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Abstract 

Background  Long-term azithromycin (AZM) treatment reduces the frequency of acute respiratory exacerbation in 
children and adolescents with HIV-associated chronic lung disease (HCLD). However, the impact of this treatment on 
the respiratory bacteriome is unknown.

Method  African children with HCLD (defined as forced expiratory volume in 1 s z-score (FEV1z) less than − 1.0 with 
no reversibility) were enrolled in a placebo-controlled trial of once-weekly AZM given for 48-weeks (BREATHE trial). 
Sputum samples were collected at baseline, 48 weeks (end of treatment) and 72 weeks (6 months post-intervention 
in participants who reached this timepoint before trial conclusion). Sputum bacterial load and bacteriome profiles 
were determined using 16S rRNA gene qPCR and V4 region amplicon sequencing, respectively. The primary out‑
comes were within-participant and within-arm (AZM vs placebo) changes in the sputum bacteriome measured 
across baseline, 48 weeks and 72 weeks. Associations between clinical or socio-demographic factors and bacteriome 
profiles were also assessed using linear regression.

Results  In total, 347 participants (median age: 15.3 years, interquartile range [12.7–17.7]) were enrolled and ran‑
domised to AZM (173) or placebo (174). After 48 weeks, participants in the AZM arm had reduced sputum bacte‑
rial load vs placebo arm (16S rRNA copies/µl in log10, mean difference and 95% confidence interval [CI] of AZM vs 
placebo − 0.54 [− 0.71; − 0.36]). Shannon alpha diversity remained stable in the AZM arm but declined in the placebo 
arm between baseline and 48 weeks (3.03 vs. 2.80, p = 0.04, Wilcoxon paired test). Bacterial community structure 
changed in the AZM arm at 48 weeks compared with baseline (PERMANOVA test p = 0.003) but resolved at 72 
weeks. The relative abundances of genera previously associated with HCLD decreased in the AZM arm at 48 weeks 
compared with baseline, including Haemophilus (17.9% vs. 25.8%, p < 0.05, ANCOM ω = 32) and Moraxella (1% vs. 
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1.9%, p < 0.05, ANCOM ω = 47). This reduction was sustained at 72 weeks relative to baseline. Lung function (FEV1z) 
was negatively associated with bacterial load (coefficient, [CI]: − 0.09 [− 0.16; − 0.02]) and positively associated with 
Shannon diversity (0.19 [0.12; 0.27]). The relative abundance of Neisseria (coefficient, [standard error]: (2.85, [0.7], 
q = 0.01), and Haemophilus (− 6.1, [1.2], q < 0.001) were positively and negatively associated with FEV1z, respectively. 
An increase in the relative abundance of Streptococcus from baseline to 48 weeks was associated with improvement in 
FEV1z (3.2 [1.11], q = 0.01) whilst an increase in Moraxella was associated with decline in FEV1z (-2.74 [0.74], q = 0.002).

Conclusions  AZM treatment preserved sputum bacterial diversity and reduced the relative abundances of the 
HCLD-associated genera Haemophilus and Moraxella. These bacteriological effects were associated with improvement 
in lung function and may account for reduced respiratory exacerbations associated with AZM treatment of children 
with HCLD.

Keywords  Africa, Bacteriome, Microbiome, HIV, Haemophilus, Moraxella, Obliterative bronchiolitis, Adolescents, FEV1z

Background
HIV-associated chronic lung disease (HCLD) is the most 
common chronic complication of HIV and accounts for 
more than 50% of all HIV-related mortality [1]. HCLD 
includes tuberculosis, chronic aspiration pneumonia 
and bronchiectasis [1]. Recently, in sub-Saharan Africa 
(Zimbabwe [2, 3], Malawi [4], South Africa [5, 6]), a 
novel HCLD phenotype, obliterative bronchiolitis, was 
detected at high prevalence (> 30%) among older children 
and adolescents living with HIV [3]. The symptoms of the 
condition include breathlessness, reduced exercise tol-
erance, fatigue, and chronic cough [2, 4]. The condition 
is associated with frequent acute respiratory exacerba-
tions and hospitalisations, disruption in education due to 
absenteeism and reduced quality of life [3, 7].

Although the pathogenesis of this HIV-associated 
obliterative bronchiolitis is unknown, we speculate that it 
may be driven by the interplay between the dysregulated 
immune activation associated with HIV infection and the 
repeated respiratory infections these children experience 
whilst growing up in a setting of high infectious disease 
burden [8]. There are currently no evidence-based man-
agement guidelines for the condition. However, we have 
previously demonstrated that long-term azithromycin 
(AZM) treatment reduced the frequency of acute res-
piratory exacerbations and all-cause hospitalisations in 
children and adolescents with HCLD—the Bronchopul-
monary Function in Response to Azithromycin Treat-
ment for Chronic Lung Disease in HIV-infected Children 
(BREATHE) trial [7].

Long-term use of AZM has also been associated with 
improved lung function and survival and reduced fre-
quency of acute respiratory exacerbation, antibiotic 
administration and hospitalisation in other chronic lung 
diseases  (CLD) [9] such as cystic fibrosis [10], chronic 
obstructive pulmonary disease (COPD) [11], asthma 
[12], post-transplantation obliterative bronchiolitis [13] 
and bronchiectasis [14]. Mechanisms for these beneficial 
effects may include a combination of the antimicrobial, 

anti-inflammatory and immunomodulatory effects of 
AZM [9]. The direct antibacterial effect of AZM on 
pathogens may be enhanced by improved phagocytic 
competency of alveolar macrophages, which tend to be 
defective in CLDs [15, 16]. Additional benefits of AZM in 
CLDs include antiviral activity, improved ciliary function, 
interference with Pseudomonas aeruginosa biofilm for-
mation, mitigation of airway mucus hypersecretion and 
promotion of pulmonary epithelial cell healing [9].

We previously observed that a Haemophilus, Morax-
ella or Neisseria (HMN)-dominant sputum bacteriome 
was associated with a 1.5-fold increased risk of HCLD, 
compared to a Streptococcus or Prevotella-dominant 
sputum bacteriome [17]. We also showed an association 
between HCLD and respiratory carriage of Streptococ-
cus pneumoniae and Moraxella catarrhalis [18]. Huang 
et al. [19] observed that, in COPD, acute exacerbations 
were associated with an increase in the relative abun-
dance of the phylum Proteobacteria (HMN belong to 
this phylum). Antibiotic treatment reduced this relative 
abundance and resulted in the resolution of symptoms. 
Although similar mechanisms may apply in HCLD, the 
effect of AZM on the respiratory microbiome in HCLD 
has not been studied. An insight into how AZM affects 
the HCLD respiratory microbiome and how this may 
mediate its beneficial effects will contribute towards 
understanding the pathogenesis of HCLD and facilitate 
targeted therapeutics.

In this study, we determined the impact of long-term 
AZM treatment (weekly treatment for 48 weeks) on 
the diversity and composition of the sputum bacteri-
ome of Zimbabwean and Malawian children and ado-
lescents with HCLD enrolled in the BREATHE trial. We 
also measured the persistence of bacteriome alterations 
6  months post-treatment, which has not been previ-
ously investigated in other CLDs. Further, we assessed 
the association between bacteriome alterations and key 
clinical outcomes, including reduction in acute respira-
tory exacerbations, all-cause hospitalisations, and lung 
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function. Finally, we investigated whether AZM altered 
the airway bacteriome in favour of HCLD-protective 
taxa.

Methods
Study design, participants, setting, eligibility, 
and intervention
This was a sub-study of the Bronchopulmonary Func-
tion in Response to Azithromycin Treatment for Chronic 
Lung Disease in HIV-infected Children (BREATHE) trial 
[7, 8] (clinicaltrials.gov identifier NCT02426112). The 
trial protocol [8] and its main findings [7] have been pre-
viously described. Briefly, children and adolescents aged 
6–19 years with perinatally-acquired HIV infection taking 
antiretroviral therapy (ART) for a minimum of 6 months 
were recruited from outpatient HIV clinics in Blantyre, 
Malawi and Harare, Zimbabwe. HCLD was defined as 
forced expiratory volume in 1 s (FEV1) z-score (FEV1z) 
less than − 1.0 with no reversibility, i.e. < 12% improve-
ment in FEV1z after 200  μg of salbutamol inhalation. 
FEV1z was calculated using the African American mod-
ule of the Global Lung Function Initiative 2012 reference 
equations [20] validated among children in Zimbabwe by 
our team [21]. Exclusion criteria included acute respira-
tory symptoms, tuberculosis, pregnancy, hypersensitiv-
ity to AZM, prolonged QTc interval, impaired hearing or 
renal clearance. Participants were randomised to receive 
48 weeks of once-weekly, weight-based doses of oral 
AZM [8]. Placebo arm participants received identical 
tablets without the active drug. For both trial arms, this 
was followed by a 6-month treatment-free period (to 72 
weeks). Participant adherence was defined as “not missing, 
on average, more than two of the 12 dispensed doses, as 
assessed by pill count, splitting time in the study into four 
12-week periods, as per visit and study medication dis-
pensing schedule” [7]. All trial participants were analysed 
at 48 weeks. In this sub-study, only participants with spu-
tum samples available from, at least, one of the three visits 
(baseline, 48 and 72 weeks) were included. Hospitalisation 
was defined as a period of stay in a hospital > 24 h. Acute 
respiratory exacerbation was defined as new or worsening 
respiratory symptoms, as assessed by a physician.

Study outcomes
For this sub-study comparing AZM and placebo arms, 
the primary outcomes were within-participant change 
in bacteriome profiles (as defined by Aitchison dis-
tance, Bray-Curtis index and differentially abundant 
taxa) of the sputum samples from baseline to 48-week, 
48- to 72-week, and from baseline to 72-week study 
visits. Secondary outcomes were (1) differences in spu-
tum bacterial load and bacteriome at all visits between 
AZM and placebo arms; (2) associations between 

alpha and beta diversity metrics and selected covari-
ates including drug adherence, age, sex, site, season of 
sampling, duration of ART, lung function, MRC dysp-
noea score [22] and acute respiratory exacerbation; (3) 
differences in within-participant sputum beta diversity 
of participants who developed an adverse event dur-
ing the study (acute respiratory exacerbation, hospi-
talisation or receipt of additional antibiotics other than 
study drug or cotrimoxazole) compared to those that 
did not; and (4) the differentially abundant taxa driving 
changes and differences in bacteriome profiles between 
trial arms and visits.

Sample and data collection
Sputa were collected from participants at baseline, 
48 weeks (end of treatment) and 72 weeks (6  months 
post-intervention in participants who reached this 
timepoint before trial conclusion). For participants 
who could not expectorate spontaneously, sputum 
was induced with hypertonic saline. Samples were 
stored in PrimeStore® Molecular Transport medium 
[Primestore] (Longhorn Vaccines & Diagnostics LLC, 
Bethesda, USA) immediately after collection, trans-
ported on ice and stored at –  80  °C at the study cen-
tres. This was followed by batch shipment on dry ice to 
Cape Town, South Africa, where samples were stored 
at − 80 °C until further processing. Clinical and socio-
demographic data were collected at each visit using 
questionnaires administered by a study nurse and from 
participant hospital records.

Nucleic acid extraction and purification
Sputum samples stored at − 80 °C were thawed, vortexed 
for 10 s and 450 μl transferred into ZR BashingBeadTM 
Lysis Tubes containing 0.5 mm beads (catalogue no. ZR 
S6002–50, Zymo Research Corp., Irvine, CA, USA). 
Mechanical lysis was done at 50 Hz for 5 min using the 
TissueLyser LTTM (Qiagen, FRITSCH GmbH, Idar-
Oberstein, Germany). The lysate was centrifuged at 
10,000 rpm (10,640 g) (Eppendorf F-45-30-11, Merck 
KGaA, Darmstadt, Germany) for 2 min, and 250 μl of 
the supernatant was loaded onto a QIAsymphony® SP 
instrument (Qiagen, Hombrechtikon, Switzerland). 
Nucleic acid was purified using the DSP Virus/Pathogen 
Mini Kit® (catalogue no. 937036, Qiagen GmbH, Hilden, 
Germany) and eluted into 70 μl. We included bacterial 
mock community cells (catalogue no. ZR D6300, Zymo 
Research Corp., Irvine, CA, USA) as template extraction 
controls on each of the four plates of the three sequenc-
ing runs. We also included neat Primestore and Milli-Q® 
ultrapure water (exposed to UV for 30 min prior to use) 
(Millipore Sigma, Burlington, MA, USA) as no-template 
extraction controls.
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16S rRNA library preparation and amplicon sequencing
The total bacterial load (16S rRNA gene copies) of each 
extracted sample was determined using a previously 
described qPCR [23]. Gene copy numbers were extrapo-
lated from standard curves derived from Escherichia 
coli strain JM109 DNA (catalogue no. ZR E2006, Zymo 
Research Corp., Irvine, CA, USA), using genome size 
(4.60E+06) and number of 16S rRNA gene copies (seven). 
For bacteriome analysis, the V4 hypervariable region of 
the 16S rRNA gene underwent two-step amplification 
as previously described [24] with the following modifi-
cations: 5 µl of DNA was used as template for each step 
of the PCR with a final concentration of 8pm loaded on 
the Illumina MiSeq instrument using MiSeq Reagent Kit 
V3 600 cycles (Illumina Inc., San Diego, USA). A custom 
primer set was used for sequencing (Read1_seq Primer 
Sequence 5′-3′–TAT​GGT​AAT​TGT​GTG​CCA​GCHGCY​
GCG​GTAA, Read2_seq Primer Sequence 5′-3′–AGT​
CAG​TCA​GCC​GGA​CTA​CHVGGG​TW T​CTAAT, 
Index_seq Primer Sequence 5′-3′ ATT​AGA​WACCCB-
DGTA​GTC​CGG​CTG​ACT​GAC​T). We also included a 
bacterial mock community DNA standard (catalogue no. 
ZR D6305, Zymo Research Corp., Irvine, CA, USA)  as 
sequencing controls and no template extraction controls 
on all plates in each run. Randomly selected samples were 
repeated within and between sequencing runs to assess 
within and between-run reproducibility. Samples from 
the same participant were all processed on the same plate 
to avoid batch effects. Each run included a balanced num-
ber of samples from both trial arms and from both study 
sites.

Bioinformatics analysis of 16s rRNA amplicon sequence 
data
The quality of demultiplexed raw sequence reads was 
assessed using the FastQC [25] and MultiQC [26] tools. 
Per base sequence quality scores were uniformly higher 
than the threshold Phred score of 20. The DADA2 pipe-
line [27] (wrapped in the Nextflow algorithm [28]) was 
used to filter and trim reads, infer amplicon sequence 
variants (ASVs), and assign taxonomy to ASVs. Default 
parameters were applied for all DADA2 functions 
unless expressly mentioned. Briefly, forward reads were 
trimmed and truncated at 24 and 248 bases, and reverse 
reads were trimmed and truncated at 25 and 235 bases. 
The minimum read length after trimming and trunca-
tion was set to 250 bases. Sequencing reads were derep-
licated and pooled, and ASVs were inferred for each 
sample via the DADA2 sample inference algorithm 
and the estimated error model. Denoised sequences 
were generated by merging forward and reverse reads 
with overlap length set to 20 and allowing for no mis-
matches in the overlap region. Chimeric sequences 

were identified through exactly reconstructing them by 
combining a left-segment and a right-segment of more 
abundant sequences and then were removed from the 
ASV table of denoised merged sequences. Taxonomy 
was assigned to each ASV using the SILVA version 
138 [29] species classifier implementation for DADA2 
[27]. Phylogenetic alignment was done using AlignSeqs 
in the DECIPHER [30] package whilst a neighbour-
joining phylogenetic tree was constructed using func-
tions in the PHANGORN [31] package. The 16S 
rRNA gene sequencing datasets were submitted to the 
National Centre for Biotechnology Information (NCBI) 
Sequence Read Archive (SRA) repository (Accession 
number PRJNA769290).

Quality control and in silico correction of contamination
Both experimental work and data analysis plan were 
completed before unblinding of study investigators. 
We used a previously published in-silico quality con-
trol approach to minimise experimental error as out-
lined below [32]. Spurious ASVs, defined as ASVs with 
< 5 reads across all sequenced biological specimens 
and no-template control, were removed. We assessed 
nucleic acid extraction and sequencing efficiency by 
comparing the mock bacterial community extraction 
and sequencing controls to the manufacturer profiles. 
Next, we assessed reproducibility within and between 
runs by comparing bacteriome profiles of within- and 
between-run repeats. To determine whether the bac-
teriome profile of the low biomass samples was back-
ground noise from the storage medium (Primestore) or 
amplicon contamination, we assessed clustering of these 
samples with the no-template controls (Primestore) on 
a log-ratio biplot and Principal Coordinates Analysis 
(PCoA) plot. Next, biological specimens with 16S rRNA 
gene copy numbers ≤ 500/μl were removed, as we and 
others have shown that these low biomass specimens 
produce poorly reproducible sequencing profiles [32, 
33]. We used the isContaminant function embedded in 
the DECONTAM [34] package in R to identify poten-
tial contaminants using sequence data from biologi-
cal specimens and no-template controls (Primestore). 
The maximum proportions of each identified contami-
nant in the no-template controls were subtracted from 
the biological specimens. Detailed quality control and 
decontamination steps and results are described in the 
supplementary material (Supplementary Table S1 and 
S2, Supplementary Figure S1-S17).

Statistical analysis
Statistical analysis was performed using R statistical soft-
ware (version 4.0.4). Categorical variables were reported 
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as frequency distributions and continuous variables as 
medians with interquartile ranges (IQRs) if non-para-
metric or means with standard deviations (SD) if oth-
erwise. Normality distribution of continuous variables 
was assessed using Shapiro Wilk test. Between trial arm 
comparisons of continuous outcomes were done using 
Mann-Whitney U or Student t-test where appropriate. 
Fisher’s exact test or chi-square test were used to com-
pare categorical variables between arms where appropri-
ate. We used Wilcoxon signed-rank matched-pairs test to 
compare continuous outcomes between visits within trial 
arms. Correction for multiple testing was with Benjamin/
Hochberg (cut off = 0.05). Amplicon sequence variants 
(ASV) were merged to the genus level, and 0.5% preva-
lence filtering was applied to samples before analysis. The 
number of ASVs in a single sample represented bacterial 
taxonomic richness. Shannon’s index [35] was used to 
characterise richness and evenness (alpha diversity).

Beta diversity was determined for intra-individual dif-
ferences in samples from different visits or inter-indi-
vidual differences in samples collected at the same visit. 
Beta diversity was determined using Euclidean distances 
of centered log-ratio (CLR) transformed ASV counts 
(Aitchison distance) after applying a pseudo count of one 
or by Bray-Curtis dissimilarity index [36] on unrarefied 
ASV counts, all implemented using distance functions in 
the PHYLOSEQ R package. Principal coordinates analy-
sis (PCoA) plots were used for the visualisation of beta 
diversity. We used permutational multivariate analysis 
of variance (PERMANOVA) [37] implemented using 
the adonis2 function in the VEGAN [38] R package to 
compare beta diversity between visits or trial arms. PER-
MANOVA tests were adjusted for age, sex, site, ART 
regimen, MRC dyspnoea score, FEV1z, cotrimoxazole 
prophylaxis, previous tuberculosis treatment and previ-
ous admission for chest problems within 12 months prior 
to enrolment. Permutational analyses of multivariate dis-
persions (PERMDISP) (implemented using betadisper 
function in VEGAN) was used to assess the homogeneity 
of dispersion between visits and trial arms.

We used ten methods for detecting differentially abun-
dant taxa. These are Wilcoxon signed-rank test on data 
after the following normalisation methods–total sum 
scaling, variance stabilising transformation, and centred 
log transformation after applying a pseudo count of one, 
ANCOM2 [39], Aldex2 [40], DESeq2 [41], ANCOM-BC 
[42], Corncob [43], MaasLin2 [44] with total sum scaling 
and log transformation and MaasLin2 [44] with centered 
log transformation after applying a pseudo count of one. 
We reported the findings for all of these methods; how-
ever, for our primary analysis we have used the results 
of ANCOM2 [39] [on unrarefied data with false dis-
covery rate (FDR) Benjamini/Hochberg correction (cut 

off = 0.05)] because Nearing et al. [45] have recently dem-
onstrated that this method is one of the most consistent 
approaches and agrees best with the intersect of results 
from different approaches. The relative contribution of 
each taxon to overall dissimilarity was measured using 
SIMPER analysis on the Bray-Curtis distances between 
samples.

To determine the association between sputum bacte-
rial load (log10 transformed 16S rRNA gene copies) or 
alpha diversity (Shannon index) and clinical and socio-
demographic factors, we used linear mixed effect mod-
els (LME) via the LME4 and LMERTEST R packages. 
For each LME, we included visit and the interaction 
term visit-versus-trial-arm [46] as fixed effects and the 
individual participant identifier as a random effect. We 
included in a stepwise manner, adherence, age, site, sex, 
season of sampling, Medical Research Council (MRC) 
dyspnoea score, body mass index (BMI), weight-for age-
z-score, height-for age-z-score, BMI-for age-z-score, 
ART regimen, duration of ART, HIV viral load suppres-
sion, cotrimoxazole prophylaxis, previous tuberculosis 
treatment or previous hospitalisation for chest prob-
lems 1 year prior to study enrolment, forced vital capac-
ity (FVC), forced vital capacity z-score (FVCz), FEV1z, 
FEV1 percentage predicted (FEVpcpred), FVC percent-
age predicted (FVCpcpred) and FEV1/FVCz as covariates 
in the models. Continuous outcome variables included 
in the models were log-transformed where necessary to 
satisfy model assumptions. Adherence to AZM, age, site, 
sex, season of sampling, MRC dyspnoea score, HIV viral 
load suppression (baseline values were used as values at 
72 weeks were unavailable), cotrimoxazole prophylaxis, 
previous tuberculosis treatment or previous hospitalisa-
tion for chest problems 1 year prior to study enrolment, 
ART regimen and duration were selected a priori to be 
adjusted for. Any other variable identified as an inde-
pendent predictor in the univariate analysis (p < 0.05) was 
also included in the multivariate LME model. The follow-
ing were excluded from the multivariate model because 
of co-linearity: BMI-for-age z-score and weight-for-age 
(colinear with height-for-age) and CD4 count (colinear 
with viral load suppression). We also assessed the asso-
ciation between bacterial genera and FEV1z, FVCz and 
adverse events (hospitalisation, additional antibiotic use 
and acute respiratory exacerbation during intervention) 
using a linear mixed effect model implemented with 
MaasLin2 [44]. FEV1z, visit, interaction between trial 
arm and visit were included as fixed effects and partici-
pant as random effect with ASV counts total sum scaled 
and converted to 100% and without log transformation. 
We also used linear regression implemented with Maas-
Lin2 [44] to investigate the association between the 
within-participant change in FEV1z and FVCz over time 
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in each trial arm (fixed effects) and (i) within-participant 
change in the percentage relative abundance of the five 
bacterial genera of interest (Streptococcus, Prevotella, 
Haemophilus, Neisseria and Moraxella) and (ii) within-
participant (between visit) beta diversity (Aitchison dis-
tance). The results of the regressions were reported as 
beta coefficients and standard error of the models.

Results
Participant characteristics
The BREATHE trial took place between June 2016 and 
September 2019. The socio-demographic and clini-
cal data have been previously published [7]. Briefly, 347 
children and adolescents were randomised, 173 to the 
AZM arm and 174 to the placebo arm. The median age 
of the participants at baseline was 15.3 years, interquar-
tile range [12.7–17.7] and 49% (170/347) were female. 
The participants in the AZM arm were younger and had 
been more frequently treated for tuberculosis than those 
in the placebo arm. Other characteristics did not signifi-
cantly differ between arms. Almost all participants (90%, 
313/347) were receiving long-term cotrimoxazole proph-
ylaxis. The baseline clinical, socio-demographic and 
microbiological features of the participants are presented 
in Table 1. During the intervention, fewer participants in 
the AZM arm experienced acute respiratory exacerba-
tions (16, 9.2%) and hospitalisations (2, 1.2%) compared 
to those in the  placebo arm  (exacerbations: 30, 17.2%, 
hospitalisation, 9, 5.2%) [7].

Number of samples
Ninety-nine percent of all samples (869/875) were spon-
taneously expectorated, whilst the remainder were 
induced (3 samples in each study arm). Nineteen per-
cent of participants (66/347) were not followed up at 72 
weeks due to logistical limitations. Details of the number 
of samples collected from each study site and at each visit 
and the numbers included and excluded are summarised 
in Fig. 1.

AZM reduced sputum bacterial load among participants 
in the intervention arm
The median bacterial load (log1016S rRNA gene cop-
ies/μl) of the 875 samples was similar between the two 
arms at baseline [median (IQR) AZM, 5.0 (4.45–5.45) 
vs placebo 4.93 (4.41–5.54), p = 0.89] but was lower in 
AZM than placebo at both the 48-week [median (IQR) 
AZM, 4.65 (4.08–5.21) vs placebo 5.27 (4.57–5.78), 
p < 0.0001] and 72-week visits [median (IQR) AZM, 
4.92 (4.46–5.48) vs placebo 5.26 (4.71–5.79), p = 0.019] 
(Fig.  2A). Within the AZM arm, median  16S rRNA 
gene copy number at 48 weeks [4.65 (4.08–5.21)] was 

lower than at baseline [5.0 (4.45–5.45), p < 0.001] and at 
72 weeks [4.92 (4.46–5.48), p = 0.003] (Fig. 2B). Bacte-
rial load remained similar across visits in the placebo 
arm (Fig. 2C).

We used LME, Table  2 (Table S3), to explore asso-
ciations between bacterial load (16S rRNA copies) 
and clinical and socio-demographic characteristics. 
Although bacterial load remained constant in the pla-
cebo arm, it declined significantly at 48 weeks com-
pared to baseline in the AZM arm (adjusted beta 
coefficient and 95% confidence interval: − 0.5 log10 
copies per µl [− 0.63; − 0.29]). Participants from the 
Zimbabwean study site on average had a higher bac-
terial load than those from Malawi (0.3 log10 copies 
per µl [0.11; 0.49]) at any visit. Better lung function 
was associated with lower bacterial load. Specifically, 
a one unit increase in FEV1z was associated with 0.1 
log10 copies per µl [0.02–0.2] decrease in bacterial load 
at any visit. Participants who had received treatment 
for tuberculosis before enrolment had higher bacterial 
loads (0.2 log10 copies per µl [0.03–0.32]) at any visit 
than those who were not previously treated.

Association between AZM treatment, clinical 
and socio‑demographic characteristics and sputum alpha 
diversity
The median number of sequences per sample was 
36,456 (IQR: 31,392–42,086) which reduced to 16,969 
(IQR: 13,302–19,902) with a total of 1665 ASVs, after 
quality control and in silico decontamination steps. 
We used LME, Table  2 (Table S4), to explore asso-
ciations between within-sample diversity (Shannon 
alpha  diversity index) and clinical and socio-demo-
graphic characteristics. Although, the Shannon alpha 
diversity in the AZM arm remained unchanged (Fig-
ure S18B), it was significantly higher than placebo at 
48 weeks (0.25 [0.07; 0.42]) and 72 weeks (0.2 [0.01; 
0.40]). Participants from the Zimbabwean study site, 
on average, also had a higher Shannon diversity index 
than those from Malawi (0.27 [0.06; 0.47]) at any 
visit. Also, participants with MRC dyspnoea score 
of two had on average 0.26 units [0.1; 0.42] higher 
Shannon diversity index (higher sputum bacteri-
ome alpha diversity) than participants with a score 
of one. Participants with higher FEV1z at any visit 
had a more diverse sputum bacteriome (higher Shan-
non index) compared to those with lower scores (0.19 
[0.12; 0.27]). Finally, participants who were previ-
ously treated for tuberculosis before enrolment had, 
on average, 0.2 units [–0.34; –0.04] lower Shannon 
diversity index at any visit than those who were never 
treated.
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AZM treatment resulted in changes in the overall 
bacteriome profile
Beta diversity among samples from participants in 

the AZM arm between baseline and 48 weeks [PER-
MANOVA test, on Aitchison distance p = 0.004, Bray-
Curtis, p = 0.002], or between 48 weeks and 72 weeks 

Table 1  Characteristics of study participants at baseline

a Missing value: currently attending school – n = 1 AZM arm; antiretroviral regimen – n = 1, placebo arm; history of TB – n = 1, AZM arm; cotrimoxazole 
prophylaxis – n = 2, AZM arm
b Weight-for-age-z-score < − 2
c Height-for-age-z-score < –2, FEV1: forced expiratory volume in 1 s; participants with missing responses are excluded from that variable
d Number of sputum samples is 166 (AZM) and 164 (placebo)

IQR interquartile range, NNRTI non-nucleoside reverse transcriptase inhibitor
e Compared using PERMANOVA test

Characteristics AZM arm
N = 173

Placebo arm
N = 174

Demographic characteristics
  Age in years, median (IQR) 14.7 (12.6–16.8) 15.8 (13.0–18.1)

  Female sex, no. (%) 80 (46.2) 90 (51.7)

  Currently in school, no. (%)a 146 (84.5) 139 (79.9)

  Site: Zimbabwe, no. (%) 120 (69) 121 (70)

HIV characteristics
  Duration on ART in years, median (IQR) 5.9 (3.8–9.0) 6.4 (3.9–8.2)

  HIV viral load suppression, < 1000 copies/ml, no. (%) 102 (59.0) 94 (54.0)

  CD4 count category, >200 cells/μl, no. (%) 157 (91) 156 (89.7)

  Antiretroviral regimen NNRTI, no. (%)a 127 (73) 131 (75)

Lung function
  FEV1 z-score, median (IQR) -1.94 (-2.5, -1.4) -2.0 (-2.4, -1.5)

Clinical characteristics
  Underweight, no. (%)b 98 (56.6) 83 (47.7)

  Stunted, no. (%)c 95 (54.9) 80 (46.0)

  History of TB, no. (%)a 58 (33.6) 39 (22.4)

  Admitted for chest problems in last year, no. (%) 3 (1.7) 3 (1.7)

  MRC dyspnoea score

    1 89 (51) 96 (55)

    2 64 (37) 62 (36)

    3 12 (7) 11 (6.3)

    4 7 (4) 4 (2.3)

    5 1 (1) 1 (1)

  Cotrimoxazole prophylaxisa 157 (92) 156 (90)
dSputum culture
  Streptococcus pneumoniae, no. (%) 43 (26) 38 (23)

  Staphylococcus aureus, no. (%) 51 (31) 46 (28)

  Haemophilus influenzae, no. (%) 4 (2) 7 (4)

  Moraxella catarrhalis, no. (%) 15 (9) 15 (9)

  Any of the four bacteria above, no. (%) 82 (49) 79 (48)

Sputum total bacterial load
  Sputum bacterial count (16S copy numbers in log10), median (IQR) 5.0 (4.45–5.45) 4.93 (4.41–5.54)

Sputum bacteriome alpha diversity
  Shannon-Wiener diversity, median (IQR) 3.0 (2.5–3.3) 3.0 (2.4 –3.4)

  Observed Taxon richness, median (IQR) 29 (22–35) 29 (23–36)
eSputum bacteriome within-arm beta diversity
  Aitchison distance, median (IQR) 34.2 (30.9–37.5) 35.0 (32.0–38.3)

  Bray-Curtis index, median (IQR) 0.69 (0.57–0.83) 0.71 (0.59–0.84)



Page 8 of 19Abotsi et al. Microbiome           (2023) 11:29 

[Aitchison distance, p = 0.004, Bray-Curtis, p = 0.002], 
was greater than between samples within the same visit, 
showing within-participant changes in overall commu-
nity structure across visits (Supplementary Figures S19). 
There was no difference in dispersion of samples between 
visits (PERMDISP, p > 0.05). In contrast, no difference in 
beta diversity between visits, compared to within visits, 
was observed within the placebo arm (Figures S20). At 
baseline, between-arm beta diversity did not differ signif-
icantly from within arm beta diversity in either study arm 
[PERMANOVA test on Aitchison distance, (p = 0.76), 
Bray-Curtis, (p = 0.97), Figure S21A, B, Fig.  3A, B]. 
However, at 48 weeks, overall bacterial composition dif-
fered between the two trial arms, with greater diversity 
between arms than within arms [PERMANOVA test on 
Aitchison distance, (p = 0.003), Bray-Curtis, (p = 0.003) 
Figure S21C, D and Fig.  3]. A dispersion effect was 
absent when considering Aitchison distance (PERMDISP 
p = 0.85) but was present when considering Bray-Curtis 
distance (PERMDISP p = 0.002), with greater dispersion 
in the placebo than in the AZM arm (Fig. 3). The differ-
ence in overall bacterial composition was not evident 
at the 72-week visits [PERMANOVA test on Aitchison 

distance, (p = 0.14), Bray-Curtis, (p = 0.2), Figure S21E, F 
and Fig. 3].

Within the placebo arm, the median within-participant 
Bray-Curtis distance between samples from participants 
who had an adverse event (acute exacerbation of respira-
tory illness, hospitalisation or required additional anti-
biotics, n = 115) was higher than between samples from 
participants who did not have an adverse effect (n = 35), 
when comparing baseline to 48 weeks (Kruskal Wallis 
test, p = 0.005), or baseline to 72 weeks (Kruskal Wal-
lis test, p = 0.008) (Fig. 4B). Within the AZM arm, fewer 
participants developed an adverse event (n = 16), and 
there were no significant differences in within-partici-
pant Bray-Curtis distance across any of the timepoints 
when comparing with participants who did or did not 
have an adverse event (Fig. 4A).

Composition of taxa within the sputum bacteriome 
of participants
Five phyla accounted for 99.2% of the mean relative 
abundances of all bacteria, Proteobacteria (53.4%), 
Firmicutes (23.4%), Bacteroidetes (14.2%), Fusobac-
teria (5.2%) and Actinobacteria (3.0%) (Figure S22). 

Fig. 1  Flow chart of the number of samples collected from each study site at each visit and the numbers included and excluded from final analysis. 
LTFU, loss to follow up; 16S copies, 16S rRNA copies
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At genus level, the 10 most abundant genera at base-
line included Haemophilus (25.5%), Neisseria (18.8%), 
Streptococcus (15.8%), Prevotella (9.5%), Veillonella 
(3.9%), Fusobacterium (3.2%), Alloprevotella (2.9%), 
Porphyromonas (2.7%), Moraxella (2.5%) and Leptotri-
chia (2.3%) (Figure S23).

To detect which genera were driving the changes 
in beta diversity observed between the trial arms at 

48 weeks, we tested for differentially abundant taxa 
using ANCOM2. At baseline, no taxon was differen-
tially abundant between the trial arms. At 48 weeks, 
13 genera were differentially abundant between trial 
arms (Fig. 5 and S21). Moraxella, Haemophilus, Aggre-
gatibacter, Streptobacillus, Peptococcus, ASV 205 
(Clostridia_UCG-014) and ASV-62 (Lachnospiraceae) 
had significantly lower relative abundance in the AZM 

Fig. 2  Boxplot of bacterial load between trial arms at each visit (A) and between visits within AZM arm only (B) and placebo arm only (C). 16S 
rRNA gene copy number, used as proxy for total bacterial load, was measured with qPCR. The between arm comparisons were implemented using 
Wilcoxon signed rank test for unpaired samples whilst within-arm comparisons used Wilcoxon signed rank test for paired samples
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arm compared to placebo (Fig.  5). In contrast, Veil-
lonella, Rothia, Lautropia, Actinomyces, Treponema and 
Oribacterium had increased in relative abundance in 
the AZM arm (Fig. 5A). Fifteen genera were detected to 
be differentially abundant in the samples from partici-
pants in the AZM arm between baseline and 48 weeks 
(Fig.  5A). There was a high degree of concordance 
between those genera detected as differentially abun-
dant between AZM and placebo arms at 48 weeks and 
those detected as differentially abundant between the 
baseline and 48 weeks samples in the AZM arm (12 out 

of 16 genera were concordant, all with the same direc-
tion of effect) Fig. 5A.

When comparing baseline with 72 weeks, many of the 
same genera (Lautropia, Treponema, Rothia, Peptococ-
cus, ASV_209 Clostridia, ASV_157 Absconditabacteria, 
Aggregatibacter, Moraxella, Haemophilus) that were dif-
ferentially abundant when comparing baseline with 48 
weeks remained differentially abundant, with the same 
direction of effect, however the magnitude of the dif-
ference (estimated by CLR mean difference) was gen-
erally reduced (Fig.  5A). Interestingly, several genera 

Table 2  Variables associated with (1) bacterial load (16S rRNA copies) and (2) Shannon diversity indices in multivariate linear mixed 
effect models

a The difference between the number of observations and the total (875) represent number of missing observations for that variable
1 The estimate of coefficient with 95% confidence intervals and p values were obtained from multivariate linear mixed effect model with participant included as 
a random effect, trial arm, visit and trial arm: visit interaction term and selected variables ( visit, site, Medical Research Council dyspnoea score at baseline, forced 
expiratory volume in 1 s (FEV1) z-score (FEV1z), previous tuberculosis treatment prior to enrolment, age group at baseline, adherence, site, sex, season of sampling, 
viral load suppression at baseline, height-for-age z-score, cotrimoxazole prophylaxis at baseline, previous admission to chest problems in the year preceding 
enrolment, duration of ART at baseline) as explanatory variables and 16S rRNA copies of the sputum samples as dependent variable
2 The estimate of coefficient with 95% confidence intervals and p values were obtained from multivariate linear mixed effect model with participant included as a 
random effect, trial arm, visit and trial arm: visit interaction term and selected variables ( visit, Medical Research Council dyspnoea score at baseline, forced expiratory 
volume in 1 s (FEV1) z-score (FEV1z), previous tuberculosis treatment prior to enrolment, age group at baseline, adherence, site, sex, season of sampling, viral load 
suppression at baseline, height-for-age z-score, any events during intervention, cotrimoxazole prophylaxis at baseline, previous admission to chest problems in 
the year preceding enrolment, duration of ART at baseline) as explanatory variables and Shannon indices of the sputum samples as dependent variable. Any event 
refers to either acute respiratory exacerbation; additional antibiotics other than interventional drug or cotrimoxazole; or hospitalisation during intervention. Forced 
expiratory volume in 1 s (FEV1)/forced vital capacity z-score, forced vital capacity z-score (FVCz), FEV1 percentage predicted (FEVpcpred), FVC percentage predicted 
(FVCpcpred) were excluded from the final models because of collinearity with FEV1 z-score. Viral load and CD4 counts were excluded from the final models because 
data was not collected at 72 weeks, the values at baseline were used instead. Weight-for-age z-score, body mass index for age z-score were excluded from the final 
models because of collinearity with height-for-age-z-score
3 Any event refers to either acute respiratory exacerbation; additional antibiotics other than interventional drug or cotrimoxazole; or hospitalisation during 
intervention

*Full table with coefficients and 95% confidence intervals from univariate linear mixed effect models are included supplementary materials

Bacterial load (16S rRNA 
copies)

Shannon diversity index

*Variable Levels aNumber of 
observations 
(n = 875)

Participants 
(n = 346)

1Adjusted 
co-efficient (95% 
CI)

1p value 2Adjusted 
co-efficient (95% 
CI)

2p value

Visit Placebo at week 48 150 (17.1%) 150 (43.4%) Reference Reference

AZM at week 48 154 (17.6%) 154 (44.5%) − 0.46 [− 0.63; 
− 0.29]

< 0.0001 0.25 [0.07; 0.42] 0.01

Placebo at week 72 117 (13.4%) 117 (33.8%) Reference Reference

AZM at week 72 123 (14.1%) 123 (35.5%) − 0.19 [− 0.38; 0.0] 0.051 0.2 [0.01; 0.40] 0.04

Site Malawi 233 (26.6%) 106 (30.6%) Reference Reference

Zimbabwe 642 (73.4%) 240 (69.4%) 0.3 [0.11; 0.49] 0.003 0.27 [0.06; 0.47] 0.01

Medical Research 
Council dyspnoea 
score at baseline

1 479 (54.7%) 184 (53.2%) Reference

2 316 (36.1%) 126 (36.4%) 0.26 [0.1; 0.42] 0.04

3 53 (6.1%) 23 (6.6%) 0.16 [− 0.18; 0.49]

4 23 (2.6%) 11 (3.2%) 0.25 [− 0.21; 0.71]

5 4 (0.5%) 2 (0.6%) 0.52 [− 1.05; 2.09]

Forced expiratory 
volume in 1 s (FEV1) 
z-score (FEV1z)

862 (98.5%) 346 (100%) − 0.09 [− 0.16; 
− 0.02]

0.02 0.19 [0.12; 0.27] < 0.001

Ever treated for 
tuberculosis before 
enrolment

No 609 (69.8%) 248 (71.9%) Reference Reference

Yes 263 (30.2%) 97 (28.1%) 0.17 [0.03; 0.32] 0.02 − 0.19 [− 0.34; 
− 0.04]

0.02



Page 11 of 19Abotsi et al. Microbiome           (2023) 11:29 	

Fig. 3  Violin boxplot comparing two beta diversity metrics between trial arms at 0, 48 and 72 weeks. A Comparison of AZM and placebo 
at baseline using Aitchison distance. B Comparison of AZM and placebo at baseline using Bray-Curtis distance on unrarefied ASV counts. C 
Comparison of AZM and placebo at 48 weeks using Aitchison distance. D Comparison of AZM and placebo at 48 weeks using Bray-Curtis distance 
on unrarefied ASV counts. E Comparison of AZM and placebo at 72 weeks using Aitchison distance. F Comparison of AZM and placebo at 72weeks 
using Bray-Curtis distance on unrarefied ASV counts. Asterisk (*) symbol indicates the following: p values were adjusted using BH correction. The first 
two violin boxplots of each figure shows the distribution of the within group distances in the AZM and placebo arms respectively. The third violin 
boxplots of each figure shows the distribution of the between group distance between AZM and placebo arms. The horizontal line in the middle of 
the box is the median. The box presents interquartile range. The whiskers show 95% confidence interval. The shape of the violin display frequencies 
of values
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Fig. 4  Violin boxplot comparing the within-participant change in Bray-Curtis distance on CLR transformed ASV counts from baseline to 48 weeks, 
baseline to 72 weeks and 48 weeks to 72 weeks between participants who developed acute exacerbation, hospitalised or were administered 
additional antibiotics (yes) with those who did not (no), in the AZM arm (A) and placebo arm (B). Wilcoxon test was used for all comparisons. The 
horizontal line in the middle of the box is the median. The box presents interquartile range. The whiskers show 95% confidence interval. The shape 
of the violin display frequencies of values

Fig. 5  Analysis of composition of microbiomes (ANCOM2) differential abundance testing for samples at each visit and between trial arms. Taxa 
identified as differentially abundant between trial arms at 48 weeks (A, left panel), between AZM arm at baseline and 48 weeks (A, middle panel) 
and between AZM arm at 48 and 72 weeks (A, right panel). Associations were considered significant using an ANCOM detection level ≥ 0.6. Stars 
on the right of each bar indicate ANCOM detection levels: levels > 0.6 are presented by 1 star, > 0.7 by 2 stars, > 0.8 by 3 stars and > 0.9 by 4 stars. 
The raw W statistic for each comparison is shown left of the stars. The horizontal length of each bar indicates the mean centered log ratio (CLR) 
difference in relative abundance. B Boxplots of log10 relative abundances of bacterial genera detected as differentially abundant by ANCOM2 by trial 
arm at 48 weeks (B) and within AZM arm at baseline, 48 and 72 weeks (C)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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(Veillonella, Oribacterium, Streptobacillus, ASV_205 
Clostridia, ASV_62 Lachnospiraceae) showed opposite 
directions of effect when comparing baseline to 48 weeks 
with baseline to 72 weeks.

Concordance between differential abundance testing 
methods
We used other statistical methods for comparison with 
the differential abundance results from ANCOM2, which 
generally showed strong concordance, supplementary 
material (Figure S24, Supplementary Table S5-S11). 
At 48 weeks, five genera were detected as differentially 
abundant between study arms by all methods (Lau-
tropia, Moraxella, Rothia, Treponema and Veilonella) 
(Figure S24). Lautropia, Moraxella, Treponema, Ori-
bacterium, F0058 and ASV 209 were detected as dif-
ferentially abundant between the baseline and 48-week 
samples from participants in the AZM arm by all meth-
ods (Figure S25). Moraxella was the only genus detected 
as differentially abundant between the 48- and 72-week 
samples from participants in the AZM arm by all meth-
ods (Figure S26). There was also a high level of agree-
ment between the differential abundance testing and the 
SIMPER analysis of the contribution of taxa to overall 
dissimilarity (Bray Curtis distance) Table S12.

Associations between relative abundance 
of selected bacteria genera and clinical measures
We used a linear mixed effect model to identify possi-
ble associations between lung function (FEV1z, FVCz) 
and bacterial genera. Relative abundance of Neisseria 
was positively associated with FEV1z (coefficient, 2.85, 
standard error, 0.7, q = 0.01) whilst that of Haemophilus 

was negatively associated (coefficient, − 6.1, stand-
ard error, 1.2, q < 0.001). In a separate model each, the 
adverse events of hospitalisation, additional antibiotic 
use and acute respiratory exacerbation during interven-
tion were not associated with any of the five bacterial 
genera previously identified as associated with HCLD 
(Streptococcus, Prevotella, Haemophilus, Moraxella and 
Neisseria) [17].

We next used a univariate linear regression effect 
model to study whether change in lung function 
between visits over the study period was associated 
with changes in the relative abundances of the five 
bacterial genera of interest or with change in within-
participant beta diversity over time. In the AZM arm, 
within-participant increase in FEV1z was positively 
associated with within-participant increase in the rela-
tive abundance of Streptococcus (coefficient [stand-
ard error], 3.2 [1.11], q = 0.01, Table  3). In contrast, 
an increase in FEV1z was negatively associated with 
within-participant increase in the relative abundance of 
Moraxella (− 2.74 [0.74], q = 0.002, Table  3). Further-
more, in the AZM arm, an increase in within-partici-
pant Aitchison distance was positively associated with 
within-participant increase in both FEV1z (1.05 [0.45], 
p = 0.02, Table S13) and FVCz (0.95 [0.42], p = 0.02 
Table S13).

Discussion
We investigated the impact of long-term AZM treatment 
on the diversity and composition of the sputum bacteri-
ome of children and adolescents with HCLD and the per-
sistence of this effect six months post-intervention. AZM 
treatment was associated with reduced bacterial load and 

Table 3  Univariate linear regression analysis of within-participant change in FEV1z and FVCz and within-participant change in relative 
abundance of selected genera (outcome) between visits

Associations were tested with MaAsLin2 using a linear regression model with FEV1z or FVCz and trial arm as fixed effects and within-participant change in relative 
abundance of selected genera as outcome. Statistical significance was corrected for multiple testing using Benjamini/Hochberg correction. Columns correspond to 
the within-participant change in genus, trial arm, the coefficient estimate (coef ) and standard error from the model (stderr), nominal p-value (pval), and FDR corrected 
p-value (qval). Number of samples in azithromycin (AZM) and placebo arms are 377 and 365 respectively

Within-participant 
change in genus

Trial arm Within-participant change in FEV1z Within-participant change in FVCz

coef stderr pval qval coef stderr pval qval

Streptococcus AZM 3.22 1.11 0.004 0.01 2.66 1.04 0.01 0.08

Placebo − 0.79 1.46 0.59 0.82 − 0.42 1.2 0.72 0.93

Prevotella AZM 0.1 0.86 0.91 0.97 0.59 0.78 0.45 0.63

Placebo − 1.54 1.08 0.16 0.82 − 1.56 0.87 0.07 0.51

Haemophilus AZM − 0.92 1.95 0.64 0.89 − 1.12 1.82 0.54 0.63

Placebo − 0.76 2.86 0.79 0.9 0.15 2.3 0.95 0.95

Moraxella AZM − 2.74 0.74 0.0003 0.002 − 1.28 0.7 0.07 0.25

Placebo 0.18 1.42 0.9 0.9 0.92 1.11 0.41 0.93

Neisseria AZM 0.05 1.43 0.97 0.97 − 0.34 1.33 0.8 0.8

Placebo 1.5 1.83 0.41 0.82 2.66 1.04 0.01 0.08
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maintenance of within-sample (Shannon) diversity com-
pared with placebo. In turn, low bacterial load and high 
Shannon alpha diversity were associated with better lung 
function measures. Treatment with AZM was associ-
ated with a reduction in the relative abundance of several 
potentially pathogenic taxa at 48 weeks, including Hae-
mophilus and Moraxella. These changes persisted, but 
were less marked, at 72 weeks. The relative abundance of 
Haemophilus was negatively associated with lung func-
tion (FEV1z), whilst an increase in the relative abundance 
of Moraxella over time was associated with a decline in 
lung function. In contrast, the bacterial genera Neisseria 
and Streptococcus were associated with improved lung 
function measures.

The reduction in the total sputum bacterial load after 
48 weeks of AZM treatment is expected, given the anti-
bacterial activity and immune modulatory effects of 
AZM [15, 47] and may have contributed to the reduc-
tion in the frequency of acute respiratory exacerbations 
in the AZM arm [7]. The difference in the bacterial load 
between the arms at 48 weeks represents an approxi-
mately 3-fold reduction in bacterial 16S rRNA gene 
copies and may be biologically relevant. Sputum bacte-
rial load returned to baseline levels by 72 weeks. Inter-
estingly, other studies of long-term administration of 
AZM did not observe any effect on total bacterial burden 
measured by 16 rRNA gene copy numbers [11, 12, 48] 
or quantitative culture [48]. The reasons for the incon-
sistent findings may include differences in dosage, dura-
tion and frequency of AZM treatment, varying samples 
types (bronchoalveolar lavage vs sputum), HIV-status, 
prior antibiotic exposure, smoking status, age and vari-
ations between different CLDs (COPD [11, 48], asthma 
[12], cystic fibrosis [10]). For instance, AZM would likely 
have less effect on bacterial load if the dominant taxa, e.g. 
Pseudomonas or Staphylococcus spp. (in cystic fibrosis), 
are resistant to AZM.

Low alpha diversity is a signal for dysbiotic bacterial 
communities in many diseases [49, 50]. We observed a 
decline in Shannon alpha diversity in the placebo, but 
not the AZM arm, over time. High alpha diversity (Shan-
non index) was associated with enhanced lung func-
tion (FEV1z and FVCz). Our findings are consistent 
with those of Rogers et  al. [51] who showed that lower 
Shannon alpha diversity of the sputum bacteriome was 
associated with lower FEV1z in adult participants with 
non-cystic fibrosis bronchiectasis treated with twice-
daily erythromycin for 12 months.

In our study, low Shannon  alpha diversity was also 
associated with the development of adverse events in the 
placebo arm. The decrease in Shannon  alpha diversity 
observed in the placebo arm at 48 weeks may, in part, have 
been a consequence of the additional antibiotic exposure 

due to the more frequent acute respiratory exacerbations 
and hospitalisations occurring in this arm. This additional 
antibiotic exposure may also explain our observation that 
the median within-participant change in the bacteriome 
profiles of placebo arm participants who experienced 
adverse events during the trial was greater than those that 
did not. Other studies have described changes in micro-
bial profiles associated with treatment of acute exacerba-
tions of chronic obstructive pulmonary disease [19].

Interestingly, AZM did not affect Shannon alpha diver-
sity (which is a measure of both species richness and 
evenness) of the sputum bacteriome at any visit. This 
observation is consistent with the findings of Acosta et al. 
[10] in which 2 years of AZM treatment did not affect the 
Shannon alpha diversity of cystic fibrosis sputum bacte-
riome [10] but contrasts with the findings of Segal et al. 
[11] who observed a reduction in Shannon alpha diver-
sity in emphysema patients treated with AZM.

Bray-Curtis within-group dissimilarity was lower 
than between-group dissimilarity, when comparing the 
48-week samples in the AZM arm with baseline samples 
in the AZM arm or the 48-week samples in the placebo 
arm. Our findings are consistent with previous studies in 
asthma [12], COPD [11] and bronchiolitis [52] partici-
pants. In contrast, Acosta [10] did not observe any effect 
of AZM on the beta diversity of the sputum bacteriome 
of cystic fibrosis participants. This difference in findings 
may be explained by the more prolonged duration of 
treatment—2 years compared to 48 weeks or less in the 
other studies—over which period the effect of AZM may 
diminish due to macrolide resistance or poor drug adher-
ence. In our study, beta diversity (within-participant 
Aitchison distance) in the AZM arm between study vis-
its was also associated with improvement in lung func-
tion measures over the same period, suggesting that the 
AZM-mediated change in composition of the sputum 
bacteriome may contribute to improved lung function in 
this population.

We identified 13 differentially abundant taxa includ-
ing Moraxella, Haemophilus (reduced) and Rothia, Veil-
lonella, Treponema and Lautropia (enriched) in the 
AZM compared with placebo arms at 48 weeks. The high 
degree of concordance (12/13) between these taxa and 
those identified as differentially abundant between the 
baseline and 48-week samples in the AZM arm indicates 
that this finding is unlikely to represent false discovery. 
Many of the same taxa were identified by multiple dif-
ferent methods for differential abundance testing. These 
data are supported by our previous analysis of spu-
tum bacterial culture from this cohort, which showed a 
reduction in the prevalence of Moraxella catarrhalis and 
Haemophilus influenzae at 48 weeks [53] compared with 
baseline.
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In a separate cross-sectional study [17], we identified 
increased risk for HCLD in children with sputum bac-
teriome dominated by Haemophilus, Moraxella or Neis-
seria (HMN) compared with bacteriome dominated by 
Prevotella or Streptococcus. We also showed that cell-free 
products of HMN sputum bacteriome induced epithelial 
disruption and inflammatory responses in vitro [17]. Our 
findings from the present study support the central role 
of Haemophilus and Moraxella in HCLD. Improvement 
in FEV1z was negatively associated with Moraxella rela-
tive abundance. Interestingly, the reduced relative abun-
dance of Haemophilus and Moraxella at 48 weeks in the 
AZM arm persisted, but with reduced magnitude, at 72 
weeks. Further work is required to explore the persistent 
effect of AZM on these taxa beyond 72 weeks and asso-
ciated changes in lung function. The relative abundance 
of Streptococcus was positively associated with FEV1z, 
which is consistent with our earlier finding study [17] that 
this genus may contain species that may be protective 
in HCLD. Given that streptococcal species vary widely 
in pathogenic potential, species-specific discrimina-
tion is likely to be critical. Therefore, further research is 
needed to unravel if and which members of the Strepto-
coccus genus are associated with a protective effect. Also, 
it is also possible that the association between the  rela-
tive abundance of Streptococcus genus and FEV1z may be 
due to removal of pathogenic species and/or inflamma-
tory insult that encourages proliferation of the genus as 
a bystander effect. Interestingly, in the current study, the 
relative abundance of Neisseria was positively associated 
with FEV1z, in contrast to our previous findings. Again, 
species-specific discrimination may resolve these discrep-
ant findings.

Our study has several strengths. It is the first study to 
assess the effect of long-term AZM treatment on the 
sputum bacteriome of African children with HCLD. The 
double-blinded, randomised, placebo-controlled design 
allows more direct inference of causal relationships. It 
is also the first study to analyse the persistence of AZM 
effect on the sputum bacteriome six months after treat-
ment cessation using this study design. Our study is lim-
ited by several factors. 16S rRNA amplicon sequencing 
is unable to resolve taxonomy to the species level, which 
may be important, for example given the widely varying 
pathogenicity of Streptococcus species. The use of spu-
tum to assess the lower airway microbiota is limited by 
contamination from the upper airways. However, previ-
ous studies have demonstrated acceptable concordance 
between the sputum and bronchoalveolar lavage bac-
teriome, [54, 55] in asthma [55] and cystic fibrosis par-
ticipants [54]. The 16S rRNA gene qPCR that we used is 
subject to bias due to varying copy number of 16S rRNA 
genes in bacteria.

Conclusion
In conclusion, 48 weeks of once-weekly AZM reduced 
the total bacterial load and preserved within-sample bac-
terial diversity of children and adolescents with HCLD, 
features that were associated with better lung func-
tion measures. Our results confirm and extend previous 
findings, from a separate cohort, that Haemophilus and 
Moraxella likely play a central role in the pathogenesis 
of HCLD whilst Streptococcus may include species with 
a protective effect. Modulation of the airway microbiota, 
with a targeted reduction in disease-associated taxa, may 
be a strategy to ameliorate disease in people with HCLD.
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