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Abstract  

In order for wind energy producers to avoid the extra costs of inaccurate production estimates 

for the day-ahead energy market, precise forecasts of power production during the next day 

have to be made. For renewables such as wind energy, power production is particularly difficult 

to predict as it depends on the fluctuating wind speed. In addition, forecasting the power 

production in cold climates such as Norway is further complicated by the icing on wind turbine 

blades. The extra load on turbine blades due to icing leads to a decrease in power production.  

Kjeller Vindteknikk has a state of the art model that estimates the production loss due to icing 

for new wind farms. This model uses historical weather data from the numerical weather 

prediction model WRF. To meet the interest from customers, Kjeller Vindteknikk wishes to 

further develop the icing model into IceLossForecast - An operational model providing 

production forecasts with icing loss for wind energy producers in cold climates. For this to 

work, the first step is to implement forecasting data into the IceLoss2.0 model and see if icing 

loss forecasts is comparable to historical IceLoss2.0 data. This is the objective of this thesis. 

Forecasting data from WRF forecast and the MetCoOp Ensemble Prediction model (MEPS) 

is implemented, and their results are compared to each other and to the current IceLoss2.0 

estimates.  

In this thesis MEPS and WRF forecasts has been implemented to IceLoss2.0 successfully. 

Results from one turbine at Kvitfjell Wind Farm has shown promising results both for WRF 

and MEPS that are comparable to the traditional IceLoss2.0 estimates with historical WRF 

data.  
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1 Introduction  

1.1 Energy Market  

The energy market in Norway is based on day-ahead trading of energy at the NordPool 

market. At the NordPool market energy producers and consumers deliver their offers and bids 

on energy (NordPool, n.d.). As energy needs to be used at the exact moment it is produced, 

there must be a balance between the energy produced and the energy consumed at all times 

(NVE, 2022a). An imbalance would change the power frequency which in turn can destroy 

equipment or in the worst case scenario a breakdown of the power grid (NVE, 2022b).  To 

avoid such an imbalance, balancing power reserves are activated. In Norway, Statnett hold the 

task of maintaining the power balance within the market. When an activation of the power 

reserved due to an imbalance is necessary, an extra cost is added to the market actors that 

were responsible for the imbalance (Ferrieira, 2016). 

Due to the cost of over- and underestimating the power production, creating accurate power 

production forecasts are of high importance for energy producers. For renewable energy 

sources such as wind energy, the prognostication is especially challenging due to the 

fluctuating wind resources (Gebrekiros & Doorman, 2014). To make it even more 

challenging, wind farms in cold climates such as Norway suffer from icing losses. That is, 

when ice builds up on the leading edge of the blade, the power production is reduced. 

Therefore, icing could potentially lead to a massive overestimation of the forecasted power 

production because it is not typically accounted for (Wallenius & Lehtomäki, 2015). 

1.2 Previous Work 

Kjeller Vindteknikk has developed a state-of-the-art IceLoss2.0 model that estimates the 

production icing loss for new wind farms. These estimates are based on historical data from 

the Numerical Weather and Research model WRF. The dataset spans from the year 2000 to 

the present date and is continuously updated in both past and present directions.  

Kjeller Vindteknikk wishes to further develop this model so that icing forecast using 

IceLoss2.0 and two different weather models can be made and assist energy producers in their 

day-ahead power production estimates, as several customers have shown an interest for this 

after several large icing events in Finland during November 2022 (Lehtomäki, 2022).  

As per today, a version of IceLossForecast is running operational on several wind farms in 

Finland. The owners of these wind farms are especially interested in forecasting the turbine 
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stops due to icing. This model has shown a hit rate of turbine stops between 22,9% and 

41,0%, while the icing loss difference between the model and measurements, are between 

0,2% and 1,2% (Kurppa et al., 2022). This model is based on forecasting data from the 

numerical weather prediction model WRF. 

Although the icing loss results from the current IceLossForecast version are promising, it 

would be valuable to implement ensemble data as input to get a better understanding of how 

certain each forecast is. Ensemble data provides a set of forecasts instead of just one 

deterministic forecast. The different forecasts in the set are referred to as ensemble members. 

Each member contain some perturbations consistent with the uncertainties within the initial 

conditions (MetOffice, n.d.). This is done to account for some of the uncertainties within the 

forecast model.  

During the fall of 2022 the author did a validation of the IceLoss2.0 model where model 

outputs were compared to SCADA data from eight turbines at Kvitfjell and Raudfjell Wind 

Farms (Andersen, 2022). The results were promising, especially for four of the turbines that 

had an active deicing system. Due to the success with icing loss estimates at these Wind 

Farms, the same location was chosen as a starting point when creating IceLossForecast with 

MEPS implementation. This work is based upon one turbine located at Kvitfjell Wind Farm. 

This turbine is located at a high elevation in the terrain, leaving it vulnerable to icing and a 

perfect candidate for testing IceLoss2.0 with forecasting models. 

1.3 Objective 

In this work, the main objective is to implement MEPS data into IceLoss2.0 to create an icing 

loss forecast that also can provide statistical measures like uncertainty of the forecasts. 

Together with the MEPS implementation, a similar WRF forecast implementation will be 

made as a reference to see how good the implementation is. These two forecasts will then be 

compared to the traditional IceLoss2.0 estimates with historical WRF data as input.  

1.4 Paper Structure  

This paper includes six chapters, Introduction, Theory, Method, Result and Discussion, 

Further Work and Conclusion. Their contents are described below.  

The introduction Chapter 1 provides the necessary background information leading up to the 

objective of this work, as well as presenting the main objective.  
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Chapter 2 includes the relevant theory behind icing on structures such as turbine blades. 

Further, the numerical weather prediction models used in this work, WRF and HARMONIE-

AROME are introduced. Lastly, the chapter covers the theory behind the IceLoss2.0 model. 

Note that some sections from this chapter are extracted from a project paper written by the 

author in the fall of 2022.  

Chapter 3 covers the methods used in this work. This includes the preparation of input data 

and model set up. Along with a method used when analyzing the input data.   

In Chapter 4 the resulting icing losses are presented. Time series of icing losses during the 

some chosen icing episode are plotted, as well as a snippet of the time series of power 

productions from all three IceLoss2.0 simulations with different input models. The results are 

discussed along the way as well.  

Chapter 5 proposes further work that could be done to improve the results and make IceLoss 

Forecast operational.  

Chapter 6 summarizes and concludes the main results from this work.  
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2 Theory  

2.1 Icing on Wind Turbines  

In cold climates icing on wind turbines is often a challenge. Ice buildup on turbine blades is 

mainly due to freezing rain or in-cloud icing. Freezing rain refers to subcooled air droplets 

that freeze when hitting a surface. In-cloud icing happens when the structure is covered in fog 

or cloud and the temperature is below 0 ◦C (Clausen, 2017). This blade ice buildup is 

removed in three ways, sublimation, melting and ice shedding (Nilsen, 2019). 

There are several issues regarding icing on turbines. The most obvious one being loss of 

power. Ice loads on turbine blades increase the blades drag force while decreasing the blades 

lift force, causing the turbine to rotate slower and produce less (Lamraoui et al., 2014). 

Additionally, this imbalance and extra load also creates more stress on the blade and can 

impact the turbine fatigue reducing its lifetime. Another challenge with icing is the safety 

issue when ice shedding occurs. Ice shedding is when ice falls off the turbine blades. If this 

occurs while the blade is rotating, the ice could get thrown off at high speed and project far 

away from the turbine itself. This fallen or thrown ice are dangerous for people wandering the 

area.   

One solution to the ice related issues is simply stopping the turbine when ice is detected. 

However, this does not solve the loss of production problem, and ice still may fall off the 

stand still turbine blades during melting (Ronsten et al., 2012). Another solution is blade 

heating, or deicing. Essentially the turbine blades are heated when icing occurs to prevent ice 

buildup so that the turbines can operate under icing conditions, but during heavy icing events 

the deicing system is not able to remove all the ice. Note that some of the produced energy 

will then be used for blade heating, or in some cases, the turbine would get energy from the 

grid to remove the ice. Therefore, deicing is only efficient in areas with sufficient icing loss, 

as a rule of thumb that is when the yearly energy production losses due to icing is above 1%.  

2.2 Production Loss due to Icing 

For wind turbines, there is a strong relation between the wind speed and the power produced. 

This relation is often referred to as the turbines power curve and is unique for each type of 

wind turbine generator. Figure 3-1 shows the power curve used from the wind farm 

investigated in this work. For wind turbines rotating, ice usually builds up at the leading edge 

of the turbine blades. Extra load on the blades increases the drag force and decreases the lift 
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force causing the turbines to rotate slower than they usually would at the current wind speed. 

If the turbines have an active deicing system, the blades would be heated to prevent ice from 

building. The turbine may then still rotate at its usual speed, but the production would still be 

reduced due to the heating. At significant icing events, the wind turbine generator would not 

produce as much as expected for the correlating wind speed. Hence, these events would 

appear under the power curve. 

2.3 Kvitfjell/Raudfjell Wind Farm 

Kvitfjell and Raudfjell WFs are located at the west coast of Northern Norway, in Troms 

County. The wind farms have 67 wind turbines in total. They are placed at elevations between 

307.7 – 550.5 mas (meters above sea level). A validation report done by the author in Des 

2022 showed that the icing loss for four turbines within this park located at different height 

was about 2-4% in Feb21-Feb22. Figure 2-1 below show wind roses for Kvitfjell and 

Raudfjell, which demonstrate the relationship between wind direction and strength, both in a 

general case, and in the case of ice events. As shown in the figure, the typical wind direction 

is from the South-Southeast. During icing the typical direction is from West, however it 

fluctuates from South-West to North-West. All the wind directions during icing are coming 

from offshore, suggesting that this air is warmer and holds more moisture. 

 

 

Figure 2-1: Wind roses of Kvitfjell/Raudfjell showing magnitude of wind speed and direction. Left: Average wind 
rose for the period 2000 – 2022. Right: Wind rose during only active periods of icing. 
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The turbines at Kvitfjell/Raudfjell wind farm are produced by Simens Gamesa, they have a 

hub height of 85m and rotor diameter of 130m. Each turbine can produce up to 4.2 MW of 

energy. Found from post-processing of SCADA data in previous work with validation of 

IceLoss2.0 that turbines had been adjusted up from 4.2 MW to 4.3 MW during the summer 

2021. As an adjusted power curve had not been received until then, this was not accounted 

for. As this report compares forecast data with historical data made during that validation, the 

power curve is not adjusted for this case either. Table 1 summarizes the information about the 

wind turbines at Kvitfjell/Raudfjell wind park. 

Table 1 Information about wind turbines at Kvitfjell/Raudfjell Wind Farm used in IceLoss2.0 

Name  SWT-DD-130-4,2MW 

Manufactory Siemens  

Hub height  85 m  

Rotor diameter  130 m  

Turbine elevation 307.7 – 550.5 mas 

Maximum power  4.2 MW 
 

2.4 Data 

In this work, two different numerical weather prediction models have been used as input for 

IceLoss2.0. They are KVT Meso which uses the NWP model Weather Research and Forecast 

model (WRF), and MetCoOp Ensemble Prediction System (MEPS) which uses the 

HARMONIE-AROME model. Descriptions of each model are given in the following 

sections.  

2.4.1 Weather Research and Forecast model (WRF) 

WRF is a state-of-the-art Numerical Weather Prediction model designed for both atmospheric 

research and forecasting needs. It can produce simulations based on actual atmospheric 

conditions or idealized conditions (NCAR, 2023). It uses geographical and meteorological 

data as input. Inside of the chosen inner domain, it creates a box grid average based on the 

chosen resolution. The WRF hindcast simulations used as input for the IceLoss2.0 model 

covers the period from 2000-2022, while the WRF forecasting simulations each has a lead 

time of 49 hours. Both simulations have a horizontal resolution of 4 km. The WRF model 

runs with 32 vertical layers in total, with 4 layers below 200m. In addition, a 1 km resolution 

WRF simulation from 2005 are used to downscale the other simulation and make better wind 

descriptions (Liléo et al., 2013). The inner domain is called KVT-SWE06 and covers Norway 

and Sweden as shown in Figure 2-2 below depicts the domains of the WRF setup. The 
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historical WRF simulation is here on referred to as KVT Meso hindcast, while the WRF 

forecasting simulations are referred to as KVT Meso forecast.   

 

Figure 2-2: The outer and inner domain of KVT_SWE06 simulations (Kjeller Vindteknikk, n.d.-b) 

For KVT Meso hindcast and forecast simulations on Kvitfjell/Raudfjell wind farm, the grid 

point marked in Figure 2-3 was used. This grid point is at a height of 253.6 mas for KVT 

Meso hindcast and 223.8 mas for KVT Meso forecast and is situated at the eastward end of 

Kvitfjell. This is the grid point closest to the parks both in elevation and distance, as the other 

points 4 km away from the one chosen were situated near sea level. Therefore, the chosen 

point was the most representative for this WF.   
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Figure 2-3 Map of Kvitfjell and Raudfjell WF, with the chosen WRF grid point marked. The grid point represents a 
box grid of size 4 km x 4 km. This point is situated as height 253.6 mas, according to model. Real terrain height at 
this point is 334.5 (Kartverket.no) 
 

2.4.2 MetCoOp Ensemble Prediction System (MEPS) 

The MetCoOp Ensemble prediction system (MEPS) is the ensemble realization of 

HARMONIE-AROME, producing 30 members. HARMONIE-AROME is a numerical 

weather prediction model used for operational short-range forecasting (Frogner et al., 2019). 

The domain used in these simulations covers Norway, Finland, Sweden and Denmark, as 

Figure 2-4 shows. The horizontal resolution is 2.5 km and the lead time for each simulation is 

62 hours. Each day four simulations are made, at 00:00, 06:00, 12:00 and 18.00 (Forgner et 

al., 2019). The chosen grid point is in the middle of Kvitfjell wind park. Here the model 

elevation is 350 mas, while the real terrain height is 512 mas. Figure 2-5 shows the location of 

this grid point within the park. Usually, the preferred grid should not be above the lowest 

turbine in the park due to orographic lifting in IceLoss2.0 (section 2.5.1.2), but in this work 

only one turbine located at height 523 mas is studied. This turbine is marked as a red circle in 

Figure 2-5. Notice that it is located at the outline of the selected grid box area. The reason for 

choosing this grid point and the one on the other side of this outline is because this grid point 
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is closer in elevation to the selected turbine. The MEPS ensemble consists of 28 perturbations 

and 2 control members.  

 The MEPS data is retrieved from an internal KVT server, originating from a Meteorological 

Institute service. Some of this data is available online, however some variables describing the 

liquid water content are not available. Therefore, the data available to IceLoss2.0 are only the 

ones from KVTs internal server.  

    

Figure 2-4 Schematic of Ensemble Prediction System domains using Harmonie-Arome. The purple square marks 
the domain used by cooperation with Finland, Norway and Sweden called MEPS or MetCoOp EPS. (Frogner et 
al., 2019) 
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Figure 2-5 Map of Kvitfjell and Raudfjell WFs. The selected MEPS grid point is marked in orange surrounded by 
the outline of the 2.5 km x 2.5 km grid box it is representing. The red circle marks turbine KN04 investigated in 
this work. (Kartverket.no) 
 

2.4.3 NWP Setup and Features  

The table below sums up some of the model setup and features for the MEPS and WRF 

simulations used in this work. 
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Table 2: Model setup and features 

WRF hindcast, WRF forecast and MEPS model setup 

Model data  KVT Meso hindcast  KVT Meso forecast  MEPS 

NWP model  WRF  WRF  HARMONIE-AROME 

Members  1 1 30 

Daily runs ~ 4 4 

Period  2000-2022 48 hours  62 hours 

Spatial Resolution 4 km x 4 km  4 km x 4 km  2.5 km x 2.5 km 

Temporal resolution 1 hour  1 hour  1 hour 

Vertical resolution 32  32  65 

Stored levels  10 10 15 

Lateral boundary  FNL GFS IFS 

Microphysics  Thompson (8) 
(Thompson et al., 
2004) 

Thompson (8) 
(Thompson et al., 
2004) 

ICE3 (Taufour et al., 
2019) 

Planetary Boundary Layer YSU (1) (Hong et al., 
2006) 

YSU (1) (Hong et 
al., 2006) 

unknown 

Land surface physics  5L-thermal (1) 5L-thermal (1) SURFEX (Le Moigne, 
2009) 

Surface layer  MMS (1) MMS (1) unknown 

Radiation Scheme RRTMG  RRTMG unknown 

Initial and boundary perturbations ~ ~ SLAF, surface 
perturbations, 
PertAna 

Model version 3.2.1 4.1.1  

 

2.5 IceLoss2.0 

Kjeller Vindteknikk has developed the IceLoss2.0 model to calculate the power production 

losses due to icing. It uses data from The Numerical Weather Prediction model WRF as input, 

along with turbine specifics such as power curve, rpm curve, terrain elevation of each wind 

turbine, hub height and blade diameter. 

2.5.1 Downscaling to Reduce Interval Variability. 

The meteorological variables and topography within each grid are represented as a grid 

average. When using NWPs with spatial resolution 2.5-4 km, it fails to detect the local 

variabilities within each grid. The processes implemented in IceLoss2.0 to reduce this 

variability follows (Lindvall, 2017) 

• Downscaling wind (speed and direction) to 1x1 km  

• Cloud water adjustment due to orographic lifting (CWO) 

• Cloud water sheltering (CWS) 

• (Wake) reduced wind speed.  
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2.5.1.1 Downscaling Wind Speed and Direction 

KVT has, in conjunction with creating wind maps covering Nordic countries, done several 

WRF simulations with a 1 km horizontal resolution. These simulations cover 1-2 years and 

have been long-term adjusted with a reference dataset. Now these simulations are used in 

IceLoss2.0 to downscale wind speed and direction from WRF 4x4 km to a 1 km resolution. 

For each turbine, the closest 1 km is located. Further, the wind direction and speed are 

downscaled by the U&N method (Liléo et al., 2013; Lindvall, 2017). This is a long-term 

correction method primarily based on a quantile regression technique. The downscaling of 

wind method described here with 1 km WRF simulations are only available for WRF data. 

That is, for IceLoss2.0 simulations with input data from the MEPS model, this downscaling 

feature is skipped.  

2.5.1.2 Cloud Water Adjustment due to Orographic Lifting (CWO) 

As the horizontal resolution for input data are 2.5 km (MEPS) and 4 km (WRF hindcast, 

WRF forecast), the terrain is smoothed with this resolution. For complex terrain, the 

difference between the real terrain height and this smoothed model height can be large. When 

air mass is forced upward due to rising terrain, the air mass is adiabatically cooled. If the air is 

humid, orographic clouds will form (Ahrens & Henson, 2020).  As this is an important 

parameter for icing, the cloud water content needs to be adjusted due to this lifting. Firstly, 

temperature and air pressure are corrected to their actual height for each wind turbine, by 

picking out these variables at the correct height above sea level. The liquid water content, 

however, is lifted adiabatically from model height H to the wind turbines real height (H + h). 

Temperature typically decreases with height, causing the lifted air mass to condensate and 

form clouds. For a certain water content threshold, the excess water content is transmitted into 

precipitation. Figure 2-6 below depicts a schematic of cloud condensate lifting.  

 

Figure 2-6 Illustration of orographic lifting method implemented in IceLoss2.0 (Lindvall, 2017). 
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2.5.1.3 Cloud Water Sheltering (CWS) 

On the leeward side of a mountain the opposite effect of orographic lifting occurs, namely 

Foehn Warming. This is a result of accelerating downslope wind where the air mass is 

warmed and dried due to adiabatic descending. Foehn Warming is often recognized as warm 

weather and clear skies on the lee side of a mountain (Ahrens & Henson, 2020). As opposed 

to CWO, this effect gives a reduction of wind turbine icing. A schematic of how the cloud 

water content is adjusted due to Foehn warming is shown in Figure 2-7. Here, Qinitial is the 

initial cloud water content adjusted by CWO, and Qnew is the cloud water content of the lee 

side. When passing the mountain or hill, the cloud water content is scaled by a reduction 

factor R. 

 

Figure 2-7 Illustration of how the Cloud Water Sheltering is calculated in IceLoss2.0 (Lindvall, 2017). 

 

The reduction factor is defined as the ratio of Qinitial to Qnew. This ratio was determined from a 

study using SCADA data from two wind farms along with high resolution WRF data (300m). 

At these sites, 40 transects across hills were defined and the relationship between Q initial and 

Q new were identified. The transects showed a clear relationship between the height of the 

hill.  

The reduction factor is a scalar ratio that was obtained by investigating the cloud water 

content on each side of forty hills by following a direct transect over the hill as figure x 

illustrates. This revealed that the ratio was dependent on the height of the hill.  

𝑅 = 𝑓(𝑑𝐻) (1) 
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Figure 2-8 Example transect that was used to find the reduction factor R in IceLoss2.0. dH is the difference in 
elevation between Q initial and the top of the hill. dx is the horizontal distance between the top of the hill and Qnew. 

(Lindvall, 2017). 

 

The height difference dH is obtained by topography maps with a 3 km diameter around each 

turbine. This is the difference between average elevation in each azimuthal direction and the 

elevation of the wind turbine.  

2.5.1.4 (Wake) Reduced Wind Speed  

If the nacelle wind speeds are provided by the WFs, the reduced wind speed by wake loss is 

accounted for in the IceLoss2.0 model. This is an optional feature only used if information 

about wake loss within the WF is available. If wake reduced wind speed is provided, it is 

accounted for by the U&N quantile regression method (Liléo et al., 2013). As previously 

mentioned, this method is used to downscale the wind speed and direction from a reference 

dataset to 1 km resolution. Now this method is used to downscale the wind speed a secondary 

time to the nacelle anemometer. (Lindvall, 2017). However, often only the “free mean wind 

speed” is provided from the WFs. Here the wake loss is not included, but this information is 

also used to downscale the wind speeds additionally.  

2.5.2 Blade Cylinder Model 

There are two ways the IceLoss2.0 model calculates the ice load. The first method is based on 

ISO12494 standard and was initially used for IceLoss1.0 (Lindvall, 2017). This method 

calculated the ice load on a standard cylinder that is 1 meter long, 3cm in diameter and is 

oriented vertically. Ice formation is due to particles in the air colliding with the cylinder. 

These particles can be either in liquid form, solid form, or a mixture of those two. Sources of 

ice that forms on structures include cloud droplets, rain drops, snow and water vapor 
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(ISO12494, 2017). The icing rate on a standard cylinder, according to ISO12494, is defined 

as 

d𝑀𝑠𝑡𝑑

dt
 = 𝛼1  · 𝛼2  ·  𝛼3  ·  w ·  A ·  V (2) 

where α1 is the collision efficiency, α2 is the sticking efficiency, α3 the accretion efficiency, w 

the liquid water content, A is the collision area and V is the wind speed (Clausen, 2017).  

The efficiency factors α1, α2, and α3 vary between 0 and 1, hence they represent the different 

processes that reduce the icing rate. Factor α1 represents the efficiency of a collision of the 

particles. Hence α1 describes the ratio between the number of particles colliding with the 

cylinder and the total amount of particles on the windward side (Molinder, 2021). Factor α2 

represents the sticking efficiency. That is the number of particles sticking to the cylinder 

versus the total amount colliding with the cylinder. Lastly factor α3 represents the accretion 

efficiency. This factor describes how much of the water or ice particle sticks to the cylinder. 

Example, if all the water droplets that collide with the cylinder sticks and freezes, the 

efficiency is one, if a part of the droplet runs off the surface before freezing, the efficiency is 

less than one. (ISO12494, 2017) 

Although IceLoss2.0 also has an improved way of modelling the turbine blade ice load, it is 

primarily based on this theoretical modelling of icing on a standard cylinder. The improved 

methodology of calculating the ice load is called the blade cylinder model. This model 

consists of three cylinders oriented in such a way that the wind turbine blades are rotating in 

the same matter. Figure 2-9 shows a schematic of this model. 

 

Figure 2-9 Schematic of the Kjeller Vindteknikk Blade Cylinder Model (Lindvall, 2017) 
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The icing rate equation for the blade cylinder model is then rewritten as 

d𝑀𝑏𝑙𝑎𝑑𝑒

dt
 =  𝛼1∗  · 𝛼2  ·  𝛼3  ·  w ·  𝐴𝑏𝑙𝑎𝑑𝑒  ·  𝑉𝑎𝑖𝑟   (3) 

where Vair is the relative air speed, Ablade is the collision area of a cylinder representing the 

leading edge of a wind turbine blade. The collision efficiency α1∗ is rewritten to better 

describe the collision process of an airfoil (Kjeller Vindteknikk, n.d.-a).  

As the turbines rpm determines the relative wind speed in equation 3 the turbines rpm-curve 

is an important input parameter in the IceLoss2.0 model as well as other turbine specifics 

such as blade diameter. The liquid water content is also an important parameter in the 

IceLoss2.0 model as Equation 3 shows. 

Ice is removed either by melting, sublimation, or shedding. These rates are determined by 

temperature, wind speed, radiation, relative humidity, and air pressure.   

2.5.3 Energy Production Calculations 

The full energy production numbers are calculated using the wind turbine specific power 

curve together with the modelled wind speed for each wind turbine. For production with ice 

or production with deicing, the full production is scaled by a reduction factor from 0 to 1. 

Where 1 is no reduction and 0 is standstill. This reduction matrix has been calibrated by a 

large database of historical icing losses from operational wind farms. This database consists 

of 24 wind farms located in Norway, Sweden, and Finland. The average period of assessment 

of historical icing losses from SCADA data is 4,6 years (Lindvall, 2017). 

The reduction matrix is related to the variables wind speed, the accumulated ice mass on the 

blade cylinder and the icing intensity of the blade cylinder. It is calibrated by an iterative 

process where the icing losses from SCADA data and the IceLoss2.0 model are compared. 

This process is iterated until no improvement can be seen between the observed and modelled 

icing losses (Lindvall, 2017).  

There are three parameters used to tune the reduction matrix. These are the ice mass ratio, 

icing intensity regimes and the revised cut in speed. The ice mass ratio defines the power 

reduction at different icing loads. The icing intensity regimes also determine the gravity of 

power production with active icing (Lindvall, 2017). The cut-in wind speed, that is the 

minimum wind speed for starting the wind turbine generator, is increased when icing occurs 
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as the weight of the ice would increase the blades inertia. Figure 2-10 illustrates how the wind 

speed, icing intensity and ice load affect the power curve. It shows three different 3D power 

curves with respect to wind speed and icing load. In addition, the magnitude of the power 

curve is reduced with increasing ice intensity, as the three different power curves 

demonstrate.  

 

Figure 2-10: Illustration of the relationship between ice load, windspeed and icing intensity and their effect on the 
power curve. (Rissanen, 2023) 
 

Note that the reduction matrix in IceLoss2.0 is tuned with icing losses from IceLoss2.0 where 

historical WRF simulations such as KVT Meso forecast have been used, as this is the NWP 

model that IceLoss2.0 is built upon.  

Theres are several different reduction matrixes for the turbines with different types of deicing 

systems. The desired deicing system must be stated along with the other turbine data that goes 

into IceLoss2.0.  

2.6 Analysis  

2.6.1 Quantile-Quantile Plotting 

The QQ plot or Quantile-Quantile plot is a graphical technique used to compare two 

distributions by plotting their quantiles up against each other. From ‘Probability and Statistics 

for Engineers and Scientists’ (Warpole et al., 2014) the strict definition of a quantile is 

defined as follows “A quantile of a sample, q(f), is a value for which the a specified fraction f 

of the data values is less than or equal to q(f)". Essentially this means that quantiles are 

equally divided into groups of the whole distribution or dataset. If the two distributions 

plotted in a QQ plot are equal, the QQ plot would appear as a 45-degree line. Figure 2-11 

show an example QQ plot of the temperature distribution from MEPS ensemble member 1 

and from KVT Meso Hindcast. The red line if the 45-degree reference line while the blue dots 
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are the quantiles plotted. At low temperatures the quantiles are underneath the reference line, 

suggesting that the temperatures from MEPS data are higher than from KVT Meso hindcast. 

Above 266 K the quantiles are above the reference line, suggesting that KVT Meso has higher 

values (or in this case temperatures) than MEPS member 1. This way it is easy to detect 

differences between two datasets by comparing the datapoints to the reference line. As shown 

in the example, the QQ plotting method is used in this work to detect differences between the 

variables of the different input datasets that are used in IceLoss2.0.  

 

Figure 2-11: Quantile-Quantile plot of temperature quantiles from KVT Meso hindcast and MEPS ensemble 
member 1.  

When comparing two datasets like the one in the example above, it is important to filter out 

data that might create biases. In this instance, the missing dates from MEPS ensemble 

member 1 also must be removed for the temperature dataset from KVT Meso hindcast. In 

other instances, zero- or NaN-values in dataset 1 are filtered out and so are the corresponding 

dates to these values removed from dataset 2. That way biases are avoided to best compare 

two ‘clean’ datasets.  

2.6.2 Icing Loss and Energy Production 

The relative icing losses are calculated as follows.  

𝐼𝑐𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 [%] =  
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐼𝑐𝑒

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
∙ 100% (4) 

Here ‘Potential Energy Production’ is the full potential power production without icing, ‘Icing 

Loss’ is the power production loss due to icing, and ‘Partial Production’ is the power 

production while icing may occur.  



 

Page 19 of 50 

Iceloss2.0 has a temporal resolution of 1 hour. That means that the power produced at each 

timestep is the total energy produced within that hour. The production variables, that is, 

potential energy production, partial production with ice and partial production with ice and 

deicing, are the sum of all timesteps within the set timeframe. If days of data are missing, the 

production on these days is set to zero. Therefore, missing data alters the total energy 

production within the timeframe. 
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3 Method  

3.1 Preparing Input Data  

3.1.1 Extracting Variable  

Both KVT Meso forecast, and MEPS data contain numerous variables, but not all are needed 

for icing calculations. The table below lists all variables extracted from KVT Meso Forecast 

and MEPS for the purpose of IceLoss2.0. Note that some of the variables that are not 

extracted from both models are not strictly needed, i.e., QGRAUP, QICE, QSNOW and 

RAINNC, but may influence the result.  

IceLoss2.0 was initially made for historical WRF simulations like KVT Meso hindcast. As 

some of the variables were not available in the other datasets, KVT Meso forecast and MEPS, 

an input id was made. This id was used in the IceLoss2.0 code to avoid errors regarding 

missing data variables and for individual calculations. For example, WRF forecast did not 

have the variable air pressure available, so this was calculated using ZNU, MU and MUB. For 

MEPS however, air pressure var already calculated and available. Table 3 below shows the 

input id corresponding to the different input data types. Further,  gives an overview of the 

input variables extracted and used in IceLoss2.0. Even though 30 ensemble member s are 

available from MEPS data, ensemble member 1, which is the deterministic forecast is used 

mostly as an example when comparing to the other numerical weather prediction models. The 

deterministic forecast is the forecast without any initial conditions changed slightly as for the 

other ensemble members (Jan, 2021). 

Table 3: Identification number used in IceLoss2.0 to identify the different input types. 

 Input_type 

KVT Meso hindcast No value 

KVT Meso forecast 1 

MEPS 2 
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Table 4: Variables extracted and used as input in IceLoss2.0.  

Variables extracted for IceLoss2.0 

WRF forecast MEPS Explanation 

U  U  U-component of wind (along x-axis) [m/s] 

V V V-component of wind (along y-axis) m/s] 

FF FF Wind speed [m/s] Calculated from U and V  

DD DD Wind direction [degrees]. Calculated from U and V 

TEMPERATURE  TEMPERATURE Temperature model levels [K] 

CLDFRA   Total cloud cover [%] 

MU  Perturbation of mass column. Used to calculate air 
pressure 

MUB  Base value of mass column. Used to calculate air 
pressure.  

 PRESSURE  Air pressure 

P_TOP p0 Air pressure at top level [Pa] 

PSFC PSFC Surface Pressure [Pa] 

QCLOUD QCLOUD Cloud water mixing ratio 

QGRAUP  Graupel mixing ratio 

QICE  Ice mixing ratio 

QRAIN QRAIN Cloud rain mixing ratio 

QSNOW  Snow mixing ratio 

QVAPOR QVAPOR Specific humidity [kg/kg] 

RAINNC  Daily non-convective precipitation [mm] 

SWDOWN SWDOWN Downward shortwave flux at ground surface  

WRF_HGT HGT Height of grid point [m] 

Z Z + (HGT*9.81) Geopotential height above sea level 

ZNU  Sigma value of full levels. Used to calculate air pressure.  

ZNW  Sigma value of half levels.  

jdate jdate Time variable. [Julian Date] 

input_type input_type Used for IceLoss2.0 to recognize the different input data 
types.  

 

As mentioned above, some variables needed to be calculated from the existing variables in  

above. These variables are wind speed FF, wind direction DD and additionally for KVT Meso 

forecast, air pressure p. The equations used to obtain these variables are listed below.  

𝐹𝐹 =  √𝑈2 +  𝑉2 (5) 

𝐷𝐷 = 270 − arctan(𝑉, 𝑈) ∙
180

𝜋
(6) 

𝑚𝑢𝑇 = 𝑀𝑈 + 𝑀𝑈𝐵 (7) 

𝑝 = 𝑍𝑁𝑈 ∙ 𝑚𝑢𝑇 + 𝑃_𝑇𝑂𝑃 (8) 
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Where muT is the total mass in each column and p is the calculated air pressure for KVT 

Meso simulations. The remaining variables are explained in  Table 4 above. 

When investigating the variables from MEPS, it became clear that the order of elevation 

levels where on the opposite order than KVT Meso data. For example, the variable 

‘PRESSURE’ increased with height level, which clearly does not correlate with reality. Since 

IceLoss2.0 was originally made for KVT Meso hindcast, the model interprets the data with an 

increasing height for each model level. All variables from MEPS data with a height 

dimension, had to be flipped to represent the right order of height levels.  

3.1.2 Creating Winter Timeseries  

When running IceLoss2.0 for one forecast, the ice load on the turbine blades is initially set to 

0 grams. Ideally this should have been corrected to current ice load with SCADA data for 

every Iceloss2.0 forecast simulation. Another solution to avoid all forecasts starting with ice 

load at 0 grams, is to combine all forecasts into one coherent time series and use this as the 

IceLoss2.0 data input. However, the limitation here is that ice load offsets accumulate over 

icing episodes as they are not adjusted with SCADA data. Even so, this solution is better than 

resetting the ice load for each forecast, as it would lead to an underestimate of icing loss. This 

is a simplistic approach for this work to test if the data could be used to make icing forecast at 

all. The timeframe for the winter timeseries was chosen to be from 14th September 2021 to 1st 

of June 2022, which is a total of 262 days or 6288 hours.  

MEPS forecast data has a lead time of 62 hours, that is, the forecast applies to the following 

62 hours from its starting time. New forecasts are generated every six hours, at 00:00, 06:00, 

12:00, and 18:00 each day. Energy producers must deliver their day ahead production 

estimate at 12:00, so the earliest forecast available is from 06:00 (lead time 18 to 42). Some 

days all four MEPS forecasts are missing, and the earliest possible forecast is then from 18:00 

the day before (lead time 30 to 54). Lastly, there are some days that MEPS data is missing 

altogether, and forecasts cannot be made. This accounts for 11% of the timeseries. These 

dates are listed in Table 6 below. Note that almost half of the missing dates are in January, a 

knowingly cold month. Having so many dates missing in the winter year could affect the 

icing losses in a positive way.  
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Table 5: List of missing dates from the MEPS data winter timeseries. 

Missing dates from MEPS data  

1 14.09.21 

2 15.09.21 

3 04.11.21 

4 05.11.21 

5 30.11.21 

6 09.12.21 

7 19.12.21 

8 20.12.21 

9 05.01.22 

10 07.01.22 

11 08.01.22 

12 09.01.22 

13 16.01.22 

14 17.01.22 

15 18.01.22 

16 25.01.22 

17 26.01.22 

18 27.01.22 

19 28.01.22 

20 29.01.22 

21 30.01.22 

22 31.01.22 

23 03.02.22 

24 06.02.22 

25 07.02.22 

26 12.02.22 

27 06.03.22 

28 07.03.22 

29 27.05.22 

 

In addition, most members had some dates where data was available, but it contained NaN-

values. These dates also needed to be removed from the winter timeseries, as IceLoss2.0 does 

not accept NaN-values. These extra missing dates are listed in REF in the Appendix section.   

KVT Meso forecast data has a lead time of 49 hours. As with MEPS data the earliest 

available forecast is the 06-forecast the day before the forecast date. But when data is missing, 

the only chance to retrieve it is by looking at the previous forecast 6 hours before, that is at 
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time 00:00, with lead time 25 to 48. Luckily, not much data is missing from the WRF 

forecast. In this case only 5 out of 262 days were missing. This accounts for 1.2% of the days.   

Table 6: List of missing dates from the KVT Meso forecast data winter timeseries. 

Missing dates KVT Meso forecast   

1 31.10.2021  

2 12.12.2021 

3 13.12.2021 

4 30.12.2021 

5 31.12.2021 
 
 

3.2 Model Setup 

In this work only the icing loss of one turbine at Kvitfjell and Raudfjell WFs are investigated, 

namely turbine KN04. This turbine was chosen because it was one of the turbines investigated 

in the IceLoss2.0 validation project paper by the author. That means that IceLoss2.0 

simulations with KVT Meso hindcast setup was already available and could be used as a 

baseline. KN04 was only one of eight turbines used in the validations, but it is investigated 

further in this work due to its elevation. It is located at 523.2 mas and should therefore be one 

of the turbines at Kvitfjell Wind Farm that is most exposed to icing. 

Table 7: Turbine specifics for IceLoss2.0. 

WTG Longitude Latitude Elevation WT type Hub height 

KN04 621645 7723109 523,2 SWT-DD-130-4,2 85 

 

Some other turbines were added into the input file as well, due to some unknown error codes 

from IceLoss2.0 when only running for one turbine. These are not listed here as they are not 

relevant for this work and will not be investigated further.  

The turbine specific power curve was also added. A plot of this is shown in  Figure 3-1 

below.  
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Figure 3-1: Manufacturer power curve for turbines SWT-DD-130-4,2 

 

The deicing system in IceLoss2.0 was set to ‘N149’. This actually corresponds to turbines 

produced by Nordex, but has proven to be a better fit for these specific turbines (Byrkjedal, 

2022) 

3.3 Scaling Input Variables  

A good exercise when investigating the different input variables from the three NWP models 

and their impact on the ice calculating, is changing the variables slightly and seeing how this 

changes the icing losses.  

Since three different NWP models are used as input for IceLoss2.0, their variables are 

compared to each other in the QQ plots. If model 1 provides better icing loss results than 

model 2 and 3, one can scale some of the variables from these two models to correlate better 

with the variables from model 1. By scaling one variable at a time and investigating the 

change in icing loss, it is easier to determine the variables influence on the icing losses.   

The QQ plots are used as a starting point when finding a good scaling factor for the variables. 

Figure 3-2 visualizes this scaling of an example variable x with respect to the QQ plot 

reference line. Here the blue dots are the original QQ plot, while the green dots represent the 

new QQ plot where Variable x from Model 1 are scaled by 1.3. This way, Variable x from 

Model 1 is scaled to the same magnitude as Variable x from Model 2. The two variable 

distributions are now more alike. If the icing losses also are closer to each other by this 

scaling, it is apparent that the difference in variable x from the two models were the cause of 

the differences in icing loss.  



 

Page 26 of 50 

 

 

Figure 3-2 Example QQ plot of variable x from NWP model 1 and 2. The blue dots refer to the original QQ plot.  
The green dots are the new QQ plot where variable x from Model 1 is scaled by a factor of 1.3. This scaling factor 
is used as an analytic tool when investigating the impact of icing from each variable. 
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4 Results and Discussions  

4.1 Icing Losses  

Table 8 below represents the icing losses from IceLoss2.0 using the three different input 

datasets, KVT Meso hindcast, KVT Meso forecast and MEPS. These results show an icing 

loss of 3,34% for KVT Meso hindcast, 3,42% for KVT Meso forecast and 1,80% for MEPS 

ensemble member 1. However, the timeframe for the calculation of these losses is not the 

same due to the missing dates in KVT Meso forecast and MEPS. When filtering out these 

missing dates from all production time series, KVT Meso hindcast has an icing loss of 3,18% 

without deicing, KVT Meso forecast 2,98% and MEPS 1,83%. Proving that when the size of 

time series are equal for all datasets, KVT Meso hindcast still has the highest losses while 

MEPS ensemble member 1 has the lowest losses. This trend is also true for icing losses with 

an active deicing system shown in Table 8. 

Table 8: Icing losses from IceLoss2.0 with three different input datasets, KVT Meso hindcast, KVT Meso forecast 
and MEPS ensemble member 1.  

Input data Icing loss Icing loss w/deicing 

KVT Meso hindcast 3,34% 2,58% 

KVT Meso forecast 3,42% 2,61% 

MEPS member 1 1,80% 1,23% 
 

The icing losses with KVT Meso hindcast are considered the most trustworthy, both due to its 

statistical advantage, and due to the fact the IceLoss2.0 was written and corrected with respect 

to this type of dataset. However, in an IceLoss2.0 validation where this specific turbine was 

investigated, the SCADA data suggested an icing loss of 2,3 % with deicing, while the 

IceLoss2.0 model with KVT Meso hindcast suggested an icing loss of 3.3% with deicing 

(Andersen, 2022). Here the KVT Meso hindcast model overestimated the icing losses. The 

timeframe for this validation was from mid-February 2021 to mid-February 2022. Note that 

because this timeframe is extending over a full year, the icing losses could therefore be lower 

since summer months are included. Also note that half of the timeframe is within the same 

timeframe investigated in this work. With these results in mind, both KVT Meso hindcast and 

KVT Meso forecast seem to be closer to reality than MEPS.  However, this should be 

confirmed by looking at SCADA data from the same period that is simulated here.  

Considering both KVT Meso hindcast and KVT Meso forecast are WRF simulations, it is not 

surprising that these provide similar icing losses. 
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For all these simulations, the icing losses are higher without deicing as Table 8 shows. This 

implies that all simulations contain episodes with sufficient icing to make the deicing module 

efficient. Meaning that all IceLoss2.0 simulations with different input datasets have had 

success with ice buildup. This is good confirmation that the model works for all these 

different types of input data. Now the question lies within the accuracy of these results.  

Simulations with MEPS data as input have the lowest icing losses. Due to the experience with 

KVT Meso hindcast, this loss is considered too low. It is important to bear in mind that the 

power reduction matrix used to calculate the icing loss from the ice load is tuned with KVT 

Meso hindcast input data. This reduction matrix needs to be adjusted for MEPS data as well.  

The following Table 9 shows the energy production numbers, potentially, with icing, and with 

ice and an active deicing system. These numbers are the sum of energy production within the 

investigated timeframe, 14th of September 2021 to 2nd of June 2022. The production numbers 

are of the same magnitude for all input types, although their differences vary up to 2601 MW. 

Table 9: Energy Production numbers for three different IceLoss2.0 simulations using three different input 
datasets, KVT Meso hindcast, KVT Meso forecast, and MEPS ensemble member 1. 

Model Potential production 

[MW] 

Production with 

icing [MW] 

Production with ice 

and deicing [MW] 

KVT Meso hindcast 12118 11713 11806 

KVT Meso forecast 14719 14216 14335 

MEPS member 1  13350 13110 13186 
 

As the energy production numbers in Table 9 are only the sum of production during the set 

timeframe, it is important to recall that MEPS ensemble member 1 are missing 11.5% of the 

dates for the total dataset. Therefore, the energy production numbers for MEPS member 1 

should have been higher. The same goes for KVT Meso forecast, but this dataset is only 

missing 1,2% days of data which is hardly noticeable. 

Table 10: Icing loss statistics from all 30 ensemble member in the MEPS input dataset. 

 Icing loss distribution [%] Icing loss with deicing 

distribution [%] 

Mean  1,77 1,47 

Median  1,80 1,48 

Minimum loss 1,41 1,23 

Maximum loss  2,32 1,74 

Range  0,91 0.51 

Standard deviation 0,21 0.14 
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Continuing investigating the MEPS ensemble data. Table 10 above present some statistics of 

icing losses from the whole set of ensembles. By looking at the minimum and maximum icing 

loss, it becomes evident that the icing loss differs with less than 1%. The standard deviation 

for the icing loss distribution is 0,21%. Further, the median and mean loss are close, that is 

they only differ up to 0,03%. This again proves that there are no extreme values in this dataset 

shifting the central calculations, as Figure 4-1 shows. The figure also shows that member 6 

provides the minimum icing loss, member 26 has the maximum icing loss. The icing loss 

from member 1 shown in Table 8 are also the median icing loss. These three members will be 

used in icing loss timeseries Figure 4-9 to see the difference between the maxima, minima, 

and median ensemble.  

 

Figure 4-1: Distribution of icing loss without deicing [%] for all 30 MEPS ensemble members.  
 

4.2 Comparisons of Input Variables  

One way to identify what is causing these differences in production and icing loss, is by 

comparing the input variables to each other. KVT Meso forecast and MEPS ensemble 1 are 

compared to KVT Meso hindcast as this is the dataset originally used by IceLoss2.0. 

Temperature and wind speed are compared at approximately hub height which is 608 mas. 

For KVT Meso simulations that is at model level 3, which corresponds to 586 mas for KVT 

Meso hindcast and 559 mas for KVT Meso forecast. For MEPS simulations level 9 

corresponds to 590 mas. Mixing ratios that are used to determine liquid water content is 

compared at model height. This is because the variables that are extracted undergo orographic 

lifting and cloud water sheltering as mentioned in the theory section. Table 11 below 

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Members

Ic
in

g
 l
o

s
s
 w

it
h

o
u

t 
d

e
ic

in
g
 [

%
]

Icing loss without deicing for all MEPS members

 

 



 

Page 30 of 50 

summarizes the level height used in the variable comparisons. The following sections go 

through some of the variables that have greatest impact on icing.  

Table 11: Extracted model levels and their corresponding height above sea level. Variables used for comparison 
are extracted at these levels. 

Model Level number Level height + model height [mas] 

KVT Meso hindcast  3 586 

KVT Meso forecast  3 559 

MEPS member 1  9 590 

KVT Meso hindcast  1 253 

KVT Meso forecast  1 224 

MEPS member 1 1 362 

 

4.2.1 Temperature  

Temperature is one of the most important variables when investigating icing. For example, 

temperature determines if cloud droplets are subcooled and freeze on the blades or not. 

Temperature also affects melting, sublimation, and shedding. Figure 4-2 below shows the QQ 

plot of Temperatures from KVT Meso forecast and MEPS up against temperatures from KVT 

Meso hindcast. This shows that both distributions are fairly but not perfectly close to the 

reference line.  

 

 (a) 

 

 (b) 

Figure 4-2: QQ plots of temperatures at approximately hub height. Figure (a) is the QQ plot of temperatures from 
KVT Meso hindcast and KVT Meso forecast. Figure (b) is the QQ plot of temperatures from KVT Meso hindcast 
and MEPS. Temperature is extracted from approximately hub height.  

Figure 4-1 (a) illustrates the comparison between KVT Meso hindcast and KVT Meso 

forecast. This shows that at temperatures below the freezing point 273 K (0ºC), KVT Meso 
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forecast has higher temperatures than KVT Meso hindcast. Above 273K the distributions 

seem to be similar.  

Figure 4-2 (b) show the QQ plot between MEPS and KVT Meso hindcast temperatures. For 

most temperatures, the KVT Meso hindcast distribution has higher temperatures than MEPS, 

suggesting that the icing loss for MEPS should be higher than for KVT Meso hindcast. 

However, for temperatures between 261-265K (-12ºC to -8ºC) MEPS temperatures are higher 

than KVT Meso hindcast. Since this is way below the freezing point, is it reasonable to think 

that this does not affect the difference in icing. As the temperature QQ plot between KVT 

Meso hindcast and MEPS did not give an apparent reason for the difference in icing loss, the 

answer may lie in the other ice related variables.  

4.2.2 Wind Speed (FF) 

As shown in the icing rate equations (Equation 2 and 3), the wind speed has a direct effect on 

ice buildup. Wind speed affects the turbines rotational speed which in turn affects the number 

of collisions between the blades and the surrounding particles. An increase in wind speed 

would increase the number of collisions between blade and particle but also decreases the 

sticking efficiency. These contradictory effects on icing together with its dependence on other 

variables make it difficult to determine its positive or negative effect on icing. As an example, 

higher wind speeds would not lead to more icing if the temperature were above freezing point. 

However, potential production is directly dependent on the wind speed. Investigating the 

differences in wind speed are therefore useful to confirm the differences in potential 

production from Table 9. When comparing the wind speeds in QQ plots, the main area of 

interest is between about 3m/s and 14 m/s. This refers to the slope of the turbine power curve 

in Figure 3-1: Manufacturer power curve for turbines SWT-DD-130-4,2. At wind speeds 

above 14 m/s the turbines produce at maximum and wind speed differences within this 

interval do not matter as the energy produced would remain the same. Above 23 m/s the 

energy production declines with wind speed, and again the wind speed differences cause 

differences in potential production.  

Figure 4-3 below shows two QQ plots of wind speeds from KVT Meso hindcast in 

comparison with KVT Meso forecast (a) and MEPS (b). The wind speeds for KVT Meso 

hindcast and KVT Meso forecast are close to the reference line, meaning these distributions 

are similar up to 13 m/s. At that point the wind speeds from KVT Meso forecast seems to be 
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slightly higher than KVT Meso hindcast. At 25 m/s the distribution takes a sharp turn 

increasing the difference between the two distributions. Even though these wind speed 

distributions are close, their slight difference led to an energy production difference of 2601 

MW (from Table 9).  Proving that the IceLoss2.0 energy production calculations are highly 

sensitive to wind speed differences.  

 

Figure 4-2 (a) 

 

Figure 4-2 (b) 

Figure 4-3: QQ plots of Wind Speed FF [m/s] between KVT Meso hindcast and (a) KVT Meso forecast, and (b) 
MEPS. Wind speeds at extracted from approximately hub height. QQ plot distributions are marked as blue dots 
while the reference line is marked in red. Wind Speed FF is extracted from approximately hub height. 
 

Figure 4-3 (b) display the QQ plot of Wind Speed FF from KVT Meso hindcast and MEPS. 

This plot shows that the wind speed from MEPS is higher than KVT Meso hindcast from 7 

m/s and upwards, and this difference is increasing with wind speed. Below 7 m/s there is a 

slight shift towards KVT Meso hindcast, meaning the wind speed are slightly higher here. In 

short, the wind speed is mainly higher for MEPS than KVT Meso hindcast. This explains why 

the potential production in Table 9 is higher for MEPS.  

Considering the wind speeds are highest from MEPS, this input model should give the highest 

potential energy production. However, recall that MEPS data has at least 11% of days missing 

from the winter timeseries. As the potential production is merely the sum of energy produced 

within the time series, the potential energy production from MEPS is missing a significant 

amount of energy produced.  
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4.2.3 Cloud Water Mixing Ratio (QCLOUD) 

The variable QCLOUD is as  states the cloud water mixing ratio. In other words, the fraction 

of cloud condensed water in the air. This is important for IceLoss2.0 to calculate the in-cloud 

icing. Figure 4-4 show the QQ plots of the cloud mixing ratio for KVT Meso hindcast 

compared to KVT Meso forecast and MEPS, respectively. Recall that zero and NaN-values 

were filtered out from these distributions before plotting the quantile. Here KVT Meso 

hindcast had 5843 out of 6288 timesteps with zero values and KVT Meso forecast had 5894 

zero- and NaN-values. Lastly MEPS member 1 had only 2515 zero- and NaN-values. Already 

from the number of zero values, it becomes apparent that MEPS member 1 has higher cloud 

mixing ratio than KVT Meso hindcast, which Figure 4-4(b) also confirms for the remaining 

nonzero values as well. KVT Meso forecast also has a higher cloud mixing ratio than KVT 

Meso hindcast. It is believed that a higher cloud mixing ratio leads to more in-cloud icing if 

temperatures are low enough. This appears not to be the case here since KVT Meso hindcast 

has the lowest cloud mixing ratio but higher losses than MEPS (Table 8). But solely 

investigating the cloud mixing ratio does not give the whole picture of icing conditions, 

therefore more investigations are needed.  

 

 

 (a) 

 

 (b) 

Figure 4-4: QQ plot of variable QCLOUD from KVT Meso hindcast and (a) KVT Meso forecast, and (b) MEPS 
member 1. The quantiles are plotted as blue dots while the reference line is red. QCLOUD is extracted from 
approximately model level.  
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4.2.4 Cloud Rain Mixing Ratio (QRAIN)  

Cloud rain mixing ratio is another variable used to determine the liquid water content in 

Equations 2 and 3. Investigating the differences in this variable could also provide some 

insight into the icing loss differences between the different input models. Figure 4-5 depicts 

the relationship between KVT Meso hindcast and (a) KVT Meso forecast, and (b) MEPS 

ensemble member 1, for the variable rain mixing ratio (QRAIN). As the figure shows, there 

are few datapoints for this distribution. KVT Meso hindcast contain 5427 zero values of 6288 

data points in total. Similarly, KVT Meso forecast contains 5475 zero values and MEPS 

contains 4106 zero values. Since this variable is zero over 65% of the time, its significance 

can be discussed. However, for the nonzero variables, the differences are shown as QQ plots 

in Figure 4-5. The difference between KVT Meso hindcast and KVT Meso forecast are low as 

Figure 4-5(a) shows, especially since they both have a similar amount of zero values as well. 

It is evident that the rain mixing ratio does not cause the differences in icing loss between 

these two input models.  

 

 

 (a) 

 

 (b) 

Figure 4-5: QQ plots of variable QRAIN, rain mixing ratio, comparing KVT Meso hindcast distribution to (a) KVT 
Meso forecast and (b) MEPS member 1. The variable is extracted at approximately model height. QQ plot 
distribution is marked with blue dots, and reference line in red.  
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scaling factor is 1.8 was chosen. The scaling factor only gave an increase in icing loss without 

deicing of 0,02%. It goes to show that this variable has some effect of the icing loss but is not 

the main cause of the low losses for the MEPS input model.  

 

Figure 4-6: QQ plot of rain mixing ratio between KVT Meso hindcast and MEPS member 1. The original 
distributions are shown as blue dots, while the distributions where MEPS member one is scaled by 1.8 are shown 
in green dots. The red line is the reference line.  
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The last variable that influences the liquid water content w from Equations 2 and 3 is the 

specific humidity (QVAPOR). Figure 4-7 shows the differences in specific humidity between 

KVT Meso hindcast and (a) KVT Meso forecast, and (b) MEPS member 1.  
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(a) 

 

(b) 

Figure 4-7 : QQ plots of variable QVAPOR, specific humidity, comparing KVT Meso hindcast distribution to (a) 
KVT Meso forecast and (b) MEPS member 1. The variable is extracted at approximately model height. QQ plot 
distribution is marked with blue dots, and reference line in red. 
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losses, when such a small scaling factor increases the icing loss by 9.7%.  

0 2 4 6 8

x 10
-3

0

2

4

6

8
x 10

-3

KVT Meso forecast

K
V

T
 M

e
s
o
 h

in
d
c
a
s
t

QVAPOR

0 2 4 6 8

x 10
-3

0

2

4

6

8

x 10
-3

MEPS, ensemble member 1 

K
V

T
 M

e
s
o
 h

in
d
c
a
s
t

QVAPOR



 

Page 37 of 50 

 

Figure 4-8: QQ plot of specific humidity between KVT Meso hindcast and MEPS member 1. The original 
distribution is shown as blue dots, while the distribution where MEPS member one is scaled by 1.1 are shown in 
green dots. The red line is the reference line. 
 

The sensitivity of this variable shows that the scaling method might not be the best to tweak 

the results from IceLoss2.0 with MEPS as input. However, it does reveal the sensitivity of the 
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marked with a grey background.  
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Figure 4-9: Timeseries of icing losses from KVT Meso hindcast, KVT Meso forecast, and MEPS  
members 1, 6 and 26.  
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Figure 4-9 (a) shows that the icing loss throughout the whole timeframe. It shows that the first 

icing episode, or episode of significant icing to create an icing loss was in mid-October, while 

the last one being around mid-May. Both at the beginning and end of the timeseries there are 

no icing losses, suggesting that the timeseries has captured the whole winter and all its icing 

episodes.  

Figure 4-9 (b) show several episodes in the beginning and end of January where both KVT 

Meso hindcast and KVT Meso forecast has provided an icing loss, while the MEPS member 1 

data hardly provided any. As the grey background confirms, this month had a lot of missing 

MEPS data which lead to zero loss in the time series. This shows that the MEPS input data 

had several days of possible icing missing that could have increased the icing loss from Table 

8.  

A more severe icing episode from 23rd of April to 6th of May is shown Figure 4-9 (c), here the 

KVT Meso hindcast icing loss are significantly higher than KVT Meso forecast and MEPS. 

The three MEPS ensemble members depicted here also have a wider range, especially around 

3rd of May to 6th of May. Icing episodes like these definitely contribute to the higher total 

icing loss for KVT Meso hindcast. For the spikes of high icing loss for KVT Meso forecast 

and MEPS, the timing seems to fit with some of the spikes from KVT Meso hindcast, 

although KVT Meso hindcast has more spikes than the other forecasts. However, with so 

many spikes within a short period of time it is difficult to determine if there is a time 

displacement between the five simulations depicted in this figure.  

It is interesting to notice that within these episodes of heavy icing in Figure 4-9 (c), the icing 

loss oscillates rapidly between 100% and 0%. Note that the icing loss plotted is without the 

deicing system, so the oscillations have nothing to do with deicing. By observing the 

temperatures and wind speeds at the same time one might determine if these oscillations are 

due to frequent shedding and rapid ice buildup. Another cause for these oscillations is that the 

model stops the turbine when the blade icing load reaches a certain threshold. That is when 

the icing loss is at 100%, but it then again tries to start the turbine after some time before 

stopping again. These hypotheses could be further investigated by comparing the icing loss 

with blade icing load, icing rate, wind speed and temperature at the same time. Unfortunately, 

there was not enough time to investigate this further for this work, but it is brought to 

attention for future research projects to investigate this behavior more deeply to understand 

what is causing the behavior and how large effect it has on the icing loss forecasts.   
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The icing losses from April are shown in Figure 4-9 (d) with the corresponding production 

time series shown in  Figure 4-10. It shows a major icing episode in mid-April where all 

models give a significant icing loss up to 100%. From Figure 4-9 (d) this icing episode 

appears to occur at the same time for all models. This major icing episode in Figure 4-9 (d) 

from 11th of April to 17th of April are also zoomed in on and plotted in Figure 4-9 (e). Here it 

becomes more apparent that the icing episode does not arise at the same time for all models. 

Both KVT Meso hindcast and KVT Meso forecast the icing loss seem to occur slightly before 

the MEPS forecasts and increase sooner than MEPS. During the episode however, there are 

large hourly variations between the different models during the episode. And all models show 

this oscillating behavior between 100% icing loss and 0% icing loss, making it hard to 

determine if there is a time displacement between the models. However, the icing episode 

ends around 17th of April. For KVT Meso hindcast and KVT Meso forecast, the icing loss 

ends at the exact same time, while the end of the icing episode for the MEPS models differs 

with some hours before and after the KVT Meso simulations.  

4.3.2 Relationship Between Power Productions 

The following plot is of the three different production time series that IceLoss2.0 provide. 

One is the potential production, that is the production not influenced by icing or other 

curtailments. This is solely dependent on the wind speed from the numerical weather 

prediction model used as input.  The second production time series is the production with 

icing. This is not the production only when icing occurs, but rather the potential production 

that is adjusted down when icing occurs. Finally, the last time series is the production with 

deicing. Here there is a possibility of icing, as for the production with ice, but the deicing 

module is also activated. If there is no icing, all these production timeseries would be 

identical, as is the case for 9th of April in Figure 4-10. 

 Figure 4-10 of the production time series also provides a shaded blue area to mark icing 

episodes from the blade cylinder model, and a black shaded area underneath the production 

time series to show when deicing occurs.  
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Firstly, Figure 4-10 show that during the first week of the April time series there is no icing. 

All production (potential, with icing, and with deicing) time series align and appear as one 

uniform line. Figure 4-9 (e) confirms also confirms this. Additionally, spikes with high 

production seem to appear at the same time for all three IceLoss2.0 simulations within this 

first week. Nevertheless, there are some variations in length and magnitude of these spikes. 

Both KVT Meso forecast and MEPS member 1 seem to have longer episodes with high 

production than KVT Meso hindcast, again this shows why the total production numbers were 

lower for KVT Meso hindcast. 
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Figure 4-10: Production time series over April 2022 from IceLoss2.0 with the three different NWPs as input.  
Potential production marked in green, production with deicing in red and production with ice in black.  

The shaded blue areas marked episodes of icing and the thick black lines represents times when the deicing  
module is activated.  
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Another interesting result that Figure 4-10 demonstrates, is that the icing episode occurring 

around the 13th of April begins at the exact same time for all three simulations. Since the 

timing is so similar for all three NWP models, it implies that none of the models have an 

extraordinary advantage in terms of timing the icing events. However, Figure 4-9 (e) of the 

icing losses during this episode show major variations between the three models at an hourly 

resolution. It would be an interesting next step to investigate if this correlates with the actual 

icing episodes from SCADA data.  

At the very end of the time series plots in Figure 4-10, from 26th of April, KVT Meso hindcast 

has detected a quite heavy icing episode where KVT Meso forecast and MEPS have not.  

KVT Meso forecast only shows small icing episode around the 27th or 28th, but the losses here 

are very small. MEPS also show an even smaller episode with almost no loss during this day. 

KVT Meso hindcast are definitely more sensitive to icing than the other two models as it 

picks up this icing episode while other models do not.   

The icing for KVT Meso hindcast also shows an ‘on and off’ behavior at the end of the time 

series in Figure 4-10, and the production with ice curve also have this oscillating behavior 

where the production drops instantaneously and then jump rapidly up again. The potential 

production at this moment is almost at full capacity, suggesting that during this icing episode 

there are strong winds. As the rotational speed of the blade increases, the centrifugal force 

also increases, leading the blade ice load to shed more easily. This might be what happens 

when production increases rapidly. However, if this is the case, there must also be a very high 

icing rate for production to drop so suddenly as well.  

4.4 Validity of Results  

The total icing losses and production numbers are highly influenced by the number of missing 

data from the MEPS model. This makes it more difficult to determine whether the low icing 

losses are due to the fact that the model underestimates icing, or if it is because long periods 

of data is missing where icing could have occurred. Probably, when looking at a snippet of 

the production time series from April 2022 in Figure 4-10, it is a combination of both. To get 

a clearer picture of how well the MEPS data works with IceLoss2.0, more data is needed. 

Preferably from a longer time frame over several winters.  

Not only are there days when the data is missing altogether, but there are also several days 

where the closest simulation to the forecasting date where missing, and previous simulations 
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were used to retrieve a forecast for that day. It is known that for forecasting models, the 

uncertainty of the forecast increases with lead time (Ingvaldsen et al., 2022). Therefore, for 

some days the uncertainty might be much higher than for the days where the closest possible 

forecast was available.  

The relationship between the wind speeds and the production numbers are determined by the 

turbine power curve. To include icing, a reduction matrix is used to describe the relationship 

between modelled icing load and the production loss. However, this reduction matrix was 

tuned by comparing icing losses between SCADA data and the original IceLoss2.0 model 

with historical WRF simulations as input. In fact, each input model type should have had its 

own reduction matrix which is tuned by their respective icing losses up against the SCADA 

database. This would increase the trustworthiness of the results from the forecasting 

simulations. It is apparent that this has influenced the resulting icing losses, but it is difficult 

to determine the gravity of this change. Therefore, the uncertainty in icing losses from 

IceLoss2.0 with MEPS and KVT Meso forecast is much higher than for IceLoss2.0 with KVT 

Meso hindcast.  
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5 Further Work  

As the objective of this work was to investigate if the IceLoss2.0 modes was possible to be 

used with forecasting data such as MEPS and KVT Meso forecast, several simplifications 

were made. The first one being adding the forecasts together into a continuous time series. To 

simulate one forecast at a time, an implementation where the blade ice load is corrected with 

real measurements, SCADA data, is needed. This is to avoid every forecast starting with no 

ice on the blade. By creating one continuous time series of several forecasts, the icing load is 

only transmitted from one forecast and into the next. Although it is possible to extract this 

icing load from the previous forecast when simulation one at a time, it would be better to 

adjust from SCADA data to avoid model errors accumulating.  

The next step should be to tune the power reduction matrix for MEPS data, and maybe KVT 

Meso forecast as well, although it might not be necessary due to time similarity of these 

models. The power reduction matrix was originally made by tuning the icing losses with KVT 

Meso hindcast. Maybe the differences in icing loss between KVT Meso and MEPS could be 

adjusted only by tuning this matrix.  

The model also needs to be validated with SCADA data to confirm which input model 

provides the closest result both in magnitude and timing of the icing loss.  

It is preferable to include both MEPS and KVT Meso forecast when further developing the 

IceLoss2.0 model due to its statistical advantages. Especially due to the risk of missing 

forecasts. That way the two datasets can also work as backup when the other one is missing.   

In this work, MEPS model simulations with the ICE3 microphysics scheme were used. 

However, this scheme has proven to underestimate the supercooled liquid water content. That 

is, when temperatures drop below 0 degrees the liquid water is transferred into ice too quickly 

(B. J. K. Engdahl et al., 2020). The QQ plots of the water vapor in Figure 4-7 also show that 

the water content from MEPS is lower than for KVT Meso hindcast and KVT Meso forecast. 

A study by Engdal et. al. (B. J. K. Engdahl et al., 2020) constructed a new microphysics 

scheme for the HARMONIE-AROME model based on the Thompson physics scheme as this 

has proven to produce the best supercooled liquid water content representation (Nygaard et 

al., 2011). This new scheme, called ICE-T gives higher amounts of supercooled liquid water 

(B. Engdahl et al., 2020). Waiting for an update of the MEPS model with this new 



 

Page 46 of 50 

microphysics scheme could therefore be of interest to increase the icing losses from 

IceLoss2.0 with MEPS.  
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6 Conclusions 

This work has shown that using forecasting data like KVT Meso forecast and MEPS is 

possible with simplified methods such as creating a uniform time series of all forecasted dates 

and assuming that the ice load from one forecast follows into the next.  

By the small differences in icing loss between the three models, it shown that the model has 

potential to be used for icing loss forecasting needs, with some small adjustments. The lack of 

MEPS data has been a challenge during this work, and the short timeframe of the datasets 

makes it hard to prove the differences between the models. According to the icing losses 

where the missing dates were filtered out, the MEPS model provided the lowest icing losses. 

This statement is confirmed further by studying the icing loss time series. This may be due to 

the ICE3 microphysics scheme that is used in the MEPS simulations, which underestimated 

the amount of supercooled liquid water.  

When it comes to time accuracy of the icing events, all models seem to correlate well when 

looking at the day to day icing. But there are large differences between the models at an 

hourly rate. The icing losses also fluctuate a lot during an icing episode, making it more 

difficult to investigate the icing loss time series and determine if there are any time shifts 

between the models. The reason for this is unknown, although a hypothesis about it being due 

to ice shedding has been presented.  

Both MEPS and KVT Meso forecast provided higher wind speeds, in turn leading to higher 

power production numbers. This should also be tested against SCADA to see what production 

amount is the most accurate.  

Finally, this work has successfully implemented WRF forecast and MEPS into IceLoss2.0 for 

one turbine in the Kvitfjell/Raudfjell wind farm and yielded comparable results to WRF 

hindcast. The results are promising for IceLoss2.0 to be used for icing loss forecasting using 

both WRF and MEPS. 
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Appendix 

Ensemble 

member 

 

Additional missing dates 

Total amount of 

missing dates from 

winter timeseries 

1 11.11.21 11.5% 

2 09.12.21 11.5% 

3 09.12.21, 28.95.22 11.8% 

4 none 11.0% 

5 none 11.0% 

6 09.12.21 11.5% 

7 09.12.21 11.5% 

8 none 11.0% 

9 11.11.21 11.5% 

10 16.09.21, 29.09.21, 30.09.21, 03.11.21, 11.11.21,  

09.12.21, 13.12.21, 01.01.22, 02.01.22, 03.02.22,  

12.03.22, 23.04.22, 06.05.22, 09.05.22, 11.05.22,  

12.05.22, 14.05.22, 16.05.22, 17.05.22, 25.05.22 

18.7% 

11 29.09.21, 30.09.21, 11.03.22 12.2% 

12 29.09.21 11.5% 

13 09.12.21 11.5% 

14 none 11.0% 

15 11.11.21 11.5% 

16 12.03.22 11.5% 

17 12.03.22 11.5% 

18 13.12.21, 11.03.22, 12.03.22 12.2% 

19 10.12.21, 01.01.22, 02.01.22, 03.01.22 12.6% 

20 10.12.21, 01.01.22, 02.01.22, 03.01.22 12.6% 

21 03.11.22, 10.02.22 11.8% 

22 03.11.22, 10.02.22 11.8% 

23 01.01.22, 02.01.22, 03.01.22 12.2% 

24 03.11.21 11.5% 

25 29.09.21, 12.03.22 11.8% 

26 01.01.22, 02.01.22, 03.01.22 12.2% 

27 16.09.21, 29.09.21, 03.11.21 12.2% 

28 12.03.22 11.5% 

29 10.12.21, 01.01.22, 02.01.22, 03.01.22 12.6% 

30 03.11.21 11.5% 
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