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Abstract

With the current trends in climate and fisheries, well-designed mitigative strategies for conserving fish stocks may become
increasingly necessary. The poor post-release survival of hatchery-reared Pacific salmon indicates that salmon enhancement
programs require assessment. The objective of this study was to determine the relative roles that genotype and rearing
environment play in the phenotypic expression of young salmon, including their survival, growth, physiology, swimming
endurance, predator avoidance and migratory behaviour. Wild- and hatchery-born coho salmon adults (Oncorhynchus
kisutch) returning to the Chehalis River in British Columbia, Canada, were crossed to create pure hatchery, pure wild, and
hybrid offspring. A proportion of the progeny from each cross was reared in a traditional hatchery environment, whereas
the remaining fry were reared naturally in a contained side channel. The resulting phenotypic differences between
replicates, between rearing environments, and between cross types were compared. While there were few phenotypic
differences noted between genetic groups reared in the same habitat, rearing environment played a significant role in smolt
size, survival, swimming endurance, predator avoidance and migratory behaviour. The lack of any observed genetic
differences between wild- and hatchery-born salmon may be due to the long-term mixing of these genotypes from
hatchery introgression into wild populations, or conversely, due to strong selection in nature—capable of maintaining
highly fit genotypes whether or not fish have experienced part of their life history under cultured conditions.
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Introduction

Climate change, over-fishing and habitat alteration are

suspected to be contributing to declines in Pacific salmon stocks

to the point that some populations are now seriously threatened

[1]. Over the past 50 years, governments around the North

Pacific, including Japan, Russia, Canada and the United States,

have implemented salmon enhancement programs to increase the

numbers of juvenile salmon released to oceanic conditions. These

programs typically utilise the artificial propagation of returning

mature adult salmon, rearing juveniles in freshwater culture

conditions and releasing them as smolts. However, despite the

annual release of billions of hatchery-reared fish into the Pacific

Ocean, the marine survival rates of many salmon populations

continue to decline [2–4], and the effects of these introductions on

wild populations are only beginning to be understood [5], [6].

Concern that hatchery-reared coho salmon (coho; Oncorhynchus

kisutch) were supplanting wild coho [7], [8] hit a peak during 2001,

when 70% of the coho caught in the Strait of Georgia (SOG,

Fig. 1) were reported to be of hatchery origin [9]. However, by

2006 and despite higher releases of hatchery fish from rivers in the

area, the percentage of hatchery fish caught in the Strait of

Georgia had dropped significantly [4]. Many factors could have

been influencing this dramatic difference in survival between

hatchery and wild populations. While hatcheries are highly

efficient at producing large numbers of smolts under culture

conditions, the physiology and behaviour of hatchery-reared

smolts has been found to differ from the wild populations in

many cases—e.g. [10–16]. The causes and effects of these

differences are unclear; i.e. what are the relative roles of genotype

and rearing environment on the observed phenotypic differences

between wild and hatchery-reared salmonids?
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Salmon are capable of a high degree of phenotypic plasticity,

which means that they can physiologically and behaviourally

adapt to their environment [17]. Therefore, the environment in

which a young salmon is reared can have a major effect on its

physiology, behaviour and survival. Similarly, significant capacity

for genetic change exists within salmonid populations in response

to selective pressures. For example, sockeye salmon (O. nerka) have

been shown to evolve reproductive isolation in fewer than thirteen

generations [18]. Genetic changes arising from salmon enhance-

ment programs are currently not well understood, and may not be

as evident as the effects of rearing environment in the short term,

but recent studies have found that captive breeding can

significantly decrease the fitness of steelhead trout (O. mykiss) in

just one or two generations [19]. Furthermore, the carry-over

effects of captive breeding into subsequent wild-born generations

have been observed in the reduced fitness of some stocks [20].

The relative effects of rearing-environment and genotype on

salmon phenotype, behaviour and survival are generally unknown

and need to be assessed [21]. Enhanced systems can have all of the

fish in the population propagated by human intervention, or they

can have a mix of wild- and artificially-bred fish. Thus, in many

cases there may not be any completely wild-type fish available to

assess hatchery propagation effects. However, in systems where all

hatchery fish are marked prior to release, it is possible to

distinguish between fish that have been propagated by hatchery

production from those that have lived their entire lives in nature

and have arisen from parents which mated in the wild. Comparing

these two types of fish allows for an assessment of the single-

generation effects of hatcheries. Understanding such effects is

increasingly important given future uncertainties for salmon

populations (e.g. arising from climate trends), as mitigative

approaches, such as enhancement programs, have the potential

to alleviate some of these pressures. This study assessed the relative

roles that genetics and rearing environment play in the phenotypic

expression of coho young, including their growth, physiology,

survival, swimming and predator-avoidance abilities, and their

migratory behaviour.

Methods

All work involving live fish reported in this paper was annually

reviewed and pre-approved as meeting or exceeding the standards

laid out by the Canadian Council on Animal Care. The project

guidelines were approved by The University of British Columbia’s

Figure 1. Geographic location of the study area. The Strait of Georgia (SOG), Northern Strait of Georgia receiver array (NSOG), and the Juan de
Fuca Strait receiver array (JDF) are shown on the main map. The inset map displays the Chehalis River Hatchery and release site (star), the Chehalis
River receivers (C1, C2), the Harrison River receiver arrays (H1, H2, H3), the Fraser River arrays (F1, F2, red dots), and the Pitt River array (P).
doi:10.1371/journal.pone.0012261.g001
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Committee on Animal Care at Suite 102, 6190 Agronomy Road,

Vancouver, BC (permit A06-0153).

Returning wild- and hatchery-born coho adults were crossed at

the Chehalis Hatchery (Fig. 1) during the winter of 2006/2007 to

create pure-hatchery-genotype, pure-wild-genotype and hybrid-

genotype offspring (Fig. 2). Wild-born adults were those individ-

uals having survived for at least one generation in the natural

environment—distinguishable from hatchery fish by the lack of an

adipose-fin clip. To test for genetic effects, environment effects,

and genotype-by-environment-interaction effects on the smolts,

one-half of the progeny from each cross group was reared in a

traditional hatchery environment. The remaining half was reared

in a natural side channel of the Chehalis River (Fig. S1). There

were two replicates set up in each rearing environment. The

following spring (May 2008), after one year in freshwater, the coho

pre-smolts were recaptured for sampling (mass, length and DNA

from the adipose fin). Relative survival and phenotype compar-

isons were made between replicate, rearing-environment, and

genotype groups. The phenotypic characteristics measured

included length, mass, condition factor (mass ? length23), survival,

colour, fin quality, disease presence, gill Na+/K+2ATPase activity

level, microarray gene expression profile, predator avoidance

ability, swimming endurance and migratory behaviour—including

speed, timing and habitat use. See Physiology for further details on

the methods used.

Eighty crosses of returning coho adults were carried out at the

Chehalis Hatchery on 1 February 2007 (n = 40 adipose-clipped/

hatchery-derived, 40 unclipped/likely wild-born with either

hatchery or wild parents). Blood samples were taken and stored

in 0.01 N sodium hydroxide for later genetic identification. The

eggs of each female parent were divided in two equal groups so

that one half could be fertilized by a wild male and the other by a

hatchery male to test for maternal effects (Fig. 2). Each cross group

included one hatchery female, one hatchery male, one wild female

and one wild male, to generate four separate crosses—one pure

wild strain, one pure hatchery strain, one hybrid strain with a

hatchery mother and wild father, and one hybrid strain with a wild

mother and a hatchery father (Fig. 2). Nine of these cross groups

were selected for the experiment (18 male and 18 female parents).

Thus, in total there were 36 full-sibling egg groups that were

weighed, counted, and reared separately in randomised incubation

trays.

As there was a small percentage (,10%) of the returning adults

of early 2007 that were released from the hatchery unclipped, the

parental otoliths were analysed to confirm which of the unclipped

fish were wild-born, and which had actually been hatchery-reared.

One year later (January 2008) otoliths were collected from 20

clipped and 20 unclipped returning adults from the 2004

broodstock for analysis. All of the hatchery fish from the 2004

broodstock had been adipose-clipped prior to release; therefore

their otoliths could be used as a control to compare with the

parental otoliths. Many of the otoliths from hatchery-origin fish

were too crystallized to be able to see growth rings, so the degree

of crystallization was used as an indicator of origin [22], [23]. The

otoliths were examined under a microscope and given a score out

of 4 for degree of crystallization (1 = 25%, 2 = 50%, 3 = 75%,

Figure 2. The experimental design used to determine genetic versus environmental effects on the phenotypic characteristics and
fitness of wild- and hatchery-born salmon. The pure wild, pure hatchery and hybrid offspring of nine parental cross groups were included in
this study. Full-sibling groups from each cross were reared in both a traditional hatchery and a natural side-channel environment.
doi:10.1371/journal.pone.0012261.g002
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4 = 100% crystallized). Otoliths from the smolts reared naturally

(n = 30) and those reared in the hatchery environment (n = 30)

were also sampled for comparison (during June 2008).

Rearing Environments
Three months post-fertilization (early May 2007), the unfed fry

from each full-sibling group were divided into four rearing groups

and released into the four separate habitats (two replicates in the

hatchery and two in the contained natural side-channel). The two

hatchery rearing groups had 100 individuals from each full-sibling

group, as they had a much greater expected survival rate than

those reared naturally. The natural-rearing groups had one-half of

the remaining individuals from each sibling group. A total of 3,600

fry were released into each of the hatchery troughs, and 23,000 fry

were released into each of the natural habitats. Whereas the coho

fry in the side-channel rearing areas were left to feed on naturally-

occurring food sources, the hatchery-reared fry were fed daily on a

typical hatchery diet (from ponding to release: Ewos #0, #1,

BioClark #1, #2, BioVita #1.2, ProForm 1 mm, 1.5 mm). To

reduce the predation pressure in the natural habitats and ensure

that some fry survived the year, 135 resident coho smolts and 2

cutthroat trout (O. clarkii) were trapped in the natural habitat areas

and released into the wild. Following this removal, there were still

mammalian, avian and aquatic predators observed in both of the

natural habitat areas. Further detail on the natural rearing

environment can be found in (File S1).

The starting density in the natural rearing area was 46,000 fish

in 3,230 m3, or 14 fry per m3. The hatchery rearing troughs were

uniform in size, structure and water quality. Each contained a

volume of 0.9 m3 (3.2 m long60.9 m wide60.3 m deep). Thus,

with 3,600 fry in each, the hatchery-rearing density was 4,167 fry

per m3. Two months prior to their release, the pre-smolts in the

hatchery were moved to a larger trough with a gate at one end

connecting to the Chehalis River.

Physiology
Size sampling was conducted monthly in the hatchery from

April 2007 (fry ponding) to June 2008 (smolt release). The

naturally-reared fish were trapped using baited minnow traps and

sampled during February, April, May and June 2008. All of the

fish were returned to their habitat following measurement. During

May and June 2008, DNA samples were taken non-lethally

(adipose clip) from the naturally- and hatchery-reared pre-smolts

(n = 428 natural, 608 hatchery) to identify genetic cross groups.

Microsatellite analysis was conducted on eight loci (Ots10,

Omm1270-6, Omm1231, Omm1128, Omm5030, Omm5007,

Omm5008 and OneU3) according to methods in [24]. The results

were processed by a maximum likelihood program that determines

full- and half-sibling groups based on genotypes [25]. Both the

allele dropout rates and other typing error rates were set at 0.1 for

all loci and the inferred sibling genotypes were selected only if their

probability was greater than 0.98.

At the time of the smolt release during late June 2008, a physical

assessment was conducted on 30 hatchery- and 30 naturally-

reared fish. The smolts were euthanised prior to sampling in

buffered tricaine methanesulphonate (200 ppm TMS; 400 ppm

sodium bicarbonate). Mass and fork length was measured and

condition factors calculated (mass ? fork length23) [26]. Blood was

taken from the caudal vessels with a sterile syringe rinsed with

lithium heparin. Gill samples were stored in a 280uC freezer until

Na+/K+2ATPase activity assays could be conducted [27]. Organ

tissue samples were also taken to test for Bacterial Kidney Disease

(BKD) and Infectious Hematopoietic Necrosis (IHN) [28]. A

microarray analysis comparing wild and hatchery coho salmon

was performed [29] to assess global effects on gene expression.

Quantitative polymerase chain reactions (PCR) of the mRNA

levels were carried out for three genes, including insulin-like

growth factor I and II (IGF-I and -II), and growth hormone

receptor (GHR) [30] to assess the expression of growth-hormone-

related genes in naturally- and hatchery-reared fish.

Swimming Endurance
The swimming endurance of both naturally- (n = 10) and

hatchery-reared (n = 10) coho smolts was assessed in a swim tunnel

on 25 and 26 June 2008. Each smolt was given 5 min to acclimate

at 0.1 m ? s21, during which time its length was estimated using a

ruler on the side of the swim tunnel and a calculation was done to

estimate the rpm required for a velocity of 5 bl ? s21. After the

acclimation period, the speed was increased to 5 bl ? s21 within

30 s. The time taken to reach exhaustion was recorded. A black

cloth covered the up-flow part of the tank. Exhaustion was

established when the fish stopped against the down-flow grate for

5 s. Following each trial, the fish were anesthetized, measured and,

upon recovery, released with the non-experimental hatchery coho.

Predator Avoidance
During 25 and 26 June 2008 two groups of naturally-reared

(n = 20 in each) and two groups of hatchery-reared coho smolts

(n = 20 in each) were placed in identical partially-covered troughs

and allowed to acclimate for two days. The time to eat an egg

dropped 30 cm from the edge of the covered area, was recorded

five times for each of the four groups. After the fourth group was

finished, a predatory attack was simulated on the first group by

moving a plastic heron up and down in the tank quickly with its

beak penetrating the water. The beak was kept just under the

surface of the water as an egg was dropped into the tank. The time

taken for the egg to be eaten was recorded. The heron’s beak was

removed after 90 s, and the trial was stopped after four minutes if

the egg was still uneaten. Five repetitions were done per group per

trial with a minimum of one hour between trials. Two trials were

done per day, for a total of four trials.

Migratory Behaviour
Sixty fish (n = 41 hatchery-reared, 19 naturally-reared) were

tagged with 7 mm-diameter tags (VEMCO V7-2L-R64K trans-

mitters, 7618.5 mm, mass in air 1.4 g, mass in water 0.7 g,

frequency 69 kHz, 60–180 s) according to methods in [31]. As the

naturally-reared smolts were smaller, there were fewer that were

large enough to tag (.11 cm), which is why the n values differed

between groups. The surgeries were conducted on 22 and 23 June

2008 at the Chehalis River Hatchery. The mean fork length and

mass of the hatchery-reared fish were 12.360.8 cm and

19.663.8 g, whereas the naturally-reared fish were 11.261.2 cm

long and 13.964.4 g. The mean time spent in anesthetic was

5:5861:21 min:s, in surgery 2:2160:28 min:s, and in recovery

6:0361:59 min:s. During the surgeries, the water temperature

ranged from 8 211uC and 10.4–11.6 ppm O2. The fish were

released 24 hours later on the 23 and 24 June at nightfall (2130 h)

from the hatchery together with 4,000 coho smolts. Manual

tracking (VEMCO VR100) in the Chehalis River hatchery pool

(C1, Fig. 1) was carried out for 24 h post-release.

Acoustic receiver arrays (VEMCO VR2s and VR3s) were

moored along potential migratory routes to monitor the smolts’

behaviour. Approximately 2 km downstream of the release site,

one stationary receiver was located in the Chehalis River (C2,

Fig. 1). Arrays were positioned in the Harrison River, both

upstream and downstream from the entry point of the Chehalis

River (H1, H2, Fig. 1) to monitor whether any tagged coho
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travelled upstream into Harrison Lake. Prior to joining the Fraser

River, the Harrison River opens into a wide shallow area where

coho smolts may residualise and exploit feeding opportunities

(Fig. 1). A receiver array was positioned below this area, at the

junction of the Harrison and Fraser Rivers (H3, Fig. 1), to

determine whether coho were residualising in the Harrison River.

Upon entering the Fraser River, the smolts had approximately

120 km to travel before entering salt water. Pacific Ocean Shelf

Tracking project arrays located in the Fraser River, the Pitt River,

and in the ocean monitored the further migrations (Fig. 1).

Results

The wild and hatchery parent groups sampled in January 2007

did not differ in size when compared by origin and gender (Table

S1). However, the analysis of control otoliths from the smolts in

this study found distinct differences between fish reared in the

natural and hatchery environments (Table S1). Whereas the

naturally-reared smolts had otoliths that were small, dense, white

and regular in shape with even growth rings, the otoliths from

hatchery-reared fish tended to be large, thin, crystalline and

irregular in shape, with a thick growth ring during the first winter.

There was no observable difference in crystallization between the

left and right otoliths. As hatchery-reared adults had a mean

otolith degree of crystallization of 1.6 (40%), only those unclipped

parents with otoliths less than or equal to 1 (25%) were considered

to be of wild origin, and the others were removed from the study

(the reason for only nine cross groups). Furthermore, wild-born

females produced more eggs and more eggs surviving to hatch

than hatchery-born females. Although the mean mass per egg

from hatchery-born females was greater, the percentage of eggs

surviving was similar for all cross groups (73%–99%; Table S1).

Carrying Capacity
Growth comparisons between fish in the two natural and two

hatchery rearing areas during February and April 2008 found no

difference between replicates (February, lengths only: Hatchery 1,

10.660.9 cm; Hatchery 2, 10.560.6 cm); however, hatchery-

reared fish were significantly larger than their naturally-reared

siblings (April: Hatchery 1, 15.663.3 g, 11.260.8 cm; Hatchery

2, 14.363.0 g, 10.860.7 cm; Natural 1, 5.062.0 g, 7.861.0 cm;

Natural 2, 3.661.2 g, 6.860.7 cm; P,0.001 for all, Mann-

Whitney U test; Fig. 3). While it was possible that some of the

naturally-reared smolts may have ingested bait from the minnow

traps, this was not observed in later stomach content analyses.

Near the end of the study there was a flood event that disturbed

the barrier between the two natural habitat replicates, which made

survival estimates between replicates not possible. The overall

catchability of smolts in the natural rearing environment was 428

fish in 1,300 trap hours (0.33 fish per trap hour). Following that,

very few fish were captured. Therefore, the approximate carrying

capacity of the Chehalis River side-channel was 1.5 individuals per

Figure 3. Length and weight of naturally-reared and hatchery-reared replicate groups. There was no difference between replicates;
however the hatchery-reared fish were larger than the naturally-reared fish.
doi:10.1371/journal.pone.0012261.g003
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m, 0.3 individuals per m2, and 0.1 individuals per m3. The

hatchery rearing density was 4,167 individuals per m3.

Physiology
Size differences between genotype groups were negligible;

however, differences in size, colouring, external damage, parasite

levels, gill Na+/K+2ATPase activity and GHR mRNA levels

were noted for rearing-environment groups (Table S1). The coho

progeny could be assigned to families in eight out of the nine cross

groups using microsatellite analysis. Within each cross group,

maternal and rearing-environment effects on smolt size were

compared if the sample sizes were large enough to detect an effect.

In two of the hatchery-reared cross groups, no differences were

found between pure wild, pure hatchery and hybrid genotype

offspring in either mass or length (P = 0.8, P = 0.7, Mann-Whitney

U test). However, two of the six pure-hatchery genotype full-

sibling groups with large enough sample sizes (n = 15, 14, 14, 9, 8,

14) had a lower mean mass than the other four groups (P,0.04,

Mann-Whitney U test). If data from their hybrid half-siblings were

added to the analysis (same hatchery mothers, wild fathers; total

n = 27, 21, 24, 9, 15, 24), there was no longer an observable

difference in mass (P = 0.2, Mann-Whitney U test). Of the

naturally-reared offspring, there was neither a difference in length

nor mass between pure-hatchery-full-sibling groups, nor between

pure-wild-full-sibling groups.

The parental cross groups were pooled by cross type (wild

mother x wild father, wild mother x hatchery father, hatchery

mother x wild father, hatchery mother x hatchery father) for

analysis of body-size differences within each rearing environment.

None of the genetic cross groups were significantly different in

mass or length within a rearing environment (Table 1). However,

there were differences in both length and mass between pooled

naturally-reared (n = 124) and hatchery-reared (n = 255) smolts

(mean 6 stdev natural 8.566.3 cm, 5.461.7 g; hatchery

11.760.9 cm, 16.864.4 g; Mann-Whitney U test, P,0.05). The

naturally-reared fish had higher variance than the hatchery-reared

fish in fork length but not mass (F test, P,0.05). There was no

clear trend in survival between cross groups in either the natural or

hatchery rearing environments. In the natural environment, there

were 31 pure wild offspring, 28 hybrids with wild-born mothers,

23 hybrids with hatchery-born mothers, and 42 pure hatchery

offspring. In the hatchery environment there were 28 pure wild

offspring, 96 hybrids with wild-born mothers, 52 hybrids with

hatchery-born mothers, and 80 pure hatchery offspring.

The hatchery-reared pre-smolts were lighter (more yellow) in

colour than their naturally-reared siblings (green/brown with

more pronounced parr marks). In the higher-density hatchery

groups, the incidence of scale loss and fin damage was greater. The

hatchery fish also had elevated amounts of adipose tissue and

longer gill-rakers, whereas the naturally-reared fish had short gill-

rakers and almost no body fat. Fifteen percent of the hatchery fish

had eye damage, compared to only one percent of the naturally-

reared fish. Skin parasites were observed in 37% of the naturally-

reared fish and none of the hatchery-reared fish. Some of the

naturally-reared fish also had parasites in their gills (7%) and body

cavity (13%). No BKD or IHN was detected in either group. Gill

Na+/K+2ATPase activitiy was higher in the hatchery-reared than

the naturally-reared fish (1.5660.35 mM ADP ? mg protein21 ?

h21 and 1.2960.33 mM ADP ? mg protein21 ? h21, respectively;

P,0.02, Mann-Whitney U test).

The mRNA levels of IGF-I and -II were similar between rearing

groups, but the mRNA levels of GHR were significantly lower in the

hatchery-reared smolts than in their naturally-reared siblings (Table

S1). Many genes exhibited greater than two-fold differences in

mRNA levels between naturally- and hatchery-reared groups;

however the differences were not statistically significant. The

mRNA level of phosphoenolpyruvate carboxykinase (PEPCK) was

significantly lower (P,0.05, Mann-Whitney U test) in the hatchery-

reared fish than in the naturally-reared fish (Table 2). Two other

genes with high log odds between rearing groups included tyrosine

aminotransferase (TAT) and apolipoprotein B (apoB).

Swimming Endurance
The swimming endurance of the naturally-reared fish was

significantly greater than those reared in the hatchery troughs,

even though they were smaller. The mean relative velocity swum

(in bl ? s21) by the fish did not differ significantly between the

naturally- and hatchery-reared groups (natural 5.060.5 bl ? s21,

hatchery 4.860.3 bl ? s21; Mann-Whitney U test, P = 0.45).

However, the naturally-reared fish took longer to fatigue

(9036894 s) than the hatchery fish (2076146 s; P = 0.01, Mann-

Whitney U test). The naturally-reared fish were also more agitated

in the tunnel, scaring easily when their tails touched the down-flow

grate. Conversely, the hatchery fish seemed to prop themselves up

against the back grate and side of the tunnel with their tails

intermittently.

Predator Avoidance
The naturally-reared fish took longer to eat an egg placed in

their tank both before and after a simulated predation than the

hatchery-reared fish (natural: 2.362.7 s before, 122.3694.2 s

after predator, hatchery: 0.860.4 s before, 14.6631.1 s after

predator; P,0.001, Mann-Whitney U test). The naturally-reared

fish also took longer to recover after the ‘‘predator attack’’ (Fig. 4;

natural 120.1693.0 s, hatchery 13.8631.0 s; P,0.001, Mann-

Whitney U test). Twelve of the 40 trials were stopped for the

naturally-reared fish, as they had not eaten after four minutes,

whereas no hatchery trial lasted longer than 162 s. The naturally-

reared fish hid in a group beneath a covered area in the tank at all

times when not feeding, whereas the hatchery fish were not as

scared to venture out to the uncovered portion of their tank.

Table 1. A comparison of growth (fork length and mass)
between genetic cross groups (listed as mother x father,
where W is wild-born and H is hatchery-born) and rearing
environments during May and June 2008.

Naturally-reared Hatchery-reared

W6W Length (cm) 7.8 (0.7) 11.5 (1.0)

Mass (g) 5.1 (1.3) 16.2 (5.1)

N 31 28

W6H Length (cm) 7.9 (0.5) 11.6 (0.9)

Mass (g) 5.3 (1.0) 16.8 (4.3)

N 28 96

H6W Length (cm) 8.1 (0.5) 11.5 (1.0)

Mass (g) 5.6 (1.3) 15.9 (4.3)

N 23 52

H6H Length (cm) 8.0 (1.0) 11.8 (0.9)

Mass (g) 5.8 (2.3) 17.5 (4.2)

N 42 80

Whereas none of the genetic groups were significantly different within their
rearing environment, all of the hatchery-reared fish were greater in length and
mass than the wild-reared smolts (Mann-Whitney U test, P,0.05).
doi:10.1371/journal.pone.0012261.t001
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Migratory Behaviour
Naturally-reared coho smolts were more likely to be detected

downstream of the Harrison River than hatchery-reared smolts

(natural: 26%, hatchery: 7%, Z value: 1.6, P,0.05, one-tailed Z-

test). Of the 60 fish tagged, 83% were detected by moored

receivers. All of the hatchery-reared smolts except two departed

from the vicinity of the hatchery (C1, Fig. 1) the night after their

release (mean 2261 h post-release). The remaining two left the

following evening. Two-thirds of the naturally-reared smolts began

migrating during the night after their release and one-third stayed

an extra night. It took the smolts approximately one day to travel

from C1 to C2 (,2 km), where some spent up to two days near the

receiver (located in a deep pool in the Chehalis River). All of the

fish arrived at the C2 and H2 arrays during the late night or early

morning hours, which means that the smolts were likely travelling

during darkness.

The four genetic cross types reared in the hatchery (n = 4 pure-

hatchery, 1 pure-wild, 3 hybrids with wild-born mothers, 4 hybrids

Table 2. The six genes that demonstrated the greatest log-fold differences in mRNA levels between naturally- and hatchery-reared
smolts (significant difference noted by an asterix).

Rank Gene Accession No. of EST (UniGene ID) Log fold change

1 Phosphoenolpyruvate carboxykinase 1, cytosolic (PEPCK) CA053922 (Ssa.499) 22.96* W.H

2 Unknown CA060896 (Ssa.1836) 22.10

3 Unknown CB511331 (Ssa.24216) 21.81

4 Tyrosine aminotransferase CA056381 21.44

5 Unknown CA041582 (Ssa.6588) 1.53

6 Apolipoprotein B CB511166 (Ssa.23489) 2.32

doi:10.1371/journal.pone.0012261.t002

Figure 4. The recovery time following a predation event for naturally- and hatchery-reared coho salmon smolts, expressed as the
difference between the time taken to eat before and after a predation event. Means are represented by blue (hatchery-reared) and red
(naturally-reared) vertical lines.
doi:10.1371/journal.pone.0012261.g004

Nature versus Nurture

PLoS ONE | www.plosone.org 7 August 2010 | Volume 5 | Issue 8 | e12261



with hatchery-born mothers) had similar migratory behaviour and

body size. All left the hatchery pool the night after release and

travelled quickly downstream, arriving at C2 the same night. They

arrived at H2 approximately three days post-release and spent

very little time near the H2 array. Three of the smolts (1 pure

hatchery genotype, 2 hybrids with hatchery mothers) were

detected leaving the Harrison River. The two hybrids travelled

quickly from H2 to H3, whereas the pure hatchery smolt spent two

days in the shallow area of the Harrison River before travelling

downstream to F1 and F2.

Most of the tagged fish stopped in the wide shallow area in the

lower Harrison River (between H2 and H3). In total, only 8 of the

60 tagged fish (13%) were detected downstream of the Harrison

River. Five of those eight were naturally-reared. The eight fish

were similar in that they all travelled quickly downstream,

spending 0–3 d between H2 and H3. One of the hatchery-reared

fish was detected in the Fraser River at F1 and F2, five and seven

days after its last detection at H3. Two of the naturally-reared fish

were detected in the northern Strait of Georgia during July and

August 2008 (NSOG, Fig. 1) and two were detected in Pitt River

during October and November 2008 (P, Fig. 1).

Only one smolt (hatchery-reared) moved upstream and was

detected at H1. This individual was recorded at H2 five days post-

release, presumably heading downstream to the lower Harrison

River. Two nights later, however, the fish was recorded again at

H2, then at H1 the same night. It was never detected again and

may have continued further upstream into Harrison Lake.

Discussion

In the continuing debate of nature versus nurture, this study has

found that the effects of rearing environment on phenotype and

behaviour far outweighed the effects of any genetic differences

existing between second-generation hatchery- and wild-born coho

salmon in this system. Coho reared in a natural environment had

more normal-type otoliths, greater swimming endurance and

predator-avoidance abilities, and longer migrations than their

hatchery-reared siblings. There were no observable differences in

growth, survival or migratory behaviour between pure-wild- and

pure-hatchery-genotype groups reared in the same environment.

These results indicate that few, if any, genetic differences are

present between the hatchery-reared and wild-born coho salmon

studied. To what extent the wild-born fish are populated by

previous generations of hatchery fish, however, is unknown.

The fact that there was little difference observed between the

offspring of wild- and hatchery-born coho reared in the same

environment suggests that there may not be a strong genetic

difference between the two groups. While some studies have

observed genetic influences on phenotypic differences between

wild and hatchery populations [32–34], rearing environment

seems to have a greater effect [35]. The lack of a noticeable genetic

effect on the offspring of hatchery-born coho in the Chehalis River

system could be because the wild-born individuals were actually

the offspring of hatchery-reared fish—and one generation in the

wild was not enough to restore a wild genotype. Or, perhaps there

is such a small genetic effect from hatchery rearing that the

difference between hatchery and wild genotypes is negligible.

Testing for genetic differentiation between wild-born and

hatchery-born coho in the Chehalis River may provide further

clarity.

Studies examining the long-term captive breeding effects on

coho populations in Washington and Oregon have found that the

genotypes of many wild populations have transformed to more

closely resemble the genotypes of hatchery-reared fish [36]. In

some systems, the introduction of hatchery-influenced genes into

wild populations by captive-breeding programs also reduced the

fitness of those populations [5], [6], [19], [20]. This lack of an

observable genetic difference between wild- and hatchery-born

fish could thus be a cause for concern, especially if there is a risk

that the accumulated genetic load of captive-breeding could

contribute to a population’s eventual extinction [37], [38].

Early rearing conditions seem to affect coho reproduction

investment, which can directly influence overall fitness. Studies

have found that hatchery-reared fish had greater ovary mass [39];

however, egg and ovary mass do not necessarily mean more

surviving offspring. Hatchery-reared returning coho adults in the

Chehalis River had fewer, but heavier eggs than wild-born coho

from the same river. The total number of eggs surviving was

greater from wild-born adults than from hatchery-born adults

though, which may mean that the wild fish have greater

reproductive success.

Balancing the risk of predation with the benefit of feeding is

important for maximizing individual fitness, and is expected to be

influenced by both genotype (e.g. inherent growth rate) and

rearing environment (experience with predators in nature) [40–

42]. The predator avoidance results demonstrate a major

difference in the behaviour of naturally- and hatchery-reared

coho smolts in these experiments. Fish with the tendency to be

more careful around predators can avoid predation more easily

and thus have greater survival. Predator-avoidance training in one

study increased the in-stream survival of test subjects up to 26%

over un-conditioned fish [43], [44]. The swimming performance

of naturally-reared coho smolts was also noticeably stronger than

that of their hatchery-reared siblings, which was consistent with

reports in both freshwater and saltwater [45]. Other studies have

found that post-release survival improved when hatchery-reared

smolts were exercised [46-48]. Thus, a smolt’s swimming and

predator-avoidance abilities are important factors in their survival

and overall fitness.

Feeding on natural sources as a pre-smolt likely increases a

smolt’s ability to find good quality food in the wild. Releases of

hatchery-reared fish that had been hand-fed pellets were more

surface-oriented and more likely to approach moving objects than

were naturally-reared fish [49], [50]. Hatchery-reared fish

supplemented with live feed had twice the foraging ability [51]

and greater post-release survival [52] than those fed only pellets.

The naturally-reared fish in this study were left to forage for

naturally-occurring food sources. It is probable that they were able

to find good quality food more easily than their hatchery-reared

siblings. This ability may have been a factor in the longer

migrations observed in the naturally-reared fish.

Naturally-reared coho smolts were more likely to be detected

downstream of the Harrison River than their hatchery-reared

siblings. Of the fish detected entering the Fraser River, 63% were

naturally-reared, despite the fact that the naturally-reared fish

made up only 32% of the total releases. These long migrants

travelled quickly through the Harrison system and its shallow,

predator-rich feeding areas. Many factors could have influenced

this behaviour. The normal-type otoliths and better physical

condition of naturally-reared smolts may improve their orienta-

tion, balance and swimming ability, allowing them to migrate

further and faster. The foraging and predator-avoidance abilities

of the naturally-reared smolts may have also increased their

chances of survival.

The incidence of coho residualisation has not been fully

investigated in the Fraser River system. This study has provided

some evidence that coho may be residualising in the Harrison

River and Harrison Lake. Mortalities or tag losses may have
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accounted for some of the fish that were not detected beyond the

Harrison River. The possibility of some tagged fish passing by

receiver arrays undetected also exists. Further quantification of

coho residualisation in this system could be accomplished through

the use of PIT tags and seining.

Distinguishing between hatchery-reared and naturally-reared

salmon using only otoliths usually involves an analysis of early

growth rings [53]. The otoliths of hatchery-reared coho adults

returning to the Chehalis River had a high incidence of

crystallization, however, which obliterated any growth rings.

The degree of crystallization itself was a good determinant of

which adults were of hatchery origin, and has been observed in

other populations of coho in the Strait of Georgia [23]. The effects

of abnormal otoliths on the behaviour and survival of salmon are

unknown. However, they may account for some of the differences

observed in migratory behaviour between hatchery and naturally-

reared coho, and should be investigated.

The microarray analysis demonstrated that the metabolic rates

of naturally- and hatchery-reared siblings differed. For example,

the mRNA levels of cytosolic PEPCK gene were lower in the

hatchery-reared smolts. PEPCK is a rate-limiting enzyme of

gluconeogenesis [54]. PEPCK gene expression is controlled to

maintain blood glucose level within homeostatic limits, and

regulated by certain hormones including cortisol, glucagon and

insulin [54]. Whereas cortisol and glucagon synergistically up-

regulate gene expression, insulin is an inhibitor. The lower level of

PEPCK gene expression in the hatchery-reared fish suggests that

they have higher insulin levels than the naturally-reared fish. It

remains unclear whether metabolic differences, such as the ones

identified in this study, influence health and survival in salmonids.

As metabolism can generally be controlled by limiting hatchery

feed rations, further evaluation of the effects of metabolic

differences on fitness would be useful to hatchery management.

The lower levels of Na+/K+2ATPase in the naturally-reared

fish was inconsistent with the elevated levels of GHR mRNA in the

same fish. The stimulatory effect of GH on smolting and ATPase

would suggest that the elevated GHR mRNA reflects a more

active role of GH in the naturally-reared fish—which should lead

to more ATPase activity. Earlier work showed higher levels of

Na+/K+2ATPase in wild than hatchery coho smolts from the

Quinsam watershed [13], [16]. One possible explanation for the

lower ATPase values in the naturally-reared fish is that they were

already past the smolt window by the time of their sampling and

release in June. If the smolts, particularly the naturally-reared

smolts, were allowed to volitionally leave, they may have out-

migrated earlier.

As the goal of salmon enhancement programs is to improve the

conservation status and productivity of wild salmon stocks, smolt

quality and fitness are of high priority. Behavioural deficiencies

due to artificial rearing environments have been considered a

primary cause of lower hatchery survival rates [55]. Some

conservation-oriented hatcheries use enriched rearing environ-

ments, including matrices for egg and alevin development and in-

stream structures and cover, to produce smolts that more closely

resemble wild populations in both physiology and behaviour, while

maximizing genetic diversity [56], [57]. Water temperature and

quality is maintained to resemble local conditions, flow rates are

higher to promote exercise, and food is introduced below the

surface of the water using belt feeders [45], [58], [59]. Salmon

raised in conservation hatcheries tend to have a more natural body

colouring, better physical condition, lower disease rates and higher

survival than traditionally-reared smolts [58-60]. Decreasing

rearing densities improved smolt condition, growth, gill Na+/

K+2ATPase activity levels, and survival [61], [62]. High rearing

densities increased agonistic behaviour, which may effectively

increase their risk of predation post-release [63], [64]. Volitional

releases allow smolts to acclimate safely to the release environment

and migrate out when they are physically ready. Releasing fish

from in-river pens reduces stress, maintains out-migration diversity

and allows smolts to travel at night when the risk of predation is

lower [57], [65]. Conservation-oriented captive breeding pro-

grams may be one strategy to mitigate the effects of changing

global conditions on salmon populations. However, with the

possible long-term genetic effects arising from such strategies,

some argue that the priority should lie with habitat restoration

[66].

In the system studied, hatchery-reared fish are capable of

returning to and spawning in the wild, and as such, wild-born fish

may be comprised of a mixture of fish that have some hatchery

ancestry and some ancestry from lineages that have been wild for

many generations. Since the relative proportions of these

ancestries in the population are unknown, it is not possible to

determine whether the lack of observable genetic effects on

offspring phenotype was due to 1) a significant mixture of their

genotypes through interbreeding, 2) hatchery practices that

maintain wild genetic diversity, or 3) strong selection for fish with

appropriate ‘‘wild’’ genotypes (in natural marine environments for

hatchery-reared smolts, or at all stages for wild-born fish with

hatchery parents) that acts to canalize genetic variance for non-

neutral loci between hatchery and wild-derived salmon in the

population. However, if the Chehalis River hatchery is selecting

for genotypes distinct from wild fish, and hatchery fish are

contributing significantly to wild populations by breeding in the

wild, then the data from the present study indicate that selection

for wild genotypes in nature is occurring rapidly such that

returning hatchery fish are not distinguishable phenotypically from

those born of wild parents. Further studies tracking the

contribution of hatchery genotypes to wild populations will be

required to resolve these important questions.

Supporting Information

File S1 Habitat assessment and carrying capacity.

Found at: doi:10.1371/journal.pone.0012261.s001 (0.02 MB

DOC)

Figure S1 A scale diagram of the natural rearing area near the

Chehalis River Hatchery. The water flow begins at the circle on

the right, next to the Chehalis Hatchery, flowing downstream to

the left. The first habitat runs from the water source to the first

fence. The second habitat is considerably shorter in length, from

the first fence to the second fence. The numbers in pink indicate

the width of channel in meters, and significant features are labeled.

Found at: doi:10.1371/journal.pone.0012261.s002 (3.94 MB TIF)

Table S1 Phenotypic characteristics of naturally- and hatchery-

reared coho salmon. Statistical differences were established at

P,0.05 with the Mann-Whitney U test.

Found at: doi:10.1371/journal.pone.0012261.s003 (0.09 MB

DOC)
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