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ABSTRACT

A stochastic model for a superposition of uncorrelated pulses with a random distribution of amplitudes, sizes, and velocities is presented.
The pulses are assumed to move radially with fixed shape and amplitudes decaying exponentially in time due to linear damping. The pulse
velocities are taken to be time-independent but randomly distributed. The implications of a distribution of pulse amplitudes, sizes, and veloc-
ities are investigated. Closed-form expressions for the cumulants and probability density functions for the process are derived in the case of
exponential pulses and a discrete uniform distribution of pulse velocities. The results describe many features of the boundary region of mag-
netically confined plasmas, such as high average particle densities, broad and flat radial profiles, and intermittent large-amplitude fluctua-
tions. The stochastic model elucidates how these phenomena are related to the statistical properties of blob-like structures. In particular, the
presence of fast pulses generally leads to flattened far scrape-off layer profiles and enhanced intermittency, which amplifies plasma-wall
interactions.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0144885
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I. INTRODUCTION

Magnetically confined fusion plasmas in toroidal geometry rely
on a poloidal divertor topology in order to control plasma exhaust.' *
Plasma entering the scrape-off layer (SOL) from the core will flow
along magnetic field lines to the remote divertor chamber, which is
specifically designed to handle the exhaust of particles and heat. This
is supposed to avoid strong plasma-wall contact in the main chamber,
which is located close to the core plasma. However, experiments have
shown that cross field plasma transport is generally significant and
may even be dominant, leading to detrimental plasma interactions
with the main chamber walls.' "

Measurements on numerous tokamak devices have demon-
strated that as the core plasma density increases, the particle density in
the SOL becomes higher, and plasma-wall interactions increase.'' ™’
The particle density profile in the SOL typically exhibits a two-layer
structure, commonly referred to as a density shoulder. Close to the
magnetic separatrix, in the so-called near SOL, it has a steep exponen-
tial decay and moderate fluctuation levels. Beyond this region, in the
so-called far SOL, the profile has an exponential decay with a much
longer scale length. As the core plasma density increases, the profile

scale length in the far SOL becomes longer, referred to as profile flat-
tening, and the break point between the near and the far SOL moves
radially inward, referred to as profile broadening. When the empirical
discharge density limit is approached, the far SOL profile effectively
extends all the way to the magnetic separatrix or even inside it.

The boundary region of magnetically confined plasmas is gener-
ally in an inherently fluctuating state. Single-point measurements of
the particle density in the far SOL reveal frequent occurrence of large-
amplitude bursts and relative fluctuation levels of order unity.”' *
The large-amplitude fluctuations, identified in the SOL of all tokamaks
and in all confinement regimes, are attributed to radial motion of
coherent structures through the SOL and toward the main chamber
wall. These structures are observed as magnetic-field-aligned filaments
of excess particles and heat as compared to the ambient plasma, com-
monly referred to as blobs.”' "~ This leads to broad and flat far SOL
profiles and enhanced levels of plasma interactions with the main
chamber walls that may be an issue for the next generation magnetic
confinement experiments.

At the outboard mid-plane region, localized blob-like structures
get charge polarized due to vertical magnetic gradient and curvature
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drifts. The resulting electric field leads to radial motion of the filament
structures toward the main chamber wall. The strongly non-linear
advection results in an asymmetric shape with a steep front and a trail-
ing wake. Single-point measurements record the filaments as an asym-
metric, two-sided exponential pulse function.” *’ The radial filament
velocity depends on the blob size and amplitude as well as plasma
parameters and takes a wide range of values. This dependence has
been extensively explored theoretically and by numerical simulations
of isolated filament structures in various plasma parameter
regimes.”” " Filament velocity scaling properties have also been inves-
tigated experimentally, showing correlations with other blob parame-
ters and plasma parameters.”’ "~ It follows that stochastic modeling of
the intermittent fluctuations in the SOL must necessarily include a dis-
tribution of filament velocities.

In previous experimental investigations based on second-long,
single-point measurement data time series, the fundamental statistical
properties of the plasma fluctuations in the far SOL have been identi-
fied.” ® It has been demonstrated that the fluctuations can be
described as a superposition of uncorrelated, exponential pulses with
an exponential distribution of pulse amplitudes, referred to as a filtered
Poisson process.”” """ For such a stochastic process, the probability
density function is a Gamma distribution with the scale parameter
given by the average pulse amplitude and the shape parameter given
by the ratio of the average pulse duration and waiting times.”*'"’
Moreover, it follows that the auto-correlation function has an expo-
nential tail, and the frequency power spectral density has a Lorentzian
shape.'”’ """ Both the underlying assumptions of the model and its
predictions are found to be in excellent agreement with experimental
measurements.”” *’

Recently, the statistical description of single-point measurements
was extended to describe the radial variation of the average SOL profile
due to the motion of blob-like filament structures with a random dis-
tribution of sizes and velocities.'””"'*® This reveals how the average
profile and its radial variation depend on the filament statistics. In par-
ticular, if all filaments have the same velocity, the radial e-folding
length is given by the product of the radial filament velocity and the
parallel transit time to the divertor targets. In this presentation, we
extended and complement this statistical analysis by a systematic study
of randomly distributed filament amplitudes, sizes and velocities, and
correlations between these quantities. The filaments are assumed to
move radially outward with fixed shape and amplitudes decaying
exponentially in time due to linear damping. The velocities are taken
to be time-independent but may be correlated with other filament
parameters. The combination of linear damping and a random distri-
bution of velocities is shown to significantly modify the average pro-
files as well as the fluctuations in the process. The results presented
here extend previous work by including predictions for higher-order
moments, in particular skewness and flatness profiles. Closed-form
analytical expressions are obtained in the case of a discrete uniform
distribution of pulse velocities.

This paper is the first in a sequence, presenting extensions of the
filtered Poisson process to describe the radial motion of pulses includ-
ing linear damping due to parallel drainage in the scrape-off layer.
This first paper defines the theoretical framework, gives a derivation of
all the general results for the case of time-independent pulse velocities,
and provides closed-form expressions for the relevant statistical aver-
ages in the case of a discrete uniform distribution of pulse velocities.

ARTICLE scitation.org/journal/php

Follow-up papers will address various continuous distributions of
pulse velocities, cases where the pulse velocity depends on the pulse
amplitude, time-dependent pulse velocities, the correlation functions
and frequency and wave number spectra of the fluctuations, and
extensions to several spatial dimensions.

The organization of this paper is as follows. In Sec. II, we present
the stochastic model describing a superposition of pulses with a ran-
dom distribution of amplitudes, sizes, and velocities, in addition to
correlations among these variables. In Sec. 11, we derive general
expressions for the cumulants and discuss how the combination of
radial motion and linear damping influences the statistical properties
of the fluctuations. In Sec. IV, we present closed-form expressions for
the radial profile of the lowest order statistical moments and probabil-
ity distributions for the case of a discrete uniform distribution of pulse
velocities. A discussion of the results in the context of blob-like fila-
ment structures at the boundary of magnetically confined plasmas is
presented in Sec. V, and the conclusions and an outlook are given in
Sec. V1. The paper is complemented by five Appendixes. In Appendix
A, general results are presented for the case of two-sided exponential
pulses. End effects in realizations of the process are considered in
Appendix B. Appendix C discusses limitations on the existence of
cumulants. Implications of a discrete uniform distribution of pulse
sizes are presented in Appendix D. Finally, the generalization to a
non-uniform discrete velocity distribution is given in Appendix E.

Il. STOCHASTIC MODEL

In this section, the stochastic process is presented, describing a
superposition of uncorrelated pulses that do not interact with each
other. It is demonstrated that this is a generalization of a filtered
Poisson process with particularly transparent results obtained for an
exponential pulse function.

A. Superposition of pulses

Consider the evolution of an individual pulse ¢(x, t), which is
assumed to follow an advection equation on the form

9 ¢ ¢
a0

1)
where v is the pulse velocity along the radial axis x. The last term on
the left-hand side describes linear damping with e-folding time 7,
which is assumed to be constant in time and independent of the pulse
parameters. The linear damping originates from the parallel drainage
of plasma along the magnetic field lines, hence the subscript ||. The
pulse velocity v will in the following be assumed to be positive and
time-independent. As initial condition, we take that the pulse ¢ is
assumed to arrive at the reference position x = 0 at time ¢ = 0,

$(x,0) = ap (%) @

where a and / are the pulse amplitude and size, respectively. The non-
dimensional pulse function ¢(0) is taken to be the same for all events
and satisfies the normalization constraint,

j d0[p(0)] = 1. 3)

—00
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For later reference, we define the integral of the nth power of the pulse
function as

I = r@ d0 [ (0)]". @

—00
For a non-negative pulse function, it follows that I; = 1. Applying the
method of characteristics to the differential equation (1) leads to the
general solution

0650 = a0 (7). ©)

where the pulse amplitude evolution is determined by

Tl

A(t) = aexp <_ i). ©

Equation (5) determines the pulse evolution for given amplitude a,
size ¢, and velocity v. The pulse moves radially without change in
shape but with an amplitude that decays exponentially in time due to
the linear damping.

Consider now the stochastic process @k (x, t) given by a superpo-
sition of K uncorrelated and spatially localized pulses,

K(T)
(I)K(xv t) = Z¢k(x7 t— 5k)7
k=1
K(T

) t—s x — v (t — s¢)
= ;ak exp (— I k)<P< ka . ), (7)

where each pulse ¢(x,t) satisfies Eq. (1). In the following, the sub-
script k on the random variables a, v, and ¢ will be suppressed when
possible for simplicity of notation. Each pulse is located at x = 0 at the
arrival time s. All other pulse parameters are assumed to be indepen-
dent of the arrival times. The arrival times s are furthermore assumed
to be independent and uniformly distributed on an interval of dura-
tion T, that is, their probability distribution function is

Ps(sk){l/T’ 1t < T/2,

0, [t| > T/2.

®)

With these assumptions, the probability that there are exactly K pulse
arrivals at x = 0 during any interval of duration T is given by the
Poisson distribution,

K
petki ) = (1) e (< 1), ©

where 1y, is the average pulse waiting time at the reference position
x = 0. The average number of pulses in realizations of duration T is

T

]
Tw

00
(K) = KPx(K;T) = (10)
k=0
where, here and in the following, angular brackets denote the ensemble
average of a random variable over all its arguments. From the Poisson
distribution, it follows that the waiting time between two subsequent
pulses is exponentially distributed. It is emphasized that all pulse
parameters and their correlations are specified at the reference position
x = 0. In particular, the Poisson property of the process is defined for

scitation.org/journal/php

this reference position but does not necessarily hold for other radial
positions. This will be discussed further in Sec. IIT C and Appendix B.

B. Exponential pulses

The exponential amplitude modulation due to linear damping in
Eq. (6) suggests that particularly simple expressions may be obtained
for a similar dependence in the pulse function. We, thus, consider the
case of a one-sided exponential pulse function,

) exp(0), 0<0,
@(0) = {07 0> 0. (11)

In Secs. 11T and VI, this one-sided exponential pulse function will be
used to demonstrate the fundamental properties of the process and to
calculate closed-form expressions for moments and distribution func-
tions. It should be noted that for exponential pulses, the integral
I, = 1/n. The generalization of the following results to two-sided
exponential pulses is discussed in Appendix A.

The relevant parameters of the process given by Eq. (2) for a one-
sided exponential pulse function are presented in Fig. 1. Here, the
radial variation of the pulse is shown for the time of arrival s at x = 0
as well as one radial transit time ¢/v before and after this arrival time.
Due to linear damping, the amplitude decreases exponentially in time
as the pulse moves along the radial axis, indicated by the dotted line in
the figure.

At the reference position, x = 0, the process is given by

K(T)
Dk (0, 1) = Zak exp (—t_sk)(p(— Vk(tg_ Sk)). (12)
k=1 T k

For the exponential pulse function defined by Eq. (11), it is straightfor-
ward to show that this process can be written as

K@ t— sk
(DK(Oat) = Zak(p(f )a (13)
k=1 Tk

where the pulse duration is the harmonic mean of the linear damping
time and the radial transit time £/v,

L L e S B O
3F s—L/v .
N :
s ‘L |
= | ]
EA s :
1 F .
b ———— :
PR [N TN TN SN TN [N SN TN TN SO [N TN S TN TN N TN TN SO TN NN Y TN S S 1

-3 -2 -1 0 1 2

x/l

FIG. 1. Radial variation of a one-sided exponential pulse at the arrival time s and
one radial transit time ¢/v before and after the arrival at x = 0. The dotted line
shows the radial variation of the pulse amplitude due to linear damping.
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’E”E
T= .
v +4

(14)

The average pulse duration is denoted by 74 = (t) and is clearly influ-
enced by a distribution of pulse sizes and velocities. In the absence of
linear damping, the pulse duration is just the radial transit time, £/v.
Further discussions of the pulse duration are given in Sec. IT A.

C. Filtered Poisson process

The process at the reference position x = 0 describes a superpo-
sition of uncorrelated, exponential pulses given by Eq. (13). When all
pulses have the same duration 14, the process can be written as a con-
volution or filtering of the pulse function with a train of delta pulses,

o0~ quo(é - 0) Fl0),

= (px* fx)(é) (15)

where the forcing is

K(T) s
Fx(0) = ;aké(ﬁ—a). (16)

This is, therefore, commonly referred to as a filtered Poisson process.
More generally, for the process given by Eq. (13) with a random distri-
bution of all pulse parameters, the ratio of the average pulse duration
and waiting times
y=2 (17)
TW

determines the degree of pulse overlap and is referred to as the inter-
mittency parameter of the process.”

In the case of an exponential pulse function and exponentially
distributed pulse amplitudes with mean value (a), which, for positive
a, is given by

(@)

the raw amplitude moments are (a") = n!(a)", and the stationary
probability density function for @k (0, t) is given by a Gamma distri-
bution with shape parameter 7 and scale parameter (a). For positive
@, this distribution can be written as™'"’

@Py(®) = 5 (f %) e <f %) 19)

with mean value (®) = y(a) and variance ®?_ = y(a)’. The inter-
mittency parameter 7 determines the shape of the distribution, result-
ing in a high relative fluctuation level as well as skewness and flatness
moments in the case of weak pulse overlap for small y. The Gamma
probability density function holds for any distribution of pulse dura-
tions but assumes that the pulse amplitudes and durations are

. 100,102
independent.

11l. MOMENTS OF THE PROCESS

In this section, we present derivations of the mean value, the
characteristic function, cumulants, and the lowest order statistical

(a)Pa(a) = exp (— i) : (18)

scitation.org/journal/php

moments for a sum of uncorrelated pulses given by Eq. (7). Particular
attention is devoted to mechanisms for radial variation of moments
and intermittency of the process.

A. Average radial profile

Let us first consider the average of the process @k (x, t). The arrival
times s are taken to be independent of the other pulse parameters.
Thus, we first perform the average of each pulse over the arrival times,

(B, — ) :;<J// dsaexp (—t‘l)w(‘gt‘)»

(20)

where the angular brackets denote an average over all amplitudes,
sizes, and velocities with the k subscript suppressed for simplicity of
notation. Neglecting end effects by taking the integration limits for s to
infinity and changing the integration variable to 0 = [x — v(t —s)]/¢
gives

(@) :%<—€p (— —”> | aves (0—€|) <p(6>>. 1)

Given that the pulses are uncorrelated, the average of the conditional
process with exactly K pulses is given by (@) = K{(¢p(x,t —s)).
Therefore, averaging over the number of pulses gives the general
result,

(@) = 3 @R T)

K=0

1 /al x\ [* 0¢
= a<7exp (f ;H) Jioo dfexp <W> q0(9)>. (22)

In the absence of linear damping, the mean value does not depend on
the radial coordinate and is given by (®) = (all, /v) /7, for any joint
distribution between pulse amplitudes, sizes, and velocities.

In the case where all pulses have the same velocity, it follows that
the average radial profile is exponential with a length scale given by
the product of the radial velocity and the linear damping time,

@) = - < HIRE: (9—‘0 <p<e>> exp (— —H) @)

The exponential profile obviously follows from the combination of
radial motion and linear damping of the pulses. More generally, it is
clear from Eq. (22) that a random distribution of pulse velocities will
make the average radial profile non-exponential. This will be further
investigated in Sec. I'V.

For the exponential pulse function defined by Eq. (11) and any
distribution of amplitudes, sizes, and velocities, we obtain the average

profile
(D) (x) = % <ar exp (7 %H) >, (24)

where the pulse duration 7 is given by Eq. (14). In the case of a degen-
erate distribution of the pulse velocities, the average radial profile is
exponential, '
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(@) () =39 exp (— %H) (25)

If, additionally, the pulse sizes are uncorrelated with the amplitudes,
the prefactor is given by (a)t4/7,, with 74 the average pulse duration.
Realizations of this process with an exponential amplitude distribution
and fixed pulse sizes and velocities are presented in Fig. 2. The pulses
cause large-amplitude fluctuations to the average radial profile, which
will now be quantified with cumulants and higher-order moments.

B. Cumulants and moments

The characteristic function for the random variable ®x at the
radial position x is the Fourier transform of the probability density
function and is given by Cy, (15 x) = (exp (iu®)). The characteristic
function for a sum of independent random variables is the product of
their individual characteristic functions. Since all pulses ¢ (x,t — s) are
by assumption independent, and each of the parameters a, ¢, and v is
identically distributed, the characteristic function for the process is
given by

K
Co, (u;x) = HC¢(u;x) = [C,p(u;x)}K, (26)
k=1

where we have defined the characteristic function for an individual
pulse as

Co(u;x) = (exp (iug)), (27)

with ¢ (x, t — s), given by Eq. (5), and the average is to be taken over
arrival times s and the other randomly distributed pulse parameters.

The conditional probability distribution function of @k for fixed
Kis

Py, (Ox|K) = iJ du exp (iudg) [C¢(u,x)]K. (28)

Using that K is Poisson distributed as defined by Eq. (9), we have

20—

(=}
T T T T T T T T T T T T T T T

PRI S TN I ST ST ST T T T T [N T S S

0.0

FIG. 2. Superposition of one-sided exponential pulses with an exponential ampli-
tude distribution and a degenerate distribution of pulse sizes and velocities. The lin-
ear damping is given by vz /¢ =10 and the intermittency parameter by
vty /¢ = 1. Different colors represent various realizations of the process, and the
dashed line is the predicted exponential radial profile given by Eq. (25).

scitation.org/journal/php

Py(®) = iPK(K; T)Pg, (P |K),

k=0
1 (> T
= EJ_OC du exp (iu®) exp <a [Cop(u; x) — 1]) (29)

The expression inside the last exponential function can be identified as
the logarithm of the characteristic function Cg(u; x), given by

T 1 T/2

InCp =—(Cy — 1) :—<J ds [exp (iug) — 1]>, (30)
Tw Tw -T/2

where the averaging in the last expression is over all pulse amplitudes,

sizes, and velocities. Neglecting end effects by extending the integra-

tion limits over pulse arrivals s to infinity and expanding the exponen-

tial function, we can write

In Co _11<JOO ds {i("”n‘/")"p. 31)

The statistical moments are directly related to the cumulants ,, which
are defined as the coefficients in the expansion of the logarithm of the
characteristic function,

> Ky (iu)"
InCo = Zl . (32)
A comparison with Eq. (31) gives the cumulants
1 00
Ka(x) = — < J ds[op(x, t — s)]">. (33)
TW —00

Following a similar procedure as for calculating the average radial pro-
file, we obtain the general expression for the cumulants,

Ka(x) = %<a7"£exp (— %) Jio do exp (:T@f) [q)((?)]">. (34)

In the case of a degenerate distribution of pulse velocities, the cumu-
lants decrease exponentially with radius. The exponential profile is
clearly modified by a distribution of pulse velocities.

From the cumulants, the lowest order moments of @ are readily
obtained. A formal power series expansion shows that the characteris-
tic function Co(u;x) = (exp (iu®)) is related to the raw moments
(@),

(i”!) . (35)

Co(u;x) =1 D)"

ol x) = 1+ (0" O
The first order cumulant is just the mean value, x; = (®), while the
second order cumulant is the variance of the process,
Ky = ®2 = (O — (D)%), with

rms

(I)fms - a < aTeXP <_ FT\) J—oo a0 op (7) [('0(0)]2> ©o

The lowest order centered moments i, = ((® — (®))") are related
to the cumulants by the relations u, = K3, fi3 = k3, and p, = Ky
+ 3. The skewness and flatness moments are defined by
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Sop =———5——""=—77, (37)
(I)rms Kz/
(@ — (®@)") K4
Fp=— 171 _3=_— 38
o o 2 (38)

In the following, we will occasionally use a scaled variable defined by

~ D(x, ) — (D)(x)

D(x,t) = D) , (39)
normalized such as to have zero mean and unit standard deviation at
all radial positions.

In the absence of linear damping, the cumulants and moments do
not depend on the radial coordinate and are given by i, = (a"¢I,/v)/
7, For an exponential pulse function, for which I,, = 1/n, with expo-
nentially distributed amplitudes that are independent of the pulse dura-
tion ©={¢/v, for which (a") = n!(a), the cumulants simplify to
K, = (n— 1)ly{a)", where 7 = 14/7y and 14 is the average pulse
duration. This is nothing but the cumulants of a Gamma distribution
with scale parameter (a) and shape parameter 7, which is the case dis-
cussed in Sec. 11 C.

In the case of a degenerate distribution of pulse velocities, the var-
iance is given by

, 1 [at (™ 20¢ 2 2x
Dr = a < TJ—OC do exp <?> [p(0)] > exp <7FH) (40)

It follows that the relative fluctuation level and the skewness and flat-
ness moments do not depend on the radial coordinate. As will be seen
in Sec. IV, this is not the case for a broad distribution of pulse
velocities.

For an exponential pulse function, the general expression for the
cumulants given by Eq. (34) simplifies significantly since the exponen-
tial function due to linear damping combines with the pulse function,

Ka(x) = % <a"‘c exp (— %) >, (41)

where the pulse duration 7 is given by Eq. (14). The factor 1/n comes
from the integration of the nth power of the exponential pulse func-
tion. In the case of a degenerate distribution of pulse velocities and
amplitudes that are uncorrelated with the pulse durations, the cumu-
lants simplify to

) = 2 o <— E) , 42)

Tw N V‘L’H

where 74 is the pulse duration averaged over the distribution of pulse
sizes. It follows that the cumulants and the raw moments decrease
exponentially with radius. In particular, the variance is given by

- 2oy (2)

Tw 2 VY|

However, the relative fluctuation level ®@,,,s /(@) and the skewness and
flatness moments are all constant as function of radius. Additionally,
assuming exponentially distributed pulse amplitudes as given by Eq.
(18), the cumulants are given by

scitation.org/journal/php

) = 41 {<a> exp <fi)} n, (44)

which are the cumulants of a Gamma distribution with scale parame-
ter (a) exp (—x/vt)) and shape parameter 74/ 7. The relative fluctua-
tion level and the skewness and flatness moments then become

®rms TW 1/2

() 15)
T\ 1/2

s¢=2(§) , (46)
6Ty

The probability density function for ® is the Gamma distribution
given by Eq. (19) with the average radial profile given by
(@) (x) = y(a) exp (—x/vt)). Thus, in the case of a degenerate distri-
bution of pulse velocities, the shape parameter is fixed, but the scale
parameter for the distribution decreases exponentially with radius. As
will be discussed in Sec. 111 C, in general, no closed-form expression of
the probability distribution function can be obtained in the case of a
random distribution of pulse velocities. One notable exception is the
case of a discrete uniform distribution of pulse velocities, which will be
considered in Sec. I'V.

C. Filtered Poisson process

A pulse moving with constant velocity v will arrive at a radial
position ¢ at time s, given by

&

se=s+ E (48)
v
The arrivals s at x = 0 are assumed to be uniformly distributed on the
interval [—T/2, T/2], as described by Eq. (8). In the case of a random
distribution of pulse velocities v, the arrivals s¢ at position £ are given
by a sum of two random variables, and therefore, the distribution of
these arrivals is given by the convolution

Po(s) = ro 1J~T/2+s

dr Pi/v(r)Ps(s —r)= T
o0

where Py, is the distribution of the radial transit times r = &/v. It fol-
lows that the pulse arrivals at radial position ¢ are, in general, not uni-
formly distributed. A distribution of pulse velocities leads to end
effects that influence the arrival time distribution. This is solely an
effect of the radial motion and is independent of the linear damping.

In order to determine the arrival time distribution, consider the
case of a velocity distribution P,(v) that is bounded by a minimum
velocity Vimin and a maximum velocity V., which results in a maxi-
mum transit time rya = &/Vmin and a minimum transit time
Tmin = ¢/Vmax> respectively. The probability distribution P¢/,(r) then
vanishes for r < 1y as well as for r > .y, and the integral in Eq.
(49) can be rewritten as

dr Pg/v(r), (49)

—T/2+s

1 min(7T/2+5, max)
PS;' (S) = ?J

Thus, for arrival times s such that —T/2 + ey < s < T/2 + Tigin,
we obtain

dr Pgj, (7). (50)
max(—T/2+5,rmin)
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Tmax
P..(1) :%J drPos(r) = 1. (51)
That is, a broad velocity distribution leading to transit times in the
interval [#iin, "max] Will result in a distribution of arrival times s at the
radial position ¢ that is uniform on the interval [—T/2 + rpay, T/2
+ 7min] and, therefore, constitute a Poisson point process. Note that
this assumes T' > Tmax — Tmin. I the case of a degenerate distribution
of pulse velocities, rma = Tmin = &/v, and the pulse arrivals at ¢ con-
stitute a Poisson process on the translated interval [—T/2 + &/v,
T/2+ &/v]. For a sufficiently long realization of the process,
T >> F'max — 'min> end effects can be neglected and the process follows
Poisson statistics in the radial domain of interest. Further discussions
of end effects and the rate of the process are given in Appendix B.
As discussed earlier, a pulse ¢ will arrive at position ¢ at time
sz = s+ £/v. The superposition of pulses at this position can, thus, be
written as

Z agk €Xp ( - Sgk) (— Vk(fg——ksg“k)) ) (52)

where the pulse amplitudes are given by

az = ag exp (— %), (53)

with gy being the pulse amplitudes specified at the reference position
¢ = 0. Due to the linear damping and time-independent velocities, the
pulse amplitudes decrease exponentially with increasing radial position
. When the pulse velocities are randomly distributed, the distribution
of pulse amplitudes a: at ¢ # 0 will be different from the ones speci-
fied at the reference position. In particular, the amplitude of slow fila-
ments will decrease substantially with radial position, and the process
will be dominated by the fast pulses for large ¢ since these have shorter
radial transit times. As will be discussed later, this correlation between
pulse amplitudes and velocities influences the intermittency of the
process.

Assuming an exponential pulse function as described by Eq. (11),
the exponential amplitude variation can be combined with the pulse
function, and at the radial position &, the process can be written as

Z ack(l’( - Sgk> (54)

where the pulse duration 7 is given by Eq. (14). As discussed in Sec.
II1C, the pulse arrivals s follow a Poisson process when end effects
are neglected. The process described by Eq. (54) is, therefore, a filtered
Poisson process generalized to the case of a random distribution of
pulse durations. Moreover, this describes how the pulse amplitudes
and durations become modified and correlated by a distribution of
pulse velocities. Pulses with high (low) velocity will have larger
(smaller) amplitudes a¢ and shorter (longer) duration times 7. A dis-
tribution of pulse velocities, therefore, leads to an anti-correlation
between amplitudes and durations. The modification of the amplitude
distribution and their correlation with pulse durations will be further

scitation.org/journal/php

IV. DISCRETE UNIFORM VELOCITY DISTRIBUTION

The analytical results presented in Sec. Il show that a distribu-
tion of pulse velocities significantly influences both the moments and
correlation properties of the stochastic process. Here, this will be inves-
tigated in detail for the special case of a discrete uniform distribution
of pulse velocities, allowing them to take two different values with
equal probability,

P(v) = % [5(v = Vin) + 30 — Vinas)]. (55)
The minimum and maximum velocities are given by v, = (1
—w)(v) and vimax = (1 4+ w)(v), respectively, (v) = (Viin + Vimax)/2
is the average velocity, and w in the range 0 < w < 1 is the width
parameter of the distribution. The limit w — 0 corresponds to the
case of a degenerate distribution of pulse velocities. The discrete uni-
form distribution is presented in Fig. 4(a) for various values of the
width parameter w. In the following, we present the lowest order sta-
tistical moments and probability distributions and describe how the
statistical properties of the process changes with radial position. These
theoretical predictions have recently been confirmed by numerical
realizations of the process.'”®

Throughout this section, all pulses are assumed to have the same
size ¢, and we consider for simplicity one-sided exponential pulses
with an exponential amplitude distribution at the reference position
x = 0 with mean amplitude (ag). As will be seen, closed-form expres-
sions can be derived for all relevant statistical averages and distribu-
tions, allowing to analyze and to describe all aspects of the process.
The process with a random distribution of pulse velocities will be com-
pared to the standard case with a degenerate distribution of velocities,
where all pulses have the same velocity (v). The pulse duration is then
given by

ro= (56)
¥ <V>‘L’ I + /0 ’
and the process is Gamma distributed with shape parameter
Ty
Tw

Recall that in this standard case, the average radial profile is exponen-
tial, (@) (x) = 7. (ao) exp (—x/(v)7|), while higher-order normalized
moments are radially constant In particular, the relatlve fluctuation
level is @y /(D) = l/y* , the skewness is S = 2/y* , and the flat-
nessis Fp = 6/7,.

A. Radial profiles

The cumulants for the discrete uniform velocity distribution are
obtained from Eq. (41) by straightforward integration,

(ag) nx nx
sy | ) (=) ) ()

(58)

Kn(x) =

where qy is the pulse amplitude at the reference position x = 0, and
we have used the notation of a velocity-dependent pulse duration,

discussed in Sec. IV B for a discrete uniform distribution of pulse — Tt . (59)
velocities. i+ €
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The discrete uniform velocity distribution translates into a discrete
uniform distribution of pulse durations,

P.(1) ==[0(t — T(Viin)) + (T — T(Vinax))]- (60)

The average pulse duration is given by integration over the discrete

distribution,
1 ‘L'Hf i ‘L'HZ (61)
T4 =— .
) Vmin T + £ VmaxT +¢

At the reference position x =0, the cumulants are given by
K4 (0) = t4(a)/nty, showing that 74/t determines the degree of
pulse overlap and intermittency at this position. Through 14, the
degree of pulse overlap depends on the width of the velocity distribu-
tion. The normalized pulse duration 74/7. is presented in Fig. 3 as a
function of the width parameter w for (v)7 /¢ = 10. For a fixed aver-
age velocity, the average pulse duration increases significantly with the
width parameter of the velocity distribution. In fact, in the absence of
linear damping, the average pulse duration diverges in the limit
w — 1. This is due to the cumulative contribution of nearly stagnant
pulses. More generally, the width of the velocity distribution is impor-
tant for determining the average pulse duration, and therefore, all
cumulants are at the reference position.

The width of the velocity distribution also influences the radial
variation of the cumulants. In the limit w — 0, the velocity distribu-
tion tends to a degenerate distribution, giving the familiar exponential
profile with scale length (v)7. For w > 0, the shorter e-folding length
of the first term in Eq. (58) makes this term dominant for negative x,
while the longer e-folding length of the second term makes this domi-
nant for positive x. The cumulants given by Eq. (58) show that there is
a breakpoint x, between the two exponential functions whose radial
location is given by their equal contribution. This depends on the
strength of the linear damping and the width of the velocity
distribution,

xo_ <V>TH 1—w? In 1+(1+ W)<V>‘L’H/Z
14 nt 2w 1+ (1 —wwr/t)

(62)

T ]

10 - =

8 -

~ 6 .

™~ L ]

-~ L 4
=

[y L 4

4 4
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Lo v vy e ey
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FIG. 3. Normalized pulse duration z(v) for a discrete uniform distribution of pulse
velocities as function of the width parameter w for (v)z) /¢ = 10.
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It is to be noted that the break point is located at positive values of x
and decreases with the order of the cumulant. In the limit w — 1, the
breakpoint approaches the origin. Moreover, the radial location of the
breakpoint increases with the normalized linear damping time
(v)7) /L. Indeed, as discussed previously, in the absence of linear
damping, these profiles are radially constant, and there is no break
point.

In general, the statistical properties of the process for negative x
are dominated by the slow pulses due to their long radial transit times,
and therefore excessively large upstream amplitudes, as described by
Eq. (53). The process for a large negative position &/ is effectively a
filtered Poisson process given by only the slow pulses,

Kinin
— Szt

E awp( =0 "‘)) (63)
min

with the amplitudes given by a: = ag exp (—&/Vmin7)|) and the pulse
arrivals sz = s + &/Vmin. This process is Gamma distributed with
shape parameter given by (Vi) /27, Similarly, the statistical prop-
erties of the process for large positive x are dominated by the fast
pulses since the slow pulses are depleted by the linear damping.
Indeed, for a sufficiently large radial position &/¢, the process is deter-
mined solely by the fast pulses, giving rise to another filtered Poisson
process, which is given by

Ok (& 1)

@k, (¢, 1)

o
~ (— Ck)), (64)
ma.x

k'=1

with the amplitudes given by a: = ag exp (—£/vmax7|) and the pulse
arrivals sz = s + &/Vmax. This process is Gamma distributed with
shape parameter 7(Viay)/27y. The dependence of the average pulse
duration on the width of the velocity distribution for these two sub-
processes is also presented in Fig. 3, showing how the degree of inter-
mittency varies from far upstream to far downstream of the reference
position.

From Eq. (58), it follows that the average radial profile is the sum

of two exponential functions,
x X
+ T(Vinax) €xp | — .
u) Vmax T,

(@) () = 2 -
(65)

{r(vmm exp (—

2Ty

At the reference position, this gives (®)(0) = t4(ag) /Ty, as expected.
The radial profile of the average value (®), its normalized inverse
e-folding length, the relative fluctuation level, and the skewness and
flatness moments are presented in Fig. 4 for (v)7)/¢ = 10 and three
different values of the width parameter w. All radial profiles are nor-
malized to their value at the reference position x = 0 for the standard
case of a degenerate distribution of pulse velocities corresponding to
w = 0. The breakpoints for the cumulants given by Eq. (62) are indi-
cated by filled circles in Fig. 4. For small values of w, the average profile
is nearly exponential and close to that of the reference case, in which
all pulses have the same velocity. As expected, the relative fluctuation
level, skewness, and flatness have weak variation with radial position
for small w. For a wide separation of pulse velocities, the average pro-
file is steep for small x and has a much longer scale length for large x,
where it is dominated by the fast pulses. Associated with this variation
for the average profile is a reduced relative fluctuation level as well as

Phys. Plasmas 30, 042518 (2023); doi: 10.1063/5.0144885
© Author(s) 2023

30, 042518-8

L1:%€:20 €202 AInr 61


https://scitation.org/journal/php

Physics of Plasmas

ARTICLE

scitation.org/journal/php

a) b) ©)
15 T T T ] T T T 4 CT T L
[ ] 1 E 5 r ]
F Aw=3/4mw=1/2Vw=1/4 > E < 3 EF 3
= 10 [ 4 = F PS F 7
:0F 18 f .0 E
< r 1 = le 3 5 1
= 05F 4o = v R A q = E 3 = . f ]
- [ ] & F ] = ! E 7
0.0 b L 1] 10—2 1 L L L ! 0 Es L J
0 1 2 0 10 20 0 10 20
d) v/(v) e) x/l f) x/l
T T T T T T T T T ET T T T T ] 4 ET T T ]
I ] 2 b 1 I ]
| ] r ] L ,
~ o™
30 1% 1 e ]
Eaf - £ 1k ] B2t 4
o F i a ] L |
IS = r &
~ r 1 = r 1 + B
X i 1 [ 1 L |
O -I 1 ! 1 I_ 0 _I 1 I_ O 1 1 1
0 10 20 0 10 20 0 10 20
x/l x/l x/l

FIG. 4. Discrete uniform velocity distribution (a) and corresponding radial profiles of the average value (b), inverse profile e-folding length (c), relative fluctuation level (d), skew-
ness (e), and flatness (f) for (v)7; /¢ = 10 and various widths w of the velocity distribution. All profiles are normalized to their value at the reference position x = 0 for the
base case with a degenerate distribution of pulse velocities for which the intermittency parameter is y, = t((v))/zw. The dashed lines show the asymptotic profiles for large

x /¢ corresponding to the process with only the fast pulses.

skewness and flatness moments for small x, while these quantities
increase radially outward until they saturate at the values associated
with the process dominated by the fast pulses, given by the ®k__ pro-
cess defined earlier and indicated by the dashed lines in Fig. 4 for the
case w = 3/4. These profiles demonstrate how a distribution of pulse
velocities influences the lowest order moments of the process. In par-
ticular, both the relative fluctuation level and the skewness and flatness
moments may increase significantly above the levels for a degenerate
distribution of pulse velocities.

B. Probability distributions

A non-degenerate velocity distribution will change the amplitude
distribution at various radial positions as described by Eq. (53). For
the discrete uniform velocity distribution, the radial profile of the aver-
age amplitude is given by a sum of two exponential functions,

(o)) = %) [exp (— — TH) texp (— Vm;“)] (66)

This is presented in Fig. 5 for (v)7) /¢ = 10 and three different values
of the width parameter w. For a narrow velocity distribution, the aver-
age amplitude decreases nearly exponentially with radial position with
scale length (v)7)|, similar to the standard case where all pulses have
the same velocity. For a wide separation of pulse velocities, the average
amplitude decreases sharply with radius for small x, while for large x,
the profile is exponential and dominated by the fast pulses with scale
length viax 7). This is demonstrated by the dashed line in Fig. 5, which
corresponds to the second term inside the square brackets in Eq. (66).
The probability density function for the pulse amplitudes can be
obtained when these are independent of the velocities by using the
joint distribution function for the two random variables. The condi-
tional distribution function for the amplitudes at position x given the
pulse velocity v is P,j,(a|v). Since the pulse amplitudes at x = 0 are
exponentially distributed and change with radial position according to

Eq. (53), Pgp,(alv) is an exponential distribution with mean value
a)exp (—x/vt)). Since the pulse velocities Vi, and v have equal
p I p q
probability 1/2, it follows that the probability density function for the
pulse amplitudes a at position x with the appropriate normalization is
given by

Pa(ax) 1 a n 1 a 67)
a,x) = € — €. —
a 2amin P Amin 2amax P Amax ’

where we have defined the radial amplitude profile for the fast and
slow pulses, respectively, by
x
), (68)

Amin(x) = (ap) exp <_v o

al ) . (69)

VmaxTH

max(x) = () exp (f

0.6

04t

(@)(x)/{ao)

1071luunuluuuuluuuulnnuul

FIG. 5. Average pulse amplitude as function of radial position for a discrete uniform
distribution of pulse velocities with (v)z; /¢ = 10 and different values of the width
parameter w. The dashed line corresponds to the second term in Eq. (66).
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The amplitude distribution is presented in Fig. 6 at various radial posi-
tions for the parameters (v)7) /¢ = 10 and w = 1/2. The distribution
is exponential at x = 0, while for large x, the distribution has a clear
bi-exponential behavior with a much higher probability for small
amplitudes associated with the slow pulses. The dashed line in Fig. 6 is
the amplitude distribution for the fast pulses, given by the second term
in Eq. (67), showing that the tail distribution is due to the fast pulses.

As discussed earlier, the process @ (x, t) for a discrete uniform
distribution of pulse velocities can be considered as a sum of the two
sub-processes @k . and Pk, each with a degenerate distribution of
pulse velocities with values v, and vy, respectively. Accordingly,
the probability density function for the summed process is the convo-
lution of the probability distribution of the two sub-processes. Each of
these two filtered Poisson processes is Gamma distributed with scale
parameter given by the average amplitude (ao) exp (—x/v7)) and
shape parameter given by t(v)/21,, for the two pulse velocities Vi,
and Vp.,, where the pulse duration t(v) is defined by Eq. (59). The
shape and radial variation of the probability density function P will
depend on the degree of pulse overlap described by 7y, , the normalized
linear damping time (v)7 /£, and the width parameter w for the veloc-
ity distribution. At x = 0, the distributions of the two sub-processes
have the same scale parameter (ay), which implies that the probability
density function for the summed process is itself a Gamma
distribution,

(o) Po(®; x = 0) — % (%) " e (-%), (70)

with shape parameter y, = 74/7w. On the other hand, for sufficiently
large x, the amplitudes of the slow pulses will be depleted due to the
linear damping, and the process is entirely dominated by the fast
pulses, described by Eq. (64). In this case, the probability density func-
tion for the process will be another Gamma distribution with scale
parameter (do) exp (—X/Vmax?|) and shape parameter 7(Vmax)/27y.
For intermediate radial positions, the probability density function is a
convolution of two Gamma distributions.

The probability density function Py for the normalized variable
is presented in Fig. 7 for various radial positions and the parameters

PENRTITT BRI

(ao)Pu(a)

FITTT IR R TTTT MR R ATTTT AR T |

o
8]
w
~
o

a/(ao)

FIG. 6. Probability density function of the pulse amplitudes for a discrete uniform
distribution of pulse velocities with width parameter w = 1/2 at various radial posi-
tions in the case (v)z /¢ = 10. The dashed line is the amplitude distribution for
the fast pulses.
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FIG. 7. Probability density function at various radial positions for intermittency
parameter y, = 20/11, width parameter w = 3/4, and normalized linear damping
time (v)z /£ = 10. The dashed line is the distribution for the fast pulses.

7. = 20/11, {v)1) /¢ = 10, and w = 3/4. At x = 0, the distribution is
unimodal with skewness and flatness moments Sp = 2/7,/> ~ 1.5
and Fo = 6/7y, ~ 3.3, respectively, with y, = 20(1/7 + 1/37) ~ 3.4.
Radially outward the distribution function becomes strongly skewed
and has an exponential tail toward large fluctuation amplitudes. This
change in the shape of the probability density function is, of course,
fully consistent with the radial profile of the lowest order statistical
moments presented in Fig. 4. This demonstrates that a distribution of
pulse velocities can lead to significant changes in the probability den-
sity function and an increase in the relative fluctuation level and inter-
mittency with radial position. The latter is further emphasized by
Fig. 3, indicating how the intermittency parameter 7y, for the process
@k at x = 0 and for the asymptotic process for large x varies with the
width parameter of the velocity distribution.

For the simple case of a discrete uniform distribution of pulse
velocities, the process can readily be interpreted in terms of two sub-
processes P, and Pk, corresponding to the two possible velocities
as described earlier. However, as discussed in Sec. 111 C, a distribution of
pulse velocities gives rise to a change in the amplitude distribution and a
correlation between pulse amplitudes and durations, which influences
the intermittency of the process. Figure 8 shows the radial variation of
the linear correlation between pulse amplitudes and durations,
(at)/{(a)tq4, for (v)7 /¢ = 10 and different values of the width parame-
ter w. As is clear from Egs. (53) and (59), an increasing pulse velocity
gives large amplitude and shorter duration, resulting in a significant
anti-correlation between these quantities. The quantity presented in Fig.
8 can also be interpreted as an effective pulse duration that is weighted
with the pulse amplitude. At large radial positions, the process is domi-
nated by the fast pulses, resulting in an effective pulse duration given by
7(Vmax )» which obviously increases the intermittency of the process.

The radial variation of intermittency in the process is due to the
change in amplitude distribution with radius, as described by Eq. (67)
and shown in Fig. 6, as well as the linear correlation between pulse
amplitudes and durations. In order to separate these, consider the
modified filtered Poisson process

K(T) b s
W) = Zaw(— - ) (71)
k=1

Tk
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FIG. 8. Effective pulse duration as a function of the radial position for (v)z) /¢
= 10 and different values of the width parameter w. The dotted lines are the pulse
durations t(Vimax) /74 for the fast pulses.

where the arrival times are given by Eq. (48), the pulse durations are
distributed according to Eq. (60) with the mean value given by Eq.
(61), and the amplitudes are distributed according to Eq. (67). This
process, thus, has the same marginal distributions of pulse amplitudes
and durations as the original process @k but with the correlation
between amplitudes and durations artificially removed. It is straight-
forward to calculate the cumulants and the radial profile of the lowest
order statistical moments of this modified process. Figure 9 shows the
radial variation of the lowest order statistical moments for the two pro-
cesses Ok and W for width parameter w = 3/4 and normalized lin-
ear damping time (v)t)/¢ = 10. For large x//, the original process
D has a significantly higher relative fluctuation level as well as skew-
ness and flatness moments than the process W' where the correlations
have been removed. This is due to the fact that a wide separation of
pulse velocities influences both the pulse amplitudes and durations,
and the fast pulses with large amplitudes and short durations domi-
nate the process far downstream.

V. DISCUSSION

The statistical properties of a stochastic process given by a super-
position of uncorrelated pulses with a random distribution of ampli-
tudes, sizes, and velocities have been described. The pulses are
assumed to move radially with time-independent velocities and are

ARTICLE scitation.org/journal/php

subject to linear damping, resulting in pulse amplitudes decaying
exponentially in time. General results for the cumulants and lowest
order moments of the process have been obtained. When end effects
are neglected in realizations of the process and the velocities are time-
independent, the rate of pulses remains the same at all radial positions.

In the absence of linear damping, the process is both temporally
and spatially homogeneous. Expressions for the cumulants and
moments are readily obtained in terms of integrals over the probability
distributions. In particular, the cumulants are given by (a"¢I,/v) /1.
For an exponential pulse function and exponentially distributed pulse
amplitudes independent of the pulse sizes and velocities, the probabil-
ity density function is a Gamma distribution with scale parameter (a)
and shape parameter y = 14/1,, where 74 and 1,, are the average
pulse duration and waiting times, respectively. Any correlation
between pulse amplitudes and duration times will modify this proba-
bility density function, as discussed in Sec. I1I C.

The presence of linear damping drastically modifies the statistical
properties of the process, leading to an exponential decay of the pulse
amplitudes and therefore radial variation of all statistical averages of
the process. In the simple case that all pulses have the same size and
velocity, the process results in an exponential radial profile of the
cumulants and the lowest order moments with a characteristic scale
length given by the product of the pulse velocity and linear damping
time, as described by Eq. (34). A broad distribution of pulse velocities
leads to non-exponential profiles and a change in the pulse amplitude
statistics and their correlation with pulse durations. Low-velocity
pulses will undergo significant amplitude decay during their radial
motion, resulting in a strongly peaked downstream amplitude distri-
bution. Moreover, there is an anti-correlation between pulse ampli-
tudes and durations, and both these mechanisms give rise to increased
intermittency of the process.

The special case of exponential pulses allows to combine the
effects of linear damping with the pulse function, providing closed-
form expression for many of the statistical averages of the process.
When all pulses have the same size and velocity, this is a standard fil-
tered Poisson process at any given radial position with mean pulse
amplitude given by (a) exp (—x/vt)) and pulse duration given by the
harmonic mean of the linear damping and radial transit times, as
described by Eq. (14) for one-sided pulses and Eq. (A4) for two-sided
pulses. The probability density function is again a Gamma distribution
but with the scale parameter decreasing exponentially with radial
position.
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FIG. 9. Radial profiles of (a) the average value, (b) relative fluctuation level, and (c) skewness and flatness moments for w = 3/4 and (v)z; /¢ = 10. Al profiles are normal-
ized to their value at the reference position x = 0 for the standard case with a degenerate distribution of pulse velocities for which the intermittency parameter is
7. = 7((v)) /7. Full lines are for the original process ®x and broken lines for the modified process Wk, where the correlation between pulse amplitudes and durations has

been removed.
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The implications of a random distribution of pulse velocities are
most clearly exemplified by a discrete uniform distribution, allowing
the pulse velocities to take two different values with equal probability.
Closed-form expressions have here been derived for all relevant fluctu-
ation statistics. This results in a bi-exponential function for the cumu-
lants and radial profiles, which are dominated by the slow pulses for
negative x and by the fast pulses for positive x. This describes features
similar to that typically found in experimental measurements in the
scrape-off layer of magnetically confined plasmas, namely, a steep near
scrape-off layer profile and a flatter far scrape-off layer, as well as a
radial increase in the relative fluctuation level and skewness and flat-
ness moments. Accordingly, the probability density function changes
shape from a near-normal distribution at the reference position and a
strongly skewed Gamma distribution in the far scrape-off layer.

The stochastic model presented here does not describe the forma-
tion mechanism for blob structures, only the average radial profile and
its fluctuations based on radial motion and linear damping of such
structures. In magnetically confined plasmas, the blob structures are
generally considered to be formed close to the magnetic separatrix.
Once they are formed, the blob structures will accelerate and move
radially outward. It should be noted that the case with a wide discrete
uniform velocity distribution does, indeed, describe a steeper near
scrape-off layer profile in the region that is dominated by the slow
pulses. This resembles the properties of the blob formation region.
However, the far scrape-off layer is dominated by the fast pulses,
resulting in large-amplitude fluctuations. Additionally, the blob forma-
tion process determines the rate of pulses, defined by the average wait-
ing time T,,. This is an input parameter for the stochastic model, and
its value must be determined by a first-principles based approach.

Characteristic scrape-off layer plasma parameters in medium-
sized tokamaks are electron and ion temperatures T, = T; = 25 eV
and a magnetic connection length from the outboard mid-plane to
divertor targets of 10 m. For a typical blob size of / = 1 cm and radial
velocity v = 500 m/s, this gives the normalized linear damping rate
7v/£ = 0.1, a pulse duration of approximately 74 = 20 us, and a pro-
file scale length for a degenerate distribution of pulse velocities of
v = 10 cm. This justifies the dominant radial transport parameter
used in the analysis presented here and demonstrates that this model
is capable to describe strongly flattened far scrape-off layer particle
density profiles.

Plasma blobs are three-dimensional, magnetic field-aligned struc-
tures, which have peak amplitudes at the outboard mid-plane region
due to unfavorable curvature in toroidal geometry. The filament tem-
perature and initial extension along the magnetic field may change
from one event to another. This motivates the introduction of a ran-
dom distribution of the linear damping time 7). The expressions
derived for the cumulants in Egs. (34) and (41) remain valid as far as
the statistical average is taken also over the distribution of damping
times. The effect of a distribution of 7 on the statistical properties of
the process is effectively the same as that of the pulse velocity v, since
it determines the e-folding length vt of the cumulants. Thus, a sto-
chastic process with a degenerate velocity distribution but a random
distribution of damping times will be very similar to the process dis-
cussed earlier. A positive correlation between pulse velocities and lin-
ear damping will further enhance the effect of fast pulses since the
profile e-folding length vz will be larger for those: fast pulses with
long damping times will reach the far scrape-off layer without

scitation.org/journal/php

significant amplitude reduction. By contrast, slow pulses with short
damping times will have substantial amplitude reduction and contrib-
ute little to the far scrape-off layer profile and its fluctuations. Thus,
the far scrape-off layer will be highly intermittent and dominated by
the fast pulses.

VI. CONCLUSIONS AND OUTLOOK

Broad and flat time-average radial profiles of particle density and
temperature in the scrape-off layer of magnetically confined plasmas
are generally attributed to the radial motion of blob-like filament
structures. Simple theoretical descriptions and transport code model-
ing describe this by means of effective diffusion and convection veloci-
ties, neglecting the intermittent and large-amplitude fluctuations of
the plasma parameters in the boundary region." Recently, some first
attempts at describing both the fluctuations and the time-average
radial profiles have been presented.'””'"” These are based on a sto-
chastic model describing the fluctuations as a superposition of uncor-
related pulses with a random distribution of amplitudes, sizes, and
velocities.” "

In this contribution, we have presented the theoretical foundation
for a stochastic modeling of blob-like structures in the scrape-off layer,
moving radially with a time-independent velocity but subject to linear
damping due to drainage along magnetic field lines. General expres-
sions have been derived for the cumulants and lowest order moments
for the process in the case of a general distribution of pulse amplitudes,
sizes, and velocities as well as correlations between these. Closed-form
expressions for an exponential pulse function provide particularly
insightful results, clearly demonstrating how a distribution of pulse
parameters influences the statistical properties of the process. Even for
the simple case of a discrete uniform pulse velocity distribution, many
salient features of experimental measurements are recovered by the
model, including distinction between near and far scrape-off layer
regions, a broad and flat far scrape-off layer profile, radial increase in
the relative fluctuation level, and strongly intermittent far scrape-off
layer plasma fluctuations.

The stochastic model promises to be a highly valuable framework
for analyzing and describing experimental measurements. In particu-
lar, imaging data can be used to estimate blob sizes, velocities, and
amplitudes and correlations between these. Moreover, the model can
also be applied to data from first-principles based turbulence simula-
tions of the boundary region in order to describe and understand the
relation between blob statistics and resulting time-averaged profiles.
Furthermore, the model can be used to validate model simulations
against experimental measurement data. In future work, the model
presented here will be extended to describe various continuous velocity
distributions as well as time-varying pulse velocities. In particular,
cases where the pulse velocity is given by the instantaneous pulse
amplitude will be considered, with specific scaling relationships pre-
dicted by theory for isolated plasma filaments.”*
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APPENDIX A: TWO-SIDED EXPONENTIAL PULSES

The case of one-sided exponential pulses can readily be gener-
alized to the case of a continuous, two-sided pulse function,

0
0<0
w() o<

@(0;0) = ) (A1)
exp <_E)’ 0>0,

where the spatial pulse asymmetry parameter ¢ is in the range
0 < ¢ < 1. For ¢ = 1/2, the pulse function is symmetric, as shown
in Fig. 10. It is clear that the two-sided exponential pulse contrib-
utes to the mean value of the process at any given position x both

L B L L L R L L
3k s—10/v .
N3 :
s 7t ]
E ; :
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i s+L/v ]
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FIG. 10. Radial variation of a symmetric, o = 1/2, two-sided exponential pulse at
the arrival time s and one radial transit time ¢/v before and after the arrival at x = 0
for the marginal case o/ /vt = 1.

scitation.org/journal/php

prior to and after its arrival at this position. The pulse has a steeper
leading front than trailing wake for ¢ < 1/2. In the limit ¢ — 0,
this reduces to the simple case of a one-sided exponential pulse
function given by Eq. (11). The integral of the nth power of the
pulse function, defined by Eq. (4), is the same as for one-sided
pulses, I, = 1/, independent of the pulse asymmetry parameter g.

At any radial position £, the superposition of pulses can be
written as

km b — Sek Vk(t — Svk)
O (&,t) = E agx exp (— ')(p(— 7 > ;ﬂk), (A2)
k=1

Tl

where sz = s+ ¢/v and a; is given by Eq. (53). For the two-sided
exponential pulse function defined by Eq. (A1), it is straightforward
to show that this process can be written as

K(T) A
(&, t) =D acp (* : ;flk)7 (A3)
past

Tk

where the pulse duration is given by the sum of the pulse rise and
fall times,

rﬁ vl

- [V‘[H + (1 - G')f] (V‘L’H — g'[) ’ (A4)

and the temporal asymmetry parameter is the ratio of the pulse rise
time and duration,

)V:(f—i-a(l—a)i. (A5)
VY|

In the limit ¢ — 0, we obtain the case of a one-sided exponential
pulse function with vanishing rise time, 2 — 0, and the pulse dura-
tion is the harmonic mean of the linear damping time and the radial
transit time given by Eq. (14). In the absence of linear damping, the
pulse duration is just the radial transit time, t = £/v, and the spatial
and temporal asymmetry parameters are the same, 1 = o.

There are some non-trivial criteria for the existence of the
mean value and higher-order statistical moments even for a degen-
erate velocity distribution. From Eq. (22), it is noted that the pulse
function ¢ must decrease sufficiently rapid and at least exponen-
tially for large 0 in order for the integral over 0 to converge. The
reason for this possible divergence is that pulses contribute to the
mean value and higher-order moments at any radial position prior
to their arrival at that position when the pulse function is non-
negative ahead of the pulse maximum. To illustrate this, consider
the two-sided exponential pulse function given by Eq. (Al). The
average is finite only if ¢ < vt //, that is, when the weighted radial
transit time of/v is shorter than the linear damping time 7.
Otherwise, the integral over posi 0 tive 0 diverges.

The radial variation and evolution of a pulse for the marginal
case af = vt is presented in Fig. 10 for the arrival time s; as well as
one radial transit time ¢/v before and after the arrival at x = 0.
When ¢ < vz, the pulse amplitude decay during the radial transit
is so weak that the mean value at any radial position is dominated
by the leading front from upstream pulses. This leads to a diver-
gence of the mean value of the process as well as all higher-order
moments. Clearly, for 0 < ¢ <1 and 0 < a// vy < 1, the pulse
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duration given by Eq. (A4) is positive definite. It is to be noted that
the requirement ¢ < vr/¢ must hold for all pulses in the process,
so fast and short length scale pulses set the strongest requirement
for the asymmetry parameter ¢. For one-sided exponential pulses,
there are no such requirements for the existence of the average.

APPENDIX B: END EFFECTS AND POISSON PROCESS

The end effects discussed in Sec. 111 C are clearly illustrated
with the example of a discrete uniform distribution of pulse veloci-
ties given by Eq. (55). Assuming T > fimax — "min> the pulse arrival
time distribution becomes

s¢ < =T/2 4 rmin,

_T/2+rmin < S¢ < _T/2+rma)c7

TP, (t) = —T/2 + max <S¢ < T/2 + Tinin, (B1)

T/2+ tmin < s¢ < T/2+ Tmax,

SN~ PN~ O

T/2+ rmax < s¢.

This distribution is presented in Fig. 11 for the case ¢ = T(v)/12 in
order to emphasize the presence of end effects. As stated in Sec.
11 C, the distribution of arrival times is 1/7T in the range from
—T/2 4 rmax to T/2 + rmin. Neglecting end effects by taking the
process duration T to be much larger than rmax — rmin, the arrival
times are uniformly distributed at all radial positions & considered.
However, the interval of uniform arrivals diminishes as v
becomes arbitrarily small, again revealing issues with low pulse
velocities. Nevertheless, we conclude that, except for end effects, the
pulse arrivals are uniformly distributed at all radial positions, and
the stochastic process retains its Poisson property with the same
rate at all positions. Moreover, it is straightforward to show that
the rate of the process is the same as at the reference position x = 0.
It should be noted that based on the results presented here, end
effects can easily be accounted for in realizations of the process.

—T/2 0 T/2
T T T

TP, (1)

0 s ———

1 1 1 1
—T/24rmin =T /24 rmax T /24 rmin T /24 rmax

t

FIG. 11. Distribution of pulse arrival times s; at the radial position & = T(v) /12 in
the case of a discrete uniform distribution of pulse velocities with minimum and
maximum radial transit times i, and rmay, respectively. The arrival time distribution
P, is uniform in the interval [—T /2 + riax, T/2 + fmin], indicated by the shaded
area in the figure.
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These arguments for uniform pulse arrival times do not make any
assumptions about the pulse function or distributions of the pulse
parameters, only that the pulse velocities are time-independent.

APPENDIX C: EXISTENCE OF CUMULANTS

Low pulse velocities lead to issues with the existence of cumu-
lants and moments of the process. Upon examination of Egs. (34)
and (41), it becomes clear that the expected value of the cumulants
may not exist for x < 0. In particular, consider for simplicity the
case of one-sided exponential pulses, a degenerate distribution of
sizes, and velocities with a probability distribution P,(v), which is
independent of the pulse amplitudes. With these assumptions, the
nth cumulant becomes

7)(a") JOO P,(v) nx
(%) = dv — ) exp (— 1, ci
ton () Ty Jo Y l+v1:”/€eXp< V‘L’H) €D
where P, is the marginal distri P,(u) = (1/u?)P,(1/u) bution of
pulse velocities. The integral over pulse velocities may not converge
for negative values of x. Notice that the fraction 1/(1 + v /¢) only

takes values between 0 and 1 and so does not affect the convergence
of the integral. Thus, we examine the convergence of the integral

L= J.OO dvP,(v)exp (n|x> , (C2)

0 V‘L’H

for which we use absolute value to emphasize that x < 0. Making a
change of variable defined by u=1/v and using the relation
P,(u) = (1/u*)P,(1/u), the integral can be written as

L= JOC duP,(u) exp (nux|> . (C3)
0 T

In order for this integral to converge for any radial position x and
any cum u — oo ulant order n, the distribution P,(u) needs to
decay faster than exponential for large u. Indeed, P, (1) ~ exp (—u)
for u — oo is not sufficient, since the integral will diverge for suffi-
ciently large |x| or n. Therefore, we require at least a stretched expo-
nential behavior, P,(u) ~ exp (—cut), for large u for some { > 1,
or equivalently P, (v) ~ exp (—c/v*) for v — 0 for some constant c.
For most purposes, it is sufficient to impose the simpler condition
that finite values of the probability distribution P,(v) should not
reach v = 0, in other words, there is a minimum velocity Vi, such
that P,(v) = 0 for v < Vpin.

In summary, care should be taken when using this model to
interpret profiles for negative radial positions, x < 0. The reason for
the divergence of cumulants is the dominant contribution of slow
pulses. Indeed, in the case of time-independent pulse velocities, we

have from Eq. (6)
A(t) = aexp ( )f/‘(rt)), (C4)

where X(t) = vt is the pulse location at time ¢. With the amplitudes
specified as a at the reference position x = 0, slow pulses will have
excessively large amplitudes for negative x, resulting in divergence
which first arrests higher-order cumulants as they have a stronger
dependence on the pulse amplitudes. The same condition for con-
vergence of the cumulants applies to two-sided exponential pulses.
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APPENDIX D: SIZE DISTRIBUTION

For completeness, we present here the results for a discrete
uniform distribution of pulse sizes in the case where all pulses have
the same velocity. Denoting the width parameter for this distribu-
tion by w, the pulse size probability density function is given by

PZ(Z) = [5(€_€min) +5(€_‘€max)]7 (Dl)
where liin = (€)(1 = W), £iax = (€)(1+w), and (€) = (Crin + Limax) /2.
According to Eq. (41), a distribution of pulse sizes does not change the
radial variation of the cumulants and moments for exponential pulses.
When the pulse sizes are independent of the amplitudes, the cumulants
for the discrete uniform distribution are given by

N | =

74(a") nx
n(x) = 2 Lexp (——), D2
) = 4 (1) o
where the average pulse duration is given by
1
9= 5 [t(lmin) + T(lmax)], (D3)

and the size-dependent pulse duration is t(£) = t)¢/(vr) + £).
Thus, a distribution of pulse sizes does not change the radial varia-
tion of the moments. In the absence of linear damping, the pulse
duration is given by (¢) /v, independent of the width parameter for
the size distribution.

APPENDIX E: NON-UNIFORM DISCRETE VELOCITY
DISTRIBUTION

In this Appendix, we present some results obtained for a gen-
eralization of the velocity distribution considered in this manu-
script. We consider a non-uniform two-velocity distribution,

Py(v) = q0(v — Vmin) + (1 — q)0(V — Vimax), (E1)

where g in the range 0 < g <1 is the probability that the velocity
attains the value vy,. For g = 1/2, this distribution is identical to Eq.
(55). The cumulants are a straightforward generalization of Eq. (58),

Fn () _ {ah) |:q'[(vmin)exp <_ nx )

NTy VminT||

(1 — ) t(Vimax) €Xp (_ vm’:xfu)} ’ (E2)

where each term is weighted with the probability of the given velocity.
If the amplitudes of the pulses follow an exponential distribution at
x = 0, the amplitude distribution at radial position x is given by

1—
P,(a;x) = aq- exp (_ai-) + ., qexp (_aa >7 (E3)

where as before

Gmin(%) = (a0) exp (— * ) (E4)

VminT||

e () = (a0) exp <7 x ) (E5)

VmaxTH
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This is known as a bi-exponential distribution with coefficients g,
Amin> and dmax. The average amplitude decreases exponentially with
radius and is given by (a)(x) = qamin(x) + (1 — g)Amax(x).

REFERENCES

'p. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Institute of
Physics Publishing, 2000).

2W. Fundamenski, Power Exhaust in Fusion Plasmas (Cambridge University
Press, 2014).

3S. Krasheninnikov, A. Smolyakov, and A. Kukushkin, On the Edge of
Magnetic Fusion Devices (Springer, 2020).

“F. Militello, Boundary Plasma Physics: An Accessible Guide to Transport,
Detachment, and Divertor Design (Springer, 2023).

SR. A. Pitts, J. P. Coad, D. P. Coster, G. Federici, W. Fundamenski, J. Horacek,
K. Krieger, A. Kukushkin, J. Likonen, G. F. Matthews, M. Rubel, and J. D.
Strachan, “Material erosion and migration in tokamaks,” Plasma Phys.
Controlled Fusion 47, B303 (2005).

%B. Lipschultz, X. Bonnin, G. Counsell, A. Kallenbach, A. Kukushkin, K.
Krieger, A. Leonard, A. Loarte, R. Neu, R. A. Pitts, T. Rognlien, J. Roth, C.
Skinner, J. L. Terry, E. Tsitrone, D. Whyte, S. Zweben, N. Asakura, D. Coster,
R. Doerner, R. Dux, G. Federici, M. Fenstermacher, W. Fundamenski, P.
Ghendrih, A. Herrmann, J. Hu, S. Krasheninnikov, G. Kirnev, A. Kreter, V.
Kurnaev, B. Labombard, S. Lisgo, T. Nakano, N. Ohno, H. D. Pacher, . Paley,
Y. Pan, G. Pautasso, V. Philipps, V. Rohde, D. Rudakov, P. Stangeby, S.
Takamura, T. Tanabe, Y. Yang, and S. Zhu, “Plasma-surface interaction,
scrape-off layer and divertor physics: Implications for ITER,” Nucl. Fusion
47,1189 (2007).

7]. N. Brooks, J. P. Allain, R. P. Doerner, A. Hassanein, R. Nygren, T. D.
Rognlien, and D. G. Whyte, “Plasma-surface interaction issues of an all-metal
ITER,” Nucl. Fusion 49, 035007 (2009).

8Y. Marandet, A. Mekkaoui, D. Reiter, P. Bérner, P. Genesio, F. Catoire, ].
Rosato, H. Capes, L. Godbert-Mouret, M. Koubiti, and R. Stamm, “Transport
of neutral particles in turbulent scrape-off layer plasmas,” Nucl. Fusion 51,
083035 (2011).

9G. Birkenmeier, P. Manz, D. Carralero, F. M. Laggner, G. Fuchert, K. Krieger,
H. Maier, F. Reimold, K. Schmid, R. Dux, T. Piitterich, M. Willensdorfer, and
E. Wolfrum, “Filament transport, warm ions and erosion in ASDEX Upgrade
L-modes,” Nucl. Fusion 55, 033018 (2015).

TOH. Meyer, T. Eich, M. Beurskens, S. Coda, and A. Hakola, “Overview of pro-
gress in European medium sized tokamaks towards an integrated plasma-
edge/wall solution,” Nucl. Fusion 57, 102014 (2017).

"IN. Asakura, Y. Koide, K. Itami, N. Hosogane, K. Shimizu, S. Tsuji-Tio, S.
Sakurai, and A. Sakasai, “SOL plasma profiles under radiative and
detached divertor conditions in JT-60U,” J. Nucl. Mater. 241-243, 559
(1997).

128, LaBombard, J. A. Goetz, I. Hutchinson, D. Jablonski, J. Kesner, C. Kurz, B.
Lipschultz, G. M. McCracken, A. Niemczewski, J. Terry, A. Allen, R. L. Boivin,
F. Bombarda, P. Bonoli, C. Christensen, C. Fiore, D. Garnier, S. Golovato, R.
Granetz, M. Greenwald, S. Horne, A. Hubbard, J. Irby, D. Lo, D. Lumma, E.
Marmar, M. May, A. Mazurenko, R. Nachtrieb, H. Ohkawa, P. O’Shea, M.
Porkolab, J. Reardon, J. Rice, J. Rost, J. Schachter, J. Snipes, J. Sorci, P. Stek, Y.
Takase, Y. Wang, R. Watterson, J. Weaver, B. Welch, and S. Wolfe,
“Experimental investigation of transport phenomena in the scrape-off layer
and divertor,” J. Nucl. Mater. 241-243, 149 (1997).

138, LaBombard, M. V. Umansky, R. L. Boivin, J. A. Goetz, ]. Hughes, B.
Lipschultz, D. Mossessian, C. S. Pitcher, and J. L. Terry, “Cross-field plasma
transport and main-chamber recycling in diverted plasmas on Alcator C-
Mod,” Nucl. Fusion 40, 2041 (2000).

B. LaBombard, R. L. Boivin, M. Greenwald, J. Hughes, B. Lipschultz, D.
Mossessian, C. S. Pitcher, J. L. Terry, and S. J. Zweben, “Particle transport in
the scrape-off layer and its relationship to discharge density limit in Alcator
C-Mod,” Phys. Plasmas 8, 2107 (2001).

'5B. Lipschultz, B. LaBombard, C. S. Pitcher, and R. Boivin, “Investigation of
the origin of neutrals in the main chamber of Alcator C-Mod,” Plasma Phys.
Controlled Fusion 44, 733 (2002).

Phys. Plasmas 30, 042518 (2023); doi: 10.1063/5.0144885
© Author(s) 2023

30, 042518-15

L1:%€:20 €202 AInr 61


https://doi.org/10.1088/0741-3335/47/12B/S22
https://doi.org/10.1088/0741-3335/47/12B/S22
https://doi.org/10.1088/0029-5515/47/9/016
https://doi.org/10.1088/0029-5515/49/3/035007
https://doi.org/10.1088/0029-5515/51/8/083035
https://doi.org/10.1088/0029-5515/55/3/033018
https://doi.org/10.1088/1741-4326/aa6084
https://doi.org/10.1016/S0022-3115(96)00564-8
https://doi.org/10.1016/S0022-3115(96)00502-8
https://doi.org/10.1088/0029-5515/40/12/308
https://doi.org/10.1063/1.1352596
https://doi.org/10.1088/0741-3335/44/6/309
https://doi.org/10.1088/0741-3335/44/6/309
https://scitation.org/journal/php

Physics of Plasmas

16, Lipschultz, D. Whyte, and B. LaBombard, “Comparison of particle trans-
port in the scrape-off layer plasmas of Alcator C-Mod and DIII-D,” Plasma
Phys. Controlled Fusion 47, 1559 (2005).

7D. G. Whyte, B. L. Lipschultz, P. C. Stangeby, J. Boedo, D. L. Rudakov, J. G.
Watkins, and W. P. West, “The magnitude of plasma flux to the main-wall in
the DIII-D tokamak,” Plasma Phys. Controlled Fusion 47, 1579 (2005).

8D, Carralero, H. W. Miiller, M. Groth, M. Komm, J. Adamek, G. Birkenmeier,
M. Brix, F. Janky, P. Hacek, S. Marsen, F. Reimold, C. Silva, U. Stroth, M.
Wischmeier, and E. Wolfrum, “Implications of high density operation on SOL
transport: A multimachine investigation,” J. Nucl. Mater. 463, 123 (2015).

9. Militello, L. Garzotti, J. Harrison, J. T. Omotani, R. Scannell, S. Allan, A.
Kirk, I. Lupelli, and A. J. Thornton, “Characterisation of the L-mode scrape
off layer in MAST: Decay lengths,” Nucl. Fusion 56, 016006 (2016).

20A. Wynn, B. Lipschultz, 1. Cziegler, J. Harrison, A. Jaervinen, G. F. Matthews,
J. Schmitz, B. Tal, M. Brix, C. Guillemaut, D. Frigione, A. Huber, E. Joffrin,
U. Kruzei, F. Militello, A. Nielsen, N. R. Walkden, and S. Wiesen,
“Investigation into the formation of the scrape-off layer density shoulder in
JET ITER-like wall L-mode and H-mode plasmas,” Nucl. Fusion 58, 056001
(2018).

21G. Y. Antar, S. L Krasheninnikov, P. Devynck, R. P. Doerner, E. M.
Hollmann, J. A. Boedo, S. C. Luckhardt, and R. W. Conn, “Experimental evi-
dence of intermittent convection in the edge of magnetic confinement
devices,” Phys. Rev. Lett. 87, 65001 (2001).

22j. A. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G. McKee,
G. Tynan, M. Schaffer, P. Stangeby, P. West, S. Allen, T. Evans, R. Fonck, E.
Hollmann, A. Leonard, A. Mahdavi, G. Porter, M. Tillack, and G. Antar,
“Transport by intermittent convection in the boundary of the DIII-D
tokamak,” Phys. Plasmas 8, 4826 (2001).

23D. L. Rudakov, J. A. Boedo, R. A. Moyer, S. Krasheninnikov, A. W. Leonard,
M. A. Mahdavi, G. R. McKee, G. D. Porter, P. C. Stangeby, J. G. Watkins, W.
P. West, D. G. Whyte, and G. Antar, “Fluctuation-driven transport in the
DIII-D boundary,” Plasma Phys. Controlled Fusion 44, 717 (2002).

24G. Y. Antar, G. Counsell, Y. Yu, B. LaBombard, and P. Devynck,
“Universality of intermittent convective transport in the scrape-off layer of
magnetically confined devices,” Phys. Plasmas 10, 419 (2003).

25]. A. Boedo, D. L. Rudakov, R. J. Colchin, R. A. Moyer, S. Krasheninnikov, D.
G. Whyte, G. R. McKee, G. Porter, M. J. Schaffer, P. C. Stangeby, W. P. West,
S. L. Allen, and A. W. Leonard, “Intermittent convection in the boundary of
DIII-D,” J. Nucl. Mater. 313-316, 813 (2003).

26D, L. Rudakov, J. A. Boedo, R. A. Moyer, N. H. Brooks, R. P. Doerner, T. E.
Evans, M. E. Fenstermacher, M. Groth, E. M. Hollmann, S. Krasheninnikov,
C.J. Lasnier, M. A. Mahdavi, G. R. McKee, A. McLean, P. C. Stangeby, W. R.
Wampler, J. G. Watkins, W. P. West, D. G. Whyte, and C. P. Wong, “Far
scrape-off layer and near wall plasma studies in DIII-D,” J. Nucl. Mater.
337-339, 717 (2005).

27G. S. Kirnev, V. P. Budaev, S. A. Grashin, L. N. Khimchenko, and D. V.
Sarytchev, “Comparison of plasma turbulence in the low- and high-field
scrape-off layers in the T-10 tokamak,” Nucl. Fusion 45, 459 (2005).

288, LaBombard, J. W. Hughes, D. Mossessian, M. Greenwald, B. Lipschultz,
and J. L. Terry, “Evidence for electromagnetic fluid drift turbulence control-
ling the edge plasma state in the Alcator C-Mod tokamak,” Nucl. Fusion 45,
1658 (2005).

29]. Horacek, R. A. Pitts, and J. P. Graves, “Overview of edge electrostatic turbu-
lence experiments on TCV,” Czech. J. Phys. 55, 271 (2005).

300. E. Garcia, J. Horacek, R. A. Pitts, A. H. Nielsen, W. Fundamenski, J. P.
Graves, V. Naulin, and J. J. Rasmussen, “Interchange turbulence in the TCV
scrape-off layer,” Plasma Phys. Controlled Fusion 48, L1 (2006).

310. E. Garcia, J. Horacek, R. A. Pitts, A. H. Nielsen, W. Fundamenski, V.
Naulin, and J. J. Rasmussen, “Fluctuations and transport in the TCV scrape-
off layer,” Nucl. Fusion 47, 667 (2007).

320, E. Garcia, R. A. Pitts, J. Horacek, J. Madsen, V. Naulin, A. H. Nielsen, and
J. J. Rasmussen, “Collisionality dependent transport in TCV SOL plasmas,”
Plasma Phys. Controlled Fusion 49, B47 (2007).

33G. Y. Antar, M. Tsalas, E. Wolfrum, and V. Rohde, “Turbulence during H-
and L-mode plasmas in the scrape-off layer of the ASDEX Upgrade tokamak,”
Plasma Phys. Controlled Fusion 50, 095012 (2008).

ARTICLE scitation.org/journal/php

34H. Tanaka, N. Ohno, N. Asakura, Y. Tsuji, H. Kawashima, S. Takamura, and
Y. Uesugi, “Statistical analysis of fluctuation characteristics at high- and low-
field sides in L-mode SOL plasmas of JT-60U,” Nucl. Fusion 49, 065017
(2009).

35C. Silva, B. Gongalves, C. Hidalgo, M. A. Pedrosa, W. Fundamenski, M.
Stamp, and R. A. Pitts, “Intermittent transport in the JET far-SOL,” J. Nucl.
Mater. 390-391, 355 (2009).

367 Horacek, J. Adamek, H. W. Muller, J. Seidl, A. H. Nielsen, V. Rohde, F.
Mehlmann, C. Ionita, and E. Havlickova, “Interpretation of fast measure-
ments of plasma potential, temperature and density in SOL of ASDEX
Upgrade,” Nucl. Fusion 50, 105001 (2010).

37N. Yan, A. H. Nielsen, G. S. Xu, V. Naulin, J. J. Rasmussen, J. Madsen, H. Q.
Wang, S. C. Liu, W. Zhang, L. Wang, and B. N. Wan, “Statistical characteriza-
tion of turbulence in the boundary plasma of EAST,” Plasma Phys.
Controlled Fusion 55, 115007 (2013).

38D, Carralero, G. Birkenmeier, H. W. Miiller, P. Manz, P. Demarne, S. H.
Miiller, F. Reimold, U. Stroth, M. Wischmeier, and E. Wolfrum, “An experi-
mental investigation of the high density transition of the scrape-off layer
transport in ASDEX Upgrade,” Nucl. Fusion 54, 123005 (2014).

39D, Carralero, J. Madsen, S. A. Artene, M. Bernert, G. Birkenmeier, T. Eich, G.
Fuchert, F. Laggner, V. Naulin, P. Manz, N. Vianello, and E. Wolfrum, “A
study on the density shoulder formation in the SOL of H-mode plasmas,”
Nucl. Mater. Energy 12, 1189 (2017).

“ON. Vianello, C. Tsui, C. Theiler, S. Allan, J. Boedo, B. Labit, H. Reimerdes, K.
Verhaegh, W. A. J. Vijvers, N. Walkden, S. Costea, J. Kovacic, C. Ionita, V.
Naulin, A. H. Nielsen, J. J. Rasmussen, B. Schneider, R. Schrittwieser, M.
Spolaore, D. Carralero, J. Madsen, B. Lipschultz, F. Militello, TCV Team, and
EUROfusion MST1 Team, “Modification of SOL profiles and fluctuations
with line-average density and divertor flux expansion in TCV,” Nucl. Fusion
57, 116014 (2017).

“1D. Carralero, M. Siccinio, M. Komm, S. A. Artene, F. A. D’Isa, J. Adamek, L.
Aho-Mantila, G. Birkenmeier, M. Brix, G. Fuchert, M. Groth, T. Lunt, P.
Manz, J. Madsen, S. Marsen, H. W. Miiller, U. Stroth, H. J. Sun, N. Vianello,
M. Wischmeier, and E. Wolfrum, “Recent progress towards a quantitative
description of filamentary SOL transport,” Nucl. Fusion 57, 056044 (2017).

“ZR. Kube, O. E. Garcia, A. Theodorsen, A. Q. Kuang, B. LaBombard, J. L.
Terry, and D. Brunner, “Statistical properties of the plasma fluctuations and
turbulent cross-field fluxes in the outboard mid-plane scrape-off layer of
Alcator C-Mod,” Nucl. Mater. Energy 18, 193 (2019).

“3N. Vianello, D. Carralero, C. K. Tsui, V. Naulin, M. Agostini, I. Cziegler, B.
Labit, C. Theiler, E. Wolfrum, D. Aguiam, S. Allan, M. Bernert, J. Boedo, S.
Costea, H. D. Oliveira, O. Fevrier, J. Galdon-Quiroga, G. Grenfell, A. Hakola,
C. Ionita, H. Isliker, A. Karpushov, J. Kovacic, B. Lipschultz, R. Maurizio, K.
McClements, F. Militello, A. H. Nielsen, J. Olsen, J. J. Rasmussen, T.
Ravensbergen, H. Reimerdes, B. Schneider, R. Schrittwieser, E. Seliunin, M.
Spolaore, K. Verhaegh, J. Vicente, N. Walkden, W. Zhang, ASDEX Upgrade
Team, TCV Team, and EUROfusion MST1 Team. “Scrape-off layer transport
and filament characteristics in high-density tokamak regimes,” Nucl. Fusion
60, 016001 (2020).

“*A. Stagni, N. Vianello, C. K. Tsui, C. Colandrea, S. Gorno, M. Bernert, . A.
Boedo, D. Brida, G. Falchetto, A. Hakola, G. Harrer, H. Reimerdes, C. Theiler,
E. Tsitrone, N. Walkden, TCV Team, and EUROfusion MST1 Team.
“Dependence of scrape-off layer profiles and turbulence on gas fuelling in
high density H-mode regimes in TCV,” Nucl. Fusion 62, 096031 (2022).

“SA. Theodorsen, O. E. Garcia, J. Horacek, R. Kube, and R. A. Pitts, “Scrape-off
layer turbulence in TCV: Evidence in support of stochastic modelling,”
Plasma Phys. Controlled Fusion 58, 044006 (2016).

460. E. Garcia, R. Kube, A. Theodorsen, J. G. Bak, S. H. Hong, H. S. Kim,
KSTAR Project Team, and R. A. Pitts, “SOL width and intermittent fluctua-
tions in KSTAR,” Nucl. Mater. Energy 12, 36 (2017).

“7N. R. Walkden, A. Wynn, F. Militello, B. Lipschultz, G. Matthews, C.
Guillemaut, J. Harrison, D. Moulton, and JET Contributors, “Interpretation
of scrape-off layer profile evolution and first-wall ion flux statistics on JET
using a stochastic framework based on filamentary motion,” Plasma Phys.
Controlled Fusion 59, 085009 (2017).

“8A. Q. Kuang, B. LaBombard, D. Brunner, O. E. Garcia, R. Kube, and A.
Theodorsen, “Plasma fluctuations in the scrape-off layer and at the divertor

Phys. Plasmas 30, 042518 (2023); doi: 10.1063/5.0144885
© Author(s) 2023

30, 042518-16

L1:%€:20 €202 AInr 61


https://doi.org/10.1088/0741-3335/47/10/001
https://doi.org/10.1088/0741-3335/47/10/001
https://doi.org/10.1088/0741-3335/47/10/002
https://doi.org/10.1016/j.jnucmat.2014.10.019
https://doi.org/10.1088/0029-5515/56/1/016006
https://doi.org/10.1088/1741-4326/aaad78
https://doi.org/10.1103/PhysRevLett.87.065001
https://doi.org/10.1063/1.1406940
https://doi.org/10.1088/0741-3335/44/6/308
https://doi.org/10.1063/1.1536166
https://doi.org/10.1016/S0022-3115(02)01443-5
https://doi.org/10.1016/j.jnucmat.2004.10.094
https://doi.org/10.1088/0029-5515/45/6/007
https://doi.org/10.1088/0029-5515/45/12/022
https://doi.org/10.1007/s10582-005-0040-z
https://doi.org/10.1088/0741-3335/48/1/L01
https://doi.org/10.1088/0029-5515/47/7/017
https://doi.org/10.1088/0741-3335/49/12B/S03
https://doi.org/10.1088/0741-3335/50/9/095012
https://doi.org/10.1088/0029-5515/49/6/065017
https://doi.org/10.1016/j.jnucmat.2009.01.068
https://doi.org/10.1016/j.jnucmat.2009.01.068
https://doi.org/10.1088/0029-5515/50/10/105001
https://doi.org/10.1088/0741-3335/55/11/115007
https://doi.org/10.1088/0741-3335/55/11/115007
https://doi.org/10.1088/0029-5515/54/12/123005
https://doi.org/10.1016/j.nme.2016.11.016
https://doi.org/10.1088/1741-4326/aa7db3
https://doi.org/10.1088/1741-4326/aa64b3
https://doi.org/10.1016/j.nme.2018.11.021
https://doi.org/10.1088/1741-4326/ab423e
https://doi.org/10.1088/1741-4326/ac8234
https://doi.org/10.1088/0741-3335/58/4/044006
https://doi.org/10.1016/j.nme.2016.11.008
https://doi.org/10.1088/1361-6587/aa7365
https://doi.org/10.1088/1361-6587/aa7365
https://scitation.org/journal/php

Physics of Plasmas

target in Alcator C-Mod and their relationship to divertor collisionality and
density shoulder formation,” Nucl. Mater. Energy 19, 295 (2019).

“9R. Kube, A. Theodorsen, O. E. Garcia, D. Brunner, B. Labombard, and J. L.
Terry, “Comparison between mirror Langmuir probe and gas-puff imaging
measurements of intermittent fluctuations in the Alcator C-Mod scrape-off
layer,” J. Plasma Phys. 86, 905860519 (2020).

SOM. Zurita, W. A. Hernandez, C. Crepaldi, F. A. C. Pereira, and Z. O.
Guimaraes-Filho, “Stochastic modeling of plasma fluctuations with bursts
and correlated noise in TCABR,” Phys. Plasmas 29, 052303 (2022).

510. E. Garcia, 1. Cziegler, R. Kube, B. LaBombard, and J. L. Terry, “Burst statis-
tics in Alcator C-Mod SOL turbulence,” J. Nucl. Mater. 438, S180 (2013).

520. E. Garcia, S. M. Fritzner, R. Kube, 1. Cziegler, B. Labombard, and J. L.
Terry, “Intermittent fluctuations in the Alcator C-Mod scrape-off layer,”
Phys. Plasmas 20, 055901 (2013).

530. E. Garcia, J. Horacek, and R. A. Pitts, “Intermittent fluctuations in the
TCV scrape-off layer,” Nucl. Fusion 55, 062002 (2015).

S“R. Kube, A. Theodorsen, O. E. Garcia, B. Labombard, and J. L. Terry,
“Fluctuation statistics in the scrape-off layer of Alcator C-Mod,” Plasma Phys.
Controlled Fusion 58, 054001 (2016).

55A. Theodorsen, O. E. Garcia, R. Kube, B. LaBombard, and J. L. Terry,
“Relationship between frequency power spectra and intermittent, large-
amplitude bursts in the Alcator C-Mod scrape-off layer,” Nucl. Fusion 57,
114004 (2017).

S6R. Kube, O. E. Garcia, A. Theodorsen, D. Brunner, A. Q. Kuang, B.
LaBombard, and J. L. Terry, “Intermittent electron density and temperature
fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer,”
Plasma Phys. Controlled Fusion 60, 065002 (2018).

570. E. Garcia, R. Kube, A. Theodorsen, B. LaBombard, and J. L. Terry,
“Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic
and high confinement mode plasmas,” Phys. Plasmas 25, 056103 (2018).

584, Theodorsen, O. E. Garcia, R. Kube, B. Labombard, and J. L. Terry,
“Universality of Poisson-driven plasma fluctuations in the Alcator C-Mod
scrape-off layer,” Phys. Plasmas 25, 122309 (2018).

S9A. Bencze, M. Berta, A. Buzds, P. Hacek, J. Krbec, and M. Szutyanyi,
“Characterization of edge and scrape-off layer fluctuations using the fast Li-
BES system on COMPASS,” Plasma Phys. Controlled Fusion 61, 085014
(2019).

695, J. Zweben, M. Lampert, and J. R. Myra, “Temporal structure of blobs in
NSTX,” Phys. Plasmas 29, 072504 (2022).

Slg, J. Zweben, “Search for coherent structure within tokamak plasma
turbulence,” Phys. Fluids 28, 974 (1984).

62g, J. Zweben, D. P. Stotler, J. L. Terry, B. Labombard, M. Greenwald, M.
Muterspaugh, C. S. Pitcher, K. Hallatschek, R. J. Maqueda, B. Rogers, J. L.
Lowrance, V. J. Mastrocola, and G. F. Renda, “Edge turbulence imaging in the
Alcator C-Mod tokamak,” Phys. Plasmas 9, 1981 (2002).

835 L. Terry, S. J. Zweben, K. Hallatschek, B. LaBombard, R. ]. Maqueda, B. Bai,
C. J. Boswell, M. Greenwald, D. Kopon, W. M. Nevins, C. S. Pitcher, B. N.
Rogers, D. P. Stotler, and X. Q. Xu, “Observations of the turbulence in the
scrape-off-layer of Alcator C-Mod and comparisons with simulation,” Phys.
Plasmas 10, 1739 (2003).

G4g, J. Zweben, R. J. Maqueda, D. P. Stotler, A. Keesee, J. Boedo, C. E. Bush, S.
M. Kaye, B. LeBlanc, J. L. Lowrance, V. J. Mastrocola, R. Maingi, N. Nishino,
G. Renda, D. W. Swain, and J. B. Wilgen, “High-speed imaging of edge turbu-
lence in NSTX,” Nucl. Fusion 44, 134 (2004).

857 L. Terry, S. J. Zweben, O. Grulke, M. J. Greenwald, and B. LaBombard,
“Velocity fields of edge/scrape-off-layer turbulence in Alcator C-Mod,”
J. Nucl. Mater. 337-339, 322 (2005).

80, Grulke, J. L. Terry, B. LaBombard, and S. J. Zweben, “Radially propagating
fluctuation structures in the scrape-off layer of Alcator C-Mod,” Phys.
Plasmas 13, 012306 (2006).

7). L. Terry, S. J. Zweben, M. V. Umansky, 1. Cziegler, O. Grulke, B.
LaBombard, and D. P. Stotler, “Spatial structure of scrape-off-layer filaments
near the midplane and X-point regions of Alcator-C-Mod,” J. Nucl. Mater.
390-391, 339 (2009).

®8N. B. Ayed, A. Kirk, B. Dudson, S. Tallents, R. G. Vann, and H. R. Wilson,
“Inter-ELM filaments and turbulent transport in the Mega-Amp Spherical
Tokamak,” Plasma Phys. Controlled Fusion 51, 035016 (2009).

ARTICLE scitation.org/journal/php

SR, J. Maqueda, D. P. Stotler, and S. J. Zweben, “Intermittency in the scrape-
off layer of the National Spherical Torus Experiment during H-mode con-
finement,” J. Nucl. Mater. 415, S459 (2011).

7OM. Agostini, J. L. Terry, P. Scarin, and S. J. Zweben, “Edge turbulence in dif-
ferent density regimes in Alcator C-Mod experiment,” Nucl. Fusion 51,
053020 (2011).

71S. Banerjee, H. Zushi, N. Nishino, K. Hanada, S. K. Sharma, H. Honma, .
Tashima, T. Inoue, K. Nakamura, H. Idei, M. Hasegawa, and A. Fujisawa,
“Statistical features of coherent structures at increasing magnetic field pitch
investigated using fast imaging in QUEST,” Nucl. Fusion 52, 123016 (2012).

72R. Kube, O. E. Garcia, B. LaBombard, J. L. Terry, and S. J. Zweben, “Blob sizes
and velocities in the Alcator C-Mod scrape-off layer,” J. Nucl. Mater. 438,
S505 (2013).

730. Grulke, J. L. Terry, I Criegler, B. Labombard, and O. E. Garcia,
“Experimental investigation of the parallel structure of fluctuations in the
scrape-off layer of Alcator C-Mod,” Nucl. Fusion 54, 043012 (2014).

74G. Fuchert, G. Birkenmeier, D. Carralero, T. Lunt, P. Manz, H. W. Miiller, B.
Nold, M. Ramisch, V. Rohde, and U. Stroth, “Blob properties in L- and H-
mode from gas-puff imaging in ASDEX Upgrade,” Plasma Phys. Controlled
Fusion 56, 125001 (2014).

75S. J. Zweben, J. R. Myra, W. M. Davis, D. A. D’Ippolito, T. K. Gray, S. M.
Kaye, B. P. LeBlanc, R. J. Maqueda, D. A. Russell, and D. P. Stotler, “Blob
structure and motion in the edge and SOL of NSTX,” Plasma Phys.
Controlled Fusion 58, 044007 (2016).

765, 1. Krasheninnikov, “On scrape off layer plasma transport,” Phys. Lett. A
283, 368 (2001).

77D. A. D’Ippolito, J. R. Myra, and S. I. Krasheninnikov, “Cross-field blob trans-
port in tokamak scrape-off-layer plasmas,” Phys. Plasmas 9, 222 (2002).

78N. Bian, S. Benkadda, J. V. Paulsen, and O. E. Garcia, “Blobs and front propa-
gation in the scrape-off layer of magnetic confinement devices,” Phys.
Plasmas 10, 671 (2003).

790. E. Garcia, N. H. Bian, V. Naulin, A. H. Nielsen, and J. J. Rasmussen,
“Mechanism and scaling for convection of isolated structures in nonuni-
formly magnetized plasmas,” Phys. Plasmas 12, 090701 (2005).

800, E. Garcia, N. H. Bian, and W. Fundamenski, “Radial interchange motions
of plasma filaments,” Phys. Plasmas 13, 082309 (2006).

81, R. Myra, D. A. Russell, and D. A. D’Ippolito, “Collisionality and magnetic
geometry effects on tokamak edge turbulent transport. I. A two-region model
with application to blobs,” Phys. Plasmas 13, 112502 (2006).

82D, A. D’Ippolito, J. R. Myra, and S. J. Zweben, “Convective transport by inter-
mittent blob-filaments: Comparison of theory and experiment,” Phys.
Plasmas 18, 060501 (2011).

83]. Madsen, O. E. Garcia, J. Strk Larsen, V. Naulin, A. H. Nielsen, and J. J.
Rasmussen, “The influence of finite Larmor radius effects on the radial inter-
change motions of plasma filaments,” Phys. Plasmas 18, 112504 (2011).

84R. Kube and O. E. Garcia, “Velocity scaling for filament motion in scrape-off
layer plasmas,” Phys. Plasmas 18, 102314 (2011).

85p, Higgins, B. Hnat, A. Kirk, P. Tamain, and N. B. Ayed, “Determining
advection mechanism of plasma filaments in the scrape-off layer of MAST,”
Plasma Phys. Controlled Fusion 54, 015002 (2012).

86p, Manz, D. Carralero, G. Birkenmeier, H. W. Miiller, S. H. Miiller, G.
Fuchert, B. D. Scott, and U. Stroth, “Filament velocity scaling laws for warm
ions,” Phys. Plasmas 20, 102307 (2013).

87F. D. Halpern, A. Cardellini, P. Ricci, S. Jolliet, J. Loizu, and A. Mosetto,
“Three-dimensional simulations of blob dynamics in a simple magnetized
torus,” Phys. Plasmas 21, 022305 (2014).

881 Easy, F. Militello, J. Omotani, B. Dudson, E. Havlickova, P. Tamain, V.
Naulin, and A. H. Nielsen, “Three dimensional simulations of plasma fila-
ments in the scrape off layer: A comparison with models of reduced
dimensionality,” Phys. Plasmas 21, 122515 (2014).

891, Easy, F. Militello, J. Omotani, N. R. Walkden, and B. Dudson,
“Investigation of the effect of resistivity on scrape off layer filaments using
three-dimensional simulations,” Phys. Plasmas 23, 012512 (2016).

9OM. Held, M. Wiesenberger, J. Madsen, and A. Kendl, “The influence of tem-
perature dynamics and dynamic finite ion Larmor radius effects on seeded
high amplitude plasma blobs,” Nucl. Fusion 56, 126005 (2016).

Phys. Plasmas 30, 042518 (2023); doi: 10.1063/5.0144885
© Author(s) 2023

30, 042518-17

L1:%€:20 €202 AInr 61


https://doi.org/10.1016/j.nme.2019.02.038
https://doi.org/10.1017/S0022377820001282
https://doi.org/10.1063/5.0081281
https://doi.org/10.1016/j.jnucmat.2013.01.054
https://doi.org/10.1063/1.4802942
https://doi.org/10.1088/0029-5515/55/6/062002
https://doi.org/10.1088/0741-3335/58/5/054001
https://doi.org/10.1088/0741-3335/58/5/054001
https://doi.org/10.1088/1741-4326/aa7e4c
https://doi.org/10.1088/1361-6587/aab726
https://doi.org/10.1063/1.5018709
https://doi.org/10.1063/1.5064744
https://doi.org/10.1088/1361-6587/ab24a0
https://doi.org/10.1063/5.0097282
https://doi.org/10.1063/1.865069
https://doi.org/10.1063/1.1445179
https://doi.org/10.1063/1.1564090
https://doi.org/10.1063/1.1564090
https://doi.org/10.1088/0029-5515/44/1/016
https://doi.org/10.1016/j.jnucmat.2004.10.092
https://doi.org/10.1063/1.2164991
https://doi.org/10.1063/1.2164991
https://doi.org/10.1016/j.jnucmat.2009.01.152
https://doi.org/10.1088/0741-3335/51/3/035016
https://doi.org/10.1016/j.jnucmat.2010.11.002
https://doi.org/10.1088/0029-5515/51/5/053020
https://doi.org/10.1088/0029-5515/52/12/123016
https://doi.org/10.1016/j.jnucmat.2013.01.104
https://doi.org/10.1088/0029-5515/54/4/043012
https://doi.org/10.1088/0741-3335/56/12/125001
https://doi.org/10.1088/0741-3335/56/12/125001
https://doi.org/10.1088/0741-3335/58/4/044007
https://doi.org/10.1088/0741-3335/58/4/044007
https://doi.org/10.1016/S0375-9601(01)00252-3
https://doi.org/10.1063/1.1426394
https://doi.org/10.1063/1.1541021
https://doi.org/10.1063/1.1541021
https://doi.org/10.1063/1.2044487
https://doi.org/10.1063/1.2336422
https://doi.org/10.1063/1.2364858
https://doi.org/10.1063/1.3594609
https://doi.org/10.1063/1.3594609
https://doi.org/10.1063/1.3658033
https://doi.org/10.1063/1.3647553
https://doi.org/10.1088/0741-3335/54/1/015002
https://doi.org/10.1063/1.4824799
https://doi.org/10.1063/1.4864324
https://doi.org/10.1063/1.4904207
https://doi.org/10.1063/1.4940330
https://doi.org/10.1088/0029-5515/56/12/126005
https://scitation.org/journal/php

Physics of Plasmas

9'H. L. Pécseli, D. S. Sortland, and O. E. Garcia, “A solvable blob-model for
magnetized plasmas,” Plasma Phys. Controlled Fusion 58, 104002 (2016).

92R. Kube, O. E. Garcia, and M. Wiesenberger, “Amplitude and size scaling for
interchange motions of plasma filaments,” Phys. Plasmas 23, 122302 (2016).

93N. R. Walkden, L. Easy, F. Militello, and J. T. Omotani, “Dynamics of 3D iso-
lated thermal filaments,” Plasma Phys. Controlled Fusion 58, 115010 (2016).

9“M. Wiesenberger, M. Held, R. Kube, and O. E. Garcia, “Unified transport scaling
laws for plasma blobs and depletions,” Phys. Plasmas 24, 064502 (2017).

95A. Ross, A. Stegmeir, P. Manz, D. Groselj, W. Zholobenko, D. Coster, and F.
Jenko, “On the nature of blob propagation and generation in the large plasma
device: Global GRILLIX studies,” Phys. Plasmas 26, 102308 (2019).

980. E. Garcia, “Stochastic modeling of intermittent scrape-off layer plasma
fluctuations,” Phys. Rev. Lett. 108, 265001 (2012).

97R. Kube and O. E. Garcia, “Convergence of statistical moments of particle density
time series in scrape-off layer plasmas,” Phys. Plasmas 22, 012502 (2015).

98A. Theodorsen and O. E. Garcia, “Level crossings, excess times, and transient
plasma-wall interactions in fusion plasmas,” Phys. Plasmas 23, 040702 (2016).

99A. Theodorsen and O. E. Garcia, “Level crossings and excess times due to a
superposition of uncorrelated exponential pulses,” Phys. Rev. E 97, 012110
(2018).

ARTICLE scitation.org/journal/php

1904 Theodorsen and O. E. Garcia, “Probability distribution functions for inter-
mittent scrape-off layer plasma fluctuations,” Plasma Phys. Controlled Fusion
60, 034006 (2018).

1914, Theodorsen, O. E. Garcia, and M. Rypdal, “Statistical properties of a filtered
Poisson process with additive random noise: Distributions, correlations and
moment estimation,” Phys. Scr. 92, 054002 (2017).

1920, E. Garcia and A. Theodorsen, “Auto-correlation function and frequency
spectrum due to a super-position of uncorrelated exponential pulses,” Phys.
Plasmas 24, 032309 (2017).

1930, E. Garcia, R. Kube, A. Theodorsen, and H. L. Pécseli, “Stochastic modelling
of intermittent fluctuations in the scrape-off layer: Correlations, distributions,
level crossings, and moment estimation,” Phys. Plasmas 23, 052308 (2016).

104E, Militello and J. T. Omotani, “Scrape off layer profiles interpreted with fila-
ment dynamics,” Nucl. Fusion 56, 104004 (2016).

105k Militello and J. T. Omotani, “On the relation between non-exponential
scrape off layer profiles and the dynamics of filaments,” Plasma Phys.
Controlled Fusion 58, 125004 (2016).

196y, Paikina, “Stochastic modelling and numerical simulations of radial filament
motion and average profiles at the boundary of fusion plasmas,” M.S. thesis
(UiT The Arctic University of Norway, 2022).

Phys. Plasmas 30, 042518 (2023); doi: 10.1063/5.0144885
© Author(s) 2023

30, 042518-18

L1:%€:20 €202 AInr 61


https://doi.org/10.1088/0741-3335/58/10/104002
https://doi.org/10.1063/1.4971220
https://doi.org/10.1088/0741-3335/58/11/115010
https://doi.org/10.1063/1.4985318
https://doi.org/10.1063/1.5095712
https://doi.org/10.1103/PhysRevLett.108.265001
https://doi.org/10.1063/1.4905513
https://doi.org/10.1063/1.4947235
https://doi.org/10.1103/PhysRevE.97.012110
https://doi.org/10.1088/1361-6587/aa9f9c
https://doi.org/10.1088/1402-4896/aa694c
https://doi.org/10.1063/1.4978955
https://doi.org/10.1063/1.4978955
https://doi.org/10.1063/1.4951016
https://doi.org/10.1088/0029-5515/56/10/104004
https://doi.org/10.1088/0741-3335/58/12/125004
https://doi.org/10.1088/0741-3335/58/12/125004
https://scitation.org/journal/php

