
article
0/

Faculty of Science and Technology, Department of Physics and Technology

Probabilistic Wind Power Forecasting
with Deep Neural Sequence Models

—

Sofie Svenøe

EOM-3901 Master’s Thesis in Energy, Climate and Environment 30 SP - June 2023

Abstract
As the world strives to fulfill the goal of zero-emission established during the Paris agree-
ment (UN, 2015), an increasing amount of wind power is integrated into the liberalized
electricity markets. With this escalation comes the need for wind power forecasting (WPF)
due to the intermittent nature of wind, and WPF is therefore becoming an important field
of study to successfully incorporate wind power to the electricity market (Wang, Zou, Liu,
Zhang, & Liu, 2021). Given the rapid growth of machine learning, deep learning and prob-
abilistic forecasting has emerged as good alternatives for WPF (Eikeland, Hovem, Olsen,
Chiesa, & Bianchi, 2022) due to their non-linear processing methods and their ability to
model uncertainties.

In this study, two probabilistic deep learning networks and a statistical model are tested
as WPF models for a 54 MW wind power park. The models are trained to predict for the
day-ahead and intraday electricity market, which respectively has 12-26 h and
1-24 h as associated forecasting horizons. Historical wind power production and Numeri-
cal weather predictions (NWP) are used as input to the WPF models. NWPs are modeled
from the MEPS model, operated by the Norwegian Meteorology Institute (MET Norway).

The tests show that the two neural network models Temporal Fusion Transformer, and
DeepAR, produces better predictions than the statistical model, SARIMAX, for the day-
ahead market. The neural networks achieved P50/P90-Risk respectively of 0.153/0.081,
and 0.175/0.091. While, for the intraday market, the models DeepAR, and SARIMAX
performed substantially better than the Temporal Fusion Transformer, with P50/P90-
Risk of respectively, 0.111/0.056, and 0.184/0.099. This implies that Transformer se-
quence models perform best on long-term forecasting, whereas autoregressive models still
perform best on short-term forecasting.

(i)

Acknowledgments
First of all, I would like to thank the excellent group of Italians that have supervised me
on this thesis. Thank you Filippo Maria Bianchi, Michele Guerra, and Matteo Chiesa
for your encouragement, guidance and good spirits. Additionally, thank you Filippo and
Matteo for bringing me on this 2 year journey of deep learning.

I would also like to thank my classmates for some great years spent in Tromsø, and
my friends in Trondheim for being the best company to write the thesis with. Thank you
Vortex NTNU, for giving me a place to write when I had no place to go.

Lastly, to my family, and Kristian: thank you for your love, support, and patience during
this year.

Sofie Svenøe,
Trondheim, June 2023.

(ii)

Table of Contents
Abstract.. i

Acknowledgments .. ii

Abbreviations .. viii

Part I / Introduction 1

1 Motivation ... 1

2 Research Questions, Proposed Approach, and Contributions 2

3 Thesis Outline .. 3

Part II / Technical Background 4

4 Time Series Forecasting... 4

4.1 Single- and Multi-Step Forecasting... 4

4.2 The role of Covariates ... 5

4.3 Time Series Forecasting as a Supervised Learning Problem 5

4.4 Probabilistic Forecasting ... 6

4.4.1 Frequentist Inference .. 6

4.4.2 Bayesian Inference.. 7

4.4.3 Assessing the quality of probabilistic forecasts ... 8

4.5 Time Series Forecasting Models ... 8

5 Introduction to Machine Learning.. 9

6 Training a Neural Network .. 9

6.1 Network Optimization ... 10

6.1.1 Initialization .. 10

6.1.2 Network Optimization Algorithms... 11

6.1.3 Residual Connections ... 11

6.2 Network Regularization ... 12

6.2.1 Early Stopping ... 13

6.2.2 Dropout... 13

6.2.3 Weight decay ... 14

7 Neural sequence processing.. 15

7.1 Recurrent Neural Networks.. 15

7.1.1 Vanishing and Exploding Gradients... 16

7.1.2 Long Short Term Memory (LSTM) ... 16

7.1.3 Sequence to Sequence structure... 17

7.2 Transformer models & The Attention Mechanism ... 18

7.2.1 Scaled dot product Attention .. 18

7.2.2 The Queries, Keys, and Values.. 19

7.2.3 Multi-Head Attention ... 20

(iii)

7.2.4 Positional encoding .. 21

8 Wind Power Forecasting for the Electricity Market... 22

8.1 Wind Energy Production... 22

8.1.1 Power Curve .. 23

8.2 The Nordic energy Market... 23

8.2.1 Elspot: day-ahead trading .. 24

8.2.2 Elbas: intra-day trading ... 25

8.2.3 The Market for Reserves Acquisition ... 25

8.3 Introduction to Wind Power Forecasting .. 25

Part III / Proposed Method 27

9 The Operational Framework.. 27

9.1 The day-ahead market framework .. 27

9.2 The intraday market framework... 28

9.3 Data... 28

9.3.1 Wind power data ... 28

9.3.2 Meteorological weather data ... 28

9.3.3 On-site weather measurements .. 29

10 Data Preprocessing ... 30

10.1 Data exploration ... 30

10.2 Data cleaning ... 30

10.3 Missing values imputation ... 31

10.4 Data splitting ... 32

10.5 Feature scaling.. 32

11 Wind power forecasting models ... 32

11.1 Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Fore-
casting ... 33

11.1.1 Model design.. 33

11.1.2 Encoder ... 36

11.1.3 Decoder ... 37

11.2 Baselines .. 39

11.2.1 DeepAR... 39

11.2.2 ARIMA ... 40

Part IV / Experiments 43

12 Raw data analysis... 43

12.1 Descriptive statistics ... 43

12.2 Time series analysis .. 45

12.2.1 Visual inspection .. 45

12.2.2 Autocorellation and Partial Autocorrelation .. 45

(iv)

12.2.3 Seasonal analysis .. 46

12.3 Wind and terrain .. 47

12.4 Comparing MEPS forecasts ... 49

12.5 Determining dataset split .. 50

13 Neural Network-based Models ... 51

13.1 Hyperparameter configuration ... 53

13.2 Regularization .. 53

13.3 Network training... 54

14 SARIMAX model ... 54

15 Evaluation Metrics.. 55

15.1 Continuous Ranked Probability Score .. 55

15.2 p-Risk .. 56

15.3 Prediction Interval Coverage Probability .. 56

16 Experimental Results .. 57

16.1 Performance on Individual Datasets ... 57

16.2 Performance Discussion ... 58

16.2.1 Network type ... 58

16.2.2 Prediction Intervals .. 60

Part V / Conclusions 65

17 Concluding remarks .. 65

18 Pytorch Forecasting .. 66

19 Further work .. 67

References ... 67

(v)

List of Tables
1 Descriptive statistics of the exploration data... 44

2 Linear correlation between modeled weather features and wind power output....... 44

3 NRMSE error and linear correlation between measured and modeled wind. 49

4 Hyperparameter configuration for the neural network models 53

5 SARIMAX model parameters for the two datasets .. 54

6 CRPS and quantile weighted CRPS on the day-ahead and intraday datasets for
the neural network models. (Lower (q)CRPS, the better).................................... 57

7 P50 and P90-Risk on the day-ahead and intraday datasets for all models. (Lower
the p-Risk, the better)... 57

8 Prediction interval coverage probability for significance levels α = [0.04, 0.2, 0.5].
The most valid PI’s are highlighted in bold. ... 59

(vi)

List of Figures
1 Example of sharpness and calibration... 8

2 Overfitting and underfitting in probabilistic time series forecasting (Eikeland et
al., 2022) .. 12

3 Validation and training loss of an overfit model (Brownlee, 2019) 13

4 Simple illustration of the encoder-decoder structure .. 17

5 Calculations behind the Attention mechanism .. 19

6 Positional encoding matrix with n=10000 and dmodel = 512 as in the original
Transformer by (Vaswani et al., 2017) .. 21

7 In-situ power curve from a wind turbine in Fakken wind farm with cut-in, rated,
and cut-out wind speed specified (Eikeland et al., 2022). 23

8 Trading time frames in the Norwegian electricity market (NVE, 2021) 24

9 Architectural overview of the Temporal Fusion Transformer 33

10 Building blocks in the Temporal Fusion Transformer network 34

11 DeepAR model illustration .. 39

12 Time series plot over the year 2017 for park power output and modeled wind
speed, pressure and temperature .. 44

13 Autocorrelation and partial autocorrelation of park power output........................ 46

14 Monthly variability of park power output and wind speed in exploration dataset.
Both figures (a) and (b) show a clear seasonal variability..................................... 47

15 Wind rose and location of Fakken Wind park. .. 48

16 Scatter plots of power production, wind speed and wind direction 48

17 Comparison between the two wind speed forecasts and the measured wind speed
at Fakken for the period 2017/10/02 - 2017/10/09. ... 49

18 Yearly data distribution and variability for park power output 50

19 Aggregated predicted park power output for the day-ahead market, along with
modeled and measured wind speed, for the week 2019/03/26-2019/04/02 61

20 Aggregated predicted park power output for the day-ahead market, along with
modeled and measured wind speed, for the week 2019/04/30-2019/05/06 62

21 Aggregated predicted park power output for the intraday market, along with
modeled and measured wind speed, for the week 2019/03/26-2019/04/02 63

22 Aggregated predicted park power output for the intraday market, along with
modeled and measured wind speed, for the week 2019/04/30-2019/05/06 64

(vii)

Abbreviations

ACF Autocorrelation Function
Adam Adaptive Moment Estimation
AI Artificial Intelligence
ANN Artificial Neural Network
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
BPTT Backpropagation Through Time
CDF Cumulative Density Function
CRPS Continuous Ranked Probability Score
DL Deep Learning
GLU Gated Linear Unit
GRN Gated Residual Network
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
MA Moving Average
MEPS MetCoOp Ensemble Prediction System
MIMO Multiple Input, Multiple Output
ML Machine Learning
NLP Natural Language Processing
NWP Numerical Weather Prediction
PACF Partial Autocorrelation Function
PDF Probability Density Function
PI Prediction Interval
p-Risk Percentile Risk
qCRPS Quantile weighted CRPS
QL Quantile Loss
QR Quantile Regression
RNN Recurrent Neural Network
SARIMA Seasonal Autoregressive Integrated Moving Average
SARIMAX SARIMA with eXogenous input
seq2seq Sequence to Sequence
SGD Stochastic Gradient Descent
TFT Temporal Fusion Transformer
WPF Wind Power Forecasting

(viii)

Part I / Introduction

1 Motivation

Electricity exchanges are today mostly done on liberalized electricity markets such as
Nord Pool. In 2014, 84% of the electricity exchanges in the European Nordic was done
through Nord Pool (Mazzi & Pinson, 2017). Exchanges on such markets take the form
of future contracts and auctions, where the majority of the exchanges takes place in a
day-ahead auction. This form of electricity exchange came forth at a time when power
production consisted mostly of plants that had the flexibility to turn on and off and plan
their production ahead of production time. In the present day, with an increased share of
volatile renewable power in the power pool, day-ahead power production has become less
predictable due to being more dependent on intermittent weather conditions. Another
option is to exchange at the intraday auctions, which takes place continuously during
the same day as production. In this auction, more accurate bids can be delivered due
to being closer to production time. With the electricity market of today, producers risk
facing financial penalties if there are mismatches between the agreed-upon generation
and the amount of power delivered (Mazzi & Pinson, 2017). Volatile renewable power
producers, therefore, have a larger risk for financial penalties and must operate with a
trade-off between maximizing power production or minimizing risk.

Wind power is such an energy source that is characterized by volatile power production
and its integration into the electricity market therefore relies on forecasting models that
can give good predictions about future power production. Wind power forecasting (WPF)
refers to forecasting the expected wind power production either regionally or locally and
has been a field of research ever since the introduction of wind power in the late 80s (Giebel
& Kariniotakis, 2017). Being highly dependent on weather features, the field of wind
power forecasting is closely related to the field of meteorology and weather predictions.
Surrounding topography adds complexity to the issue as conditions can vary significantly
from one wind park to another, meaning that no one WPF model can be successfully
applied to every wind park. Alas, wind power forecasting is a diversified issue and is
therefore a multidisciplinary research area that encompasses not only energy analytics but
also applied mathematics, artificial intelligence, software engineering, and other fields.

Until recently, point forecasting models predicting the most likely value have been the
dominating forecasting method (Cini, Marisca, Bianchi, & Alippi, 2023). Predicting wind
power entails forecasting a time series with very short temporal dependencies in contrast to
what you would typically see in e.g. electrical consumption or traffic time series. However,
a wind power production time series does not only depend on its previous values but also
heavily depends on wind, humidity, and surrounding topography. These dependencies
are of a complex and highly non-linear nature, making accurate point predictions almost
impossible (Eikeland et al., 2022). It is therefore necessary to use forecasting models that
can model the uncertainties in their output, and such models are termed probabilistic.
Probabilistic forecasting models provide additional information about the uncertainty
of the most likely value, which can assist the wind power trader in making informed

1 / 67

Part I – Introduction / Research Questions, Proposed Approach, and Contributions

decisions. Probabilistic forecasting models give predictions for each point as a range of
values, usually as confidence intervals or density functions (Fornacon-Wood et al., 2022),
and uncertainty is therefore reflected in the width of the distribution.

Time series forecasting is a sequence processing problem that historically has been solved
by statistical models and has earned its popularity due to being easy to use and inter-
pret. However, most statistical methods are limited by linear assumptions, making them
inappropriate to use on complex tasks such as wind power forecasting. Therefore, deep
learning, and especially neural sequence models, has become a prominent research field
within wind power forecasting due to its capabilities of mapping non-linear dependen-
cies. Neural sequence processing is primarily not limited by such linear assumptions as
statistical models, however, they are generally considered as difficult to interpret and has
therefore commonly been called black boxes. This is due to deep learning models having
the advantage of working reasonably well without the need of having knowledge about the
distribution of the data and generally requiring less preprocessing than statistical models
(Gasthaus et al., 2019). Nevertheless, having knowledge about the nature of the data can
significantly reduce the training effort and produce even better results.

As neural networks are difficult to implement, especially for non-machine learning experts,
this thesis aims to develop and test deep learning models for wind power forecasting that
can be ready to use for real-world practitioners. The goal is to test if the models are ready
to use without the need of software engineering and only needing to tune and train the
model on the given park, such that wind power producers can use the models practically
‘out of the box‘.

2 Research Questions, Proposed Approach, and
Contributions

Based on the motivational factors presented in Section 1, the following research questions
can be formulated:

• How does the accuracy and uncertainty of probabilistic forecasts generated from deep
sequential models compare between forecasts for the day-ahead and intraday mar-
kets?

• To what extent can wind power forecasts be improved using deep sequential models,
rather than the previously popular statistical models?

The proposed approach of this thesis is to evaluate and compare various probabilistic fore-
casting methods for the day-ahead and intraday markets, with an emphasis on evaluating
their performance in terms of prediction accuracy and uncertainty. The investigation will
analyze the forecasts within their respective market time frames, where it is acknowledged
that the day-ahead forecast carries a higher level of uncertainty compared to the intraday
forecast.

The objective is to provide forecasts where the wind power trader can take advantage
of the uncertainty in the day-ahead forecasts to determine a lower bound of production,

2 / 67

Part I – Introduction / Thesis Outline

and submit safe bids to the day-ahead market. Additionally, the intraday forecast aims to
deliver accurate predictions that can adequately adjust the day-ahead bids in the intraday
market. The ambition is that the forecasts can be used to minimize discrepancies between
the agreed-upon generation and the actual power delivered by providing reliable and
accurate forecasts.

This master thesis is a contribution to the research field on wind power forecasting at
UiT and focuses on Fakken wind power park. The key contributions can be summarized
as follows:

• Proposing a dual bidding situation to increase accuracy using forecasts both for the
day-ahead and intraday market.

• Testing the methods using multivariate wind power datasets from Fakken wind
power park using numerical weather predictions as features.

• Investigating if the models are ready for usage by non-machine learning experts.

3 Thesis Outline

This thesis is divided into five parts, and this section concludes the introduction. Part
II contains relevant technical background information needed to understand the concepts
dealt with in this thesis. The topics covered in the technical background include intro-
ductions to time series forecasting, neural network training, sequential neural networks,
and wind power forecasting for the electricity market.

Part III presents the proposed method and the sequential models used in this thesis.

The experiments conducted and the results thereof are presented in part IV.

Finally, in part V, a summary along with concluding remarks and instructions for further
work is presented.

3 / 67

Part II / Technical Background

4 Time Series Forecasting

A time series is by (Kirchgässner, Wolters, & Hassler, 2012) defined as a set of quantitative
observations arranged in chronological order. When ordering the observation by time of
record it becomes possible to identify and extract knowledge of the underlying process.
Two mature areas in the field of time series are time series analysis and time series
forecasting, where the first revolves around extracting knowledge in the form of seasonality
and trends while the latter revolves around using such knowledge to create mathematical
models to predict future values of the time series.

A time series forecasting model, f(·), aims to model the future values of a time series y
given past values of the time series and exogenous variables x

ŷ(t+1):(t+T) = f(y(t−τ):t,x(t−τ):(t+T)), (1)

where the predicted values from the forecasting model are denoted as ŷ, while the ex-
ogenous variables can include both past and future values. Past values are limited to a
look-back window, τ , and future values are restricted to a forecast horizon denoted as T .

The next sections will describe the framework and theory behind setting up a time series
forecasting problems, and the basics behind probabilistic forecasting.

4.1 Single- and Multi-Step Forecasting

One of the first decisions to make when setting up the forecasting problem is if the model
should output single- or multi-step forecasts, where the former makes one-step-ahead
forecasts and the latter makes forecasts for multiple time steps ahead.

Two common methods for computing multi-step forecasts are the recursive and Multiple-
Input-Multiple-Output (MIMO) methods (Taieb, Bontempi, Atiya, & Sorjamaa, 2012).
The recursive strategy involves recursively feeding the output from a single-step forecast-
ing model until the T-step prediction has been made. The MIMO strategy is a more
direct method, which in one process outputs a vector of values instead of a scalar.

It is generally intuitive given the forecasting problem whether to forecast one or multiple
time steps ahead. However, certain considerations must be taken into account when
performing multi-step forecasting. Due to the longer forecasting horizon, each predicted
value has a higher level of uncertainty. Especially the recursive method is prone to error
accumulation due to using the previous predicted value as input for the next time step.
Multi-step forecasting methods are therefore said to have lower accuracy than single-step
forecasting methods.

4 / 67

Part II – Technical Background / Time Series Forecasting

4.2 The role of Covariates

A time series that includes multiple variables is called a multivariate time series. In
contrast, a time series with only one variable is referred to as a univariate time series.
The variables in a multivariate time series are classified either as endogenous or exogenous.
Endogenous variables are influenced by other variables within the system, while exogenous
variables, also called covariates, are not. It is important to note that an exogenous variable
should have an effect on the output variable, otherwise, there is no reason to include it in
the dataset (Brownlee, 2018).

In time series forecasting it is typical to work with multivariate time series. This is
because time series forecasting often has a lot of data associated with the same problem.
Therefore a time series forecasting model has a higher chance of getting good results when
using covariates since the model can learn dependencies between different time series. For
example, a time series with electric load from households will have a strong relationship
to the corresponding outside temperature. Similarly, a traffic load time series will be
highly dependent on the time of day and day of the week. Some time series are almost
infeasible to forecast without the use of covariates. A typical example is weather-related
time series like wind and solar power production, or stock market time series like Nasdaq
closing prices.

There exist several ways that covariates can be included in a time series forecasting model
and the general distinction is if the covariates are known or unknown in the future. An
example of unknown covariates can be measured weather features, while known covariates
can be predicted weather features or date-time features like a day of week or week of the
year. Another type of covariate is static in time and is usually location-based. E.g. retail
time series from different stores selling the same items.

Additionally, the use of covariates makes it possible to have smaller datasets. A model
training on univariate data needs a much larger training dataset to make good predictions
during inference due to only learning inter-series temporal dependencies.

4.3 Time Series Forecasting as a Supervised Learning
Problem

A time series is composed of a set of sequences with length depending on the dataset and
the forecasting problem. For example, a forecasting model trained to predict day-ahead
values can have input sequences of different lengths depending on the long-term temporal
dependencies seen in the dataset. This trait is often called the memory of the time series
and describes how long information is detained in future values. For example, a time
series containing values dependent on the day of the week might have a memory as long
as 1-2 weeks, while a time series of seemingly random values will have a much shorter
memory.

The concept of time series memory gives the setup of time series forecasting as a supervised
learning problem where input-output pairs are created from the time series. Supervised

5 / 67

Part II – Technical Background / Time Series Forecasting

learning in itself involves training the forecasting model on labeled data, which means
that the model learns to map input data to the corresponding output data. The objective
of the learning is to minimize the difference, or error, between the predicted values and
labels.

To simplify notations, zt−τ,t will be used for the input pairs. When the time range lies
before prediction time [t − τ, t − 1], both endogenous, and exogenous variables will be
passed as input zt = (yt,xt). While for time ranges after prediction time, [t, t + T],
only exogenous variables zt = xt will be passed as input. An input-output pair to the
forecasting model will have the general form:

Input sequence: [zt−τ , ..., zt−1, zt, ..., zt+T] = Zt−τ,t+T
Label sequence: [yt+1, yt+2, ..., yt+T] = Y(t+1):(t+T)

where τ represents the memory or look-back window and T represents the forecast horizon.

This type of dataset configuration is called a sliding or rolling window dataset and gets
its name from the procedure of “sliding” a window of fixed length across the time series to
create samples for the forecasting model. The step size of the window can be 1 or more,
meaning that the next sample is incremented by 1 or multiple time steps.

4.4 Probabilistic Forecasting

Probabilistic forecasting models give information about uncertainty for each predicted
time step, usually in the form of prediction intervals or probability density functions
(pdfs). Such models differ from the historically most common models which were point
forecasters, meaning that for each time step they predicted one point - the most likely
value. This works well for deep learning tasks as machine translation, sentiment analysis
etc, but for planning purposes, it gives the practitioner little information about the future.
Probabilistic forecasting has therefore received popularity in time series forecasting the
recent years and especially the energy trader will be able to give more effective bids while
having a good understanding of the risks (Nowotarski & Weron, 2018).

Probabilistic forecasting can generally be grouped into frequentist and Bayesian inference.
The difference lies in how uncertainty is assigned. Frequentist approaches assigns prob-
abilities to the observed data. Bayesian approaches build on Bayes’ theorem and assign
probabilities to hypotheses based on the observed data (Fornacon-Wood et al., 2022).

4.4.1 Frequentist Inference

There exist several approaches to frequentist probabilistic forecasting (Jensen, Bianchi,
& Anfinsen, 2022). The basic technique is prediction intervals (PIs), where a confidence
interval sets the lower and upper bounds with the point forecast set as the center of the
interval (Nowotarski & Weron, 2018). A 95% confidence interval is valid if 95% of the

6 / 67

Part II – Technical Background / Time Series Forecasting

observations lie inside the PI.
The generic form for computing the upper and lower bound of PIs is

P (Yt ∈ C(Zt)) ≤ 1− α, (2)

where Yt is the response variable, C(Zt) is the confidence interval centered at the point
forecast and α is the significance level.

It is often beneficial to construct several PIs, and in this case, the technique is called
quantile regression (QR). With the predicted point forecasts, QR can be applied to the
input set Zt with (Nowotarski & Weron, 2018)

QPt(q|Zt) = Ztβq, (3)

where QPt(q|·) is the conditional q-th quantile of the target distribution, Xt is the regres-
sors, often point forecasts, and βq is a vector of parameters for quantile q. The parameters
are estimations found by minimizing the quantile/pinball loss function

min
βq

[∑
{t:Pt≥Zt,βq}q · |Pt − Ztβq|+

∑
{t:Pt<Zt,βq}(1− q) · |Pt − Ztβq|

]
. (4)

The quantile loss function is a strictly proper scoring rule especially designed for penalizing
quantile forecasts (Gneiting, 2011). The error calculated by quantile loss measures the
distance between the true value and each quantile prediction, and thereafter takes into
account whether the model underestimates or overestimates. A large quantile will be
more penalized for underpredicting than a low quantile. Similarly, a low quantile will be
more penalized for overpredicting than a large quantile. It is common to come across
the quantile function with simpler notations using predicted values ŷ and labels y for one
time step

QL(y, ŷ, q) = q(y − ŷ)+ + (1− q)(ŷ − y)+, (5)

where over and under-prediction are distinguished by using the max function
(·)+ = max(0, ·).

4.4.2 Bayesian Inference

Bayesian inference depends on estimating the underlying pdf from the available data.
This can either be done by estimating the pdf given known parameters or assuming a pdf
and estimating the parameters (Theodoridis & Koutroumbas, 2009). Another common
term for Bayesian inference is therefore parametric inference. The objective is to estimate
the conditional distribution of the future data given the past data and the covariates

P (yt:t+T |zt−τ :t+T). (6)

However, it is in most cases infeasible to directly estimate eq. 6 and it is further assumed
that this distribution consists of a product of likelihood factors

Pθ(yt:t+T |zt−τ :t+T) =
t+T∏
t′=t−τ

Pθ(yt′|zt′) =
t+T∏
t′=t−τ

L(zt′|θ), (7)

where θ are parameters of the distribution typically obtained by the predictive model.
The problem then becomes generating a set of parameters to estimate the likelihood for
each time step. The most common method is to assume Gaussian likelihoods, which often
is due to mathematical simplicity instead of empirical evidence.

7 / 67

Part II – Technical Background / Time Series Forecasting

(a) calibrated,
not sharp

(b) sharp,
not calibrated

(c) sharp and
calibrated

Figure 1: Example of sharpness and calibration

4.4.3 Assessing the quality of probabilistic forecasts

The quality of a probabilistic forecast is characterized by sharpness and calibration. As
seen in Fig. 1, sharpness and calibration can intuitively be described by shots on a shooting
target. Sharpness refers to the density of the shots, i.e. if they are located close to each
other. Calibration refers to the accuracy of the shots, and how many are hits or misses.
For probabilistic forecasts, sharpness refers to the width and tightness of the PI while
calibration refers to the accuracy of the PI. An 80 % PI should have 80% of the observed
values inside the PI. A sharp and calibrated forecast is therefore one which has compact
PIs and meets the required accuracy.

4.5 Time Series Forecasting Models

Statistical models have, until recently, dominated the research on time series forecast-
ing (Dang-Ha, Bianchi, & Olsson, 2017). The methods are mostly state space models
(SSM), which are usually univariate parametric models where the parameters must be
decided by the practitioner. The most influential frameworks are Exponential Smoothing
(R. Hyndman, Koehler, Ord, & Snyder, 2008), Box and Jenkins autoregressive integrated
moving average (ARIMA) (Jenkins, 1970), and its multivariate extensions, ARIMAX (De
Gooijer & Hyndman, 2006). Common to many statistical models is that they are limited
to modeling linear dependencies, while also falling short when modeling long-term depen-
dencies (Mashlakov, Kuronen, Lensu, Kaarna, & Honkapuro, 2021). The research has
therefore trended towards deep learning (DL) models, which due to their neural architec-
ture are better suited to model non-linear dependencies. Nevertheless, due to its historical
popularity, the ARIMA model will also be tested in this thesis. Due to its complexity,
neural sequence processing will be extensively presented in sec. 7, while ARIMA will be
presented in the Method section. Before going through neural sequence processing, it is
necessary to start with an introduction to the basics of machine learning and training of
neural networks in sections 5, 6.

8 / 67

Part II – Technical Background / Training a Neural Network

5 Introduction to Machine Learning

Machine learning (ML) is the discipline that studies how to optimize the parameters of
a model, based on a collection of data and a performance measure that quantifies how
well the model is processing the data at hand (Goodfellow, Bengio, & Courville, 2016).
Machine learning is typically employed on tasks that are too complex to feasibly solve
using a fixed model. The difference between the two approaches is that a fixed model
will explicitly program how to do a task, while an ML model will learn how to do the
task based on the input it is given. Machine learning problems are generally categorized
as supervised or unsupervised, referring to if the model uses labels (true values) or not,
to measure its performance and update the model. When having access to true values,
the model learns how to reproduce the correct output given a specific input. The model
then uses its performance, the error measured between the estimated and correct labels,
to improve the model. Unsupervised learning is typically applied to types of problems
and data that are either unpractical or infeasible to label. Such problems often do not
have the objective of finding the most correct mapping, but to learn hidden groupings
and patterns seen in the data.

A neural network is a machine learning architecture modeled and inspired by the structure
of the brain, where multiple nodes or neurons are interconnected within and across net-
work layers. Deep learning involves the use of stacked neural networks to learn complex
tasks and is categorized as a field within machine learning (Choi, Coyner, Kalpathy-
Cramer, Chiang, & Campbell, 2020). The accelerated growth of machine learning, and
more specifically deep learning, are motivated by the increased capability to collect and
store extensive amounts of data while also seeing the rise of increased processing power
(Jordan & Mitchell, 2015). Large amounts of data are essential for the performance of
deep learning models as the capability to learn increases with the size of the training data.

6 Training a Neural Network

Neural networks are composed of different computational layers which it is common prac-
tice to categorize as input layer, hidden layers, and output layer. The depth of a neural
network is determined by the total number of layers, and a deep neural network is, there-
fore, one consisting of several layers. A deep neural network is not necessarily the solution
to every problem and the depth is determined by the problem at hand.

Network layers can take many forms depending on the model. In general, a network layer
takes the output from the previous layer as input and maps it through a combination
of learnable parameters passed through a non-linear activation function and sends this
mapping to the next layer. The process of running a neural network from the input layer
to the output layer is commonly called forwarding.

Training a neural network involves minimizing the loss function, which for supervised
learning computes the error between the predicted and actual values. This error is prop-
agated backwards in the network by computing the derivative of the loss function with

9 / 67

Part II – Technical Background / Training a Neural Network

respect to each parameter in a process called backpropagation. The derivative is often
called the error gradient, or simply just the gradient.

The gradient is used to update the learnable parameters using an optimization algorithm
which adjusts the parameters such that the loss function is minimized. The process of
minimizing the loss function is called gradient descent. This iterative learning process
continues until a minimum is reached. Each cycle of the forward and backward passes is
called an epoch or run.

The following sections will delve further into the key concepts necessary to comprehend
the potential challenges associated with training neural networks.

6.1 Network Optimization

Network optimization is a rich field of research that is devoted to finding solutions to make
network convergence faster. This is done by investigating the loss surface of a network
and how the surface is traversed given different network optimization algorithms. This is
important because a loss surface can be complex and although only one point can be the
global minimum there usually exist several local minima where the gradient can get stuck.
An extensive study by (H. Li, Xu, Taylor, & Goldstein, 2017) visualized and investigated
the effect different architectures have on the loss surface. They found that loss surfaces
get more complex and non-convex the deeper the model. This emphasizes the need for
good optimization practices when working with very deep models.

6.1.1 Initialization

The optimization process starts with random initialization of the network’s learnable
parameters. These parameters are called weights and biases. Proper initialization has
shown to be essential for the quick convergence of neural networks and several different
initialization techniques have been developed, and which one to choose depends on the
kind of activation functions present in the network (Glorot & Bengio, 2010). Common
to most initialization techniques is to initialize to small values chosen from some form of
probability distribution. In (H. Li et al., 2017) they argued that the reason why this has
an impact on convergence time is due to where the parameters are initialized on the loss
surface. If initialized in highly complex terrain and not close to a convex area, gradient
descent updating will have poor results in finding a strictly decreasing area resulting in
slow convergence.

10 / 67

Part II – Technical Background / Training a Neural Network

6.1.2 Network Optimization Algorithms

Network optimization aims to minimize the loss function with the desire of improving the
performance measure. Even though the goal is to minimize the loss function, it is not
necessarily advantageous, or possible, to find the global minimum, and a local minimum
can often serve the task sufficiently (Chilimbi, Suzue, Apacible, & Kalyanaraman, 2014).
Nevertheless, finding the global, or a local, minimum requires optimization algorithms
which update the model parameters using the derivative of the loss function in a process
called gradient descent.

Basic gradient descent updates the weights and biases as follows (Goodfellow et al., 2016):

θi+1 = θi − η∇θiJ(θi) (8)

where θ represents the learnable parameters, J(·) represents the loss function and η rep-
resents the learning rate, a hyperparameter determining the step of which the parameters
are updated.

Due to the fixed learning rate used in basic gradient descent, the updates to the weights
were often too small or too large resulting in either too slow convergence or making conver-
gence infeasible as the weights often oscillated around the minimal point. Improvements
to the basic gradient descent have come in the form of momentum factors giving the
opportunity to use small learning rates with the addition of a momentum factor which
further pushes the learning in the same direction as previous updates. Essentially, it cre-
ates an adaptive updating step where the algorithm assumes that the previous updates
were in the right direction.

The historically most popular optimization algorithm, stochastic gradient descent (SGD),
improves on the basic gradient descent by randomly choosing subsets of the training
dataset to compute the gradient on. The reason for using this stochastic method is to
reduce the computational cost of training when the training dataset grows large. Another
way to achieve adaptive updating of the gradient is in the form of adaptive learning rates
which is the basis of popular optimization algorithms such as ADAM and ADAGRAD.
Adaptive learning rate involves reducing the size of the learning rate during optimization
such that the learning rate is sufficiently small when nearing the minimal point with the
goal of reducing oscillations.

6.1.3 Residual Connections

As stated at the beginning of this section, very deep neural networks showed to be dif-
ficult to optimize resulting in the development of residual connections (He, Zhang, Ren,
& Sun, 2016) also called skip connections. A residual connection can be thought of as
a shortcut, connecting the input of one layer to the output of a subsequent layer. Such
layers eased the training by making the intermediate layers learn the residual mapping,
in other words, the difference between input and output, instead of the full mapping.
In (H. Li et al., 2017) they compared the loss surfaces of neural nets with and without
residual connections, showing that residual connections resulted in more convex loss sur-
faces making optimization easier. Therefore neural networks can be made deeper without
falling into the caveats of complex loss surfaces.

11 / 67

Part II – Technical Background / Training a Neural Network

Figure 2: Overfitting and underfitting in probabilistic time series forecasting (Eikeland et al.,
2022)

6.2 Network Regularization

An important aspect to consider when training neural networks is their ability to gen-
eralize well on unseen data. When the model fails to generalize, the effect is popularly
called overfitting and is a situation that arises when the model performs very well on the
subset of data on which it was trained, while failing to perform well on new data. The
job of training neural networks that generalize well is called network regularization and,
as counterintuitive as it sounds, relies on simplifying the models such that it is unable to
overfit the training data.

In the probabilistic time series forecasting problem, overfitting takes the form of too-
sharp prediction intervals. While the opposite, underfitting, takes the form of too wide
prediction intervals. Both examples are depicted in Fig. 2 where overfitting is the middle
panel, while underfitting is the bottom panel. The top panel shows a proper 95% PI.

To monitor a model’s ability to generalize it is typical to split the data into three parts
called training, validation and testing datasets. The training dataset is used to train the
model while the validation dataset is used to validate the model during training. When
the model is finished training the model is tested against the testing dataset. The error
calculated against the testing dataset is often called the generalization error and this is
the error metric reported when presenting the performance of neural networks.

12 / 67

Part II – Technical Background / Training a Neural Network

6.2.1 Early Stopping

The most straightforward regularization technique relies on stopping the training before
the model learns to overfit. This is done by monitoring the model performance on the
validation dataset during training such that training can be stopped when the performance
on the validation dataset starts deteriorating. It is typical to plot the loss on the training
dataset against the loss on the validation dataset to identify deviating results on the
validation dataset. From the plot, one should be able to identify at which epoch the
training should be stopped. In fig. 3 it is clear that the model starts overfitting to the
training dataset around epoch 100 and it is therefore of no use training beyond this point.

6.2.2 Dropout

Dropout is a regularization technique that relies on dropping random parts of the network
during training. This method was developed originally for fully connected layers, where
all nodes in one layer are connected to all nodes in the succeeding layer. Dropout then
relies on randomly dropping nodes with a probability of p. The rationale behind this is
to prevent the nodes from being overly dependent on the output from previous layers and
to rather learn from irregular information. This makes the network more robust against
new information.

Dropout showed to be a simple and effective regularization technique and has been
adapted to different neural network models. Although the method cannot be directly
adapted, all the variations depend on simplifying the network in some way during train-
ing.

Figure 3: Validation and training loss of an overfit model (Brownlee, 2019)

13 / 67

Part II – Technical Background / Training a Neural Network

6.2.3 Weight decay

Another way to regularize the network is by modifying the loss function by adding penal-
ties to the weights. There are two popular penalties, L1 and L2 regularization, where L2
regularization is commonly known as weight decay (Goodfellow et al., 2016).

The general function for adding weight penalties is to modify the loss function as follows:

J ′(θ) = J(θ) + aΩ(θ) (9)

Where Ω(·) is the norm penalty function and a is a constant determining the effect of the
penalty on the loss function. The constant a is typically lower than the learning rate.

The most popular norm penalty is weight decay where the penalty takes the form of
a
2
||θ||2. The gradient then becomes (Goodfellow et al., 2016):

∇J ′(θ) = ∇J(θ) + aθ (10)

And the updating step becomes:

θi+1 = θi − η∇θiJ
′(θi)

θi+1 = (1− ηa)θi − η∇θiJ(θi)
(11)

Adding weight decay restricts the updating step by restraining the weight from becoming
too large and thus reduces the impact of large weight values. Similarly as with dropout,
weight decay inhibits the ML model from overfitting by forcing the model to learn more
robust representations.

14 / 67

Part II – Technical Background / Neural sequence processing

7 Neural sequence processing

While time series prediction has had an important role in many industries, neural se-
quence modeling has become increasingly developed due to natural language processing
(NLP). Most neural sequence models are made for tasks such as machine translation, text
generation, sentiment analysis, and speech recognition. This section will cover the basics
of two popular neural sequence processing models: the recurrent neural network (RNN)
and the Transformer. While RNNs are a mature family of models, the Transformer was
first introduced in 2017 by (Vaswani et al., 2017). The two models have quite different ap-
proaches to the problem, where RNNs process the data sequentially and the Transformer
process the data as a set.

7.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are specialized at processing sequential data and have
historically been a basic building block for models dealing with sequence tasks (Bianchi,
Livi, & Alippi, 2016). As the name suggests, RNNs are recurrent in nature meaning that
the same process is performed for every input to the network. Given the terminology
established in sec. 4, a recurrent unit calculates the following operation for each target-
covariate pair yt, xt (Lim & Zohren, 2021):

ht = fh(W1ht−1 +W2yt +W3xt + b1)

ŷt = fy(W4ht + b2)
(12)

Where W(·) represents weights, b(·) represents biases and f(·) represents activation func-
tions. This recurrent process utilizes memory in the form of the hidden state ht, which is
updated by taking into account the current input and previous hidden state. The RNN
must learn what temporal information to store and what to omit and this is what the
hidden state is designed to do when taking both the current input and the previous hidden
state as input to the recurrent unit.
As eq. 12 indicate, an RNN has the same amount of recurrent units as the input sequence
has elements and parameters are shared across units (Bianchi, Maiorino, Kampffmeyer,
Rizzi, & Jenssen, 2017). This parameter sharing makes it possible to extend to sequences
of different lengths and RNN layers have therefore no need for the look-back window
introduced in section 4.

Deep RNNs are made by stacking several layers such that a recurrent unit feeds the output
ŷt as input to the corresponding time step in the next layer and the hidden state is passed
to the next time step in the current layer.

Although the recurrent operation was introduced as the solution to capture temporal
information in deep learning models, the original vanilla RNN showed to be bad at
capturing long-term dependencies. The recurrent unit requires cascading calculations of
the backflowing gradient resulting in a problem known as the vanishing/exploding gradient
(Hochreiter, 1998) which will be presented in the next section.

15 / 67

Part II – Technical Background / Neural sequence processing

7.1.1 Vanishing and Exploding Gradients

The vanishing/exploding gradient is a weakness of the backpropogation through time
(BPTT) algorithm, which is an extension of backpropogation specifically designed for
training RNNs. While this problem is not specific to RNNs, it becomes a frequent issue
for these models when the number of computations required to learn long-term depen-
dencies becomes excessively large (Hochreiter, 1998).

Repeating gradient updates with either too small or too large weight updates tends to
respectively result in the gradient vanishing or exploding. Due to weight sharing, the
weight will be multiplied by itself for each element in the sequence. If the weight then
is small, this will result in the value exponentially decaying to zero. Similarly, if the
weight is too large the value will exponentially grow to infinity. Both are problematic
and will effectively reduce the ability of the network to optimize and learn dependencies
(Goodfellow et al., 2016).

An easy solution for exploding gradients is gradient clipping, also known as norm clipping.
This method involves scaling down the gradients when the gradient reaches a predeter-
mined threshold (Pascanu, Mikolov, & Bengio, 2013). This is a simple and efficient
solution to exploding gradients. Other solutions can be regularization techniques such as
L1/L2 regularization, or using randomized architectures that do not train the recurrent
part (Bianchi, Scardapane, Løkse, & Jenssen, 2020; Bianchi, Scardapane, Uncini, Rizzi,
& Sadeghian, 2015; Bianchi, De Santis, Rizzi, & Sadeghian, 2015).

Dealing with the vanishing gradient is more complicated and does not have as straightfor-
ward solutions as with exploding gradients. (Hochreiter & Schmidhuber, 1997) developed
the long short-term memory (LSTM) network to address the vanishing gradient by creat-
ing more advanced recurrent units where the gradient could flow more freely. Although
LSTM is the most popular, a more recent option termed gated recurrent unit (GRU)
(Cho, van Merrienboer, Bahdanau, & Bengio, 2014) is also available. The two choices dif-
fer in the number of parameters yet are not dissimilar. An empirical exploration between
the two types can be found in (Jozefowicz, Zaremba, & Sutskever, 2015). When talking
about an RNNs recurrent unit, one is almost always referring to a gated unit, either the
LSTM or the GRU.

7.1.2 Long Short Term Memory (LSTM)

The gradient flow in LSTM units is managed through the introduction of gates giving the
opportunity for the long-term memory to be regulated. The gates in an LSTM unit are
called the input gate, the output gate, and the forget gate. The recurrent operations in an
LSTM are calculated with the following 3 equations (Lim & Zohren, 2021)

it = σ(Wi,1ht−1 +Wi,2yt +Wi,3xt + bi)

ot = σ(Wo,1ht−1 +Wo,2yt +Wo,3xt + bo)

ft = σ(Wf ,1ht−1 +Wf ,2yt +Wf ,3xt + bf),

(13)

16 / 67

Part II – Technical Background / Neural sequence processing

where σ(·) is the sigmoid activation function mapping the output to the interval [0, 1].
A blocked gate will take the value 0, while a completely open gate takes the value 1. In
practice, the gates rarely take these extreme values but lie somewhere in between (Greff,
Srivastava, Koutńık, Steunebrink, & Schmidhuber, 2016).
Information is passed forward through the hidden state and the cell state:

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc,1ht−1 +Wc,2yt +Wc,3xt + bc)

ht = ot ⊙ tanh(ct)
(14)

where ⊙ is the element-wise product and tanh(·) is the tanh activation function.

Even though RNNs are improved by the inclusion of gated units, there still remain some
issues concerning the recurrent nature of the networks reported by (Bai, Kolter, & Koltun,
2018). (i) RNNs cannot compute in parallel due to having to wait for the preceding
units making them slower to train than, e.g., convolutional neural networks (CNNs) or
Transformer networks, (ii) LSTM or GRU units consume much of the computer’s memory
when processing long sequences and (iii) gated units still struggle with long term memory
and give sub-optimal results for sequence lengths longer than 50-200 for LSTM and GRU.
The reader is directed to (Bai et al., 2018) for further information.

7.1.3 Sequence to Sequence structure

An important application of RNNs is in sequence-to-sequence (seq2seq) models (Sutskever,
Vinyals, & Le, 2014), which originally were designed for machine translation. As the name
suggests, a seq2seq model maps a sequence to another sequence. The model consists of one
encoder and one decoder connected by a context vector. Although the encoder and decoder
can be any neural sequence model, they have historically been deep RNNs (Sutskever et
al., 2014; Cho et al., 2014; Kalchbrenner & Blunsom, 2013). The motivation behind using
encoders and decoders is to train them on different tasks. In the machine translation
problem, the encoder is trained on encoding a word or sentence in one language. The
encoded information is retained in the context vector of fixed size which is passed to the

Figure 4: Simple illustration of the encoder-decoder structure

17 / 67

Part II – Technical Background / Neural sequence processing

decoder who is trained on decoding the information in the vector (Cho et al., 2014). Fig. 4
shows a basic illustration of the structure of a seq2seq model.

For time series forecasting, the seq2seq structure can be utilized by having the encoder take
inputs from the look-back window, τ , and the decoder take the known future covariates
in addition to the hidden state and output from the previous layer. In (Salinas, Flunkert,
Gasthaus, & Januschowski, 2020) they make a point of using the same RNN in both the
encoder and decoder due to being trained on similar data as opposed to translating from
one type of data to another.

A disadvantage of the seq2seq model relates to the fixed size of the intermediate context
vector, which makes it act as a bottleneck. A too-small context vector will not be able
to retain the information in a long sequence (Goodfellow et al., 2016), and a too-large
context vector will have to pad the shorter sequences.

7.2 Transformer models & The Attention Mechanism

At the heart of Transformer models is the attention mechanism, and even though most of
the Transformers to date have dissimilar architecture, they are all in some way based on
attention. The attention mechanism is an order-agnostic way to learn temporal dependen-
cies (Tsai, Bai, Yamada, Morency, & Salakhutdinov, 2019), as opposed to the recurrent
operations of RNNs. The name Attention comes from the ability to focus (the attention)
on relevant parts of the input sequence (Vaswani et al., 2017).

7.2.1 Scaled dot product Attention

The most common approach to attention is ‘scaled dot product Attention’, its computa-
tional graph is depicted in Fig. 5a. Common to all Attention calculations is the mapping
of three vectors, Query, Key, and Value, to an output vector. One can think of the Query
vector as a question vector, answered by the Key vector. From this compatibility, a Soft-
max value is calculated and multiplied with the Value vector which is designed to carry
information forward. Scaled dot product Attention is calculated as follows:

Attention(xq,xk,xv) = Softmax

(
xq · xk

T

√
dk

)
xv, (15)

where xq ∈ Rdk , xk ∈ Rdk , xv ∈ Rdv , and dk, dv is the feature dimensions of xk,xv. In
practice, Attention is calculated simultaneously where the query,key and value vectors are
features in matrices, Xq,Xk,Xv.

18 / 67

Part II – Technical Background / Neural sequence processing

7.2.2 The Queries, Keys, and Values

The Queries, Keys, and Values matrices are created by first stacking the input features
to one input matrix, X ∈ X , where X denotes the feature space. The input matrix is
linearly transformed using weight matrices, W

(0)
Q , W

(0)
K , W

(0)
V to create the query, key

and value vectors

Xq = XW
(0)
Q , Xk = XW

(0)
k , Xv = XW(0)

v , (16)

as illustrated in step 1 in Fig. 5b. The Query Xq, Key Xk, and Value Xv matrices are
created such that the first row of the matrices corresponds to the first item in the input
sequence and so on. By taking the matrix multiplication of the Queries and Keys, each
query vector will be checked against all the key vectors such that one row in the inter-
mediate output matrix, XqXk

T , correspond to the same row in the input matrix. This
means that all the elements in the input are checked against every position. Intuitively,
the product is then a measure of how compatible each element is with each position.
Taking the Softmax gives a score of which elements are most related to the position.

The final output of the Scaled dot product Attention is then a matrix with as many rows
as the input matrix. The first row corresponds to the first item of the input sequence,
and the second row to the second item, etc. Each row is a product of the value vectors
multiplied by the Softmax values.

(a) Computational graph of scaled dot product
attention

(b) Illustration of query, key and value matrices
and the scaled dot product attention

Figure 5: Calculations behind the Attention mechanism

19 / 67

Part II – Technical Background / Neural sequence processing

7.2.3 Multi-Head Attention

Attention is typically implemented within an operation called Multi-head attention. This
gives the opportunity to apply several Attention mechanisms at once, which improves
the performance similarly as ensemble methods improve the performance by collecting
several point forecasts. Additionally, applying several attention mechanisms increases the
representation subspaces, giving the possibility to focus on different parts of the input
sequence (Vaswani et al., 2017).

The Queries, Keys, and Values are calculated as discussed previously, however, they are
subsequently linearly transformed into h different parallel layers or ‘heads’. This results in
h different Query-, Key- and Value-matrices which gives h Scaled dot product Attention
calculations. The formula is

Multihead(Xq,Xk,Xv) = Concat(H1,H2, . . . ,Hh)W0

Hi = Attention(XqW
(i)
Q ,XkW

(i)
K ,XvW

(i)
V),

(17)

where W
(i)
Q ∈ Rdmodel×dk , W

(i)
K ∈ Rdmodel×dk , W

(i)
V ∈ Rdmodel×dv , W0 ∈ Rhdv×dmodel .

The output vectors from each Attention calculation are concatenated to the model di-
mension, dmodel, which in the original transformer was 512. Due to the concatenation and
the requirement that each layer has the same output dimension, each Attention head will
have reduced dimensions compared to having one single Scaled dot product Attention.
Therefore the dimensions are as follows:

dmodel = dv × h =⇒ dv = dmodel/h.

20 / 67

Part II – Technical Background / Neural sequence processing

Figure 6: Positional encoding matrix with n=10000 and dmodel = 512 as in the original Trans-
former by (Vaswani et al., 2017)

7.2.4 Positional encoding

The attention mechanism is an order-agnostic operation, meaning that the sequence is
treated as a set and the order of the input does not change the output. It is therefore
necessary to provide additional positional encoding to the input. The most common way
to represent position is as a combination of sine and cosine functions

PEpos,2i = sin
(pos

n2i/dmodel

)
PEpos,2i+1 = cos

(pos

n2i/dmodel

)
,

(18)

where pos denotes the position of the element in the input sequence, i denotes the position
along the model dimension dmodel, and n is a user-defined scalar. The positional encoding
matrix is described in eq. 18 and visualized in Fig. 6. There are some benefits of using the
positional encoding of sine and cosine as opposed to e.g. integer positional value. With
input sequences of varying lengths, an integer value would give different normalization
while the sine/cosine functions are bounded by [−1, 1].

21 / 67

Part II – Technical Background / Wind Power Forecasting for the Electricity Market

8 Wind Power Forecasting for the Electricity Market

It is necessary to know some basic background on wind power and the electricity market to
both make the best possible wind power forecasts and to get the most out of the forecasts.
Investigating wind power in general gives insight into which parameters are important for
the power output, and having knowledge of the electricity market makes the operational
framework clearer.

8.1 Wind Energy Production

The kinetic power [W] that the wind carries is

Pk =
1

2
ṁv2 =

1

2
ρAv3, (19)

where ṁ is the mass flow rate of air, which can be derived by the density of the air, ρ,
the swept area of the turbine blades, A, and the velocity of the wind hitting the turbine,
v. Further, air density is defined by the ideal gas law and is dependent on air pressure,
temperature, and the ideal gas constant of the air. Therefore, meteorological variables
relevant to wind power production are wind velocity, air pressure, and temperature. Most
dominating is the wind velocity due to the cubic relationship.

Wind can be decomposed into three velocity components: zonal, meridional, and vertical.
The positive and negative zonal direction respectively corresponds to westerly and east-
erly winds and the positive and negative meridional direction respectively corresponds to
southerly and northerly winds (Wallace & Hobbs, 2006). It is important to differentiate
between the zonal and meridional wind compositions when considering wind power, seeing
as the direction of the wind is essential for how much wind actually hits the turbines.

Physical limitations to wind energy production are turbine-specific variables such as tur-
bine sweep area, A, and the capacity coefficient of the turbine. Therefore the power
extracted by a wind turbine can be expressed as

Pt = CpPk, (20)

where Cp represents the power coefficient of the turbine. The power coefficient is up-
per bounded by the theoretical Betz limit of 16/27 or approximately 0.59% (Manwell,
McGowan, & Rogers, 2010).

22 / 67

Part II – Technical Background / Wind Power Forecasting for the Electricity Market

Figure 7: In-situ power curve from a wind turbine in Fakken wind farm with cut-in, rated, and
cut-out wind speed specified (Eikeland et al., 2022).

8.1.1 Power Curve

The power curve is a description of how much power a specific wind turbine produces given
different wind speeds. Important aspects of the power curve are the cut-in, rated and cut-
out wind speeds which respectively are the wind speeds where the turbine starts producing
power, reaches maximum rated power, and stops producing power. The manufacturer
delivers a power curve for each wind turbine type, with values derived from stable and
ideal conditions which most likely do not reflect the conditions on site. Fig. 7 shows the
actual measured power curve from a wind turbine in the Fakken wind farm giving a more
nuanced view of the conditions. The figure depicts the cut-in wind speed of around 4 m/s,
followed by the non-linear relation before hitting the rated wind speed of around 12-13
m/s and thereafter the cut-off interval of around 25 m/s. Also visible are points where
the turbine has been out of production due to turbine failure or maintenance.

8.2 The Nordic energy Market

Electricity is a special commodity compared with other commodities. (Wangensteen,
2012) lists the following features of electricity: (i) continuously flowing, i.e. continuously
consumed and produced, (ii) instantly generated and consumed, (iii) limited storage op-
tions, (iv) consumption variability, the consumption pattern varies with time of day, day
of week and week of the year, (v) non-traceability, meaning there is no physical way to
distinguish which energy unit came from which generator, (vi) community essential and
(vii) breakdown possibility, meaning that if not handled correctly, the grid can break down.

Due to the above-mentioned features of electricity, a common ground is needed for efficient
and safe trading. Today most of the electricity exchange of Europe runs through Nord
Pool spot, which originated as a Norwegian electricity exchange before being the first

23 / 67

Part II – Technical Background / Wind Power Forecasting for the Electricity Market

multinational electricity exchange when Sweden joined in January 1996 (Wangensteen,
2012). Nord Pool acts as the Market Operator (MO) and is a completely open and
deregulated market for selling and buying electricity. A deregulated market means that
the market participants compete freely without involvement from the state, and hence
the prices are determined by supply and demand.

The MO is responsible for matching bids and sales. The process of clearing prices depends
on the length of the trading time frames. The different time frames are depicted in Fig. 8.
Physical electricity trading takes place in the ahead markets, Elspot and Elbas, and the
balancing market is managed by the Transmission System Operator (TSO). Financial
trading is handled by Nasdaq and involves contracts named futures and forwards which
generally have a longer trading frame than Elspot and Elbas. Although the prices are
settled earlier, the actual physical trading still takes place in the day-ahead market and
the customer pays the settled price instead of the spot price.

Figure 8: Trading time frames in the Norwegian electricity market (NVE, 2021)

8.2.1 Elspot: day-ahead trading

Day-ahead physical trading is managed through the Elspot market, which uses periodic
clearing to clear prices. Periodic clearing involves settling the prices in one process instead
of continuously. Implying that, in the day-ahead framework, prices are settled for all hours
on the following day.

At 10:00 CET, Nord Pool announces the available capacities in the grid, and by 12:00
CET sellers and buyers must have submitted their hourly bids (NordPool, n.d.). Bids
for purchasing electricity must specify the maximum price the customer is willing to pay
given the hour and area, while bids for selling electricity must specify the minimum price
the producer is willing to sell for given the hour and the area. Nord Pool clears bids by
finding the intersecting point between aggregated sale and purchase curves for one hour
at a time. In an optimal market, all areas would pay the market clearing price which is
the price found in an unconstrained system. However, transmission limitations resulting
in congestion between areas results in different clearing prices called area prices.

24 / 67

Part II – Technical Background / Wind Power Forecasting for the Electricity Market

8.2.2 Elbas: intra-day trading

Intra-day trading is managed through the Elbas market, which operates as the aftermath
of day-ahead trading (Wangensteen, 2012). The Elbas market enables trading up to one
hour before delivery giving the opportunity to adjust for inaccurate bids given during
the day-ahead trading. While sometimes referred to as a balancing market, the Elbas
market must not be confused with the balancing markets operated by TSOs. Elbas is an
intra-day market for market participants like consumers and producers, while the TSO
balancing market deals with imbalances in the grid.

8.2.3 The Market for Reserves Acquisition

As already mentioned, the balancing market is operated by the TSO of each country.
The purpose of the balancing market is to have reserves ready for events resulting in
frequency and voltage imbalances. Such events can be an imbalance between supply and
demand, outages of transmission lines or system faults. To acquire reserves, the TSO
purchases generation from producers prior to the day-ahead market clearing. In Norway,
Statnett is the TSO and they secure the available capacities a week ahead of the operation.
The Norwegian reserves are divided into primary, secondary and tertiary reserves. The
primary reserves are automatic and respond during a couple of seconds of a frequency or
voltage imbalance, while the secondary and tertiary reserves are manual. They have a
respective response time of a couple of minutes and 10-30 minutes and are set in place
to take over the load of the primary reserves so they are available to respond to new
imbalances (Wangensteen, 2012).

8.3 Introduction to Wind Power Forecasting

Wind power forecasting (WPF) models can be classified either by their forecasting horizon,
i.e. short-term, medium-term, or long-term, or by their applied methodology. Classifying
WPF models by forecasting horizon essentially classifies them by application purposes.
(Hanifi, Liu, Lin, & Lotfian, 2020) lists the following time horizons and corresponding
applications: (i) very short-term, ∼ 30 min, applies to the real-time grid and regulatory
operations, (ii) short-term, 30 min - 6 h, applies to load dispatch planning and load intel-
ligent decisions, (iii) medium-term, 6 h - 24 h, applies to energy trading and operational
security, and lastly (iv) long term, 1 day to a month, applies to maintenance schedules,
optimum operating cost and operational management.

Forecasting wind power for the day-ahead market will involve a forecasting horizon of 12-
36 h and is therefore classified as either medium or long-term forecasting. Forecasting for
the intraday market will be classified as either short-term or medium-term as forecasting
horizons can range from 1-24 h. However a smaller horizon from 1-12 h is often most
advantageous as the intraday market acts as a “correcting” market for the producers and
consumers and smaller horizons generally lead to higher quality forecasts.

25 / 67

Part II – Technical Background / Wind Power Forecasting for the Electricity Market

Classifying WPF models by methodology leads to distinguishing models either as physical
or statistical methods (Hanifi et al., 2020). Physical methods involve calculating wind
power using the turbines’ power curve and wind speed derived from complex mathematical
models created using surrounding topography. Statistical methods can be further divided
into classical time series models and artificial neural networks (ANNs), which are the kind
of models this study will focus on.

26 / 67

Part III / Proposed Method

The aim of this thesis is to answer the research questions formulated in Section 2:

• Is it possible to provide accurate wind power forecasts that reflects the uncertainty
of the predictions at Fakken wind park using two wind power forecasting models
trained to forecast respectively to the day-ahead and intraday market?

• Is the forecasting library Pytorch-Forecasting (Beitner, 2020) ready for commercial
use by users that are not experts in machine learning?

A case study based on real data is investigated using wind power forecasting (WPF)
models with a focus on deep learning. The output of the models will be used as input to
help guide the wind power producer to reduce uncertainty and maximize their potential
bidding to the energy market. Sec. 9 will present the operational framework of the WPF
models, while the models themselves will be presented in sec. 11.

9 The Operational Framework

9.1 The day-ahead market framework

Sec. 8.2.1 introduced the day-ahead market and its bidding deadline is specified to be
at 12:00 CET which will also be used in the day-ahead market framework of this thesis.
This entails that the physical time of forecasting, hereby called prediction time, for the
day-ahead market happens 12-36 hours before production time. The consequences of this
are twofold:

1. The forecasting problem becomes a cold start forecasting problem, meaning that
forecasts are made solely from known covariates as historical production from 12:00-
24:00 the day before has not happened yet at prediction time. Forecasting with a
longer forecasting horizon, i.e. from 12:00 at prediction time to 24:00 the day after
would not have made use of the ‘available’ historical production data from before
prediction time due to the low memory seen in wind power data.

2. The available numerical weather predictions are made at an early stage resulting in
increased uncertainty in the input to the forecasting model.

Due to the limitations associated with day-ahead forecasting, a high uncertainty forecast
is expected. To accommodate for the high uncertainty, the wind power producer is advised
to bid from a low quantile of the probabilistic forecast to minimize the risk of overbidding.
The intraday market will be used to ‘correct’ the bids made during the day-ahead trading.

27 / 67

Part III – Proposed Method / The Operational Framework

9.2 The intraday market framework

Sec. 8.2.2 introduced the intraday market where bidding is possible up to one hour before
production time. Forecasting for the intraday market will therefore have the possibility to
use the look-back window with historical power production. Since predictions can be made
at any time, this opens up the possibility of a smaller forecasting horizon which generally
is associated with lower uncertainty. This study will test forecasting for the intraday
market with 6-hour forecast horizon, meaning that four forecasts are made during one
day.

9.3 Data

This thesis examines historical wind power data and numerical weather prediction (NWP)
data as the input variables to deep learning models predicting future wind power produc-
tion. The available data is presented in the next sections.

9.3.1 Wind power data

The wind power data comes from Fakken wind park which is located on the island Vannøya
in Troms, Norway. Its total capacity is 54 MW, distributed on 18 wind turbines each
with a maximum capacity of 3 MW and 80 m hub height (TromsKraft, n.d.). The park
is located in complex terrain, and the owner of the wind power plant reported that there
was a 25% difference in production from two different turbines due to the topology at the
farm (Eikeland et al., 2022). Additionally, the surrounding islands are also characterized
by mountainous terrain having an impact on the wind resources at Fakken.

Historical power output data consist of the total power output for the whole park for
the years 2017-2020. The power data is the same used in (Svane, 2022), and is publicly
available data retrieved from NVEs websites.

9.3.2 Meteorological weather data

An additional dataset of numerical weather prediction (NWP) is constructed using data
provided by the Meteorological Institute of Norway (MET Norway) using the MetCoOp
Ensemble Prediction System (MEPS). MetCoOp stands for Meterological Cooperation on
Operational Numeric Weather Prediction (NWP) and is a cooperation between the Nordic
countries Norway, Sweden, and Finland. MET Norway produces weather forecasts from
the MEPS system four times a day, respectively using data collected up to 00:00, 06:00,
12:00, and 18:00. The forecasts have a horizon of 67 hours and a horizontal resolution
of 2.5 km and 65 vertical levels. The model runs on a Nordic domain consisting of
900 points in the zonal direction and 960 points in the meridional direction (Frogner,
Singleton, Kø ltzow, & Andrae, 2019).

28 / 67

Part III – Proposed Method / The Operational Framework

The MEPS data for this study are taken at 80 agl., i.e. hub height, and were collected
and organized by Yngve Birkelund, professor at UiT The Arctic University of Tromsø.
The weather variables of interest are zonal and meridional wind components (U, V), air
temperature two meters above surface level T , and air pressure at surface level P . Two
additional features are constructed from the wind components, namely wind speed ws
and meteorological wind direction wd. For this analysis, meteorological direction is the
most advantageous as it gives the direction the wind is blowing from which is essential
when analyzing wind resources for wind power production. The reason for adding wind
speed and direction is due to their easy interpretation during data analysis. Whether
to use wind components or wind speed and direction during training and testing of the
models will be clearer after data analysis. Wind speed and meteorological wind direction
are calculated as follows

ws =
√
U2 + V 2

wd =
180

π
arctan 2(−U,−V).

(21)

Forecasting wind power for the day-ahead market leaves the 06:00 weather forecast as the
last available before the bidding deadline. Therefore, the day-ahead dataset is constructed
using NWP data from the 06:00 forecast of the previous day. In contrast, for intraday
bidding, the latest possible submission is one hour before the production hour. Although
any of the four available forecasts can theoretically be used, the intraday dataset only
incorporates NWP data from the 00:00 forecast of the current day.

9.3.3 On-site weather measurements

On-site weather measurements were considered to compare and analyze the accuracy of
the MEPS weather forecasts. The data was collected from Met Norways Frost API where
historical weather measurements are freely available. The measurement station lies on
the shore at Vannøya, about 500 meters from Fakken wind park. Among the relevant
features in this study, the station measures wind speed, meteorological wind direction,
and air temperature.

In addition to being used for comparison reasons, the measured wind speed will also be
tested as an exogenous variable in the form of a time-varying unknown real value. The
reasoning behind this is to see if the models learn to map the difference in modeled and
measured wind speed. During prediction, the model will only have access to the measured
wind speed, and it is, therefore, relevant for the model to know this mapping.

29 / 67

Part III – Proposed Method / Data Preprocessing

10 Data Preprocessing

Raw data is data extracted from real-world processes without being changed in any way.
Such data can contain inconsistencies from the real case due to faulty measuring equip-
ment, wrong handling or human errors. Inconsistencies often come in the form of missing,
duplicate, or simply just incorrect entries and are commonly termed dirty data. Using
dirty data as input to a forecasting model can greatly diminish performance and it is there-
fore an important step to preprocess data before starting the data mining process. The
following sections will go through data preprocessing steps to be performed on the day-
ahead and intraday datasets. The steps are common to data preprocessing and thoroughly
discussed in (Garćıa, Luengo, & Herrera, 2015), from which most of the information in
this section is drawn.

10.1 Data exploration

Data exploration is the act of analyzing the raw data to gain insight into the data-
generating processes. Such insight can make training the models and interpreting their
results easier, reducing the training effort.

Sec. 12 presents the data exploration process done in this study and includes visual
inspection, time series analysis, and exploration of the wind resources at Fakken wind
park. The data exploration section will make the extent of preprocessing clearer.

10.2 Data cleaning

It is commonly said that the forecasting model is no better than the data it is given and
the consensus is that the quality of the results is highly dependent on the quality of the
input (Gudivada, Apon, & Ding, 2017). Data cleaning is the process of removing and
treating dirty data for possible anomalies from the underlying distribution.

Finding such anomalies is therefore essential when cleaning data. Here it is beneficial to
have a good understanding of the data that is being cleaned. A simple starting point is to
detect outliers visually by looking at plots of the data, which in this study is a part of the
exploratory analysis. Statistical tests are a more complicated option and can be used to
detect outliers in the data that are unlikely to have been generated by the data-generating
process. Whether to use statistical tests is generally clear after visual inspections of the
data.

Scatter plots were used in this study to inspect possible anomalies. Two scatter plots were
made and are illustrated in Fig. 16. The intentions with the plots are to both investigate
outliers and to get insight into the wind resources at Fakken wind park. Outlier detection
will be discussed here, while the wind resource analysis will be discussed in sec. 12.3.

Obvious anomalies in wind power production are when the park has downtime due to
maintenance or other events. Downtime can be seen in scatter plots of power production

30 / 67

Part III – Proposed Method / Data Preprocessing

vs. wind speed as points with low to zero production while wind speeds lie between rated
and cut-off wind speed. Even though such values could be removed, it is important to
be aware of other reasons for low production, e.g. the wind direction. The plot (b) in
Fig. 16 takes into account both wind speed and direction. When analyzing the two figures
together, no clear anomalies are detected. For more accurate results, on-site measured
weather parameters should be used in anomaly detection.

10.3 Missing values imputation

While some models for time-series data can naturally handle missing values (Mikalsen,
Bianchi, Soguero-Ruiz, & Jenssen, 2018; Bianchi, Livi, Mikalsen, Kampffmeyer, & Jenssen,
2019), most forecasting models assume that the data is complete and it is, therefore, nec-
essary to fill in missing values using imputation techniques. The question is what is the
best method to avoid bias and to avoid missing important information? In some data-
generating processes the missing values can have been introduced by specific sub-processes
and wrong handling of missing values can therefore introduce strong biases.

Usually, there are two options: fill in missing values by a filling rule or discard them alto-
gether. Filling in missing values can use other information or statistical tests to calculate
the most likely value, or use padding or interpolation between the surrounding values.
However, one must be careful when filling in values to not introduce information leakage
from using future values in the imputation techniques. Removing missing values is another
popular choice, but can be problematic if it means consistently removing data generated
by a specific sub-process. Therefore, the data-generating process is an important factor
to consider when dealing with missing values.

In this study, missing values can be found in the MEPS weather forecasts where a whole
‘run’, i.e. the 06:00 forecast on a specific day, is missing. This means that where there are
missing values, a whole day of data is missing. Filling the values by padding or interpo-
lating is then unfortunate since weather features are generally very volatile and filling a
whole day with one value is not a good choice when taking the data-generating process
into account. However, simply removing the values can result in breaking some temporal
dependencies in the data. Deciding between these two rather undesirable options, padding
the missing values with the last available value seems to be the most favorable option.
This is due to removing the values that will introduce noise in the training process as
wrong values will be used as a look-back window and forecast horizon.

31 / 67

Part III – Proposed Method / Wind power forecasting models

10.4 Data splitting

The purpose of forecasting models is to predict well on unseen data, which was discussed
in sec. 6.2. An important step to achieve this is to hold off a certain amount of data for
validating and testing the model, while the largest part is used to fit the model to the
data. For this study, the data is split into training, validation, and testing datasets. When
determining the splitting ratio there is a trade-off taking place between the performance
of training and evaluation. Deep learning models, compared to statistical models, usually
require a lot of training data to perform well. Furthermore, it is important that the data in
the training set is representative of the overall data for the model to be able to generalize
well as discussed in sec. 6.2. This can be analyzed by inspecting the data distributions and
variability of the proposed data splits. If there are large variations between the training,
validation, and testing datasets, a different dataset split should be considered.

10.5 Feature scaling

Raw data usually contains large differences between the maximum and minimum values.
In deep learning cases using stochastic gradient descent, this can result in unstable up-
dating of the gradient and slow convergence. Additionally, it is also beneficial for the
different features to be in the same range such that e.g. features with large values are not
prioritized over features with small values.

This study uses Min-Max standardization to individually normalize each variable in the
range [0, 1] using the formula

x′ =
x−min(x)

max(x)−min(x)
. (22)

The scaler is fitted on the training data and used to normalize both the validation and
testing data. This is done to avoid information leakage during training since it is important
that the data used during testing remains unseen for the model.

11 Wind power forecasting models

For this thesis four models are tested, one main model and three baseline models. Out
of the four models, three are deep learning models which come ‘out of the box’ from the
forecasting library Pytorch Forecasting (Beitner, 2020) and one statistical model.

The main model called the Temporal Fusion Transformer, is based on the Transformer
architecture and has achieved state-of-the-art results on the time series forecasting. This
model was chosen for its reported ability to handle both short-term and long-term de-
pendencies, as well as its ability to provide interpretable results through the use of an
attention matrix. For baselines, previously popular models such as DeepAR, and ARIMA
are chosen to investigate the results of different architectures for time series forecasting.

The next subsections will present each of these models, with a special focus on the Tem-
poral Fusion Transformer.

32 / 67

Part III – Proposed Method / Wind power forecasting models

Figure 9: Architectural overview of the Temporal Fusion Transformer

11.1 Temporal Fusion Transformers for Interpretable
Multi-Horizon Time Series Forecasting

The Temporal Fusion Transformer (Lim, Arik, Loeff, & Pfister, 2020), TFT, is an adap-
tation of the original Transformer model to accommodate multi-horizon time series fore-
casting. TFT combines both sequence-to-sequence modeling and the Transformer into
one, hence the name Temporal Fusion Transformer.

The TFT has the option to include known future inputs, exogenous time series and static
metadata as covariates. The inclusion of static data means you could use the same model
on different time series with similar characteristics. A chain of stores could collect data
from all its stores and apply the same model to all.

The TFT creates multi-horizon forecasts using the MIMO method, meaning that it takes
the whole lookback window as input and outputs predictions for the whole forecasting
horizon T .

11.1.1 Model design

The model is an encoder-decoder structure as is typical for sequence models. This is
where the TFT mixes Transformers and seq2seq models with an LSTM-based encoder
and Attention-based decoder. The reasoning is to leverage the LSTM’s ability to map
local dependencies with the Attention mechanism’s ability to map long-distance depen-
dencies. In addition, the seq2seq layer will substitute the positional encoding in the
original Transformer. Some building blocks are used throughout the whole model and it
is beneficial to introduce these before going into the encoder-decoder structure.

33 / 67

Part III – Proposed Method / Wind power forecasting models

(a) Gated Residual Network (GRN) (b) Variable Selection Network

Figure 10: Building blocks in the Temporal Fusion Transformer network

Gated Residual Network - GRN
The Gated Residual Network, GRN, gives the model the opportunity to apply non-linear
processing. At its core, it is a two-layer fully connected (FC) network, however, the GRN
contains an additional layer which gives the possibility to skip the non-linear processing
altogether. This is done by a Gated Linear Unit, GLU, which employs the sigmoid
activation function to suppress unnecessary parts of the network.
The GRN takes in two inputs, one primary input a and one optional external context c,
and is summarized by the following equations:

GRNω(a, c) = LayerNorm(a+GLUω(η1))

η1 = W1,ωη2 + b1,ω

η2 = ELU(W2,ωa+W3,ωc+ bd,ω)

GLUω(γ) = σ(W4,ωγ + b4,ω)⊙ (W5,ωγ + b5,ω)

(23)

Where η1, η2 represents the FC network and ELU is the Exponential Linear Unit. The
learnable parameters have the subscript (·)ω which denotes weight sharing. The gated
residual connection is represented by eq. 3.12 and 3.15. In 3.12, the inclusion of GLU
gives the possibility to control how much the non-linear processing should affect the
output. Potentially, the outputs of the GLU can all be close to 0 which will skip the layer
altogether.

Variable Selection Network
The prediction problem contains multiple inputs, but not all are relevant at every point.
The TFT, therefore, has taken use of Variable Selection Networks to provide instance-
wise variable selection on both the static and time-dependent covariates. This part of the
architecture has a dual purpose, it gives insight into significant variables for the prediction,
while also removing noisy inputs that have poor impact on prediction performance. It
is common for time-series datasets to contain both noise and varying degrees of salient
features. By letting the model learn which variables are most salient, the model both
increases accuracy by pruning unnecessary input and learns valuable insight into trends
and other significant events.

At a basic level, the Variable Selection Networks assign Softmax-weights, termed variable

34 / 67

Part III – Proposed Method / Wind power forecasting models

selection weights, to the input sequences to suppress unimportant input. Each input type
is assigned its own Variable Selection Network, with its own learnable parameters.

The input is first embedded. Categorical variables use entity embeddings, while continu-
ous variables are linearly transformed. Similarly as in ’Attention is All you need’ (Vaswani
et al., 2017) it is important that all variables have the same dimension due to the resid-
ual connections. All variables are therefore transformed to a dmodel dimensional vector
denoted ξ

(j)
t ∈ Rdmodel , where j represents the jth variable at time t. These vectors are

processed in two separate parts of the Variable Selection Network. One part calculates
feature vectors, while the other part calculates the variable selection weights. To calculate
feature vectors, the transformed input is further non-linear and processed by their own
GRN, meaning each variable has a GRN with weights shared across all time steps t.

ξ̃
(j)
t = GRNξ̃(j)(ξ

(j)
t) (24)

Where ξ̃
(j)
t is the processed feature vector for variable j. To calculate variable selection

weights, each of the transformed inputs for time step t is flattened and collected.

Ξt =
[
ξ
(1)T

t , . . . , ξ
(mχ)T

t

]T
(25)

This flattened vector is also non-linearly processed by a GRN, together with the optional
context vector, and the output is brought through a Softmax layer to produce the variable
selection weights.

νχt = Softmax(GRNνχ(Ξt, cs)) (26)

The feature vectors and the weights are combined:

ξ̃t =

mχ∑
j=1

ν(j)χt
ξ̃
(j)
t (27)

Interpretable Multi-Head Attention
The underlying Attention mechanism is the same, a scaling of Values given the relationship
between Queries and Keys. The authors have, however, modified the original Multi-head
Attention in two ways.

1. Instead of one Value matrix for each Attention head, they use one Value matrix for
all Attention heads

2. Instead of concatenating the output matrices, they sum them.

They call the modified Multi-head Attention for Interpretable Multi-head Attention, and
the changes are expressed as follows:

InterpretableMultiHead(Q,K,V) = H̃Wh

where H̃ = 1/H

mH∑
h=1

Attention(QW
(h)
Q ,KW

(h)
K ,VWV)

(28)

35 / 67

Part III – Proposed Method / Wind power forecasting models

Where:

Q ∈ RN×dattn , K ∈ RN×dattn , V ∈ RN×dV ,

and

W
(h)
Q ∈ Rdmodel×dattn , W

(h)
K ∈ Rdmodel×dattn , WV ∈ Rdmodel×dV ,

WH ∈ Rdattn×dmodel

The dimensions of the matrices, dV = dattn = dmodel/mH , are chosen by the number of
Attention heads, mH .
The final weight matrix, Wh, is used as a linear mapping.

11.1.2 Encoder

The encoder consists of two parts, a Static Covariate Encoder to process the static vari-
ables and a seq2seq layer to process the continuous variables.

11.1.2.1 Static Covariate Encoder

First, static metadata is sent through its own variable selection network to produce static
features which are then passed on. The static covariate encoder contains four different
GRNs which produce four different context vectors, cs, ce, cc, ch. The context vectors are
sent to different parts of the model and give information about the static metadata at
multiple points in the network. As to where the context vectors are sent:

cs −→ Past and future input Variable Selection Network

ce −→ Static Enrichment layer (TFT Decoder)

cc −→ Initiate cell state in seq2seq layer

ch −→ Initiate hidden state in seq2seq layer

11.1.2.2 Sequence-to-Sequence Layer

The authors propose to leverage both seq2seq layers and an Attention layer to improve the
performance of the Transformer, while simultaneously replacing the positional encoding
used in the original Transformer. When arriving at the Attention layer, the sequence is
already encoded with pattern information beyond that of the positional encoding alone.

Before being sent to the seq2seq layer, the past and future input are passed through
variable selection networks yielding ξ̃t−τ :t for past values and ξ̃t+1:t+T for future values.
The seq2seq layer consists of LSTM encoder and decoder blocks, where the observed (past)
values is input to the encoder blocks and the known future values are input to the decoder
block. This means that there are τ (length of look-back window) LSTM encoder blocks,
and T (length of forecast window) decoder blocks. In addition, context vectors are passed
to initiate both the cell state and the hidden state in the first LSTM encoder block. The
seq2seq layer generates a set of uniform temporal features ϕ(t, n) = {ϕ(t,−τ), . . . , ϕ(t, T)}
that is sent as input to the Temporal fusion decoder after a gated residual connection
yielding ϕ̃(t, n) = LayerNorm(ξ̃t+n + GLUϕ(ϕ(t, n))). Where n ∈ [−τ, T] is a position
index.

36 / 67

Part III – Proposed Method / Wind power forecasting models

11.1.3 Decoder

The Temporal Fusion Decoder consists of three layers. A static Enrichment Layer encodes
extra static information, and a self-Attention layer is succeeded by an FC layer. In
addition, the whole decoder is succeeded by a gated residual connection meaning the
decoder can be skipped entirely if the additional complexity is not necessary.

Static Enrichment
Before arriving at the Attention layer, the uniform sequence ϕ̃(t, n) from the seq2seq layer
is encoded with additional static information. This is done by sending the sequence and
context vector ce to GRN blocks which share weights across the whole layer:

θ(t, n) = GRNθ(ϕ̃(t, n), ce) (29)

Temporal Self-Attention
The static enriched features are stacked into one self-Attention input matrix, Θ(t) =[
θ(t,−τ), . . . θ(t, T)

]T
before entering the Temporal Self-Attention layer. Interpretable

Multi-Head Attention is applied as follows:

B(t) = InterpretableMultiHead(Θ(t),Θ(t),Θ(t)) (30)

Which results in a new vector:

B(t) = [β(t,−τ), . . . , β(t, T)] (31)

Succeeding points are masked, such that the prediction only build on preceding features.
The Self-Attention layer is followed by a gated residual connection which yields:

δ(t, n) = LayerNorm(θ(t, n) +GLUδ(β(t, n))) (32)

Position-wise Feed-forward
The final layer of the decoder is a Feed-forward network executed by GRNs and gives:

ψ(t, n) = GRNψ(δ(t, n)) (33)

The whole decoder is succeeded by a gated residual connection to the seq2seq layer:

ψ̃(t, n) = LayerNorm(ϕ̃(t, n) +GLUψ̃(ψ(t, n))) (34)

Quantile outputs
On top of point forecasts, the authors also generate quantile forecasts to give additional
information of the uncertainty of the forecast. This is done by a final linear transformation
of the decoder output in a FC layer.

ŷ(q, t, T) = Wqψ̃(t, T) + bq (35)

Where Wq ∈ R1×dmodel and bq ∈ R are weight and bias connected to the quantile q.

37 / 67

Part III – Proposed Method / Wind power forecasting models

Training
TFT produces probabilistic output by QR as described above. The model is therefore
trained using quantile loss summed across all quantile outputs and the whole forecast
horizon as described in (Lim et al., 2020) with the following function.

L(Ω,W) =
∑
yt∈Ω

∑
q∈Q

Tmax∑
T=1

QL(yt, ŷ(q, t− T, T), q)

NTmax
(36)

Where QL stands for the quantile loss function and is defined as in sec. 4.4 in the theory.
The loss for each training sample yt ∈ Ω is summed and averaged to get the loss for the
whole epoch.

Regularization
Several regularization techniques are used, therein early stopping, dropout, gradient clip-
ping, and weight decay. Early stopping is implemented similarly for all models and stops
the training if the validation loss has not improved within a small threshold in the last
50 epochs. Dropout in TFT is implemented in various parts of its architecture, therein
at each fully connected layer present in the GRN’s, GLU’s and the Add&Norm gates.
Furthermore, if the model uses multiple LSTM layers there is also a dropout between
these.

38 / 67

Part III – Proposed Method / Wind power forecasting models

(a) DeepAR training procedure (b) DeepAR testing procedure

Figure 11: DeepAR model illustration

11.2 Baselines

11.2.1 DeepAR

DeepAR by (Salinas et al., 2020) is an LSTM-based neural network producing proba-
bilistic forecasts using Bayesian inference. Amazon developed the model to forecast retail
demand and their intention was to build one model that can generalize to different prod-
uct demands since most demand time series have common characteristics. The network
then originally have a learned scaling layer which will not be used in this study. In theory,
one could use this network to forecast production for different wind parks or electrical
demand for different households or cities.

Model design
DeepAR aims to model the conditional distribution of the future of time series y given
the past values and covariates x

P (yt0:T |y1:t0−1,x1:T) (37)

Here it is important to note that the covariates are of a known nature, e.g. DateTime
covariates or in the case of this study: NWP data. As described in sec. 4.4.2, it is assumed
that the model distribution is a product of, in this case, Gaussian likelihood factors.

P (yt0:T |y1:t0−1,x1:T) =
T∏
t=t0

lG(yt|µ, σ) (38)

The likelihood function is parameterized by the output of the network at each time point:

µ(ht) = wT
µht + bµ

σ(ht) = log(1 + exp(wT
σht + bσ))

ht = h(ht−1, yt−1,xt,Θ)

(39)

Where ht is the output of the LSTM network with network parameters Θ and µ, σ is
the output of two parallel fully connected networks. The transformation log(1 + exp(·))
corresponds to a Softplus activation and is done to avoid a negative standard deviation.
During training, the previous target time step is fed as input to the model, while during

39 / 67

Part III – Proposed Method / Wind power forecasting models

testing a sample from the predicted likelihood function of the previous time step is used
as input. Both processes are depicted in Fig. 11.

Information is passed from the look-back window to the prediction horizon using a seq2seq
setup as described in sec. 7.1.3. The difference from an ordinary seq2seq network is that
the encoder and decoder in this case use the same architecture and share weight. The
authors report that this resulted in the best results and justifies it by encoding and
decoding on the same type of data.

Training
DeepAR uses Bayesian inference, and the loss function is, therefore, the negative log-
likelihood of the distribution it is modeling. For DeepAR that distribution is the Gaussian
distribution parameterized by θ(ht):

L =
T∑
t=t0

log lG(yt|θ(ht))

lG(yt|θ(ht)) = (2πσ(ht)
2)−

1
2 exp(−(z − µ(ht))

2/(2σ(ht)
2))

(40)

Where ht is the output of the LSTM network and the parameters σ and µ are the linear
transformations computed in eqs. 39.

Regularization
Similarly, as with TFT, DeepAR uses early stopping, dropout, gradient clipping, and
weight decay as regularization techniques. Dropout is only implemented in the LSTM
layer(s), and is only used if there is more than one LSTM layer. Early stopping, gradient
clipping and weight decay is implemented in the same manner as TFT.

11.2.2 ARIMA

Autoregressive (AR) Model
An autoregressive model, AR(p), is based on the assumption that current and future
values of a time series are dependent on past values up to a specified number, p. This
number can be determined by inspecting the partial autocorrelation function (PACF)
which will give information on a time series memory as introduced in sec. 4.3.

The AR model exists both in univariate form and can be extended to multivariate time
series with the vector autoregressive model, V AR(p) as follows (Tsay, 2014):

yt = ϕ0 +Φyt−p:t−1 + at (41)

Where Φ is a vector of the model parameters, ϕ0 is a constant vector and at is an error
vector of stochastic variables with zero mean vector and positive -definite covariance
matrix.

40 / 67

Part III – Proposed Method / Wind power forecasting models

Moving Average (MA) Model
The moving average model, MA(q), is based on the assumption that current and future
values of time series are dependent on the model’s past forecasting errors, at, up to a user-
specified number, q. The number can be determined by inspecting the autocorrelation
function (ACF). Similarly, as with the autoregressive model, the moving average model
also has a multivariate extension, VMA(q) (Tsay, 2014):

yt = θ0 +Θ(B)at−p:t−1 (42)

where θ0 is a constant vector equal to the mean of yt and Θ(B) is the MA matrix
polynomial in the back-shift operator B.

Autoregressive Integrated Moving Average (ARIMA) Model
A common choice for time series forecasting has historically been the autoregressive mov-
ing average model, ARMA(p,q), which is a combination of the AR(p) and MA(q) models.
ARMA(p,q) then models the linear combination of both the past values and the past
errors. AR(p), MA(q), and therefore also ARMA(p,q) requires the time series to be
stationary because it is easier to model due to stable statistical properties. Therefore
alternate models have been developed to adapt to time series showing trend and season-
ality, respectively autoregressive integrated moving average, ARIMA(p,d,q), and seasonal
ARIMA, SARIMA(p,d,q)×(P,D,Q)m.

The ARIMA model deals with the trend and non-seasonality by applying differencing
to the time series before fitting the ARMA model on it. The parameter, d, denotes
the number of times the time series has been differenced and a low number is usually
preferred as important information can be lost when differencing a time series too many
times. The SARIMA integrates seasonal parameters (P,D,Q)m, where P,D, and Q refer
to the seasonal alternatives for p,d,q, and m refers to the seasonality of the series, which
for hourly data usually is 24.

Similarly, as with the MA and ARmodels, the ARIMAmodel has a multivariate extension,
which in this case is called ARIMAX (Mehandzhiyski, 2023):

∆yt = c+ βX+Φyt−p:t−1 +Θ(B)at−p:t−1 + at (43)

Where the constant c is the additive combination of the constants ϕ0, θ0 from the AR
and MA expressions and the term βX denotes the exogenous variables along with its
coefficients.

41 / 67

Part III – Proposed Method / Wind power forecasting models

Probabilistic Forecasting
Probabilistic forecasts from ARIMA models are obtained by using the model residuals to
compute prediction intervals (PIs) which were introduced in sec. 4.4.1. The PIs are given
by

ˆyt+T ± cασ̂h (44)

where ŷt+T is the point prediction at time T, cα is a confidence parameter indicating the
significance level of the PI, and σ̂h is an estimate of the standard deviation of the fore-
casting distribution derived from the model residuals (R. J. Hyndman & Athanasopoulos,
2018). Multi-step forecasting tends to give wide prediction intervals since the standard
deviation of the residuals and the true distribution tend to inflate as the forecasting
horizon increases (Brockwell, Brockwell, Davis, & Davis, 2016). This is natural, as the
prediction errors accumulate at every time step. Autoregressive models, such as ARIMA
and DeepAR, make multi-step predictions in a recursive manner as described in sec. 4.1.
Meaning that the previous prediction is fed as input when predicting the current time
step. This kind of multi-step forecasting is prone to error accumulation which for ARIMA
models manifests itself not only in the point prediction but also in the width of the PI as
the forecasting horizon increases.

42 / 67

Part IV / Experiments

12 Raw data analysis

It is important to have some knowledge of the data before processing them with the ML
models because it makes tuning the model and interpreting the results more intuitive. In
this section, the two different energy datasets are presented and the raw data is analyzed.
The analysis should give an understanding of the properties of the time series and its
relation to the exogenous features.

During the analysis, the year 2017 will be used to explore and analyze the properties seen
in the data, and will be called the exploration dataset from here on. For the NWP data,
the 00:00 forecast for the current day will be used when only testing one set of NWP
data. This is because the 00:00 forecast is the more reliable one when choosing between
the two NWP datasets which in this analysis is preferable.

12.1 Descriptive statistics

Tab. 1 presents descriptive statistics of the exploration datasets. The top panel includes
wind power output and measured wind speed, which are common in both datasets and
modeled weather features from the day-ahead 06:00 run and the intraday 00:00 run re-
spectively to the left and the right. There appear to be small deviations between the two
sets of modeled weather features. Both modeled wind speeds report lower wind speeds
than the true measured value. The measured wind speed exhibit both higher mean, me-
dian and standard deviation implying that the measured wind is more volatile than the
MEPS models are able to model. The features, ŵs, Û , P̂ , T̂ along with the endogenous
variable, have lower median than mean values, implying a right-skewed distribution. Vice
versa, the features, ŵd, V̂ , have higher median than mean values, implying a left-skewed
distribution.

Tab. 2 shows the linear correlations between park power output and the exogenous vari-
ables for both the day ahead and intraday datasets. The most significant value of the
same variable between the two datasets is printed in bold. The intraday values are gen-
erally more correlated to the park power output than the day ahead values, with the
exception of westward wind, U. An important takeaway from the table is the significantly
higher correlation of wind speed, ws, compared to the decomposed wind, U and V. Due
to this, it is preferred to use wind speed and direction rather than decomposed wind in
the models. Additionally, it is interesting to see that temperature and pressure have such
a low correlation implying that low pressure and low temperatures are correlated with
high park power output and vice versa. It is therefore good reason to also keep these
parameters as input to the WPF models.

43 / 67

Part IV – Experiments / Raw data analysis

dayahead/intraday mean std min median max
Power output [MWh] 15.24 15.86 0 9.34 53.5

ws [m/s] 8.0 4.51 0 7.2 30.1
ŵs [m/s] 7.05/6.96 3.86/3.88 0.14/0.08 6.48/6.4 28.75/30.77

ŵd [◦] 180/176 97.63/96.72 0.01/0.1 188/186.7 359.9/359.9

Û [m/s] 0.39/0.35 5.28/5.27 -23.4/-25.3 0.3/0.24 20.92/21.77

V̂ [m/s] 1.33/1.4 5.9/5.8 -23.4/-20.2 2.5/2.5 17.86/18.46

P̂ [hPa] 1005/1002 12.8/12.86 967/966 1002/1002 1042/1042

T̂ [K] 277/277 5.11/5.12 263/264 276.4/276.5 292/291

Table 1: Descriptive statistics of the exploration data.

data ŵs ŵd Û V̂ P̂ T̂
[m/s] [◦] [m/s] [m/s] [Pa] [K]

Day ahead 0.63 0.045 -0.018 0.19 -0.16 -0.16
Intraday 0.66 0.045 -0.013 0.21 -0.17 -0.17

Table 2: Linear correlation between modeled weather features and wind power output

Figure 12: Time series plot over the year 2017 for park power output and modeled wind speed,
pressure and temperature

44 / 67

Part IV – Experiments / Raw data analysis

12.2 Time series analysis

The next subsection will go through some basic time series analysis steps to get an un-
derstanding of the properties exhibited in the time series.

12.2.1 Visual inspection

Fig. 12 shows the time series of park power output, wind speed, pressure, and temperature
for the year 2017. The time series exhibits some seasonal variations with lower variances
in park power output and wind speed during summer months compared to winter months.
Obviously, this seasonal variation can also be seen in the temperature time series with
higher temperatures during summer. The pressure is also more stable during the summer
months. Wind direction is not included in this figure which is due to its cyclic nature
making it visually uninformative in this kind of time series plot.

12.2.2 Autocorellation and Partial Autocorrelation

The autocorrelation function (ACF) and the partial autocorrelation function (PACF) are
commonly used plots in time series analysis to determine the order of AR and MA lags
in the ARIMA model. Additionally, they also give insight to seasonality, memory, and if
the time series is stationary or not. Specifically, the ACF of a time series with seasonal
information will have repeating peaks at regular intervals. While a stationary time series
will drop off to zero shortly after lag 0 (Shumway & Stoffer, 2017). The memory of a time
series can be read from the PACF plot, which explains the linear dependencies that the
ACF function can not explain by removing the intermediate linear dependencies. In other
words, at e.g. lag 2 only the dependency between xt and xt−2 is investigated, removing
the forward and backward dependencies from xt−1 (Shumway & Stoffer, 2017). Significant
values in the PACF show to which extent the time series has memory. It is therefore a
valuable plot when determining the look-back window discussed in Sec. 4.3.

Fig. 13 shows the autocorrelation and the partial autocorrelation of the Fakken wind
power output time series with 100 lags. It is clear from the PACF plot that there are
little to no linear dependencies between the lags. It shows that the PACF cuts off at
lag 2, meaning that it is unlikely to find a dependency that goes beyond two time steps.
If there exist non-linear dependencies those are not captured by this method, which is
linear. The ACF tails off to zero and is not showing any signs of short-term seasonality.
A tailing off ACF and PACF cutting off at lag 2 indicates that this model is an AR(2).

45 / 67

Part IV – Experiments / Raw data analysis

Figure 13: Autocorrelation and partial autocorrelation of park power output

12.2.3 Seasonal analysis

In fig. 12 there were signs of seasonal tendencies, giving reason to investigate if there are
clear seasonal variations in the park power output. Seasonal variations are here presented
using boxplots in Fig. 14, where monthly variations are plotted for both park power
output and MEPS wind speed. Boxplots are a good visualization of the distribution of
a dataset and percentiles are presented using boxes and whiskers. The box extends from
the 25th percentile to the 75th percentile, while the whiskers present the 0th and 100th
percentile. The box is divided into two parts where the line separating them represents the
median of data. Points plotted outside of the whiskers are called outliers. Fig. 14a shows
that Fakken wind park produces in the whole range, from 0 to 54 MWh for all months.
However, there is a clear ’drop’ during the summer months, both with lower variability
and a lower median than for the winter months. Comparing fig. 14a and fig. 14b makes it
clear that wind speed is the leading factor to wind power production. Increased variance
in the wind data leads to increased variance in power park output. Additionally, the cubic
relationship can be seen in the figures as the variance in power park output is larger than
that in wind speed.

46 / 67

Part IV – Experiments / Raw data analysis

(a) Monthly variability of park power output (b) Monthly variability of wind speed

Figure 14: Monthly variability of park power output and wind speed in exploration dataset.
Both figures (a) and (b) show a clear seasonal variability.

12.3 Wind and terrain

Fig. 15 shows two figures that give insight into the wind resources at Fakken wind park.
Figure (a) shows a wind rose made from wind speed and wind direction of the MEPS
NWP data for the years 2017-2019. A wind rose is a circular histogram indicating at
what frequency the wind blows from a certain direction. Each bin is sectioned by wind
speed such that the histograms give information on both frequency of direction and wind
speed at a given direction. Fig. 15a suggests that the most prominent wind directions
are from the South South-West (S-SW) and South East (SE) corresponding to degrees
200 and 135. Another less prominent, direction is from the North (N) corresponding to
degree 0. Most interesting is the wind directions giving wind speeds in section [11.6−17.3]
corresponding to the wind turbines’ rated wind speed. These sections are colored as the
lightest blue in the wind rose. It is therefore expected that the directions SW, S-SW, and
SE will result in the highest wind power production.

Fig. 15b by (Jacobsen, 2014) illustrates the location of Fakken (red box) with surrounding
terrain and directions. The islands in the area are characterized by mountains and complex
terrain creating natural highways for the wind to travel. The figure provides insight into
the most prominent wind directions seen in Fig. 15a as the wind directions S-SW and
SE correspond to the fjords between Reinøya, Lenangsøya, and Arnøya, while the wind
direction N corresponds to the open North Sea.

Fig. 16 shows scatter plots illustrating the relationship between wind power production,
wind speed, and wind direction. Figure (a) shows the scatter plot between wind speed
and power production resulting in a relationship similar to the power curve seen in Fig.
7. However, there are some inconsistencies with an ordinary power curve as delivered
by the wind turbine producers resulting from the use of modeled wind data instead of
on-sight weather measurements. Examples of this inconsistency are when there is high
power production with low wind speeds and low power production with wind speeds in
between rated and cut-off wind.

47 / 67

Part IV – Experiments / Raw data analysis

(a) Wind rose based on MEPS wind speed
and direction during 2017-2019

(b) Location of Fakken wind park (Jacobsen,
2014).

Figure 15: Wind rose and location of Fakken Wind park.

(a) Park power output and MEPS wind speed
scatter plot.

(b) wind speed and wind direction scatter plot
colored by park power output

Figure 16: Scatter plots of power production, wind speed and wind direction

Fig. 16b shows the scatter plot of wind speed given wind direction colored by power
production. This was done to illustrate at which wind speeds and wind directions result
in the highest and lowest power production. Additionally, cut in, rated, and cut off
wind speeds are plotted to give further explainability to the plot. The plot confirms the
assumptions made from the wind rose as the degrees around 0, 135, and 220 are the ones
resulting in the highest power production. Another key takeaway from the plot is that
there are consistently higher winds than the MEPS model forecasts since both the rated
and cut-off wind speeds are higher than the corresponding peak production and cut-off
production.

48 / 67

Part IV – Experiments / Raw data analysis

Figure 17: Comparison between the two wind speed forecasts and the measured wind speed at
Fakken for the period 2017/10/02 - 2017/10/09.

12.4 Comparing MEPS forecasts

Fig. 17 shows the comparison between the two modeled wind speeds with the on-site
measurement for a week in October 2017. The figure does show, as commented in sec. 12.3
that under-predicting is not uncommon with the MEPS forecasts. Otherwise, the figures
show that the two forecasts generally follow each other and there is no reason to conclude
that the intraday weather forecast are substantially better than the day-ahead weather
forecast.

Tab. 3 further compares the modeled weather features with the on site measurements for
the whole year of 2017 using the normalized root mean square error (NRMSE) and linear
correlation. The NRMSE error for the day-ahead data is higher than the intraday data by
1.3% and 0.3% respectively for wind speed and temperature. The correlation coefficient
shows similarly small improvements for the intraday data.

Day-ahead/
Intraday NRMSE correlation coefficient

ws 0.115/0.108 0.695/0.739
wd 0.282/0.282 0.473/0.476
T 0.048/0.045 0.967/0.973

Table 3: NRMSE error and linear correlation between measured and modeled wind.

49 / 67

Part IV – Experiments / Raw data analysis

(a) Data distribution per year as histograms. (b) Yearly variability.

Figure 18: Yearly data distribution and variability for park power output

12.5 Determining dataset split

Early testing of the models used the years 2017 and 2018 for training, 2019 for validation
and 2020 for testing. These tests of the models showed discrepancies between validation
and test loss over all the models, which implied that the problem lied with the datasets
rather than being a overfitting problem. It was therefore necessary to investigate the
properties seen in each year of the data, to determine if the problem was related to the
dataset splitting.

Fig. 18 shows the data distributions and variability for the target variable for the years
2017-2020. Figure (a) shows that each year has a reasonably similar data distribution,
which is important when determining dataset splitting between training, validation and
testing. Figure (b), however, shows the box-plots for each year where the third quantile
of year 2020 is somewhat higher than for the rest of the years. This increased variance
can introduce a less than optimal model if 2020 is used as test data, since the model has
trained on data with lower variance.

Considering that there exist some yearly variations as shown in fig. 14, a whole year should
be set aside for testing, meaning that 25% of the data is used for testing. Therefore, the
year 2019 will be used for testing while the years 2017,2018 and 2020 are reserved for
training and validation. For the train/val split an approximation of the 80/20 split is
chosen. Half a year is reserved for validation, which equals about 16.7% of the three years
and leaves 83.3% for testing.

50 / 67

Part IV – Experiments / Neural Network-based Models

13 Neural Network-based Models

The neural network-based models are implemented using Pytorch Forecasting (Beitner,
2020), a high-level API specialized in the field of neural time series forecasting. It builds
on the popular Python-based libraries Pytorch and Pytorch-lightning. The neural net-
work models introduced in part. III are both implemented in Pytorch-Forecasting. For
a practitioner, there are several advantages to using existing deep learning architectures
implemented in a popular software library rather than implementing a new architecture:

• Developing a deep learning architecture from scratch can be a time-consuming pro-
cess. By leveraging existing architectures implemented in libraries such as Pytorch
Forecasting, it is possible to save a significant amount of time and effort. These
architectures have already been designed, implemented, and optimized by experts,
allowing the practitioner to focus more on the specific problem rather than rein-
venting the wheel.

• Established deep learning libraries often provide highly optimized implementations
of popular architectures. These implementations have been thoroughly tested and
refined, ensuring high performance and reliability. By using a well-established ar-
chitecture, the practitioner can benefit from the collective expertise and community
contributions that have improved its performance over time.

• If one is conducting research or working on a project that requires comparing results
with existing works, using established architectures can help ensure reproducibility.
Well-known architectures have established benchmarks and reported results, making
it easier to compare and validate the findings against previous studies.

• Many deep learning libraries provide pre-trained models for popular architectures.
These models are trained on large datasets and can be fine-tuned or used as a
starting point for various tasks. Leveraging pre-trained models can significantly
speed up the development process, as they often capture general-purpose features
that can be useful across different domains.

• Popular deep-learning libraries have vibrant communities with active forums, online
tutorials, and extensive documentation. If one encounters challenges or has ques-
tions while using an existing architecture, one can rely on community support to
find solutions. The availability of resources and code examples can also facilitate
the learning process and help to understand best practices in deep learning.

Each model is fitted separately on the two datasets, meaning that there in practice are
instantiated four neural network models where two and two have the same architecture.
As depicted in Fig. 13, the dataset contains 3 h of (linear) memory. The intraday models
will thus use the previous 4-time steps as encoder input while predicting for the next 6
hours. As mentioned in 9.1, the day-ahead models will not use previous history and be
cold start models. This was, however, not possible for DeepAR since it is an autoregressive
model that uses the previous value in its prediction as depicted in Fig. 11b. Hence, the
day-ahead DeepAR model must have at least 1-time step as a lookback window. In
the Pytorch-Forecasting setup that would mean including the true production one hour

51 / 67

Part IV – Experiments / Neural Network-based Models

before production time, which as mentioned in sec. 9.1, has not happened yet at the
prediction time. Therefore, the DeepAR model setup must predict from 12:00 the day
before, meaning that its forecasting horizon is 36. Even though DeepAR predicts for a
larger forecasting horizon, its performance will only be evaluated on the day-ahead time
frame meaning that only the performance on the last 24 time steps will be evaluated.

DeepAR is designed to only include covariates in the form of known future values, whereas
TFT offers a more comprehensive integration of covariates. This study uses the MEPS
NWP data which is considered as known future inputs as they are available before pre-
diction time. Furthermore, on-site weather measurements of wind speed serving as time-
varying unknown variables are available and can therefore be used in the TFT as input
to the encoder along with the target variable time-varying unknown variables.

Both TFT and DeepAR produce probabilistic predictions in the form of quantile forecasts
using the percentiles q ∈ [0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98]. TFT directly computes the
quantiles using QR, while DeepAR extracts the quantiles using the cumulative density
function (cdf) of the predicted pdf. This way, it is easy to compare the two models even
though they use different methods to produce probabilistic output.

52 / 67

Part IV – Experiments / Neural Network-based Models

Temporal Fusion Transformer
Dataset Network configuration

dmodel dattn hLSTM NLSTM lr p a c
Dayahead 128 2 122 1 0.01 0.23 0 0.3
Intraday 52 2 27 2 0.00504 0.294 0.00189 0.3

DeepAR
Dataset Network configuration

hLSTM NLSTM lr p a c
Dayahead 20 3 0.003266 0.576 0.0011 0.17227
Intraday 22 1 0.009 0 0.0018 0.008

Table 4: Hyperparameter configuration for the neural network models

13.1 Hyperparameter configuration

The models contain a considerable amount of inner parameters, termed hyperparameters,
including learning rate, network depth, and various regularization parameters. Finding
the optimal hyperparameters can be a large task as there in practice can exist thousands
of combinations. Smart searching algorithms are therefore vital for the increased use of
ML models in production. For this thesis, hyperparameter searches were done using the
ASHA algorithm (L. Li et al., 2018), which supports parallelism and prunes bad runs
early on using successive halving (Jamieson & Talwalkar, 2015) to reduce searching time.
The reader is directed to the papers (L. Li et al., 2018; Jamieson & Talwalkar, 2015) for
further information.

Hyperparameters common to both models are learning rate lr, dropout rate p, weight
decay constant a, and gradient clipping norm c. Additionally, both models utilize an
LSTM network which is parameterized by hidden vector size hLSTM , and the number of
LSTM layers NLSTM . The TFT is further parameterized by model dimension dmodel and
the number of attention heads dattn.

The models were lightly tuned after the ASHA (L. Li et al., 2018) algorithm found suitable
combinations of hyperparameters. The hyperparameters used in the final models are
presented in Tab. 4.

13.2 Regularization

Several regularization techniques are used, therein early stopping, dropout, gradient clip-
ping, and weight decay. Values for dropout rate, gradient clipping, and weight decay are
included in the hyperparameter search space as they are highly dependent on the other
hyperparameters. Early stopping is implemented similarly for all models and stops the
training if the validation loss has not improved within a small threshold in the last 50
epochs. Dropout in TFT is implemented in various parts of its architecture, therein at
each fully connected layer present in the GRN’s, GLU’s and the Add&Norm gates. Fur-
thermore, if the model uses multiple LSTM layers there is also a dropout between these.
Similarly, dropout is only implemented between the LSTM layers of DeepAR if there is
more than one LSTM layer.

53 / 67

Part IV – Experiments / Evaluation Metrics

SARIMAX
Dataset Network configuration

p d q P D Q m
Dayahead 4 1 0 2 1 0 24
Intraday 4 1 0 2 1 0 24

Table 5: SARIMAX model parameters for the two datasets

13.3 Network training

Both of the networks are optimized by the ranger optimizer (Wright & Demeure, 2021),
a synergistic optimizer with Adam (Chilimbi et al., 2014) and AdamW (Loshchilov &
Hutter, 2017) as core components. The Ranger algorithm unites several modifications of
the Adam and Adamw algorithms, in all 8 ideas which were found to be orthogonal and
compatible to the Adam optimizer. The reader is directed to (Wright & Demeure, 2021)
for a thorough explanation of the algorithm along with the 8 additional components.
Ranger was found to give more stable training with fewer oscillations in my experiments
and generally converged in most of the hyperparameter searches while the Adam optimizer
needed greater attention during tuning and failed more often than not. This, by my
hypothesis, can be attributed to the erratic nature of wind power resulting in the need of
a highly adaptive optimizer that is robust to large variations.

14 SARIMAX model

SARIMAX is the only statistical WPF model used in this study. Similarly to DeepAR,
SARIMAX must have a 1-time step as a lookback window since it is an autoregressive
model. Therefore, the forecasting horizon in the day-ahead framework must be 36.

It is implemented using pmdarima (Smith et al., 2017–), a statistical Python library. The
parameters of the SARIMAX model were fitted using the auto-arima function which first
determines the order of differencing using statistical tests such as Kwiatkowski–Phillips–
Schmidt–Shin (Kwiatkowski, Phillips, Schmidt, & Shin, 1992),
Augmented Dickey-Fuller (Dickey & Fuller, 1979) or Phillips–Perron (Phillips & Perron,
1988). Thereafter the auto-arima function test different combinations of p and q and
calculates the AIC criterion for each model. The model with the lowest AIC score is
chosen and returned. The results of the auto-arima function is presented in Tab. 5. The
parameters found using auto-arima concur with Fig. 13, where the ACF tailed off and the
PACF cut off early, implying that it is an AR model. As the time series is non-stationary,
a differencing term has been used to make it stationary. The seasonal parameters are set
to m = 24, since it is hourly data. The parameters P,D,Q was chosen by the auto-arima
function and implies a seasonal offset of P = 2 and seasonal difference of D = 1.

54 / 67

Part IV – Experiments / Evaluation Metrics

15 Evaluation Metrics

15.1 Continuous Ranked Probability Score

When choosing evaluation metrics for probabilistic predictions, it is important to both
measure the sharpness and coverage as discussed in sec. 4.4. Additionally, in this study,
it is important to choose metrics that can measure the performance of the forecasts from
all the models since they use different ways to produce probabilistic forecasts. Common
to both Bayesian inference and frequentist inference like quantile regression is that they
can be evaluated using quantile-based metrics. A popular metric to evaluate probabilistic
forecasts is the continuous ranked probability score (CRPS) which can be calculated using
quantiles. (Gneiting & Ranjan, 2011) does a thorough proof and discussion of quantile
weighted CRPS which will be used in this study.

Given a density forecast, f , of time series y. F denotes the cumulative distribution func-
tion (CDF) of f , where quantile forecasts, can be computed with F−1(q), given significance
level q. The CRPS can then be defined as a scaled integral over the quantile loss (QL):

CRPS(y, F) =

∫ 1

0

2QL(y, F−1(q), q)dq (45)

A discrete approximation of the CRPS can be defined, using ŷ as the quantile output of
the network and M as the number of quantiles:

CRPS(y, ŷ) ≈ 2

M

∑
qi∈Q

QL(y, ŷ, qi) (46)

The approximation above is true if the quantiles are equally spaced, while the experiments
in this study use quantiles that are not. To accommodate for the unequal spacing, 1

M

must be replaced with the difference dqi = qi − qi−1 in the sum.

CRPS(y, ŷ) ≈ 2
∑
qi∈Q

QL(y, ŷ, qi)dqi (47)

Quantile weighted CRPS, here denoted qCRPS(y, ŷ), are constructed by applying weights
v(q) ∈ [0, 1] to the integrand/sum.

qCRPS(y, ŷ) = 2
∑
qi∈Q

v(qi)QL(y, ŷ, qi)dqi (48)

Evaluating the whole multi-step forecast will further involve averaging over the forecasting
horizon.

qCRPS(y, ŷ) =
2

Tmax

Tmax∑
T=1

∑
qi∈Q

v(qi)QL(yt, ŷ, qi)dqi (49)

The choice of weighing function depends on if the evaluation should put the most emphasis
on the outer or center quantiles, or weigh the whole distribution equally and in that case
eq. 48 reduces to the ordinary CRPS. This study will use both tail weighing of the form
v(q) = (2q − 1)2 and ordinary CRPS v(q) = 1 to evaluate the forecast. The reason for
avoiding center weighing is that the tails of the distribution should be a more reliable
rule for the wind power trader to keep within. While the median prediction is important,
the tails of the distribution is of higher importance as they give information about the
uncertainty of the predictions.

55 / 67

Part IV – Experiments / Evaluation Metrics

15.2 p-Risk

Since the SARIMAmodel computes probabilistic forecasting as a PI, and obtaining several
PIs would involve running the model several times which can result in an issue typically
called quantile crossing (Chernozhukov, Fernandez-Val, & Galichon, n.d.), another per-
formance metric is needed to compare the forecasts from the neural network models with
the ones from SARIMA. For this, a special case of the CRPS, called p-Risk, can be used
to evaluate a single percentile. The 50 and 80 percentile risks, called P50- and P90-risk
were used to evaluate the models in the papers introducing TFT and DeepAR (Lim et
al., 2020; Salinas et al., 2020), and is therefore a good choice to also be consistent with
previous work. The q-Risk for one test sample is defined as,

p−Risk =
2
∑

yt∈Ω
∑Tmax

T=1 QL(yt, ŷ, q),

Tmax
. (50)

15.3 Prediction Interval Coverage Probability

When using the percentiles q ∈ [0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98], three PI’s are essen-
tially constructed, [0.02, 0.98], [0.1, 0.90], [0.25, 0.75] with respective significance levels α =
[0.04, 0.20, 0.5]. The PI’s coverage should therefore be 0.96, 0.80, 0.50 to be valid confi-
dence intervals. This can be scored by using the prediction interval coverage probabil-
ity (PICP), which measures the percentage of coverage for each of the PI’s (Alcántara,
Galván, & Aler, 2022)

PICP =
1

nt

nt∑
i=1

ci, ci =

{
1 yt ∈ [Li, Lu]

0 yt /∈ [Li, Lu]
(51)

The optimal outcome is to have valid PIs, such that PICPα ≥ 1 − α, while keeping the
width of the PI as small as possible.

56 / 67

Part IV – Experiments / Experimental Results

CRPS / qCRPS TFT DeepAR
Day-ahead 0.108 / 0.026 0.121 / 0.028
Intraday 0.262 / 0.064 0.078 / 0.018

Table 6: CRPS and quantile weighted CRPS on the day-ahead and intraday datasets for the
neural network models. (Lower (q)CRPS, the better)

P50 / P90-Risk TFT DeepAR SARIMAX
Day-ahead 0.153 / 0.081 0.175 / 0.091 0.415 / 0.238
Intraday 0.367 / 0.154 0.111 / 0.056 0.184 / 0.099

Table 7: P50 and P90-Risk on the day-ahead and intraday datasets for all models. (Lower the
p-Risk, the better)

16 Experimental Results

This section presents and discusses the results obtained from the experiments described
in the previous sections.

16.1 Performance on Individual Datasets

Tab. 6 and Tab. 7 present the performance of the models on the day-ahead and intraday
datasets using CRPS, tail weighted CRPS (qCRPS), and P50, P90-Risk. All of the
evaluation metrics are negatively oriented, meaning that the best model is the one with
the lowest score.

The day-ahead dataset
The tables show that TFT performs best in the day-ahead framework. The CRPS value
implies that TFT has both the best and produces the most accurate predictions, and
the tail-weighted CRPS implies that it also produces the most accurate tails. However,
the difference between TFT and DeepAR for the day-ahead framework decreases from the
CRPS to the qCRPS, implying that the TFT produces more accurate median predictions,
while the two models can be expected to perform similarly well at the tails. Tab. 7 further
show that TFT performs better than DeepAR on both the 50th and 90th percentile, also
here is the difference less for the P90 risk. Both neural network models perform noticeably
better than SARIMAX on the day-ahead data, not surprising as ARIMA models are
known to perform poorly when the forecasting horizon increases.

The intraday dataset
With the intraday dataset, DeepAR outperforms the other models, while TFT performs
inadequately. It is clear that the two autoregressive models perform best when the fore-
casting horizon is short, while TFT is designed to model longer forecasting horizons. Both
DeepAR and SARIMAX’s performance improves from the day-ahead forecasting model to
the corresponding intraday model. This is expected since there still exists some memory
from the lookback window, which introduces the question as to why TFT performs so
much worse on the intraday dataset.

57 / 67

Part IV – Experiments / Experimental Results

16.2 Performance Discussion

Figs. 19, 21, show the aggregated predictions of the three models for the days 2019/04/30
to 2019/05/06 respectively for the day-ahead and the intraday framework. Similarly,
Figs. 20, 22, show the aggregated predictions for the days 2019/03/26 to 2019/04/02. All
of the figures show the corresponding measured, and modeled wind speeds for the same
time periods. The date ranges were chosen because they together provided a good repre-
sentation of the wind speeds exhibited at Fakken wind park. With these visualizations,
it is possible to further discuss the performance of the different models and compare the
predictions with the measured and modeled wind speeds.

16.2.1 Network type

Temporal Fusion Transformer
TFT had a more extensive incorporation of covariates in its models. Both by including
covariates in different forms, but also by including variable selection networks such that
the influence of each covariate time step is weighted. This is reflected in the day-ahead
predictions seen in the figures 19a, 20a, where the point predictions very much follow
the modeled wind speed, especially in Fig. 20a. Most of the weakest predictions can
be explained by discrepancies between the measured and modeled wind speeds, while the
others show that TFT regularly underpredicts rather than overpredicts. My theory on this
is that it puts too much weight on the modeled wind speed, and has not properly learned
the cubic relationship between wind speed and power output. This might be because of
the large spread seen in the intermediate wind speeds, 7-12 m/s, seen in Fig. 16a. Having
a large spread means that these wind speeds are difficult to model.

The intraday predictions from TFT in figures 21a, 22a, are outright poor and it is clear
that the model is extremely underfitted. The model was difficult to train, as few hyper-
parameter combinations came out with good loss surfaces. This implies that the intraday
framework was perhaps too simple and incompatible with the TFT. The Attention mech-
anism processes the input as one set, meaning that using too few time steps might not be
enough for the model to ’see’ and model the whole day. In hindsight, choosing a longer
forecasting horizon would be beneficial for the TFT. It could then use the lookback win-
dow, meaning that it might manage to better model the cubic relationship which was its
problems with the day-ahead framework.

DeepAR
DeepAR performs much better on the intraday dataset than on the day-ahead dataset,
which is already attributed to its autoregressive nature. The day-ahead predictions in
figures 19b, 20b, are very conservative, and it seems to be using more weight on the
previous predictions than the TFT did. Fig. 19b is a good example of where DeepAR is
more conservative than the TFT, resulting in the TFT having sharper turns/corners (in
lack of a better word). When inspecting the shape of the point predictions of DeepAR,
they almost perfectly resemble the shape of the modeled wind speed. Similarly, as with
the TFT, DeepAR struggles to learn the cubic relationship between wind speed and wind
power. Additionally, it seems to also struggle with learning the cut-in wind speed.

58 / 67

Part IV – Experiments / Experimental Results

PICP 1− α
α = 0.04 TFT DeepAR SARIMAX
Day-ahead 0.893 0.958 NA
Intraday 0.547 0.946 NA
α = 0.20
Day-ahead 0.736 0.792 0.940
Intraday 0.359 0.821 0.859
α = 0.5
Day-ahead 0.466 0.484 NA
Intraday 0.192 0.544 NA

Table 8: Prediction interval coverage probability for significance levels α = [0.04, 0.2, 0.5]. The
most valid PI’s are highlighted in bold.

DeepAR achieves good performance when predicting for the intraday market, as the pre-
dictions improve from the day-ahead predictions and it shows that it utilizes the lookback
window in its predictions seen in figures 21b, 22b. The conservativeness seen in the day-
ahead predictions is no longer visible in the intraday predictions and DeepAR maps the
modeled wind speed very well. The weakest predictions can be explained by discrepancies
between the measured and modeled wind speeds, similar to the day-ahead predictions of
TFT. The combination of day-ahead predictions from TFT and intraday predictions from
DeepAR seems to be a good fit, seeing as what is lacking in the day-ahead forecasts is
mostly present in the intraday forecasts.

SARIMAX
Figs. 19c, 20c, show very different qualities of prediction. Where the predictions in the first
figure mostly follow the true values, while the predictions in the last figure are significantly
inaccurate. These experiments show that SARIMAX is not a robust forecasting method
for the day-ahead framework, where both the figures and the P50-, P90-Risk reflect this.

SARIMAX produces satisfactory intraday predictions, as seen in figures 21c, 22c. The
point predictions are better than TFT’s, and less conservative than DeepAR, proving that
for some problems, it is not really necessary with deep neural networks. However, SARI-
MAX struggles with keeping inside the production limits [0, 54] and regularly predicts
both negative production and above the maximum possible production. The intraday
predictions are also lagged, similar to the day-ahead predictions.

59 / 67

Part IV – Experiments / Experimental Results

16.2.2 Prediction Intervals

Tab. 8 presents the average coverage of the PI. The table shows that DeepAR produces
the most valid PIs, both for the day-ahead and the intraday framework. The day-ahead
TFT lies about 4-7 % below for each of the PIs, which is reflected in Figs. 19a, 20a,
where it can be seen that DeepAR produces wider PIs. This is a common trade-off as
correct coverage often results in increased width, which can reduce the interpretability of
the prediction. One could argue that the predicted distribution of the TFT reflects the
variability of the data better. The PI’s of the day-ahead DeepAR seem to have a nearly
constant width, while the day-ahead TFT has a more varying width. Especially the low
wind speeds give a low uncertainty with the TFT, which actually reflects the spread seen
in Fig. 16a. In contrast, DeepAR is almost equally uncertain about all of the wind speed
ranges. Obviously, this can be partially resolved by using PI with lower coverage.

Not surprisingly, the intraday TFT does not provide the specified coverage at all. The
intraday DeepAR, however, produces valid PIs where 0.8 and 0.5 actually exceed their
specified coverage. Despite having good coverage, the PIs are remarkably acute and no
longer show the non-varying width. Overall, the intraday DeepAR performs very well
given the input it is given.

Figs. 19c, 20c show that SARIMAX produces extremely wide PIs for the day-ahead frame-
work while producing significantly sharper PI for the intraday framework. This was, how-
ever, not unexpected as a forecasting horizon of 36 is far too long for an ARIMA model.
Similarly to the point predictions, the coverage and width produced by the intraday model
are satisfactory.

60 / 67

Part IV – Experiments / Experimental Results

(a) Visualization of predictions from TFT

(b) Visualization of predictions from DeepAR

(c) Visualization of predictions from SARIMA

(d) Modeled and measured wind speed

Figure 19: Aggregated predicted park power output for the day-ahead market, along with mod-
eled and measured wind speed, for the week 2019/03/26-2019/04/02

61 / 67

Part IV – Experiments / Experimental Results

(a) Visualization of predictions from TFT

(b) Visualization of predictions from DeepAR

(c) Visualization of predictions from SARIMA

(d) Modeled and measured wind speed

Figure 20: Aggregated predicted park power output for the day-ahead market, along with mod-
eled and measured wind speed, for the week 2019/04/30-2019/05/06

62 / 67

Part IV – Experiments / Experimental Results

(a) Visualization of predictions from TFT

(b) Visualization of predictions from DeepAR

(c) Visualization of predictions from SARIMA

(d) Modeled and measured wind speed

Figure 21: Aggregated predicted park power output for the intraday market, along with modeled
and measured wind speed, for the week 2019/03/26-2019/04/02

63 / 67

Part IV – Experiments / Experimental Results

(a) Visualization of predictions from TFT

(b) Visualization of predictions from DeepAR

(c) Visualization of predictions from SARIMA

(d) Modeled and measured wind speed

Figure 22: Aggregated predicted park power output for the intraday market, along with modeled
and measured wind speed, for the week 2019/04/30-2019/05/06

64 / 67

Part V / Conclusions
This thesis studied the problem of probabilistic wind power forecasting at Fakken wind
park, focusing on producing predictions that encapsulate the uncertainties seen in wind
power. This chapter is organized into three sections. First, the concluding remarks will
be presented, where the key findings and contributions of this study are summarized.
Secondly, my experience with the forecasting library Pytorch-Forecasting will be summa-
rized. Lastly, potential further research for wind power forecasting at Fakken wind park
will be discussed.

17 Concluding remarks

The following key findings and conclusions are found in this study:

• Transformer models are indicated to be good alternatives for the day-ahead frame-
work due to the good performance of the Temporal Fusion Transformer (TFT).
However, further investigation with several Transformer architectures should be ex-
plored to correctly asses their performance in day-ahead wind power forecasting.

• When deciding between the TFT and DeepAR for the day-ahead framework, the
risk-awareness of the power producer must be taken into account. While TFT
exceeds in accuracy, DeepAR offers a more comprehensive assessment of risk, making
it a suitable model for those who prioritize risk-awareness in their bidding strategies.

• Autoregressive models have shown great promise for the intraday framework, where
the DeepAR provided both accurate and properly risk aware predictions. Therefore,
autoregressive models seems to be a good initial choice for short-term wind power
forecasting.

• SARIMAX, although not inherently a poor choice for intraday forecasting, will
require further time and effort in model creation and parameter tuning to achieve
its optimal performance. While auto-arima provides initial guidance for parameter
selection, the practitioner should manually create and train the SARIMAX model
for best results.

• When deciding between DeepAR and SARIMAX for the intraday framework, a
trade-off between accuracy and model complexity must be taken into account.
DeepAR offers higher accuracy at the expense of model complexity, while SARI-
MAX provides a more interpretable approach.

• Wind power forecasting models are highly dependent on the performance of the
numerical weather predictions used as exogenous variables. Therefore, the perfor-
mance of wind power forecasting models will only improve further as numerical
weather predictions improve.

The goal of these findings is to provide insights for wind power traders and forecasters,
enabling them to make informed decisions when selecting forecasting models based on
their specific requirements. Overall, the research presented in this study opens courses
for further exploration and improvements in wind power forecasting at Fakken wind park.

65 / 67

Part V – Conclusions / Pytorch Forecasting

18 Pytorch Forecasting

This section will comment on my experience in using the forecasting library Pytorch-
Forecasting (Beitner, 2020). Overall, the models used from Pytorch-Forecasting, TFT,
and DeepAR, worked well when used as described in the tutorials from Pytorch-Forecasting.
However, working with Pytorch-Forecasting gave limited flexibility when trying to do
something outside of the defined features.

One feature that I wanted to fix, but was not possible to fix was how it passed data to
the models. The method for passing data was a sliding window as described in sec. 4.3,
however, it was not possible to change the step size of the window and it was set to one.
Meaning that window moved only one step at a time, whereas for the day-ahead and
intraday framework the step size should have been 24 and 6. To accommodate for this,
the predictions had to be filtered, such that only the correct prediction times were chosen
and scored. The fact that the step size is a constant of one is surprising as it is not difficult
to implement, and it is very common for time series forecasting to use sliding windows
with a step size equal to the window size. Another feature that was possible was to create
yourself was to implement your own metrics using their framework. Nonetheless, I was
not able to create personal metrics due to its complexity and poor documentation. In the
end, all of the correct predictions were stored and the metrics were implemented outside
of the Pytorch-Forecasting framework.

Even though using the library comes with limited flexibility, this is something that most
software engineers will find frustrating. Practitioners with less software experience will
probably find it comforting that it just works when using it for the standard tasks pre-
sented in the tutorial. However, whenever a problem occurs one needs a technical back-
ground to be able to sort the issue out. Additionally, the output of the networks is not
intuitive and also there it helped with a technical background to figure out how to properly
use the outputs.

In conclusion, Pytorch-Forecasting is a good alternative if e.g., a company has a restrained
software team, or if researchers want to easily implement some of its models as baselines.
It is a good first step to check if deep learning might be suitable for the problem at
hand. However, it’s important to note that there may be scenarios where designing a
new architecture is necessary or beneficial. For specialized tasks or domains with unique
requirements, a custom architecture might be more suitable. Additionally, if you have
expertise in deep learning and want to explore innovative ideas or improve upon existing
architectures, designing your own model can be an exciting and rewarding endeavor.

66 / 67

Part V – Conclusions / Further work

19 Further work

Based on the results of this study, the following further work is advised. With the aim of
producing results with higher accuracy, the first step is to revisit the data preprocessing
methods. Specifically, missing values imputation and data splitting can be revisited.
Missing values imputation was in this study done by padding the missing values by the
last valid value, which resulted in regions as large as a day being padded with only one
value. More advanced methods such as the maximum likelihood imputation proposed
in (Garćıa, Luengo, & Herrera, 2015) or spatio-temporal imputation techniques (Cini,
Marisca, & Alippi, 2022) could be considered to improve the prediction performance.

Additionally, only two data splitting configurations were explored, while other configura-
tions and even other evaluation methods like cross-validation for time series (Bergmeir,
Hyndman, & Koo, 2018) can be explored. Additionally, this study did not investigate
outlier and anomaly detection, which can significantly reduce noise in the dataset. For
wind power data, bottom-curve stacked anomalies as described in (Wang, Hu, Li, Foley, &
Srinivasan, 2019) can be removed and imputed using the chosen missing value imputation
method. Furthermore, statistical tests can be used to detect possible outliers as described
in (Ben-Gal, 2005).

As discussed in sec. 16.2, the models struggled with learning the cubic relationship with
wind speed and did not fully learn the cut-in, rated, and cut-off wind speeds. There-
fore, new feature engineering specifically targeting these issues can be explored. I would
recommend trying two features. Firstly, a feature with the polynomial of modeled wind
speed can potentially help map the non-linear relationship between wind speed and wind
power. I would recommend to start with the order of three, since this appears in the
wind power equation 19. Secondly, a categorical feature that categorizes the operational
regions based on modeled wind speed, e.g., below cut-in, in between cut-in and rated,
rated and cut-off, and above cut-off wind speed.

Due to the limitations of working with Pytorch-Forecasting, another recommendation is
to move forward with the insights from this study and create models using other deep
learning libraries, e.g., the ones that Pytorch-Forecasting builds upon. A good starting
point is to continue with using Attention-based models for the longer time frames used
in day-ahead forecasting, and LSTM-based models for the shorter time frames used in
intraday forecasting. Another suggestion is to use either the day-ahead TFT or DeepAR
and the intraday DeepAR model from this study in an economic evaluation seeking to
increase the income of the wind power producer as done in (Mazzi & Pinson, 2017).

67 / 67

References

Alcántara, A., Galván, I. M., & Aler, R. (2022). Direct estimation of prediction in-
tervals for solar and wind regional energy forecasting with deep neural networks.
Engineering Applications of Artificial Intelligence, 114 , 105128. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0952197622002573

doi: https://doi.org/10.1016/j.engappai.2022.105128
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic con-

volutional and recurrent networks for sequence modeling. arXiv. Retrieved from
https://arxiv.org/abs/1803.01271 doi: 10.48550/ARXIV.1803.01271

Beitner, J. (2020). Pytorch forecasting. https://pytorch-
forecasting.readthedocs.io/en/stable/index.html.

Ben-Gal, I. (2005). Outlier detection. In O. Maimon & L. Rokach (Eds.), Data mining and
knowledge discovery handbook (pp. 131–146). Boston, MA: Springer US. Retrieved
from https://doi.org/10.1007/0-387-25465-X 7 doi: 10.1007/0-387-25465-X
7

Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation
for evaluating autoregressive time series prediction. Computational Statistics Data
Analysis , 120 , 70-83. Retrieved from https://www.sciencedirect.com/science/

article/pii/S0167947317302384 doi: https://doi.org/10.1016/j.csda.2017.11
.003

Bianchi, F. M., De Santis, E., Rizzi, A., & Sadeghian, A. (2015). Short-term electric
load forecasting using echo state networks and pca decomposition. IEEE Access , 3 ,
1931-1943. doi: 10.1109/ACCESS.2015.2485943

Bianchi, F. M., Livi, L., & Alippi, C. (2016). Investigating echo-state networks dynamics
by means of recurrence analysis. IEEE transactions on neural networks and learning
systems , 29 (2), 427–439.

Bianchi, F. M., Livi, L., Mikalsen, K. Ø., Kampffmeyer, M., & Jenssen, R. (2019).
Learning representations of multivariate time series with missing data. Pattern
Recognition, 96 , 106973.

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., & Jenssen, R. (2017). An
overview and comparative analysis of recurrent neural networks for short term load
forecasting. Springer International Publishing.

Bianchi, F. M., Scardapane, S., Løkse, S., & Jenssen, R. (2020). Reservoir computing
approaches for representation and classification of multivariate time series. IEEE
transactions on neural networks and learning systems , 32 (5), 2169–2179.

Bianchi, F. M., Scardapane, S., Uncini, A., Rizzi, A., & Sadeghian, A. (2015). Prediction
of telephone calls load using echo state network with exogenous variables. Neural
Networks , 71 , 204-213. doi: https://doi.org/10.1016/j.neunet.2015.08.010

Brockwell, P. J., Brockwell, P. J., Davis, R. A., & Davis, R. A. (2016). Introduction to
time series and forecasting. Springer.

Brownlee, J. (2018). Deep learning for time series forecasting: Predict the future with
mlps, cnns and lstms in python. Machine Learning Mastery.

Brownlee, J. (2019). How to use learning curves to diagnose machine learning model
performance. https://machinelearningmastery.com/learning-curves-for-diagnosing-
machine-learning-model-performance/.

Chernozhukov, V., Fernandez-Val, I., & Galichon, A. (n.d.).
Retrieved from https://doi.org/10.3982 doi: 10.3982/ecta7880

https://www.sciencedirect.com/science/article/pii/S0952197622002573
https://arxiv.org/abs/1803.01271
https://doi.org/10.1007/0-387-25465-X_7
https://www.sciencedirect.com/science/article/pii/S0167947317302384
https://www.sciencedirect.com/science/article/pii/S0167947317302384
https://doi.org/10.3982

Chilimbi, T., Suzue, Y., Apacible, J., & Kalyanaraman, K. (2014). Project adam: Build-
ing an efficient and scalable deep learning training system. In 11th {USENIX}
symposium on operating systems design and implementation ({OSDI} 14) (pp. 571–
582).

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties
of neural machine translation: Encoder-decoder approaches. arXiv. Retrieved from
https://arxiv.org/abs/1409.1259 doi: 10.48550/ARXIV.1409.1259

Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P.
(2020, 02). Introduction to Machine Learning, Neural Networks, and Deep Learning.
Translational Vision Science Technology , 9 (2), 14-14. Retrieved from https://

doi.org/10.1167/tvst.9.2.14 doi: 10.1167/tvst.9.2.14

Cini, A., Marisca, I., & Alippi, C. (2022). Filling the g ap s: Multivariate time series
imputation by graph neural networks. In International conference on learning rep-
resentations. Retrieved from https://openreview.net/forum?id=kOu3-S3wJ7

Cini, A., Marisca, I., Bianchi, F. M., & Alippi, C. (2023). Scalable spatiotemporal graph
neural networks. Proceedings of the 37th AAAI Conference on Artificial Intelli-
gence.

Dang-Ha, T., Bianchi, F. M., & Olsson, R. (2017). Local short term electricity load
forecasting: Automatic approaches. In 2017 international joint conference on neural
networks (ijcnn) (p. 4267-4274). doi: 10.1109/IJCNN.2017.7966396

De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting.
International Journal of Forecasting , 22 (3), 443-473. Retrieved from https://

www.sciencedirect.com/science/article/pii/S0169207006000021 (Twenty
five years of forecasting) doi: https://doi.org/10.1016/j.ijforecast.2006.01.001

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregres-
sive time series with a unit root. Journal of the American statistical association,
74 (366a), 427–431.

Eikeland, O. F., Hovem, F. D., Olsen, T. E., Chiesa, M., & Bianchi, F. M. (2022).
Probabilistic forecasts of wind power generation in regions with complex topography
using deep learning methods: An arctic case. arXiv. Retrieved from https://

arxiv.org/abs/2203.07080 doi: 10.48550/ARXIV.2203.07080

Fornacon-Wood, I., Mistry, H., Johnson-Hart, C., Faivre-Finn, C., P.B. O’Connor, J., &
J. Price, G. (2022). Understanding the differences between bayesian and frequentist
statistics. International Journal of Radiation Oncolgy, Biology and Physics , 112 ,
1076-1082. doi: https://doi.org/10.1016/j.ijrobp.2021.12.011

Frogner, I.-L., Singleton, A. T., Kø ltzow, M. O., & Andrae, U. (2019). Convection-
permitting ensembles: Challenges related to their design and use. Quarterly Journal
of the Royal Meteorological Society , 145 (S1), 90-106. doi: https://doi.org/10.1002/
qj.3525

Garćıa, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining (Vol. 72).
Springer.

Garćıa, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining (1st ed.).
Springer Cham. Retrieved from https://doi.org/10.1007/978-3-319-10247-4

(Published: 11 September 2014 (hardcover), 10 September 2016 (softcover), 30
August 2014 (eBook)) doi: 10.1007/978-3-319-10247-4

Gasthaus, J., Benidis, K., Wang, Y., Rangapuram, S. S., Salinas, D., Flunkert, V., &
Januschowski, T. (2019). Probabilistic forecasting with spline quantile function
rnns. In K. Chaudhuri & M. Sugiyama (Eds.), The 22nd international conference on

https://arxiv.org/abs/1409.1259
https://doi.org/10.1167/tvst.9.2.14
https://doi.org/10.1167/tvst.9.2.14
https://openreview.net/forum?id=kOu3-S3wJ7
https://www.sciencedirect.com/science/article/pii/S0169207006000021
https://www.sciencedirect.com/science/article/pii/S0169207006000021
https://arxiv.org/abs/2203.07080
https://arxiv.org/abs/2203.07080
https://doi.org/10.1007/978-3-319-10247-4

artificial intelligence and statistics, aistats 2019, 16-18 april 2019, naha, okinawa,
japan (Vol. 89, p. 1901-1910). PMLR. Retrieved from http://proceedings.mlr

.press/v89/gasthaus19a.html

Giebel, G., & Kariniotakis, G. (2017). 3 - wind power forecasting—a review of the
state of the art. In G. Kariniotakis (Ed.), Renewable energy forecasting (p. 59-
109). Woodhead Publishing. Retrieved from https://www.sciencedirect.com/

science/article/pii/B9780081005040000032 doi: https://doi.org/10.1016/
B978-0-08-100504-0.00003-2

Glorot, X., & Bengio, Y. (2010, 13–15 May). Understanding the difficulty of training
deep feedforward neural networks. In Y. W. Teh & M. Titterington (Eds.), Proceed-
ings of the thirteenth international conference on artificial intelligence and statistics
(Vol. 9, pp. 249–256). Chia Laguna Resort, Sardinia, Italy: PMLR. Retrieved from
https://proceedings.mlr.press/v9/glorot10a.html

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American
Statistical Association, 106 (494), 746-762. Retrieved from https://doi.org/10

.1198/jasa.2011.r10138 doi: 10.1198/jasa.2011.r10138

Gneiting, T., & Ranjan, R. (2011). Comparing density forecasts using threshold- and
quantile-weighted scoring rules. Journal of Business & Economic Statistics , 29 (3),
411–422. doi: 10.1198/jbes.2010.08110

Goodfellow, I. J., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA,
USA: MIT Press. (http://www.deeplearningbook.org)

Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., & Schmidhuber, J. (2016).
Lstm: A search space odyssey. IEEE transactions on neural networks and learning
systems , 28 (10), 2222–2232.

Gudivada, V., Apon, A., & Ding, J. (2017). Data quality considerations for big data and
machine learning: Going beyond data cleaning and transformations. International
Journal on Advances in Software, 10 (1), 1–20.

Hanifi, S., Liu, X., Lin, Z., & Lotfian, S. (2020, July). A Critical Review of Wind
Power Forecasting Methods—Past, Present and Future. Energies , 13 (15), 1-24.
Retrieved from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3764

-d387902.html

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the ieee conference on computer vision and pattern recognition (pp.
770–778).

Hochreiter, S. (1998, 04). The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems , 6 , 107-116. doi: 10.1142/S0218488598000094

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9 (8), 1735–1780.

Hyndman, R., Koehler, A., Ord, J., & Snyder, R. (2008). Forecasting with exponential
smoothing: The state space approach. Springer Berlin Heidelberg. Retrieved from
https://books.google.no/books?id=GSyzox8Lu9YC

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice.
OTexts.

Jacobsen, M. (2014). Short-term wind power prediction based on markov chain and nu-
merical weather prediction models: A case study of fakken wind farm (Unpublished
master’s thesis). UiT The Arctic University of Norway.

Jamieson, K., & Talwalkar, A. (2015). Non-stochastic best arm identification and hyper-

http://proceedings.mlr.press/v89/gasthaus19a.html
http://proceedings.mlr.press/v89/gasthaus19a.html
https://www.sciencedirect.com/science/article/pii/B9780081005040000032
https://www.sciencedirect.com/science/article/pii/B9780081005040000032
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1198/jasa.2011.r10138
https://ideas.repec.org/a/gam/jeners/v13y2020i15p3764-d387902.html
https://ideas.repec.org/a/gam/jeners/v13y2020i15p3764-d387902.html
https://books.google.no/books?id=GSyzox8Lu9YC

parameter optimization.

Jenkins, G. M. (1970). Time series analysis; forecasting and control [by] george ep box
and gwilym m. jenkins. San Francisco: Holden-Day.

Jensen, V., Bianchi, F. M., & Anfinsen, S. N. (2022). Ensemble conformalized quantile
regression for probabilistic time series forecasting. IEEE Transactions on Neural
Networks and Learning Systems .

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349 (6245), 255–260.

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of recurrent
network architectures. In Proceedings of the 32nd international conference on ma-
chine learning (pp. 2342–2350). Retrieved from https://proceedings.mlr.press/

v37/jozefowicz15.pdf doi: 10.1145/3045118.3045367

Kalchbrenner, N., & Blunsom, P. (2013). Recurrent continuous translation models. In
Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing (pp. 1700–1709). Retrieved from https://aclanthology.org/D13-1176/

doi: 10.1162/WN.2014.36.2.127

Kirchgässner, G., Wolters, J., & Hassler, U. (2012). Introduction to modern time series
analysis. Springer Berlin Heidelberg. Retrieved from https://books.google.no/

books?id=AfBunhJtxqwC

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are we
that economic time series have a unit root? Journal of Econometrics , 54 (1), 159-
178. Retrieved from https://www.sciencedirect.com/science/article/pii/

030440769290104Y doi: https://doi.org/10.1016/0304-4076(92)90104-Y

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the loss landscape of
neural nets. CoRR, abs/1712.09913 . Retrieved from http://arxiv.org/abs/

1712.09913

Li, L., Jamieson, K. G., Rostamizadeh, A., Gonina, E., Hardt, M., Recht, B., & Talwalkar,
A. (2018). Massively parallel hyperparameter tuning. CoRR, abs/1810.05934 .
Retrieved from http://arxiv.org/abs/1810.05934

Lim, B., Arik, S. O., Loeff, N., & Pfister, T. (2020). Temporal fusion transformers for
interpretable multi-horizon time series forecasting.

Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: a sur-
vey. Philosophical Transactions of the Royal Society A, 379 (2199), 20200209. doi:
http://doi.org/10.1098/rsta.2020.0209

Loshchilov, I., & Hutter, F. (2017). Fixing weight decay regularization in adam. CoRR,
abs/1711.05101 . Retrieved from http://arxiv.org/abs/1711.05101

Manwell, J., McGowan, J., & Rogers, A. (2010). Wind energy explained: Theory, design
and application. Wiley. Retrieved from https://books.google.no/books?id=

roaTx Of0vAC

Mashlakov, A., Kuronen, T., Lensu, L., Kaarna, A., & Honkapuro, S. (2021). As-
sessing the performance of deep learning models for multivariate probabilistic en-
ergy forecasting. Applied Energy , 285 , 116405. Retrieved from https://www

.sciencedirect.com/science/article/pii/S0306261920317748 doi: https://
doi.org/10.1016/j.apenergy.2020.116405

Mazzi, N., & Pinson, P. (2017). 10 - wind power in electricity markets and the value
of forecasting. In G. Kariniotakis (Ed.), Renewable energy forecasting (p. 259-
278). Woodhead Publishing. Retrieved from https://www.sciencedirect.com/

https://proceedings.mlr.press/v37/jozefowicz15.pdf
https://proceedings.mlr.press/v37/jozefowicz15.pdf
https://aclanthology.org/D13-1176/
https://books.google.no/books?id=AfBunhJtxqwC
https://books.google.no/books?id=AfBunhJtxqwC
https://www.sciencedirect.com/science/article/pii/030440769290104Y
https://www.sciencedirect.com/science/article/pii/030440769290104Y
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1810.05934
http://arxiv.org/abs/1711.05101
https://books.google.no/books?id=roaTx_Of0vAC
https://books.google.no/books?id=roaTx_Of0vAC
https://www.sciencedirect.com/science/article/pii/S0306261920317748
https://www.sciencedirect.com/science/article/pii/S0306261920317748
https://www.sciencedirect.com/science/article/pii/B978008100504000010X

science/article/pii/B978008100504000010X doi: https://doi.org/10.1016/
B978-0-08-100504-0.00010-X

Mehandzhiyski, V. (2023). What is an arimax model?
https://365datascience.com/tutorials/python-tutorials/arimax/.

Mikalsen, K. Ø., Bianchi, F. M., Soguero-Ruiz, C., & Jenssen, R. (2018). Time series
cluster kernel for learning similarities between multivariate time series with missing
data. Pattern Recognition, 76 , 569–581.

NordPool. (n.d.). Day-ahead market. https://www.nordpoolgroup.com/en/the-power-
market/Day-ahead-market/.

Nowotarski, J., & Weron, R. (2018). Recent advances in electricity price forecasting: A
review of probabilistic forecasting. Renewable and Sustainable Energy Reviews , 81 ,
1548-1568. Retrieved from https://www.sciencedirect.com/science/article/

pii/S1364032117308808 doi: https://doi.org/10.1016/j.rser.2017.05.234

NVE. (2021). Wholesale market: Timeframes. https://www.nve.no/norwegian-
energy-regulatory-authority/wholesale-market/wholesale-market-
timeframes/?ref=mainmenu.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In International conference on machine learning (pp. 1310–1318).

Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression.
Biometrika, 75 (2), 335–346.

Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). Deepar: Proba-
bilistic forecasting with autoregressive recurrent networks. International Journal of
Forecasting , 36 (3), 1181–1191.

Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: with
r examples. Springer.

Smith, T. G., et al. (2017–). pmdarima: Arima estimators for Python. Retrieved from
http://www.alkaline-ml.com/pmdarima ([Online; accessed 11/05/2023])

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with
neural networks. CoRR, abs/1409.3215 . Retrieved from http://arxiv.org/abs/

1409.3215

Svane, J. T. (2022). Wind power forecasting as input to day-ahead trading strategies for
wind in complex terrain (Unpublished master’s thesis). UiT The Arctic University
of Norway.

Taieb, S. B., Bontempi, G., Atiya, A. F., & Sorjamaa, A. (2012). A review and comparison
of strategies for multi-step ahead time series forecasting based on the nn5 forecasting
competition. Expert systems with applications , 39 (8), 7067–7083.

Theodoridis, S., & Koutroumbas, K. (2009). Chapter 2 - classifiers based on
bayes decision theory. In S. Theodoridis & K. Koutroumbas (Eds.), Pattern
recognition (fourth edition) (Fourth Edition ed., p. 13-89). Boston: Academic
Press. Retrieved from https://www.sciencedirect.com/science/article/pii/

B9781597492720500049 doi: https://doi.org/10.1016/B978-1-59749-272-0.50004
-9

TromsKraft. (n.d.). Fakken vindkraftverk. https://www.tromskraft.no/produksjon/kraftverk/fakken-
vindkraftverk.

Tsai, Y. H., Bai, S., Yamada, M., Morency, L., & Salakhutdinov, R. (2019). Transformer
dissection: An unified understanding for transformer’s attention via the lens of
kernel. CoRR, abs/1908.11775 . Retrieved from http://arxiv.org/abs/1908

.11775

https://www.sciencedirect.com/science/article/pii/B978008100504000010X
https://www.sciencedirect.com/science/article/pii/B978008100504000010X
https://www.sciencedirect.com/science/article/pii/B978008100504000010X
https://www.sciencedirect.com/science/article/pii/S1364032117308808
https://www.sciencedirect.com/science/article/pii/S1364032117308808
http://www.alkaline-ml.com/pmdarima
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://www.sciencedirect.com/science/article/pii/B9781597492720500049
https://www.sciencedirect.com/science/article/pii/B9781597492720500049
http://arxiv.org/abs/1908.11775
http://arxiv.org/abs/1908.11775

Tsay, R. S. (2014). Multivariate time series analysis with r and financial applications.
Wiley.

UN, U. N. E. P. (2015). Paris agreement. Retrieved from https://wedocs.unep.org/

20.500.11822/20830

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information pro-
cessing systems , 30 .

Wallace, J., & Hobbs, P. (2006). Atmospheric science: An introductory survey. El-
sevier Academic Press. Retrieved from https://books.google.no/books?id=

k4shngEACAAJ

Wang, Y., Hu, Q., Li, L., Foley, A. M., & Srinivasan, D. (2019). Approaches to wind
power curve modeling: A review and discussion. Renewable and Sustainable En-
ergy Reviews , 116 , 109422. Retrieved from https://www.sciencedirect.com/

science/article/pii/S1364032119306306 doi: https://doi.org/10.1016/j.rser
.2019.109422

Wang, Y., Zou, R., Liu, F., Zhang, L., & Liu, Q. (2021). A review of wind speed
and wind power forecasting with deep neural networks. Applied Energy , 304 ,
117766. Retrieved from https://www.sciencedirect.com/science/article/

pii/S0306261921011053 doi: https://doi.org/10.1016/j.apenergy.2021.117766
Wangensteen, I. (2012). Power system economics - the nordic electricity market (2nd

edition). Fagbokforlaget.
Wright, L., & Demeure, N. (2021). Ranger21: a synergistic deep learning optimizer.

arXiv preprint arXiv:2106.13731 .

https://wedocs.unep.org/20.500.11822/20830
https://wedocs.unep.org/20.500.11822/20830
https://books.google.no/books?id=k4shngEACAAJ
https://books.google.no/books?id=k4shngEACAAJ
https://www.sciencedirect.com/science/article/pii/S1364032119306306
https://www.sciencedirect.com/science/article/pii/S1364032119306306
https://www.sciencedirect.com/science/article/pii/S0306261921011053
https://www.sciencedirect.com/science/article/pii/S0306261921011053

	Abstract
	Acknowledgments
	Abbreviations
	Part I uit/ Introduction
	Motivation
	Research Questions, Proposed Approach, and Contributions
	Thesis Outline

	Part II uit/ Technical Background
	Time Series Forecasting
	Single- and Multi-Step Forecasting
	The role of Covariates
	Time Series Forecasting as a Supervised Learning Problem
	Probabilistic Forecasting
	Frequentist Inference
	Bayesian Inference
	Assessing the quality of probabilistic forecasts

	Time Series Forecasting Models

	Introduction to Machine Learning
	Training a Neural Network
	Network Optimization
	Initialization
	Network Optimization Algorithms
	Residual Connections

	Network Regularization
	Early Stopping
	Dropout
	Weight decay

	Neural sequence processing
	Recurrent Neural Networks
	Vanishing and Exploding Gradients
	Long Short Term Memory (LSTM)
	Sequence to Sequence structure

	Transformer models & The Attention Mechanism
	Scaled dot product Attention
	The Queries, Keys, and Values
	Multi-Head Attention
	Positional encoding

	Wind Power Forecasting for the Electricity Market
	Wind Energy Production
	Power Curve

	The Nordic energy Market
	Elspot: day-ahead trading
	Elbas: intra-day trading
	The Market for Reserves Acquisition

	Introduction to Wind Power Forecasting

	Part III uit/ Proposed Method
	The Operational Framework
	The day-ahead market framework
	The intraday market framework
	Data
	Wind power data
	Meteorological weather data
	On-site weather measurements

	Data Preprocessing
	Data exploration
	Data cleaning
	Missing values imputation
	Data splitting
	Feature scaling

	Wind power forecasting models
	Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting
	Model design
	Encoder
	Decoder

	Baselines
	DeepAR
	ARIMA

	Part IV uit/ Experiments
	Raw data analysis
	Descriptive statistics
	Time series analysis
	Visual inspection
	Autocorellation and Partial Autocorrelation
	Seasonal analysis

	Wind and terrain
	Comparing MEPS forecasts
	Determining dataset split

	Neural Network-based Models
	Hyperparameter configuration
	Regularization
	Network training

	SARIMAX model
	Evaluation Metrics
	Continuous Ranked Probability Score
	p-Risk
	Prediction Interval Coverage Probability

	Experimental Results
	Performance on Individual Datasets
	Performance Discussion
	Network type
	Prediction Intervals

	Part V uit/ Conclusions
	Concluding remarks
	Pytorch Forecasting
	Further work
	References

