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Abstract
1. Differences in botanical diet compositions among a large number of moose fae-

cal samples collected during winter correlated with the nutritional differences 
identified in the same samples (Mantel- r = 0.89, p = 0.001), but the nutritional 
differences were significantly smaller (p < 0.001).

2. Nutritional geometry revealed that moose mixed Scots pine Pinus sylvestris and 
Vaccinium spp. as nutritionally complementary foods to reach a nutritional target 
resembling Salix spp. twigs, and selected for Salix spp. browse (Jacob's D > 0).

3. Available protein (AP) and total non- structural carbohydrates (TNC) were signifi-
cantly correlated in observed diets but not in hypothetical diets based on food 
availability.

4. The level of Acetoacetate in moose serum (i.e. ‘starvation’) was weakly nega-
tively associated with digestibility of diets (p = 0.08) and unrelated to increasing 
AP:TNC and AP:NDF ratios in diets (p > 0.1).

5. Our study is the first to demonstrate complementary feeding in free- ranging 
moose to attain a nutritional target that has previously been suggested in a feed-
ing trial with captive moose. Our results add support to the hypothesis of nutri-
tional balancing as a driver in the nutritional strategy of moose with implications 
for both the management of moose and food resources.
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1  |  INTRODUC TION

Eating per se is easy. All animals do it, and its principal functions 
(e.g. the provision of energy and nutrients for body maintenance, 
thermoregulation, growth and reproduction) are well established. 
However, understanding specific food choices and their drivers has 
remained surprisingly elusive. The quality and quantity of what an 
animal consumes and when and where it eats directly affects its 
condition (Couturier et al., 2009; Felton et al., 2020) and survival 
(Verdolin, 2006), which, in turn, has implications for fitness (Ripple 
et al., 2001) and population dynamics (White, 1983).

The search for food is one of the strongest drivers of ani-
mal movement, from small- scale foraging bouts (Shaw, 2020) to 
large- scale, seasonal migrations (Merkle et al., 2016; van Moorter 
et al., 2021). While herbivores enjoy the advantage of their food 
being immobile, this does not necessarily imply that foraging is an 
easy task. Not only do herbivores have to choose from a plethora 
of different plant species, including potentially toxic ones, they also 
have to deal with such interrelated variables as the spatial distribu-
tion, biomass, morphology and bite size of prospective food plants 
(Parikh et al., 2017; Shipley et al., 1998; Spalinger & Hobbs, 1992; 
Wam & Hjeljord, 2010). Moreover, the chemical properties of differ-
ent plant tissues may vary widely and interact, turning the apparent 
nutritional value of a given food type into a non- fixed parameter 
(Felton et al., 2016; Simpson & Raubenheimer, 2012). Herbivores 
also need to cope with non- dietary risks such as predation and 
weather (Hebblewhite & Merrill, 2011; Hoy et al., 2019), and most 
species are faced with the challenge of large seasonal differences in 
the properties and availability of their forage. Additionally, different 
herbivore species are specialized in different dietary ‘niches’ (e.g. 
European Cervidae, Spitzer et al. (2020)), but still have to fulfil their 
dietary and energetic needs.

Against the backdrop of such complexity, several theories 
have emerged to explain general patterns in the nutritional strate-
gies of herbivores, including energy maximization (Belovsky, 1978; 
Schoener, 1971), protein maximization (Mattson, 1980), limitation of 
dietary fibre (Van Soest, 1994), regulation or limitation of minerals 
(Robbins, 1994), and regulation or avoidance of plant secondary me-
tabolites (Freeland & Janzen, 1974). A recent review of food selec-
tion by northern cervids (Felton et al., 2018) confirmed these food 
constituents as important drivers of food selection, but, crucially, 
found little support for the traditional hypotheses of maximization 
or limitation of any single constituent.

Instead, it is becoming increasingly clear that foraging should 
be viewed as a dynamic process, which involves balancing multiple 
nutrients simultaneously (Simpson & Raubenheimer, 2012). Over 
the past decade, a growing body of evidence in support of this nu-
trient balancing hypothesis has emerged, spanning dozens of taxa 
from slime moulds (Dussutour et al., 2010) to primates (Felton 
et al., 2009; Rothman et al., 2011), and even humans (Raubenheimer 
& Simpson, 2016). The evidence suggests that animals, instead of 
having to individually learn the nutritional properties of potentially 
hundreds of food items and their intrinsic variabilities, have evolved 

nutrient- specific appetites that drive their foraging decisions to-
wards attaining a target balance of a few key macronutrients (typ-
ically protein, carbohydrates and lipids). These appetites and their 
interactions are calibrated by natural selection to such an extent that 
the specific target is determined by the evolutionary, ecological and 
life- history circumstances of the species (Raubenheimer et al., 2022; 
Simpson & Raubenheimer, 2012, 2016).

Nutrients, however, generally do not occur as discrete units that 
an animal can freely choose from. Instead, ‘food packages’ arrive 
with every bite, representing varying combinations of nutrients and 
secondary metabolites (Felton et al., 2021). To achieve a desired tar-
get nutrient balance, animals need to regulate the proportions they 
eat of different food items, which contain nutrients in specific ratios 
(Felton et al., 2021; Parikh et al., 2017).

The Geometric Framework for Nutrition (GFN) is a modelling 
approach, which offers a means of studying the patterns and in-
teractions between different nutrients or other diet constituents 
simultaneously (Simpson & Raubenheimer, 1993, 2012). The central 
principle of the GFN is that the nutritional requirements of an or-
ganism can be expressed graphically as either a point representing 
a given time period or a trajectory within an n- dimensional space, 
where each dimension represents a nutrient or other food constit-
uent. One advantage of the GFN lies in that instead of focusing on 
the precise amount of nutrients in a specific food item, it offers a 
straightforward graphical way of evaluating patterns of balancing 
different nutrients. This makes the GFN especially suited for testing 
the nutrient balancing hypothesis (Simpson & Raubenheimer, 2012). 
The nutritional requirement (or ‘intake target’) can be reached if suit-
able foods are available. Different foods are represented as radials 
(‘nutritional rails’) in the food space, extending outwards from the 
origin of the graph with their slopes corresponding to the balance 
(i.e. the ratio) of nutrients in each food. Foods whose nutritional rails 
intersect with the intake target are considered nutritionally balanced 
as they allow an animal to move directly to its target. Nutritionally 
imbalanced foods do not intersect the intake target and constrain 
an animal to trading- off between eating too little of one nutrient 
against too much of another relative to the intake target, with pos-
sible costs in terms of health and fitness. Nutritionally, complemen-
tary foods are those whose nutritional rails fall on opposite sides 
of the intake target, thereby allowing an animal to reach its intake 
target by mixing the intake of such individually imbalanced foods. 
For a full description of the GFN, see Raubenheimer et al. (2009) and 
Simpson and Raubenheimer (2012).

Among the many species studied in the context of nutritional 
geometry, ruminants are currently greatly underrepresented 
(Raubenheimer et al., 2014). As far as we are aware, moose Alces 
alces is the only ruminant species to which the GFN has been ap-
plied to date. Once in a cafeteria experiment (Felton et al., 2016), and 
twice in studies investigating the diets of free- ranging populations 
in China (Ma et al., 2019) and southern Sweden (Felton et al., 2021). 
Contrary to most other organisms studied using the GFN, moose 
do not seem to leverage a protein intake target but rather keep 
non- protein macronutrients (NPM) constant, thereby resembling 
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mountain gorillas in their patterns of macro- nutrient regulation 
(Raubenheimer et al., 2014).

To test several hypotheses related to nutritional balancing 
(Table 1), we used faecal DNA metabarcoding (Taberlet et al., 2018) 
and chemical analysis of forage plants to reconstruct the botanical 
and nutritional composition of moose winter diets along gradients 
of winter severity and plant species composition in central and 
northern Sweden (Figure 1). Moose are the largest member of the 
family Cervidae, are long- lived capital breeders, and as one of the 
most widespread circumboreal large mammals, a major driver of the 
functioning of boreal forests (Pastor et al., 1988). They are classi-
fied as strict browsers (sensu Hofmann, 1989) that have evolved a 
distinct gut morphology adapted to diets of tree foliage, forbs, bark 
and twigs, but not graminoids (Clauss et al., 2010). Moose in winter 
provide a good model for studying nutrient balancing in wild rumi-
nants since their relatively confined feeding niche, in combination 
with the reduced diversity of available forage plant species, makes 
reconstructing their botanical and nutritional composition from fae-
ces relatively straightforward and economical. Moreover, moose 
are currently the only non- domestic ruminant in which macro- 
nutritional balancing has been experimentally tested in captivity 
(Felton et al., 2016), which provides a basis for hypothesis testing in 
free- ranging moose.

The nutritional composition of plant species can vary widely 
across taxa but can also be quite similar. If moose aim for a particular 
nutritional target as is suggested by the nutrient balancing hypoth-
esis, the most direct way to reach this target would be to forage 
on a food item that already contains the nutrients in the desired 
proportions, that is a nutritionally balanced food. Depending on the 
characteristics of the habitat, such foods might be abundant, rare 
or altogether absent. In case of the latter, the alternative is then to 
combine different complementary foods to reach the nutritional 

target (Simpson & Raubenheimer, 2012). As a result, moose in dif-
ferent habitats could show the same nutritional diet composition 
but arrive there via very different botanical diets (in an extreme ex-
ample via one nutritionally balanced plant species versus multiple 
nutritionally complementary species). Differences in botanical diet 
compositions therefore do not have to correspond to differences in 
the nutritional composition of diets (Hypothesis 1).

In an experimental study using six captive moose, Felton 
et al. (2016) found strong support for the nutrient balancing hy-
pothesis in captive moose. Given free choice and unlimited access 
to high- protein and high- carbohydrate pellets, moose mixed their in-
take during each meal instead of maximizing either protein or carbo-
hydrates. The accumulated trajectory of these non- random intakes 
converged on a nutritional target that closely resembled the nutri-
tional balance of available protein (AP) to NPM (AP:NPM) of willow 
twigs (Salix spp., hereafter simply referred to as Salix). Similarly, in 
free- choice situations after periods of artificially imbalanced feed-
ing, moose consistently returned to this point in nutrient space. 
These behaviours, in particular the complementary feeding, have 
not yet been confirmed in free- ranging moose. Based on the exper-
imental findings of Felton et al. (2016), we expected the observed 
diets of free- ranging moose to resemble the AP:NPM ratio of Salix 
browse (Hypothesis 2) through either feeding on large amounts of 
Salix directly or mixing other food items that would be nutritionally 
complementary for reaching the Salix target.

Evidence for nutritional balancing in free- ranging moose was 
recently reported by Ma et al. (2019) for China and by Felton 
et al. (2021) for a large area in southern Sweden. In the latter case, 
the authors analysed rumen contents and found that moose tightly 
regulated the ratio of AP to total non- structural carbohydrates 
(TNC) plus lipids across different populations and diet types. Based 
on these findings, we hypothesized that the nutritional composition 

TA B L E  1  The hypotheses and predictions tested in this study. Not all predictions could be tested at all study sites. The superscript 
numbers behind each prediction indicate the study sites included in the analyses (1: Montane, 2: Interior Boreal, 3: Coastal- boreal 
Archipelago, 4: Coastal- boreal Mainland, 5: Boreo- nemoral; see also Figure 1). AP refers to available protein, NPM to non- protein 
macronutrients, TNC to total non- structural carbohydrates and NDF to neutral detergent fibre.

Hypothesis Predictions tested Support found Section/figure

1. Botanical differences in diet 
composition do not directly 
correspond to nutritional 
differences

(1a) Pairwise dissimilarities between botanical diet compositions 
are not correlated with the corresponding pairwise 
dissimilarities in macro- nutritional composition of diets1- 5

(1b) Botanical dissimilarity between diets is greater than macro- 
nutritional dissimilarity1- 5

None
Strong

3.1
3.1

2. The nutritional target with 
respect to AP:NPM resembles 
Salix spp. twigs

(2a) The nutritional rail for Salix spp. intersects the average 
observed diet1– 5

(2b) Complementary forage items facilitate reaching the 
Salix- target1– 5

Medium
Strong

Figure 2
Figure 2

3. Macro- nutritional balancing 
occurs most strongly between 
AP and TNC

(3a) The correlation between AP and TNC is stronger in observed 
diets than in average diets based on food availability4,5

(3b) The AP:TNC ratio shows less variation across diets than the 
ratios between AP and other macronutrients1– 5

Strong
None

3.3
Figure 3

4. The starvation signal (use of body 
reserves strategy) is related to 
diet composition

A lower starvation signal corresponds to:
(4a) higher digestibility diets1– - 3

(4b) higher AP:TNC ratios and AP:NDF ratios1– 3

Weak
None

3.4
3.4
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of the moose diets we reconstructed from botanical diet composi-
tions would show a similarly tight relationship between AP and TNC 
(Hypothesis 3).

Lastly, we were interested in assessing relationships between 
moose winter diet compositions and potential starvation responses. 
In highly seasonal environments with prolonged periods of food lim-
itations, animals may adapt to such constraints by reducing meta-
bolic expenditure in combination with foraging and starvation bouts 
(McCue, 2010). Well- established metabolic markers for prolonged 
starvation in animals are ketone bodies (Hall & Hall, 2021; Moyes 
& Schulte, 2008) such as Acetoacetate. Thus, we used the concen-
tration of Acetoacetate in moose serum to investigate whether the 
metabolic state can be linked to diet composition (Hypothesis 4). We 
expected that a lower metabolic signal (less Acetoacetate) would 
be associated with higher digestibility diets (Berteaux et al., 1998; 
Tollefson et al., 2010). Furthermore, Ma et al. (2019) reported that 
during winter in China, moose populations with higher protein diets 

(i.e. higher AP:TNC ratios) showed higher population densities. This 
suggests that increasing ratios of protein to other macronutrients 
(until the nutritional target balance is reached) may be beneficial for 
moose and thus correspond to lower levels of starvation.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites and moose sample collection

Faecal samples from moose were collected during winter at five 
study sites, spanning a latitudinal gradient of approximately 1000 km 
(from 58.95°N, 17.12°E to 67.90°N, 18.87°E, Figure 1).

The Boreal- nemoral and Coastal- boreal Mainland study sites are 
characterized by a mosaic of forests, mires, and agricultural land. 
Common tree species include Scots pine Pinus sylvestris, Norway 
spruce Picea abies, birches Betula spp., willows Salix spp. and poplars 

F I G U R E  1  (a) Location of the five study sites, Montane (M), Interior Boreal (IB), Coastal- boreal Archipelago (CBA), Coastal- boreal 
Mainland (CBM) and Boreo- nemoral (BN). The blue gradient shows the average maximum snow depth in cm according to the Swedish 
Meteorological and Hydrological Institute (available at: www.smhi.se/data/utfor skare n- oppna - data/stors ta- snodj up- medel). (b) Average 
composition of moose winter diets based on relative read abundances (RRA) of 10 MOTUs (molecular operational taxonomic units) 
determined via DNA metabarcoding of faecal samples. Sample sizes are indicated above the bars. The three small pictures on the bottom 
right show characteristic landscapes for the different study sites: mountain birch forests at the Montane site (c), boreal forests of 
predominantly pine and spruce at the Interior Boreal, Coastal- boreal Archipelago and Coastal- boreal Mainland sites (d), and a mosaic of 
forests and fields at the Boreal- nemoral site (e).
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Populus spp. The forest field layer is dominated by ericaceous shrubs 
(primarily from the genera Vaccinium, Calluna and Empetrum), mosses 
and lichens. Agriculture is more dominant at the southernmost 
Boreal- nemoral study site and comprises small-  to medium- scale 
pastoral and arable farms. Main crops are pasture grasses and forbs, 
followed by cereals. In each of the two sites, we used sampling grids 
of 1 x 1 km square transects (11 at the Coastal- boreal Mainland and 
12 at the Boreal- nemoral site, spaced on average 3– 6 km apart) 

to collect moose faecal pellets during the winter months from 
November 2016 to February 2017, and November 2017. We col-
lected fresh faecal samples along the whole length of each transect 
(4 km), leaving at least 200 m between samples to maximize the 
probability of sampling different individuals (i.e. during each round 
of collections, we assumed each faecal sample to represent the diet 
profile of a different individual). We considered faecal samples as 
fresh if they were not covered by snow and still had a shiny surface 

F I G U R E  2  Macro- nutritional composition of moose winter diets in the dimensions of available protein (AP) and non- protein 
macronutrients (total carbohydrates, TCH) at the (a) Coastal- boreal Mainland and (b) Boreo- nemoral study sites. Circles correspond to 
the average observed diet composition, diamonds indicate the average diet composition if the available forage plants had been eaten 
in proportion to their occurrence, and the triangles denote the forage plants averages (i.e. if all forage species had been eaten in equal 
proportions). The error bars show the standard deviation. The colours correspond to the different forage plants with stars indicating the 
lab results for the macronutrient content and lines the resulting nutritional rails (solid lines: ‘preferred’ forages (Jacob's D > 0); dashed lines: 
‘avoided’ forages (Jacob's D < 0)). For better visibility, only four nutritional rails are shown; for the full results see Figure S3.
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(Hemami & Dolman, 2005). From each pellet group, we randomly se-
lected one pellet and stored it at room temperature in a 20 mL scin-
tillation tube with silica desiccant until further processing (Taberlet 
et al., 2018).

Based on Ecoregions 2017 (Dinerstein et al., 2017), we labelled 
the northernmost study sites as Montane, Interior Boreal and 
Coastal- boreal Archipelago. The Montane study site is located in the 
Swedish mountains at approximately 650 m a.s.l. In winter, the area 
is characterized by deep snow. The primary available food source for 
moose is mountain birch Betula pubescens with Salix shrubs, juniper 
Juniperus communis, poplar trees and a few scattered stands of pine 
also occurring. The Interior Boreal site encompasses large tracts of 
boreal forest, dominated by pine and spruce trees. The vegetation at 
the Interior Boreal and Coastal- boreal Archipelago sites is similar to 
the Coastal- boreal Mainland site, except that the deeper snow cover 
(~ 70 cm) prevents moose from accessing the forest field layer, and 
agriculture is largely missing. The Coastal- boreal Archipelago site 
encompasses several islands and is partly located within a national 
park (Haparanda Skärgård). Forestry occurs at the Boreo- nemoral, 
Coastal- boreal Mainland and Interior Boreal sites, but is absent at 
the Montane site and infrequent and small scale at the Coastal- 
boreal Archipelago site.

The sample collection for the three northern study sites is de-
scribed in Fohringer et al. (2021). Briefly, faecal samples were 
collected from the rectum of free- ranging adult moose that were 
captured and released between the winters (February– March) of 
2008 and 2017, which in northern Sweden correspond to winter 
conditions with snow melt rarely starting before mid- May. The fae-
cal samples were placed into 50 mL screw cap tubes and stored at 
−20°C. Whole blood was drawn from the jugular vein of the immo-
bilized animals into 9 mL S- Monovette® Z- Gel collection tubes and 
stored at −20°C. To evaluate the possible effects of sex, body size, 
and age on the diet, we recorded the sex of each individual and mea-
sured total length (TL) as the distance (in mm) from the tip of the 
muzzle to tip of the tail following the contour line. Age was estimated 
based on tooth wear (Ericsson & Wallin, 2001). The moose captures 
and handling were in accordance with ethical permits (A124- 05, 
A116- 09, A50- 12 and A14- 15) granted by the Swedish Animal Ethics 
Committee. All other fieldwork did not require permits.

2.2  |  Food availability and selectivity

We measured food availability alongside the faecal sample collec-
tion on the transects at the Coastal- boreal Mainland and Boreo- 
nemoral sites. Using the step- point method (Coulloudon et al., 1999; 
Evans & Love, 1957), we recorded vegetation hits above the snow on 
a pole within the browsing height stratum of moose (0– 3 m; Nichols 
et al. (2015)) approximately every 40 m (for 100 measurements per 
4 km transect). The vegetation hits are analogous to moose bites and 
can easily be transformed into proportions to provide a quantita-
tive measure of food availability, which can then be compared to the 
proportions of food items in moose diets. To determine selectivity, 

we used Jacobs (1974) index (D), which relates the use of a food item 
(i.e. its proportion in the diet, r) to its relative availability in the en-
vironment (p):

The index ranges from −1 to 1, with negative values indicating 
utilization below relative availability (‘avoidance’) and positive values 
indicating utilization above relative availability (‘preference’); a value 
of zero corresponds to the utilization of a food item in proportion 
to its relative availability. To account for the non- normality of the 
selectivity data, we used Wilcoxon tests to evaluate whether Jacob's 
D for forages differed from zero.

2.3  |  Vegetation sample collection and 
nutritional analyses

We collected twigs from trees and shrubs from 11 plant species: 
grey alder Alnus incana, downy birch (also known as mountain birch), 
silver birch Betula pendula, heather Calluna vulgaris, juniper, Norway 
spruce, Scots pine, aspen Populus tremula, Salix, bilberry Vaccinium 
myrtillus and cowberry Vaccinium vitis- idaea. These species together 
with Trifolium spp. comprised >95% of moose diets across the five 
study sites. For further details, please see Appendix S1.

Vegetation samples were collected to imitate moose browsing, 
that is fresh, unbrowsed twigs were cut from the first 10 cm of tree 
side shoots and from the top of shrubs of several specimens until we 
reached ca. 150 g wet weight. The twig diameter was kept at ≤4 mm 
(Spaeth et al., 2002; Vivås et al., 1991). On subsequent collections, 
sampling locations were slightly offset (~10 m) to avoid sampling re-
active effects to browsing by the plants. Vegetation samples were 
weighed and dried at 60°C for 48 h and then ground using a labora-
tory cutting mill using a 1 mm sieve (Krizsan & Huhtanen, 2013). We 
pooled collected plant material from each species across transects in 
each study area, thereby incorporating between- tree and between- 
transect variation in nutritional content (Felton et al., 2021). The 
nutritional properties used in this study are detailed in Table S1. 
The chemical analyses were performed by the DairyOne Forage 
Laboratory.

2.4  |  DNA metabarcoding and diet data

The DNA metabarcoding process is described in Spitzer et al. (2021). 
In short, DNA extraction and purification was carried out on a 
QIASymphony SP platform using the DSP DNA minikit (Quiagen) ac-
cording to the manufacturer's instructions. We used a universal primer 
for mammals (MamP007 in Giguet- Covex et al., 2014, corresponding 
to primers Mamm02 in Taberlet et al., 2018) to confirm that the field- 
collected faecal pellets originated from moose. To determine the bo-
tanical diet composition, we used the universal primer pair Sper01_F 
& Sper01_R (Taberlet et al. (2018), formerly g/h primers of Taberlet 

D = (r − p)∕ (r + p − 2rp).
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et al. (2007)), which amplify the P6- loop of the trnL intron of chloro-
plasts. After PCR, sequencing was performed on an Illumina HiSeq 
2500 platform. Diet compositions were quantified based on relative 
read abundances of annotated sequences, that is, molecular opera-
tional taxonomic units. For more details, please see Appendix S2. We 
converted botanical diet compositions to nutritional compositions by 
multiplying the proportion of each plant species in a faecal sample by 
its nutritional content (Felton et al., 2016; Ma et al., 2019).

2.5  |  Metabolic ‘starvation’ marker

Biomarkers that indicate starvation responses of individual moose 
included in this study were determined by Fohringer et al. (2021) by 
means of 1H NMR- based metabolomics. Among those biomarkers, 
the authors highlighted elevated concentrations of ketone bodies as 
indicators of late starvation. Elevated concentrations of ketone bod-
ies in serum indicate nutritional ketosis, a metabolic state that occurs 
when reduced carbohydrate resources are available (Hall & Hall, 2021; 
Moyes & Schulte, 2008). Out of the two ketone bodies that the 1H NMR 
analysis by Fohringer et al. (2021) provided, we used Acetoacetate as 
the molecule indicating increased ketone body production in moose.

2.6  |  Hypothesis testing

Of the constituents measured in the forage plants (Table S1), we fo-
cused on AP, lipids, TNC, cellulose and hemicellulose as the macro- 
nutritional components when testing our hypotheses as these 
correspond to the fractions that are metabolizable by moose.

Moose winter diets generally do not differ largely between sexes 
(Felton et al., 2016; Ma et al., 2019). We assessed possible differ-
ences between male and female moose for the three study sites 
where sex was known (Montane, Interior Boreal and Coastal- boreal 
Archipelago). Differences in body size (TL) were tested for each age 
group using t- tests with Bonferroni corrections of p- values. To eval-
uate differences between the sexes in the botanical and nutritional 
diet composition, we calculated pairwise Bray– Curtis dissimilarities 
between individual diets (i.e. faecal samples) and ordinated the re-
sults using non- metric multidimensional scaling (NMDS) (Kartzinel 
et al., 2015). We then tested for dietary differences using permuta-
tional multivariate analysis of variance (perMANOVA) in the R pack-
age vegan (Oksanen et al., 2017; Pansu et al., 2019). All statistical 
analyses were carried out in R version 3.6.1 (R Core Team, 2019) at a 
significance level of alpha = 0.05.

2.6.1  |  Differences in botanical diet composition 
do not directly relate to nutritional differences 
(Hypothesis 1)

To test whether the differences in botanical diet compositions were 
uncorrelated to the nutritional differences (prediction 1a), we first 

constructed two pairwise Bray– Curtis dissimilarity matrices, one for 
the botanical and one for the macro- nutritional diet compositions, 
with each faecal sample representing one diet profile. We then used 
a Mantel test with 999 permutations to evaluate the correlation 
between the two matrices. Bray– Curtis dissimilarities range from 
0 (identical composition) to 1 (no shared items), allowing for direct 
comparisons between dissimilarity matrices. We used a t- test to in-
vestigate whether pairwise dissimilarities were greater for botanical 
diet compositions than for macro- nutritional compositions (predic-
tion 1b).

2.6.2  |  Salix twigs resemble the AP:NPM Target of 
moose in winter (Hypothesis 2)

To test predictions 2a and b (that the nutritional rail for Salix in-
tersects the average observed diets and that reaching the Salix 
target is facilitated by complementary food items), we followed a 
graphical approach using the GFN as in Felton et al. (2016), relat-
ing the proportion of AP in observed moose diets to the propor-
tion of NPM.

The pellets and Salix twigs used in the original experimental 
feeding trial by Felton et al. (2016) showed fairly constant lipid 
values of ~2%, which is much less variation compared to what we 
found across the forage plant species in our study (Table S3). We 
suspect the high lipid levels of conifers to partially result from non-
digestible cuticular waxes and resin oils. For our results to be more 
comparable to the feeding trial, we therefore excluded lipids from 
the NPM fraction, which thus corresponded to total carbohydrates 
(TCH = TNC + hemicellulose + cellulose).

2.6.3  |  Macro- nutritional balancing occurs most 
strongly between AP and TNC (Hypothesis 3)

Using the data from the two study sites where food availability 
had been measured (Coastal- boreal Mainland and Boreo- nemoral, 
Figure S4), we evaluated whether AP and TNC were more strongly 
correlated in the observed diets than in hypothetical diets propor-
tional to food availability (prediction 3a). To test the strength and 
significance of the correlations, we used Pearson's product moment 
correlation coefficient.

To test the second prediction (3b) that the AP:TNC ratio would 
be less variable than the ratios between AP and the other macronu-
trients (cellulose, hemicellulose and lipids), we calculated the coeffi-
cient of variation in percent (%CV = SD/mean*100) for those ratios 
from diet compositions at all five study sites. Since the %CV relates 
the standard deviation to the mean of a given dataset, it is a suit-
able metric for direct comparisons across datasets but corresponds 
to only a single value. To evaluate the variation associated with the 
%CV, we used a bootstrap approach and resampled the data for 
each study site with replacement prior to calculating the %CV. We 
repeated this procedure 1000 times for each site.
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2.6.4  |  The starvation signal (use of body reserves 
strategy) is related to diet composition (Hypothesis 4)

We used the relative concentration of Acetoacetate as the response 
variable in generalized linear models (gaussian family) set to test our 
predictions that a lower starvation signal corresponds to higher di-
gestibility diets (prediction 4a; predictor: IVT- digestibility; Table S1), 
and higher ratios of AP:TNC and AP:NDF (predictions 4b). The predic-
tions for Hypothesis 4 could only be tested for the study sites where 
blood samples were analysed for Acetoacetate, that is at the Montane, 
Interior Boreal and Coastal- boreal Archipelago sites. To account for 
a possible area effect, study site was included as a covariate in the 
models, and we estimated both its direct effect and that of the inter-
action with the main predictors on the response. To assure normality, 
we Tukey- transformed the response variable using the transformTukey 
function from R package rcompanion (Mangiafico, 2020).

3  |  RESULTS

In total, 349 faecal samples from moose were successfully ampli-
fied to reveal the diet composition (Figure 1b, Table S2). We found 
large differences in botanical diet composition across the five study 
sites. At the Montane site, moose diets were dominated by mountain 
birch and Salix, whereas the Interior Boreal diets consisted almost 
completely of pine. At the Coastal- boreal Archipelago site, diets 
were diverse, consisting of approximately 50% pine, with the other 
half composed of birch, willow, poplar, juniper and relatively large 
amounts (~10%) of alder. At these three most northerly sites, dwarf 
shrubs such as Vaccinium spp. (corresponding mostly to bilberry and 
cowberry [see Appendix S2], hereafter referred to as Vaccinium) 
were largely absent due to the deep snow, whereas Vaccinium 
shrubs comprised ca. 50% at the Coastal- boreal Mainland and 20% 
at the Boreal- nemoral sites. Boreal- nemoral diets showed the high-
est amount of spruce in moose diets (~5%), a conifer that is usu-
ally avoided by moose (Cederlund et al., 1980). The corresponding 
macro- nutritional diet compositions were less distinct (Figure S1). 
The results of the nutritional analyses for the moose forage plants 
are presented in Table S3. Most of the macro- nutrients were not 
significantly correlated, except for cellulose and TNC (Pearson's 
r = −0.70, p = 0.016; Table S4).

TL between male and female moose differed only at ages four 
(xTLm = 280 cm ± 7 SD; xTLf = 266 cm ± 11 SD; p < 0.001) and five 
(xTLm = 285 cm ± 7 SD; xTLf = 270 cm ± 9 SD; p < 0.001). NMDS 
and perMANOVA revealed differences in diet composition be-
tween the sexes only at the Interior Boreal study site (botanical: 
stress = 0.09; perMANOVA, pseudo- F1,153 = 4.92, p = 0.008; nutri-
tional: stress = 0.02; perMANOVA, pseudo- F1,153 = 5.81, p = 0.012) 
but not for the Montane and Coastal- boreal Archipelago sites. These 
differences resulted from males consuming slightly larger amounts 
of pine than females (xm = 93% ± 9 SD, xf = 87% ± 15 SD; Welch's 
t- test with Bonferroni correction, p = 0.034). The corresponding 
mean proportions for AP, cellulose, hemicellulose, TNC and lipids 

were nearly identical for the sexes, but the variance was higher in 
females for cellulose (Levene's test, p = 0.033) and lipids (Levene's 
test, p = 0.045).

3.1  |  Differences in botanical diet composition 
do not directly relate to nutritional differences 
(Hypothesis 1)

We found no support for the prediction that dissimilarities in bo-
tanical diet composition would be unrelated to macro- nutritional 
composition (prediction 1a). The Mantel test showed a strong cor-
relation between the Bray– Curtis pairwise dissimilarity matrices of 
botanical and macro- nutritional diet compositions (Mantel- r = 0.89, 
p = 0.001). Despite this correlation, the differences among botanical 
diet compositions (mean Bray– Curtis dissimilarity: 0.53 ± 0.35 SD) 
were significantly greater than among the corresponding macro- 
nutritional differences (mean Bray– Curtis dissimilarity: 0.13 ± 0.09 
SD; Welch's t- test: t = 269.15, p < 0.001), which aligns with our pre-
diction 1b.

3.2  |  Salix twigs resemble the AP:NPM Target of 
moose in winter (Hypothesis 2)

We found support for prediction 2a at three of the five study sites. 
The nutritional rail for Salix (the presumed nutritional target) inter-
sected the average observed diet at the Coastal- boreal Mainland 
and Montane sites and came close to intersecting the average 
observed diet at the Boreal- nemoral site (Figure 2 and Figure S5). 
This suggests that Salix represents a nutritionally balanced food 
for moose in winter and supports experimental findings by Felton 
et al. (2016). Pine and Vaccinium on their own appear to be nutri-
tionally imbalanced with respect to AP and NPM as their nutritional 
rails do not intersect the Salix intake target and the observed diets. 
They are, however, nutritionally complementary, that is moose can 
reach their target by combining their intake from these two foods, 
which supports prediction 2b. Pine was preferred by moose at both 
study sites, whereas Vaccinium was preferred at the Coastal- boreal 
Mainland site but underutilized at the Boreo- nemoral site; Salix was 
preferred at the Coastal- boreal Mainland site and consumed slightly 
above availability at the Boreo- nemoral site (Figure S2).

The observed average diets did not intersect the Salix target at 
the Coastal- boreal Archipelago and Interior Boreal sites (Figure S5), 
with the observed diets at the latter site being the most distant from 
the Salix target (Figure S6).

3.3  |  Macro- nutritional balancing occurs most 
strongly between AP and TNC (Hypothesis 3)

AP and TNC were significantly correlated in the observed diets 
(Coastal- boreal Mainland: r = −0.75, p < 0.001; Boreal- nemoral: 
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r = −0.99, p < 0.001) but not in the diets based on food availabil-
ity (Coastal- boreal Mainland: r = 0.11, p = 0.69; Boreal- nemoral: 
r = 0.23, p = 0.41), which supports prediction 3a. We did not find 
support for the prediction (3b) that the variation of the AP:TNC ratio 
would be less than the ratios between AP and other macronutri-
ents; the coefficient of variation was either similar or higher than 
that of other AP:Macronutrient ratios. No consistent pattern for any 
AP:Macronutrient ratio was found across the study sites (Figure 3).

3.4  |  The starvation signal (use of body reserves 
strategy) is related to diet composition (Hypothesis 4)

We found weak evidence for prediction 4a. After controlling for the 
area effect, there was no significant negative relationship between 
digestibility and the levels of Acetoacetate in serum (F[1227] = 3.05, 
p = 0.08) but the low p- value suggests that such an effect might exist. 
We found no support for the predictions under 4b; after controlling 
for the area effect, there was no significant effect of the AP:TNC 
ratio (F[1227] = 0.82, p = 0.37) or the AP:NDF ratio (F[1227] = 1.52, 
p = 0.22) on the levels of Acetoacetate in serum. Acetoacetate lev-
els were similarly low in moose with diets that contained more than 
30% of either pine or birch and the highest in moose whose diets 
contained high proportions of Salix (Figure S7).

4  |  DISCUSSION

Using faecal DNA metabarcoding and chemical analyses of for-
age plants, we assembled a thorough account of the botanical and 
nutritional composition of moose winter diets over a large area in 
Sweden. Our results were consistent with a number of predictions 
arising out of four general hypotheses related to nutrient balancing 
but were inconsistent with others.

4.1  |  Differences in botanical diet composition 
do not directly relate to nutritional differences 
(Hypothesis 1)

Contrary to our prediction, the more diets differed in their botanical 
composition, the more they also differed in nutritional composition. 
However, on average, the dissimilarities between nutritional diet 
compositions were much lower than dissimilarities between botani-
cal compositions. In winter, the diversity of available food items can 
be much reduced, which restricts the food space in which an ani-
mal can manoeuvre. For example, at the Montane study site, diets 
consisted almost completely of mountain birch, and of pine in the 
interior boreal diets. In both instances, this was probably due to the 
low availability of alternative food resources. Under such conditions, 
the difference in botanical diet composition would directly correlate 
with the nutritional differences between birch and pine. It would 
therefore be interesting to repeat our analyses using summer diets, 

when the full botanical and nutritional diversity of plants is available 
to foraging moose.

4.2  |  Salix twigs resemble the AP:NPM target of 
moose in winter (Hypothesis 2)

Geometric analysis of the moose diets supported our prediction that 
moose would aim for a nutritional target that corresponds to the 
AP:TCH ratio of Salix as had been suggested by the results from feed-
ing trials reported in Felton et al. (2016). At the Coastal- boreal main-
land and Boreo- nemoral sites where Vaccinium was accessible due 
to low snow depth, moose mixed pine and Vaccinium in their diets. 
These two food items fall on opposite sides of the Salix target, which 
makes them nutritionally complementary. These results suggest 
that if Salix were more abundantly available, moose might directly 
increase Salix in their diets instead of mixing pine and Vaccinium. This 
could reduce the intake of pine, which would contribute to mitigat-
ing the moose- forestry conflict over pine damage in Sweden under 
the prerequisite that moose numbers are kept constant. Recent find-
ings by Felton et al. (2022) lend support to this hypothesis.

Vaccinium was preferred by moose at the Coastal- boreal 
Mainland site but scored as avoided at the Boreo- nemoral site. This 
may be linked to feeding competition from smaller deer species such 
as fallow deer, which are more abundant at the Boreo- nemoral site 
(Spitzer et al., 2021). Competition over complementary foods may 
thus influence macronutrient balancing in moose.

At the sites where Vaccinium shrubs were not accessible due 
to deep snow, moose still combined high AP:TCH ratio pine with 
lower ratio browse but, on average, were not able to reach the Salix 
target. This does not necessarily carry negative costs as nutrient 
balancing can also occur over longer periods of time (Simpson & 
Raubenheimer, 2012). Longer- term studies throughout the year are 
needed to better understand nutrient balancing in moose, particu-
larly regarding their rules of compromise. We also caution against 
valuing forage items solely based on their AP:TCH ratios. For exam-
ple, moose could gain a ratio similar to the target by eating abun-
dantly available spruce and birch as is illustrated by the hypothetical 
diet based on food availability, which came close to the observed 
diets at the Coastal- boreal Mainland and Boreo- nemoral sites. Both 
birch and spruce, however, were consumed in lower proportions 
than pine and Vaccinium at those sites and scored as ‘avoided’ on 
the selectivity index. Birch was the least digestible of all analysed 
food items. Perhaps combining more digestible pine and Vaccinium 
to reach the Salix target is a better strategy for moose than simply 
eating more birch. Moreover, it is possible that plants with a suitable 
AP:TCH ratio contain other components such as plant secondary 
metabolites which render them less palatable for moose. Spruce, 
which is typically avoided by moose (Cederlund et al., 1980), contains 
higher concentrations of phenolics than pine (Shipley et al., 1998). 
For example, Duncan et al. (1994) showed that the total concentra-
tion of monoterpenes in the needles of Sitka spruce Picea sitchen-
sis had a significant negative influence on the amount of browsing 
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by red deer. Clearly, the picture of nutrient balancing in moose is 
more complex than the AP:TCH ratio and requires further investiga-
tion. An implication for the management of moose food resources is 
that nutritionally complementary forage plants should be managed 
synchronously.

4.3  |  Macro- nutritional balancing occurs most 
strongly between AP and TNC (Hypothesis 3)

Similar to Felton et al. (2021, using moose rumens), our data showed 
significant correlations between AP and TNC in observed diets but 
not in the diets reconstructed based on food availability. This pro-
vides further evidence for nutritional balancing in wild moose, es-
pecially since AP and TNC were not correlated across the different 
forage plants. Contrary to our expectations, however, the variation 
of the AP:TNC ratio in diets across the study sites was not consist-
ently lower than the ratios of AP to other macronutrients. In some 
respects, our data are not directly comparable to Felton et al. (2021). 
In their study, the authors investigated moose diets in southern 
Sweden, where winter is less severe, the variety of available for-
ages higher, and supplementary feeding more frequent and inten-
sive. Moreover, the nutritional composition of rumen content differs 
from the composition of the plant material eaten due to transfor-
mations in the rumen (Van Soest, 1994). Retention time of forage 
particles in the digestive tract of ruminants depends on particle size 
and density (Clauss et al., 2011). In moose, rumen content largely 
represents 1 or 2 days (on average ca. 31 h; Schwartz et al., 1988), 
whereas faecal pellets may reflect longer- term diet compositions 
spanning about two (Schwartz et al., 1988) to a maximum of 10 days 
(Hjeljord et al., 1982). Despite these differences, our findings sup-
port the view that balancing carbohydrates may be more important 
for moose (and perhaps other ruminants) than for monogastric ani-
mals, possibly resulting from the need to maintain suitable rumen 
conditions (e.g. pH levels) for the rumen microflora. It would be 
desirable for future studies to focus on the consequences different 
communities of rumen microflora can have on the geometric pat-
terns of nutritional regulation.

4.4  |  The starvation signal (use of body reserves 
strategy) is related to diet composition (Hypothesis 4)

Analyses were limited to the three most northerly sites where blood 
samples had been studied (Montane, Boreal and Coastal- boreal 
Archipelago). Food choices in these areas were more limited than 
further south and the gradient in the digestibility of available forage 
might not have been strong enough to make a difference. This may ex-
plain why we found only weak statistical support for the relationship 
between food digestibility and the starvation index. Our data also did 
not quantify the overall amount of food intake, which may be more 
influential on the level of starvation than diet composition or qual-
ity. Foraging herbivores sometimes also behave counterintuitively. 

For example, it has been shown that large herbivores faced with 
poor quality food do not simply compensate by increasing intake, but 
instead draw on their body reserves until food of higher quality be-
comes available (Meyer et al., 2010). It is possible that under harsh 
winter conditions, reduced metabolic rate (Græsli et al., 2020) and 
limited food variety at the northernmost study sites, moose foraged 
less selectively than further south. The high Acetoacetate levels in 
Salix- dominated diets were surprising because most results point to 
Salix as an especially suitable winter forage for moose. This may have 
resulted from wintering at locations where Salix was the most accessi-
ble forage but available only at low biomass, causing moose as capital 
breeders to heavily rely on their body reserves for energy. Another 
but less likely explanation could be that the individuals that had pri-
marily fed on Salix (as revealed by analysis of their faecal samples) may 
have been near critical levels of starvation (for reasons unknown) and 
may then specifically have sought out Salix as the highest quality food 
available in an effort to improve their condition.

5  |  CONCLUSIONS

Our results provide further evidence for nutrient balancing in wild 
ruminants. Across a large spatial gradient moose showed very vari-
able botanical diet compositions but much reduced differences in 
the nutritional composition of observed diets. Using the GFN, we 
found evidence that free- ranging moose in winter appear to mix two 
nutritionally complementary foods, pine and Vaccinium, to reach an 
intake target corresponding to the AP:TCH ratio of Salix.

The correlation between AP and TNC highlights the potential 
importance moose seem to assign to the balancing of non- structural 
carbohydrates. It would be interesting to investigate whether this 
pattern is linked to maintaining suitable conditions for the commen-
sal rumen microbiome and whether it is consistent across the sea-
sons and other ruminant species.

Food digestibility was only weakly negatively associated with 
Acetoacetate levels in serum (i.e. ‘starvation’). It would be informa-
tive to test whether the relationship would be stronger when using 
actual moose rumen fluid.

We found no link between higher protein diets and level of star-
vation, which further suggests that protein may not be the priori-
tized macro- nutrient in moose diets. Nutrient balancing can occur 
in the context of different life- history objectives and depend on 
specific site conditions. It would be interesting to explore whether 
the patterns of macronutrient balancing that we observed during the 
winter also apply to other seasons and to moose outside of Sweden.

Lastly, we highlight the importance of identifying nutritionally 
complementary food plants for moose and other wild ruminants for 
forest and wildlife management and suggest that such foods should 
be managed synchronously.
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