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Résumé

Ce travail présente une étude des raies de plasma observées àl’aide du radar à
diffusion incohérente EISCAT. Le travail est centré sur deux points. Tout d’abord,
la conception d’une expérience raies de plasma pour le radarEISCAT, avec une
résolution spatiale améliorée. Puis, la comparaison de données raies de plasma
acquises avec le radar EISCAT avec une théorie améliorée sur l’intensité et le dé-
calage Doppler en fréquence des raies de plasma. Pour améliorer la résolution
spatiale, nous avons conçu la première expérience raies de plasma mettant en œu-
vre la technique du code alternatif. Cette expérience a été tournée avec succès avec
une résolution spatiale de3 km au lieu de40 –50 km obtenu avec les techniques
conventionnelles. Parce qu’il est très difficile de construire un modèle cohérent
de la fonction de distribution des vitesses des électrons satisfaisant tous les inter-
valles d’énergies pertinents, nous avons construit une représentation adéquate de
la distribution des vitesses des électrons en séparant la distribution en deux popu-
lations : la thermique et la suprathermique. La population thermique est représen-
tée par la fonction de Spitzer qui tient compte de l’effet d’un champ électrique
et/ou d’un gradient de température. La population suprathermique est déduite du
flux angulaire d’énergie calculé grâce à un modèle numériquedu transport des
électrons. Un code numérique a été développé pour calculer la fonction diélec-
trique et la fonction réduite de distribution des vitesses pour toutes distributions
des vitesses à deux dimensions dont nous avons besoin pour modéliser l’intensité
et le décalage Doppler en fréquence des raies de plasma. Nousavons pu repro-
duire les caractéristiques de l’intensité et du décalage Doppler en fréquence des
raies de plasma avec des données mesurées avec le radar VHF EISCAT. En parti-
culier, nous avons identifié deux pics étroits dans la distribution des vitesses des
suprathermiques comme la signature de la photo-ionisationdeN2 etO. Ces pics
ont été observés sur les données. L’effet d’un gradient de température — qui pro-
duit une correction importante au décalage Doppler des raies de plasma — a été
pris en compte plus précisement que précédemment en calculant numériquement
les intégrales singulières, au lieu d’utiliser les premiers termes d’une expansion
en séries comme auparavant. C’est important car cela a permis pour la première
fois à un modèle de reproduire précisément l’intensité et ledécalage Doppler des
raies de plasma mesurés par une expérience EISCAT.

Mots-clés: EISCAT � distributions des vitesses électronique� dispersion de rela-
tion � ondes Langmuir





Abstract

This work presents a study of the electron plasma lines observed by the incoherent
scatter radar EISCAT. The work is focusing on two parts. On one hand, the design
of a plasma line experiment for the EISCAT system with an improved spatial res-
olution. On the other hand, the comparison of the plasma linedata collected with
the EISCAT radar with an improved model for the intensity and the Doppler fre-
quency shift of the plasma lines. In order to improve the spatial resolution of the
plasma line experiment we have designed the first experimentthat implements the
recent technique of alternating code. The experiment has been run successfully
with an altitude resolution of3 km as opposed to40 –50 km obtained with the
conventional techniques. Because it is very difficult to construct a self-consistent
model of the velocity distribution function encompassing all of the relevant en-
ergy range, we have made anad hocmodel by separating the distribution into two
parts: the thermal and the supra-thermal population. The thermal population is
represented by the Spitzer function that takes into accountthe effect of an electric
field and/or a temperature gradient. The supra-thermal population is derived from
the angular energy flux of the supra-thermal electrons calculated by a numerical
electron transport model. A numerical code has been developed to calculate the
dielectric function and the reduced one-dimensional velocity distribution for any
arbitrary two-dimensional velocity distribution which are needed to model the in-
tensity and the Doppler frequency shift of the plasma lines.We have been able
to reproduce peculiar features of the intensity as well as the Doppler shift of the
plasma lines with data collected with the EISCAT VHF radar. Especially, two
sharp peaks in the supra-thermal distribution were identified as the signature of
photo-ionisation ofN2 andO and were observed in the measured data. The effect
of the temperature gradient — which produces a decisive correction to the Doppler
shift of the plasma lines — was taken into account more accurately than previously
by numerical evaluation of the singular integrals rather than by the use of the first
terms of a series expansion as done in other studies. This is important because it
has allowed a model for the first time to reproduce accuratelythe intensity and the
Doppler shift of the plasma line as measured by actual experiment.

Keywords: EISCAT � electron velocity distribution function� dispersion relation�
Langmuir waves
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Introduction

"Hver og en har sin måte å lære på", sa han
til seg selv. "Hans måte er ikke min, og
min måte er ikke hans. Men også han er på
leting etter sin egen historie."

Paulo COELHO,Alkymisten, 1988.

Among the planets of our solar system, the Earth presents theparticularity to
have both an atmosphere and an intrinsic magnetic field. Under the action of the
photons created by the Sun, essentially EUV and UV, the constituents of the upper
part of the neutral atmosphere, the thermosphere (approximately between90 km
and2000 km), are subject to ionisation processes. The ionised component of the
thermosphere is called the ionosphere. In the lower part of the ionosphere and for
normal conditions, the collision frequency between ions and neutral particles is
important and the effect of the magnetic forces is weak so that the neutral atmo-
sphere drives the behaviour of the ionosphere. In the upper part of the ionosphere,
the gyro-frequency of the ionised particles is getting larger than the ion-neutral
collision frequency and the charged particles are being trapped along the lines of
the magnetic field. The region where the Earth’s magnetic field exerts dominant
control over the motions of charged particles is called the magnetosphere.

In the ionosphere, the gas contains enough ionised particles to cause mea-
surable effects on the travel of radio waves. The incoherentscattering technique
is a radar technique to sound the ionospheric plasma from about 60 km to over1500 km. Routinely, several such radar instruments around the world, measure
the part of the spectrum called the ion line, a narrow double humped spectrum
centred on the transmitted frequency. The ion line is the result of the scattering
of the transmitted wave by ion acoustic waves travelling away and towards the
transmitter, if backscatter, and for bi-static measurements, along the bisector be-
tween transmitted and received directions. Once the data are collected, mostly
autocorrelation functions, a sophisticated analysis method based on inversion the-
ory allows one to extract the plasma parameters such as the electron density, the
electron and ion temperatures, the ion drift velocity and, in favourable conditions,
the collision frequency and the ion composition.

The other main component of the incoherent scattering spectrum is called the
electron plasma line. Electron plasma lines are the resultsof the scattering of the
transmitted radio wave by natural Langmuir waves of the ionospheric plasma. Un-
like the ion line, which is a narrow spectrum centred on the transmitted frequency,
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the plasma lines consist of a pair of sharp spectral lines, Doppler shifted up and
down with respect to the transmitted frequency corresponding to Langmuir waves
travelling towards and away from the transmitter respectively, if backscatter, and
for bi-static measurements, along the bisector between transmitted and received
directions. The Doppler shift is roughly of the order of the plasma frequency,
which is proportional to the square root of the electron density. Typically the
plasma frequency varies between2MHz and8MHz, depending on the altitude,
the geographic location, the time and the solar activity.

The measurement of the plasma line using incoherent scattering radar tech-
nique is not as simple as the measurement of the ion line. In part due to the
very low amount of scattered power in the lines — without any enhancement pro-
cess, the intensity of the plasma line is expected to be less than one tenth of the
intensity of the ion line — but also because of the time and space variations of
the frequency of the plasma line itself due to variations of the electron density.
But the measurement of these two narrow spectra provides supplementary and
complementary informations to the one contained in the ion line. Particularly, at
long term, the electron drift velocity would be an essentialparameter to measure
through the observation of plasma lines. Combined with the parameters provided
by the ion line measurement, that would provide aground-basedtechnique to es-
timate the field-aligned electric currents independently of magnetic observations
(Baueret al., 1976), which is by far the principal means ofin situfield-aligned cur-
rents measurement, through satellite observations (Zmudaand Armstrong, 1974;
Iijima and Potemra, 1976), or sounding rocket observations(Ledley and Farthing,
1974). But both the measurement technique and the theoretical understanding of
the plasma lines are not yet properly developed for a correctestimation of the
field-aligned currents.

The work presented in this thesis is focusing on the study of the plasma line
and can be divided into two complementary parts: the design and implementation
of a plasma line experiment as well as the reduction of the data, and the compar-
ison and interpretation of the reduced data to a theoreticalmodel of plasma line,
especially anad hocrepresentation of the electron distribution function.

The aim of the first part has been to design an experiment for the EISCAT (Eu-
ropean Incoherent SCATter) radar systems, located in Northern Scandinavia, to
collect both plasma line and ion line data, and to develop a suitable analysis tool
to reduce the plasma lines data to parameters workable for the theoretical investi-
gations, i.e. the frequency, the intensity and the width of the lines. Thelong pulse
technique (Showen, 1979) and a similar technique, the chirptechnique (Hagfors,
1982; Birkmayer and Hagfors, 1986) have been successfully used earlier to ob-
serve plasma lines at particular points of the ionosphere. The long pulse technique
allows the measurement of the critical frequency at the peakor valley of the E-
or F-region, while the chirp technique measures the plasma line at the altitude
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where the electron density gradient matches the chirp rate of the transmitted pulse.
These techniques do not provide many measurement points dueto the mismatch
between the scale height of the electron density and the receiver bandwidth/size
of the probed volume by the pulse. Our objective when designing the experiment
was to provide both high-frequency resolution measurements of the plasma lines
and to improve the spatial resolution in order to increase the number of measure-
ment points. The quality of the acquired data is essential for the further analysis
of the spectra and the extraction of accurate parameters such as the difference in
Doppler shift between the up- and down-shifted plasma linesand the intensity of
the plasma lines. We have designed the first plasma line experiment at EISCAT

that implements a recent incoherent scatter technique previously used for low al-
titude high resolution measurement of the ion line, thealternating code(Lehtinen
and Häggström, 1987) which is aphase codingtechnique available at EISCAT. We
performed successfully the first plasma line experiment using a32 bauds strong
condition alternating code on the EISCAT VHF radar system near Tromsø, Nor-
way. To extract the frequency and intensity of both the up- and down-shifted
plasma lines, a fitting routine built on a least-square minimisation method has
been developed and implemented using the kernel of GUISDAP (Grand Unified
Incoherent Scatter Data Analysis Program) of Lehtinen and Huuskonen (1996).
This analysis program enables one to reduce data, either collected with the long
pulse technique, or with the alternating code technique. Itbenefits from the com-
modity of GUISDAP, especially when it comes to the flexibility of handling new
experiments.

In a second part, the data are compared with a theoretical model. The model
consists in calculating both the plasma dielectric response function and the re-
duced one-dimensional distribution function. We have developed a numerical
code to calculate these functions that lets us estimate theoretically the Doppler
shift and the intensity of the plasma lines for any arbitrarytwo-dimensional ve-
locity distribution function in spherical coordinates. Kofman et al. (1993) have
shown, with UHF plasma lines data, that the thermal heat flow induced by a tem-
perature gradient modifies the dispersion relation of the Langmuir waves and in-
troduces a correction term in the estimate of the resonance frequency of the plasma
lines. We have further investigated theoretically for the different EISCAT radars,
the effect of a deviation of the distribution function from the Maxwellian on the
frequency and intensity of the plasma lines. The effect of the fine structures in
the energy range20 –30 eV of the supra-thermal population has been observed on
data collected with the VHF radar and compared with our model. The model is
based on the assumption that the the electron velocity distribution function can
be represented to a good approximation by two parts: the thermal population and
the supra-thermal population. The assumption is sensible for waves with phase
energy far enough from the energy corresponding to the transition between ther-
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mal and supra-thermal distribution (0:15 –0:3 eV). For the VHF radar, the phase
energy is in the range12 –25 eV and for the UHF radar it is in the range3 –6 eV.
The supra-thermal two-dimensional velocity distributionfunction is derived from
the angular energy flux spectrum of the supra-thermal electrons calculated by a
numerical model that solves a stationary electron transport equation along the
magnetic field line, taking into account the collisions between a hot population of
electrons (photoelectrons and/or precipitation) and the neutral atmosphere (Lum-
merzheim and Lilensten, 1994). This model has been widely tested against exper-
iments and other models and has proved to have a very good behaviour to the data.
The thermal part of the distribution function has been modelled by the classical
two-dimensional velocity distribution of Spitzer and Härm(1953) which models
the departure from the Maxwellian state as a consequence of either an electric
field or a temperature gradient.

This thesis is built in the following way.
In Chapter 1, we introduce the theory of incoherent scatter and focus on the

electron plasma line. We give a description of the numericalcode we have devel-
oped to model the plasma line.

In Chapter 2, we describe the incoherent scatter measurement technique and
focus on the experiments we designed.

In Chapter 3, we present the data reduction part.
In Chapters 4 and 5, we give a description of the theory which lies behind the

model of the electron distribution that we used.
Following this introductory part, four articles are included, two of which are

published and the other two are submitted for publication. References to these
articles are found throughout the different introductory parts.
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"A chacun sa manière d’apprendre, se répétait-ilin
petto. Sa manière à lui n’est pas la mienne, et ma
manière n’est pas la sienne. Mais nous sommes l’un
et l’autre à la recherche de notre Légende Personnelle,
et c’est pourquoi je le respecte."

Paulo COELHO,L’alchimiste, 1988.

Parmi les planètes de notre système solaire, la Terre présente la particular-
ité de posséder à la fois une atmosphère et un champ magnétique. Sous l’action
des photons crées par le Soleil, essentiellement EUV et UV, les constituants de
la haute couche de l’atmosphère neutre, la thermosphère, située entre environ90 km et 2000 km, sont ionisés. La composante ionisée de la thermosphère est
appelée l’ionosphère. Dans la partie inférieure de l’ionosphère, la fréquence
de collisions entre les ions et les particules neutres est importante et l’effet des
forces magnétiques est faible tel que l’atmosphère neutre force le comportement
de l’ionosphère. Dans la partie supérieure de l’ionosphère, la fréquence de gira-
tion des particules ionisées devient plus grande que la fréquence de collisions entre
ions et neutres et les particules chargées sont forcées de sedéplacer le long des
lignes du champ magnétique. La région où le champ magnétiqueterrestre exerce
le contrôle du mouvement des particules chargées s’appellela magnétosphère.

Dans l’ionosphère, le gaz contient suffisamment de particules ionisées pour
modifier de façon mesurable le trajet des ondes radio. La technique de diffusion
incohérente est une technique radar pour sonder le plasma ionosphérique à par-
tir d’environ 60 km jusqu’à plus de1500 km. Ainsi, plusieurs radars à travers le
monde, mesurent la partie du spectre à diffusion incohérente appelé la raie ion-
ique, un spectre étroit et doublement épaulé centré sur la fréquence transmise. La
raie ionique résulte de la diffusion de l’onde transmise pardeux ondes accous-
tiques se déplaçant parallèlement et anti-parallèlement àla direction de transmis-
sion dans le cas d’un système simultané d’émission-réception et sinon le long
de la bissectrice entre les directions de transmission et deréception. Une fois
les données acquises, essentiellement des fonctions d’autocorrelation, une méth-
ode sophistiquée d’analyse basée sur la théorie de l’inversion permet d’extraire
les paramètres du plasma tels que la densité électronique, les températures élec-
tronique et ionique et dans certaines conditions la fréquence de collision et la
composition ionique.

La deuxième composante essentielle du spectre à diffusion incohérente est ap-
pelée la raie de plasma ou raie électronique. La raie de plasma est le résultat de
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la diffusion de l’onde transmise par une onde Langmuir du plasma ionosphérique.
Contrairement à la raie ionique centrée sur la fréquence de transmission, les raies
de plasma consistent en une paire de raies, dite basse et haute, très étroites, et
décalées de part et d’autre de la fréquence transmise d’une valeur correspondant
à deux ondes Langmuir se déplaçant parallèlement et anti-parallèlement à la di-
rection de transmission dans le cas d’un système simultané d’émission-réception
et sinon le long de la bissectrice entre les directions de transmission et de récep-
tion. Le décalage Doppler est de l’ordre de la fréquence plasma. Cette fréquence
varie typiquement entre2MHz et8MHz, en fonction de l’altitude, de la situation
géographique, de l’heure et de l’activité solaire.

La mesure de la raie de plasma à l’aide de la technique de diffusion incohérente
n’est pas une tâche aussi aisée que la mesure de la raie ionique. D’une part, du
fait de la très faible quantité de puissance rétro-diffuséedans les raies plasma —
sans mécanisme d’accroissement, l’intensité de la raie de plasma ne représente
pas plus que le dixième de l’intensité de la raie ionique — d’autre part, à cause
des variations temporelles et spatiales de la fréquence plasma elle-même due aux
variations de la densité électronique. En contrepartie, lamesure de ces deux raies
étroites apportent des informations complémentaires et supplémentaires aux in-
formations contenues dans la raie ionique. En particulier,à long terme, la vitesse
de dérive des électrons serait un paramètre essentiel à déterminer à l’aide de la dif-
fusion incohérente. Combiné avec les paramètres déduits par la raie ionique, cela
permettrait de mesurer les courants alignés à l’aide d’un instrumentsol, indépen-
damment de mesures magnétiques (Baueret al., 1976), qui représente de loin le
principal moyen de mesurein situdes courants alignés, soit par satellites (Zmuda
and Armstrong, 1974; Iijima and Potemra, 1976) ou bien par sondes embarquées
dans des fusées (Ledley and Farthing, 1974). Mais ni la technique d’observation,
ni la compréhension théorique des raies de plasma ne sont correctement dévelop-
pées pour une estimation précise des courants alignés.

Le travail présenté dans cette thèse est centré sur l’étude des raies de plasma
et se divise en deux parties complémentaires. La conceptionet la mise en œu-
vre d’une expérience raies de plasma ainsi que la réduction des données et la
comparaison et l’interprétation des données avec un modèle, ce qui implique une
représentation adéquate de la fonction de distribution desvitesse des électrons.

Le but de la première partie a été de concevoir une expériencepour le radar
EISCAT (European Incoherent SCATter), situé au Nord de la Scandinavie, pour
collecter des données raies de plasma et ionique, et développer un outil d’analyse
adéquate pour réduire les données raies de plasma à des paramètres exploitables.
Ces paramètres étant la fréquence, l’intensité et la largeur des raies. La tech-
nique de l’impulsion longue ou"long pulse"(Showen, 1979) et de la rampe de
fréquence ou"chirp" (Hagfors, 1982; Birkmayer and Hagfors, 1986) ont déjà été
utilisées avec succès pour observer la raie de plasma à des points particuliers de
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l’ionosphère. La technique de l’impulsion longue permet demesurer la fréquence
critique aux pics et aux vallées des régions E et F de l’ionosphère et la technique
de la rampe de fréquence permet la mesure à une altitude où le gradient de la
densité électronique correspond au taux de rampe de fréquence transmise. Ces
techniques ne fournissent pas énormément de points de mesures à cause du désac-
cord entre la hauteur d’échelle de la densité électronique d’une part, et la largeur
de bande par rapport au volume sondé par l’impulsion d’autrepart. Notre ob-
jectif a été de concevoir une expérience qui fournit à la foisune haute résolution
fréquentielle de la raie de plasma et améliore la résolutionspatiale afin d’accroître
le nombre de points de mesure. La qualité des données acquises est essentielle
pour l’analyse des spectres et l’extraction précise de paramètres tels que la dif-
férence Doppler entre la raie haute et basse ainsi que l’intensité des raies. Nous
avons mis au point une expérience utilisant une technique récente de modulation
déjà utilisée pour la mesure de la raie ionique, lecode alternatif(Lehtinen and
Häggström, 1987) qui est une technique decodage de phasedisponible à EISCAT.
Nous avons ainsi tourné la première expérience raie de plasma avec un code alter-
natif à condition forte de32 bauds sur le radar VHF de EISCAT près de Tromsø
en Norvège. Pour extraire la fréquence et l’intensité des raies de plasma, un pro-
gramme d’ajustement de paramètres basé sur la minimisationpar moindres carrés
a été développé en utilisant le noyau de GUISDAP (Grand Unified Incoherent Scat-
ter Data Analysis Program) de Lehtinen and Huuskonen (1996). Ce programme
permet de réduire les données acquises avec la technique de l’impulsion longue
ou bien la technique du code alternatif. Il bénéficie de la commodité de GUISDAP,
en particulier dans sa flexibilité à traiter de nouvelles expériences.

Dans la seconde partie, les données réduites sont comparéesà un modèle
théorique. Le modèle est basé sur la connaissance de la réponse diélectrique du
plasma ainsi que sur la fonction de distribution des vitesses réduite à une dimen-
sion. Nous avons développé un code numérique pour calculer ces fonctions. Ce
qui nous permet d’estimer de manière théorique le décalage Doppler et l’intensité
des raies de plasma pour n’importe quelle fonction de distribution de vitesses à
deux dimensions décrites en coordonnées sphériques. Kofman et al. (1993) ont
montré avec des données du radar UHF de EISCAT, que le chauffage thermique
induit par le gradient de température des électrons modifiait la relation de dis-
persion des ondes Langmuir et introduisait une correction dans l’estimation de la
fréquence de résonance des raies de plasma. Nous avons étudié pour les différents
radars EISCAT, l’effet de la déviation de la distribution des vitesses parrapport à la
Maxwellienne sur la fréquence et l’intensité des raies de plasma. L’effet des struc-
tures détaillées dans l’intervalle d’énergie20 –30 eV de la population suprather-
mique a été observé à l’aide du radar VHF et comparé avec notremodèle. Celui-ci
est basé sur l’hypothèse que la fonction de distribution de vitesses des électrons
peut être représentée avec une bonne approximation en deux populations : la ther-
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mique et la suprathermique. Cette approximation est raisonnable pour des ondes
ayant une énergie de phase suffisamment éloignée de l’énergie correspondant à
la transition distribution thermique/suprathermique (0:15 –0:3 eV). Pour le radar
VHF, l’énergie de phase des ondes est de12 –25 eV et pour le radar UHF, elle est
de3 –6 eV. La fonction de distribution des vitesses des électrons estdéduite du
flux angulaire d’énergie des suprathermiques. Ce flux est calculé avec un code
numérique qui résout l’équation de transport des électronsen régime stationnaire
et le long du champ magnétique, en tenant compte des collisions entre la popu-
lation chaude des électrons (photo-électrons et/ou précipitations électroniques) et
l’atmosphère neutre (Lummerzheim and Lilensten, 1994). Cemodèle, largement
testé et comparé avec des données et d’autres modèles du genre, a montré de bon
résultats. La partie thermique de la distribution a été modélisée par la distribution
classique de Spitzer and Härm (1953) qui décrit le départ d’une Maxwellienne du
fait d’un champ électrique ou bien d’un gradient de température.

Cette thèse est construite de la manière suivante.
Dans le Chapitre 1, nous introduisons la théorie de la diffusion incohérente,

en particulier sur la raie de plasma. Nous donnons une description du code
numérique que nous avons développé pour modéliser la raie deplasma.

Dans le Chapitre 2, nous décrivons le principe de la mesure duspectre à diffu-
sion incohérente à l’aide d’un radar, en particulier les expériences que nous avons
écrites.

Dans le Chapitre 3, nous présentons la réduction des données.
Dans les Chapitres 4 et 5, nous donnons une description de la théorie qui sert

au modèle de la fonction de distribution des vitesses que nous avons utilisé.
À la suite de cette partie, quatre articles sont inclus. Deuxd’entre eux sont

publiés et les deux autres sont soumis pour publication. Desréférences aux arti-
cles sont fournis tout au long de la première partie.



Chapter 1

Incoherent scatter theory

"She looked at the steps; they were empty; she looked at
her canvas; it was blurred. With a sudden intensity, as if
she saw it clear for a second, she drew a line there, in the
centre. It was done; it was finished. Yes, she thought,
laying down her brush in extreme fatigue, I have had my
vision."

Virginia WOOLF,To the Lighthouse, 1927.

1.1 Introduction

As mentioned in the introduction, several parameters of theionospheric plasma
such as the electron densityne, the electron and ion temperaturesTe andTi, the
ion drift velocity ui and in some favourable cases the ion composition and the
ion-neutral collision frequency�in, can be derived from the scattering of radiation
involving randomly distributed charges. Since the scattered power is inversely
proportional to the square of the mass of the charge, the scattering from electrons
dominates. Purely incoherent scattering occurs for radar wavelength�0 much
smaller than the Debye length�D of the medium. In this limit, the incident wave
does not interact with the Debye-shielded charges and the scattering depends on
the individual behaviour of charges. The scattering is thenproportional to the
electron velocity distribution function. When�0 is larger than�D, the shielding
effects become important; as the electrons surround the ions in clouds such that
the plasma remains neutral, the ion movement also controls the clouds of electrons
and influences the property of the scattering. This is the condition of scattering
we are interested in. A parameter commonly used in the literature (Bauer, 1975)
to describe the type of scattering, which relates the scale of the observation to the
characteristic scale of the plasma1=�D, is the dimensionless parameter� defined
as � = 1k�D ; (1.1)

wherek is the magnitude of the scattering wave vector determined bythe geom-
etry of the experiment and the magnitude of the radar wave vector k0 which is
defined in Eq. (1.4).
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Assuming the plasma to beuniformandstationary, the differential scattering
cross section of the plasma is defined by (Hagfors, 1977)d2�(!+!0)d
d! = r2e jn�(n�p)j2hj�Ne(k; !)j2i; (1.2)

wherer2e = e2=(4��0me
2) is the classical electron radius,n is the unit vector
pointing from the scattering volume towards the receiver,p is the unit polarisation
vector of the incident radiation,! is the frequency shift between the transmitted
radio wave!0 and the received frequency!r, k is the wave vector shift defined as
the difference between the returned wave vector and the transmitted wave vectork0. ! andk are defined by ! = !r � !0; (1.3)k = !r
 n� k0: (1.4)

The quantity�Ne(r; t) represents thefluctuationsof the microscopic electron
densityNe(r; t) relatively to itsaveragene = hNe(r; t)i. The differential scatter-
ing cross section then corresponds to a particular spatial Fourier component of the
fluctuation�Ne(r; t). This fluctuation is a purely real random process. Its time
Fourier transform might not be defined, it is therefore necessary to calculate its
autocorrelation function which has Fourier transform (Trulsen and Bjørnå, 1977)hj�Ne(k; !)j2i=ZZh�Ne(r; t)�Ne(r+r0; t+�)iei(!��k�r0)d3r0 d�2� : (1.5)

This expression is a version of theWiener-Khinchin theoremin the theory of ran-
dom noise. The problem is to estimate the power spectrum of the electron density
fluctuations in the frequency and wave vector spacehj�Ne(k; !)j2i.
1.2 Incoherent scattering differential cross section

Several approaches have been used to calculate the thermal fluctuation of Eq. (1.5).
The first approach, the dressed test particle principle (Rosenbluth and Rostoker,
1962; Rostoker, 1964), does not make any other assumptions about the state
of the plasma than uniformity and stationarity. The second approach uses the
fluctuation-dissipation theorem or Nyquist theorem and canbe found in numer-
ous articles in the literature (Dougherty and Farley, 1960;Farley et al., 1961;
Dougherty and Farley, 1963; Farley, 1966) and the third approach uses a pertur-
bation method of a linearised Vlasov equation (Salpeter, 1960; Hagfors, 1961).
In addition to the uniformity and stationarity assumptions, they require that each
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species of the plasma should be in the Maxwellian state. The theory of thermal
fluctuation for a non-uniform and non-stationary plasma hasbeen developed (We-
instock, 1965, 1967) and is based on a separation of the scattering into coherent
and incoherent parts. This theory might be of interest for disturbed conditions but
is out of the scope in this study.

Finally, the differential scattering cross sectiond2�=d
d! per angular fre-
quency! and per solid angle
 for a multi-component, uniform, stationary, non-
magnetised and non-relativistic plasma with the collisioneffects included through
a BGK model (Bhatnagaret al., 1954) is then given by (Hagfors, 1961; Sheffield,
1975; Bjørnå and Trulsen, 1986)d2�d
d! = ner2e jn�(n�p)j2S(k; !); (1.6)

where the spectral density function or dynamic structure factorS (Ichimaru, 1992)
is calculated using plasma theory.S(k; !) = �����1 + Ce(k; !)D(k; !) �����2 ImPe(k; !)� �e jPe(k; !)j2�jXe(k; !)j2 +Xj njne z2j �����Ce(k; !)D(k; !) �����2 ImPj(k; !)� �j jPj(k; !)j2�jXj(k; !)j2 (1.7)

with D(k; !) = 1�X� C�(k; !); (1.8)C�(k; !) = Z�(k; !)=X�(k; !); (1.9)X�(k; !) = 1 + i��P�(k; !); (1.10)Z�(k; !) =Xk Z�;k(k; !); (1.11)P�(k; !) = 1n� Xk n�;kP�;k(k; !); (1.12)Z�;k(k; !) = !2�;kk2 ZL k �rvf�;k(v)k � v � ! � i��d3v; (1.13)P�;k(k; !) = ZL f�;k(v)k � v � ! � i��d3v: (1.14)f�;k denotes the velocity probability distribution function for thekth component
of the particle species� (e for the electrons andj for the ions).D andZ� are
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Re vRe v Im vIm v v = !=k+i��=k
v = !=k+i��=k

Figure 1.1: Landau contour of integration used to evaluate the integralsZ andP
of Eq. (1.13) and (1.14). In the left panel,�� > 0 while in the right panel�� < 0
respectively the dispersion function and the susceptibility function for the parti-
cle species� and�� is the collision frequency of species�. !�;k is the plasma
frequency of thekth component of the species� defined as!�;k = s4�n�;ke2m� ; [rad s�1℄ (1.15)

wheren�;k is the density of thekth component of the species� in 
m�3. Note
that whenever not specified, the Gaussian CGS unit system is used.

The contourL of the integralsP andZ is the Landau contour of integration.
These integrals are defined only on the half-plane where�� > 0 (left panel in
Figure 1.1). The analytical continuation of these functions from the upper to the
lower half-plane is given by the Landau prescription. When�� < 0, the contour
is deformed to leave the pole atv such thatk � v � ! � i�� = 0 over the contour
of integration (right panel in Figure 1.1).

Figures 1.2 and 1.3 show the theoretical incoherent scattering spectra for a
Maxwellian plasma for positive frequencies calculated forthe EISCAT VHF and
UHF radars respectively. Both abscissae and ordinate have logarithmic scale to
accommodate the large range of intensity and frequency. Themain spectral shape
from 0 to a fewkHz is the ion line while the sharp line above1MHz is the plasma
line. Note the value of the parameter� = 1=(k�D) for the two different radars —
for the VHF radar� = 10:9 and for the UHF radar� = 2:6— . As expected the
collective effect is more important with the VHF radar than with the UHF radar.
The plasma line observed with the VHF radar is sharper because the associated
Langmuir wave has a phase velocity situated far on the tail ofthe electron velocity
distribution which causes little Landau damping.



1.3 The electron plasma line 5

10
−6

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

Frequency [MHz]

f
0
=224 MHz, kλ

D
=0.09, α=10.9

Figure 1.2: Theoretical incoherent scatter spectrum for the VHF EISCAT radar
(224MHz) for a Maxwellian plasma withne = 105 
m�3, Te = 2000K, Ti =1500K, �i = 10�2 s�1 and�e = 102 s�1 and using the differential cross section
model of Eqs. (1.7) – (1.14)

1.3 The electron plasma line

When studying plasma lines, the expression of the scattering cross section can, to
a good approximation, be simplified. The second term of Eq. (1.7) is small com-
pared to the first term in the frequency range of the plasma line and can therefore
be neglected. Assuming moreover that collisions can be neglected, the expression
of the spectral density function can be approximated toS(k; !) = f 1e �!k�kj1� Ze(k; !)j2 ; (1.16)

wheref 1e is the one-dimensional reduced probability distribution function parallel
to the wave vectork and it is defined byf 1e �!k � = k Z fe(v)Æ(k � v � !)d3v; (1.17)
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Figure 1.3: Theoretical incoherent scatter spectrum for the UHF EISCAT radar
(931MHz) for a Maxwellian plasma with the same ionospheric parameters as in
Figure 1.2 and using the differential cross section model ofEqs. (1.7) – (1.14)

whereÆ represents the one-dimensional Dirac delta function.
In Eq. (1.16), the denominator represents thedielectric response functionof

the medium. Langmuir waves are high-frequency solutions ofthedispersion re-
lation. The dispersion relation is just the dielectric response function set equal to
zero. The frequency of the wave with wave vectork is given by the real part of the
complex frequency! while the imaginary part gives the damping rate of the wave.
For a given radar, two Langmuir waves will interact with the particles, one trav-
elling away from and the other one travelling toward the radar in the backscatter
geometry and otherwise along the bisector between the directions of transmission
and reception. At such high phase velocityv� = !=k, the electron distribution
function is flattening out and there are nearly as many particles moving faster than
the wave as there are particles moving slower, the wave is very little damped. The
so-called Landau damping, which is proportional to the derivative of the reduced
distribution at the phase velocity for an isotropic plasma,is small and the up- and
down-shifted plasma lines at frequency!+ = !r+ � !0 and!� = !r� � !0 are
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respectively the signature of the Langmuir waves travelling alongk+ andk� with
magnitude, in a backscatter geometryk� = 1
 (!0 + !0 + !�): (1.18)

1.3.1 Intensity

The derivation of the intensity of the plasma line does not require the measure-
ment of the spectrum. It is given by the value of the autocorrelation function at
time delay� = 0 (Parseval’s theorem), which can be estimated by power profile
measurement with an incoherent scatter radar. It has been observed at different
incoherent scatter radar facilities and is discussed in many papers, for instance
Perkins and Salpeter (1965); Kofmanet al.(1982); Fredriksenet al.(1989, 1992);
Kirkwood et al. (1995).

In a collisionless plasma without a magnetic field and with the assumption that
the electron velocity distribution function isisotropic but not necessarily Max-
wellian, the incoherent scattering spectrum can be approximated in the neighbour-
hood of the up- and down-shifted plasma lines frequencies!� by the following
expression (Perkins and Salpeter, 1965)S�(k; !)' !2�f 1e (v��)4k0�(!�!�)2+!2�4  �!2ek2df 1edv (v��)!21A ; (1.19)

wherek is the magnitude of the wave vector shift defined in Eq. (1.4) for!r = !0
andv�� = !�=k is the phase velocity of the corresponding Langmuir wave. Since
the isotropic Landau damping term�!�2 � !2ek2 df1dv (v��) of the wave is small, all the
power lies in a small frequency interval (smaller than the frequency bandwidth of
our observations) and the integrated power in one plasma lineIp can be calculated
analytically Ip = 12�2 f 1e (v�)�v2ev� df 1edv (v�) ; (1.20)

whereve = qkbTe=me is the electron thermal velocity.
The term in the numerator of Eq. (1.20) represents the excitation of the Lang-

muir wave by the fast electrons, while the denominator represents the Landau
damping from the particles at the phase velocity of the wave.Thus, the presence
of a high-energy tail in the velocity distribution functioncan lead to a substantial
enhancement in the integrated power, as well as a broadening, of the plasma line.
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Without any enhancement mechanism of the plasma line, the integrated power of
the plasma line is smaller the larger is the parameter�. This is seen in Figures 1.2
and 1.3.

Including the effect of collisions through a Fokker-Planckoperator (Perkins
et al., 1965; Yngvesson and Perkins, 1968) leads to a similar expressionIp = 12�2 f 1e (v�) + �ei�v2ev� df 1edv (v�)+ �ei ; (1.21)

where�ei is the electron-ion collision term that describes the excitation and damp-
ing of plasma waves due to electron-ion collisions with collision frequency�ei�ei = 2� v2ev4� �eik : (1.22)

It can be shown (Newman and Oran, 1981; Oranet al., 1981; Kirkwoodet al.,
1995) that the electron-neutral collision frequency�en can be included and�ei re-
placed by�e = �en+�ei, the sum of the electron-neutral and electron-ion collision
frequencies which are defined as�en = 5:4�10�10nnT 12e ; [s�1℄ (1.23)�ei =  34:0 + 4:18 log T 3ene !neT� 32e ; [s�1℄ (1.24)

wherenn is the neutral density.
The term in the numerator of Eq. (1.21) represents the excitation of the Lang-

muir wave, while the denominator represents the Landau damping and the colli-
sion damping. Note that when the collisional damping�e is large compared to
the Landau damping and the excitation term, the plasma line intensity also tends
towards the thermal intensity1=2�2, but the spectrum is broadened due to the col-
lisions. Enhancement of the plasma line is expected to take place because of the
increase of the number of electrons in the velocity distribution at the phase veloc-
ity of the Langmuir wave due to the supra-thermal population. The supra-thermal
population which excite the Langmuir wave consists either of photoelectrons or
secondary electrons in the case of precipitation. At the same time, The Landau
damping of the supra-thermal electrons dominates and keepsthe plasma line in
a steady-state with the supra-thermal population and broadens the plasma line
(Bauer, 1975).

The integrated power of the plasma lineIp, without any enhancement, can be
compared to the integrated power of the ion lineIi given by (Bauer, 1975)Ii = �4(1 + �2)(1 + �2 + �2Te=Ti) ; (1.25)
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which reduces to 11+Te=Ti for large values of�. For the spectra shown in Fig-
ures 1.2 and 1.3, the ratioIp=Ii are equal to10�2 and2 � 10�1 respectively. For a
Maxwellian plasma the plasma lines are more powerful with the UHF radar than
with the VHF radar.

Using the formalism that we develop in the next section (Guioet al., 1998)
about the numerical estimation of theP andZ functions with theP �andZ� func-
tions of Eqs. (1.39) and (1.41), and together with the differential cross section of
Eq. (1.7), we have derived an expression of the integrated power of the plasma
line for anyarbitrary anisotropic electron velocity distribution function. We used
the same method of expansion around the plasma resonance frequency as Perkins
and Salpeter (1965) and the integrated power in one plasma line is writtenIp = 12�2 v� ImP �ve�v�ve�� v�ve �ek ����P �ve�v�ve�����2ve ImZ�ve�v�ve �+ 1�2 �ek ReP �ve�v�ve � : (1.26)

Introducing the plasma line temperaturekbTp defined askbTpkbTe = 2�2Ip; (1.27)

the integrated powerIp of the plasma line is expressed as a temperature. In a Max-
wellian plasma, the plasma line temperature reduces to the electron temperature.
The ratiokbTp=kbTe then describes the enhancement of the plasma line over the
thermal level. The plasma line temperature for the expression of the intensity of
Eq. (1.26) is written (Guio and Lilensten, 1998)kbTp = kbTe v� ImP �ve�v�ve�� v�ve �ek ����P �ve�v�ve�����2ve ImZ�ve�v�ve�+  vev�!2 �ek ReP �ve�v�ve � : (1.28)

Therefore if one is able to calculate the functionsP �andZ� for any arbitrary
anisotropic electron velocity distribution it is then possible to estimate the inten-
sity of the plasma lines. The intensity of the plasma lines with an anisotropic
supra-thermal electron velocity distribution has been investigated earlier (Lejeune
and Kofman, 1977; Lejeune, 1979), but their formulation of the intensity did not
take into account the pitch-angle dependence in the imaginary part of the dielec-
tric function evaluated at the phase velocity of the wave; they neglected the second
term on the right hand side of Eq. (1.43) and made the following approximationZLn �rvf(v)Æ(k � v � !)d3v ' ddv ZL f(v)Æ(k � v � !)d3v: (1.29)
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We have used the formalism of theP andZ functions together with a model
of the supra-thermal distribution and have calculated the intensity of the plasma
lines given by Eq. (1.28). Our model has been compared with a good agreement
to plasma lines data that we observed at a high time resolution with the EISCAT

VHF radar (Guio and Lilensten, 1998).

1.3.2 Doppler frequency shift

The Doppler frequency shift!� of the up- and the down-shifted plasma lines are
the real part of the roots of the dispersion relation1� Ze(k�; !� + i
�) = 0; (1.30)

where
� is the decay rate which we assume is much smaller than the realpart!�
of the complex frequency.

Then, we can expand in power series of(k � v)=! the denominator which
occurs in the integral of the plasma dielectric responseZe of Eq. (1.13) assuming
thatj(k � v)=!j < 1. Therefore the distribution functionfe must tend toward zero
for v such thatj(k � v)=!j � 1 in order to do the expansion (Tsytovich, 1995)� 1!  1 + (k � v)! + (k � v)2!2 + (k � v)3!3 + � � �+ (k � v)n!n ! : (1.31)

After one integration by parts, the real part ofZe is rewritten as a series ex-
pansionReZe(k; !) = !2e(! � kuek)2  1 + 3k2h(vk � uek)2i(! � kuek)2 + 4k3h(vk � uek)3i(! � kuek)3 +� � �+ (n + 1)knh(vk � uek)ni(! � kuek)n ! ; (1.32)

where the angle brackets denote the average of the distribution functionhAi = Z Afe(v)d3v; (1.33)

These bracketed terms correspond to moments of the distribution function. The
potential mean drift velocityuek = k � hvi=k parallel tok has been included into
the power expansion by replacing(k �v)=! with (k �v)=(!�k �ue) in Eq. (1.31)
in order to eliminate the term relative to the mean drift velocity (k � v)=!.

Assumingj!�kuekj�kve and that the distribution does not deviate dramati-
cally from a Maxwellian, the even-order moments are lumped into theW function
of Ichimaru (1992), our Eq. (1.54), and the odd-order moments are truncated at the
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third-order, which gives theheat flow approximationfirst introduced by Kofman
et al. (1993)ReZe(k; !) = � !2e(kvke)2W ! � kuekkvke !+ 4k3qke=(mene)(! � kuek)5 ; (1.34)

wherevke = (kbT ke =me)1=2. T ke is the parallel temperature andqek is the heat flow
for parallel energy. They are defined (Barakat and Schunk, 1982)12kbT ke = 12meh(vk � uek)2i; (1.35)qke = meneh(vk � uek)2(vk � uek)i: (1.36)

The heat flow for parallel energyqke is equal to6=5 the heat flowqe in the Spitzer
theory (see Eq. (4.20) in Chapter 4). Comparing our termqke = 6=5qe with the
corresponding term2qe in the approximation of Kofmanet al.(1993), we see that
they have overestimated the heat flow contribution by a factor of 5=3.

In Guio (1998), we have investigated the validity of the heatflow approxima-
tion of Eq. (1.34). We have built a simple analytic model, the2-T Maxwellian,
of a velocity distribution that mimics the situation in a plasma with a temperature
gradient. This model consists of two half-Maxwellians withdifferent tempera-
tures that are joined continuously atvk = 0. We have shown that it is possible
to adjust the two temperatures of the distribution so that the temperature and the
heat flow are equal to the ones given by the Spitzer theory (seesection 4.4). We
have used this model to investigate analytically the effectof a departure from
the Maxwellian due to a heat flow on the Doppler frequency of the plasma lines.
This simple model has been compared with the heat flow approximation. A good
qualitative agreement was seen. However, for accurate calculations such as the
calculation of the plasma line Doppler frequency, it was seen that the exact calcu-
lation of the dielectric function is important, together with a good representation
of the distribution function. This is especially true for high-frequency radars and
for low plasma frequency, i.e. when the ratioj!j=kve is smaller than5 –6.

We have not investigated the effect of the anisotropy of the 2-T Maxwellian
on the intensity of the plasma lines since this distributionis not meant to represent
correctly the effect of a supra-thermal population, but rather the departure from
the Maxwellian in the ambient electron population.

We have thus written a numerical code to calculate theP andZ functions of
Eqs. (1.14) and (1.13). The distribution functions that we use to represent the
electron population are known from numerical calculations. The thermal part is
the Spitzer function described in Chapter 4. The supra-thermal part is derived
from the angular energy flux of electrons calculated by a transport code described
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in Chapter 5. Therefore the code should handle the calculation of the functionsP andZ for such distribution functions that are defined numerically on a discrete
grid.

1.4 Numerical code of theP andZ functions

Our assumption when writing the code was that the velocity distribution function
should be represented in spherical coordinates with an axial symmetry. The dis-
tribution function is given at some discrete points both in velocity spacev and in
the cosine of the pitch-angle space�, hereafter referred as the(v; �)-grid.

When collisions tend to zero, the pole occurring in theP andZ integrals is
situated in the neighbourhood of the real axis and the integralsP andZ can be
separated into their real and imaginary parts using the general Plemelj formula
(Balescu, 1963) which reads for a functiong(x)lim�!0+ ZL g(x)x� � � i� dx = PV

Z 1�1 g(x)x� �dx + i�g(�); (1.37)

wherePV denotes a Cauchy principal value integral.
When the collisions are not negligible, the integral is alsoseparated into its

real and imaginary parts and the integral takes the following formZL g(x)x� � � i� dx =Z 1�1 g(x)(x� �)(x� �)2 + �2dx+ i�Z 1�1 g(x)(x� �)2 + �2dx: (1.38)

We have expressedP as a function of the normalised functionP �veP(k; !) = 1kveP �ve� !kve� : (1.39)

whereve is a normalisation velocity. We justify this choice to follow the formula-
tion ofP for a Maxwellian with theZ function of Fried and Conte (1961) defined
in Eq. (1.53).

In the non-collisional case,P �ve is then written using Eq. (1.37)P �ve(�) = 2�" nXj=�nj 6=0 wj Z xmaxxmin x2�j v3ef(xve; �j)x� �=�j dx+i� nXj=1wj j�j� �2�3j v3ef  �ve�j ; �j!#; (1.40)

where the(wj; �j) are respectively the weights and points of the pitch-angle
quadrature. We have used the double-Gauss quadrature (Stamneset al., 1988)
which gives the best results.
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The integrals of the real part ofP �ve are of two types depending on the sign
of �=�j. If �=�j is strictly positive then the integral has a singularity atx =�=�j and the integral is a Cauchy principal value integral. We have used the
quadrature D01AQF of NAG (1993) which calculates an approximation to the
Hilbert transform of its argument. As the velocity distribution function is defined
on a discrete grid of normalised velocity, we need an interpolation strategy in order
to calculate the integral. In our code, we have the possibility to interpolate the
distribution function using the different methods: spline, linear or step function
interpolation. In the case where�=�j is strictly negative then the integral has no
singularity and we use the routine D01GAF of NAG (1993) whichintegrates a
function specified numerically at four or more points, usinga third-order finite
difference formula.

We have proceeded in the same way for theZ function.Z has been expressed
as a function of the normalised functionZ�veZ(k; !) = �� !ekve�2Z�ve� !kve� ; (1.41)

whereve is a normalisation velocity. We justify this choice to follow the formu-
lation ofZ for a Maxwellian with theW function of Ichimaru (1992) defined in
Eq. (1.54).

In the non-collisional case,Z�ve is written using Eq. (1.37)Z�ve(�) = �2�" nXj=�nj 6=0 wj Z xmaxxmin x2�j v3en �rf(xve; �i)x� �=�j dx+i� nXj=1wj j�j� �2�3j v3en �rf  �ve�j ; �j!#; (1.42)

where n �rf(xve; �) = ��f�x (xve; �) + 1� �2x �f��(xve; �): (1.43)

In the collisional case, similar expressions are found for the functionsP �ve andZ�ve using Eq. (1.38)P �ve(�+i�) = 2� nXj=�nj 6=0 wj Z xmaxxmin x2�j v3e f(xve; �i)(x��=�i + i�)(x��=�j)2 + �2 dx (1.44)

and Z�ve(�+i�) = �2� nXj=�nj 6=0 wjZ xmaxxmin x2�j v3en�rf(xve; �j)(x��=�j+i�)(x��=�j)2 + �2 dx (1.45)
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Figure 1.4: The synthetic triangle function with parametersa = 2 andh = 3
We have used again the routine D01GAF from NAG (1993) for numerically

specified functions in order to calculate the integrals overthe normalised velocity
variablex.

We have first tested our numerical code against smooth functions like the Max-
wellian and the Spitzer function using a cubic spline interpolation of these func-
tion for the integration over the velocity grid. The resultsare described in Guio
et al. (1998). A 32-points double-Gauss quadrature gives a relative error better
than10�4 for small values of�, while at large values of�, the accuracy is not
influenced and remains better than10�7.
1.4.1 Test on a synthetic triangle function

As we shall see, the supra-thermal distribution is not as smooth as the Maxwell-
ian or the Spitzer function. The supra-thermal distribution calculated on a dis-
crete energy grid derived from the angular energy flux of electrons calculated by
an electron transport code can be seen as a superposition of shifted triangles of
different amplitude. We have run a simulation on a syntheticisotropic triangle
function and have compared the functionsP �andZ� calculated by our code with
their analytical expressions.

We define theisotropictriangle function centred atr = a+ h=2, with widthh
and normalised such that its integral is equal to one by

f(r; �) = 8>>>>>>>><>>>>>>>>:
4h2 (r�a); a�r�a+h2� 4h2 (r�a�h); a+h2 �r�a+h0; otherwise

(1.46)
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Figure 1.4 shows the isotropic triangle function for the parametersa = 2 andh = 3.
We have calculated analytically the real and the imaginary parts of theP �and

theZ� functions, for a real argument�, of the isotropic triangle function. Since
the triangle functionf is isotropic, the real part ofP � is an even function while the
imaginary part is an odd function and the real part ofZ� is an odd function while
the imaginary part is an even function. They are written

ReP �(�) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

� �3h2 [16a3 log(2a)�8h2a+ 32a3 log 2�(16a3�h3�6ah2) log 4a+hh �16a3 log((4a+h)h)�4(a+h)(a2+2ah�3a2+h2) log 2a+hh +8a3 log((2a+h)h)℄ ; � = �a� �3h2 h(12(a+ h2 )2a�4a3) log 4a+hh +8(a+ h2 )3 log((2a+ h2 )h2 )�8h2(a+ h2 )+32(a+ h2 )3 log 2�4(2a+h)3 log(4(a+ h2 ))�4(a+h)(a2+2ah� 3(a+ h2 )2+h2)log 4a+3hh +8(a+ h2 )3 log((2a+ 3h2 )h2 )i ; � = �(a+ h2 )� �3h2 h(12(a+h)2a�4a3) log 2a+hh +8(a+h)3 log((2a+h)h)�8h2(a+h)+32(a+ h)3 log 2�(h+2a)(11h2+20ah+8a2)log 4a+3hh �16(a+h)3 log((4a+3h)h)+16(a+h)3 log(2(a+h))℄ ; � = �(a+h)�3h2 h(12�2a�4a3) log j�+ajj��aj+8�3 log j�2�a2j�8h2�+ 32�3 log 2+(8a3+h3�24�2a+6ah2�12h(�2�a2))log j2�+2a+hjj2��2a�hj�16�3 log j4�2�(2a+h)2j�4(a+h)(a2 + 2ah� 3�2+h2) log ����+a+h��a�h ���+8�3 log j�2�(a+ h)2j℄ ; otherwise

(1.47)

ImP �(�) = 8>>>>>>>>><>>>>>>>>>:
�2(2a+ h); j�j � a�23h2 (�4a3+6ah2+3h3�8j�j3+12a�2); a�j�j�a + h24�23h3 (a+h+2j�j)(a+h�j�j)2; a+ h2�j�j�a+h0; otherwise

(1.48)
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Figure 1.5: Test of theP � function, for� � 0, with the triangle function of param-
etersa = 2 andh = 3. From top to bottom the number of points in the quadrature
are 16, 32, 64, 128, 256, 512 and 1024. Thedashedlines are for the analytic
expressions of Eqs. (1.47) and (1.48). Thesolid lines are for the numerical calcu-
lations with our code
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ReZ�(�) =
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�4�h2 [�h2+8a2 log 2+4a2 log(2a)�2(2a+h)a log 4a+hh �4a2 log((4a+h)h)+2(a+h)a log 2a+hh +2a2 log((2a+h)h)i ; j�j=a�4�h2 h�h2+8(a+ h2 )2 log 2+2a(a+ h2 ) log 4a+hh +2(a+ h2 )2 log((2a+ h2 )h2 )�8(a+ h2 )2 log(4a+2h)+2(a+h)(a+ h2 ) log 4a+3hh +2(a+ h2 )2 log((2a+ 3h2 )h2 )i ; j�j=a+ h2�4�h2 [�h2+8(a+h)2 log 2+2a(a+h) log 2a+hh +2(a+h)2 log((2a+h)h)�2(2a+h)(a+h) log 4a+3hh �4(a+h)2log((4a+3h)h)+4(a+h)2 log(2(a+h))℄ ; j�j=a+h�4�h2 [�h2+8�2 log 2+2a� log j�+ajj��aj+2�2 log j�2�a2j�2(2a+h)� log j2�+2a+hjj2��2a�hj�4�2 log j4�2�(2a+h)2j+2(a+h)� log j�+a+hjj��a�hj+2�2 log j�2�(a+h)2ji ; otherwise

(1.49)

ImZ�(�) = 8>>>>><>>>>>: 8�2h2 �(j�j�a); a�j�j�a+ h2�8�2h2 �(j�j�a�h); a+ h2 �j�j�a+h0; otherwise

(1.50)

We have compared the behaviour of our numerical code as a function of the
number of points in the double-Gauss quadrature. When it comes to the velocity
integration, we had to use a linear interpolation for such a non-smooth function
as the triangle. The spline interpolation was introducing asystematic bias in the
estimation of theP �andZ� functions for the triangle function defined by just three
points.

Figures 1.5 and 1.6 show the results of the calculations for different values of
the double-Gauss quadratures. Since the triangle functionis not a smooth function
as the Maxwellian, a 512 or even better a 1024-points double-Gauss quadrature
was needed in order to get rid of the oscillations.

The signature of the triangle function is clearly identifiedin the shape of theP �andZ� functions. The imaginary part of theZ� function presents a maximum
damping for� = a + h=2 which corresponds to the value ofr at the maximum
of the triangle function. Similarly the real part of theZ� function presents an
abrupt variation for� = a + h=2 which corresponds again to the value ofr at
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Figure 1.6: Test of theZ� function, for� � 0, with the triangle function of pa-
rametersa = 2 andh = 3. From top to bottom the number of points in the
double-Gauss quadrature are 16, 32, 64, 128, 256, 512 and 1024. Thedashed
lines are for the analytic expressions of Eqs. (1.49) and (1.50). Thesolid lines are
for the numerical calculations of our code
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Figure 1.7: The angular supra-thermal distribution, plotted in the energy range20 –32 eV, used to perform the tests shown in Figures 1.8 and 1.9. The dis-
tribution was calculated with an eight-stream run over Tromsø in July 1996 at12 : 00UT with a F10:7 index of 80 and anAp index of 15. The eight curves
correspond to the eight angles of the double-Gauss quadrature

the maximum of the triangle function again. It can also be verified analytically
that the imaginary part ofP �will tend toward a rectangular window of width2a
whenh tends toward zero as expected if the distribution functionf were a Dirac
function.

1.4.2 Test on a real supra-thermal distribution function

We have run a test on a real supra-thermal distribution function. The angular dis-
tribution function has been calculated by the transport code described in Chapter 5
with an eight-stream run. A detailed view of the angular distribution function in
the energy range we have calculated theP � andZ� functions is shown in Fig-
ure 1.7. Note the anisotropy of the distribution function for energies lower than
the energy corresponding to the two peaks (24:25 eV and26:25 eV) while the dis-
tribution is rather isotropic otherwise.



20 Incoherent scatter theory

Note also the similarity of the supra-thermal distribution, in this energy range,
to a superposition of shifted triangle functions centred at24:25 eV and26:25 eV.
The two main peaks at24:25 eV and26:25 eV are the signature of the increase in
the number of electrons produced by photoionisation ofN2 andO respectively.
The photons causing the ionisation are from the intense flux of monochromaticHeII radiation of wavelength30:378 nm (40:812 eV) created in the chromospheric
network and coronal holes These two peaks have been observedon data collected
with the EISCAT VHF radar and the effect on the plasma line intensity and Doppler
frequency is discussed in Guio and Lilensten (1998).

Figures 1.8 and 1.9 show the results of the calculations of theP �andZ� func-
tions for different values of the double-Gauss quadraturesand for both downward
and upward energies. Note again the oscillations at energy lower than26:25 eV
when the number of points in the double-Gauss quadrature is small. The results
are converging when the number of points in the double-Gaussquadrature is in-
creasing and a number of points in the quadrature of 1024, or even better 2048, is
needed to get satisfying results.

It is worth noting also the effect of the anisotropy of the supra-thermal angular
distribution on theP �andZ� functions. The real part ofP �and the imaginary part
of Z�are not odd function any longer. The imaginary part ofP �and the real part
of Z�are not even function any longer.

1.5 The electron velocity distribution model

The usual description of electron behaviour in the Earth’s ionosphere is based on
the assumption that the electron gas consists of two components, theambientelec-
trons and thesupra-thermalelectrons (Takayanagi and Itikawa, 1970), although
the ambient electrons and the arising supra-thermal electrons are physically indis-
tinguishable.

We will assume that we can represent the electron plasma by those two compo-
nents with velocity probability distribution functionfa and densityna for the am-
bient electrons, andfs andns for the supra-thermal electrons. The total electron
density is thenne = na + ns and we define the dimensionless number� = ns=ne
which represents the percentage of supra-thermal electrons. The ion population
will always be considered Maxwellian.

The ambient component is represented either by a Maxwelliandistribution
function with thermal velocityve = qkbTe=me, or by the Spitzer function that we
describe in Chapter 4.

The supra-thermal distribution is derived from the angularelectron flux calcu-
lated by the transport code described in Chapter 5.

We now have a representation for both the ambient and the supra-thermal



1.5 The electron velocity distribution model 21

0.05

0.1

|Re  P
s
* |

0

0.005

0.01

Im  P
s
*

0.05

0.1

0

5
x 10

−3

0.05

0.1

0

5
x 10

−3

0.04

0.06

0.08

0

2

4
x 10

−3

0.05

0.1

0

2

4
x 10

−3

0.05

0.1

0

2

4
x 10

−3

20 25 30
0.05

0.1

Energy [eV]
20 25 30
0

2

4
x 10

−3

Energy [eV]

Figure 1.8: Test of theP � function with the supra-thermal velocity distribution
calculated on a 8-streams run at259 km (see Figure 1.7). From top to bottom the
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thick line is for downward energy while thethin line is for upward energy
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parameters
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electrons, the next operation consists in the treatment of the transition region be-
tween the supra-thermal and the ambient electrons. Sophisticated methods such
as the numerical resolution of the nonlinear Boltzmann equation (Ashihara and
Takayanagi, 1974; Jasperse, 1976), as well as full analytical treatment such as
the one proposed by Krinberg (1973), have been studied to solve this problem.
However, it was shown later that a good approximation for thecomplete distri-
bution function can be obtained by joining the two distribution functions at the
energy for which the two distributions have equal intensities (Krinberg and Aka-
tova, 1978; Stamnes and Rees, 1983) and truncate the supra-thermal distribution
at this energy. We have chosen for simplicity this method.

The truncation procedure is essential for the evaluation ofthe velocity mo-
ments as seen at the end of Chapter 5. The value of the moments of the supra-
thermal distributions are substantially modified by the truncation procedure.

Figure 1.10 shows the ambient distribution function and thesupra-thermal dis-
tribution truncated at the intersecting energy. Note againthe two sharp peaks at24:25 eV and26:25 eV due to the photoionisation ofN2 andO by the powerful
emission ofHeII radiation of wavelength30:378 nm.

For a Maxwellian distributionfa(v) = 1=(2�)3=2=v3e exp(�jv � uej2=2v2e)
with thermal velocityve and mean drift velocityue, the functionsPa andZa can
be expressed with the well-known functionsZ, defined in Fried and Conte (1961),
andW, defined in Ichimaru (1992), both for complex argumentz.Pa(k; !) = 1kveZ ! � k � uekve ! ; (1.51)Za(k; !) = �� !ekve�2W ! � k � uekve !

(1.52)

with Z(z) = 12� Z 1�1 exp(�x2=2)x� z dx; (1.53)W(z) = 12� Z 1�1x exp(�x2=2)x� z dx: (1.54)Z andW are related byZ(z) = 1 + zW(z).
In the case of the Spitzer function (Chapter 4), the functionsPa andZa have to

be estimated with our numerical code and so it is for the functionsPs andZs for
the supra-thermal distribution (Chapter 5). The functionsPe andZe for the total
electron distribution function are then written (Guioet al., 1998)Pe(k; !) = (1� �)Pa(k; !) + �Ps(k; !); (1.55)Ze(k; !) = (1� �)Za(k; !) + �Zs(k; !); (1.56)
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and are used to calculate the intensity and the Doppler frequency shift of the
plasma lines.

1.6 Summary

Our contribution in this part is a numerical code to calculate the plasma dispersion
function — theZ function — and the reduced one-dimensional distribution — the
imaginary part of theP function — for any arbitrary two-dimensional distribution
function described on a discrete(v; �)-grid.

The numerical calculation of theP andZ functions together with a model of
the electron velocity distribution allows the theoreticalcalculation of the intensity
and the Doppler frequency shift of the plasma lines. It is therefore possible by
comparing the measured intensity and the Doppler shift of the plasma line in an
incoherent scatter experiment to check the validity of the model for the electron
distribution function.

In Guio (1998), the effect of an electron temperature gradient and the presence
of an electron supra-thermal population on the Doppler frequency of the plasma
lines have been studied for different radar wavelength (EISCAT VHF, ESR and
UHF radars). In Guio and Lilensten (1998), plasma lines datacollected with the
EISCAT VHF radar have been analysed, and the intensity and the Doppler shift of
the plasma lines have been compared successfully with our model for the electron
distribution function.
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Chapter 2

Incoherent scattering measurement:
EISCAT

"EXPERIENCE is the name everyone gives to
their mistakes."

Oscar Wilde.

2.1 Introduction

The idea that the backscattering of powerful radio waves from ionospheric ther-
mal electrons should be detectable by large antennae was dueto Gordon (1958).
First, Bowles (1958) demonstrated the existence of ionospheric incoherent scatter
using a1MW transmitter tuned to a wavelength of7:5m and a large antenna of
cross-section about20000m2. Three years later in 1961, Bowles observed echoes
with a bandwidth a factor 10 less than the predicted width: the ion line. The dis-
crepancy was due to the Coulomb coupling between the electrons and the ions
when observing with a radar of wavelength much larger than the Debye length!

Incoherent-scatter radars (ISR) are expensive to build andoperate, due to the
required high-power transmitters, large antennae and highly sensitive receivers.
At the present time, there are seven major ISR in operation around the world.
They cover a wide latitude range from the magnetic equator tothe polar cap. The
EISCAT radars sit in the auroral zone.

ISR may be eithermonostaticor multistatic. Monostatic radars use the same
antenna to transmit and to receive signals. The transmittedsignal is pulsed in or-
der to resolve the scattering volume, allowing the measurement of the ionosphere
over a wide range simultaneously. The height resolution of these measurements is
determined by the pulse length. Multistatic radars use separate antennae to trans-
mit and to receive signals. The transmitted signal does not need to be pulsed,
and the echoing region is selected by pointing the receivingantenna in a direction
which intersects the transmitted beam. It allows measurements with height reso-
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Figure 2.1: Sketch of the transmission-reception scheme for a transmitted pulse of
length� and a receiving interval� delayed by a timet after the pulse is transmitted

lution determined by the intersection of the two antenna beams.Tri-staticsystems
give the possibility to derive both the intensity and the direction of vectorial pa-
rameters such as the ion drift velocity and also possibly anisotropic parameters
such as the ion temperature.

2.2 Measurement principle

An incoherent scatter radar experiment consists basicallyin sending an electro-
magnetic wave of wavelength�0 on a time interval� . The pulsed wave is travel-
ling in the ionosphere and a small fraction of the transmitted signal is scattered.
The receiver is opened after a timet and the signal is sampled over a time inter-
val � . The timet separating the transmission and the reception determines the
altitude of the volume which scattered the incident wave. When sampling at timet after the start of the transmission, the pulse has travelledat height
t=2 and is
illuminating a volume in the range
t=2 to 
(t+ �)=2)— assuming a zeroth-order
sampler — as seen in Figure 2.1. In fact the finite impulse response of the receiver
will also have to be taken into account in the calculation of the range. It is then
possible to build the autocorrelation function (ACF) of thesignal by calculating
cross products of the received samples and adding them properly (Farley, 1969).
The ACF is the Fourier transform of the power density spectrum, or periodogram,
of the signal. In order to subtract thebackground noise(sky and receiver noises),
signal is collected independently in the absence of any transmitted signal. The
noise subtracted ACF is then calibrated using the measurement of a noise source
of calibrated temperature injected in the receiver system.This procedure has to
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be repeated many times in a time interval of a few seconds in order to get a good
statistical accuracy of the ACF.

Depending on the scale height of the ionospheric parametersand the correla-
tion time of the medium — mainly depending on the electron andion temperatures
as well as the radar wave vector —, the length of the pulse has to be optimised.
Long pulses allow to measure long correlation time but sincethe probed volume is
large, they require the scale height of the ionospheric parameters to be large. Short
pulses are well suited for regions with small scale height but they do not allow the
measurement of long correlation time. In the lower ionosphere where the scale
height is small and the correlation time of the medium is long, the multiple pulse
technique (Farley, 1972; Kofman and Lathuillere, 1985) allows one to estimate
ACF’s with a long correlation time without the disadvantageof smearing them
because of the large volume probed. The technique consists of the transmission
of short pulses separated by suitable time intervals in order to calculate the ACF
at the wanted time delays. This technique has the disadvantage that it does not fill
completely the available transmission time. The phase coding technique (Sulzer,
1989) is a recent technique that alleviates this problem without using frequency
commutated multiple pulse technique.

2.3 The EISCAT radar systems

Tromsø Kiruna Sodankylä Longyearbyen
Geograph. coord. 69035ÆN 67052ÆN 67022ÆN 78009ÆN19014Æ E 20026ÆN 26038ÆN 16003ÆN
Geomagn. inclination 77030Æ E 76048Æ E 76043Æ E 82006Æ E
Invariant latitude 66012ÆN 64027Æ E 63034Æ E 75018Æ E
Band VHF UHF UHF UHF UHF
Frequency(MHz) 224 931 931 931 500
Wavelength(m) 1.3 0.3 0.3 0.3 0.6
Wave vector(m�1) 4.7 19.5 13.81 13.81 10.5
Rx Channels 8 8 8 8 6
Peak power(MW) 2�1.5 1.5 — — 1.0
Max. duty cycle(%) 12.5 12.5 — — 25
Pulse duration(�s) 10 – 2000 10 – 2000 — — <10 – 2000
Min. inter-pulse(ms) 1.0 1.0 — — 0.1
Sys. temperature(K) 250 – 350 90 – 110 30 – 35 30 – 35 80 – 85

Table 2.1: The EISCAT radar systems characteristics
1Geometry dependent,k = 2k0 sin �=2, where� is the angle of the bisector between transmit-

ted and received directions. The value given is when the two antennae beams intersect at� = 30 Æ
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Figure 2.2: Principle of the long pulse measurement of the plasma lines. The
critical frequencies fv, foE and foF2 can be estimated by locating the abrupt signal
drop in the power spectrum

The EISCAT mainland system consists of a UHF tri-static radar and a VHF
monostatic radar. Both UHF and VHF transmitters are locatednear Tromsø, Nor-
way while the two remote UHF receiving antennae are located in Sodankylä, Fin-
land and in Kiruna, Sweden. The EISCAT radar system is widely described in
the literature, and detailed descriptions can be found in e.g. Brekke (1977) and
Folkestadet al. (1983). Recently, EISCAT has extended its observation capabil-
ities with the inauguration in August 1996 of a new radar, theEISCAT Svalbard
Radar (ESR) at Longyearbyen on the archipelago of Svalbard (Wannberget al.,
1997) which has now been operating regularly since April 1997.

Table 2.1 presents the important technical characteristics of the mainland EIS-
CAT systems and the new ESR system.
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2.4 Long pulse technique

At the peak or valley of a layer, more electrons are resonant within a specific
frequency resolution cell. When fine-frequency measurements are made of the
echo from a long radar pulse, the abrupt signal intensity variations as a function
of the frequency (see Figure 2.2) permit accurate determination of the critical
frequencies (Showen, 1979). The long pulse technique consists of transmitting
a pulse of300 –500�s, and allows one to measure the plasma line at the critical
frequency of a region like at the peak of the F-region. This technique has been
used at different ISR at the peak of the E-region (Kofman and Wickwar, 1980)
as well as at the peak of the F-region (Showen, 1979; Kofman and Wickwar,
1980; Kofmanet al., 1981; Heinselman and Vickrey, 1992b; Kofmanet al., 1993;
Showen, 1995).

2.4.1 The experimentECHO-D-V

We have designed a long pulse plasma line experiment for the EISCAT VHF radar
(ECHO-D-V) based on the experiment described in Kofmanet al. (1993). The
principle is to send one long pulse at the frequencyf0 and to receive signal simul-
taneously on three different channels tuned at three different frequencies,f0 for
the ion line,f0+f+ for the up-shifted plasma line andf0+f� (wheref� < 0) for
the down-shifted plasma line. The ACF’s from these channelsare calculated in the
same way, therefore the measurement of the three spectral lines is performed in
the same volume. InECHO-D-V the transmitted pulse is450�s and the received
signal is sampled at10�s over a time interval that enables to build 5 ACF’s with
33 lags. It means that the correlation function is evaluatedat 33 lag delays from 0
to 320�s by step of10�s.

Figure 2.3 shows the timing diagram of the transmitted pulses and the receiv-
ing intervals of signal, calibration and background of our long pulse experiment.
Two channels (channels 4 and 5) are dedicated to the plasma lines, channel 3 is
used to measure the ion line in the same volume as the plasma lines. Channel 6
is used for the transmission of a very long pulse. This very long pulse is used to
estimate, by ion line measurement, the standard ionospheric parameters at higher
altitude. The complete cycle is run in17:5ms which provides good statistical
accuracy in a short integration time. We have collected valuable data at a time
resolution of2 s with ECHO-D-V. The collected data have been used to analyse
both the intensity and the Doppler frequency shift of the up-and down-shifted
plasma lines and the results have been compared with our model for the intensity
and the Doppler frequency shift (Guio and Lilensten, 1998).

When running the experiment, a plasma line tracking programinteracts with
the radar. This program monitors the spectra of the measuredplasma lines and
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Figure 2.3: Time diagram of the pulsing of the EISCAT long pulse experiment
ECHO-D-V. black is for the transmitted pulses,dark gray is for the receiving
periods andlight gray is when the calibrated noise source is injected. The back-
ground measurement is performed at the end of the cycle. The whole cycle is run
in 17:5ms and provides good statistical accuracy in a short time

changes the frequency of the plasma line receiver channels every time it is nec-
essary in order to get the plasma lines in the centre of the100 kHz observation
window.

Figure 2.4 shows the reduced spatial ambiguity function of each lag of the first
ACF gate, and the range of each gates. Thex-axis represents the timet it takes
to a radio signal to travel a ranger and back again. This is the ranger where the
scattering takes place (r = 
t=2 where
 is the light speed). The reduced spatial
ambiguity function of a lag is the range function which measures the power gain
inside the scattering volume to estimate this lag product. It is also referred as the
effective pulse form when considered as a function of time (Lehtinen, 1986). The
reduced spatial ambiguity is defined as the product of the convolution between
the receiver impulse responsep and the envelope of the transmitted pulseenv
evaluated at the ranger corresponding to the first sample and at the ranger+
�=2
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corresponding to the second sample delayed by�W� (r) = (p�env)(r)(p�env)(r + 
�=2) (2.1)

The left panel in Figure 2.4 is for the long pulse of channel 3 which is used
to measure the plasma lines. The right panel is for the very long pulse of Chan-
nel 6 that measures the ion line. Each trapezium represents the range ambiguity
functions for the labelled lag. The tick marks are the range of the centre of every
gates.

The ambiguity function is about the same for every lag of one ACF. It is about45 km (300�s) for the long pulse of channels 3, 4 and 5 and100 km (666�s)
for the very long pulse of channel 6. The range separation between two gates is37:5 km (250�s) for the long pulse and90 km (600�s) for the very long pulse.
5 gates are calculated from178 km to 328 km (1190�s to 2190�s) for the long
pulse and 11 gates from317 km to 1217 km (2110�s to 8115�s) for the very long
pulse.

The algorithm used to calculate the ACF’s is from the GEN-LIBsystem (Tu-
runen, 1985, 1986). The GEN-LIB system consists in a collection of ACF algo-
rithms for the EISCAT correlator based on the lag profile matrix (Turunen, 1983;
Turunen and Silen, 1984). The summation strategy of the ACF algorithm for a
long pulse in the GEN-LIB system is such that every lag of the ACF has a range
ambiguity function with the same absolute volume boundaries and the nominal
middle point of the volume is located at the same range. At thesame time, the
shape of the ambiguity function inside this volume differs from lag to lag as seen
in Figure 2.4, but the effective pulse length remains about the same for every lag.

The description of the experiment displayed in Figure 2.4 iscalculated by
GUISDAP (see Chapter 3). In GUISDAP, a set of MATLAB variables contains the
necessary information for the complete description of the experiment which is
needed to analyse measured data.
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Figure 2.4: Reduced range ambiguity function of the 33 lags of the long pulse of
channel 3 and the 41 lags of the very long pulse of channel 6 of the experiment
ECHO-D-V. The reduced range ambiguity functions for the lags of the ACF’s of
channels 4 and 5 are identical to the ones of channel 3



2.5 Alternating code technique 35

2.5 Alternating code technique

Transmitting pulses at different frequencies within a sequence presents the dis-
advantage that information provided by the cross-product of samples is lost, as
is the case in frequency switched multiple pulse modulations. If the entire duty
cycle can be used to transmit a coded pulse at a single frequency, every cross-
product between samples in the received signal up to the pulse length provides
useful information. Good spatial and temporal resolution can be obtained pro-
vided the self-clutter cancels out on average. This can be achieved by the so-
called phase-coding techniques (Sulzer, 1986, 1989). The alternating code is one
of these techniques (Lehtinen and Häggström, 1987; Sulzer,1993; Nygrenet al.,
1996). Random code (Djuthet al., 1994, 1997) is another one, but this technique
cannot be implemented without extra hardware on the presentEISCAT system.

The alternating code technique consists in transmitting asequenceof long
pulsephase modulatedin a predefined manner which improves dramatically the
spatial resolution of the autocorrelation functions.

Finding a suitable sequence that fulfils the condition of cancellation was not
an easy task. At first, Lehtinen and Häggström (1987) restricted the number of
possible combinations using the theory of Walsh sequences and expressed their
solution as a Walsh sequence. The Walsh sequences arebinary orthogonal se-
quences that have been used as a multiplication-free alternative to the fast Fourier
transform methods. For a strong condition alternating code, as the one we have
used for our experience,2n sequencesSC indexed from 0 to2n�1 of phase mod-
ulated long pulse are transmitted. The phases of each long pulse are defined by
a sign sequence(si) (equal to +1 or -1) of lengthn called the number of bauds
(or bits) and indexed from 0 ton�1. The total length of the pulse isn times the
duration of one baud. The sign sequence(si) for the sequenceSC is defined bysi(SC) = Walsh(ai; SC) = (�1) 1Xn=0(ai)n ^ (SC)n

(2.2)

where(ai)n and(SC)n are thebinary representations of the integer numbersai
andSC and^ is the logicaland operator. The number sequence(ai) to calcu-
late the code sequencessi(SC) were found by a computer search (Lehtinen and
Häggström, 1987).

Figure 2.5 shows the 64 sequencesSC of phase modulated long pulse based
on the signs sequences(si) of length 32 needed to run the32 bits strong condition
alternating code available at EISCAT (Guioet al., 1996).

Few EISCAT experiments have been designed with an alternating code, mainly
EISCAT CP’s (Common Program) and it does not exist any program to design an
alternating code experiment. In order to design our experiment with the32 bits
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Figure 2.5: The 64 pulse sequences required for the32 bits strong condition al-
ternating code available at EISCAT. Theai is the sequence of numbers needed to
calculate the signs of the pulse with Eq. (2.2). The sequenceSC = 22 in dark
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strong condition alternating code for the EISCAT VHF radar, we wrote a MAT-
LAB programme that generates automatically the necessary filesto describe the
experience. This programme is completely parametrised andhandles a variable
number of ACF gates, a variable number of lags to be computed and a variable
range profile of ACF’s to be measured.

Following is a summary of the different properties of the alternating code tech-
nique:

☞ The range resolution of each lag of the ACF is defined by the time length
of one baud, i.e. the duration of one signsi. An exception is the zero lag
which has a range resolution corresponding to the total pulse length.

☞ Normally, the ACF is computed at time delays multiple of the baud length.

☞ The ACF can be computed at a maximum delay equal to the total pulse
length, i.e. the number of bauds times the duration of one baud.

☞ A necessary condition for the alternating code to work correctly is that the
ionospheric plasma remains stationary over the time it takes to the2n pulse
sequences to be transmitted so that the self-clutters cancel correctly.

2.5.1 The experimentALT-32-2-V

Our aim when designing a plasma line experiment using the alternating code tech-
nique was to drastically improve the height resolution compared to the long pulse
technique in order to be able to measure a profile of plasma lines. The situation is
sketched in Figure 2.6. For favourable measurement conditions, the measurement
of the plasma line can be done at more than ten gates.

The problem when writing an alternating code experiment is to find a compro-
mise between the sample rate (the duration of one baud) whichdefines the range
resolution and the spectral bandwidth, the lag extent (limited to the baud length
times the number of bauds) which defines the spectral resolution and the range to
be covered by the experiment (the number of ACF to be calculated). In addition
is the constraint due to the limitations of the time it takes to compute the ACF’s
and the limited size of the correlator memory. These conflicting parameters have
to be handled carefully when designing an alternating code experiment.

We have designed the first32 bits strong condition alternating code plasma
line experiment. The duration of one baud was chosen to be20�s which provides
a gate resolution and a gate separation of3 km and a50 kHz bandwidth observa-
tion window. In addition to the alternating code, a long pulse of500�s was added
in a newer version than the one presented in Guioet al. (1996) to estimate the
ionospheric parameters given by the ion line at a higher range.
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Figure 2.6: Parabolic height distribution of the plasma line frequency with a scale
height of65 km showing two different tuning of a50 kHz receiving window and
the corresponding cells of3 km contributing to the scattering

We present here the characteristics of the new experimentALT-32-2-V. The
principle of this experiment is the same as the long pulse experiment. The alter-
nating code is transmitted once and received on three different channels simulta-
neously tuned at three different frequencies. One channel is for ion line measure-
ment (channel 5), the two other channels (channel 3 and 4) arefor measurement
of the up- and down-shifted plasma lines. Channel 6 is for theion line long pulse.

Figure 2.7 shows the timing diagram of the transmitted pulseas well as the
receiving intervals of signal, background and calibrationfor one sequence. Two
channels (channels 4 and 5) are dedicated to the plasma lines, channel 3 measures
the ion line in the same volume as channels 4 and 5. Channel 6 isused for the
transmission of a long pulse in order to measure ionosphericparameters from
the ion line at high range. The 64 cycles are run in764ms which means that
the ionospheric plasma has to remain stationary in that timefor the ACF’s to be
correctly estimated.

Figure 2.8 shows the reduced ambiguity of the 28 lags computed using the
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Figure 2.7: Time diagram of the pulsing of the22nd cycle of the32 bits strong
condition alternating code ofALT-32-2-V . black is for the transmitted pulses,
dark grayis for the receiving periods andlight gray is when the calibrated noise
source is injected. The background and calibration measurements are performed
at the end of each cycle. The whole 64 cycles are run in764ms and have been
optimised for a10 s pre-integration time

alternating code (left panel, channel 3) and the 29 lags computed for the long
pulse (right panel, channel 6). The ACF of the alternating code is computed by the
algorithm of the G2-LIB system (Wannberg, 1993). The G2-LIBis an extension to
GEN-LIB to compute ACF for the alternating code. The range ambiguity function
of each lag of the ACF is3 km (20�s) for the alternating code and50 km (330�s)
for the long pulse. The range separation between two gates is3 km (20�s) for the
alternating code and37:5 km (250�s) for the long pulse. 32 gates are calculated
from 202:8 km to 295:8 km (1352�s to 1972�s) for the alternating code and 12
gates from251:3 km to 663:8 km (1675�s to 4425�s) for the long pulse.

The data presented in Guioet al. (1996) were collected using the first version
of this experimentALT-32-1-V which did not include the long pulse and contained
40 gates instead of the 32 gates of the present experiment. Data collected with
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Figure 2.8: Reduced range ambiguity function of the 28 lags of the alternating
code of channel 3 and the 31 lags of the long pulse of channel 6 of ALT-32-2-V.
Note that, as the long pulse experimentECHO-D-V, the lags of the ACF’s of chan-
nels 4 and 5 have the same reduced range ambiguity functions as the ones of
channel 3
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ALT-32-2-V have been analysed and are shown in Chapter 3.

2.6 Summary

We have designed two different plasma line experiments for the EISCAT VHF
radar. The first experiment makes use of the classic long pulse technique and the
second one the alternating code technique.

For the first time at EISCAT, the alternating code technique has been success-
fully used in the frame of a plasma line experiment. Our experiment implements
a32 bits alternating code strong condition on the VHF EISCAT radar. It was seen
that the alternating technique greatly improves the heightresolution and therefore
allows one to measure the plasma line at several ranges instead of the one range
as done with the classic techniques (Guioet al., 1996).

The long pulse experiment has been run successfully and has provided valu-
able high time resolution plasma line data. Such a data set, collected at high time
resolution, has been used to compare the measured intensityand Doppler fre-
quency shift of the plasma lines with our model (Guio and Lilensten, 1998). This
data set has allowed us to identify the effect on the plasma line intensity and to
some extent on the Doppler frequency of the fine structures inthe supra-thermal
distribution function in the energy range20 –30 eV.
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Chapter 3

Data analysis

"Talking about music is like dancing about
architecture."

Laurie ANDERSON.

3.1 Introduction

Once the autocorrelation functions (or the power density spectra) have been com-
puted using an incoherent scatter experiment, the large amount of collected data
needs to be reduced toestimatedionospheric parameters and their associatedun-
certainties. This is done on a computer by an analysis program that attempts to
fit the data to a theoretical model. Ideally, the data shouldnot be modified by any
calculations, so the model has to include

☞ An "ideal" theoretical model. For our purpose, it consists in a model for
the intensity and the Doppler frequency shift of the up- and down-shifted
plasma lines (Chapter 1).

☞ The effect of measuring with an "imperfect" instrument. In an incoherent
scatter experiment, this is:� The finite pulse length of the transmitted power� The finite impulse response of the receiver system

and the effect on the measurement is the spatial ambiguity function (Chap-
ter 2).

GUISDAP is a package designed to analyse incoherent scattering ion line data.
It is written partly in C and interfaced to MATLAB . The current stable ver-
sion (v1.6) allows one to analyse each ACF independently as gates or to analyse
grouped lags from different modulations with spatial ambiguity function within
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the same volume. A new version (v2.0) to come will be able to analyse simulta-
neously one range profile of ACF data in one fit (Holtet al., 1992; Lehtinen and
Huuskonen, 1996).

3.2 GUISDAP

The theoretical foundations used in GUISDAP concerning the radar theory and the
ambiguity functions are found in Lehtinen (1986), while thetheory of statistics of
multi-parameter fits is found in Vallinkoski (1989).

This program is able to translate the files describing the experiment into a set of
variables describing the experiment and to calculate the effect of the radar which
has to be taken into account when analysing data. It has anyway some limitations.
It can not handle automatically ion species other thanO+ and a mixture of the
molecular ionsO2+ andNO+. This is a serious problem when it comes to analyse
VHF data at high altitude (presence ofH+). The analysis of the ion composition
in general is not handled.

3.3 Plasma line analysis

We have developed a plasma line analysis programme which widely uses the
GUISDAP package. The specifications of the experiment are calculated by GUIS-
DAP and we have changed the fitting procedure for the ion line to our own fit-
ting procedure which handles plasma line data. This procedure is based on the
Levenberg-Marquardt method. This method performs a minimisation of the sum
of the squares of the residuals — the differences between themeasured and the
values given by the model for a given set of parameters — (Bard, 1974). The
method is optimised to switch continuously from a method which quickly ap-
proaches the minimum (the steepest descent method), when far from the mini-
mum, to a more precise but slower method (the Newton method),when approach-
ing the minimum. The variances of the ACF are estimated by GUISDAP using the
ambiguity function (Lehtinen, 1986) in order to estimate the uncertainties of the
fitted parameters.

Our analysis tool handles both plasma line data collected with the long pulse
technique and the alternating code technique. It would not be an important work
to integrate other models of the ACF of the plasma line.

Long pulse

The model for this spectral signature is described in (Kofman et al., 1981; Hein-
selman and Vickrey, 1992a) and has also been used in Kofmanet al. (1993).
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In a long pulse experiment, the ACF signature of the plasma line is depending
on the variation of the plasma frequency!p(r) as a function of range around the
peak of the observed region and the range ambiguity function.

The variation of the plasma frequency around the peak of the F-region can be
described by a parabola!p(z) = !pmax(1 � z2=8), wherez = (r � rmax)=H.!pmax is the maximum frequency at the peak located at the rangermax and with
scale heightH.

The power densityS(!; r) of the plasma line at the ranger is assumed constant
over the frequency bandwidthÆf centred at!p and with an integrated power equal
to ap which is constant with range. The autocorrelation functionat the ranger of
the power densityS(!; r) is called�S(�; r).

The effect of the radar is taken into account with the range ambiguity functionsW� (r), presented in Figure 2.4.W� (r) is calculated by GUISDAP. The measured
ACF � at the delay� is then the range-integrated (over the rangeR of the gate),
of the product of�S(�; r) with the range ambiguity functionW� (r)�(� ;!pmax; rmax; H; Æf; ap) = ZRW� (r)�S(�; r)dr: (3.1)

Figure 3.1 shows an example of a fit done for a dump collected byour exper-
imentECHO-D-V described in Chapter 2 at2 s resolution. The fit is done on the
ACF shown in the two upper panels. The two lower panels are just Fourier trans-
forms of the ACF to give a clearer image of the spectral signature of the plasma
line when using the long pulse technique. Note that we are able to measure the
critical frequency with uncertainties of a few hundred Hertz.

Figure 3.2 presents the results of a data set collected with atime resolution
of 2 s (Guio and Lilensten, 1998). One can clearly see the role of the monitor-
ing program which for every new dump collected attempts to follow the critical
frequency of the spectrum in the100 kHz observation window. The parameters
shown are from top to bottom the Doppler frequency shift of the up- and down-
shifted plasma lines(!+=2�) + 0:2MHz and�!�=2�, the Doppler frequency
between the plasma lines(!+ + !�)=2�, the temperature, or intensity, of the
plasma linesTp+ andTp� and the frequency width of the plasma linesÆfp+ andÆfp�.
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Figure 3.1: Long pulse fit of data collected withECHO-D-V. The two upper pan-
els show the measured complex autocorrelation functions expressed in units of an-
tenna temperature (dashed lineand the theoretical model (solid line) of Eq. (3.1).
The curves with the intensity equal to zero at zero lag delay are the imaginary
parts. The two lower panels present the corresponding powerdensity spectrum
where the critical frequency is more easily identified
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Alternating code

The spectral signature of the spectra collected with the alternating code technique
is quite different from the one of the spectra collected withthe long pulse tech-
nique.

In an alternating code experiment, the spectral signature of the plasma line can
be approximated by a truncated parabola. Since the sensitivity is maximum at the
centre of the range and falls linearly to zero one baud lengthaway on each side,
due to the correlation of the signal with the code and assuming a perfect receiver,
the power will just be the square of this triangular function. This is the shape of
the ambiguity function of every lags of the alternating code(it is seen in the left
panel in Figure 2.8 of Chapter 2 for all the computed lags). The plasma frequency
is changing approximately linearly with height inside the range of one gate (3 km),
and therefore this square triangle function becomes the spectral shape. Of course,
it has to be convolved with the inherent line width, but this would appear to have
little effect in this case. This means that the spectrum falls to zero at a certain
frequency.

The ACF measured with the alternating code can therefore be modelled by the
following expression which is the Fourier transform of a parabola with a maxi-
mum at frequency!p, the Doppler shift of the line, a frequency width at half the
powerÆf and a powerap assuming the intensity of the plasma line is constant with
height. The ACF� at lag delay� is (Guioet al., 1996)�(� ;!p; Æf; ap) = 3ap sin(4�Æf�)� 4�Æf� 
os(4�Æf�)(4�Æf�)3 exp(i!p�): (3.2)

Figure 3.3 shows an example of a fit done on a dump collected by the last
version of our experimentALT32-2-V at 10 s. For this analysed dump, our fitting
procedure analysed successfully 13 gates. Note that as for the long pulse tech-
nique, the uncertainties on the Doppler frequency of the plasma lines are of a few
hundred Hertz. The peak of the F-region can clearly be identified in the shape of
the Doppler frequency as a function of altitude.

Figure 3.4 shows the results of the parameters fitted for a data set collected
at a time resolution of10 s with the last version of our experimentALT32-2-V.
The parameters shown are from top to bottom the Doppler frequency shift of the
up- and down-shifted plasma lines!+=2� and�!�=2�, the Doppler frequency
between the plasma lines(!+ + !�)=2�, the temperature, or intensity, of the
plasma linesTp+ andTp� and the frequency width of the plasma linesÆfp+ andÆfp�.

Note the difference in term of fitted data between the alternating code data of
Figure 3.4 and the long pulse data of Figure 3.2. The long pulse experiment pro-
vides one data point for each dump while the alternating codetechnique provides
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several points for each dump.

3.4 Comparison data — model

Plasma line temperature

The temperature plotted in Figures 3.1 and 3.3 are expressedin term of the an-
tenna temperature while in Figures 3.2 and 3.4 the temperatures are plasma line
temperature. They have been converted in order to be compared with the modelled
intensity also expressed in temperature. The radar equation is used to convert the
temperature.

The radar equation for the plasma line observed at the Doppler frequency!p
with an antenna temperatureT pA is writtenkbT pABw = PTr2 �p 
�2 A(!0 + !p); (3.3)

where�p = r2e ne2�2 TpTe is the plasma line cross section derived from Eq. (1.27) in
Chapter 1.Bw is the bandwidth of the receiver,PT the transmitted power,r the
distance to the volume probed,
 the light speed,� the length of the transmitted
pulse andA(!0 + !p) is the frequency-dependent effective antenna area at the
received frequency!0 + !p. Note that�p expressed as a function of the plasma
line temperatureTp does not depend on the electron densityne.

In the same way, the radar equation for the ion line is writtenkbT iaBw = PTr2 �i 
�2 A(!0); (3.4)

where�i = r2e ne(1+�2) �4(1+�2+�2Te=Ti) is the ion line cross section derived from
Eq. (1.25) in Chapter 1.A(!0) is the frequency-dependent effective antenna area
at the received frequency (which is the same as the transmitted frequency for the
ion line).

We define the radar system constant asCs = r2eA(!0)
=2. We correct this con-
stant so that the electron density given by the plasma line frequency corresponds
to the electron density given by the ion line. We call this calibrated constantC 0s.
This is commonly done when one has a way to calibrate absolutely the electron
density, as for instance the plasma line frequency given by aplasma line experi-
ment or foF2 derived from ionosonde data.

In GUISDAP the quantityK(r) = PTr2 C0skbBw � is calculated for each gate. The
plasma line temperature is then given by (in SI units)kbTp = T paKG(!r) 2e2�0k2 ; (3.5)



52 Data analysis

whereG(!r) = A(!0 + !r)=A(!0) is the relative antenna gain as a function of
the frequency which is known by measurement of radio source.

The plasma line temperature of Eq. (3.5) can then be comparedwith the mod-
elled plasma line temperature using the model of Chapter 1.

Electron Doppler velocity and plasma frequency

The Doppler frequency!+ and!� of the up- and down-shifted plasma lines have
been estimated by the plasma line analysis. They are the realpart of the solutions
of the dispersion relation described by Eq. (1.30). Eliminating!e andve between
these two equations and replacingZ by the model of the Section 1.5, the Doppler
velocity ue of the ambientelectron population is the solution of the following
equation (Guio and Lilensten, 1998)k2+ �(1� �) ReZ�vea �v�� � ueve �+ �ReZ�ves �v��ve �� = (3.6)k2� �(1� �) ReZ�vea �v�+ � ueve � + �ReZ�ves �v�+ve �� ; (3.7)

where the drift velocityue appears only in the terms relative to the ambient compo-
nentZ�vea. The dimensionless number� denotes the percentage of supra-thermal
electrons.

Once the Doppler velocityue is found, the plasma frequency!e is given by!e = k�ves�(1��) ReZ�vea �v�� � ueve �� �ReZ�ves �v��ve � ; (3.8)

either for the down-going wave (v�+,k+) or the up-going wave (v��, k�).
This is the method described in Guio and Lilensten (1998) which has been

used on EISCAT VHF data collected with theECHO-D-V experiment of Chapter 2.



Chapter 4

Spitzer theory

"Jeg har nu vandret ganske godt omkring i mine dager og
jeg har blit dum og avblomstret. Men jeg har ikke den per-
verse gammelmandstro at jeg har blit visere end jeg var.
Og jeg håper at jeg heller aldrig blir vis. Det er tegnet på
avfældighet. Når jeg takker Gud for livet så sker det ikke i
kraft av en større modenhet som har kommet med alderen,
men fordi jeg altid har hat glede av å leve. Alder skjænker
ingen modenhet, alder den skjænker intet andet end alder-
dom."

Knut Hamsun,En vandrer spiller med sordin, 1909.

4.1 Introduction

In a non-homogeneous plasma, such as the ionospheric plasma, the distribution
function of particles deviates from the Maxwellian. Atlow energy and for afully
ionised plasma consisting of electrons and one ion species,in a highly collisional
regime, i.e. in a regime where the velocity distribution does notdeviatedramati-
cally from a Maxwellian (Gombosi and Rasmussen, 1991), and in the absence of
a magnetic field, the electron distribution function can be approximated by the so-
called Spitzer distribution function described in Cohenet al. (1950); Spitzer and
Härm (1953); Spitzer (1962). Cohenet al.(1950) calculated the time-independent
electron distribution function which results from the presence of aweakelectric
field whereas Spitzer and Härm (1953) combined the effects ofboth a weak elec-
tric field and amoderatetemperature gradient. Their solution is based on a per-
turbation analysis of a Fokker-Planck equation linearisedaround a Maxwellian.
Contrary to most existing works, the kinetic equation is nottreated by any expan-
sion method, but is solved numerically to yield the electrondistribution function.
This feature is very important since we are interested in calculating theP �andZ�
integrals of the distribution function described in Chapter 1.

4.2 The Spitzer function

The velocity distribution function is expanded about a local Maxwellian as a
power series in theKnudsen number� = �=L which represents the ratio of the mi-
croscopic length scale� to the macroscopic length scaleL associated to a source
of inhomogeneity in the plasma. In the Spitzer theory, only the first-order term in�
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is kept which is known as the principle oflocal action(Woods, 1993). This restric-
tion to distributions deviating weakly from the Maxwellianimplies that the elec-
tron mean free path�e (the microscopic length scale�) should be much smaller
than the different macroscopic scale lengthsL considered1=r logTe, 1=r log pe
and kbTe=eE (Ljepojevic and McNeice, 1989). Since� is an increasing func-
tion of the electron velocity (the collision frequency of anelectron is decreasing
with increasing velocity� � v�3), the Spitzer theory will always break down at
high electron velocity. Nevertheless for weak electric fields and moderate tem-
perature gradients this breakdown does not significantly compromise the ability
of the Spitzer solution to describe the transport properties of the plasma as in the
typical F-region plasma (Guioet al., 1998). However, this is no longer the case
when� reaches values larger than2 � 10�2 (Gray and Kilkenny, 1980; Ljepojevic
and McNeice, 1989). An accurate model of the high energy particles part is then
needed to describe how electrons with sufficient energy movefreely between re-
gions with different temperatures and lead to strong distortion of the distribution
function in the supra-thermal part (Gurevitch and Istomin,1979; Lucianiet al.,
1983; Ljepojevic and McNeice, 1989; Ljepojevic and Burgess, 1990; Ljepojevic,
1990; Mishin and Hagfors, 1994). This effect is often calledthe thermal runaway.

We shall briefly outline the derivation and assumptions behind the Spitzer so-
lution. The approach used is based on the successive approximation method of
Chapman-Enskog (Chapman and Cowling, 1970). This procedure is valid under
the assumptions that the distribution function exhibits slow temporal variations
compared to the collision time scale of the electrons and weak spatial gradients
compared to the electron mean free path, and is subject to weak electromagnetic
fields. The distribution function is expanded in powers of� and is writtenf(v) = f0(v) + �f1(v) + �2f2(v) + � � � ; (4.1)

where successive terms represent increasingly smaller corrections. The zeroth-
order termf0 is taken to be an isotropic Maxwellian of temperatureTe and thermal
velocityve = (kbTe=me)1=2. The scheme adopted by Spitzer to calculate the first-
order termf1 assumes a cylindrically symmetry along the direction of thenon-
homogeneity and is written as a perturbationX from the zeroth-order Maxwellianf1(v; �) = f0(v)X(v)�: (4.2)

The perturbationX is a function of the electron velocity determined by substi-
tuting for thef in the Boltzmann equation. In the Boltzmann equation only the
long rangeelectron-electron and electron-ion interactions have been taken into
account by two linearised Fokker-Planck collision operators. Two second-order
linear differential equations, one for the perturbation functionXE due to an elec-
tric field, and the other one for the perturbation functionXT due to the temperature
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gradient are obtained. These equations are Eq. (40) of Spitzer and Härm (1953)
and Eqs. (6) – (13) of Cohenet al. (1950) with the initial conditionsXE(0) = 0,XT (0) = 0 and the two boundary conditions Eqs. (14) – (15) of Spitzer and Härm
(1953) to ensure the conservation of momentum.

The Spitzer distribution function which takes into accountboth the effect of
an electric field and a temperature gradient is then writtenf(v; �) = f0(v) "1 + Z� �EXE  vvep2!+ �TXT  vvep2!!# ; (4.3)

wheref0 is the Maxwellianf0(v) = ne=(2�)3=2=v3e exp(�(v=ve)2=2) and�E and�T are the Knudsen numbers associated to the electric fieldE and the temperature
gradient respectively �E = �e  eEkbTe � rpepe ! ; (4.4)�T = 2�erTeTe : (4.5)pe = neTe is the electron pressure andZ is the charge number of the ion species.

We have recalculated the perturbations functionsXE andXT (Guio, 1998)
using the shooting method. The shooting method is a numerical method which
consists in successive attempts to integrate the equation from the first boundary
point v = 0 with the conditionX(E=T )(0) = 0 up to the other boundaryxmax =vmax=ve using a fifth-order Runge-Kutta step ordinary differentialequation (ODE)
solver, until the boundary condition (the Eq. (14) forXE and the Eq. (15) forXT
of Spitzer and Härm (1953)) is fulfilled at a satisfactory precision (Presset al.,
1992). The upper boundary with valuevmax should not be too large compared to
the thermal velocityve since we are looking for a solution for low energy where
the representation is valid.

We have calculated the perturbation functionsXE andXT for different values
of the upper boundary of integrationxmax. Figure 4.1 shows the functionsXE andXT for these different values of the upper boundary condition.Note the diverging
behaviour of the perturbation function for large values of the upper boundary con-
dition which confirms that these perturbation functions areinappropriate to model
the high energy electrons.

In the original theory, the factor�e is the mean free path of a thermal electron
due to electron-electron collisions and electron-ion collisions. In order to correct
for the partially ionised ionospheric plasma, we correct the electron mean free
path to include also an electron-neutral collision term (Banks, 1966). The electron
mean free path is then replaced by1�e = 1�ee + 1�ei + 1�en ; (4.6)
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Figure 4.1: TheXE andXT functions for different values of the upper boundary
of integrationxmax = v=vep2e = 2:8; 3:2; 3:6 and4:0, and for an ion charge
numberZ=1. TheXE ’s are shifted by�20 with each other, theXT ’s are shifted
by+10 with each other, the reference curves (i.e. not shifted) arefor xmax = 2:8
where�en is the mean free path of a thermal electron due to electron-neutral col-
lisions. The effect of the electron-neutral collisions is to reduce the electron mean
free path, and in the limit of low neutral particle densitieswe recover the electron
mean free path value of a fully ionised plasma (Banks, 1966).It is important to
note that the differential equations for the perturbation functionsXE andXT have
not been modified, thus the departure of the velocity distribution function from
the Maxwellian is still caused by Coulomb interactions through the two Fokker-
Planck collision operators for distant interactions.

4.3 The transport coefficients

The classical theory of transport is characterised by a set of closure relations ex-
pressing the dissipative fluxes, e.g. the current densityJ e and the heat fluxqe
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as linear combinations of the thermodynamic forces, e.g. the electric fieldE,
the gradient of pressurerpe and the temperature gradientrTe, with constant
transport coefficients. These relations are called the transport equations (Balescu,
1988). Taking the first- and third-order moments of the electron velocity distri-
bution, one obtains the electron current densityJ e = �eneue, where the mean
velocityue is defined as in Eq. (5.27) and the electron heat flowqe is also defined
as in Eq. (5.33) J e = �e  E + kbenerpe!+ �erTe; (4.7)qe = ��e  E + kbenerpe!� �erTe; (4.8)

where�e is the electrical conductivity,�e is the current flow conductivity due to
a temperature gradient at constant electron density,�e is the heat flow conductiv-
ity due to an electric field at constant electron temperatureand�e is the thermal
conductivity.

These transport coefficients are defined in terms of the first-and third-order
velocity moments of the perturbation functionsXE andXT . 
E, ÆE, 
T andÆT are the normalised transport coefficients relative to a Lorentzian gas (Spitzer
and Härm, 1953; Shkarofsky, 1961). A Lorentzian gas is a gas where electron-
electron interactions are neglected, the protons are assumed to be at rest and the
interactions electron-protons are described by a linearised Fokker-Planck colli-
sion operator. Eqs. (4.9) – (4.12) show the relations between these normalised
coefficients, the velocity moments of the perturbation functionsI3(XE), I5(XE),I3(XT ), I5(XT ) and the transport coefficients�e, �e, �e and�e.
E = 13I3(XE) = p�meve4p2Ze2ne�e�e; (4.9)ÆE = 112I5(XE) = p�meve6p2Zenekb�e�e; (4.10)
T = �49I3(XT ) = 3p�ve16p2Zene�e �e; (4.11)ÆT = � 115I5(XT ) = p�ve40p2Znekb�e�e; (4.12)

where In(XE=T ) = Z xmax0 yn�2XE=T (y) exp(�y2)y2dy (4.13)

is the(n�2)th-order moment of the distribution functionXE=T (y) exp(�y2).
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We have recalculated these transport coefficients using theperturbation func-
tions of Figure 4.1. Table 4.1 gives the transport coefficients for different values ofxmax and a comparison with the results given by Spitzer and Härm (1953). With
the exception of the values forxmax = 2:8 which deviate by about10%, the other
values of the transport coefficients are in good agreement (about1%) with the val-
ues calculated by Spitzer (xmax = 3:2). The deviation forxmax = 2:8 might be
the result of the low boundary of integration leading to an inaccurate description
of the perturbation functions.xmax 2.8 3.2 Spitzer 3.6 4.0
E 0.5740 0.5811 0.5816 0.5826 0.5832
T 0.2507 0.2677 0.2727 0.2715 0.2718ÆE 0.4436 0.4622 0.4652 0.4672 0.4698ÆT 0.1877 0.2149 0.2252 0.2228 0.2237

Table 4.1: The normalised transport coefficients as defined in Eqs. (4.9) – (4.12)
calculated for different values ofxmax and compared with the ones given by
Spitzer (xmax=3:2)

In the ionosphere, a so-called polarisation electric fieldEs builds up such
that the thermal ions and electrons are constrained to driftas a single gas, which
maintains bulk charge neutrality.Es is determined by the currentJ e and it exists
whenever there is a gradient in the electron density or in thetemperature (Ljepo-
jevic and McNeice, 1989; Minet al., 1993). It is given byEs = J e�e + rpeene � �e�erTe: (4.14)

If the field-aligned current is attributed to the flow of the supra-thermal electrons
only, then theJ e=�e is equal to zero and we get the following relation between
the electric fieldEs and the gradient termsEs = rpeene � �e�erTe: (4.15)

Using Eq. (4.4) – (4.12), it leads to the following relationship between the two
Knudsen numbers�E and�T 4�E
E + 3�T
T = 0: (4.16)

In this case, the conductivity�e is reduced by a factor1� 3ÆE
T=(5ÆT
E)qe = ��e(1� 3ÆE
T5ÆT
E )rTe; (4.17)
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and the mean drift velocityuE due to the electric field is exactly the opposite of
the thermal drift velocityuT due to the gradient of temperatureuE = �uT = 8p2�ve
E�E: (4.18)

In the case of a fully ionised gas and taking the Coulomb logarithm ln� to be
equal to 15, the heat flow of Eq. (4.17) reduces to (Banks, 1966)qe = �7:7� 105T 52e rTe: [eV 
m�2 s�1℄ (4.19)

In addition to the classic transport coefficients, we have calculated the heat
flow for parallel and perpendicular energy (Guio, 1998)qke = 65qe; q?e = 25qe; (4.20)

that we needed to estimate for the heat flow approximation of Eq. (1.34) in Chap-
ter 1.

4.4 Comparison with the 2-T Maxwellian

In Guio (1998), we have introduced a simple model for the particle velocity dis-
tribution in presence of a temperature gradient, the 2-T Maxwellian.

For the electrons, the 2-T Maxwellian, denotedfTe� , is defined as two half-
Maxwellians with temperatureTe+ andTe� over the two half-spaces where re-
spectivelyvk < 0 andvk � 0 and a Maxwellian with temperatureTe? over the
perpendicular velocity spacev?. The two half-Maxwellians alongvk are joined
continuously atvk = 0 and are normalised such that the integral over the velocity
space is equal to the electron densityne. Thus the 2-T Maxwellian can be seen
as a modified bi-Maxwellian with a temperature inhomogeneity along the parallel
velocityvk. The 2-T Maxwellian is writtenfTe�(vk; v?) = 8>>>><>>>>: ne(2�) 32 1vekv2e? exp�� v2k2v2e� + v2?2v2e?�; vk � 0ne(2�) 32 1vekv2e? exp�� v2k2v2e+ + v2?2v2e?�; vk < 0 (4.21)

wherev2e? = Te?=me is the square of the thermal velocity of the electrons along
the perpendicular direction,v2e� = Te�=me are the squares of the mean velocities
in the parallel direction andvek = (ve+ + ve�)=2 is the normalisation constant
such that the two half-Maxwellians are continuous atvk = 0.
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This velocity distribution function is both inhomogeneousand anisotropic and
sketches the electron velocity distribution at the particular point of spacer = 0
between two regions with different temperature. This modelmimics the presence
of a temperature gradient where the hot plasma of temperature Te+ is diffusing
toward the region of cold plasma of temperatureTe� and vice-versa (Guio, 1998).

As explained in Guio (1998), it is possible to findTe+ andTe� so that the lead-
ing term of the heat flow equals the heat flow of the Spitzer theory. In particular,
we want to findTe+ andTe� so that the heat flow of the 2-T Maxwellian equals
the heat flow of Eq. (4.17), i.e. with the conditionJe = 0, or ue = 0. In order to
getue = 0 for the 2-T Maxwellian, we modifyfTe�(vk; v?) in fTe�(vk � uE; v?)
whereuE is a mean drift velocity introduced in the 2-T Maxwellian so thatue = 0,
i.e. (Guio, 1998) uE = �hvik = 2p2� v2e+ � v2e�ve+ + ve� : (4.22)uE can be seen as the mean drift velocity due to an hypothetical electric field that
guarantees the conditionue = 0.

Figure 4.2 presents a comparison of the velocity moments given by the Spitzer
theory and the simple model of the 2-T Maxwellian for an altitude profile with
typical ionospheric parameters.

The upper right panel shows the mean drift velocityuE to subtract in the 2-T
Maxwellian, so that the mean drift velocityue = 0. This mean drift velocity is of
the same order as the mean drift velocityuE due to the polarisation electric field
in the Spitzer theory. At the same time, the values of the two temperaturesTe+
andTe� are such that the temperature and the heat flow of the 2-T Maxwellian are
the same as the temperature of the Spitzer function and the heat flow of Eq. (4.17).
In addition the two lowest panels presents the parameters that describes the non-
homogeneity. In the left panel, the Knudsen numbers�T and �E of the Spitzer
theory are presented. In the right panel, we have calculatedthe dimensionless
inhomogeneity parameter(Te+ � Te�)=Te of the 2-T Maxwellian. Note that the
behaviour of this parameter is quite similar and of the same order as�T .

This justify that the 2-T Maxwellian is able to reproduce to a good approxi-
mation the behaviour of the Spitzer function.

It can also be noted how the approximated formula for the heatflow in a fully
ionised plasma given by Eq. (4.19) (dashedline in the right and middle panel in
Figure 4.2) overestimates the value for the heat flow (solid line).
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Chapter 5

Electron transport theory

"Um soli lyser på himlen blanke,
no ser ho deg! Det er all min tanke;
um dagen dovnar og skuming fell:
skal tru han tenkjer på meg i kveld?"

Arne Garborg, Elsk,Haugtussa.

5.1 Introduction

In the ionosphere, primary photoelectrons or precipitating electrons move along
the magnetic field, produce heat and provoke processes such as excitation and
ionisation. In a photoionisation process, the emitted electron is called theprimary
electron, and often has enough energy to produce several ionisations. The newly
emitted electrons have lower energy than the primary and arecalledsecondary
electrons. In a collisional ionisation process, the incident electron is mostly scat-
tered forward and is called theprimary electron, while the extracted electron may
be scattered in any direction and is called thesecondary electron.

The approaches to model this relationship are based on electron transport the-
ory which yields the electron flux as a function of altitude, energy and pitch-angle.
Transport calculations can be carried out using Monte-Carlo simulations (Berger
et al., 1974) or by solving a transport equation numerically. A review of these
different methods is found in Cicerone (1974).

Several numerical methods have been developed to solve numerically the trans-
port equation (Banks and Nagy, 1970; Bankset al., 1974; Stricklandet al., 1976).
The transport code calculates the energy flux of the electrons by solving the verti-
cal or field-aligned kinetic transport equation. This conservation equation simply
expresses the fact that the variation of the steady-state electron flux with the scat-
tering depth for a given altitude, energy and pitch-angle, is the difference between
whatever leaves that energy, altitude or angle slab and whatever enters it. The
variations in energy or angle due to collisions are described through differential
cross sections. An additional energy loss arises from the heating of the ambient
thermal electron gas due to hot-electrons to thermal-electrons interactions. This
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loss process is assumed to be a continuous energy loss of the hot electrons to the
thermal electrons, without any deflection during the process.

Recognising the formal equivalence of the electron transport equation to the
radiative transfer equation (Chandrasekhar, 1960; Stamnes, 1977, 1980) adapted
the discrete ordinate method developed for solving the radiative transfer equation
to solve the electron transport equation. The transport code that we have been
using implements this numerical method and is described in numerous papers in
the literature (Stamnes and Rees, 1983; Stamnes, 1985; Lummerzheim, 1987).

5.2 Continuity equation — Transport equation

5.2.1 Continuity equation

The temporal and spatial evolution of a dilute system of particles interacting
throughbinary collisions may be described by the Boltzmann equation, if we
assume that the velocities of two particles prior to collision are uncorrelated.
The electron continuity equation for the electron velocitydistribution functionf(r; v; t) (in units 
m�6 s3) takes the following form (Stamnes and Rees, 1983)�f�t +rr � (vf) +rv �  Fmef! =  ÆfÆt !
oll+  ÆfÆt !prod+  ÆfÆt !loss ; (5.1)

wherev is the velocity,r the position,t the time,F the external forces as well
as a frictional force between the supra-thermal and the ambient electrons, andme
the electron mass. Forconservativesystems (i.e. such thatrv �F = 0), Eq. (5.1)
reduces to the Boltzmann equation.

The external forcesF are electro-magnetic forces. In theabsenceof macro-
scopic electric fields and in homogeneous magnetic fields, this term reduces to
the forces due to microscopic electro-magnetic fields that result from an inho-
mogeneous charged environment. It is then common to assume that the energy
loss of supra-thermal electrons to ambient electrons is a frictional or continuous
dissipative force acting on the streaming fast electrons.

The terms on the right hand side (in units
m�6 s2) describe the change of the
distribution function due to binary collisions through different kinds of processes
such as Coulomb collisions, production by excitation (sometimes referred to as
source) and loss by recombination (sometimes referred to assink).
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5.2.2 Velocity distribution function — Angular flux

In order to derive the transport equation one has to transform the velocity variablev to kinetic energyE = 12mev2 and unity direction vector
 = v=vf(r; v; t)d3v = vmef(r; E;
; t)dEd2
; [ 
m�3℄ (5.2)

Then the intensity (or flux)I per unit area, unit time, unit energy and unit
direction is defined by multiplying the velocity distributionf by vI(r; E;
; t)dEd2
 = vf(r; v;
; t)v2dvd2
; [ 
m�2 s�1℄ (5.3)

or if we express both the electron fluxI and the electron velocity distribution
functionf with the same set of coordinatesr, E and
I(r; E;
; t) = v2mef(r; E;
; t); [ 
m�2 s�1 eV�1 sr�1℄: (5.4)

Figures 5.1 and 5.2 show the electron fluxI and the electron velocity distribu-
tion functionf calculated by the numerical code described hereafter at thealtitude
of 249 km over Tromsø in the summer at noon.
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5.2.3 Transport equation

In order to obtain a linear electron transport equation a number of approximations
can be made to the non-linear continuity equation of Eq. (5.1). The time used
by the supra-thermal electrons to penetrate the ionosphereis short compared to
changes in the host medium. Thus steady state can be assumed allowing to neglect
the explicit time dependence of the velocity distribution function, i.e.�f=�t = 0.

The gyro-frequency at ionospheric heights is much larger than the collision
frequency, we can thus assume the motion of the particles to be their guiding cen-
tre. As a consequence the average motion is symmetric with respect to the azimuth
and one-dimensional along the direction of the magnetic field (Lummerzheim,
1987). With this approximation,I andf are functions of the paths along the mag-
netic field, the cosine� of the pitch-angle� to the magnetic field and the energyE. In that case, the second termrr � (vf) can be rewritten(�f=�s)(ds=dt) +(�f=��)(d�=dt) whereds=dt = �v andd�=dt = (��=�s)(ds=dt). The term��=�s is calculated using the conservation of the first adiabatic invariant(1 ��2)=B = 
onstant (i.e. the magnetic moment).

The third termrv � (F f=me) is transformed using the continuous slowing
down approximation that assumes that the ambient electronsexert a "frictional"
force on the fast electrons (Galand, 1996).medvdt = �neL(E)vv (5.5)

wherene is the ambient electron density andL(E) is the stopping cross section in
the approximation of a continuous energy loss process.

Replacing the function distributionf by the intensityI in the electron conti-
nuity equation yields the transport equation��I�s � 1� �22B �B�s �I�� �ne�L(E)I�E = 1v ÆIÆt!
oll+ 1v ÆIÆt!prod+ 1v ÆIÆt!loss(5.6)

The terms on the right hand side of the transport equation Eq.(5.6) represent
the change of momentum in the electron intensity.

The charged particle collision processes term includes electron-electron col-
lisions, electron-ion collisions as well as momentum transfer in electron-neutral
collision.

The electron production processes term includes photo-electron production,
production of slow, scattered and ejected electrons in ionising collisions of fast
electrons, rotational excitation and vibrational excitation.

The electron loss processes term includes the fine-structure transitions in atomic
oxygen, rotational de-excitation, vibrational de-excitation, electronic de-excitation
and recombination.



5.2 Continuity equation — Transport equation 69

The Coulomb collision term is dropped on the right hand side and is included
through the third term on the left hand side which means that Coulomb collisions
with the ambient electrons lead to energy loss but no deflections.

5.2.4 Cross sections

To describe the collision processes, the concept of cross section has to be intro-
duced. When an electron passes through the thermosphere with velocityv, the
probability of a particular type of collision process� (i.e. ionisation, excitation of
a particular state, etc.) to take place within the unit path length is given bynl�l(�; v) (5.7)

wherenl is the number density of the target particles of the typel and�l(�; v) is
the differential cross section of the process. The frequency at which an electron
with velocityv induces the process� is thus given byvnl�l(�; v) (5.8)

When a collision occurs, it generally consists in the loss ofthe particle from
the point(r; v) and the production of the particle at another point(r; v0) of the
phase space. The lossJ of particles from the phase space volumed3rd3v is thennl�l(�; v)f(r; v). Assuming, in addition, that the collision is independent of the
direction of the incident particle —�l(�; v) is the effective cross section — the
loss as a function of the intensityI isJ(r; E; �) = �nl(r)�l(�;E)I(r; E; �) (5.9)

For the production, one uses the phase functionp(v ! v0) which describes the
probability of creating secondary particles with velocityv0 from an incident par-
ticle of velocity v. The number of secondary particles created is described by
(r; v), where

R 
(r; v)d3v = 1 for an excitation or an elastic collision and2 for
ionisation. The productionQ, as a function of the intensityI, is writtenQ(r; E; �) = ZZ nl(r)�l(�;E 0; �0)p(E 0; �0!E; �)
(r; E; �)�I(r; E 0; �0)dE 0d�0 (5.10)

and the collision kernelnl(r)�l(�;E 0; �0)p(E 0; �0!E; �)
(r; E; �) is simplified
depending on the type of process involved.

Thus, the right hand side of the transport equation (5.6) canbe calculated and
takes the form��I�s � 1� �22B �B�s �I�� � ne�L(E)I�E =�Xj nj�totj I +Xj;� Qj;� +Qphoto (5.11)
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where�totj is the total cross section for particlej, Qj;� are the sources of collision
process andQphoto is the source of photoionisation.

To solve this equation, the cross sections, phase functions, loss functions, in-
tensity flux of the solar radiation and neutral atmosphere need to be specified.

The paths of a particle is a straight line through the ionosphere and the angle
between the horizontal plane and this path is� (the altitudez is given byz =s sin�). We introduce the scattering depth� defined byd� = �Xj  nj(z)�totj (E) + ne(z)L(E)�E ! dz (5.12)

and the transport equation can be written�sin� �I(�; E; �)�� = I(�; E; �)� !(�; E)2 Z p(�0!�)I(�; E; �0)d�0+Q(�; E; �; I): (5.13)

The elastic scattering albedo! is defined by!(z; E) = Pj nj(z)�elj (E)nj(z)�totj (E) + ne(z)L(E)=�E : (5.14)

The source termQn = Q(�; En; �; I) at energyEn is given byQn = Qphoto(�; En)dzd� +NXi=n+1RinI(�; Ei)�Ei + ne(�)L(En)�En I(�; En+1)dzd� : (5.15)

whereRin is called the energy redistribution function.

5.2.5 Discrete ordinate method

The definitions of the scattering depth� and the single scattering albedo! make
these quantities formally equivalent to their radiative counterparts. In the discrete
ordinate approximation, the transport equation which is anintegro-differential
equation, is replaced by a system of2n coupled differential equations. In these
equationsI is sampled at2n Gaussian quadrature points in� and the phase func-
tionp is expanded into Legendre polynomials. The source integralof the transport
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equation is replaced by a summation using the double-Gauss quadrature formula.
The discrete ordinate approximation is written�isin� �Ii(�; E; �i)�� = Ii(�; E; �i)�!(�; E)2 nXj=�nj 6=0 wjp(�j; �i)Ij +Q(�; E; �i; Ii); i = �1; : : : ;�n (5.16)

where�i andwi are respectively the quadrature points and weights. The points
and weights satisfy in the case of the Gauss quadrature��i = ��i andw�j = wj.

We use a double-Gauss quadrature rule where the Gaussian formula is applied
separately to the half-ranges�1 < � < 0 and0 < � < 1. The main advantage
of this double-Gauss scheme is that the quadrature points (in even orders) are
distributed symmetrically aroundj�j = :5 and clustered both towardj�j = 1 and� = 0, whereas in the Gaussian scheme for the complete range,�1 < � < 1 they
are clustered toward��1 (Stamneset al., 1988). The clustering toward� = 0will
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give superior results near the boundaries where the intensity varies rapidly around� = 0. A half-range scheme is also preferred since the intensity is discontinuous
at the boundaries. Another advantage is that upward and downward quantities
are obtained immediately without further approximations.Figure 5.3 shows the
double-Gauss quadrature weightswi as a function of the points�i for a 32-points
quadrature.

Assuming the vertical axis positive upward, then the pitch-angle in the range[�=2, �℄ is downward and the pitch-angle in the range[0, �=2℄ is upward, the
downward and upward hemispherical net intensities or net fluxes are defined by��net(z; E) = 2� Z �10 �I(z; E; �)d�; (5.17)�+net(z; E) = 2� Z 10 �I(z; E; �)d�: (5.18)

In the discrete ordinate method, the two fluxes are estimatedby means of the
described double-Gauss quadrature��(z; E) ' �2� �1Xi=�nwi�iIi(z; E; �i); (5.19)�+(z; E) ' 2� nXi=1wi�iIi(z; E; �i): (5.20)

5.3 Electron velocity distribution moments

Angular moments

The hemispherical net flux can be seen as the first-order angular moment of the
intensityI (Stricklandet al., 1976). Let us define thenth-order angular moment�n of the intensityI by�n(z; E) = 2� Z 1�1 �nI(z; E; �)d�; (5.21)

which can be approximated with the double-Gauss quadratureby�n(z; E) ' 2� nXj=�nj 6=0 wi�nj I(z; E; �j): (5.22)

In the next subsections, the altitude variable of the functions is not written explic-
itly but is implied. We have calculated the moments of the supra-thermal distribu-
tion using the definition of the moments given by Balescu (1988) and expressed
the moments in terms of the angular moments defined in Eq. (5.22).
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Supra-thermal electron density

The electron densityns is the zeroth-order moment of the electron velocity distri-
bution function. ns = Z fs(v)d3v; [
m�3℄ (5.23)

Let us replace the electron velocity distributionfs with the intensityI and identify
the zeroth-order angular moment�0. ns is then expressedns = rme2 Z �0(E)pE dE; (5.24)

or by integrating overv ns = me Z �0(v)dv; (5.25)

or if we define the dimensionless variablex = v=ve, whereve is the thermal
velocity of the electrons ns = meve Z�0(x)dx: (5.26)

Supra-thermal electron average velocity

The electron average velocityus is related to the first-order moment of the elec-
tron velocity distribution function throughnsus = Z vfs(v)d3v; [
m�2 s�1℄ (5.27)

The mean velocityus is related to the flux�s (in units 
m�2 s�1) through the
relation�s = nsus.

Let us replace the electron velocity distributionfs with the intensityI. Due
to the azimuthal symmetryus is a vector along the magnetic field with magnitudeus. The magnitudeus can be expressed as a function of the first-order angular
moment�1us = Z �1(E)dE = me Z v�1(v)dv = mev2e Z x�1(x)dx: (5.28)
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Supra-thermal electron temperature

The electron temperatureTs (in units K) is related to the second-order centred
moment of the electron velocity distribution function through32nskbTs = 12meZ jv � usj2fs(v)d3v; [eV 
m�3℄ (5.29)

Let us replace the electron velocity distributionfs with the intensityI. The tem-
peratureTs is expressed as a function of the zeroth-order angular moment �032nskbTs = p2me2 Z pE�0(E)dE � 12nsmeu2s (5.30)= m2e2 Z v2�0(v)dv � 12nsmeu2s (5.31)= m2e2 v3e Z x2�0(x)dx� 12nsmeu2s: (5.32)

Supra-thermal electron heat flux

The electron heat fluxqs is related to the third-order centred moment of the elec-
tron velocity distribution function throughqs = 12me Z jv � usj2(v � us)fs(v)d3v; [eV 
m�2 s�1℄ (5.33)

Let us replace the electron velocity distributionfs with the intensityI. Due to the
azimuthal symmetryqs is a vector along the magnetic field with magnitudeqs. qs
can be expressed as a function of the first- and second-order angular moments�1
and�2 qs = Z E�1(E)dE �p2meus Z pE�2(E)dE + 12nsmeu3s (5.34)= 12m2e Z v3�1(v)dv �m2eus Z v2�2(v)dv + 12nsmeu3s (5.35)= 12m2ev4e Z x3�1(x)dx�m2eusv4e Z x2�2(x)dx + 12nsmeu3s: (5.36)

Figure 5.4 presents the moments from the electron supra-thermal distribution
function before truncation and after the truncation with the strategy described in
Section 1.5 and using the expressions for the moments that wehave calculated
below.

The difference between the moments calculated before truncation and after
truncation is rather important, especially we note that heat flow changes of sign
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after350 km. Therefore, special care has to be taken when truncating thesupra-
thermal distribution function. The truncation has to be done at the correct energy
in order to approximate correctly theP �andZ� functions.
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Figure 5.4: Calculation of the supra-thermal moments for the distribution function
of the electrons calculated by the numerical transport codeand the truncated one
with the strategy described in Section 1.5 from110 km to 400 km and for the
8-streams run of Figure 5.2



Conclusion

While the study of the intensity of the electron plasma line has given valuable re-
sults on the enhancement mechanisms of the line for sometime, work on the exact
localisation of the plasma line in the incoherent scatter spectrum has progressed
rather slowly, in part because of coarse time or frequency resolution problems as
well as coarse spatial resolution.

This work has been motivated by the first measurement at EISCAT of the
plasma line in a continued manner. We have concentrated on two part:

☞ The design of a new plasma line experiment for the EISCAT radar making
use of the alternating code technique to improve the spatialresolution.

☞ The development of an improved model for the intensity and the Doppler
frequency shift of the plasma lines in the direction parallel to the magnetic
field.

The benefit of the alternating code technique is to improve drastically the spa-
tial resolution of the measurement. Our experiment has beenrun successfully with
an altitude resolution of3 km as opposed to40 –50 km obtained with the conven-
tional technique of the long pulse. It has allowed, for the first time at EISCAT,
the simultaneous measurement of the plasma line at several altitudes, providing
the plasma line parameters, i.e. the intensity and Doppler frequency shift, for an
altitude profile with a temporal resolution of10 s.

In order to refine the model of the intensity and Doppler frequency shift of
the plasma line, we have developed a numerical code that calculates the dielectric
function of the medium and the reduced one-dimensional velocity distribution
along the magnetic field for any two-dimensional velocity distribution function.
Because it is very difficult to construct a self-consistent model of the velocity
distribution function encompassing all of the relevant energy range, we have made
anad hocmodel by separating the distribution into two parts: the thermal and the
supra-thermal population. The thermal population is represented by the Spitzer
function that takes into account the effect of an electric field and/or a temperature
gradient. The supra-thermal population is derived from theangular energy flux of
the supra-thermal electrons calculated by a numerical electron transport model.
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This project has contributed to a better understanding of plasma line interpre-
tation in two ways:

☞ It is seen that the Doppler frequency of the plasma line is strongly depen-
dent on the frequency of operation of the radar. When using low frequency
radars, i.e. VHF radars, the position of the line is clearly influenced by the
supra-thermal population while for high frequency radars,i.e. UHF radars,
the deviation of the Doppler frequency from the theoreticalfrequency asso-
ciated to a Maxwellian gas is due to a departure of the distribution function
in the thermal part, particularly the anisotropy that develops in the presence
of a gradient of the electron temperature modifies substantially the disper-
sion relation.

☞ The effect of photo-ionisation ofN2 andO by the solar emission ofHeII
has been identified when we analysed a plasma line data set that we have
collected on the EISCAT VHF radar. The effect observed is a damping of the
intensity and a modification of the Doppler frequency of the plasma lines
around the phase energies of24:25 eV and26:25 eV.

However, it is important to point out the limits of our present model:

☞ Our calculations of the intensity and the Doppler frequencyshift are limited
to radar observations along the magnetic field.

☞ The Spitzer theory of a fully ionised plasma in the presence of a temperature
gradient has been adapted to a partially ionised plasma in a non-consistent
way. The effect of the collisions between the electrons and the neutral par-
ticles has been taken into account in the electron mean free path while the
collision operator has not been modified.

☞ The model of collisions used in the differential cross section to estimate
the incoherent scatter spectra is not the same as the one thatdescribes the
electron velocity distribution function.

Therefore, further works could be done. It would be interesting, for example,
to generalise the calculations of theP �andZ�functions in directions different than
parallel to the magnetic field. The evoked lack of consistency between the models
could be investigated. The problem of the connection of the thermal and the supra-
thermal component of the velocity distribution function isalso of interest. Finally,
more plasma line data with radars of different frequencies should be analysed to
verify further the fine structures of the supra-thermal distribution as well as verify
the effect on the Doppler frequency and therefore improve the kinetic model of
the thermal and supra-thermal electrons.
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Alors que l’étude de l’intensité de la raie de plasma a apporté des résultats intéres-
sants sur les mécanismes de l’augmentation de la raie depuisun certain temps, le
travail sur sa fréquence dans le spectre à diffusion incohérente a progressé plutôt
lentement, à cause de la pauvre résolution en fréquence et d’autres problèmes
expérimentaux.

Ce travail a été motivé par la première mesure à EISCAT de la raie de plasma
de manière continue. Nous nous sommes concentrés sur deux points :

☞ La conception d’une nouvelle expérience de raie de plasma pour le radar
EISCAT utilisant la technique du code alternatif dans le but d’améliorer la
résolution spatiale.

☞ Le développement d’une théorie améliorée de l’intensité etdu Doppler en
fréquence de la raie de plasma pour une visée le long du champ magnétique.

Le bénéfice de la technique du code alternatif est d’améliorer de manière sub-
stantielle la résolution spatiale des mesures. Notre expérience a été tournée avec
succès avec une résolution en altitude de3 km, à comparer à la résolution de40 –50 km obtenue avec la technique classique de l’impulsion longue.Cela a per-
mis, pour la première fois à EISCAT, de mesurer simultanément la raie de plasma
à plusieurs altitudes, procurant ainsi les paramètres de laraie de plasma, c’est à
dire l’intensité et le Doppler en fréquence, pour un profile en altitude avec une
résolution temporelle de10 s.

Pour raffiner le modèle de l’intensité et du Doppler en fréquence de la raie de
plasma, nous avons développé un code numérique qui calcule la fonction diélec-
trique du plasma ainsi que la distribution réduite le long duchamp magnétique
pour n’importe quelle distribution des vitesses à deux dimensions. Parce qu’il très
difficile de construire un modèle unique de la distribution des vitesses satisfaisant
toute les gammes d’énergie, nous avons construit un modèlead hocen scindant
la distribution des vitesses en deux parties: la populationthermique et la supra-
thermique. La population thermique est représentée par la fonction de Spitzer
qui tient compte de l’effet d’un champ électrique et/ou d’ungradient de tempéra-
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ture. La population supra-thermique est déduite du flux angulaire d’énergie cal-
culé grâce à un modèle numérique du transport des électrons.

Ce projet a contribué à une meilleure compréhension de l’interprétation de la
raie de plasma de deux façons :

☞ Il est montré que le Doppler en fréquence de la raie de plasma est fortement
dépendante de la fréquence de fonctionnement du radar. Avecun radar
basse fréquence de type VHF, la position de la raie de plasma est clairement
influencée par la population supra-thermique des électronsalors que pour un
radar haute fréquence de type UHF, la déviation du Doppler associé à une
classique Maxwellienne est due à la partie thermique de la distribution des
vitesses des électrons, en particulier l’anisotropie due àla présence d’un
gradient de température électronique modifie la relation dedispersion de
l’onde Langmuir.

☞ L’effet de la photo-ionisation deN2 etO par l’émission solaire provenant deHeII a été identifié quand nous avons analysé des données raie de plasma
que nous avons mesuré avec le radar VHF d’EISCAT. L’effet observé est
un amortissement de l’intensité ainsi qu’une modification du Doppler en
fréquence au voisinage de24:25 eV et 26:25 eV correspondant à l’énergie
de phase de l’onde Langmuir.

Cependant, il est important de noter les limites de notre modèle actuel :

☞ Nos calculs de l’intensité et du Doppler en fréquence sont limités à la direc-
tion parallèle au champ magnétique.

☞ La théorie de Spitzer d’un plasma complètement ionisé en présence d’un
gradient de température a été adaptée pour un plasma partiellement ionisé
de manière non consistante. En effet, les collisions des electrons avec les
particules neutres a été pris en compte dans le libre parcours moyen des
électrons alors que l’opérateur de collision n’a pas été modifié.

☞ Le modèle des collisions utilisé dans la section efficace différentielle pour
estimer le spectre à diffusion incohérente n’est pas le mêmeque celui utilisé
pour décrire la distribution des vitesses des électrons.

Par conséquent, de plus amples travaux sont envisageables.Il serait intéres-
sant, par exemple, de généraliser le calcul des fonctionsP � etZ� dans les direc-
tions autres que parallèle au champ magnétique. Le manque deconsistance évo-
qué entre les modèles de collisions utilisés pourrait aussiêtre approfondi. Le prob-
lème du raccord entre les composantes thermique et supra-thermique de la distri-
bution des vitesses des électrons est aussi d’un intérêt certain. Enfin, l’acquisition
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de plus amples données pour différentes fréquences de fonctionnement devrait
être analysée pour vérifier les structures détaillées de la fonction de distribution
des vitesses des supra-thermiques et ainsi améliorer le modèle cinétique des supra-
thermiques, de même que vérifier l’effet prédit de la correction sur le Doppler en
fréquence de la raie de plasma.
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