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1 Introduction
In 1947 Vilenkin [31] actually introduced a large class of compact groups (now called
Vilenkin groups) and the corresponding characters. In particular, Vilenkin investigated
the group Gm, which is a direct product of the additive groups Zmk := {0, 1, . . . , mk – 1}
of integers modulo mk , where m := (m0, m1, . . .) are positive integers not less than 2, and
introduced the Vilenkin systems {ψj}∞j=0 as follows:

ψn(x) :=
∞∏

k=0

rnk
k (x), rk(x) := exp(2π ixk/mk),

(
i2 = –1, x ∈ Gm, k ∈N

)
,

where N+ denotes the set of positive integers and N := N+ ∪ {0}. In this paper we discuss
bounded Vilenkin groups only, that is, supn∈N mn < ∞. The Vilenkin system is orthonormal
and complete in L2(Gm) (see [31]). Specifically, we call this system the Walsh–Paley system
when m ≡ 2.

It is well known (see e.g. the books [1] and [27]) that if f ∈ L1(Gm) and the Vilenkin series
T(x) =

∑∞
j=0 cjψj(x) converges to f in L1-norm, then

cj =
∫

Gm

f ψ j dμ := f̂ (j), j = 0, 1, 2, . . . ,
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where cj is called the jth Vilenkin–Fourier coefficient and μ is the Haar measure on the
locally compact abelian groups Gm, which coincide with the direct product of measures
μk({j}) := 1/mk (j ∈ Zmk ).

The classical theory of Hilbert spaces (for details, see e.g. the books [1, 27]) implies that
if we consider the partial sums Sn, defined by

Snf :=
n–1∑

k=0

f̂ (k)ψk ,

with respect to any orthonormal systems and among them to Vilenkin systems, then the
inequality ‖Snf ‖2 ≤ ‖f ‖2 holds. It follows that for every f ∈ L2,

‖Snf – f ‖2 → 0 as n → ∞.

Since

Snf (x) =
∫

Gm

f (t)Dn(x – t) dμ(t)

and the Dirichlet kernels

Dn :=
n–1∑

k=0

ψk (n ∈N+)

are not uniformly bounded in L1(Gm), the boundedness of partial sums does not hold from
L1(Gm) to L1(Gm).

The analogue of Carleson’s theorem for the Walsh system was proved by Billard [4] for
p = 2 and by Sjölin [29] for 1 < p < ∞, while for bounded Vilenkin systems it was proved
by Gosselin [13]. In each proof, they show that the maximal operator of the partial sums
is bounded on Lp(Gm), i.e., there exists an absolute constant cp such that

∥∥S∗f
∥∥

p ≤ Cp‖f ‖p, when f ∈ Lp, 1 < p < ∞.

A recent proof of almost everywhere convergence of subsequences of Walsh–Fourier se-
ries was given by Demeter [7] in 2015. Hence, if f ∈ Lp(Gm) for p > 1, then

Snf → f a.e. on Gm.

Persson, Schipp, Tephnadze, and Weisz [22] (see also [25]) gave a new and shorter proof
of almost everywhere convergence of Vilenkin–Fourier series of f ∈ Lp(Gm), which was
based on the theory of martingales.

The nth Nörlund mean Ln is defined by

Lnf :=
1
ln

n–1∑

k=0

Skf
n – k

, where ln :=
n∑

k=1

1
k

.
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In [9] Gát and Goginava proved some properties of the Nörlund logarithmic means of
integrable functions in L1 norm. Moreover, in [10] they proved that weak type (1, 1) in-
equality does not hold for the maximal operator of Nörlund logarithmic means L∗, defined
by

L∗f := sup
n∈N

|Lnf |,

but there exists an absolute constant cp such that the inequality

∥∥L∗f
∥∥

p ≤ cp‖f ‖p when f ∈ Lp, p > 1

holds.
If we define the so-called generalized number system based on m in the following way:

M0 := 1, Mk+1 := mkMk (k ∈N),

then every n ∈ N can be uniquely expressed as n =
∑∞

j=0 njMj, where nj ∈ Zmj (j ∈ N) and
only a finite number of njs differ from zero. Moreover, if we consider the following re-
stricted maximal operator L̃∗

# , defined by

L̃∗
#f := sup

n∈N
|LMn f |,

then

yμ
{̃

L∗
#f > y

} ≤ c‖f ‖1, f ∈ L1(Gm), y > 0.

Hence, if f ∈ L1(Gm), then LMn f → f a.e. on Gm.
If we consider the Fejér means σn and Fejér kernels Kn, defined by

σnf :=
1
n

n∑

k=1

Skf and Kn :=
1
n

n–1∑

k=0

Dk ,

it is obvious that

σnf (x) = (f ∗ Kn)(x) =
∫

Gm

f (t)Kn(x – t) dμ(t).

Since ‖Kn‖1 ≤ c < ∞, we obtain that the Fejér means are bounded from the space Lp to
the space Lp for 1 ≤ p ≤ ∞. The a.e. convergence of Fejér means is due to Schipp [26] for
Walsh series and Pál, Simon [21] (see also Simon, Weisz [28] and Weisz [28, 32–34]) for
bounded Vilenkin series proved that the maximal operator of Fejér means σ ∗, defined by

σ ∗f := sup
n∈N

|σnf |,

is of weak type (1, 1), from which the a.e. convergence follows by standard argument (see
[14]). Another well-known summability method is the so-called (C,α)-means (denoted by
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σα
n ), which are defined by

σα
n f :=

1
Aα

n

n∑

k=1

Aα–1
n–k Skf , Aα

0 := 0, Aα
n :=

(α + 1) · · · (α + n)
n!

, α 
= –1, –2, . . . .

It is well known that for α = 1 this summability method coincides with the Fejér summa-
tion and for α = 0 we just have the partial sums of the Vilenkin–Fourier series. Moreover,
if we consider the maximal operator of the Cesáro means σα,∗, defined by

σα,∗f := sup
n∈N

∣∣σα
n f

∣∣ for 0 < α ≤ 1,

then the following weak type inequality holds (for details, see [23]):

yμ
{
σα,∗f > y

} ≤ c‖f ‖1, f ∈ L1(Gm), y > 0.

The boundedness of the maximal operator of the Cesáro means does not hold from L1(Gm)
to the space L1(Gm). However,

∥∥σα
n f – f

∥∥
p → 0, when n → ∞,

(
f ∈ Lp(Gm), 1 ≤ p < ∞)

.

The nth Nörlund mean tn for the Fourier series of f is defined by

tnf :=
1

Qn

n∑

k=1

qn–kSkf ,

where {qk : k ∈N} is a sequence of nonnegative numbers and Qn :=
∑n–1

k=0 qk .
If we assume that q0 > 0 and limn→∞ Qn = ∞, then it is well known (see [15]) that the

summability method generated by {qk : k ≥ 0} is regular if and only if limn→∞ qn–1
Qn

= 0. The
representation

tnf (x) =
∫

Gm

f (t)Fn(x – t) dμ(t), where Fn :=
1

Qn

n∑

k=1

qn–kDk

plays a central role in the sequel. The Nörlund means are generalizations of the Fejér,
Cesàro, and Nörlund logarithmic means.

Móricz and Siddiqi [16] investigated the approximation properties of some special Nör-
lund means of Walsh–Fourier series of Lp functions in norm. Similar problems for the
two-dimensional case can be found in papers by Nagy [17–20] (see also [5]).

Let us define the maximal operator t∗ of Nörlund means by

t∗f := sup
n∈N

|tnf |,

and if {qk : k ∈N} is nonincreasing and satisfying the condition

1
Qn

= O
(

1
n

)
as n → ∞, (1)
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then in [23] it was proved that the weak type inequality

yμ
{

t∗f > y
} ≤ c‖f ‖1, f ∈ L1(Gm), y > 0 (2)

holds. When the sequence {qk : k ∈N} is nonincreasing, then the weak type (1, 1) inequal-
ity (2) holds for every maximal operator of Nörlund means. The boundedness of the maxi-
mal operator of the Nörlund means does not hold from L1(Gm) to the space L1(Gm). How-
ever,

‖tnf – f ‖p → 0 as n → ∞ (
f ∈ Lp(Gm), 1 ≤ p < ∞)

.

Moreover, if {qk : k ∈N} is nondecreasing and satisfying the condition

qn–1

Qn
= O

(
1
n

)
as n → ∞, (3)

or {qk : k ∈N} is nonincreasing, then for any f ∈ L1(Gm) we have that

lim
n→∞ tnf (x) = f (x)

for all Vilenkin–Lebesgue points of f .
In this paper we investigate a wider class of Nörlund means and prove that if {qk : k ∈N}

is nondecreasing and satisfying the conditions

1
Qn

= O
(

1
nα

)
and qn – qn+1 = O

(
1

n2–α

)
as n → ∞, (4)

then the weak type inequality (2) holds. In particular, from this result follows almost ev-
erywhere convergence of such Nörlund means.

The paper is organized as follows: In Sect. 3 we present and prove the main results.
Moreover, in order not to disturb our discussions in this section, some preliminaries are
given in Sect. 2. Also some of these results are new and of independent interest.

2 Preliminaries
Lemma 1 (see [1, 12]) Let n ∈N. Then

DMn (x) =

⎧
⎨

⎩
Mn, x ∈ In,

0, x /∈ In.

Moreover, if n ∈ N and 1 ≤ sn ≤ mn – 1, then

DsnMn = DMn

sn–1∑

k=0

ψkMn = DMn

sn–1∑

k=0

rk
n

and

Dn = ψn

( ∞∑

j=0

DMj

mj–1∑

k=mj–nj

rk
j

)
for n =

∞∑

i=0

niMi,

where n =
∑∞

i=0 niMi. We note that
∑mj–1

k=mj–nj
rk

j ≡ 0 for all nj = 0.
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Lemma 2 (see [8]) Let n > t, t, n ∈N. Then

KMn (x) =

⎧
⎪⎪⎨

⎪⎪⎩

Mt
1–rt (x) , x ∈ It\It+1, x – xtet ∈ In,
Mn+1

2 , x ∈ In,

0, otherwise.

Lemma 3 (see [3, 6, 23, 24, 30]) If n ≥ MN and {qk : k ∈N} is a sequence of nondecreasing
numbers, then there exists an absolute constant c such that

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj

∣∣∣∣∣ ≤ c
MN

{ |n|∑

j=0

Mj|KMj |
}

.

If the sequence {qk : k ∈ N} is either nondecreasing and satisfying condition (3) or nonin-
creasing and satisfying condition (1), then the inequality

|Fn| ≤ c
n

{ |n|∑

j=0

Mj|KMj |
}

holds. On the other hand, if {qk : k ∈ N} is a sequence of nonincreasing numbers satisfying
(4) for 0 < α < 1, then there exists a constant cα , depending only on α, such that the following
inequality holds:

|Fn| ≤ cα

nα

{ |n|∑

j=0

Mα
j |KMj |

}
. (5)

Lemma 4 (see [3, 6, 23, 24]) Let {qk : k ∈N} be either a sequence of nondecreasing numbers
or nonincreasing numbers satisfying condition (1) or nonincreasing numbers satisfying the
conditions in (4). Then, for any n, N ∈N+,

∫

Gm

Fn(x) dμ(x) = 1,

sup
n∈N

∫

Gm

∣∣Fn(x)
∣∣dμ(x) ≤ c < ∞,

sup
n∈N

∫

Gm\IN

∣∣Fn(x)
∣∣dμ(x) → 0 as n → ∞,

where

I0(x) := Gm, In(x) := {y ∈ Gm|y0 = x0, . . . , yn–1 = xn–1}

for any x ∈ Gm, n ∈ N.

The next lemma is very important to study problems concerning almost everywhere
convergence.
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Lemma 5 (see [32]) Suppose that the σ -sublinear operator V is bounded from Lp1 to Lp1

for some 1 < p1 ≤ ∞ and
∫

I
|Vf |dμ ≤ C‖f ‖1

for f ∈ L1 and Vilenkin interval I , which satisfy

supp f ⊂ I,
∫

Gm

f dμ = 0. (6)

Then the operator V is of weak type (1, 1), i.e., the following inequality holds:

sup
y>0

yμ
({Vf > y}) ≤ ‖f ‖1.

Lemma 6 (see [14]) Let

T , Tn : Lp(Gm) → Lp(Gm)

be sublinear operators for some 1 ≤ p < ∞ with T bounded and

Tnf → Tf a.e. on Gm as n → ∞,

for each f ∈ X0, where X0 is dense in Lp(Gm). Set

T∗f := sup
n∈N

|Tnf |, f ∈ X.

If there is a constant C > 0, independent of f and n, such that the weak type inequalities

ypμ
({|Tf | > y

}) ≤ C‖f ‖p
X

and

ypμ
({

T∗f > y
}) ≤ C‖f ‖p

X

hold for all y > 0 and f ∈ Lp(Gm), then

Tf = lim
n→∞ Tnf a.e. on Gm

for every f ∈ Lp(Gm).

Next we prove a new lemma of independent interest, which is very important to prove
almost everywhere convergence of Nörlund means generated by nondecreasing sequences
{qk : k ∈N}.

Lemma 7 Let n ∈N and {qk : k ∈N} be a sequence of nondecreasing numbers. Then

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣dμ(x) ≤ c < ∞,

where c is an absolute constant.
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Proof If we define

Ik,l
N :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

IN (0, . . . , 0, xk 
= 0, 0, . . . , 0, xl 
= 0, xl+1, . . . , xN–1, . . .),

for k < l < N ,

IN (0, . . . , 0, xk 
= 0, xk+1 = 0, . . . , xN–1 = 0, xN , . . .),

for l = N .

then we can decompose IN := Gm\IN as

Gm\IN =
N–1⋃

s=0

Is\Is+1 =

(N–2⋃

k=0

N–1⋃

l=k+1

Ik,l
N

)
∪

(N–1⋃

k=0

Ik,N
N

)
. (7)

Let n > MN and

x ∈ Ik,l
N , k = 0, . . . , N – 2, l = k + 1, . . . , N – 1.

By using Lemma 3, we get that

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣ ≤ c
MN

l∑

i=0

Mi
∣∣KMi (x)

∣∣

≤ c
MN

l∑

i=0

MiMk

≤ cMlMk

MN

so that

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣ ≤ c
MN

|n|∑

i=0

Mi
∣∣KMi (x)

∣∣ (8)

≤ cMlMk

MN
.

Let n > MN and x ∈ Ik,N
N . By using Lemma 1, we can conclude that

∣∣Dn(x)
∣∣ ≤ cMk

and

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣ ≤ c
Qn

n∑

j=MN

qn–jMk

≤ cQn–MN

Qn
Mk ≤ cMk ,
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so that

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣ ≤ cMk . (9)

Hence, if we apply estimates (8) and (9), then we get that

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣dμ

=
N–2∑

k=0

N–1∑

l=k+1

mj–1∑

xj=0,j∈{l+1,...,N–1}

∫

Ik,l
N

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣dμ

+
N–1∑

k=0

∫

Ik,N
N

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣dμ

≤ c
N–2∑

k=0

N–1∑

l=k+1

ml+1 · · ·mN–1

MN

MlMk

MN
+ c

N–1∑

k=0

Mk

MN

≤ c
N–2∑

k=0

(N – k)Mk

MN
+ c < C < ∞.

The proof is complete. �

We also need the following new lemmas.

Lemma 8 Let {qk : k ∈N} be a sequence of nonincreasing numbers satisfying condition (1).
Then there exists an absolute constant c such that

∫

IN

sup
n>MN

|Fn|dμ ≤ c < ∞.

Proof The proof is analogous to that of Lemma 7. Hence, we leave out the details. �

Lemma 9 Let {qk : k ∈ N} be a sequence of nondecreasing numbers satisfying condition (3).
Then there exists an absolute constant c such that

∫

IN

sup
n>MN

|Fn|dμ ≤ c < ∞.

Proof Also in this case the proof is analogous to that of Lemma 7, so we leave out the
details. �

Finally, we prove the following new estimate of independent interest.

Lemma 10 Let n ∈ N and {qk : k ∈ N} be a sequence of nonincreasing numbers satisfying
the conditions in (4). Then there exists an absolute constant c such that

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣dμ(x) ≤ c < ∞. (10)
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Proof Let n > MN and x ∈ Ik,l
N , k = 0, . . . , N – 2, l = k + 1, . . . , N – 1. By combining Lemma 2

and (5) in Lemma 3, we get that

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣ ≤ cMα
l Mk

Mα
N

,

so that

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣ ≤ cMα
l Mk

Mα
N

. (11)

Let n > MN and x ∈ Ik,N
N . By using Lemma 1, we can conclude that

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣ ≤ c
Qn

n∑

j=MN

qn–jMk ≤ cMk ,

so that

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj(x)

∣∣∣∣∣ ≤ cMk . (12)

By combining (7), (11), and (12), we can conclude that

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn–jDj

∣∣∣∣∣dμ

=
N–2∑

k=0

N–1∑

l=k+1

mj–1∑

xj=0,j∈{l+1,...,N–1}

∫

Ik,l
N

sup
n>MN

|Fn|dμ

+
N–1∑

k=0

∫

Ik,N
N

sup
n>MN

|Fn|dμ

≤ c
N–2∑

k=0

N–1∑

l=k+1

ml+1 · · ·mN–1

MN

Mα
l Mk

Mα
N

+ c
N–1∑

k=0

Mk

MN

≤ c
N–2∑

k=0

N–1∑

l=k+1

Mα–1
l Mk

Mα
N

+ c
N–1∑

k=0

Mk

MN

≤ c
N–1∑

l=k+1

Mα
k

Mα
N

+ c

< C < ∞,

so (10) holds and the proof is complete. �

3 The main results
Our first main result reads as follows.
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Theorem 1 Let tn be the Nörlund means and Fn be the corresponding Nörlund kernels such
that

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

n∑

k=MN +1

qn–kDk(x)

∣∣∣∣∣dμ(x) < c < ∞.

If the maximal operator t∗ of Nörlund means is bounded from Lp1 to Lp1 for some 1 < p1 ≤
∞, then the operator t∗ is of weak type (1, 1), i.e., for all f ∈ L1(Gm), the following weak type
inequality holds:

sup
y>0

yμ
{

t∗f > y
} ≤ ‖f ‖1.

Proof In view of Lemma 5 we obtain that the proof is complete if we prove that
∫

I

∣∣t∗f (x)
∣∣dμ(x) ≤ c‖f ‖1 (13)

for every function f , which satisfies the conditions in (6), where I denotes the support of
the function f .

Without loss of generality we may assume that f is a function with support I and μ(I) =
MN . We may also assume that I = IN . It is easy to see that

tnf = 0 when n ≤ MN .

Therefore, we can suppose that n > MN . Moreover,

Snf = 0 for n ≤ MN ,

so that

1
Qn

(MN∑

k=0

qn–kSkf (x)

)
= 0,

which implies that

∫

IN

1
Qn

( Mn∑

k=0

qn–kDk(x – t)

)
f (t) dμ(t) = 0.

Hence,

∣∣t∗f (x)
∣∣ (14)

≤ sup
n>MN

∣∣∣∣∣

∫

IN

1
Qn

(MN∑

k=0

qn–kDk(x – t)

)
f (t) dμ(t)

∣∣∣∣∣

+ sup
n>MN

∣∣∣∣∣

∫

IN

1
Qn

( n∑

k=MN +1

qn–kDk(x – t)

)
f (t) dμ(t)

∣∣∣∣∣

= sup
n>MN

∣∣∣∣∣

∫

IN

1
Qn

( n∑

k=MN +1

qn–kDk(x – t)

)
f (t) dμ(t)

∣∣∣∣∣.
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Let t ∈ IN and x ∈ IN . Then x – t ∈ IN and (14) implies that

∫

IN

∣∣t∗f (x)
∣∣dμ(x)

≤
∫

IN

sup
n>MN

∫

IN

∣∣∣∣∣
1

Qn

( n∑

k=MN +1

qn–kDk(x – t)

)
f (t)

∣∣∣∣∣dμ(t) dμ(x)

≤
∫

IN

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

( n∑

k=MN +1

qn–kDk(x – t)

)
f (t)

∣∣∣∣∣dμ(t) dμ(x)

≤
∫

IN

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

( n∑

k=MN +1

qn–kDk(x – t)

)
f (t)

∣∣∣∣∣dμ(x) dμ(t)

≤
∫

IN

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

( n∑

k=MN +1

qn–kDk(x)

)
f (t)

∣∣∣∣∣dμ(x) dμ(t)

≤
∫

IN

∣∣f (t)
∣∣dμ(t)

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

( n∑

k=MN +1

qn–kDk(x)

)∣∣∣∣∣dμ(x)

= ‖f ‖1

∫

IN

sup
n>MN

∣∣∣∣∣
1

Qn

( n∑

k=MN +1

qn–kDk(x)

)∣∣∣∣∣dμ(x)

≤ c‖f ‖1.

Thus (13) holds, so the proof is complete. �

By using the same technique of proof, we obtain in a similar way the following result.

Theorem 2 Let tn be Nörlund means and Fn be the corresponding Nörlund kernels such
that

∫

IN

sup
n>MN

∣∣Fn(t)
∣∣dμ(t) < c < ∞.

If the maximal operator t∗ of the Nörlund means is bounded from Lp1 to Lp1 for some
1 < p1 ≤ ∞, then the operator t∗ is of weak type (1, 1), i.e., the following weak type inequality

sup
y>0

yμ
{

t∗f > y
} ≤ ‖f ‖1

holds for all f ∈ L1(Gm).

Next, we present a new related result concerning almost everywhere convergence of
some summability methods. The study of almost everywhere convergence is one of the
most difficult topics in Fourier analysis.

Theorem 3 Let f ∈ L1(Gm) and tn be the regular Nörlund means with nondecreasing se-
quences {qk : k ∈N}. Then

tnf → f a.e. as n → ∞.
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Proof Since

SnP = P for every P ∈P

according to the regularity of Nörlund means with nondecreasing sequence {qk : k ∈ N},
we obtain that

tnP → P a.e. as n → ∞,

where P ∈P is dense in the space L1.
On the other hand, by combining Lemma 4, Lemma 7, and Theorem 1, we obtain that

the maximal operator t∗ of the Nörlund means with nondecreasing sequence {qk : k ∈ N}
is bounded from the space L1 to the space weak – L1, that is, the following weak type
inequality holds:

sup
y>0

yμ
{

x ∈ Gm :
∣∣t∗f (x)

∣∣ > y
} ≤ ‖f ‖1.

Hence, according to Lemma 6, we obtain the claimed almost everywhere convergence of
Nörlund means with nondecreasing sequence {qk : k ∈ N}:

tnf → f a.e. as n → ∞.

The proof is complete. �

Theorem 4 Let f ∈ L1 and tn be the Nörlund means with nondecreasing sequence {qk : k ≥
0} satisfying the conditions in (3). Then

tnf → f , a.e., as n → ∞.

Proof The proof is similar to the proof of Theorem 3 if we instead apply Lemma 4,
Lemma 9, and Theorem 1, so we omit the details. �

Next we consider almost everywhere convergence of Nörlund means with nonincreas-
ing sequence {qk : k ∈N}.

Theorem 5 Let f ∈ L1 and tn be the Nörlund means with nonincreasing sequence {qk : k ∈
N} satisfying condition (1). Then

tnf → f a.e. as n → ∞.

Proof The proof is quite analogous to that of Theorem 3 if we apply Lemma 4, Lemma 8,
and Theorem 1, so we omit the details. �

Theorem 6 Let f ∈ L1 and tn be Nörlund means with nonincreasing sequence {qk : k ∈ N}
satisfying the conditions in (4). Then

tnf → f a.e. as n → ∞.
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Proof The proof is similar to the proof of Theorem 3 if we instead apply Lemma 4,
Lemma 10, and Theorem 1, so we omit the details. �

Theorem 7 Let f ∈ L1 and tn be Nörlund means with nonincreasing sequence {qk : k ∈N}.
Then

tMn f → f a.e. as n → ∞.

Proof If we apply the fact that (see [8–10], and [25])

FMn (x) = DMn (x) – ψMn–1(x)F–1Mn (x),

we can prove that if {qk : k ∈ N} is a sequence of nonincreasing numbers, then, for any
N ∈ N+,

∫

Gm

FMn (x) dμ(x) = 1,

sup
n∈N

∫

Gm

∣∣FMn (x)
∣∣dμ(x) ≤ c < ∞,

sup
n∈N

∫

Gm\IN

∣∣FMn (x)
∣∣dμ(x) → 0 as n → ∞,

and

∫

IN

sup
n>N

∣∣∣∣∣
1

Qn

Mn∑

j=MN

qjDn–j(x)

∣∣∣∣∣dμ(x) ≤ c < ∞,

and also in this case the proof is absolutely analogous to that of Theorem 3, so we can omit
the details. �

A number of special cases of our results are of particular interest and give both well-
known and new information. We just give the following examples of such corollaries.

In particular, since σn and σα
n are regular Nörlund means with nondecreasing sequence

{qk : k ∈N}, we have the following consequences of our Theorems:

Corollary 1 (see [23] and [32]) Let f ∈ L1. Then

σnf → f , a.e., as n → ∞

and

σα
n f → f , a.e., as n → ∞, when 0 < α < 1.

Corollary 2 (see [2] and [11]) Let f ∈ L1. Then

LMn f → f a.e. as n → ∞.
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We also give the following examples of new consequences.

Corollary 3 Let f ∈ L1 and the summability method V α
n be defined by

V α
n f :=

1
Qn

n∑

k=1

(n – k – 1)α–1Skf .

Then

V α
n f → f a.e. as n → ∞, as 0 < α < 1.

Proof Since V α
n are Nörlund means with nonincreasing sequences {qk : k ∈ N} satisfying

the conditions in (4). Hence, the proof is complete by just using Theorem 6. �

Corollary 4 Let f ∈ L1 and the summability method βα
n be defined by

βα
n f :=

1
Qn

n∑

k=1

logα(n – k – 1)Skf .

Then

βα
n f → f a.e. as n → ∞.

Proof We note that βα
n are Nörlund means with nondecreasing sequences {qk : k ∈ N}.

Hence, the proof is complete by just using Theorem 3. �

Corollary 5 Let f ∈ L1 and Bn be the Nörlund means with monotone and bounded se-
quence {qk : k ∈N}. Then

Bnf → f a.e. as n → ∞.

Proof The proof follows from Theorems 4 and 5. �

Corollary 6 Let f ∈ L1 and the summability method Uα
n be defined by

Uα
n f :=

1
Qn

n∑

k=1

Skf
(n – k – 3) lnα(n – k – 3)

.

Then

Uα
Mn f → f a.e., as n → ∞.

Proof Obviously, Uα
n are regular Nörlund means with nonincreasing sequences {qk : k ∈

N}, the proof follows from Theorem 7. �
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