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Abstract 
The outer coast of Finnmark in northern Norway is where the former Fennoscandian and 

Barents Sea ice sheets coalesced. This key area for isostatic modelling and deglaciation 

history of the ice sheets has abundant raised shorelines, but only a few existing radiocarbon 

dates relate to them. Here we present three Holocene sea-level curves based on radiocarbon 

ages from deposits in isolation basins at the outermost coast of Finnmark; located at the 

islands Sørøya and Rolvsøya and at the Nordkinn peninsula. We analysed animal and plant 

remains in the basin deposits to identify the transitions between marine and lacustrine 

sediments. Terrestrial plant fragments from these transitions were then radiocarbon dated.  

Radiocarbon-dated mollusk shells and marine macro-algae from the lowermost deposits in 

several basins suggest that the first land at the outer coast became ice free around 14.6 cal kyr 

BP. We find that the gradients of the shorelines are much lower than elsewhere along the 

Norwegian coast because of substantial uplift of the Barents Sea. After the Younger Dryas 

the coast emerged 1.6-1.0 cm per year until about 9500-9000 cal yr BP. Between 9000 and 

7000 yr BP relative sea-level rose 2-4 m and several of the studied lakes became submerged. 

At the outermost locality Rolvsøya, relative sea level was stable at the transgression 

highstand for more than 3000 years, between ca. 8000 and 5000 cal yr BP. Deposits in five of 

the studied lakes were disturbed by the Storegga tsunami ca. 8100-8200 cal yr BP. 
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1. Introduction 

The first written account of raised shorelines north of the arctic tree line in Finnmark was 

made by the French physicist Auguste Bravais, who participated in the French-Scandinavian 

La Recherche Expedition 1838–40 (Bravais 1842).  He measured and documented that the 

ancient shorelines were not horizontal, but inclined landwards, an observation that eventually 

became an essential piece of evidence to the theory of glacial isostasy (Chambers 1850; De 

Geer 1888/1890; De Geer 1890). Since then the region has attracted a number of scientists, 

but unlike beach ridges in Svalbard (e.g. Bondevik et al. 1995) and Arctic Canada (e.g. Dyke 

2004), the raised shorelines in Finnmark lack organic material, like driftwood logs, 

whalebones and shells, needed for radiocarbon measurements. Thus only a few radiocarbon 

dates related to the shorelines exist. Reconstructions of the shoreline displacement in the 

region have therefore been hampered by the lack of absolute age control. 

To overcome the problem of not finding dateable material in the shorelines themselves, we 

have used the “isolation basin method” (Hafsten 1960) to reconstruct shoreline displacement 

at the outer coast of Finnmark (Fig. 1). We cored and investigated 18 lakes; eight of them 

hold deposits with clear signatures of sea level changes. Based on the acquired data we have 

constructed three Holocene sea-level curves. Our results deviate by up to several millennia 

from previously published sea-level reconstructions, which were based on regional 

correlations and relative chronology (Marthinussen 1960, 1962; Møller 1987, 1989). 

Sea-level data from the outer coast of Finnmark can put constraints on the ice sheet 

configuration and deglaciation history in the area where the Fennoscandian Ice Sheet merged 

with the Barents Sea Ice Sheet (Fig. 1B). We find evidence that the uplift rates along the 

coast were influenced by rebound of the Barents Sea seafloor. Also very few of the ice-

marginal deposits in Finnmark have been dated. Several of the investigated lake basins hold 

organic-rich, pre-Holocene sediments that were deposited in shallow-water marine 

environments. We present radiocarbon ages from these deposits and argue that the deepest 

dated samples provide close to minimum ages for the last deglaciation at the sites. The 

deposits in five lakes also contain traces left by the Storegga tsunami, which is presented in a 

parallel paper (Paper III: Romundset and Bondevik). 
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2. Regional setting 

2.1. Area 

The outer coast of Finnmark has a relatively mild and wet climate despite its high latitude 

(70-71°N). Warm ocean water flows northwards in the North Atlantic current and the coastal 

current, causing mild, snow-rich winters and cool, rainy summers. The mean annual air 

temperature is close to 2.0°C at sea level, with mean winter temperatures a few degrees 

below zero (DNMI 2010). The study area lies north of the arctic tree line, but patches of 

mountain birch (Betula pubescens) occur close to some of the localities. The study area is 

today rising about 1 ± 0.05 mm/yr relative to the sea level (Vestøl 2006), with uplift rates 

generally increasing towards the former Fennoscandian ice centre (Fig. 1A). 

The landscape is characterised by undulating, barren mountain plateaux, where extensive 

autochthonous block fields reach down to about one hundred m a.s.l. (NGU 2010). Other 

Quaternary deposits in the area are scarce, and consist mainly of raised beach ridges, some 

terminal moraines and scattered patches of till (Sollid et al. 1973).  

2.2.  Deglacial history 

The Fennoscandian Ice Sheet coalesced with the marine-based Barents Sea Ice Sheet to the 

north during the last glacial (Fig. 1B, e.g. Landvik et al. 1998; Mangerud 2004), and reached 

one or possibly two maxima around 22-19 cal yr BP (Vorren and Laberg 1996). Radiocarbon 

ages of mollusk shell fragments incorporated in tills and from post-deglaciation deposits 

above till have been used to reconstruct the approximate timing of glacial retreat in the 

Barents Sea area. These suggest that rapid retreat began along the western margin of the ice 

sheet at ca. 17 cal kyr BP (Winsborrow et al. 2010), and that the southern Barents Sea 

became deglaciated over ca. 2000 years and was ice free around 15 cal kyr BP (Polyak et al. 

1995; Vorren and Laberg 1996; Landvik et al. 1998; Winsborrow et al. 2010).  

 

Observations of discontinuous raised shoreline features and ice-marginal deposits in coastal 

Finnmark have been used to reconstruct seven deglacial ice-margin positions onshore 

(Marthinussen 1961; Sollid et al. 1973). Three of these are thought to represent significant 

halts or re-advances during the general recession (Fig. 1A; Sollid et al. 1973), but their ages 

are poorly constrained. Correlations have been made to observations mainly from Lofoten 

and Vesterålen (Fig. 1B) farther west, using Tanners  (1930) so-called ‘shoreline relation 

3



method’, that presupposes proportionality between systems of raised shorelines from 

different regions (Marthinussen 1960; Møller and Sollid 1972; Olsen et al. 1996; Ottesen et 

al. 2008). According to this, the outermost coast of Finnmark became ice free around 18 cal 

kyr BP, the Outer Porsanger sub-stage dates to 17 cal kyr BP and the Repparfjord sub-stage 

dates to ca. 14 cal kyr BP. However, a younger age of 15 cal kyr BP has been suggested both 

for the first ice-free land (Landvik et al. 1998), and for the Outer Porsanger sub-stage 

(Winsborrow et al. 2010). The chronology of glacial retreat in Finnmark is discussed in this 

paper, in the light of new radiocarbon dates from isolation basins.  

 

2.3.  Shoreline displacement  

 

In the earliest description of raised shorelines in Finnmark (Bravais 1842), two tilted levels 

were pointed out as morphologically distinct; the ‘Main’ and the ‘Tapes’ shorelines. These 

two shorelines are continuous over long distances along the fjords in Finnmark, and can also 

be correlated along the entire west coast of Norway (Sørensen et al. 1987). The Main 

shoreline is in most areas an erosional feature and is thought to have been formed during the 

Younger Dryas, with relatively stable sea level, long lasting sea-ice cover and active frost-

shattering processes (Andersen 1968; Blikra and Longva 1995). The Tapes shoreline on the 

other hand, is represented mainly by large beach ridges that accumulated at the peak of the 

mid-Holocene transgression. 

In addition to these two pronounced levels, traces of former shorelines are found at many 

other altitudes between the marine limit and the present sea level. Based on detailed 

investigations in eastern Finnmark through several decades, Tanner (1930) published a 

classification system where he distinguished 13 pre-Holocene and 11 Holocene shorelines. 

He found diachronous Tapes transgression features that led him to conclude that the 

transgression occurred fourfold; i.e. that relative sea level oscillated repeatedly through large 

parts of the Holocene. His systematic shoreline classification has had a large influence on 

other studies in northern Norway until today, although no such fluctuations have been 

demonstrated in comprehensive isolation basin studies covering the Tapes transgression 

period elsewhere in Scandinavia (e.g. Svendsen and Mangerud 1987; Corner and Haugane 

1993). 

Tanners work was followed up by several investigators, most notably Marthinussen (1960), 

who identified altogether 40 different raised shorelines in western Finnmark; 18 above the 
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Main shoreline, 12 between the Main and Tapes shorelines and 9 below the Tapes shoreline. 

The landward extension of the pre-Holocene shorelines were later used to reconstruct halts in 

the ice recession (Sollid et al. 1973), and many studies have used the shoreline diagrams for 

dating purposes, despite the lack of chronological constraints (e.g. Corner 1980; Hald and 

Vorren 1983; Corner and Haugane 1993; Fletcher et al. 1993; Bakke et al. 2005).  

Only a few radiocarbon dates relate to past sea levels in western Finnmark; these are of 

driftwood found close to Tapes levels (Marthinussen 1962). Neither shells nor pumice occur 

at the surface above the Tapes shoreline in Finnmark (Tanner 1907; Hansen 1918; 

Marthinussen 1945; Donner et al. 1977). Farther east, shell samples from raised beaches, peat 

below beach gravel, charcoal at archaeological sites and lake isolations have been dated along 

the Varanger peninsula and towards the Russian border (Fig. 1A, Marthinussen 1962; Donner 

et al. 1977; Helskog 1978; Corner et al. 1999).  

Interpretation of these chronological data has been challenging and has resulted in conflicting 

reconstructions. The problems arise due to difficulties with correctly relating the various 

findings to past sea level, since beach ridges are both discontinuous and non-uniform. The 

size, shape and overall existence of raised beach deposits along the coast of Finnmark depend 

mainly on the local topographic setting and nearby availability of surficial deposits 

(Sanjaume and Tolgensbakk 2009). The geographically nearest sea-level reconstructions that 

rely on radiocarbon-dated isolation basin sequences are situated about 200 km to the east and 

150 km to the west of our localities (Corner and Haugane 1993; Corner et al. 1999).  

In an attempt to combine all available observations, Møller (1987; 1989) made a computer-

based geometrical simulation where sea-level curves could be generated for any chosen 

locality in northern Norway, based on the ‘shoreline relation’ principle. The computer 

software has since been widely used for educational purposes and by archaeologists working 

in the region. 

 

3. Methods 

3.1.  Field work  

Long stretches of the Norwegian coastline are characterized by a low-lying, undulating 

strandflat (Nansen 1922), where lakes and bogs are common, but in Finnmark steep sea cliffs 
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border the Barents Sea and only few lakes exist below the marine limit (Sollid et al. 1973; 

Corner 2005). We searched for places at the outer coast with several closely spaced lake 

basins at altitudes below the Main shoreline, using aerial photographs and maps with scale 

down to 1:5,000. Three suitable areas were found; Sørøya, Rolvsøya and the Nordkinn 

peninsula (Fig. 1A). We started at Sørøya using a snowmobile to transport the coring 

equipment to the sites, but found that this was very difficult due to little snow cover close to 

sea level. The lakes at Rolvsøya and Nordkinn are located relatively close to roads and 

equipment and core samples could here be man-hauled using a sledge.  

Basin thresholds at Rolvsøya and Nordkinn were examined and levelled in the autumn of 

2009 and all were found to consist of bedrock; there are no signs of fluvial incision or peat 

accumulation at the thresholds. The altitudes of the lowermost points at the basin thresholds 

were levelled to the nearest benchmark (NMA 2002). The benchmark system refers to datum 

level NN1954, which in Hammerfest lies 10 cm and in Honningsvåg 13.4 cm above mean sea 

level (Fig. 1A, NHS 2010; O. Vestøl, Norwegian Mapping Authority, pers. comm. 2009). 

The determined values were accordingly corrected to represent elevations above mean sea 

level. Benchmark elevations are given with uncertainties ± 5 and ± 3 cm (NMA 2002) and we 

conservatively use ± 10 cm precision for the levelling based on the deviation values we found 

after repeated measurements. Basin elevations are given in this paper with the sum of the 

uncertainties.  

The basins at Sørøya have only been studied in winter; their elevations were therefore 

acquired from 1:5,000 maps. Based on our experience from levelling at the other localities, 

we assume that the basins at Sørøya lie within 1 m of the map elevations. Both of the basins 

at Sørøya used for the sea-level reconstruction are dammed by blocky moraine where we 

assume minimal incision since isolation. 

Coring took place in late spring 2007 and 2008 from solid lake ice and at air temperatures 

around 0°C. Lake bathymetry was mapped along several transects across each basin prior to 

coring. The coring equipment was traditional ‘Russian type’ peat corers of various cylinder 

diameters (Jowsey 1966) and a ‘Nesje type’ piston corer (Nesje 1992). The deposits in the 

shallow lakes were mapped laterally with a Russian peat corer, but in some cases the lakes 

were too deep (> ca. 8 m) and only the piston corer could be used.  
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3.2. Laboratory work 

Magnetic susceptibility of the cores was measured to document changes in the content of 

minerogenic material. The magnetic susceptibility (MS) values of marine sediments are 

generally higher than those of lacustrine sediments, a difference especially pronounced in 

early Holocene isolation sequences. Loss-on-ignition (LOI) analysis was performed through 

sequences of particular interest, to further document changes in organic content. All 

stratigraphies were carefully described, photographed and logged, and many levels were X-

ray photographed. In this paper, all depths are given below the lake surface. 

We analysed the plant and animal macrofossils in the basin deposits to determine the changes 

between marine and lacustrine environments in the basins. Many of the remains we find in 

the deposits come from organisms that are unique to marine or limnic environments. Usually, 

diatoms are used to reconstruct environmental changes from isolation basin deposits (e.g. 

Hafsten 1960; Kjemperud 1981; Lohne et al. 2004) and are often thought to be superior to 

other methods to record salinity changes of the surface water. However, plant and animal 

macrofossils have also been used along with or instead of diatoms in sea-level studies in 

Greenland (Björck et al. 1994a, 1994b; Bennike 1995; Bennike et al. 2002; Sparrenbom et al. 

2006a, 2006b; Wagner et al. 2010), in Canada (Miousse et al. 2003) and in central Norway 

(Solem et al. 1997; Solem and Solem 1997). A practical advantage of analysing macrofossils 

is that terrestrial material for radiocarbon dating can be picked out and identified at the same 

time.  

Sediment samples of ca. 10 cm3 were cut from 1 cm thick segments of the core, wet sieved on 

250 and 150 µm mesh widths, and the residue was investigated under a stereomicroscope. All 

remains larger than 150 µm were identified to various taxonomic levels and classified as 

macrofossils, although tests from foraminifers and testate amoebae by definition are 

microfossils. The relative frequencies of the different species were evaluated, and are 

reported as ‘none’, ‘present’ or ‘common’. Animal and plant remains found useful for the 

isolation basin analyses are listed in Table 1, and photographs of selected types are shown in 

Figure 2. In Table 1 the occurrence of these fossils in other isolation basin studies is also 

given. The biostratigraphy is described for each lake in section 4, along with details for each 

species. A further evaluation of our experience with the method is included in the discussion. 
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3.3. AMS 14C-dates 

All radiocarbon dates used for the sea-level reconstruction have been obtained on identified 

remains of terrestrial plant macrofossils, using accelerator mass spectrometry (AMS) dating. 

The ages have been calibrated with the computer software OxCal v4.1 (Bronk Ramsey 2009) 

using the Intcal09 dataset (Reimer et al. 2009) and all calibrated ages are given with two 

standard deviations (Table 2) and cited in this paper as “yr BP”. Radiocarbon ages of marine 

samples were calibrated using the Marine09 dataset (Reimer et al. 2009) with a reservoir age 

of 437 ± 18 years and a ΔR-value of 71 ± 21 years. This value is the pooled mean of 5 

samples from northern Norway and the Barents Sea (Mangerud et al. 2006) and is currently 

the best reservoir-age estimate for seawater at the coast of Finnmark. 

 

4. Results  

4.1.  Rolvsøya 

We investigated four closely spaced lakes located in Tufjord at Rolvsøya between 5 and 12.5 

m a.s.l. (Fig. 3A, B; 70°59.8’N 23°56.3’E). Three of the basins contain deposits that 

document sea-level changes. These lakes were also inundated by the Storegga tsunami (Paper 

III: Romundset and Bondevik). All three lakes have clearly defined bedrock thresholds that 

were levelled from a triangulation point some 200–500 m NE of the lake outlets. We did not 

recover any deposits from the highest lake at 12.5 m a.s.l., which is small and shallow. 

4.1.1. Basins, deposits and radiocarbon ages 

Lake 5: Storvatnet 5.27 ± 0.11 m a.s.l.  

Storvatnet (Fig. 3B) is a large (700 x 200 m), mostly 2-4 m deep lake with a relatively flat 

bottom. The lake remained below sea level from deglaciation until ca. 11,000 yr BP when it 

was isolated, but became submerged again between ca. 8000-5000 yr BP during the Tapes 

transgression. Massive erosion by the Storegga tsunami removed the earliest isolation 

boundary at all core sites except for the innermost one, core 5R-6 (Fig. 3D).  

The basin was first isolated from the sea at 11,180-10,770 yr BP. Deposits below 470 cm in 

core 5R-6 (Fig. 3D) contain remains of marine brown algae (phaeophyceae) and skeleton 

fragments of Hydroidea (Figs. 2 & 5C, Table 1). Among the brown algae, two species were 

identified to Sphacelaria and Desmarestia aculeata (Table 1), the latter recognised from its 

8



spiked stems (Jaasund 1965). Both species grow mainly at sublittoral depths both in exposed 

and sheltered locations (Jaasund 1965; Rueness 1998). The sample at 467 cm contained no 

marine organisms but a few remains of limnic organisms. From here, loss of ignition rises 

abruptly from ca. 5 to 20 % (Fig. 3C). At 460 cm depth there are huge quantities of many 

macrofossils indicative of fully freshwater conditions, e.g. the bryozoans Plumatella repens 

and Fredericella indica (Fig. 2, 5C, Table 1). Bryozoans are colonial animals, and some of 

the freshwater species produce durable statoblasts of chitin. They mainly live down to 2 m 

depth in standing or slowly flowing water, and occur in lakes all over Norway from sea level 

to above the tree line (Økland and Økland 2005). Both Plumatella repens and a third species, 

Cristatella mucedo (Fig. 2, Table 1), are common in our lake records, whereas Fredericella 

indica is less common; it is apparently new to the fossil fauna of Norway although it is 

common today in northern Norway (Økland and Økland 2005). C. mucedo occurs here at its 

northernmost distribution, which follows approximately the 10°C mean July isotherm (Birks 

2000; Økland and Økland 2005). The isolation boundary is thus placed at 467 cm and leaves 

of mainly Salix herbacea from 466-465 cm were radiocarbon dated to 11,180-10,770 yr BP 

(Table 2). 

Piston core 5-1 did not penetrate the tsunami deposits, but it has been used to study later sea-

level changes (Fig. 3C). The sediments from the bottom of the core at 936 cm up to 919.5 cm 

consist of laminated gyttja, with alternating black and olive-green laminae (photograph b in 

Fig 3E). Loss on ignition is ca. 28 % at the bottom but drops to below 20 % above the 

laminae (Fig. 3C). The macrofossils in this segment are, except for a few Hydroidea, purely 

of limnic origin (Fig. 5B). Marine algae appear at 915 cm and from 910 cm large numbers of 

different foraminifera and other remains of marine organisms dominate. We place the 

ingression boundary at 920-919 cm in this core and radiocarbon dated Empetrum nigrum 

leaves from this depth to 8020-7850 yr BP and an unidentified twig with bark to 7680-7520 

yr BP (Table 2). It seems more likely that the younger twig sunk into the sediments than that 

the delicate leaves were re-deposited for several hundred years; we therefore put most 

confidence in the older age. The dated level represents the time when the basin no longer 

contained anoxic water, which during an ingression might be slightly later than the actual 

time when highest astronomical tide passed the lake threshold. However, the age of the 

tsunami deposit below makes it only possible that it is ca. 100 years older, and this has been 

taken into account in our analysis.  
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The sediments between 920-680 cm were deposited when the lake was submerged and 

consist of organic-rich, shell-bearing mud that becomes indistinctly layered above 800 cm 

and is laminated from 735 cm. The laminae become thinner upwards and ends in a zone of 

thin, alternating black and brownish-greyish laminae between 700 and 680 cm (photograph a 

in Fig. 3E). Loss on ignition also rises through the laminated part, but is generally high (20-

30%) throughout the core. Brown gyttja is found above 680 cm and up to the lake floor. 

Marine macrofossils dominate up through the banded and laminated sediments, and disappear 

at 680 cm (Fig. 5A). Above that level limnic species again prevail, e.g. ephippia (resting egg 

pouches) from the crustacean Daphnia pulex (water flea, Table 1), bryozoans and Trichoptera 

(caddis fly, Table 1) larvae tubes. Trichoptera larvae are aquatic and many species build 

protective tubes, which are often well preserved in sediments and indicate a freshwater 

origin. The tubes look somewhat similar to tubes from the marine polychaete worm 

Pectinaria (Table 1), but the larvae tubes of caddis flies are generally much smaller and 

appear more coloured whereas the worm tubes usually are greyish. Vegetative remains from 

the aquatic plant Myriophyllum (water milfoil, Table 1) were also found at this level, as well 

as in some of the other studied basins. It grows submerged and the remains are common in 

lake sediments but have not previously been reported from isolation boundaries, although 

pollen from the plant is commonly found in early Holocene basin isolation sequences in 

western Norway (Kaland 1984a). A sample of mostly Empetrum nigrum leaves from 681-680 

cm was radiocarbon dated to 5300-4960 yr BP (Table 2) and reveals that Storvatnet again 

became isolated at after more than 3000 years of inundation during the Tapes transgression.  

Lake 6: Lillerundvatnet 5.83 ± 0.11 m a.s.l.  

Lillerundvatnet (Fig. 3B) lies just next to Storvatnet, and only about 60 cm higher. A ca. 10 

m long stream connects the two lakes today. The lake is small (180 x 150 m), only about 1 m 

deep and partly overgrown. The piston core 6-1 (Fig. 4) recovered an almost 6 m long 

sequence, dating back to the Bølling chronozone. 

The lower 1.5 m of the core contains Lateglacial silty sand with shells and layers of seaweed. 

The latter give rise to high loss on ignition (LOI) values (up to 20 %) and fluctuating 

magnetic susceptibility values. Similar seaweed layers occur in Late Weichselian shallow 

marine sediments from raised lakes in Vesterålen (Fig. 1; T. Vorren et al. 1988). A half of a 

Mya truncata shell found at 649 cm was radiocarbon dated to 14,790–13,860 yr BP (Table 

2); this gives a minimum age for ice-free conditions at Rolvsøya. Between 620-590 cm the 
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deposits contain more pebbles than below and above (Fig. 4) and are at the same time devoid 

of mollusk shells or other organic material (LOI is 0%). More fine-grained and homogenous 

silt dominates above that level. The age of marine algae at 528 cm depth is 12,750–12,540 yr 

BP (Table 2), implying that the light grey silt above, with LOI of 0 % and laminated between 

515 and 480 cm, was deposited during the Younger Dryas. A rock (diameter 10 cm) that 

possibly became rotated during coring is situated at 475–464 cm. The rock is enclosed by 

slightly organic silt (ca. 5% LOI), increasingly brownish upwards.  

A few distinct laminae are found at 449-448 cm and LOI increases rapidly across the level 

from ca. 8 to more than 20 %. Hydroidea is common at 455 cm, but above that level both 

Hydroidea and marine algae disappear and at 445 cm there is a sudden rise in Tricoptera 

larvae tubes, the bryozoans Plumatella repens and Cristatella mucedo, and oogonia from the 

charophytes (green algae) Nitella and Chara (Fig. 5D, Table 1). These charophytes are 

mainly limnic, but some species of both genera grow in brackish water. Nitella oogonia are 

much more frequent in our material than the more thermophilous Chara, like in Lateglacial 

deposits from western Norway (Birks and van Dinter 2010) and in most of Greenland 

(Bennike 2000). The opposite distribution was found in mid-Holocene sequences from 

central Norway (Solem and Solem 1997). Numerous head capsules from the fresh water 

larvae of Chironomidae (non-biting midge) appear at 445 cm (Fig. 5D). A distinct increase in 

the amount of insect remains is characteristic for isolation boundaries, and Chironomidae 

larvae head capsules are by far the most common.  

The isolation boundary has been dated at 448–449 cm to 11,390–11,170 yr BP, using Salix 

herbacea and Ericaceae leaves (Table 2). Drepanocladus stems (aquatic moss) picked from 

the same sediment sample were dated to 11,610–10,900 yr BP, i.e. the same age. This result 

suggests that Drepanocladus is free from hard-water problems as long as there is no 

carbonate bedrock in the catchment area. Interestingly, the occurrence of Cristatella mucedo 

at the dated isolation level is ca. 500 years older (using the weighted mean age) than the 

colonisation age reported from Andøya farther west (K.-D. Vorren et al. 2009). The coast of 

Finnmark is presently the northern distribution limit of C. Mucedo (Birks 2000), this thus 

documents that the mean summer temperature at the time of isolation had become 

comparable to the present. 

 The sediments above the isolation boundary are dominated by limnic macrofossils, but a 

significant amount of marine species occur between 415 cm and 370 cm depth (Fig. 5D). The 
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sediment is also vaguely banded between ca. 400-290 cm. We think this segment with a 

mixed, but predominantly limnic, macrofossil assemblage was deposited when astronomical 

high-tide sea level stood close to the threshold elevation of the basin during the highstand of 

the Tapes transgression. The inclusions of marine species might be due to transport by sea 

spray or wave-wash and/or storm-surge tides above highest astronomical tide level. 

Lake 7: Badevatnet 7.95 ± 0.11 m a.s.l.  

Badevatnet (Fig. 3B) is a large (620 x 170 m), oblong and shallow lake, similar to Storvatnet. 

The gyttja in this lake has unusually high minerogenic content and is therefore extremely 

compact. Penetration was only successful with the piston corer, and we retrieved the ca. 3 m 

long core 7-1. The sediments comprise brown lacustrine gyttja, interrupted by Storegga 

tsunami deposits in the middle of the sequence (Paper III: Romundset and Bondevik).  

A dating of terrestrial plant remains from the bottom of the core, at 487 cm depth, yielded 

9260–8780 yr BP (Table 2). From the recovered sequence it is possible that the lake was 

below sea level in the early Holocene, yet we find it unlikely considering the isolation ages of 

the lower basins and the reconstructed Main shoreline at 6 m a.s.l. (Marthinussen 1960). The 

macrofossil record from Badevatnet shows no signs of marine influence during the mid-

Holocene, except for the Storegga tsunami sediments, consistent with observations from the 

two other investigated records from Rolvsøya.  

4.1.2. Holocene relative sea-level curve for Rolvsøya 

The two earliest basin isolations document that relative sea level fell from the Main shoreline 

in the beginning of the Holocene. Storvatnet became submerged during the Tapes 

transgression, but the sea level did not rise above Lillerundvatnet. Storvatnet became isolated 

again ca. 3000 years later and the curve is drawn accordingly with a long-lasting standstill at 

the transgression highstand (Fig. 10A).  

The level to which the sea fell prior to transgression is unknown, but according to 

Marthinussen (1960) it should have reached 1-2 m below present sea level. We do not believe 

it reached as low, considering our results from Nordkinn. The development during the Tapes 

transgression is now well constrained and shows that sea-level reached 5.2-5.9 m a.s.l. around 

8000 yr BP where it remained stable for about 3000 years. This deviates from Marthinussens 

(1960) reconstruction which places the transgression maximum at ca. 9 m a.s.l. According to 

Møller (1987), the Tapes shoreline in Tufjord should be found at about 3 m a.s.l. These 
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estimates were found by regional shoreline correlation and are not based on field 

observations at Rolvsøya, and it is apparent from our new results that the old shoreline 

reconstructions are largely erroneous for the mid-Holocene at Rolvsøya. 

The standstill at the transgression highstand is in conflict with a suggested rapid eustatic sea-

level rise of up to 9 m at 7.6 ± 0.1 kyr BP (Blanchon and Shaw 1995; Yu et al. 2007). Such 

an event, even of much smaller magnitude, would by far have exceeded the isostatic rebound 

and shown up in the Rolvsøya records. 

4.2.  Sørøya 

We cored four lakes on Sørøya situated below the marine limit (Fig. 6A). Two of the lakes 

show significant changes between marine and lacustrine sediments and are further presented 

below. However, we did not recover marine sediments from Nedre Høyvikvatnet (28.5-29.5 

m a.s.l.) and Øvre Høyvikvatnet (34-35 m a.s.l.). Both lakes have several metres long records 

of Holocene gyttja, with ca. 1 m of organic-poor silt below. We found only limnic 

macrofossils in these deposits. A distinct Betula pollen rise was identified in the lower part of 

the gyttja in Øvre Høyvikvatnet and dated to 10,490–10,230 yr BP (Table 2; K.-D. Vorren 

pers. comm. 2009). 

4.2.1. Basins, deposits and radiocarbon ages 

Lake 4: Lillevatnet 10.5-11.5 m a.s.l. 

Lillevatnet is a small lake (Fig. 6A, 150 x 75 m, 70°37.0’N 22°42.9’E) that occupies a 3–4 m 

deep depression in till at the head of a fjord. We found clear indications that the Storegga 

tsunami flowed into the lake (Paper III: Romundset and Bondevik) and caused erosion and 

re-deposition. Later the lake was submerged for about 1600 years during the Tapes 

transgression, from about 8000 to 6600 yr BP.  

Only core 4R-2 (Fig. 6A) penetrated the Storegga tsunami sand, dated on an Ericaceae twig 

found just above the deposit to 8310-8020 yr BP. The tsunami deposit rests on marine silt, 

and terrestrial plant remains found in the silt just below the erosional unconformity, were 

radiocarbon dated to 11,070-10,250 yr BP (Table 2). This shows that sea level stood above 

the threshold (deposition of marine sediments) at this time and also that the tsunami eroded 

away about 2000 years of deposition at the core site.  
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Blackish, laminated gyttja between 512-507 cm in core 4-5 occurs on top of Storegga 

tsunami deposits (Fig. 6B) and has a mixed assemblage of remains from marine and 

lacustrine organisms (Fig. 7B). A Juniper twig at 506-507 was dated to 8170-7970 yr BP 

(Table 2). The same laminated deposit in core 4-3 is thicker (37 cm) and was also analysed 

(Fig. 7C) to substantiate our interpretation of an ingression. According to the macrofossils in 

core 4-3, however, the ingression boundary should be placed somewhat lower than the top of 

the laminae (Fig. 7C). The dated level from core 4-5 is thus probably situated slightly higher 

than the boundary but it still gives a representative age, as judged from the ca. 8100 years old 

tsunami deposits found below. 

At 505 cm the laminae disappear, the sediments change to olive-grey mud, loss on ignition 

decreases from about 500 cm (Fig. 6B), and the number of marine organisms increases up-

core (Fig. 7B). Among the macrofossils are numerous vertebrae from Mallotus villosus 

(capelin, Fig. 7B, Table 1), both at 495 and 485 cm. The vertebra is readily recognisable due 

to the large hole that runs through the centre of it. Marine fossils dominate up to 455 cm (Fig. 

7B). 

Blackish, laminated gyttja appear again between 465 and 453 cm (Fig. 6B), representing the 

final isolation of the lake. The macrofossils show a marked change from a large number of 

various marine species to solely limnic species at 450 cm (Fig. 7B). Fruits of Ruppia (ditch 

grass; Fig. 2, Table 1) were found at 455 cm. Ruppia is a vascular plant with high salinity 

tolerance; it grows submerged in brackish or saline waters. At 450 cm we found white 

coloured megaspores from the lacustrine plant Isoëtes (quillwort, Table 1). It grows on the 

lake bottom with penetrating roots that commonly contaminate bulk-dating samples from 

isolation boundaries (Kaland et al. 1984b). According to the macrofossils the isolation 

boundary is somewhere between 455 and 450 cm, and a Betula twig from the top of the 

laminated part at 453 cm was radiocarbon dated to 6610-6400 yr BP (Table 2).  

Lake 3: Tomasvatnet 16.5-17.5 m a.s.l 

Tomasvatnet (Fig. 6A) is a large, oblong lake (750 x 130 m, 70°33.8’N 22°37.9’E), dammed 

by a terminal moraine in the lower reach of a narrow valley. The deposits in the lake 

comprise marine silt in the lower part and lacustrine gyttja above. Most of the lake is only a 

few metres deep, with a deeper trough down to about 12 m in the middle part. We collected 

four Russian cores from the shallow areas and the piston core 3-4 from the trough; the latter 

held the only continuous sequence (Fig. 6C), and has been subject to further investigations.  
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The core stopped at 1375 cm in brownish, slightly organic silt. Loss on ignition is 5-8 % at 

this level and decreases to 0 % from about 1330 cm. The colour and slightly higher LOI 

values of the lowermost segment would suggest that it was deposited during the Allerød, but 

the silt does not contain mollusk shells or enough terrestrial plant macrofossils for 

radiocarbon dating. The deposit is light grey and massive from 1330-1257 cm. At 1256 cm 

there is a distinct, black 2-3 mm thick layer followed by a few thinner, vague laminae 

(photograph a in Fig. 6C). At the black layer the macrofossil assemblage changes abruptly 

from marine to limnic (Fig. 7A) and a sample of Drepanocladus (aquatic moss) picked from 

1255-1257 cm has a radiocarbon date of 11,250-11,810 yr BP (Table 2). A rise in organic 

content is recorded somewhat higher, around 1235 cm where a sample of Carex seeds and 

Betula leaves yielded 9890-9540 yr BP (Table 2).  

Calcareous tests of the benthic foraminifer Elphidium excavatum are common at 1257 cm 

(Fig. 7A). This species along with the agglutinated Eggerelloides scabrus (Fig. 2, Table 1) 

are the two most frequent foraminifera in the records from Finnmark. Both species tolerate 

low salinities and are common at shallow depths in south-western Norway today (Austin and 

Sejrup 1994). A Cephalopoda (squid) beak was also found at 1257 cm depth (Fig. 7A, Table 

1). Fossil squid beaks have previously been discovered only twice in Greenland (Bennike, 

unpubl. data) but are common in fossil penguin droppings in Antarctica (e.g. Emslie et al. 

1998). At 1254 cm several limnic species occur suddenly in large numbers, e.g. Trichoptera, 

Fredericella indica and Daphnia pulex (Fig. 7A). 

4.2.2. Holocene relative sea-level curve for Sørøya 

The stratigraphy and radiocarbon ages described above constrain the relative sea-level 

changes to rapid regression in the period around 11,500-10,500 yr BP, with a gradually 

decreasing rate before transgression between 9000-7000 yr BP (Fig. 10). Since then, relative 

sea level has fallen to the present shoreline. According to the shoreline diagram of 

Marthinussen (1960), the relative sea level low stand should be around 7-8 m, which could fit 

with our dates but we have drawn the sea-level curve slightly higher in accordance with our 

findings at Nordkinn, described below. The level of the transgression high-stand is probably 

around 11 m a.s.l. and a ‘distinct shore line’ at 11.2-11.7 m a.s.l. (Marthinussen 1960) is 

assumed to represent the Tapes transgression maximum. Radiocarbon ages of two Picea 

driftwood logs found at 10.5–11.0 m a.s.l. near the base of a mire close to Lillevatnet, are 

reported at 5500 ± 150 and 5700 ± 150 14C yr BP (Marthinussen 1962). This corresponds to 
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6000–7000 cal yr BP (Fig. 10) and implies that the logs stranded during the maximum Tapes 

transgression. 

4.3.  Nordkinn 

The Nordkinn peninsula is presently connected to the mainland by the 1–2 m high isthmus 

Nuorri (Fig. 8A), the name of which literally means ‘strait’, and thus testifies to a lower land 

level in the recent past. We cored eight lake basins in the western part of the peninsula (Fig. 

8A). The basin sills were levelled over 900–1500 m beeline distances from two different 

national network benchmarks.  

Four of the basins have been used for sea-level reconstruction and are described in detail 

below. The remaining lakes were not found suitable for sea-level studies. Øvre 

Snappvikvatnet at 34 m a.s.l. is large and deep, with a hard bottom and almost no organic 

sediments. A lake at 9 m a.s.l. near Kifjorden contains only a little gyttja on bedrock. 

Nedrevatnet and Storvatnet near the head of Oksefjorden (Fig. 8A) are situated at about 3 and 

4 m a.s.l., respectively. The former is not fully isolated yet; it holds solely marine/brackish 

sediments in a long core. Storvatnet does have an isolation boundary in the uppermost part of 

a long sequence, where marine species disappear and a number of freshwater taxa such as 

Gasterosteus aculeatus (stickleback, Table 1), Lepidurus, Rhabdocoela, Trichoptera and 

Isoëtes appear. Two samples of terrestrial plant remains from the isolation boundary were 

submitted for dating, but high sulphur content of the material made radiocarbon 

measurements impossible. 

4.3.1. Basins, deposits and radiocarbon ages 

Lake 14: Kifjordvatnet 10.61 ± 0.10 m a.s.l. 

This large, mostly < 2 m deep lake (Fig. 8A; 670 x 180 m, 70°55.5’N 27°26.2’E) is important 

to our reconstruction of the regression minimum in Finnmark. The oldest recovered 

sediments are dated to ca. 11,000 yr BP, prior to the isolations of nearby lakes at higher 

elevations, and marine sediments were likely deposited continuously until isolation that has 

been dated to 5470-5050 yr BP. From this we infer that the sea did not reach lower than this 

level prior to the transgression, and that sea level is thus constrained within at most 2.7 m for 

more than 4000 years in the mid-Holocene (Fig. 10C). However, we have only one core from 

the lake and although we find it unlikely, we cannot rule out the possibility that sea-level 
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dropped below the lake and that later erosion removed lacustrine sediments and left a hiatus 

in the record.  

The piston core stopped in sediments containing clasts at 517 cm depth (Fig. 8B), probably 

near the boundary to the Younger Dryas. Fragments of Desmarestia aculeata (brown algae) 

picked from 517-512 cm were radiocarbon dated to 11,230-10,900 and a similar sample from 

512-507 cm yielded an age of 11,040-10,600 yr BP (Table 2). A much younger age of shell 

fragments that must have been brought down by the piston corer was rejected (Table 2). 

Between 470–351 cm the core holds a mixture of coralline algae fragments interspersed with 

silt and mollusk shell fragments (Fig. 8B, photograph a in Fig. 8F). This segment was 

deposited during a period when the basin was an unsheltered bay, with the coring site situated 

well above wave base. Sedimentation of marine mud commenced as the basin approached 

isolation. 

At 352-351 cm there is a sharp transition from the coralline algae gravel below to organic 

mud above. From here LOI rises from 10 % to 40 %, and the deposit between 338-336 cm is 

blackish, laminated gyttja (photograph a in Fig. 8F). From the macrofossils we place the 

isolation boundary here, but material from a longer interval than usual (344-333 cm) was 

needed to get enough plant material for radiocarbon dating. An age of 5470-5050 yr BP was 

obtained (Table 2), and we also dated fragments of Desmarestia aculeata from the same 

interval which gave a reservoir corrected age of 5280-4960 yr BP.  

The macrofossils across the isolation boundary show a typical development. Hydroidea, 

Pectinaria and marine brown algae were found at 342 cm (Fig. 9A). Pectinaria (Table 1) is a 

polychaete worm that builds conical tubes from sand grains, cemented by a grey substance 

that makes them appear greyish. Only few macrofossils are present in the laminated part, but 

an increase of Chironomidae is seen at 337 cm. A change to lacustrine environment is 

documented from numerous limnic organisms at 332 cm: Nitella, Daphnia pulex, Cristatella 

mucedo, exoskeletons from Oribatida (Fig. 2, Table 1) and tests from testate amoebae. Two 

forms of testate amoebae (Fig. 2, Table 1), one with globe-shaped tests identified as 

?Centropyxis, the other with pear-shaped tests identified as Difflugia pyriformis, have been 

found. Oribatida are commonly named soil mites, but some species are limnic and become 

preserved in lake sediments. The rest of the core, from 336–237 cm, comprises brown 

homogenous gyttja. 
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Lake 15: Kifjorddammen 13.10 ± 0.10 m a.s.l.   

The shallow and small Kifjorddammen (Fig. 8A, 80 x 60 m, 70°55.4’N 27°25.6’E) was 

isolated in the early Holocene and subsequently became inundated by the Storegga tsunami 

(Paper III: Romundset and Bondevik). One piston core was taken from the middle of the lake. 

The core reached into Lateglacial deposits. From the bottom of this core, between 389-380 

cm depth we dated a large fragment of Chlamys islandica to 13,810-13,460 yr BP. Further 

up-core, a half of a Mya truncata shell at 342 cm yielded 13,470–13,200 yr BP (Table 2). 

These marine shells were found in a light-grey deposit of silt with pebbles and shells 

probably deposited distal to a glacial meltwater source. Pebbles and shells disappear and 

massive clayey silt is present between 331-302 cm. An erosional unconformity was 

discovered at 302 cm depth (Fig. 8C), followed by ca. 10 cm of unsorted sandy silt, with 

pebbles and marine algae remains. Marine algae found in homogenous silt at 293 cm just 

above the deposit were dated to 11,080-10,620 yr BP (Table 2), thus providing an age for the 

unconformity. 

Grey, organic-poor silt continues from 292-274 cm and at 280 cm we found byssus from 

Mytilus edulis (blue mussel, Fig. 9B). Mollusk shells are common in shallow-marine 

sediments, but most often they disappear well before a basin becomes isolated. However, M. 

edulis tolerates low salinities and their byssus filaments (attachment threads; Fig. 2, Table 1) 

are resistant to degradation. The silt changes colour from grey to darker brownish-grey, 

becomes increasingly organic and laminated at 274–269 cm (photograph b and X-ray 

radiograph c in Fig. 8F). Limnic species appear at 272 cm (Fig. 9B); particularly abundant are 

hard fruits from the aquatic plant Potamogeton (pondweed, Table 1).  

The isolation boundary is placed at this level. Terrestrial plant remains from 273-270 cm 

were radiocarbon dated to 9910-9540 yr BP, and a large sample of Potamogeton fruits from 

the same level yielded 10,720–10,300 yr BP (Table 2, Fig. 8C). The offset of 840 years 

(using weighted average ages) between the samples is probably caused by hard water effect, 

since potentially carbon-bearing metasedimentary rocks are found in the watershed (NGU 

2010). Aquatic moss from just above the isolation boundary also yielded a slightly older age 

than the terrestrial plants (Table 2, Fig. 8C). 

Sediments we think were deposited by the Storegga tsunami occur between 261–211 cm 

(photograph b and X-ray radiograph c in Fig. 8F). Some pebbles (diameter up to 3-4 cm) 

occur in the lower part above the erosional unconformity, followed by re-deposited marine 
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silt (identified by macrofossil species), gyttja and coarse organic remains. A twig that 

probably was washed from the watershed and re-deposited into the lake by the tsunami was 

found at 254 cm and radiocarbon dated to 8580-8390 yr BP. Ca. 1500 years worth of 

sedimentation were removed by the tsunami at the core site. Brown gyttja was found above 

the tsunami deposit and continues to the lake floor at around 90 cm depth. 

Lake 10: Nedre Snappvikvatnet 18.18 ± 0.10 m a.s.l.  

Nedre Snappvikvatnet (70°56.6’N 27°17.9’E) is a small lake (290 x 70 m) that was isolated 

from the sea in the early Holocene (Fig. 8A, 8B). From the bottom of core 10-1 at 650 cm 

dark grey silt with scattered marine algae is found up to 560 cm (Fig. 8D). A sample at 580 

cm contained remains from several marine species like Elphidium excavatum, Pectinaria and 

Mytilus edulis (Fig. 9C). The colour changes around 566–565 cm from grey to olive-brown 

(photograph e in Fig. 8F), and across the same level loss on ignition rises from 2-3 % to >30 

% and the magnetic susceptibility decreases. Large numbers of Daphnia pulex and 

Chironomidae appear at 560 cm, where marine species are absent. Brown gyttja continues up 

to the lake floor at 400 cm depth. The change of macrofossil taxa and sediment character 

indicates that the isolation boundary is at 566–565 cm depth. Terrestrial plant remains from 

this level were dated to 10,730-10,440 yr BP (Table 2).  

Lake 11: Mellomste Snappvikvatnet 23.74 ± 0.10 m a.s.l.  

The medium-sized lake Mellomste Snappvikvatnet (Fig. 8A, 380 x 180 m, 70°56.3’N 

27°18.4’E) is situated at the elevation of the Main shoreline (Sollid et al. 1973). The lake 

record includes a sequence that dates back to the Bølling chronozone, and also a clear 

isolation boundary from the early Holocene. The two cores stopped in massive sediments or 

possibly reached bedrock. The Lateglacial part is characterised by zones with layers of brown 

algae (as in Lake 6, photograph in Fig. 11B). 

The age of the Lateglacial sequence is documented by radiocarbon dates from core 11-1. The 

ages were obtained from six samples of the brown algae Desmarestia aculeata and a half of a 

Chlamys islandica shell (Fig. 8E, Table 2). Grey silt with seaweed layers is found in the 

lower part the core, from the bottom at 1181 cm up to ca. 1050 cm, at which level marine 

algae become much less frequent. Two samples of algae from the very bottom of the core at 

1178-1179 cm were dated to 14,960-13,830 yr BP and 14,030-13,670 yr BP. Many halves of 

mollusk shells are found from 1120-1037 cm. A Chlamys islandica half from 1114.5 cm 

yielded 13,930–13,500 yr BP, and algae at 1040-1039 cm was dated to 13,860-13,380 yr BP. 

19



Massive grey silt without seaweed occur up to 972 cm, where a new zone of marine algae 

commences and continues up to ca. 915 cm. Two algae samples from 971-972 cm gave ages 

of 13,340-13,080 yr BP and 13,470-13,110 yr BP, and a sample at 915-916 cm was dated to 

12,910-12,260 yr BP (early Younger Dryas). Slightly dark, grey silt without seaweed 

continues from 915–845 cm.  

Samples below 865 cm contain only marine macrofossils, e.g. macro-algae, Hydroidea, 

Elphidium excavatum, Mytilus byssus and cocoons of the flatworm Tricladida (Fig. 9D). At 

855 cm there are hardly any macrofossils, except for numerous Chironomidae. Then, a 

sudden rise in limnic species is seen at 850 cm, including large numbers of cocoons identified 

as the lacustrine flatworm Rhabdocoela (Fig. 2, Table 1) and eggs from the freshwater 

crustacean Lepidurus (tadpole shrimp, Table 1). At this level there are no visible laminae, but 

the LOI rises rapidly from ca 5 % to 20 % and there is a transition from silt to gyttja 

(photograph d in Fig. 8F). A sample of terrestrial plant fragments from 854-850 cm dates the 

isolation boundary to 10,720-10,300 yr BP (Table 2). Brown gyttja continues to the lake floor 

at 800 cm. 

A parallel core (11-2) was taken about 2 m away from site 11-1 (Fig. 8A), and used for dating 

the rise of Betula pollen at this locality. The level was detected about 20 cm above the 

isolation boundary, and dated to 10,390–10,160 yr BP (Table 2, K.-D. Vorren pers. comm. 

2009). However, among the plant remains used for dating both the isolation boundary in this 

basin as well as in Nedre Snappvikvatnet, were Betula pubescence fruits, leaves and catkin 

scales, showing that the Betula pollen rise occurred somewhat later than the postglacial 

immigration of this tree to the area.  

4.3.2. Holocene relative sea-level curve for Nordkinn 

The relative sea level changed little prior to the rapid regression recorded between 10,500 and 

10,000 yr BP (Fig. 10C). A small transgression probably took place between 10,000 and 5000 

yr BP, corresponding to the Tapes transgression recorded at both Rolvsøya and Sørøya, with 

sea level at most rising from 10.5-13.2 m a.s.l., but probably less. Relative sea-level later fell 

about 10 m during the last 5000 years. 

The simplest explanation for the early Holocene sea-level development at Nordkinn would be 

that the Younger Dryas shoreline is in fact situated at a considerably higher elevation than 

reported by (Sollid et al. 1973). However, the Main shoreline is represented locally by an 
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abrasion terrace in unconsolidated sediments at the head of Oksefjorden (Fig. 8A), where it is 

measured at 25 m a.s.l. (Sollid et al. 1973). Distinct abrasion terraces in bedrock have also 

been measured at 26 m a.s.l. at the large peninsula across Laksefjorden (Fig 1A), and bedrock 

terraces are well-developed further inland, along the south-facing shore of the Nordkinn 

peninsula, where the level has been measured at about 33 m a.s.l. (Sollid et al. 1973).  

These observations fit in well with the general pattern of Main line isobases mapped over a 

broad region in northern Norway. It therefore seems unreasonable to suggest that this level at 

Nordkinn is higher than reported, and we conclude that our data show that the strong land 

emergence following the Younger Dryas that characterises the entire Norwegian coastline 

was delayed for at least a millennium at Nordkinn. The reason why sea level remained at the 

elevation of the Main shoreline for more than a thousand years into the Holocene is 

unresolved. 

An abration terrace in sediments measured at 13 m a.s.l. at the head of Oksefjorden (Fig. 8A, 

Sollid et al. 1973) was probably formed at the transgression highstand. However, Sollids 

(1973) shoreline diagram for Tanafjorden and the eastern side of Laksefjorden (Fig. 1A) fails 

to reproduce a correct development through the period, as it depicts sea level falling to 7 m 

a.s.l. prior to transgression. According to Møller (1987) the basins at Nordkinn are situated at 

the 7-8 m Tapes shoreline isobase, which is erroneous. 

4.4.  Magerøya 

4.4.1. Basins, deposits and radiocarbon ages 

We cored two lakes close to present sea level at Sarnes, a promontory of Magerøya (Fig. 1A, 

70°58.7’N 25°46.9’E). At Sarnes the oldest radiocarbon date documenting human presence in 

northern Scandinavia has been obtained, charcoal dated to the late Younger Dryas 

(Blankholm 2004). We found that the lower lake at ca. 1 m a.s.l. is not yet isolated; 

penetration never exceeded ca. 1 m of black, sulphide-rich sediments, reflecting the current 

(and long-lasting) anoxic conditions at the lake bottom.  

Core 9-1 was recovered from Sætervågvatnet (Lake 9) at about 2 m a.s.l., a medium-size lake 

(380 x 260 m) more than 15 m deep, and dammed by beach deposits. Massive glaciomarine 

silt with no macro-organic remains, but numerous drop stones and mollusk shells, occur from 

the bottom of the core at 1727 cm up to 1652 cm. A Mya truncata shell found at 1720 cm 

was radiocarbon dated to 13,740-13,390 yr BP and the uppermost shell found; a Chlamys 
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islandica fragment at 1652 cm was dated to 13,230-12,790 yr BP (Table 2). Both mollusk 

shells and dropstones disappear above this level, probably reflecting lowered temperatures 

towards the onset of the Younger Dryas.  

Homogenous light grey silt continues to 1610 cm, where there is an erosive contact to about a 

metre of mixed marine mud, gravel and sand that continues almost to the top of the core. We 

assume that this segment was deposited in a high-energy bay environment, with pervasive 

wave-wash during storms. The uppermost sediment at 1514–1507 cm is blackish, laminated 

gyttja, devoid of macrofossils. However, marine species such as Hydroidea, Elphidium 

excavatum, Pectinaria and marine algae were found just below the laminated part. A Betula 

twig found at 1513-1511 cm was radiocarbon dated to 2750–2490 yr BP (Table 2); this 

however represents a maximum age of the isolation of the lake and has not been used for sea-

level reconstruction. 

 

5. Discussion 

5.1.  Deglaciation chronology and Lateglacial shallow-marine environments 

The marine limit in Finnmark was early shown to be diachronous, with higher (when 

corrected for differential rebound) and thus older levels at the outer coast. This pattern, as 

illustrated by shoreline diagrams (Tanner 1930; Marthinussen 1960, 1974; Sollid et al. 1973), 

indicates regional ice-margin recession towards the south, and has been combined with 

scattered ice-marginal deposits to argue for a stepwise retreat (Fig. 1A). Mapping of the 

marine limit to 50-60 m a.s.l. at the outermost islands led to the belief that these areas became 

ice-free very early (Sollid et al. 1973), corresponding to Vesterålen and Lofoten farther west 

(Fig. 1B, Møller and Sollid 1972; K.-D. Vorren 1978). However, since no datable material 

has been found at levels above the Tapes shoreline in Finnmark, nor in the ice-marginal 

deposits themselves, no pre-existing data constrain the chronology of ice-margin retreat. 

A lake basin will, in principle, accumulate sediments from the moment it becomes ice free. A 

core sampler reaches bedrock or diamict if it has penetrated all strata above, with the 

lowermost layers yielding a close minimum age for the local deglaciation. Lake cores are 

therefore often used for dating ice recession in an area. However, stagnant dead-ice bodies as 

well as freezing to the lake floor could have caused non-deposition and/or erosion in lakes for 

long periods during and after deglaciation (Malmström and Palmér 1984; Allen et al. 2007; 
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Briner et al. 2007). Also, dating bulk samples from assumed Lateglacial lake deposits in 

northern Norway has been problematic due to contamination and hard-water effect 

(Hyvärinen 1975; Prentice 1981, 1982; Malmström and Palmér 1984; Säppä 1996; Helland 

1997; Bakke et al. 2005; Paasche et al. 2007), and sufficient amounts of terrestrial plant 

macrofossils for AMS dating have not been found. We aimed to overcome this problem by 

investigating isolation lakes that were below sea-level during deglaciation. This approach has 

been used with success in Vesterålen (Fig. 1B, K.-D. Vorren 1978). Such lakes were not 

frozen to the lake floor, thus they might provide datable material from the Lateglacial. 

We cored as deep as our equipment allowed in all lakes. Coring from solid lake ice rather 

than a raft or boat makes penetration of coarse sediment sequences possible, and from several 

lakes we recovered metres long sequences below the Holocene sediments. The corer stopped 

in each basin due to bedrock, large stones or extremely compact sediments. We believe that 

the lowermost sediments in several basins have been reached, and the age of these represent a 

minimum age for ice-free conditions at the sites.  

Two types of material have been radiocarbon dated; halves of shells from the suspension 

feeding mollusks Mya truncata and Chlamys islandica and the remains of the brown algae 

Desmarestia aculeata. The latter is the most common brown algae around Svalbard today 

(Jaasund 1965), and similar layers as we have found also occur in Lateglacial marine 

sediments from isolation basins at Andøya (T. Vorren et al. 1988). C. islandica cannot live 

near glacier fronts, but it tolerates distal glaciomarine conditions. Both mollusk species are 

common in the sediments deposited in the early and mid-Allerød, but disappear above, unlike 

in western Norway where they have been found throughout Lateglacial sequences (Bondevik 

et al. 2006). All radiocarbon ages have been corrected using the present day marine reservoir 

age (Mangerud et al. 2006), which might be too low for the Bølling and Allerød chronozones 

but is still the best approximation available (Bondevik et al. 2006). The reservoir age of 

Desmarestia aculeata is probably the same as for mollusk shells (Björck et al. 1998).  

We compared the obtained ages to the NGRIP ice-core δ18O record (Fig. 11A; Rasmussen et 

al. 2006; Svensson et al. 2008; Lemieux-Dudon et al. 2010), and use these data together to 

estimate ages for the deglaciation sub-stages in Finnmark. The relationship between the 

temperatures recorded by the oxygen isotope values in the Greenland Ice Sheet and ice-sheet 

fluctuations in Scandinavia has certainly not always been linear (Mangerud et al. 2010), but 

we still assume broad correspondence between major retreat episodes of the ice-sheet margin 
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in Finnmark and warming in Greenland. Furthermore, the palaeorecord shows that when 

snowfall increases over the Greenland Ice Sheet during warming climate, it still looses net 

mass and its margins retreat (Alley et al. 2010). 

The oldest ages were obtained on a Mya truncata shell (Fig. 11B) from Rolvsøya and a 

sample of Desmarestia aculeata algae from Nordkinn. These were dated to 14,790-13,860 yr 

BP and 14,960-13,830 yr BP, respectively. The ages suggest that sedimentation began during 

the Bølling chronozone. The ice-core δ18O record documents that a major and rapid warming 

episode took place around 14,600 yr BP, at the transition from the suggested ‘Mystery 

Interval’ (Denton et al. 2006) to the Bølling chronozone (Fig. 11A). We find it likely that the 

outer coast of Finnmark became ice free at this time, when also large stretches of the southern 

margin of the Fennoscandian ice sheet retreated onshore (Mangerud 1980). We assume that 

most of the glaciomarine sediments were deposited during rapid melting of the ice sheet in 

the Allerød, and we thus correlate the Outer Porsanger sub-stage to the Older Dryas cold 

event around 14,000 yr BP, and the Repparfjord sub-stage to the Inter-Allerød cold event 

around 13,000 yr BP. The Main sub-stage is represented by distinct and largely continuous 

marginal deposits in inner fjord areas of Finnmark (Fig. 1A) and correlate with the Younger 

Dryas re-advance well-known from all over Fennoscandia (Marthinussen 1961; Andersen et 

al. 1995). 

Within the presented framework, the chronology of ice retreat has been adjusted somewhat 

forward in time from previous reconstructions. The last offshore recession stage in the 

western Barents Sea was assigned the age 16,000 yr BP and the Outer Porsanger sub-stage 

the age 15,000 yr BP by Winsborrow et al. (2010), whereas Landvik et al. (1998) suggested 

that the ice margin retreated onshore at 15,000 yr BP. Given the uncertainties of these age 

estimates, there is no conflict between them and our reconstruction. The Outer Porsanger 

stage has also been assigned an averaged maximum age of about 16-17 cal yr BP based on 

radiocarbon dates from sub-till deposits on the Varanger peninsula (Fig. 1., Olsen et al. 1996, 

L. Olsen pers. comm. 2009), but the extremely low organic content of the AMS-dated bulk 

samples makes it likely that these radiocarbon ages are older than the sediments. 

Marthinussen (1962) correlated the Repparfjord sub-stage to the ‘Skarpnes’ glacial event, 

mapped and radiocarbon dated on a few samples of mollusk shells farther west in Troms (Fig. 

1A). The Skarpnes event has been thought to occur during the Older Dryas stade (Andersen 

1968; Vorren and Elvsborg 1979), but most of the radiocarbon ages fall between 14–13 cal 
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kyr BP, and considering the accuracy of the dates, they could just as well indicate a late 

Allerød age and thus conform to our interpretation.  

Cold conditions with little marine biological activity and little calving characterised the fjords 

Porsangen, Laksefjorden and Tanafjorden during the late Allerød and Younger Dryas. The 

very late Allerød and Younger Dryas is, at Magerøya and Nordkinn, represented by vaguely 

laminated, bluish-greyish silt devoid of organic content and mollusk shells and with few drop 

stones. The corresponding Younger Dryas segment at Rolvsøya consists of grey silty sand. 

The differences in contemporaneous sedimentation between the sites probably reflect both 

their distances to high-discharge outlets from the Fennoscandian Ice Sheet and how the melt 

water is distributed distally by coastal and fjord currents. 

The continuous, radiocarbon dated sequences at Rolvsøya (Fig. 4) and Nordkinn (Fig. 8E) 

allow for sedimentation rates to be roughly calculated and compared between the Allerød and 

the Younger Dryas. At Rolvsøya the rate is reduced only from ca. 0.8 to ca. 0.7 mm yr-1. A 

much more pronounced difference is seen at Nordkinn that is situated more proximal to the 

meltwater source; here the rate is reduced from ca. 1.9 to ca. 0.4 mm yr-1, or to about a fifth. 

It is unlikely that falling relative sea level affected the sedimentation rates as long as the 

basins remained open systems, the change rather reflects the difference in meltwater 

production.  

5.2.  Influence in coastal areas by uplift of the Barents Sea seafloor 

The sea-level curves from Finnmark are distinctly different from similar curves from western 

Norway. We extended the three new sea-level curves from Finnmark (Fig. 12A) back to the 

marine limit (Marthinussen 1960; Sollid et al. 1973), which, following the discussion above, 

probably dates to ca. 14.6 kyr BP. Two theoretical dashed curves are also included; these are 

based on data from Svendsen and Mangerud (1987) and Bondevik et al. (1998) and represent 

localities at Sunnmøre in western Norway (Fig. 1B) with similar deglaciation dates and Main 

shoreline elevations as the localities in this study. The sets of curves are distinctly different 

and indicate that much less rebound took place in western Norway than in Finnmark prior to 

the formation of the Main shoreline in the Younger Dryas. This is especially pronounced at 

the outermost locality at Rolvsøya, where the marine limit is about eight times higher than the 

Younger Dryas level. 
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Alternatively, the reported high marine limits could represent older shorelines that were 

overridden by glacial ice during the last glacial maximum, like has been reported from 

several sites in Svalbard (Lehman and Forman 1992; Mangerud et al. 1992). But in 

Finnmark, the marine limit is most often represented by the uppermost of a staircase of beach 

ridges, extending up-valley from the present shoreline. Such sites are not likely to have been 

protected by cold-based ice. The sheer amount of observations and their correlation over a 

broad region makes this interpretation improbable. However, the raised shorelines have not 

been studied by us and should be re-investigated with this issue in mind. 

The regression rate must have slowed down or halted for some centuries during the Younger 

Dryas, during which time the Main shoreline was formed (Blikra and Longva 1995). We thus 

conclude that two separate periods of rapid emergence took place (shaded in Fig. 12A). The 

first uplift was mainly caused by the rapid and early deglaciation of the Barents Sea, well 

before the Younger Dryas. The rapid uplift in the early Holocene is a result of the 

deglaciation of mainland Fennoscandia. 

Coast-parallel isobases in Finnmark, as well as the present uplift pattern (Sørensen et al. 

1987; Ekman 1989, 1996; Danielsen 2001), have previously been taken to indicate that the 

demise of the Barents Sea Ice Sheet left no imprint on the rebound onshore (Elverhøi et al. 

1993; Lambeck et al. 1998). However, Landvik et al. (1998) pointed out that the shoreline 

gradients decrease eastwards in Finnmark and that the Barents Sea Ice Sheet might have had 

some influence on the uplift here. Based on our new sea-level data, we calculated gradients 

for the 11,000 and 7000 yr BP shorelines in Finnmark and compared them, along with the 

Main shoreline gradient (Sollid et al. 1973), to western Norway (Svendsen and Mangerud 

1987; Lohne et al. 2004; Romundset et al. 2010) and the Kola Peninsula (Snyder et al. 1997; 

Corner et al. 1999, 2001). This is plotted in Fig. 12B and shows a consistent pattern of much 

lower gradients in Finnmark and at the Kola Peninsula for the Main shoreline and the 11,000 

year shoreline. For the 7000 year shoreline the gradients are similar. This also explains why 

the early Holocene regression around 10,000 yr BP did not reach as low in Finnmark as it did 

in western Norway (Figs. 10 & 12A). A relatively thin ice sheet with a gently sloping surface 

likely covered coastal Finnmark towards the end of the last glacial, but we think that a low-

gradient ice-sheet geometry cannot explain such large differences. Also, recent observations 

indicate that the present-day uplift contours are in fact not strictly coast-parallel in Finnmark 

(Fig. 1B, Vestøl 2006; O. Vestøl, pers. comm. 2010), which could indicate that the Barents 

Sea uplift still influences the rebound in the area. 
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In order to accommodate both the rapid pre-Holocene emergence and the low shoreline 

gradients, we envisage a large contribution to the isostatic uplift from the Barents Sea 

seafloor. This is illustrated in Fig. 13, where we reconstruct the decay of the ice sheets seen 

along a straight-line profile running from north of Bjørnøya, across the south-western Barents 

Sea and Finnmark, and into Finland (Fig. 1B).  

Rapid-flowing ice streams drained the interior of the Fennoscandian Ice Sheet along the large 

fjords in Finnmark (Ottesen et al. 2005, 2008; Winsborrow et al. 2010). Rather than calving 

off and disintegrating just offshore, like elsewhere along the Norwegian margin, the ice 

streams in northern Fennoscandia fed a large part of the marine-based ice sheet in the 300-

500 m deep south-western Barents Sea (Fig. 1B). This might have caused a draw-down of ice 

at the outer coast, resulting in relatively thin regional ice cover (Fig. 13). The extent of 

allochtonous block fields almost down to sea level over large parts of coastal Finnmark 

(NGU 2010) further indicates cold-based (apart from the ice-stream corridors) and relatively 

thin ice cover here (e.g. Kleman 1994). There are no raised marine deposits at Bjørnøya 

(Salvigsen and Slettemark 1995), and mosses extracted from basal sediments in several lakes 

at the island have been radiocarbon dated to the early Holocene (Wohlfarth et al. 1995). Thus 

it is likely that the island remained glaciated until the end of the Younger Dryas (Fig. 13) and 

little uplift occurred after that. Modelling efforts have produced ice thicknesses over the 

Barents Sea ranging from almost no ice to a 2-3000 m thick ice sheet (e.g. Lambeck 1995; 

Landvik et al. 1998), with the most recent estimate suggesting about 1200 m (Siegert and 

Dowdeswell 2004). We reason that the loss of this mass led to uplift in the coastal parts of 

Finnmark.  

5.3.  Using macrofossils for pinpointing the isolation boundary  

In this study we employed macrofossil analysis instead of the more commonly used diatom 

analysis to identify marine/lacustrine boundaries. Macrofossils are well preserved in lake 

sediments and remains from various organisms have been used for the interpretations (Fig. 2, 

Table 1). The boost of limnic species that occurs after lake isolation makes identification 

obvious in most cases. Many of these species do not tolerate saline water, and their sudden 

and numerous appearances indubitably reflect that highest astronomical tide no longer passed 

over the basin threshold. The ingression boundaries in the two basins that were submerged 

during the Tapes transgression are more difficult to pin to an exact level. This has also been 

experienced for lake records of a late-Holocene transgression in Greenland (Sparrenbom et 
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al. 2006a), and is likely related to the slower rate of sea-level change during transgressions 

than during most isolation events, and to pervasive transport of limnic species to a recently 

inundated basin. Also, reworking of older fossils can be a problem in the higher energy 

marine environment. Still, this is a general weakness of the isolation basin method; we do not 

believe diatom analysis would yield a more accurate record of an ingression event. 

Slower rates of relative sea-level change give longer periods with anoxic bottom water 

conditions in an isolation basin and deposition of thicker segments of laminated sediments 

(Anderson et al. 1985). Diatom analysis of such segments has not been straightforward, 

probably due to re-deposition of the small diatom frustules between the environments. 

Conflicting interpretations of such records have been proposed (e.g. Corner et al. 1999), with 

slightly offset chronologies for sea-level reconstructions as a result. We find that the 

macrofossils track the isolation events in Finnmark in an impeccable manner, probably partly 

because they are less prone to re-deposition than diatoms, leaving little doubt of where to 

place the boundaries.  

 

6. Conclusions 

• Three curves document relative sea-level change through the Holocene on the islands 

Rolvsøya and Sørøya and on the Nordkinn peninsula in Finnmark. A rapid emergence 

took place from ca. 11,000-9500 yr BP, followed by a transgression that inundated 

several of the investigated lakes between 8000 and 5000 yr BP. At the outermost 

locality Rolvsøya relative sea level remained at a standstill for more than 3000 years 

in this period.  

 

• Radiocarbon ages of mollusk shells and macroalgae from the lowest recovered 

sediments indicate that the first land at the outer coast of Finnmark became ice free 

shortly after the abrupt warming known to have taken place around 14.6 cal kyr BP, at 

the onset of Bølling. 

 

• The two terminal moraines between the outer coast and the Younger Dryas moraine 

are correlated to the Older Dryas ca. 14 kyr BP and to the Inter Allerød cold event ca. 

13 kyr BP.  
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• Isostatic rebound of the seafloor of the Barents Sea influenced the sea-level history at 

the outer coast of Finnmark. Strong initial emergence prevailed until ca. 13 cal kyr BP 

as a response to the deglaciation of the Barents Sea. This further caused lower 

shoreline gradients in Finnmark than in comparable areas in western Norway. 

 

• The occurrence of remains from various plants and animals indubitably documents 

marine-lacustrine boundaries in the investigated lake records. 
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Chara Oogonium Green algae Lacustrine x x x x x

Table 1.  Remains from organisms that have been found useful for analysing marine-lacustrine boundaries, and 
their occurrence in the various Finnmark basins. Findings of the same taxa in other sea-level studies are 
indicated; S-Gr. = southern Greenland (Bennike et al. 2002; Sparrenbom et al. 2006a; Sparrenbom et al. 2006b), 
W-Gr. = western Greenland (Bennike 1995), NE-Gr. = eastern Greenland (Björck et al. 1994a; Björck et al. 
1994b; Wagner et al. 2010), Ctr-N. = central Norway (Solem et al. 1997; Solem and Solem 1997), Québ. = 
Québec, Canada (Miousse et al. 2003). Bracketed (x) indicates observation not identified to given species rank.

Organism Macrofossil Description
Size 
(mm) Basin environment  Occurrence in lake basin no. Other studies

Marine 3 4 5 6 9 10 11 12 13 14 15 S-
G

r.

W
-G

r.

N
E-

G
r.

C
tr-

N
.

Q
ué

b.

Elphidium excavatum Test Calcareous foraminifer 0.5 Marine x x x x x x x x (x) (x)
Eggerelloides scabrus Test Agglutinated foraminifer 0.5 Marine x x x (x) (x)
Cephalapoda Beak Squid 1-2 Marine x x x x
Pectinaria Tube Polychaete worm cm Marine x x x x x x x x
Hydroidea Skeleton Hydrozoan 1-3 Marine x x x x x x x x x x x x
Sphacelaria Algae Brown algae 1-2 Marine x x x x x x x x x x x x
Desmarestia aculeata Algae Brown algae cm Marine x x x x x x x x x x x
Mytilus edulis Byssus Blue mussel 0.5-1 Marine x x x x x x x x x
Tricladida Cocoon Flatworm 0.7 Marine x x x x x x x x
Ruppia Fruit Vascular plant 2-3 Marine/ brackish x x

Mallotus villosus Vertebra Fish 0.5-1 Marine x x x x

Lacustrine
Isoëtes Megaspore Plant 0.4 Lacustrine x x x
Daphnia pulex Ephippium Crustacean 1 Lacustrine x x x x x x x x x x x x x x
Trichoptera Tube Caddis fly larvae 2-3 Lacustrine x x x x x x x x x x x x x
Plumatella repens Statoblast Bryozoan 0.7 Lacustrine x x x x x x x x (x)
Fredericella indica Statoblast Bryozoan 0.6 Lacustrine x x x x x (x)
Cristatella mucedo Statoblast Bryozoan 1 Lacustrine x x x x x x x (x)
Myriophyllum Vegetative remains Plant 1 Lacustrine x x x x x
Nitella Oogonium Green algae 0.5 Lacustrine x x x x x x x
Chara Oogonium Green algae 0 70.7 Lacustrine x x x x x
Chironomidae Head capsule Midge larvae 1 Lacustrine x x x x x x x x x x x x x
?Centropyxis Test Testate amoebae 0.3 Lacustrine x x x x x
Difflugia pyriformis Test Testate amoebae 0.4 Lacustrine x x x
Oribatida Skeleton Soil mite 1 Lacustrine/ brackish x x x x x x x x x x x
Potamogeton Endocarp Plant 3 Lacustrine x x x x x
Rhabdocoela Cocoon Flatworm 0.3 Lacustrine x x x x x x x x x x
Lepidurus Egg shell Crustacean 1 Lacustrine x x x x x x x x x x
Gasterosteus aculeatus Pelvic spine Fish 1-3 Lacustrine/ brackish x x x x x x
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Table 2.  Radiocarbon dates. The ages have been calibrated with OxCal v4.1 (Bronk Ramsey 2009) and rounded off to nearest ten. The weighted average is calculated for the probability distribution of the calibrated 
age. Radiocarbon ages of marine samples have been calibrated against the Marine09 dataset (Reimer et al. 2009) using a ΔR-value of 71 ± 21, representing the present-day reservoir age for the coast of northern 

Norway and the Barents Sea; 437 ± 18 years (Mangerud et al. 2006). All samples were submitted to the National Laboratory for 14C dating in Trondheim. Numbers starting with TUa- and TRa- refer to AMS-
measurements performed at the radiocarbon dating laboratories in Uppsala and Trondheim, respectively.

Laboratory
number

 
Lake Core Depth (cm) Purpose Material dated

Weight of 
submitted 
sample (mg)

14C age 
BP)

(yr 
Calibrated age     
(yr BP, 2σ 
interval)

Weighted 
average (µ)

δ13C          
(‰ PDB)

Sørøya
TUa-7433 Øvre Høyvikvatnet 1-2 970-972 Betula pollen rise Betula pubescens fruits, leaves and twigs 42.9 9165±50 10,490 - 10,230 10,340 -29.0
TUa-7101 Nedre Høyvikvatnet 2-1 1640-1668 Bottom sediments Moss stems, Betula nana leaf fragment 19.0 4385±33 rejected -27.0
TUa-7102 Tomasvatnet 3-4 1230-1237 Stratigraphic level Carex seeds, Betula leaves 12.9 8713±47 9890 - 9540 9680 -25.9
TUa-7103 Tomasvatnet 3-4 1255-1257 Isolation boundary Drepanocladus leaved stems 12.5 9719±53 11,250 - 10,810 11,120 -20.4
TUa-7105 Lillevatnet 4R-2 549 Tsunami deposit Ericaceae twig 45.2 7347±40 8310 - 8020 8150 -27.2
TRa-404 Lillevatnet 4R-2 579-588 Maximum

isolation
 age for first Terrestrial plant remains 7.5 9367±111 11,070 - 10,250 10,610 -26.0

TUa-7106 Lillevatnet 4-5 452-453 Isolation boundary Piece of Betula twig 48.3 5689±35 6610 - 6400 6470 -30.9
TUa-7107 Lillevatnet 4-5 480-484 Visual boundary Carex seed, Betula leaves, twigs 13.7 5769±42 6670 - 6460 6570 -26.4
TUa-7108 Lillevatnet 4-5 506-507 Ingression boundary Juniper twig with bark 28.4 7238±42 8170 - 7970 8070 -21.2

Rolvsøya
TUa-7421 Storvatnet 5R-3 781 Tsunami deposit Drepanocladus leaved stem, terr. leaf fragments 13.2 7527±54 8420 - 8200 8330 -27.6
TUa-7695 Storvatnet 5R-6 465-466 First isolation boundary Numerous Salix herbacea leaves, one Ericaceae leaf, a few leaved 21.1 9624±48 11,180 - 10,770 10,970 -27.9
TUa-7692 Storvatnet 5-1 680-681 Last isolation boundary Numerous Empetrum nigrum leaves, some Salix herbacea  leaves and 5.9 4460±37 5300 - 4960 5120 -30.1
TUa-7693 Storvatnet 5-1 919-920 (I) Ingression boundary Small twig with bark 15.0 6752±42 7680 - 7520 7610 -24.6
TUa-7694 Storvatnet 5-1 919-920 (II) Ingression boundary Numerous Empetrum nigrum  leaves, some other fragments of terr. plants 9.4 7123±41 8020 - 7850 7950 -18.2

TUa-7422 Lillerundvatnet 6-1 420 Tsunami deposit Salix leaf, flower bud, small twig and some plant stems 11.0 6929±47 7920 - 7670 7760 -28.7
TUa-7696 Lillerundvatnet 6-1 448-449 (I) Isolation boundary Drepanocladus leaved stems 5.6 9825±75 11,610 - 10,900 11,260 -24.2
TUa-7697 Lillerundvatnet 6-1 448-449 (II) Isolation boundary Numerous Salix herbacea leaves, some Ericaceae leaves 14.2 9838±55 11,390 - 11,170 11,260 -27.8
TUa-7402 Lillerundvatnet 6-1 528 Stratigraphic boundary Marine brown algae remains 8.9 11,194±51 12,750 - 12,540 12,640 -27.6

403TUa-7403 ill dLillerundvatnet 6 1 6496-1 Lowermo l l h lf di 6st level Mya truncata, one half, diameter ca. 6 cm 88388838.7 12 1312,713± 4 14 90 13 860 14 1 0 25 14,790 - 13,860 14,150 2.7
TUa-7423 Badevatnet 7-1 340 Tsunami deposit Betula leaves, piece of thin bark, moss stem 100.1 7298±47 8190 - 8000 8100 -31.8
TUa-8309 Badevatnet 7-1 487 Bottom of core Salix and Ericaceae leaves 20.7 8101±50 9260 - 8780 9040 -27.7

Magerøya
TUa-7698 Sætervågvatnet 9-1 1511-1513 Isolation boundary Small twig with bark, most likely Betula 13.0 2535±31 2750 - 2490 2620 -25.8
TUa-7404 Sætervågvatnet 9-1 1718 Lowermost level Mya truncata , one half, diameter ca. 5 cm 7380 12,184±51 13,740 - 13,390 13,560 1.3
TUa-8310 Sætervågvatnet 9-1 1652 Stratigraphic level Chlamys islandica , fragment 528.5 11,629±63 13,230 - 12,790 13,030 2.1

Nordkinn
TUa-7699 Nedre Snappvikvatnet 10-1 560-565 Isolation boundary Small Betula  twig with unharmed bark, Betula 

other plant remains
pubescens  seeds, some 12.0 9377±46 10,730 - 10,440 10,610 -27.9

TUa-7432 Mellomste Snappvikvatnet 11-2 826-830 Betula pollen rise Betula pubescens fruits and leaves, mosses 11.5 9070±50 10,390 - 10,160 10,230 -30.0
TUa-7700 Mellomste Snappvikvatnet 11-1 850-854 Isolation boundary Betula pubescens leaves, seeds and catkins; Salix herbacea leaf 23.8 9347±56 10,720 - 10,300 10,560 -27.3
TRa-411 Mellomste Snappvikvatnet 11-1 915-916 Stratigraphic level Desmarestia aculeata, fragments 54.1 11,173±127 12,910 - 12,260 12,590 -26.9

Continues
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Table 2.  Continued

Laboratory
number

 
Lake Core Depth (cm) Purpose Material dated

Weight of 
submitted 
sample (mg)

14C age 
BP)

(yr 
Calibrated age     
(yr BP, 2σ 
interval)

Weighted 
average (µ)

δ13C          
(‰ PDB)

Nordkinn

TRa-405 Mellomste Snappvikvatnet 11-1 971-972 (I) Stratigraphic level Desmarestia aculeata, fragments 167.1 11,903±93 13,470 - 13,110 13,290 -27.5
TRa-410 Mellomste Snappvikvatnet 11-1 971-972 (II) Stratigraphic level Desmarestia aculeata, fragments 139.0 11,786±59 13,340 - 13,080 13,200 -26.8
TRa-406 Mellomste Snappvikvatnet 11-1 1039-1040 Stratigraphic level Desmarestia aculeata attachment fabric (single fragment) 126.5 12,258±106 13,860 - 13,380 13,620 -27.3
TUa-7405 Mellomste Snappvikvatnet 11-1 1114.5 Lowermost large shell Chlamys islandica , one half, diameter ca. 4 c 283.1 12,379±50 13,930 - 13,500 13,750 4.4
TRa-407 Mellomste Snappvikvatnet 11-1 1178-1179 (I) Lowermost level Desmarestia aculeata, fragments 221.5 12,748±141 14,960 - 13,830 14,340 -27.3
TRa-412 Mellomste Snappvikvatnet 11-1 1178-1179 (II) Lowermost level Desmarestia aculeata, fragments 184.5 12,465±67 14,030 - 13,670 13,850 -26.6
TUa-7703 Kifjordvatnet 14-1 333-344 (I) Isolation boundary Desmarestia aculeata, fragments 15.6 4895±42 5280 - 4960 5120 -17.6
TUa-7704 Kifjordvatnet 14-1 333-344 (II) Isolation boundary Betula leaves, seeds, stems; Ruppia fruit 25.3 4591±42 5470 - 5050 5290 -25.2
TUa-8311 Kifjordvatnet 14-1 512-517 (I) Bottom of core Desmarestia aculeata, fragments 24.7 10,175±58 11,230 - 10,900 11,100 -23.5
TUa-8312 Kifjordvatnet 14-1 512-517 (II) Bottom of core Mollusc shell fragments 71.8 7075±44 rejected -1.8
TRa-872 Kifjordvatnet 14-1 507-512 Near bottom of core Desmarestia aculeata, fragments 44.3 9948±47 11,040 - 10,600 10,800 -25.3
TUa-7424 Kifjorddammen 15-1 254 Tsunami deposit Small twig 39.1 7686±48 8580 - 8390 8480 -28.9
TUa-7705 Kifjorddammen 15-1 268.5-269 Stratigraphic level Drepanocladus leaved stems 17.9 8986±58 10,250 - 9910 10,110 -31.6
TUa-7706 Kifjorddammen 15-1 270-273 (I) Isolation boundary Potamogeton seeds 126.2 9342±58 10,720 - 10,300 10,550 -18.3
TUa-7707 Kifjorddammen 15-1 270-273 (II) Isolation boundary Carex seeds; plant stems and leaf fragments 44.8 8713±64 9910 - 9540 9710 -27.0
TUa-7425 Kifjorddammen 15-1 293 Stratigraphic level Marine algae fragments 38.8 9979±57 11,080 - 10,620 10,850 -25.0
TUa-7426 Kifjorddammen 15-1 342 Stratigraphic level Mya truncata , one half, diameter ca. 5 cm 7048.1 11,954±53 13,470 - 13,200 13,340 1.7
TRa-408 Kifjorddammen 15-1 380-389 Lowermost level Chlamys islandica, fragment 982.8 12,294±45 13,810 - 13,460 13,660 2.5
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and the Barents Sea area at the last glacial maximum. Position of suggested dome 

areas and major ice streams are taken from Ottesen et al. (2005). 
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Figure 9. Macrofossil diagrams from four lakes at Nordkinn. Long bars indicate common occurrence, 

short bars indicate that only few specimen were found. 
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Figure 11. A. Calibrated radiocarbon ages of shells 

and macroalgae from the pre-Holocene sequences. 

The dot represents the statistically most probable 

age after calibration, whereas the line covers the 2ó 

age interval. Shaded areas indicate timing of 

events. Oxygen isotope values and chronozones 

are based on the GICC05 time scale from the 

NGRIP ice core (Rasmussen et al. 2006; Lemieux-

Dudon et al. 2010). MI = Mystery Interval (Denton 

et al. 2006), PB = Preboreal. B. Pictures of some of 

the cores with dated samples. 
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Figure 12. A. Compilation of the three new sea-level curves, extended back to the 

deglaciation and compared to theoretical curves from western Norway (Svendsen 

and Mangerud 1987; Bondevik et al. 1998). Periods of rapid emergence are shaded, 

and the origin of the uplift indicated. B. Change in shoreline gradients during the 

first half of the Holocene in four different regions; Sunnmøre (Svendsen and 

Mangerud 1987), Hardanger (Lohne et al. 2004; Romundset et al. 2010), Kola 

peninsula (Snyder et al. 1997; Corner et al. 1999; Corner et al. 2001) and Finnmark 

(Sollid et al. 1973, this work). 
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Figure 13. Conceptual model for the deglaciation and uplift history of the southwestern 

Barents Sea and Finnmark. Large arrows indicate strong uplift, small arrows indicate less 

uplift. The straight profile line extends from north of Bjørnøya south-eastwards and crosses 

the Finnish border, for location see Fig. 1. 




