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Abstract
We prove and discuss some new refined Hölder inequalities for any p > 1 and also a
reversed version for 0 < p < 1. The key is to use the concepts of superquadraticity,
strong convexity, and to first prove the corresponding refinements of the Young and
reversed Young inequalities. Refinements of the Minkowski and reversed Minkowski
inequalities are also given.
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1 Introduction
The classical Young inequality reads

ab ≤ ap

p
+

bq

q
, (1)

where a and b are nonnegative numbers, p > 1, 1
p + 1

q = 1, [5].
The reversed version reads

ab ≥ ap

p
+

bq

q
, a, b > 0, 0 < p < 1,

1
p

+
1
q

= 1. (2)

The first observation is that both (1) and (2) are simple consequences of the convexity of
the function ϕ(x) = ex. Indeed,

ab = elog a+log b = e
1
p log ap+ 1

q log bq ≤ 1
p

elog ap
+

1
q

elog bq
=

1
p

ap +
1
q

bq.

Moreover, (2) follows from (1) by just juggling with the parameters and numbers. First,
use (1) with p1 = 1

p and q1 = – q
p (so, p1, q1 > 1, 1

p1
+ 1

q1
= 1) and after that replace a by (ab)p

and b by b–p.
One recent idea to derive refinements of inequalities is to use the concept of su-

perquadraticity introduced in [1].
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Definition 1.1 A function ϕ : [0,∞) → R is superquadratic provided that for all x ≥ 0
there exists a constant Cx ∈ R such that

ϕ(y) – ϕ(x) – ϕ
(|y – x|) ≥ Cx(y – x)

for all y ≥ 0.
We say that f is subquadratic if –f is superquadratic.

Some guiding ideas for introducing this concept (in connection to refining the Hölder
inequality) can be found in the earlier paper [9], where in particular the following refine-
ment of the Hölder inequality was proved:

Proposition 1.2 ([9, Theorem 1.1]) Let p ≥ 2 and define q by 1
p + 1

q = 1. Then, for any
nonnegative μ-measurable functions f and g ,

∫
fg dμ ≤

(∫
f p dμ –

∫ ∣
∣∣
∣f – gq–1

∫
fg dμ

∫
gq dμ

∣
∣∣
∣

p

dμ

) 1
p

·
(∫

gq dμ

) 1
q

. (3)

In this paper we prove some other refinements of the Hölder inequality, where we do
not have the restriction p ≥ 2 and where the refinements are not only made to the first
factor as in (3) (see Theorems 3.1 and 4.1). Based on the ideas above, we will use “natural”
quasiconvex function ϕ(x) = ex – 1 – x or, more generally,

ϕ(x) = ex –
n∑

k=0

xk

k!
, n ≥ 1.

In fact, we have the following useful characterization in a special case.

Lemma 1.3 ([2, Lemma 2.2]) Let ϕ : [0,∞) → R be a continuously differentiable function
with ϕ(0) = ϕ′(0) = 0 and ϕ′ convex. Then ϕ is superquadratic.

We also need the following Jensen-type inequality.

Theorem 1.4 ([1, Theorem 2.3]) Let (�,μ) be a probability measure space. Then the in-
equality

ϕ

(∫

�

f (s) dμ(s)
)

≤
∫

�

(
ϕ
(
f (s)

)
– ϕ

(∣∣
∣∣f (s) –

∫

�

f (t) dμ(t)
∣∣
∣∣

))
dμ(s) (4)

holds for all nonnegative μ-integrable functions f if and only if ϕ is superquadratic. More-
over, (4) holds in the reversed direction if and only if ϕ is subquadratic.

If ϕ is a nonnegative superquadratic function, then ϕ is convex (see [1, Lemma 2.2]) and,
since the term ϕ(|f (s) –

∫
�

f (t) dμ(t)|) is nonnegative, inequality (4) can be continued by
≤ ∫

�
ϕ(f (s)) dμ(s), and we get a refinement of the Jensen inequality.

The paper is organized as follows. In Sect. 2 we present our refinements of both Young
and reversed Young inequalities (see Theorems 2.2 and 2.4). Our corresponding refine-
ments of the Hölder and the reversed Hölder inequalities are given in Sect. 3 (see The-
orems 3.1 and 3.2) while results related to the Minkowski inequality are given in Sect. 4.
Finally, Sect. 5 gives some concluding remarks and results. In particular, we derive some
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similar refinements by using the concept of strong convexity (see Lemma 5.4 and Theo-
rem 5.5). The results obtained in these two ways are also compared.

2 Refined Young inequality
Let us first state the following auxiliary statements about superquadratic functions.

Lemma 2.1 Let p and q be numbers such that p, q > 1 and 1
p + 1

q = 1.
a) If ϕ is a superquadratic function on [0,∞), then for any x, y ∈ [0,∞) the following

inequality holds:

ϕ

(
x
p

+
y
q

)
≤ 1

p
ϕ(x) +

1
q
ϕ(y) –

1
p
ϕ

( |x – y|
q

)
–

1
q
ϕ

( |x – y|
p

)
. (5)

b) For any k ≥ 2, the following inequality holds:

Vk(x, y; p) :=
(

x
p

+
y
q

)k

–
xk

p
–

yk

q
+ |x – y|k

(
1

pqk +
1

pkq

)
≤ 0 (6)

for any x, y ∈ [0,∞).

Proof a) Using Theorem 1.4 with point measures 1
p and 1

q at the points x and y, respec-
tively, we get (5).

b) By Lemma 1.3, the function ϕ(x) = xk is superquadratic for k ≥ 2. Hence, inequality
(6) is a simple consequence of inequality (5) for this particular power function. �

Our refined Young inequality reads:

Theorem 2.2 Let a, b ≥ 1, p, q > 1 where 1
p + 1

q = 1 and n ∈ N, n ≥ 2. Then

ab ≤ ap

p
+

bq

q
–

(
1
p

e
1
q | log ap

bq | +
1
q

e
1
p | log ap

bq | –
2| log ap

bq |
pq

– 1
)

+
n∑

k=2

1
k!

Vk(p log a, q log b; p)

≤ ap

p
+

bq

q
–

(
1
p

e
1
q | log ap

bq | +
1
q

e
1
p | log ap

bq | –
2| log ap

bq |
pq

– 1
)

+
n–1∑

k=2

1
k!

Vk(p log a, q log b; p)

≤ · · ·

≤ ap

p
+

bq

q
–

(
1
p

e
1
q | log ap

bq | +
1
q

e
1
p | log ap

bq | –
2| log ap

bq |
pq

– 1
)

≤ ap

p
+

bq

q
–

(
e

2| log ap
bq |

pq –
2| log ap

bq |
pq

– 1
)

≤ ap

p
+

bq

q
,

(7)

where Vk is defined in (6) and with the convention that the sum
∑1

k=2 is equal to 0.
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Proof By Lemma 1.3, the function ϕ(x) = ex –
∑n

k=0
xk

k! , n ≥ 1, is superquadratic. By apply-
ing (5) with this function, we obtain (after some elementary calculations) that

e( x
p + y

q ) ≤ ex

p
+

ey

q
–

(
1
p

e
1
q |x–y| +

1
q

e
1
p |x–y| –

2|x – y|
pq

– 1
)

+
n∑

k=2

1
k!

Vk(x, y; p). (8)

Since, by (6), Vn(x, y; p) ≤ 0 and

n∑

k=2

1
k!

Vk(x, y; p) =
n–1∑

k=2

1
k!

Vk(x, y; p) +
1
n!

Vn(x, y; p),

then, for any n ≥ 2, the following chain of inequalities holds:

e( x
p + y

q ) ≤ ex

p
+

ey

q
–

(
1
p

e
1
q |x–y| +

1
q

e
1
p |x–y| –

2|x – y|
pq

– 1
)

+
n∑

k=2

1
k!

Vk(x, y; p)

≤ ex

p
+

ey

q
–

(
1
p

e
1
q |x–y| +

1
q

e
1
p |x–y| –

2|x – y|
pq

– 1
)

+
n–1∑

k=2

1
k!

Vk(x, y; p)

≤ · · · ≤ ex

p
+

ey

q
–

(
1
p

e
1
q |x–y| +

1
q

e
1
p |x–y| –

2|x – y|
pq

– 1
)

,

(9)

with the convention that
∑1

k=2 is equal to 0.
From the classical Young inequality (1) applied with a = b = e

|x–y|
pq , we get

e
2|x–y|

pq ≤ 1
p

e
1
q |x–y| +

1
q

e
1
p |x–y|,

and the last line in (9) can be followed by

≤ ex

p
+

ey

q
–

(
e

2|x–y|
pq –

2|x – y|
pq

– 1
)

.

Since et – t – 1 ≥ 0 for all t ≥ 0 and using this estimate for t = 2|x–y|
pq , we obtain the following

continuation of the chain of inequalities:

ex

p
+

ey

q
–

(
e

2|x–y|
pq –

2|x – y|
pq

– 1
)

≤ ex

p
+

ey

q
. (10)

Putting in (8), (9), and (10) x = p log a and y = q log b, we obtain (7). The proof is com-
plete. �

Remark 2.3 Let us interchange the numbers a and b in (7). For the sake of simplicity, we
write only the last three inequalities from the whole chain (7). Then we get the following
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inequalities:

ab ≤ bp

p
+

aq

q
–

(
1
p

e
1
q | log bp

aq | +
1
q

e
1
p | log bp

aq | –
2| log bp

aq |
pq

– 1
)

≤ bp

p
+

aq

q
–

(
e

2| log bp
aq |

pq –
2| log bp

aq |
pq

– 1
)

≤ bp

p
+

aq

q
.

(11)

By combining (11) with Theorem 2.2, we get the following inequalities:

ab ≤ min

{
ap

p
+

bq

q
–

(
1
p

e
1
q | log ap

bq | +
1
q

e
1
p | log ap

bq | –
2| log ap

bq |
pq

– 1
)

,

bp

p
+

aq

q
–

(
1
p

e
1
q | log bp

aq | +
1
q

e
1
p | log bp

aq | –
2| log bp

aq |
pq

– 1
)}

,

(12)

ab ≤ min

{
ap

p
+

bq

q
–

(
e

2| log ap
bq |

pq –
2| log ap

bq |
pq

– 1
)

,

bp

p
+

aq

q
–

(
e

2| log bp
aq |

pq –
2| log bp

aq |
pq

– 1
)}

,

(13)

ab ≤ min

{
ap

p
+

bq

q
,

bp

p
+

aq

q

}
. (14)

It will be interesting if we can say something about the inequalities (12)–(14) compared
with the corresponding inequalities in (11). The comparison related to (14) is recently
discussed also in [4, p. 57].

Let a and b be a real numbers such that 1 ≤ a ≤ b. Let us consider a function h(x) :=
xq

q – xp

p , p ≥ q ≥ 1. Then h′(x) = xq–1(1 – xp–q) ≤ 0 for x ≥ 1, i.e., h is nonincreasing on
[1,∞), and for 1 ≤ a ≤ b we have h(a) ≥ h(b), i.e., ap

p + bq

q ≤ bp

p + aq

q . Hence, if 1 ≤ a ≤ b,
then inequality (14) gives the following refined Young inequality:

ab ≤ min

{
ap

p
+

bq

q
,

bp

p
+

aq

q

}
=

ap

p
+

bq

q
.

Similar comparisons related to inequalities (12) and (13) are still open problems.

Guided by the arguments in our introduction, we can also derive the following refined
version of the reversed Young inequality (2).

Theorem 2.4 Let a, b ≥ 1, 0 < p < 1, q < 0 where 1
p + 1

q = 1 and n ∈ N, n ≥ 2. Then

ab ≥ ap

p
+

bq

q
+ S –

n∑

k=2

1
pk!

Vk

(
log(ab), q log b;

1
p

)

≥ ap

p
+

bq

q
+ S –

n–1∑

k=2

1
pk!

Vk

(
log(ab), q log b;

1
p

)
≥ · · · ≥
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≥ ap

p
+

bq

q
+ S (15)

≥ ap

p
+

bq

q
+

1
p

e– 2p2
q | log ab1–q| +

2p
q

∣
∣log ab1–q∣∣ –

1
p

≥ ap

p
+

bq

q
,

where

S := e– p
q | log ab1–q| –

1
q

ep| log ab1–q| +
2p
q

∣
∣log ab1–q∣∣ –

1
p

,

Vk is defined in (6), and with the convention that the sum
∑1

k=2 is equal to 0.

Proof Consider the chain of inequalities in (7). First, we replace p by 1
p > 1 and q by – q

p .
After that we replace a by (ab)p and b with b–p. Then, by (7) we have that

ap = (ab)pb–p ≤ pab –
p
q

bq – pS +
n∑

k=2

1
k!

Vk

(
log(ab), q log b;

1
p

)

≤ pab –
p
q

bq – pS +
n–1∑

k=2

1
k!

Vk

(
log(ab), q log b;

1
p

)
≤ · · · ≤

≤ pab –
p
q

bq – pS ≤ pab –
p
q

bq – pT

≤ pab –
p
q

bq,

(16)

where T := e– 2p2
q | log ab1–q| + 2p

q | log ab1–q| – 1
p . Dividing in (16) by p and adding 1

q bq, we get
the following chain of inequalities:

1
p

ap +
1
q

bq ≤ ab – S +
n∑

k=2

1
pk!

Vk

(
log(ab), q log b;

1
p

)

≤ ab – S +
n–1∑

k=2

1
pk!

Vk

(
log(ab), q log b;

1
p

)
≤ · · · ≤

≤ ab – S ≤ ab – T

≤ ab.

(17)

Hence

S –
n∑

k=2

1
pk!

Vk

(
log(ab), q log b;

1
p

)
≥ S –

n–1∑

k=2

1
pk!

Vk

(
log(ab), q log b;

1
p

)
≥ S ≥ T ≥ 0,

and after some calculations we get the chain of inequalities in (15). The proof is com-
plete. �
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3 Refined Hölder inequality
Here and in the following sections, we denote a positive measure space on (0,∞) by (E,μ).
If S ⊆ E, then as usual we denote

‖f ‖p,S =
(∫

S

∣∣f (x)
∣∣p dμ(x)

) 1
p

for any real p 
= 0 and measurable function f . If S = E, we simply write ‖f ‖p. Our refined
version of Hölder inequality reads:

Theorem 3.1 Let p, q > 1 be real numbers such that 1
p + 1

q = 1. Let f , g be functions, which
are positive and finite a.e. on E. Let a subset E1 be defined as

E1 :=
{

x ∈ E :
f (x)
‖f ‖p

≥ 1,
g(x)
‖g‖q

≥ 1
}

.

Then, provided that the involved integrals are finite, we have that

∫

E
f (x)g(x) dμ(x) ≤ ‖f ‖p‖g‖q(1 – A) ≤ ‖f ‖p‖g‖q(1 – B) ≤ ‖f ‖p‖g‖q, (18)

where

A :=
∫

E1

(
1
p

e
k(x)

q +
1
q

e
k(x)

p –
2

pq
k(x) – 1

)
dμ(x),

B :=
∫

E1

(
e

2k(x)
pq –

2
pq

k(x) – 1
)

dμ(x)

with

k(x) :=
∣∣
∣∣log

f p(x)‖g‖q
q

‖f ‖p
pgq(x)

∣∣
∣∣.

Proof First, using the third, fourth, and fifth inequalities in (7) with a and b replaced by
f (x)
‖f ‖p

and g(x)
‖g‖q

, respectively, we find that for x ∈ E1,

f (x)
‖f ‖p

· g(x)
‖g‖q

≤ 1
p

f p(x)
‖f ‖p

p
+

1
q

gq(x)
‖g‖q

q
–

(
1
p

e
k(x)

q +
1
q

e
k(x)

p –
2

pq
k(x) – 1

)

≤ 1
p

f p(x)
‖f ‖p

p
+

1
q

gq(x)
‖g‖q

q
–

(
e

2k(x)
pq –

2
pq

k(x) – 1
)

≤ 1
p

f p(x)
‖f ‖p

p
+

1
q

gq(x)
‖g‖q

q
.

By integrating over E1, we get that

∫
E1

f (x)g(x) dμ(x)
‖f ‖p‖g‖q

≤
∫

E1
f p(x) dμ(x)
p‖f ‖p

p
+

∫
E1

gq(x) dμ(x)
q‖g‖q

q
–

∫

E1

(
1
p

e
k(x)

q +
1
p

e
k(x)

q –
2

qp
k(x) – 1

)
dμ(x)
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≤
∫

E1
f p(x) dμ(x)
p‖f ‖p

p
+

∫
E1

gq(x) dμ(x)
q‖g‖q

q
–

∫

E1

(
e

2k(x)
pq –

2
pq

k(x) – 1
)

dμ(x)

≤
∫

E1
f p(x) dμ(x)
p‖f ‖p

p
+

∫
E1

gq(x) dμ(x)
q‖g‖q

q
.

Moreover, on E\E1 we use just (1) in a similar way and obtain that

∫
E\E1

f (x)g(x) dμ(x)
‖f ‖p‖g‖q

≤
∫

E\E1
f p(x) dμ(x)
p‖f ‖p

p
+

∫
E\E1

gq(x) dμ(x)
q‖g‖q

q
.

By just adding the two previous inequalities, using the additivity of the integral,
∫

E =
∫

E1
+

∫
E\E1

, the equality 1
p + 1

q = 1, and multiplying with ‖f ‖p‖g‖q, we get (18). The proof is
complete. �

Our corresponding refinement of the reversed Hölder inequality reads:

Theorem 3.2 Let p ∈ (0, 1) and q < 0 be real numbers such that 1
p + 1

q = 1. Let f , g be
functions, which are positive and finite a.e. on E. Let

E1 :=
{

x ∈ E :
f (x)
‖f ‖p

≥ 1,
g(x)
‖g‖q

≥ 1
}

.

Then, provided that the involved integrals are finite, we have that

∫

E
f (x)g(x) dμ(x) ≥ ‖f ‖p‖g‖q(1 + C) ≥ ‖f ‖p‖g‖q(1 + D) ≥ ‖f ‖p‖g‖q, (19)

where

C :=
∫

E1

(
e– p

q r(x) –
1
q

epr(x) –
2p
q

r(x) –
1
p

)
dμ(x),

D :=
∫

E1

(
1
p

e
2p2

q r(x) –
2p
q

r(x) –
1
p

)
dμ(x),

with

r(x) :=
∣
∣∣
∣log

f (x)g1–q(x)
‖f ‖p‖g‖1–q

q

∣
∣∣
∣.

Proof By using (15) instead of (7), the proof is step by step similar to that of Theorem 3.1.
Hence, we omit the details. �

Remark 3.3 If we denote

Ec :=
{

x ∈ E :
f (x)
‖f ‖p

≥ c1/p,
g(x)
‖g‖q

≥ c1/q
}

, c > 0,

then in the same way we can state alternative formulations of Theorems 3.1 and 3.2, where
E1 is replaced by Ec and, in the inequalities (18) and (19), A, B, C, and D are replaced by
cA, cB, cC, and cD, respectively.
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The following theorem gives another refinement of the Hölder inequality, also based on
the usage of our refinement of the Young inequality. We consider a subset F ⊆ E consisting
of positive functions f and g which are bounded by some positive constants and construct
refinements involving these bounds.

Theorem 3.4 Let p, q > 1 be real numbers such that 1
p + 1

q = 1. Let f , g be functions,
which are positive and finite a.e. on E and bounded on F ⊆ E by positive constants,
0 < μ(F) < ∞. Denote c := m

Mμ(F) , where m := min{infx∈F f p(x), infx∈F gq(x)} and M :=
max{supx∈F f p(x), supx∈F gq(x)}.

Then, provided that the involved integrals are finite, we have that

∫

E
f (x)g(x) dμ(x) ≤ ‖f ‖p,F‖g‖q,F + ‖f ‖p,E\F‖g‖q,E\F – cA1‖f ‖p,F‖g‖q,F

≤ ‖f ‖p‖g‖q – cA1‖f ‖p,F‖g‖q,F

≤ ‖f ‖p‖g‖q – cB1‖f ‖p,F‖g‖q,F ≤ ‖f ‖p‖g‖q,

(20)

where

A1 :=
∫

F

(
1
p

e
k1(x)

q +
1
q

e
k1(x)

p –
2

pq
k1(x) – 1

)
dμ(x),

B1 :=
∫

F

(
e

2k1(x)
pq –

2
pq

k1(x) – 1
)

dμ(x),

with

k1(x) :=
∣∣
∣∣log

f p(x)‖g‖q
q,F

‖f ‖p
p,F gq(x)

∣∣
∣∣.

Proof Denote f̃ (x) := f (x)
c1/p‖f ‖p,F

, g̃(x) := g(x)
c1/q‖g‖q,F

. From the definition of the constants m and
M, we get that

m ≤ f p(x) ≤ M, mμ(F) ≤ ‖f ‖p
p,F ≤ Mμ(F) =

m
c

,

m ≤ gq(x) ≤ M, mμ(F) ≤ ‖g‖q
q,F ≤ Mμ(F) =

m
c

.

Hence, f (x)
c1/p‖f ‖p,F

≥ 1, i.e., f̃ (x) ≥ 1 on F , and similarly, g(x)
c1/q‖g‖q,F

≥ 1, i.e., g̃(x) ≥ 1 on F .

Putting in (7) a = f̃ (x), b = g̃(x), and integrating over F , we find that

∫

F
f̃ (x)g̃(x) dμ(x) ≤ ‖f̃ ‖p

p,F

p
+

‖g̃‖q
q,F

q

–
∫

F

(
1
p

e
1
q k1(x) +

1
q

e
1
p k1(x) –

2
pq

k1(x) – 1
)

dμ(x).

Since
‖f̃ ‖p

p,F
p +

‖g̃‖q
q,F

q = 1
c , we conclude that

∫

F
f̃ (x)g̃(x) dμ(x) ≤ 1

c
–

∫

F

(
1
p

e
1
q k1(x) +

1
q

e
1
p k1(x) –

2
pq

k1(x) – 1
)

dμ(x).
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Multiplying the above inequality by c‖f ‖p,F‖g‖q,F , we obtain that

∫

F
f (x)g(x) dμ(x) ≤ (1 – cA1)‖f ‖p,F‖g‖q,F .

Next we use the classical Hölder inequality with the set of integration E\F and have that
∫

E
f (x)g(x) dμ(x) =

∫

F
f (x)g(x) dμ(x) +

∫

E\F
f (x)g(x) dμ(x)

≤ (1 – cA1)‖f ‖p,F‖g‖q,F + ‖f ‖p,E\F‖g‖q,E\F ,
∫

E
f (x)g(x) dμ(x) ≤ ‖f ‖p,F‖g‖q,F + ‖f ‖p,E\F‖g‖q,E\F – cA1‖f ‖p,F‖g‖q,F ,

and the first inequality in (20) is proved. Next we will prove that

‖f ‖p,F‖g‖q,F + ‖f ‖p,E\F‖g‖q,E\F ≤ ‖f ‖p‖g‖q. (21)

Consider a function h(y, z) = yαz1–α + (1 – y)α(1 – z)1–α , 0 ≤ y, z ≤ 1, α ∈ (0, 1). Since

h′
y(y, z) = α

[(
y
z

)α–1

–
(

1 – y
1 – z

)α–1]
,

we get that h′
y(y, z) = 0 when y = z. It is easy to see that this is the maximum of h and since

h(z, z) = 1, we conclude that h(y, z) ≤ 1.

Taking α = 1
p , y =

‖f ‖p
p,F

‖f ‖p
p

, and z =
‖g‖q

q,F
‖g‖q

q
, we have that 1 – α = 1

q , 1 – y =
‖f ‖p

p,E\F
‖f ‖p

p
, and 1 – z =

‖g‖q
q,E\F

‖g‖q
q

.
Hence,

|f ‖p,F‖g‖q,F

‖f ‖p‖g‖q
+

‖f ‖p,E\F‖g‖q,E\F

‖f ‖p‖g‖q
≤ 1,

so (21) and thus the second inequality in (20) is proved. The proof of the third inequality
in (20) is a standard application of the Young inequality as in the proof of Theorem 2.2,
and the fourth inequality is trivial, so the proof is complete. �

Corollary 3.5 Let p, q > 1 be real numbers such that 1
p + 1

q = 1. Let f , g be functions, which
are positive and bounded on E, 0 < μ(E) < ∞. Let m and M be positive constants such that

m ≤ f p(x) ≤ M, m ≤ gq(x) ≤ M,

for all x ∈ E. Denote c := m
Mμ(E) .

Then, provided that involved integrals are finite, we have that
∫

E
f (x)g(x) dμ(x) ≤ ‖f ‖p‖g‖q(1 – cA2) ≤ ‖f ‖p‖g‖q(1 – cB2) ≤ ‖f ‖p‖g‖q,

where

A2 :=
∫

E

(
1
p

e
k(x)

q +
1
q

e
k(x)

p –
2

pq
k(x) – 1

)
dμ(x),
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B2 :=
∫

E

(
e

2k(x)
pq –

2
pq

k(x) – 1
)

dμ(x),

with k(x) defined in Theorem 3.1.

Proof Putting F = E in Theorem 3.4, we get the statement of this corollary. �

4 Refined Minkowski inequality
Note that in the previous section we defined numbers A, B, C, D, and functions k and
r, which depend on subsets E1 or E and functions f and g , i.e., A = AE1,f ,g , k = kE,f ,g , etc.
We use the corresponding notation in the following results concerning refinements of the
Minkowski inequality. For instance, a number BG,g,h which appeared in Theorem 4.1 is

equal to BG,g,h :=
∫

G(e
2k(x)

pq – 2
pq k(x) – 1) dμ(x) with k(x) = kE,g,h(x) := | log

gp(x)‖h‖q
q

‖g‖p
phq(x)

|.

Theorem 4.1 Let p > 1 be a real number, f , g be functions, which are positive and finite
a.e. on E, and

G =
{

x ∈ E :
f (x)
‖f ‖p

≥ 1,
g(x)
‖g‖p

≥ 1,
(f (x) + g(x))p–1

‖f + g‖p–1
p

≥ 1
}

. (22)

Then, provided that the involved integrals are finite, we have that

‖f + g‖p ≤ ‖f ‖p(1 – AG,f ,h) + ‖g‖p(1 – AG,g,h)

≤ ‖f ‖p(1 – BG,f ,h) + ‖g‖p(1 – BG,g,h) ≤ ‖f ‖p + ‖g‖p,
(23)

where h = (f + g)p–1, AG,f ,h, AG,g,h, BG,f ,h, and BG,g,h are defined in Theorem 3.1, but with G
defined by (22). In AG,f ,h and BG,f ,h, a function k := kE,f ,h appears, while a function k := kE,g,h

occurs in AG,g,h and BG,g,h.

Proof We have that

‖f + g‖p
p =

∫

E
f (f + g)p–1 dμ +

∫

E
g(f + g)p–1 dμ

≤
(∫

E
f p dμ

) 1
p
(∫

E
(f + g)(p–1)q dμ

) 1
q

(1 – AG,f ,h)

+
(∫

E
gp dμ

) 1
p
(∫

E
(f + g)(p–1)q dμ

) 1
q

(1 – AG,g,h),

where in the last inequality, we have used the statement of Theorem 3.1 applied with the
functions f and h := (f + g)p–1 with conjugate exponents p > 1 and q = p

p–1 > 1 for the first
integral and the statement of the same theorem applied with the functions g and (f + g)p–1

for the second integral.
Since

(∫

E
(f + g)(p–1)q dμ

) 1
q

=
(∫

E
(f + g)p dμ

) 1
p (p–1)

= ‖f + g‖p–1
p ,
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dividing the above inequality by ‖f + g‖p–1
p , we get

‖f + g‖p ≤ ‖f ‖p(1 – AG,f ,h) + ‖g‖p(1 – AG,g,h).

Thus the first inequality in (23) is proved. The proof of the second inequality is completely
similar so we omit the details. The third inequality is trivial, so the proof is complete. �

By instead using the inequalities in Theorem 3.2 and the method given in the proof of
Theorem 4.1, the corresponding refined version of the reversed Minkowski inequality can
be proved.

Theorem 4.2 Let p ∈ (0, 1) be a real number, f and g be functions, which are positive and
finite a.e. on E, and let G is defined by (22). Then, provided that the involved integrals are
finite, we have that

‖f + g‖p ≥ ‖f ‖p(1 + CG,f ,h) + ‖g‖p(1 + CG,g,h)

≥ ‖f ‖p(1 + DG,f ,h) + ‖g‖p(1 + DG,g,h) ≥ ‖f ‖p + ‖g‖p,

where h = (f +g)p–1, CG,f ,h, CG,g,h, DG,f ,h, and DG,g,h are defined in Theorem 3.1. In CG,f ,h and
DG,f ,h, a function r := rE,f ,h appears, while a function r := rE,g,h occurs in CG,g,h and DG,g,h.

5 Concluding remarks and results
It is well known that also by using the concept of strong convexity we can derive refined
versions of classical inequalities, see, e.g., [7] and the references therein.

Definition 5.1 ([6, 8]) Let I be an interval of the real line. A function ϕ : I → R is called a
strongly convex function with modulus c > 0 if

ϕ
(
λx + (1 – λ)y

) ≤ λϕ(x) + (1 – λ)ϕ(y) – cλ(1 – λ)(x – y)2 (24)

for all x, y ∈ I and λ ∈ [0, 1].

For applications the following lemma is useful.

Lemma 5.2 ([6]) The function ϕ is strongly convex with modulus c if and only if f (x) =
ϕ(x) – cx2 is convex.

The function ϕ(x) = ex is not only convex but also strongly convex with modulus c on
the interval [log 2c,∞). As a consequence of that fact, we have the following refinements
of the Young inequality.

Lemma 5.3 Let a, b > 0, p, q > 1, 1
p + 1

q = 1. Then

ab ≤ ap

p
+

bq

q
–

min{ap, bq}
2pq

log2 ap

bq ≤ ap

p
+

bq

q
. (25)

Furthermore, if a, b ≥ 1, then we have the following further refinement:

ab ≤ ap

p
+

bq

q
–

min{ap, bq}
2pq

log2 ap

bq ≤ ap

p
+

bq

q
–

1
2pq

log2 ap

bq ≤ ap

p
+

bq

q
. (26)
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Proof For a given p, let us fix both a, b > 0. Denote c := min{ap ,bq}
2 . Let x = log ap, y = log bq.

Then x ≥ log 2c, y ≥ log 2c. Using the strong convexity of ϕ(x) = ex on [log 2c,∞) with
modulus c and putting in (24) ϕ(x) = ex and λ = 1

p , we get the wanted inequality (25).
If a, b ≥ 1, then min{ap, bq} ≥ 1 and (26) holds. The proof is complete. �

Inequality (25) is already known in the literature, see, for example, [3, Theorem 3]. The
refinement of the reversed Young inequality is given in the following lemma. It is proved
by the same method as that described in the proof of Theorem 2.4.

Lemma 5.4 Let a, b > 0, 0 < p < 1, q < 0, where 1
p + 1

q = 1. Then

ab ≥ ap

p
+

bq

q
–

p
2q

min
{

ab, bq} log2(ab1–q) ≥ ap

p
+

bq

q
.

Moreover, if a, b ≥ 1, then

ab ≥ ap

p
+

bq

q
–

p
2q

log2(ab1–q) ≥ ap

p
+

bq

q
–

p
2q

min
{

ab, bq} log2(ab1–q) ≥ ap

p
+

bq

q
.

Applying the above-mentioned refinements of the Young inequality, we can state the
following refinement of the Hölder inequality.

Theorem 5.5 Let p, q > 1 be real numbers such that 1
p + 1

q = 1. Let f , g be positive and finite
functions a.e. on E.

Then, provided that involved integrals are finite, we have that

∫

E
f (x)g(x) dμ(x) ≤ ‖f ‖p‖g‖q

(
1 –

1
2pq

∫

E
l(x)k2(x) dμ(x)

)
≤ ‖f ‖p‖g‖q, (27)

where

k(x) :=
∣∣
∣∣log

f p(x)‖g‖q
q

‖f ‖p
pgq(x)

∣∣
∣∣ and l(x) = min

{
f p(x)
‖f ‖p

p
,

gq(x)
‖g‖q

q

}
.

Proof For fixed x ∈ E, putting a = f̃ (x), b = g̃(x) in (25) and integrating it over E, we get
that

∫

E
f̃ (x)g̃(x) dμ(x) ≤ ‖f̃ ‖p

p

p
+

‖g̃‖q
q

q
–

1
2pq

∫

E
min

{
f̃ p(x), g̃q(x)

}
log2 f̃ p(x)

g̃q(x)
dμ(x).

Assuming that ‖f̃ ‖p = 1, ‖g̃‖q = 1, we find that

∫

E
f̃ (x)g̃(x) dμ(x) ≤ 1 –

1
2pq

∫

E
min

{
f̃ p(x), g̃q(x)

}
log2 f̃ p(x)

g̃q(x)
dμ(x).

Replacing f̃ (x) with f (x)
‖f ‖p

and g̃(x) with g(x)
‖g‖p

, we obtain that

∫

E

f (x)g(x)
‖f ‖p‖g‖q

dμ(x) ≤ 1 –
1

2pq

∫

E
min

{
f p(x)
‖f ‖p

p
,

gq(x)
‖g‖q

q

}
log2 f p(x)‖g‖q

q

‖f ‖p
pgq(x)

dμ(x).
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Multiplying the above inequality with ‖f ‖p‖g‖q, we get inequality (27). The proof is com-
plete. �

Finally, we will do some comparisons between the results obtained in Sect. 2 and in
Lemma 5.3. Since Theorem 2.2 holds for a, b ≥ 1, we work only under that condition. The
whole term in the third inequality in (7),

ap

p
+

bq

q
–

(
1
p

e
1
q | log ap

bq | +
1
q

e
1
p | log ap

bq | –
2| log ap

bq |
pq

– 1
)

,

and the middle term in (25),

ap

p
+

bq

q
–

min{ap, bq}
2pq

log2 ap

bq ,

cannot be compared. Namely, the difference d1(a, b),

d1(a, b) :=
1
p

e
1
q | log ap

bq | +
1
q

e
1
p | log ap

bq | –
2| log ap

bq |
pq

– 1 –
min{ap, bq}

2pq
log2 ap

bq ,

changes its sign for different values of p, q, a, and b. For example, if p = 4, q = 4/3, then
d1(10, 3) ≈ 60.3 and d1(2, 2) ≈ –0.3. Similarly, the difference d2, which arises from the
fourth inequality in (7) and (25), also changes sign. For example, if p = 20, q = 20

19 , then
d2(39, 2) ≈ 716.7 and then d2(2, 8) ≈ –28, where

d2(a, b) := e
2| log ap

bq |
pq –

2| log ap

bq |
pq

– 1 –
min{ap, bq}

2pq
log2 ap

bq .

Also, the difference

d3(a, b) := e
2| log ap

bq |
pq –

2| log ap

bq |
pq

– 1 –
1

2pq
log2 ap

bq

changes its sign, for example, if p = 20, q = 20
19 , then d3(39, 2) ≈ 851 and d3(2, 5) ≈ –2.5.

But the third inequality in (7) can be compared with (26). In fact, let us consider the
difference d4(a, b) defined by

d4(a, b) :=
1
p

e
1
q | log ap

bq | +
1
q

e
1
p | log ap

bq | –
2| log ap

bq |
pq

– 1 –
1

2pq
log2 ap

bq .

This difference contains the term s := | log ap

bq |, s ≥ 0, so we can consider the function

f (s) :=
1
p

es/q +
1
q

es/p –
2s
pq

– 1 –
s2

2pq
.

Then f ′(s) = 1
pq (es/q + es/p – 2 – s), f ′′(s) = 1

pq ( 1
q es/q + 1

p es/p – 1) ≥ 0, and f ′(s) ≥ f ′(0) = 0, which
implies that f (s) ≥ f (0) = 0. So, d4(a, b) ≥ 0 for any a, b ≥ 1, and we have the following chain
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of refinements:

ab ≤ ap

p
+

bq

q
–

(
1
p

e
1
q | log ap

bq | +
1
q

e
1
p | log ap

bq | –
2| log ap

bq |
pq

– 1
)

≤ ap

p
+

bq

q
–

1
2pq

log2 ap

bq ≤ ap

p
+

bq

q
.
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