilobases long 

(1). Pri-miRNA is then processed by Drosha to form hairpin structures known as pre-miRNA (2). 

Exportin 5 recognizes the hairpin structure by its 3’ dinucleotide overhang, and exports it from the 

nucleus to the cytoplasm (3). In the cytoplasm, pre-miRNA is recognized by Dicer, which cuts the pre-

miRNA into a mature miRNA ~22 nt long (4). The dsRNA is then transferred into the RISC, where the 

passenger strand is cleaved and removed. The guide strand is used as a template for binding target mRNA 

according to base-pairing. If there is full complementarity, the mRNA is cleaved. If there is partial 

complementarity, the mRNA is transferred to P-bodies where translation is repressed and the mRNA is 

eventually degraded (5), see text for details. Modified by permission from Macmillan Publishers Ltd: 

Gonzalez-Alegre, P. and H.L. Paulson July, 2007. "Technology insight: therapeutic RNA interference--

how far from the neurology clinic?" Nat. Clin. Pract. Neurol. 3(7):394-404. 
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3.1.3. The natural functions of RNAi in animals 

Since Argonaute-like and Dicer-like proteins are present in all eukaryotic supergroups, it is 

evident that dsRNA-mediated silencing was already established in the last common ancestor 

of eukaryotes, but that it was also not required for life since it has been lost several times in 

various single-cellular organisms [reviewed in 10]. DsRNA-based silencing has probably 

evolved as a defence mechanism against genomic parasites such as tranposons and viruses 

[63-68]. Until recently, it has been assumed that defence is the main task of RNAi systems in 

mammals. Still, the discovery of endogenous siRNA (endo-siRNA) transcribed from L1 

transposons in human cultured cells has opened the possibility of additional tasks for siRNA 

[69]. It has been shown in mouse oocytes that transcribed pseudogenes interact with 

homologous protein coding mRNAs to form dsRNA being processed to 21 nt siRNAs by 

Dicer [70, 71]. 

  

3.1.4. The natural functions of miRNA in animals 

Thus far, miRNAs have only been described in multi-cellular organisms, in which they have 

evolved to regulators essential for the development of both animals and plants [23, 72-74]. 

Exactly when miRNAs evolved in evolution is debated, although it seems that the regulation 

of genes by miRNAs could be a requirement for the emergence of multi-cellular organisms 

since both plants and animals have evolved miRNA systems out of a separate evolutionary 

origin [10, 75]. From its discovery, it has taken miRNA merely a decade to achieve status as a 

regulator of most biological processes in animals and plants, including cell cycle, 

differentiation, development and metabolism [13, 76-78]. The number of mature miRNA 

products in the human genome has exceeded 1000 (mirBase version 16.0), while it is 

estimated that more than 60% of human mRNAs contain conserved miRNA target sites in 

their 3’ UTR [79]. This means that on average each miRNA can target a large amount of 

mRNAs, e.g. the miR-15a/16-1 cluster, which is predicted to potentially control 14% of all 

genes in the human genome [80]. To further add to this complexity, in most cases mRNAs 

harbour target sites for several different miRNAs [81-83]. Given the immense complexity and 

biological importance of miRNAs, it is of no surprise that their dysregulation is implicated in 

a vast number of human diseases, e.g. cancer, diabetes, muscular disorders and even 

psychiatric diseases [84-87]. MiRNAs were shown to potentially act as both oncogenes and 
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tumour suppressors in 2005 [88-91], and the dysregulation of miRNAs is now regarded as a 

vital contributor to the pathogenesis of many tumours [92, 93]. 

3.1.5. Targeted gene regulation using exogenous RNA 

Previously, antisense technology was the most feasible approach for reducing the expression 

of specific genes, and both antisense DNA and RNA have been used for the modulation of 

biological processes [reviewed in 94]. However, since the discovery of RNAi, these 

approaches have been superseded, given the higher efficiency of RNAi compared to antisense 

technologies [95-97]. Scientists can now exploit RNAi to suppress virtually any gene simply 

by introducing siRNAs that are perfectly complementary to the target of interest. The miRNA 

biogenesis pathway contains three distinct RNA intermediates: the pri-miRNA transcript, the 

pre-miRNA hairpin and the miRNA duplex. All of these intermediates can be exploited as 

entry points for RNAi (Figure 2). 



10 

 

Figure 2: The process of RNAi and its manipulation. For a description of the miRNA pathway, confer 

with Figure 1. RNAi can be initiated by introducing siRNA or shRNA stems at all steps in the miRNA 

pathway, see text for details (Chapter 3.1.5). Modified by permission from Macmillan Publishers Ltd: 

Gonzalez-Alegre, P. and H.L.Paulson July 2007. "Technology insight: therapeutic RNA interference--how 

far from the neurology clinic?" Nat. Clin. Pract. Neurol. 3(7):394-404. 

Imitating the miRNA duplex: siRNA 

Synthetic siRNAs are small RNA duplexes designed to imitate the mature miRNA duplex in 

order to obtain RNAi-mediated gene suppression. In the first study, in which RNAi were 

shown to mediate effective silencing, dsRNA fragments several hundred nucleotides long 

were used [8]. Even so, the presence of long dsRNA in the cytoplasm often triggers the non-
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specific interferon response pathway in mammalian cells, thereby leading to a broad 

inhibition of protein synthesis, transcriptional activation of cytokines and ultimately cell death 

[reviewed in 98]. It is generally believed that dsRNA molecules less than 30 bp long are not 

able to induce the interferon response [99]. Nonetheless, this is debated, and it has been 

demonstrated that the triggering of the interferon response pathway by dsRNAs >23 nt long is 

cell-type dependent [100]. To prevent activation of the interferon pathway, researchers have 

generally used shorter siRNAs (19-23 bp) that imitate the products of Dicer [46]. To further 

mimic natural Dicer products, siRNAs are also designed with a dinucleotide 3’ overhang in 

both ends for more efficient loading [47]. It is the strand with the least thermodynamically 

stable 5’ end which is preferred as the guide strand [48]. To ensure that the desired strand is 

loaded onto RISC, siRNAs are constructed with accordingly GC bp asymmetry.   

Imitating the pre-miRNA: Synthetic Dicer products and shRNA 

Synthetic Dicer products are 25-30 bp RNA duplexes designed to interact directly with Dicer 

[101]. They contain only one 3’ dinucleotide overhang to ensure that Dicer cuts the RNA at 

the intended end, thereby producing identical mature siRNAs with the predicted sequence 

[102]. As a result, synthetic Dicer products mimic cytoplasmic pre-miRNA. 

While siRNAs and Dicer products are introduced as RNA directly to the cytoplasm, short 

hairpin RNAs (shRNAs) are transcribed from DNA in the nucleus of the cell before they are 

exported by exp5 to the cytoplasm for further processing by Dicer and loading into the RISC 

[103]. ShRNAs are generally transcribed from RNA polIII into hairpins, thus mimicking 

nuclear pre-miRNA. In the appendix, we show that cloning of vectors expressing shRNAs are 

an easy and inexpensive technique for achieving efficient knockdown of a desired target gene. 

The RNA polIII promoter is located directly upstream of the gene it is transcribing. It has a 

well defined starting point, and terminates when transcribing 4-5 consecutive thymidines 

[reviewed in 104]. When transcribed in the nucleus, the shRNAs folds into hairpins with a 3’ 

dinucleotide overhang in one end and a loop in the other. The stem of the hairpin usually 

ranges from 23 to 29 bp. This configuration is similar to pre-miRNA constructs, and is 

therefore recognised as substrates by exp5 and Dicer [105-110]. Regardless of the initial 

length of the hairpin, Dicer cuts the shRNA into ~22 nt effector dsRNAs before incorporation 

to the RISC [39].  
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Imitating the pri-miRNA: shRNA-mir 

RNA transcribed from PolII promoters includes elements such as 5’ end caps and 3’ polyA 

tails. These elements must be removed by Drosha before the transcript can interact with exp5 

and the remaining miRNA pathway [22]. For this reason, polII promoters were initially 

avoided for transcription of shRNAs. However, shRNAs can also be expressed from RNA 

PolII promoters by inserting the hairpin within the backbone of a miRNA (usually that of 

miR-30), resulting in a primary transcript with extensive length and folding compared to 

standard shRNAs [111, 112]. Consequently, this shRNA-mir transcript is a target for 

processing by Drosha, and utilises the full miRNA pathway instead of accessing it in 

downstream entry points. 

3.1.6. Efficiency of RNAi 

All of the above described forms of RNAi exploit the miRNA pathway to exert their effect, 

and they can all be transiently transfected for short-term suppression of a desired gene. To 

evaluate the efficiency of the various constructs, one important aspect to consider is how 

much mRNA the construct is able to suppress on a numerical basis.  

SiRNAs enter the miRNA pathway directly into the RISC, which means that they are not 

bound or processed by Dicer. The main function of Dicer is to cleave long dsRNAs into 

shorter products, but it is also a vital part of the RISC loading complex, which strongly 

facilitates the transfer of the guide strand into the RISC. Since siRNAs <23 bp are loaded 

directly onto the RISC, they are not able to take advantage of this feature [101, 113]. Dicer 

products are designed to interact with Dicer, and have been shown to be more efficient than 

siRNAs targeting the same target sequence [39, 101, 114]. 

There are three promoters used to express shRNAs: the H1, U6 and tRNA promoter [115]. Of 

these, the U6 and H1 promoters are generally being favoured, and it has been debated as to 

which of these promoters is the most efficient. Some groups find that U6 is the most effective 

in terms of expressed shRNA and the duration of gene suppression [115, 116], while others 

groups find no significant difference [117]. Our results reveal that the efficiency may vary 

between cell-lines but that the U6 promoter usually demonstrated a marginally higher 

efficiency (Paper I, [118]). This suggests discrepancies depending on different variables such 

as type of target cells, delivery method and shRNA sequence and that the most efficient 
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promoter should be decided on a case-by-case basis. Since shRNAs are processed by Dicer, 

they are also inserted into the RISC with higher efficiency than siRNAs. It has been shown 

that shRNAs expressed from a U6 promoter are more than 100 fold more effective on a 

numerical basis than siRNAs containing the same target sequence [115]. Nonetheless, a 

vector containing the shRNA is often 100 fold larger than naked siRNA. In addition, the 

vector needs to enter the nucleus in order to be transcribed, which is shown to be one of the 

biggest challenges when transfecting [119]. For that reason, the number of shRNA transcripts 

actually being produced is much lower than the number of siRNAs being introduced to the 

cytoplasm when the same amount of nucleic acid by weight is transfected. As a result of this, 

the practical gene suppression efficiency ranges from similar to slightly better for siRNAs 

compared to shRNAs [105, 115, 120]. 

By expressing the shRNA placed within the backbone of a miRNA, the resulting shRNA-mir 

is processed by Drosha in the same manner as the miRNA itself. MiRNAs are almost 

exclusively expressed from RNA polII promoters, as opposed to traditional shRNAs which 

are generally expressed from polIII promoters. The suppression efficiency of identical 

shRNAs expressed from either PolII or PolIII promoters has been compared with conflicting 

results. It has been shown that shRNA-mir expressed from a CMV PolII promoter slightly 

outperformed the shRNA transcribed from a U6 RNA polIII promoter [121]. Boden et al. 

reported that the transient expression of shRNAs from PolII promoters with miRNA 

backbones significantly outperformed conventional shRNAs [122], while it has also been 

reported that conventional shRNAs are more efficient than shRNA-mir [123]. Boudreau et al. 

however have stated that the above reports could be flawed as a result of missing 3’ 

dinucleotide overhangs in addition to the failure to consider the effect of GC asymmetry in the 

stem when the conventional shRNAs were designed. When these important features are under 

control, it has been shown that conventional shRNAs are more potent than shRNA-mirs for 

three different target sequences, both in vitro and in vivo [124]. It is not clear whether this is a 

result of increased expression or higher stability of the transcribed shRNA in comparison to 

shRNA-mir. 

3.1.7. Duration of RNAi-based gene suppression 

It is only possible to introduce synthetic siRNAs and Dicer products to cells in a transient 

manner, which means that all gene suppression resulting from these synthetic RNAs is only 
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temporary. Bartlett and Davis found that it seems as if the duration of siRNA-mediated 

knockdown is dependent on how fast the harbouring cells are dividing [125]. Here, it was 

demonstrated that the levels of the targeted genes returned from optimal knockdown at 24-48 

hours to background levels within six days in the dividing cells, and similar dynamics have 

been reported by other groups [114, 126]. However, it has also been reported that the 

maximum amount of introduced siRNA molecules peaks at approximately 24 hrs and 

diminishes within 48 hrs, which indicates a high degradation and turnover [127]. It has been 

shown that transiently transfected vector-based shRNAs give more durable gene suppression 

than the transfection of siRNA since shRNAs can be continuously transcribed by the host cell 

as long as the vector remains in the nucleus [115]. There are two main concerns when 

considering gene suppression using RNAi with transiently transfected effectors. First, all 

transient expressions by definition are temporal, and suffer from dilution effects as a result of 

cell division and RISC turnover. Because of this, it is not possible to maintain gene 

suppression for more than a week (our unpublished results). Second, transfection efficiency is 

rarely 100% and might vary considerably between cell lines. As a result, there will always be 

a background of cells without gene suppression, and this untransfected fraction could vary 

considerably between different cell lines (our results). Vector-based RNAi has the advantage 

of being able to produce stable gene suppression through the insertion of the expression 

cassette into the genome of cells, which is an approach that solves both concerns mentioned 

above. 

3.1.8. Strategies for achieving stable shRNA expression 

When an expression cassette is inserted into the genome of a cell, it will not be lost and will 

be inherited to all offspring. Therefore, the expression of shRNA will remain in the entire cell 

population. Generally speaking, an expression cassette being genomically inserted is coded on 

the same plasmid as a construct expressing an enzyme, making the stably transfected cell 

resistant towards a selection marker. When this selection marker is later added to cell media, 

untransfected cells will die, leaving behind a population in which all cells express the desired 

shRNA. Thus, stable transfection will generate populations in which all cells are transfected, 

and gene suppression does not diminish over time. 

There are several strategies for the stable delivery of exogenous DNA to cells [reviewed in 

128]. The ones most used in RNAi strategies are random plasmid integration [105, 106] and 
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viral delivery [129-131]. In random plasmid integration, cells are transfected by any 

conventional method [reviewed in 128]. On rare occasions, transfected DNA is integrated into 

the genome of the cell in a random manner. These relatively rare cells will then be able to 

produce resistance towards a selective drug on a permanent basis, and therefore can be sorted 

out from the majority of cells not being stably transfected. As a consequence, the expression 

of the inserted transgene may vary between clones. Transgenes inserted in high density 

chromatin areas generally show a low expression, whereas insertion in low density areas 

suggests a higher expression. The plasmid might have been linearised in a manner that 

resulted in expression of only the resistance gene and no functional version of the transgene. 

Additionally, the number of copies being inserted may vary [reviewed in 128], which means 

that every clone should be controlled for plasmid integrity and expression. 

Retroviral vectors have become an important tool for stable gene transfer both in vitro and in 

vivo. Retroviruses are constituted of RNA packed into a capsid and a membranous envelope. 

When the virus infects a cell, it transfers the RNA into the target cell, where it is reverse 

transcribed in the cytoplasm and integrated randomly into the genome [reviewed in 132]. The 

frequently used Moloney murine leukemia virus (MLV) retroviruses are not able to cross the 

nuclear membrane, and are thereby only able to integrate into the genome when the nucleus is 

disassembled during mitosis [133]. For this reason, MLV retroviruses are only able to infect 

dividing cells. Lentiviruses are a complex class of retroviruses which are able to also 

transduce non-dividing cells [reviewed in 134]. Both classes of retroviruses are mainly 

adapted in the same manner for transductions in laboratories. Genes encoding proteins that are 

necessary for the assembly of the envelope are transcribed from a packaging cell line, which 

is transiently transfected with the remainder of the viral genome containing an inserted 

transgene and a resistance gene. This leads to the release of functional viruses which codes for 

the insert, but not for the envelop proteins into the media. The media containing viral particles 

can then be used to transduce other cells. The lack of genes encoding the envelope proteins, as 

well as additional modifications in the viral genome, abolishes the possibility of transduced 

cells being able to produce viable viruses [reviewed in 132]. 

All of the strategies mentioned above have both positive and negative properties. Random 

plasmid integration is cheap and does not require any safety precautions, but is very 

ineffective. MLV retroviruses have a vastly increased efficiency and are easy to produce, 

although they are not able to transduce non-dividing cells, while lentiviral vectors can also 
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infect non-dividing cells [reviewed in 132]. Since viruses released from the packaging cells 

are theoretically capable of infecting all human cells, including those of the person 

performing the transduction, there are safety issues involved when transducing cells. 

3.1.9. Conditional shRNA expression 

The constitutive and ubiquitous expression of shRNAs suffers from limitations when it comes 

to the study of gene functions involving cell survival, growth and development. The reason 

for this is that the selection of transduced cells into a pure cell population typically takes 

several days from the time of the transduction. Within this time frame, the effects of the 

shRNA will have begun. This has prompted the construction of inducible gene silencing 

systems based on conditional RNAi expression. In such systems, the expression of shRNA 

will remain shut off until some sort of signal turns the expression on. In some systems, this 

expression is reversible. 

There are several approaches for achieving conditional expression of shRNA. 

Recombination 

In the Cre/lox (Cyclization recombination/locus of X over P1) system, the shRNA is generally 

expressed from a polIII promoter. The complete shRNA, however, is separated from the 

promoter by a gene sequence flanked by two lox recombination sites. This site is recognised 

by the recombinase enzyme Cre, which will excise the DNA between the two lox sites. This 

recombination will result in transcription of the intact shRNA [135-138]. The advantage of 

this system is that there is no background expression of shRNA until Cre is present and that 

Cre only needs to be present for a short period to achieve permanent shRNA transcription. 

The Cre/lox system can also be used to shut down the expression of shRNA. Here, the 

promoter is placed between two lox sites, which will then be removed by recombination by 

the addition of Cre [138]. A similar system uses the yeast-derived recombinase FLP and its 

recognition site FRT [139]. The main disadvantage of both systems is that once the 

recombination has taken place, it is impossible to reverse it.  

The Tet-inducible system 

The most commonly used system for achieving conditional regulation of shRNA expression is 

based on Tetracycline (Tet) -inducible systems. There are three components necessary for the 
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functioning of this system: The constitutive expression of a Tet-repressor (TetR), a plasmid 

allowing the inducible expression of RNA through a promoter containing a TetR-binding 

sequence named Tet-operator (TetO) and the inducer Tet or one of its derivates, usually 

Doxycycline (Dox). TetR has a high affinity to the TetO, and thus binds tightly to DNA 

strands containing its sequence. The Tet-inducible system was originally developed in polII 

promoters and later adapted to polIII promoters in order to control the expression of shRNA 

[140]. An inducible polII promoter is minimal, meaning that sequences binding 

enhancers/activators necessary for transcription initiation are replaced. Instead, a Tet-

Responsive element (TRE), which contains seven TetO sequences linked to a short stretch of 

sequences containing the PolII transcriptional start site of the CMV promoter, is added [141]. 

TetR is then fused to an activator, which recruits RNA polII to a minimal polII promoter and 

initiates transcription. In the Tet-Off system, the addition of Dox releases TetR and its 

activator from the TRE, turning the transcription off [141]. In Tet-On systems, the activator 

has four amino acids in the TetR moiety that are reversed, giving it the reverse phenotype. 

Here, Dox is required for the binding of TetR and the addition of Dox recruits the activator 

complex, thus turning gene expression on [142]. Of the two, Tet-Off is regarded as the most 

effective system [143]. 

Since PolIII promoters produce RNAs without 3’ polyA tails and 5’ end caps that are able to 

interact directly with exp5 and Dicer, they were the first promoters used for the stable 

expression of shRNAs. It is the U6 and H1 promoters which have been utilised for inducible 

expression via an adapted Tet-off system. Both the U6 and H1 promoters are extremely 

compact, and have three essential domains: the distal sequence element (DSE), the proximal 

sequence element (PSE) and the TATA box. The PSE and the TATA box are binding sites for 

the RNA polymerase itself, while the DSE binds the transactivators necessary for activation 

of the polymerase [144]. The activity of the promoters relies on a correct spacing between 

these elements and the transcription start, while the sequence between them is of lesser 

importance [145]. These intermediate sequences can be adapted to possess a TetO, one 

upstream and one downstream of the TATA box. TetO sequences placed upstream of the PSE 

and in the proximity of the DSE, severely impair transcription from the promoter [146]. When 

the inducer is absent, the TetR will bind to the TetO, thereby sterically preventing binding of 

the polIII. The addition of the inducer leads to a conformational change of TetR into a 

configuration not able to bind to the TetO. This allows polIII to bind and transcription to take 

place (Figure 3). There are two TetOs that have been used extensively in PolIII-inducible 
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promoters, the TetO1 and TetO2 [147]. Several combinations of the two TetOs in US, DS or 

both positions have been described for both the H1 and U6 promoters [140, 148-151]. The 

general conclusion is that one operator alone is not sufficient for achieving tight regulation of 

the promoter in an uninduced state. In addition, it seems as though the TetO2 operator is the 

most effective in terms of suppression [149]. In Paper I, we compared the tightness and 

efficiency in a number of previously described inducible U6 and H1 promoters in several 

different human cell lines, in addition to describing an H1 promoter containing two TetO2s 

for the first time [118]. It was concluded that overall the newly designed promoter performed 

better than the remaining promoters, including the similar U6 promoter containing two type 2 

TetOs. The H12O2 promoter presented a very low background in an uninduced state and up 

to 90% gene suppression after the addition of the inducer Dox. 

 

 

Figure 3: Conditional expression of shRNA from a PolIII promoter. When the inducer Dox is absent, 

TetR is bound to the TetO, thereby sterically obstructing the binding of polIII to the promoter. Dox 

induces a conformational change of the TetR into a form with a low affinity to the TetO. This leads to the 

dissociation of TetR from the promoter, allowing PolIII to transcribe the shRNA. 

The U6 RNA polIII promoter has also been modified to an inducible version following the 

same principles as polII promoters. Here, the DSE was replaced by a TRE, and TetR fused to 

the activator normally binding to the DSE [152, 153]. 
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Following the discovery of shRNA-mir, which are transcribed by polII, the original Tet-

inducible polII promoters returned to the field of RNAi [112, 154]. Here, it was shown that 

these vectors presented tight regulation, high penetrance and high efficiency, even in single 

copy levels of the inserted cassette. Although the Tet-Off system has been previously 

regarded as superior to the Tet-On system, the transcriptional activator originating from the 

Tet-On system has been improved using viral evolution as a tool to better adapt it from its 

original host, E. coli, to mammalian systems [155]. The resulting activator has been utilised in 

inducible shRNA systems to yield improved gene suppression [156]. Two shRNAs targeting 

different mRNAs from the same promoter were also expressed, thereby acquiring the ability 

to knockdown two genes simultaneously. 

Ecdysone 

The ecdysone system is similar to the Tet system in its principle of function. The ecdysone 

receptor is fused to an activator, and binds to the Gal4-binding sequences. It uses ecdysone-

analogs as inducers, and the addition of the inducer releases the receptor along with its 

activator from the minimal promoter, thereby turning transcription off. The system is 

functional in both polII and polIII promoters [157, 158].The vector integration site strongly 

influences expression, which requires careful selection of effective clones. Additionally, 

ecdysone is a steroid prohormone, and activation of its receptor could trigger endogenous 

gene expression in target cells [reviewed in 159]. 

3.1.10. Off-target effects 

Off-target effects of RNAi are defined as consequences that arise from any effect other than 

the intended gene suppression. The off-target effects are divided into two main categories: 

specific and non-specific. 

Specific off-target effects 

Specific off-target effects arise as a result of a full or partial complementarity between the 

passenger or guide strand towards any unintended target. In order to achieve target cleavage 

through the action of Ago, it is necessary to have perfect complementarity extending through 

at least 13 nt of the strand mounted in the RISC [160]. A BLAST search of the transcriptome 

of the species investigated will quickly expose siRNAs harbouring unspecific 

complementarity of this degree, allowing for those siRNAs to be discarded. As a consequence 
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of this, there is more concern regarding partial mismatches, particularly when including nt 2 – 

8 counted from the 5’ end of the guide strand. These nucleotides form the seed sequence that 

allows the guide strand of the siRNA to function as a miRNA [61]. It is has been shown that 

the off-target effects of siRNAs are strongly biased to occur from ~7 nt complementarity 

between the “seed sequence” of the guide strand and the 3’ UTR of the unintended targets and 

that the unintended target sequences are often conserved in several mRNAs [161]. The 

magnitude of the regulation of transcripts targeted as siRNA off-targets is generally less than 

twofold, which is similar to that of miRNAs [161, 162]. This suggests that siRNAs are prone 

to target unintended miRNA seed sequences of ~7 nt. Because of this, there could be a 

discussion as to whether the less than twofold regulation realised by off-target siRNAs has 

any biological relevance. Adverse unintended phenotypes arising from such off-target effects 

have been described [161, 163]. There is no algorithm that can significantly eliminate 7-8 nt 

matches in the transcriptome of a species; therefore, some off-target effects are likely to occur 

when using any form of RNAi-mediated gene silencing, and there are developed algorithms 

that try to minimize off-target effects [164-166]. 

Non-specific target effects 

Non-specific target effects are effects that do not result from direct interaction between an 

RNAi construct and an mRNA target. This includes immune-responses as a result of defence 

mechanisms triggered against exogenous RNA, any effect related to the delivery vehicle in 

addition to any effects arising from saturation of the miRNA pathway. 

Initially, it was thought that RNA duplexes shorter than 30 nt were small enough to evade 

stimulation of the interferon response [9]. However, this assumption has been questioned, as 

activation of immune responses resulting from the introduction of small siRNAs has been 

described [167, 168].  The 13 Toll-like receptors (TLRs) are a class of proteins that recognises 

signs of infection and activates the innate immune system. Of these, the ones most relevant 

for activation as a result of RNAi are TLR3, which recognises the duplex form of siRNA, and 

TLRs 7 and 8, both of which are activated either by the duplex or its corresponding single 

strand [169-171]. TLR receptors are often concentrated in endosomes, thus transfection 

methods utilising cationic lipids enhance the immune response [171]. In contrast, ShRNAs are 

less likely to induce an immune response since they are presented from a DNA plasmid, 

thereby avoiding the dsRNA activation of TLR3. In addition, the 5’ ends of shRNA, which 
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are produced endogenously, seem to be less immunogenic than corresponding 5’ ends of 

exogenous siRNAs [101, 172]. Chemical modifications of siRNAs can reduce their 

immunogenicity [reviewed in 173].  

RNAi uses the miRNA pathway in order to exert its effect. As a result, any exogenous RNAi 

effector competes with endogenous miRNAs for access to the miRNA machinery. ShRNAs 

are entering the miRNA pathway at a higher level than siRNAs (Figure 2), and are therefore 

competing with miRNAs in more steps than siRNAs. The most rate-limiting step in the 

miRNA pathway seems to be the export of pre-miRNA from the nucleus to the cytoplasm by 

exp5, and shRNA expression is shown to interfere with endogenous miRNAs as a result of 

saturation from this step [174]. Also, the sustained expression of shRNAs stably delivered to 

liver cells in adult mice has been revealed to severely downregulate the expression of 

endogenous miRNA [175]. This was demonstrated to be a result of saturation due to 

Exportin5 activity as well as the activity of Ago2 in RISC [176]. By expressing the shRNAs 

from a miR backbone, the toxicity of shRNAs has been shown to be diminished [177]. One 

group has proposed that siRNAs are unable to saturate the miRNA pathway by showing that 

the expression of three different miRNAs in liver cells did not change when siRNA-mediated 

gene suppression was utilised [178]. Nonetheless, it has also been shown that both shRNAs 

and siRNAs compete not only with each other, but with endogenous miRNAs for 

incorporation to RISC [179]. In addition, it has been proposed that transfected small RNAs 

have a global effect on genes under the control of endogenous miRNAs [180]. Here, the 

results from 151 published experiments based on the transfection of either siRNA or miRNA 

into cells in culture were analysed. A statistical analysis of the published mRNA profiling or 

protein mass spectrometry revealed that in the majority of the experiments, endogenous 

mRNAs containing targets of miRNAs with high endogenous expression were upregulated as 

a result of competition from exogenous mi/siRNAs. 
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3.2. Neuroblastoma 

3.2.1. Embryonal development and neoplasms 

The development of an embryo begins with a single fertilised egg. Countless cell divisions of 

this perfect stem cell eventually lead to the generation of organs and every other component 

of the organism. After the first few cell divisions of the zygote, it is already apparent that cell-

cell interactions start to decide the fate of the daughter cells [181]. From this point on, the 

development of the embryo is a process comprised of strictly controlled proliferation and 

differentiation signals. In the early embryo, there is a majority of strong mitogenic signals that 

limit the ability of cells to exit the cell cycle. During embryonal development, changes in the 

concentration of key regulatory signals promote the exit of the cell cycle and the onset of 

differentiation for the targeted cells. In normal development, the signals indicating 

proliferation or differentiation are under tight control, though in tumour growth this control is 

lost. If a strong mitogenic signal expressed transiently during development achieves 

constitutive expression, it acts as an oncogene. Alternatively, if a protein involved in 

signalling pathways leading to cell cycle exit and differentiation loses its function, it may no 

longer act as a tumour suppressor. Tumours originating from tissues that normally proliferate 

only in a developing embryo are known as embryonal tumours. If the tumour arises from 

primitive precursor cells, it is given the suffix blastoma. These tumours can arise in various 

parts of the body and include medulloblastoma in the brain, neuroblastoma in the sympathetic 

nervous system, retinoblastoma in the eye, Wilms’ tumour (nephroblastoma) in the kidney, 

hepatoblastoma in the liver and embryonal rhabdomyosarcoma in soft tissue. These tumours 

are very rare after childhood, and most commonly occur during the first years of life. 

3.2.2. Development of the sympathetic nervous system 

On day 19 of the embryo, the neural plate starts to form on the ectoderm of the embryo. The 

edge of the neural plate is defined by neural crest precursors, and as the neural plate folds in 

on itself, the neural crest precursors from each outer edge join and form the dorsal part of the 

newly developed neural tube. The neural tube is developing to form the central nervous 

system, while the now mature neural crest cells start to migrate from the dorsal part of the 

neural tube into several areas of the embryo [reviewed in 182]. Neural crest cells are the 

origin of several cell lineages: cranial (e.g. forming facial bones), vagal and sacral (e.g. 

parasympathetic neurons), cardiac (contributing to the development of the heart) and trunk 
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neural crest-derived cells (e.g. melanocytes and the sympathetic nervous system, including the 

adrenal medulla) [183].  

Trunk neural cells destined to form the sympathetic neural system are of the sympathoadrenal 

lineage. These migrating sympathetic neuroblasts arrange themselves alongside both sides of 

the neural tube before they start forming chains of sympathetic ganglia. As internal organs are 

being developed, sympathetic fibres formed by axonal outgrowth from the ganglia reach out 

to and connect them to the sympathetic nervous system in a process known as innervation 

[183]. 

The differentiation from neural crest precursors at the neural plate to non-dividing neural cells 

in the sympathetic nervous system requires involvement of a large amount of signalling 

pathways. The formation of both the neural plate and neural crest precursors are dependent on 

expression levels of the bone morphogenetic protein (BMP) pathway, the fibroblast growth 

factor (FGF) pathway and the Wnt signalling pathway [reviewed in 184]. As the neural tube is 

formed, the neural crest precursors mature to neural crest cells before going through an 

epithelial to mesenchymal transition, in which they shed from the neural tube and start 

migrating. This process is largely governed by Wnt signalling, and leads to expression of a set 

of genes known as neural crest specifiers. As the migrating neural crest cells reach their final 

target, they start differentiating, while many of the neural crest specifiers are downregulated 

[reviewed in 185]. Neural crest cells destined for the sympathoadrenal lineage demonstrate 

increased BMP signalling [186, 187]. As they further mature, they start expressing enzymes 

required for the synthesis of noradrenalin, e.g. tyrosine hydroxylase [188, 189], and as they 

acquire a neuronal fate they start expressing neurofilaments, neuron-specific tubulin and other 

neuronal markers [187, 190, 191]. After the acquisition of neuronal traits, the 

sympathoadrenal cells undergo a second migration step away from the dorsal aorta to form 

the secondary sympathetic ganglia, the prevertebral ganglia and the adrenal medulla in a 

process that probably involves FGF and NGF signalling [192]. This differentiation process 

also involves a myriad of transcription factors required to be expressed at the correct time and 

in the correct amount [reviewed in 192]. Among these are MYCN, which is expressed in 

migrating neural crest cells [193]. It seems as if MYCN is necessary for keeping the cell in a 

migrating state, in addition to being an important signal for committing the neural crest cells 

where it is expressed towards the sympathoadrenal lineage [193]. Like many of the neural 
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crest specifiers, MYCN expression is turned off as the neural crest cells reach their final 

destination and differentiate towards their ultimate phenotype [194]. 

As the neural crest cells differentiate and spread throughout the embryo in order to form the 

sympathetic nervous system, the number of cells in each differential stage must be under strict 

control. Developmental apoptosis is crucially important in this matter, and progenitor cells of 

all stages are prone to enter apoptosis if given the appropriate signals [reviewed in 195]. For 

instance, it has been proposed that during normal development neuronal progenitor cells 

compete with each other for access to NGF, and as NGF becomes limited, the losers will enter 

apoptosis via a pathway that includes the tumour suppressor KIF1Bβ [196].   

3.2.3. From neuroblasts to neuroblastic tumours 

Being an embryonal tumour, neuroblastoma is regarded as a consequence of the disordered 

normal development of cells from the sympathoadrenal lineage of neural crest cells [197]. As 

described above, the cells of the sympathetic nervous system originate from neural crest cells, 

going through an epithelial to mesenchymal transition, before migrating as single cells until 

they reach their destination. A second migration step is then initiated in order to complete the 

sympathetic nervous system. Migrating mesenchymal cell types are often related to cancer 

[reviewed in 198], and it is not difficult to imagine that the failure of neuroblasts to exit the 

mesenchymal mode and alternatively returning to it, could result in the development of 

malignant neoplasms.  

Neuroblastic tumours (i.e. neoplasms of the sympathoadrenal lineage) can arise anywhere in 

the sympathetic nervous system, although the majority of primary tumours appear in the 

abdomen, with a major site being the adrenal medulla. Other common sites include the neck, 

chest and pelvis [199]. Neuroblastic tumours can be divided into three categories based on 

their morphologic features: Ganglioneuroma, ganglioneuroblastoma and neuroblastoma [200]. 

Ganglioneuromas appear as clusters of mature neurons surrounded by a stroma of Schwann 

cells, while neuroblastoma cells appear as undifferentiated tumours consisting of small, round 

neuroblasts. Ganglioneuroblastomas are the intermediate of the two [200]. Ganglioneuromas 

are well encapsulated benign tumours not capable of invading or metastasizing. 

Ganglioneuroblastomas are generally benign, while neuroblastoma often appear as a very 

aggressive cancer which commonly metastasizes [200].  
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3.2.4. Neuroblastoma – the disease  

Neuroblastoma is not a common disease. In Sweden, the incidence over a period of 27 years 

was 1 case/100,000 children below the age of 15 years [201]. Despite being rare, 

neuroblastoma accounts for 7-10% of all diagnosed childhood cancers and 15% of all 

childhood cancer deaths [199, 202]. Neuroblastoma is divided into risk groups based on 

criteria such as age of the patient at diagnosis, International Neuroblastoma Risk Group 

(INRG) tumour stage and MYCN copy number (Table 1) [203, 204]. Patients in the low and 

intermediate risk group show fairly good prognosis, while the event-free survival (EFS) rate 

for patients diagnosed with high risk neuroblastoma is less than 50% [203].  
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Table 1: International Neuroblastoma Risk Group (INRG) Consensus Pretreatment Classification 

schema. Pretreatment risk group H has two entries. Blank field = "any"; DI, diploid (DNA index ≤ 1.0); 

HDI, hyperdiploid (DNA index > 1.0 and includes near-triploid and near-tetraploid tumours); very low 

risk (A-C, 5-year EFS > 85%); low risk (D-F, 5-year EFS > 75% to ≤ 85%); intermediate (intermed) risk 

(G-J, 5-year EFS ≥ 50% to ≤ 75%); high risk (K-R, 5-year EFS < 50%). GN, ganglioneuroma; GNB, 

ganglioneuroblastoma; Amp, amplified; NA, not amplified; L1, localised tumour confined to one body 

compartment and with absence of image-defined risk factors (IDRFs); L2, locoregional tumour with 

presence of one or more IDRFs; M, distant metastatic disease (except stage MS); MS, metastatic disease 

confined to skin, liver and/or bone marrow in children < 18 months of age; EFS, event-free survival 

[adapted from 203]. 

INRG  

Age 

(Months) 

Histologic 

Category 

Grade of Tumour 

Differentiation MYCN 

11q 

Aberration Ploidy 

Pretreatment 

Risk Group 

L1/L2  
GN maturing; 

GNB intermixed 
    A Very low 

NA   B Very Low 
L1  

Any, except 
GN maturing or 
GNB intermixed 

 
Amp   K High  

No  D Low 
< 18 

Any, except 
GN maturing or 
GNB intermixed 

 NA 
Yes  G Intermed 

No  E Low 
Differentiating NA 

Yes  

Poorly differentiated 
or undifferentiated 

NA   
H Intermed 

L2 

≥ 18 
GNB nodular; 
neuroblastoma 

 Amp   N High 

< 18   NA  HDI F Low 

< 12   NA  DI I Intermed 

12 to < 18   NA  DI J Intermed 

< 18   Amp   O High 

M 

≥ 18      P High 

  No  C Very low 

  
NA 

Yes  Q High MS < 18 

  Amp   R High 

Neuroblastoma has a high rate of spontaneous regression. The total amount of neuroblastomas 

that are detected clinically and regress without any treatment is approximately 5-10% [202]. 

This clinical phenotype (INRG MS stage, risk group C) is mainly seen in infants below the 

age of 18 months, and is presented with small localised primary tumours with metastases in 

the liver, skin or bone marrow. It is assumed that the cause of these naturally regressing 

tumours is the delayed activation of differentiation or apoptosis pathways [202]. In fact, it is 

shown that microscopic neuroblastic nodules occur uniformly in all fetuses, peaking between 

17 and 20 weeks of gestation, and then gradually regressing by the time of birth [205, 206]. 

Additionally, neuroblastomas within INRG C rarely, if ever, evolve into any of its malignant 

forms, which indicates that the malignant forms of neuroblastoma affecting children older 

than 18 months are of a distinct type [202]. Neuroblastoma often contains a range of genomic 
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aberrations. Neuroblastomas that are prone to spontaneous regression are often characterised 

by a mitotic dysfunction, resulting in a hyperploid or near triploid phenotype with few 

structural abnormalities [207, 208]. On the other hand, neuroblastomas in patients one year or 

older are often characterised by a near-diploid or near-tetraploid karyotype in addition to 

numeral structural abnormalities [207, 208].  

The most frequent aberration in neuroblastoma is gain of chromosome 17q, which is found to 

be present in a majority of tumours [209, 210]. In neuroblastoma, it seems as if chromosome 

17q gain is a result of translocation from several other chromosomes [211]. A frequent 

aberration is an 11q loss of heterozygosity (LOH), which is a prognostic marker for poor 

outcome in neuroblastoma without MYCN amplification [212, 213]. Another frequent allelic 

loss occurs on chromosome 1p [214]. Deletions in chromosome 1 are also found more 

frequently in patients with advanced disease, but LOH on 11q and 1p rarely occurs in the 

same tumours [202, 215]. Many tumours with 1p LOH also contain an amplification of the 

2p24 locus, which is the site of the proto-oncogene MYCN [216, 217]. MYCN amplification 

rarely exists without 1p LOH, whereas not all cases of 1p LOH contain MYCN amplification, 

an observation that suggests that 1p LOH is a prerequisite for MYCN amplification [202]. 

Patients with 1p LOH and eventual MYCN amplification are typically 1-5 years old with 

advanced stage, rapidly progressive and often fatal neuroblastoma, while patients with 11q 

LOH neuroblastoma are often older, with an advanced stage of disease that slowly progresses 

and is often fatal [202]. 

3.2.5. Expression of MYCN in neuroblastoma 

MYCN is a member of the MYC gene family of transcription factors, all of which initiate 

transcription in similar ways. The MYCN transcription factors form an active complex when 

heterodimerised with its partner MAX [218, 219]. Both MYCN and MAX contain DNA 

binding motifs, and the active protein complex can initiate transcription when bound to its 

DNA binding sites. The most frequently targeted DNA sequence is the E-box motif (5’-

CAC(A/G)TG) [220-222]. In addition, H4-K3 methylation of a promoter region has been 

shown to be an indicator for MYCN/MAX binding [223]. MAX can also dimerise with MAD, 

and the resulting complex also has an affinity towards E-boxes, but functions as a 

transcriptional repressor instead of an activator [224-226]. MYCN is also shown to be 

involved in transcriptional repression in neuroblastoma [227]. Here, MYCN has been 
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demonstrated to act as a bridge between the DNA binding protein Sp1 and the repressor 

histone deacetylase (HDAC), resulting in transcriptional repression of tissue transglutaminase 

(TG2). 

The amplification of a gene is a result of chromosomal rearrangements leading to an increased 

copy number of the amplified gene. Amplification of MYCN was first observed in 1983, when 

it was shown that MYCN could be amplified up to 140 fold [228]. It seems as if all copies of 

the amplified gene contribute to the expression of MYCN and that the increased gene number 

is the reason for the high MYCN mRNA expression in MYCN amplified (MNA) 

neuroblastoma cells [217, 229]. Generally speaking, it seems that levels of mRNA resulting 

from MYCN amplifications reach a 40-60 fold increase in comparison to single copy cell lines 

with a low expression of MYCN, and that the increase in mRNA level is not always 

proportional to the number of gene copies [230]. 

As described above, MYCN is naturally expressed in neural crest cells of the sympathoadrenal 

lineage, which is assumed to be important for maintaining the cells in a migrating state [193]. 

In cancer terminology, mesenchymal cells that are able to migrate are closely related to a 

malignant phenotype, so it is therefore not surprising that a protein devoted to maintaining 

this phenotype is a potent oncogene. Indeed, MYCN amplification is one of the most 

prominent prognostic indicators for a bad outcome in neuroblastoma [203]. MYCN has been 

shown to be causally involved in tumourigenesis and tumour progression, as transgene mice 

expressing MYCN in the neuroectoderm develop neuroblastoma several months after birth 

[231].  

3.2.6. MYCN targets 

The exact mechanism MYCN uses to mediate its oncogenic effect is still largely unknown, but 

some pathways are emerging as likely candidates for executing the malignant potential of 

MYCN. Here follows a brief description of a few direct targets of MYCN:  

MYCN expression has been shown to increase proliferation by shortening the time used to 

progress through the cell cycle [232]. E2F1-3 are transcription factors which mainly regulate 

the expression of numerous genes necessary for the S-phase of the cell cycle such as 

thymidine kinase, dihydrofolate reductase (DHFR), DNA Polα and cell division cycle 6 

(cdc6). Thus, active E2F1-3 pushes the cell into the S-phase [reviewed in 233].When E2F1-3 
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are bound by hypophosphorylated retinoblastoma protein (RB), it is inactive, and the cell 

remains in the G1 phase. Phosphorylation of RB through the cyclin D/CDK4/6 complex 

removes RB from the RB/E2F complex, thereby releasing active E2F. Several possible 

MYCN targets engaged in the cell cycle progression are probably functioning through 

regulation of the E2F1-3 transcription factors [reviewed in 234]. E2F1 has been demonstrated 

to be a transcriptional target of MYCC, and there are indications that MYCN also regulates 

E2F1 expression, while at the same time E2F1-3 activates the expression of MYCN itself 

[reviewed in 234]. 

MYCN is known to increase the susceptibility of cells entering apoptosis following cellular 

stress such as DNA damage, survival factor withdrawal, substrate detachment and hypoxia 

[reviewed in 235]. p53 is known as the guardian of the genome, and is involved in DNA 

repair and/or initiation of apoptosis as a result of extensive DNA damage. It has recently been 

reported that p53 is a direct transcriptional target of MYCN [236], and this finding suggests a 

mechanism for the MYCN-driven p53-dependent apoptosis necessary for achieving control of 

rapidly dividing neuroblasts in normal development. However, MYCN is also a 

transcriptional activator of MDM2, which is a negative regulator of p53 [237].  

Bmi1 is a transcriptional repressor required for the self-renewal of stem cells of the central- 

and peripheral nervous system [238], and are highly expressed in a vast majority of primary 

neuroblastoma tumours regardless of MYCN status [239]. Ochiai et al. have shown that its 

promoter contains E-box sequences and that as a result, Bmi1 is a direct transcriptional target 

of MYCN [240]. In addition, they have shown that Bmi1 directly downregulates several 

tumour suppressors in neuroblastoma, among them KIF1Bβ and TSLC1, both of which have 

been correlated to a bad prognosis when downregulated [241, 242]. KIF1Bβ is an important 

signal for apoptosis of neural progenitor cells when NGF access is reduced [196]. The exact 

function of TSCL1 in neuroblastoma is not known, but it is suspected that it demonstrates an 

antiproliferative and/or proapoptotic activity [241]. 

3.2.7. Targeted MYCN downregulation 

Given that MYCN is a strong oncogene being expressed naturally primarily in embryonal life 

only, it has long been regarded as an ideal candidate for targeted therapy [243]. The first 

approaches for a targeted reduction of MYCN expression were conducted by using standard 

antisense technology [244]. Here, it was found that repression of MYCN expression leads to 
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reduced proliferation and differentiation towards a more neuronal phenotype in a MNA 

neuroblastoma cell line. Peptide nucleic acids (PNA) are nucleic acid analogues in which the 

sugar backbone is replaced by a synthetic peptide backbone. The resulting mimic is 

uncharged, and thus binds with greater affinity to complementary nucleic acids (both DNA 

and RNA) than nucleic acids. Because there are no naturally occurring PNAs, they are not 

targets of enzymatic degradation [reviewed in 245]. PNAs have successfully been used for 

targeted downregulation of both MYCN mRNA [246, 247] and the MYCN gene at the DNA 

level [248]. Although fairly effective and selective, PNAs are expensive to design and 

synthesise. As RNAi has evolved as a superior tool for targeted gene suppression, transient 

siRNA-based MYCN-knockdown has also been used to show reduced cell growth, induced 

differentiation and induced apoptosis in MNA neuroblastoma cells [249, 250].  

The SHEP Tet21N system has been evolved for mainly studying MYCN-related cell cycle 

effects [232]. Neuroblastoma cell lines established in culture appear to be heterogenous, and 

can be divided into three different subgroups: neuroblastic (N), substrate adherent (S) and 

intermediate (I) cell types. N-type cells appear as being small, rounded and loosely attached, 

with numerous neurite-like processes. The S-type is larger, flatter and more strongly substrate 

adherent, and appears to be fibroblastic/epithelial and do not express any neuronal markers. 

The I-type appears as a morphological intermediate between the N- and S- types, and can be 

induced to differentiate towards both subgroups [251, 252]. In the SHEP Tet21N system, a 

MYCN gene is stably transfected into an S-type clone derived from the I-type SKNSH 

neuroblastoma cell line [232]. In this Tet-Off system, the expression of MYCN can be turned 

off by adding the inducer tet (confer with Chapter 3.1.9 above).  

3.2.8. MiRNA in neuroblastoma 

MiRNAs are regarded as vital contributors to the pathogenesis of a wide array of tumours [92, 

93]. The first expression profiling study indicated that miRNAs were differentially expressed 

in various genomic subtypes of neuroblastoma [253]. It has now been established that MNA 

and other chromosomal imbalances lead to vast dysregulation of the miRNA expression in 

primary neuroblastoma tumours [reviewed in 254]. As mentioned above, MYCN is a 

transcription factor that mainly induces the transcription of genes with E-boxes in the 

proximity of their promoter. MiRNAs are also expressed from RNA polII promoters, and 

MYCN has been shown to regulate the expression of miRNAs [255]. MiRNAs also have the 
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potential to act as both tumour suppressors and oncogenes in neuroblastoma [reviewed in 

254].  

An example of a miRNA acting as a tumour suppressor is miR-34a, which is frequently 

downregulated in primary neuroblastomas [256]. MiR-34a is located in a region of 

chromosome 1p36 that is often deleted in neuroblastoma, and is shown to have an anti-

proliferative effect when overexpressed in neuroblastoma cell lines [256]. Oncogenes found 

to be targets of miR-34a are the transcription factor E2F3 and MYCN [256, 257].  

The miR-17 family of miRNAs are expressed from three different miRNA clusters located on 

three different chromosomes: The 17-5p-92 (miR 17, -18a, -19a, -20a, -19b1 and -92a1), the 

miR 106a-363 (miR 106a, -18b, -20b, -19b2, -92a2, -363) and the miR 106b-25 (miR 106b, -

93, -25) [258]. The miR-17 family is shown to be vital for development of the embryo and 

initiating of the differentiation of pluripotent stem cells [259]. All three clusters harbour E-

box motifs in its proximity [260], and all clusters are shown to be directly regulated by 

MYCN [261, 262]. Several members of the miR-17 family, especially those of the 17-5p-92 

cluster, are shown to act as potent oncogenes in neuroblastoma cells [261, 262]. This is a clear 

indication that at least parts of the oncogenic effect of MYCN are mediated directly through 

the transcriptional activation of miRNAs. MYCN is primarily a transcriptional activator, and 

as described above, only rarely acts as a transcriptional repressor. So far, no miRNA has been 

shown to be directly downregulated by MYCN. However, miRNAs can be inversely 

correlated to MYCN expression as a result of indirect mechanisms [253].  

In paper III, we document for the first time that miR-92b might be activated by MYCN. We 

also suggest that most miRNAs inversely correlated to MYCN are probably involved in 

differentiation.  

3.2.9. DKK3 and neuroblastoma 

In neural crest development, the BMP-, FGF- and Wnt pathways are the main regulators of 

neurulation and the subsequent formation of neural crest cells [184]. The disturbance of these 

early developmental pathways has been shown to be involved in several other forms of 

cancers [263-265], and these pathways are therefore interesting to study in neuroblastoma as 

well. In the canonical Wnt pathway, a Wnt protein binds to its trans-membranous receptor 

frizzled and the co-receptor low-density lipoprotein receptor-related protein 5 (LRP5)/LRP6. 
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This leads to activation of an intracellular pathway that ultimately leads to the accumulation 

of the protein β-catenin in the nucleus where it activates the T-cell factor/lymphocyte 

enhancer factor (TCF/Lef) family of transcription factors. Activation of the canonical Wnt 

pathway regulates a wide array of biological effects, including activation of cell cycle 

progression and proliferation, inhibition of apoptosis, regulation of embryonic development, 

cell differentiation, cell growth and cell migration [reviewed in 266]. Wnt signalling can also 

activate independent non-canonical pathways, the two most described being: 1. The Wnt/Ca2+ 

pathway, which activates the protein kinase C and the Ca2+- calmodulin dependent protein 

kinase II, 2. the cytoskeleton pathway, which regulates the organisation and formation of the 

cytoskeleton and planar cell polarity [reviewed in 267]. There are also several other less 

described and characterised non-canonical Wnt pathways [268]. 

The family of dickkopf proteins (DKK1-4 and Soggy) is a group of secreted glycoproteins 

primarily regarded as inhibitors of the Wnt pathway [269]. While DKK1 and DKK2 

inactivate Wnt signalling by obstructing the binding between LRP5/6 and Wnt ligands, DKK3 

is not able to interact with LRPR6 [270]. DKK3 has been revealed to have distinct roles in the 

modulation of the Wnt pathway, depending on the cell types being studied. DKK3 increases 

Wnt signalling in mouse glia cells and HEK293 [271], but inhibits Wnt signalling in 

pheochromocytoma cells from rat (PC12) [272] and osteocarcinoma (Saos-2) cells [273]. 

Since DKK3 does not bind to the LRPR5/6 receptors, little is known about the molecular 

basis for DKK3-dependent Wnt inhibition. DKK3 does however bind to the membrane bound 

Wnt inhibitor Kremen, and Nakamura and Hackam have proposed that DKK3 potentiates Wnt 

signalling by facilitating a relocation of Kremen from the cell membrane by endocytosis 

[270]. 

DKK3 is an established tumour suppressor shown to be downregulated in a range of tumour-

derived cells, e.g. Saos-2, hepatoblastoma, acute lymphoblastic leukaemia and non-small-cell 

lung cancer [reviewed in 269]. The downregulation of DKK3 is often a result of 

hypermethylation of the DKK3 promoter [274, 275], whereas the overexpression of DKK3 has 

been demonstrated to suppress tumour growth of, e.g. Saos-2 [273], prostate cancer [274, 

276] and neuroblastoma [277]. 

It has been shown that there is an inverse correlation between the expression of MYCN and 

the Wnt antagonists DKK1 and DKK3 in neuroblastoma [278, 279]. In particular, the 
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correlation between DKK3 and MYCN has been proven to be a strong one by Koppen et al. 

[277]. Here, it was documented that DKK3 is a marker for neuroblastic tumour maturation 

and that it is indirectly downregulated by MYCN. In paper IV, we show that DKK3 is 

repressed by miR-92a, miR-92b and let-7e, all of which are MYCN–regulated miRNAs [261, 

Paper III].  
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4. Aims 

Neuroblastoma with MYCN amplification represents the most aggressive form of this disease. 

Although MYCN has been regarded as the most prominent prognostic indicator for bad 

outcomes, the role of MYCN in neuroblastoma tumourigenesis remains largely unknown. The 

silencing of MYCN and its downstream targets are attractive goals for targeted therapy, but 

very little is known about the long-term effects of MYCN silencing of MNA neuroblastomas. 

The main aim of this study was to establish an efficient knockdown of MYCN in MNA 

neuroblastoma cell lines in a stable and inducible manner and to use these cell lines to obtain 

further knowledge of MYCN and its downstream targets, including miRNAs. 

Paper I 

Evaluate available options for inducible expression of shRNA. Design and establish an 

inducible promoter system that is tight when uninduced, and which has a high expression of 

shRNA when induced. In addition, the vector system should allow easy incorporation of any 

desired shRNA. 

Paper II 

Establish MNA cell lines with stably integrated shRNA expression targeting MYCN under 

inducible control using the promoter system designed and developed in Paper I. 

Paper III 

Use shRNA to silence MYCN and study the differential expression of miRNA expression both 

before and after knockdown. Investigate the biological effect of the miRNA with the most 

pronounced change in expression. 

Paper IV 

Previous data published by others has suggested that the possible tumour suppressor DKK3 

was regulated by MYCN in an indirect manner. We aimed to use the miRNA profiling data 

obtained in Paper III to search for MYCN-regulated miRNAs with predicted targets in the 

DKK3 3’ UTR, as well as investigating whether MYCN regulates DKK3 through miRNAs.  
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5. Discussion 

5.1. Papers I and II 

5.1.1. Brief description of the studies 

In Paper I, we compared the properties of six polIII promoters with tet-inducible expression. 

Four of the promoters were previously described by others [140, 148, 149, 280], while two 

versions of the H1 promoter were novel designs. The tightness and expression efficiency of 

the promoters in an induced and uninduced state were compared using a luciferase reporter 

system. Here, cells containing a stable expression of TetR were transiently cotransfected with 

three plasmids: a plasmid with a constitutive expression of the firefly luciferase reporter, a 

plasmid with a constitutive expression of β-galactosidase for normalisation and a plasmid 

expressing an anti-luciferase shRNA expressed from the promoter being evaluated. Luciferase 

activities were measured and normalised against β-galactosidase expression. The experiments 

were performed with the absence of the inducer Dox for an evaluation of tightness, as well as 

in the presence of Dox for an evaluation of transcription efficiency.  

For both U6 and H1 promoters, constructs containing only one tet operator in the promoter 

were unacceptably leaky. Overall, we found the novel H12O2 promoter to perform slightly 

better than the similar U62O2 promoter when directly compared.  

In Paper II, we introduced a shRNA (aMN-1658) that specifically downregulated the MYCN 

protein expression ~90% without any observations of off-target effects. This shRNA was 

inserted into the H12O2 US/DS inducible promoter cassette designed in Paper I before being 

stably transduced to the MNA neuroblastoma cell lines Kelly and SK-N-BE(2) using an MLV 

retroviral delivery system. The resulting RV-1658 cell lines appeared with a similar 

morphology to control cells in an uninduced state. When induced with 1 µg/ml dox, MYCN 

expression was efficiently downregulated, the cells differentiated towards neuron-like cells, 

entered G1 arrest and showed a significantly reduced clonogenic growth. 

5.1.2. Discussion 

The novel H12O2 promoter designed by us was developed by introducing a second TetO2 

downstream of the TATA-box in a commercially available pENTRH1-O2 plasmid 
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(Invitrogen). The sequence between the TATA-box and the transcription start (25 bp) can be 

altered without affecting the transcription efficiency of the H1 promoter as long as the spacing 

between the two remains the same [281]. The TetO2 sequence of 19 bp ends with the 

nucleotides AGA, which is a part of the BglII restriction site (AGATCT). The design of the 

H12O2 promoter allows the positioning of a stuffer sequence directly downstream of the 

transcription start site. This stuffer can be removed by BglII restriction enzymes and replaced 

by a properly designed shRNA sequence targeting a desired gene.   

The conditional expression of shRNAs is feasible from both polIII promoters and polII 

promoters. As described above, it seems that conditional expression from polII promoters 

may provide some advantages over polIII promoters such as less off-target effects [177], 

tighter regulation [112, 154] and the possibility of expressing several shRNAs in a 

polycistronic manner [156]. Even so, shRNAs expressed from polIII promoters seem more 

potent than similar shRNAs expressed from polII promoters, thus allowing a higher efficiency 

when the silencing of highly expressed targets is desired [124]. In MNA neuroblastoma cell 

lines, the expression of MYCN mRNAs is generally 40-60 fold higher than in single copy cells 

[230]. As a result of this, the potency of the shRNAs is of great importance when MYCN 

silencing in MNA cell lines is considered.  

In Paper II, we have described a system for the conditional and stable expression of shRNAs 

targeting MYCN in MNA neuroblastoma cell lines. One of the main reasons for developing 

this cell line was the desire to specifically study the long-term effect of MYCN knockdown in 

MNA cell lines. The SHEP Tet21N system is perhaps the most widely used cell system for 

studying the effect of MYCN silencing in neuroblastoma [232]. Here, MYCN is introduced to 

an S-type neuroblastoma cell line normally not expressing MYCN. When S-type 

neuroblastoma cell lines are exposed to the vitamin A metabolite retinoic acid (RA), they 

enter apoptosis, while N-type cells generally differentiate towards a more neuronal phenotype 

[282]. As a consequence, this system is not suitable for studying the effect of MYCN on 

differentiation in neuroblastoma cell lines. The SHEP Tet21N system however has proven 

especially valuable for determining the effect of MYCN on proliferation and apoptosis. 

Traditional antisense technology has previously been used for the stable silencing of MYCN in 

non-MNA neuroblastoma cell lines with a high MYCN expression [283]. Still, antisense 

technology is not efficient enough to successfully silence MYCN in MNA cell lines, as it has 
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been shown that the antisense:sense RNA ratio must be on the order of 1000:1 for obtaining 

antisense-sense duplexes of 50% of the target mRNA [284]. Successful antisense-based 

silencing of MYCN in the IMR-32 cell line has been reported, but here the authors used an 

Epstein-Barr viral approach in which the antisense MYCN expression was magnified by 

episomal replication [285]. Here, the MYCN suppression was significant, though no 

differentiation was observed. Later experiments using siRNAs targeting MYCN have 

demonstrated that IMR-32 differentiates extensively upon MYCN silencing [250]. This 

discrepancy might be a result of off-target effects since it has been shown that MYCN 

antisense RNAs are targets for the interferon pathway in a MNA cell line [286].  

The superior efficiency of shRNA compared to antisense approaches is apparent when 

considering the RV-1658 constructs presented in Paper II. Here, we achieved a specific, 

efficient and conditional downregulation of MYCN in two MNA cell lines as a result of 

shRNA being expressed from a single genomic insert. In addition to this, no off-target effects 

resulting from interferon response were detected. When using any type of small RNA, the off-

target effects most widespread seem to be those resulting from saturation of the miRNA 

pathway [180]. We did not observe any signs of such off-target effects in our study, although 

they cannot be ruled out since these symptoms could be very difficult to detect. 

We chose to use a MLV retroviral system for stably delivering the inducible expression 

cassettes to neuroblastoma cell lines. The inducible promoter described in Paper I can easily 

be gated into a retroviral expression vector, which was then used to transfect the Hek-293 

Phoenix packaging cell line for the synthesis of retroviral particles. The entire process utilises 

vectors and cell lines easily propagated in any lab with suitable facilities, and thus it is 

relatively easy and cost efficient to produce any new shRNAs towards any target in any 

dividing human cell. After induction of the RV-1658 cell lines, it typically took 3-5 days 

before full silencing of MYCN was achieved. As a result of this, the inducible system is not 

optimal for investigating direct targets of MYCN. 

As described in Paper II, we observed minimal amounts of leakage of anti-MYCN shRNA in 

an uninduced state within the time frame the cells were grown in. Nevertheless, some leakage 

is inevitable when Tet-inducible polIII promoters are being used. In our experience, there was 

no significant leakage within the first month after transduction. When we tried to isolate 

single clones of transduced cells, leakage in uninduced cells was evident. After proliferating 



38 

for approximately 10 weeks, the cells appeared to be morphologically undifferentiated, but 

expressed up to 30% less MYCN than the control cells. Yet, induction led the MYCN levels 

to drop further, which was then followed by differentiation of the cells (data not included in 

the manuscripts). This suggests that a relatively fast drop of MYCN concentration initiates 

differentiation and growth arrest, rather than an absolute concentration threshold. This 

however is an issue that must be further investigated before any conclusions can be drawn. 
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5.2. Paper III 

5.2.1. Brief description of the study 

MYCN was downregulated using transient shRNA in the MNA cell lines SKNBE(2) and 

Kelly. MiRNA expression profiling was performed on two independent experiments, and 

miRNAs differentially expressed as a result of MYCN silencing were identified. We found 

most members of the three clusters of the miR 17 family to correlate with MYCN expression, 

an observation supported by previous findings. Moreover, we observed a clear correlation 

between MYCN and miR-92b and miR-103. Several non-clustered miRNAs were found to be 

negatively correlated by MYCN.  

The miRNA that was most upregulated following MYCN suppression was miR-21, a miRNA 

that has been shown to act as an oncomir in a range of other tumours. The potential function 

of miR-21 in neuroblastoma was investigated further, but no effect on proliferation or 

differentiation was observed. Hence, we were not able to establish any role for miR-21 

expression in differentiating neuroblastoma cells.  

5.2.2. Discussion 

Apart from the members of the miR 17 family, we observed two miRNAs potentially being 

upregulated by MYCN: miR-92b and miR-103, neither of which have been experimentally 

validated as direct MYCN targets.  

MiR-103 expression is linked to mesenchymal stem cells [reviewed in 287], which have been 

recently argued to be a sub-population of neural crest cells [288]. MiR-103 is expressed in the 

majority of human cells, but is generally more expressed in the brain. It is expected to be 

involved in metabolism. So far, oesophageal carcinoma is the only cancer in which it has a 

prognostic value [reviewed in 289].  

MiR-92b appears to be a miRNA that is primarily expressed in neuronal-specific stem cells, 

the developing brain or brain tumours [290]. Deep sequencing has shown that miR-92b is 

highly expressed in human embryonic stem cells, but diminishes during differentiation [291]. 

In stem cells, miR-92b has been reported to push cells to a proliferative state by 

downregulating p57 [292]. Despite the indications of miR-92b being an oncomir in neural 

neoplasms, very little has been done to elucidate its potential role in various cancers. 
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We also found 11 miRNAs inversely correlated to MYCN expression, with many of these 

being shown to be involved in neuronal differentiation in other cell systems. Theoretically, 

some of these miRNAs could be tumour suppressors inhibited by MYCN, though MYCN is 

predominately a transcriptional activator, and has not yet been shown to directly repress any 

miRNA. Thus, miRNAs being inhibited by MYCN are expected to be regulated in an indirect 

manner. The miRNA most elevated after MYCN silencing was miR-21. This miRNA has been 

shown to be highly expressed in a variety of tumours and acts as an oncomir [293]. In 

addition, increased miR-21 expression has been documented in differentiating SH-SY5Y non-

MNA neuroblastoma cells [294]. We did not find any effects on neither proliferation nor 

differentiation when miR-21 mimics or miR-21 antagomirs were introduced to the SK-N-

BE(2) cell line. Furthermore, miR-21 antagomir did not inhibit differentiation when MYCN 

was downregulated. This indicates that miR-21 does not have a proliferative effect in MNA 

neuroblastoma and that its increase is a consequence of differentiation. Even so, we were not 

able to reveal a functional role for miR-21 during the differentiation of neuroblasotoma cells. 

The lack of phenotypic changes observed by miR-21 mimics and antagomirs are in 

accordance with data recently published by Mestdagh et al. [295]. Here, miRNAs correlating 

with MYCN (i.e. possibly transactivation targets of MYCN) were shown to have strongly 

predicted target enrichment on mRNAs negatively correlated to these miRNAs (i.e. possible 

targets for MYCN-activated miRNAs). This was not the case for miRNAs negatively 

correlated with MYCN and their putative targets. These observations suggest that it is 

primarily MYCN-activated miRNAs that account for the miRNA-mediated regulation of 

mRNAs. 
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5.3. Paper IV 

5.3.1. Brief description of the study 

Bell et al. have shown that the transcription of the Wnt antagonist DKK3 is downregulated by 

MYCN. Koppen et al. later revealed that this regulation was in an indirect manner. By 

conducting an in silico analysis we found that both miR-92a and miR-92b, two of the miRNAs 

upregulated by MYCN in Paper III, shared a predicted miRNA target site on the DKK3 3’ 

UTR sequence. Additionally, members of the let-7 family were predicted to bind to another 

target site. We hypothesised that MYCN regulates DKK3 expression through miRNAs.  

By the use of ELISA, we first demonstrated that DKK3 secretion in the culture medium was 

increased when MYCN was downregulated using the inducible Kelly and SK-N-BE(2) RV-

1658 cell lines described in Paper II and the SHEP Tet21N cell line. The DKK3 3’ UTR 

sequence was cloned downstream of the luciferase gene, and repression of the luciferase 

expression was observed when cotransfecting these constructs with mimics of miR-92a, miR-

92b and let-7e. Mutation of the target sites led to a complete rescue of luciferase expression 

for miR-92a and miR-92b, but not for let-7e. The reduction of miR-92a and miR-92b using 

antagomirs led to an increased secretion of DKK3 in the MNA cell lines SK-N-BE(2) and 

Kelly, while transfection of miR-92a and miR-92b mimics into non-amplified cell lines SK-N-

AS and SH-SY-5Y led to downregulation of DKK3 expression. Let-7e mimics only led to a 

moderate reduction of DKK3 levels compared to those obtained by the miR-92a and miR-92b 

mimics. DKK3 measurements were performed by ELISA and qRT-PCR. We also performed 

methylation-specific PCR on genomic DNA from 10 primary neuroblastoma samples (five 

MNA, five non-MNA) and five neuroblastoma cell lines (three MNA, two non-MNA), and 

found no hypermethylation of the DKK3 promoter.  

The immunohistochemistry of 25 primary neuroblastoma tissue samples from various 

biological subsets showed an inverse correlation between the expression of MYCN and DKK3. 

DKK3 was mainly detected in the vasculature of the tumours, illustrated by its co-localisation 

with the vascular endothelial marker CD31. 
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5.3.2. Discussion 

DKK3 is a secreted antagonist of the Wnt pathway. To establish whether MYCN 

downregulates DKK3 secretion, we utilised the RV-1658 cell lines described in Paper II as a 

model system. This system was well suited for these experiments since we could suppress 

MYCN for a longer period, thereby allowing the cells to differentiate for five days before 

measuring DKK3 levels. Fresh media were then added to the cells 24 hrs prior to the 

measurement of accumulated DKK3 by enzyme-linked immunosorbent assay (ELISA). To 

the best of our knowledge, this is the first time changes in the secretion of endogenous DKK3 

protein have been measured directly in neuroblastoma. Previous studies have either measured 

mRNA levels or the expression of ectopic Flag-tagged DKK3 [270, 277, 278]. Nonetheless, 

we cannot be certain that the observed upregulation of DKK3 following MYCN silencing is 

solely the effect of changes in miR-92a/b and let-7 alone, or whether additional unknown 

factors are involved. 

We have established that DKK3 expression is regulated by miR-92a, miR-92b and let-7. In 

Paper III, we showed that miR-92a and 92b are downregulated when MYCN expression is 

repressed. Two separate miR-92a genes are found in the human genome, one in the miR-17-92 

cluster and one in the paralogue miR-106a cluster, and both clusters are direct transcriptional 

targets of MYCN [261, 262]. MiR-92b is expressed as a single intergenic miRNA on 

chromosome 1q, and little is known about the promoter of miR-92b. An E-box is located 

upstream of the miR-92b gene, but no ChIP analysis has been performed to investigate 

whether this is a direct binding site for MYCN. The mature sequence of miR-92b is identical 

to that of miR-92a apart from three nucleotides, which does not theoretically impair with seed 

sequence binding. Thus, miR-92a and miR-92b share the same targets. MiR-92b is mainly 

expressed in neuronal-specific stem cells, the developing brain or brain tumours [290]. The 

expression of miR-92b instead of miR-92a in these tissues could be an approach for targeting 

miR-92a/b binding sites, while avoiding expression of the remaining miRNAs of the miR-17-

92 cluster. Since the miR-17-92 cluster is a direct target of MYCN, the distinct expression of 

miR-92b is probably governed by other mechanisms. 

The biological function of DKK3 is debated. DKK3 knock-out mice are viable, fertile and 

show no obvious abnormalities [296]. The lack of a distinct DKK3 knockout phenotype might 

be a result of Soggy replacing DKK3 in important pathways. Although DKK3 does not 
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interact with LRP5/6 [270], DKK3-mediated repression of the canonical Wnt pathway has 

been reported in some cellular settings [272, 273]. Others have reported Wnt activation as a 

result of DKK3 expression [271]. A proposed mechanism for DKK3-mediated activation of 

the Wnt pathway has been described by Nakamura et al. [270], whereas the mechanism of 

DKK3-mediated inhibition of the canonical Wnt pathway remains unknown. Upon discovery 

of the inverse correlation between MYCN and DKK3, Bell et al. proposed that MYCN could 

exert its proliferative effect by allowing high canonical Wnt signalling through 

downregulation of the Wnt inhibitor DKK3 [278]. However, Koppen et al. later documented 

that DKK3 reduces proliferation in neuroblastoma cells, but not through the canonical Wnt 

pathway [277]. Here, it was suggested that DKK3 may exert its effect through the non-

canonical Wnt pathways. It was also debated whether the Wnt pathway was a significant 

contributor to malignancy in MNA neuroblastoma. It has been demonstrated that the 

canonical Wnt pathway is deregulated in high-risk non-MNA neuroblastoma, but not in MNA 

neuroblastoma. In high-risk non-MNA neuroblastoma, this was proposed to cause increased 

proliferation as a result of a higher expression of MYCC and cyclinD [297].  

DKK3 is shown to be necessary for Activin/nodal (members of the transforming growth 

factor beta (TGF-β) superfamily) signalling in Xenopus embryos [298]. Here, DKK3 was 

shown to exert its function by maintaining normal levels of Smad4, a key downstream 

mediator of all TGF-β pathways. TGF-β signalling induces inhibition of proliferation and 

increased differentiation of many neuroblastoma cells, and it has been proposed that the effect 

of retinoic acid is dependent on establishing and maintaining a negative autocrine growth loop 

involving TGF-β1 [299]. It was also proposed that failure to establish such a loop might be a 

reason for the resistance to retinoic acid shown by many neuroblastoma cell lines. These 

results implicate that the loss of DKK3 could theoretically be a reason for a loss of 

responsiveness to TGF-β signalling. Another member of the TGF-β family shown to be of 

relevance in neuroblastoma is Activin A. Schramm et al. revealed that enhanced expression of 

Activin A suppresses proliferation and colony formation in MNA neuroblastoma cells. It also 

inhibits neuroblastoma growth and angiogenesis in vivo, and is highly expressed in 

differentiated, but not undifferentiated neuroblastomas [300, 301]. Activin A also seems to be 

downregulated by MYCN [302]. This potential role of DKK3 in TGF-β signalling is highly 

speculative, and further investigations are needed in order to elucidate whether DKK3 does 

interact with TGF-β signalling in neuroblastoma. 
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We analysed a selection of primary tumours by immunohistochemistry, and found that DKK3 

was expressed in the tumour endothelium. The amount of DKK3 in the endothelium was 

inversely correlated to MYCN amplification. Expression of DKK3 in the tumour endothelium 

rather than the tumour parenchyma has been described in many other types of cancer [303-

308]. Untergasser et al. used murine melanoma cells with ectopical overexpression of DKK3 

to establish xenografts in mice. They observed that DKK3 overexpression resulted in slightly 

larger tumours with a significantly increased microvessel density (MVD) [304]. MVD is a 

measure of angiogenesis which is considered a prognostic indicator that correlates with an 

increased risk of metastasis in various epithelial cancers. These results, and the observation of 

a high expression of DKK3 in the developing heart and blood vessel system in both mice and 

chicken embryos, suggests that DKK3 has a conserved role in vascularisation [309]. The 

observations of DKK3 functioning as an inducer of angiogenesis is contradictory to its 

established role as a tumour suppressor. Compared to low-risk ganglioneuromas, we observed 

lower expression of DKK3 in the vasculature of high-risk MNA neuroblastomas, an 

observation which is supported by others [277].  

In summary it seems as if DKK3 has distinct roles in cancer cells and epithelial cells involved 

in angiogenesis. In pancreatic cells, the pro-angiogenetic effect of DKK3 did not contribute to 

a poor prognosis [303]. Very little is known of the exact function of DKK3 as a tumour 

suppressor in neuroblastoma. It does not seem to influence the canonical Wnt pathway, but 

could be involved in regulation of some of the non-canonical pathways. However, none of the 

Wnt pathways has so far been shown to play a significant role in contributing to the 

proliferation in MNA neuroblastoma. There is a theoretical possibility that DKK3 are 

involved in TGF-β signalling in neuroblastoma, but no research has thus far confirmed this.   
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6. Conclusions 

In this thesis we have focused on the oncogene MYCN that is often amplified in 

neuroblastoma. We have designed and developed a system that allows conditional expression 

of any shRNA from a Tet-inducible RNA polIII H1 promoter (Paper I). In Paper II we used 

this Tet-inducible promoter to express an anti-MYCN shRNA in two MNA neuroblastoma cell 

lines. The shRNA was introduced to the genome of the cells by the use of an MLV based 

retroviral vector system. Efficient suppression of MYCN was observed within 3 days after 

addition of the inducer Dox to the media. 

In Paper III the effect of MYCN suppression on miRNA expression was investigated. We 

found that MYCN downregulation resulted in a decrease of several miRNAs, many of which 

are members of the miR 17 family. In addition we found several miRNAs being upregulated 

as MYCN was suppressed. One of these was miR-21, which was investigated further. We 

could not reveal any function for miR-21 in differentiation or proliferation in MNA 

neuroblastoma.  

Other miRNAs demonstrated to be affected by MYCN expression were miR-92a, miR-92b and 

let-7e.  In Paper IV we showed that these three miRNAs suppresses the expression of DKK3, 

a tumour suppressor frequently downregulated in MNA neuroblastoma. 
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