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Abstract

There is growing evidence that gene expression profiling of peripheral blood cells is a valuable tool for assessing gene
signatures related to exposure, drug-response, or disease. However, the true promise of this approach can not be estimated
until the scientific community has robust baseline data describing variation in gene expression patterns in normal
individuals. Using a large representative sample set of postmenopausal women (N =286) in the Norwegian Women and
Cancer (NOWAC) postgenome study, we investigated variability of whole blood gene expression in the general population.
In particular, we examined changes in blood gene expression caused by technical variability, normal inter-individual
differences, and exposure variables at proportions and levels relevant to real-life situations. We observe that the overall
changes in gene expression are subtle, implying the need for careful analytic approaches of the data. In particular, technical
variability may not be ignored and subsequent adjustments must be considered in any analysis. Many new candidate genes
were identified that are differentially expressed according to inter-individual (i.e. fasting, BMI) and exposure (i.e. smoking)
factors, thus establishing that these effects are mirrored in blood. By focusing on the biological implications instead of
directly comparing gene lists from several related studies in the literature, our analytic approach was able to identify
significant similarities and effects consistent across these reports. This establishes the feasibility of blood gene expression
profiling, if they are predicated upon careful experimental design and analysis in order to minimize confounding signals,
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artifacts of sample preparation and processing, and inter-individual differences.
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Introduction

There is growing evidence that transcriptome analysis of
peripheral blood cells is a valuable tool for determining signatures
related to disease [1-5] and drug-response [6]. Differences in blood
gene expression may also reflect the effects of a particular exposure,
such as smoking [7], metal fumes [8], or ionizing radiation [9]. In our
previous research, we studied gene expression profiles from whole
blood related to hormone therapy (HT) use in postmenopausal
women [10] and identified specific challenges raised by inter-
individual variability when isolating signals associated with defined
exposure levels. Although blood gene expression profiling promises
molecular-level insight into disease mechanisms, there remains a lack
of baseline data describing the nature and extent of variability in
blood gene expression in the general population. Characterizations of
this variation and the underlying factors that most influence gene
expression amongst healthy individuals will play an important role in
the feasibility, design and analysis of future blood-based studies
investigating biomarkers for exposure, disease progression, diagnosis
or prognosis [11].

Several studies [12-18] have reported that technical variables
such as collection, transportation, storage of blood samples, RNA
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1solation method and choice of microarray platform, in addition to
biological effects, can influence gene expression profiles. These
technical factors associated with the processing and preparation of
human blood and subsequent microarray hybridization represent
significant challenges in the analysis of variability.

Furthermore, a few previous studies have used microarrays to
analyze blood from healthy volunteers and found that inter-individual
sample variation was associated with sex [18], age [13,18], the time of
day the sample was taken [18,19], and the proportion of the different
cell populations comprising the blood sample [13,18,20]. However to
date, all such studies have focused on gene expression profiles
generated from a small set of samples not representative of the general
population using different blood cell subtypes. For several reasons
including the small sample sizes, these studies have been restricted to
the analysis of a small number of variables simultaneously, thus
ignoring possible interaction and confounder effects.

Finally, an understanding of these causes of variability would
represent a significant step forward in the identification and
evaluation of the disease and disease risk biomarkers. Most if not
all genes are involved in molecular pathways that provide
mechanistic insight in response to exposure or disease develop-
ment. Pathway depictions are wusually simplified, ignoring
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Author Summary

As a major defence and transport system, blood cells are
capable of adjusting gene expression in response to
various clinical, biochemical, and pathological conditions.
Here, we expand our understanding about the nature and
extent of variation in gene expression from blood among
healthy individuals. Using a large representative sample of
postmenopausal women (N=286) in the Norwegian
Women and Cancer (NOWAC) postgenome study, we
investigated blood gene expression changes due to
normal inter-individuality (age, body mass index, fasting
status), and exposure variables (smoking, hormone ther-
apy, and medication use) at proportions and levels found
in real life situations. Host genes were found to vary by
inter-individual (i.e. fasting, BMI) and exposure (i.e.
smoking) factors, and these gene lists may be used as a
basis for further hypothesis development. Our study also
establishes the feasibility of blood gene expression
profiling for disease prediction, diagnosis, or prognosis,
but underscores the necessity of care in study design and
analysis to account for inter-individual differences and
confounding signals.

interactions with other pathways, and we often have incomplete
knowledge about the specific interplay of the many elements in
almost any particular system.

Using a large representative sample set of postmenopausal
women in the Norwegian Women and Cancer (NOWAC)
postgenome study [21,22] processed via a standardized blood
collection procedure and via an experimentally validated micro-
array platform [23], we investigate here the baseline variability of
whole blood gene expression profiles. This represents the first
comprehensive cross-sectional analysis of blood gene expression
changes related to multiple inter-individual and exposure
variables, and opens the new research discipline of systems
epidemiology [24]. In this setting, we investigated blood gene
expression changes due to technical variability, normal inter-
individuality, and exposure variables at proportions and levels
relevant to real life situations, and establish that these effects are
mirrored in the blood transcriptome.

Results

Study design

Population characteristics. Characteristics of women
included in the analyses are described in Table STA. Most of
the women were non-smokers, not using HT, and 41.8% were not
using any other medication (MED). In average, smokers consumed
2.8 cigarettes (sd 3.8) before blood sampling and 10.2 cigarettes (sd
6.3) the day before. The mean body mass index (BMI) was
25.6 kg/ m? (SD 4.2) with most women either of normal BMI
(51.7%) or overweight/obese (45.8%). Women in our study range
from 48 to 62 years of age (mean 55.7; SD 3.6). Age was
significantly associated with smoking (Chi-square p-value =0.01).

Data analysis strategy. Using the data analysis strategy
outlined in Figure 1, three among eight reported technical variables
found significant in multivariate global analysis of covariance
(ANCOVA) [25] (Figure 1A), as well as three biological (age, body
mass index, fasting status), and three exposure variables (smoking,
HT and MED) were included in the forward-backward variable
selection by the mixed linear model run for each probe (Figure 1B).
Additionally, as an interaction between HT and MED use was
significant in the blood expression profiles, we also mncluded an
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interaction variable to account for this in our model. Since model
selection based on Bayesian information criterion (BIC) does not take
into account issues of multiple testing, we filtered the gene sets based
on the z-score value from global test [26] and set a threshold which
maximizes the discovery of true positives (weight =2) versus false
positives (weight = 1) associated to each variable (Figure 1D). The z-
score obtained from the global test [26] is a useful analytical tool to
reduce probes that have previously been found differentially
expressed to a core set by estimating the contribution of each
probe to the overall measure of association for this set to a specific
variable. Throughout this report, we refer to probes filtered by global
test z-score more likely to be true positives as core probes. We applied
functional clustering via the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) [27] (http://david.abcc.nciferf.
gov/) and gene network predictions via HEFalMp [28] (http://
function.princeton.edu/hefalmp) to the resultant core gene list for
each phenotype, in order to identify molecular pathways and
processes that are variable across our panel of healthy subjects
(Figure 1E).

As a complementary approach (Figure 1C), we curated gene sets
from published articles focusing on normal variability in blood or
gene expression profiles related to exposure, and subsequently
conducted gene set enrichment analysis via the global test [26]. In
total, 42 such gene sets were identified from 14 published papers
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [29] (Table S2).

Investigation of baseline variation in gene expression
changes in blood

Global analysis of covariance. We investigated the effects of
technical variability by searching for associations between the global
blood gene expression profiles and eight reported technical variables
(Table S1B) that catalog day-to-day RNA processing, RNA/cRNA
purity and concentration. All technical variables were highly
significant in the univariate global ANCOVA [25] but three
variables (i.e. array lot number, RNA extraction date, time between
blood collection and freezing) remain significant the multivariate
analysis with permuted p-value less than 0.0001 (Table S3).

EigenR2 analysis and probe sets variability. Via an eigenR2
analysis [30] which is a high-dimensional version of the classic R2
statistic, we estimated that the three above-mentioned technical
variables and the six biological/exposure variables explained 46.5%
and 8.1% of the overall variation in gene expression, respectively.
These results suggest that the contributions of technical variability
result in a level of random noise which is deemed to be high for this
large sample set even after standard normalization.

Under gene-wise linear model selected by BIC criterion, each
probe was found to be associated with 3.4 variables on average
(total 10 wvariables considered, SD 1.2). As complementary
analysis, we considered only those probes that were uniquely
associated with a single variable to capture specific signals related
to one biological variable. However, since most probes (77%)
showed expression patterns that associate with array lot, we did
not filter probes from this subsequent analysis if they were
associated with this technical variable. Throughout this report, we
refer to probes that meet this criterion as biologically uniquely
associated with a variable of interest (Table S4).

Investigation of variation in gene expression changes in

blood associated with biological and exposure variables

Molecular effects of smoking mirrored in blood. Gene-
wise mixed linear analysis identified 3,024 probes related to
smoking of which 98.1% are core probes (FDR =0.01; Table 1).
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Figure 1. Schematic representation of data analysis.
doi:10.1371/journal.pgen.1000873.g001

Via DAVID, we identified several biological processes significantly
over-represented in the smoking-associated set of genes (Table 2)
including enrichments for “rhodopsin-like, G protein coupled
receptor activity” (DAVID cluster of 5 biological processes,
median FDR=1.60 10~°% Table 2) and “olfactory receptor
activity, sensory perception of smell/chemical stimulus” (DAVID
cluster of 6 biological processes, median FDR=0.46%,
Table 2). Two sub-endothelial adhesive proteins (fibronectin
and thrombospondin, Table 2) were significantly deregulated by
smoking. Finally, specific (e.g. monoamine oxidoreductase activity)
as well as more general processes (e.g. substrate-specific/ion trans-
membrane transporter activity and receptor activity) were
significantly enriched in the smoking-associated genes (Table 2).
When investigating core genes biologically uniquely associated by
smoking (N =174; Table S4), we identified one consistent
significant enrichment in “oxidoreductase activity acting on
NADP)H” (DAVID cluster of 5 biological processes, median
FDR =2.65%). The genes biologically uniquely up-regulated in
non smokers includes ARHGEFI9 encoding a Rho GTPase
mvolved in regulation of small GTPase and signal transduction
processes.
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Gene network prediction

HEFalMp (http://function.princeton.edu/hefalmp)

Table 1. Gene-wise linear analysis conducted for each probe
(N=16185) and global test z-score filtering conducted for
gene sets associated to each biological variable.

Gene-wise linear Global test z-score

analysis filtering
N of preselected

N probes probes (FDR)
Age class 40 36 (0.01)
Fasting 13,611 269 (0.23)
Body mass index class 3,098 678 (0.20)
Smoking 3,024 2966 (0.01)
Use of medication (MED) 8,636 1302 (0.20)
Hormone therapy use (HT) 5,739 538 (0.21)
Interaction HT*MED 1,807 1245 (0.10)

doi:10.1371/journal.pgen.1000873.t001
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Seventeen of the 42 curated gene sets were found to be
significantly enriched (FDR<C0.02) in our dataset with respect to
smoking status (Table 3). Two studies [7,31] have previously
investigated exposure effect of smoking on blood gene expression
and identified two signatures overlapping by only a single gene. In
our dataset, 34 and 19 probes on our microarray could be
matched to the 26-gene and 17-gene signatures from [7] and [31],
respectively. Both of the gene sets induced the most significant
enrichment scores associated with smoking status (Table 3). The
comparative p-value indicates that only 0.2% and 8.2% respec-
tively of random gene sets of the same size as the two signatures
would have a larger standardized test statistic. In the first gene set
[7], we identified the 13 core genes constitutive of a gene network
predicted by HEFalMp involved in response to wounding, acute
inflammatory response and cell chemotaxis (Figure S1). Other
curated gene sets were significantly enriched according to smoking
status with a FDR <0.02 and comparative p-value <0.50. In non-
smokers, two gene sets related to growth factor and stress response
signaling due to exercise [32] were up-regulated (Table 3). Several
signatures of blood cell subtype were significantly enriched with
respect to smoking status. In particular, monocyte-specific genes
were up-regulated whereas red blood cell- and natural killer cell-
specific genes were down-regulated in smokers [18]. The seven-
gene signature related to age [13] was enriched with smoking
status in our dataset, as were two hormone-related gene sets
[10,33]. Using the core genes of these two hormone-related gene
sets up-regulated in non smokers, HEFalMp revealed a gene
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Table 2. Functional enrichment of core probes associated with smoking status in gene-wise mixed linear model based on BIC
criterion and filtered based on global test z-score (N =2966).
Functional GO Median Median Fold Median
cluster terms (N)  Keywords Genes p-value Enrichment  FDR (%)
Group 1 5 Rhodopsin-like, G protein GPR92, P2RY6, P2RY11, UTS2R, GPR75, 4.18E-08 1.88 7.02E-05
coupled receptor activity GPR35, GNAO1, OR2W3, GNAQ, OPRD1,
PLCD3, TBXA2R, OR2B11, GPR56, GNAT1,
OR8S1, MRGPRD, GPR171, OR1D5,
OR10H5, OR4A47, OR51G1, PLCD1, ADRB1
Group 2 7 Olfactory receptor activity, sensory OR7A17, OR2W3, OR8A1, OR2B1, OR8S1, 2.28E-04 213 0.40
perception of smell/chemical stimulus OR13J1, OR4D1, OR6B2, OR3A2, OR10H]1,
OR2A14, OR1D5, OR7C2, OR6N1, ORI1LS,
OR5L1, OR10H5, OR9G1, OR4M1, OR4A47,
OR51G1, OR2H2, OR2L2
Group 3 3 Fibronectin, type Il NPHS1, TRIM67, IL27RA, SDK1, EGFLAM, 4.99E-04 2.08 0.94
IGSF9B, IGF1R, ELFN2, MERTK, IL7R, EPHA4,
LRRN3, DSCAM, LOC221091, NOPE, IL12RB2,
PHYHIPL, IL4R, ROBO4, IFNART, ILT1RA,
EPHAT, LRFNT
Group 4 3 Receptor activity, molecular/signal ASGR1, ITGA10, P2RY6, P2RY11, UTS2R, 8.99E-03 1.16 14.7
transducer activity PTCHD2, GPR75, OR2W3, PRKCG, MEDS,
OR2B11, TNFRSF25, PRKCZ, TRPV4, KIR2DS4,
OR8S1, MRGPRD, FGFR2, GPR171, OR10H5,
IGSF10, LILRB4, EPHAT, ILDR1
Group 5 4 Substrate-specific/ion transmembrane SLC6A17, KCNMAT, SEC61B, AKAPS, PLLP, 0.009 1.27 14.6
transporter activity KCNF1, SLC6A7, P2RX2, SLC16A8, AQPS5,
ATP5G3, COX4I1, KCNIP3, IMAA, LSR, SEC61G,
FLJ20433, TRPV4, PEA15, KCTD10, SLC6A8
Group 6 1 Thrombospondin, subtype 1 SEMA5B, ADAMTS2, SSPO, C8B, ADAMTS10, 0.007 3.52 123
ADAMTS12, ADAMTS14
Group 7 1 oxidoreductase activity, acting on CYP2B6, CYP1B1, CYP4F11, CYP4F8, TBXAS1,  0.007 3.53 1.3
paired donors, with incorporation or CYP2B7P1, CYP2D6
reduction of molecular oxygen, reduced
flavin or flavoprotein as one donor, and
incorporation of one atom of oxygen
doi:10.1371/journal.pgen.1000873.t002

network (Figure 2) enriched in neuroactive ligand-receptor
interactions. It identifies increased expression of sphingosine 1-
phosphate receptor (EDG8) and predicted interactions of the query
core genes with prolactin (PRLR), glucagon (GLIPR), and
prostaglandin E2 (PTGER3) receptors (Figure 2).

BMI class and mirrored metabolic effect on the blood
transcriptome. Among the probes associated with BMI class in
the gene-wise linear analysis (N =3098), 678 were core probes
(FDR =0.20; Table 1). We identified enrichment for several
biological processes involved in adaptive immune related responses
(Table 4). Of particular note is the identification of a signature for
diabetes type I (DAVID cluster of 9 biological processes, median
FDR =5.60 10°% Table 4). In women with normal BMI, two
curated gene sets related to inflammatory and stress response
signaling due to exercise [32] were up-regulated (Table 5).

Genes related to fasting status, medication, and hormone
therapy use: correlation and interaction of complex
signals. The biological variables fasting, MED, and HT use
induced the most significant probes under our gene-wise mixed
linear models (84.1%, 62.7% and 44.5% of all genes, respectively;
Table 1). In fact, there was a high degree of overlap between all
three variables (40.0%, 5,775 genes in total), and 74.5% are
associated with at least two variables.

As noted earlier, an interaction between HT and MED in
relation to the blood gene expression profiles was statistically
significant (permuted p-value =0.03). HT use was associated with
the blood gene expression profiles with a multivariate permuted p-
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Table 3. Significant gene sets curated from the literature associated with smoking status using the global test.

# core genes

Tested FDR Comparative (probes) up- 7 core genes (probes) up-
genes p-value adjusted p-value regulated in smokers regulated in non smokers
Smoking signatures [7];[31]
Lampe et al. 26 5.77E-08 1.21E-06 0.002 IL1B, CYP1B1 ZNF609, AOC2, NRG1(3)
EPB41L3, VCAN, DNAJC7,
TNNT1(10)
Van Leeuwen et al. 10 8.27E-04 6.67E-05 0.09 SERPINB2, IL1B, PCK2, HAMP, ACOT (3)
ERCC5, ENO1(5)
Exercise signatures [32]
Growth factor and transcription 12 1.90E-06 2.66E-05 0.008 CYP1B1, TCF8 (2) CLIC3, GPR56, AKR1C3 (4)
Stress response 10 1.22E-04 6.67E-04 0.09 HSPATA (1) SPON2, HSPBT1 (2)
Blood cell subtype
signatures [13,18]
Monocytes 17 4.33E-04 0.002 0.23 FLJ20701, CSPG2, PLA2G7, CGI-38 (1)
MARCO, VNN1, IFIT1, CDID,
CD14, RNASE6, MX1, PGD
(1m
Red blood cells 33 0.002 0.004 0.45 CSDA, SELENBP1, MKRN1, EPB42,
MAP2K3, BAG1, UBB, FKBP8, GMPR,
BNIP3L, BCL2L1, PPM1A, NXPH3, CHI3L2,
GSPT2, GSPT1, SNCA (21)
Natural killer cells in PBMC 17 9.27E-04 0.003 0.35 CSPG2 (1) SPON2, GPR56, MLC1, CX3CR (4)
Hormone-related signatures
Estrogen-related genes [29,33] 65 1.06E-04 6.67E-04 0.31 EPB41L3, ANXA3, RAB31, PDZK1, TFF1, SELENBP1,HSD3B2, EPOR,
SRD5A1, SLC39A6 (6) WISP2, PIB5PA, PTGES (8)
Hormone therapy signature [10] 46 4.32E-04 0.002 0.34 RNF144, CREB5, NME6 (4) CSMD2, SLC9A3, SLC36A1, C8B, GPR75,
EDG8, CHGA, LCN6,GAS2L1, FBXL14,
PAPPA (12)
Divers
Age signature [13] 9 1.27E-04 6.67E-04 0.08 1GJ (1) HLA-DQB2 (1)

doi:10.1371/journal.pgen.1000873.t003

value of 0.09 and 0.44 in users and non-users of other medications,
respectively. MED was associated with the blood gene expression
profiles with a multivariate permuted p-value of 0.06 and 0.38 in
non-users and users of HT, respectively. Further analyses are
required in order to investigate the different categories of MED,
HT regimens informed by questionnaire and hormone levels
measured in plasma, as well as their interactions in relation to
blood gene expression profiles.

Of the 13611 probes identified as related to fasting (Table 1),
269 were identified as core probes (FDR = 0.23). This latter probe
list was significantly enriched in regulation of transcription and
RNA metabolic process (DAVID cluster of 11 biological processes;
median FDR =8.30%, Table 6) partly involving deregulation of
zinc finger proteins (DAVID cluster of 3 biological processes;
median FDR =0.65%, Table 6) or bromo-domain containing
proteins (DAVID cluster of 1 biological process; median
FDR =7.7%, Table 6) involved in chromatin modification. In
accordance with these results, the core probes (N =36, Table S4)
biologically uniquely associated with fasting women were signif-
icantly enriched in chromatin modification and control of gene
expression by vitamin D receptor (DAVID cluster of 2 biological
processes; median FDR =10.3%).

Finally, none of the 14 gene sets curated from the literature were
significantly enriched in our dataset with respect to fasting status. A
similar absence of significant enrichment was observed for a list of
1356 genes associated with fasting in peripheral blood mononuclear
cells [34], of which 784 probes were identifiable in our dataset.

@ PLoS Genetics | www.plosgenetics.org

Age difference in postmenopausal women and its weak
effect on blood gene expression profiles. No significant
enrichment of biological processes was observed for the 40 probes
including 36 core probes associated with age group (FDR =0.01;
Table 1). With respect to gene set enrichment analysis, the
immunoglobulin gene set (N=236) had the lowest global test
enrichment p-value (p-value = 0.03), but a high false discovery rate
(FDR =0.92). One publication [13] found a gene list (N=14
genes; N =9 after mapping to our Applied Biosystems probe IDs)
derived from blood and associated with age but was not
significantly enriched in our dataset (global test p-value = 0.45).

Discussion

Peripheral blood is an ideal surrogate tissue as it has the
potential to reflect responses to changes in the immediate and
distant environments by alterations of gene expression levels.
Given the number of factors that influence gene regulation and
expression, it is not surprising that often more than one strong
signal is present in any given high-dimensional dataset. The
external validity of NOWAC as a representative sample of the
Norwegian female population has been verified in several
methodological analyses and found to be acceptable [35]. Studies
of the internal validity, including reliability, have been undertaken
for dietary questions [36,37], menopausal status, and use of HT
[36,38], whereas validation of variables measuring physical activity
remain ongoing.
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Figure 2. Network between top genes (in grey) in the two hormone-related gene sets up-regulated in non-smokers and genes (in
white) predicted by HEFalMp in relation to this query considering all genes in all biological processes.

doi:10.1371/journal.pgen.1000873.9g002

Inter-individual variability

In addition to technical variability, substantial differences in
gene expression profiles were identified between individuals with
respect to exposure. Overall, the functional enrichment of
significant single genes and gene set enrichment analyses show
that high-throughput gene expression studies implicate similar

@ PLoS Genetics | www.plosgenetics.org

(although not identical) underlying biology across several studies.
Whereas age did not induce a large effect in blood gene expression
for our cohort of postmenopausal women aged from 48 to 62
years, pathways and gene sets affected by smoking and, to a lesser
extent both BMI and fasting, are numerous and interconnected.
Some expression profiles associated with these variables may also
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be associated with other factors (e.g., lower levels of exercise, age).
A host of new candidate genes for regulation by inter-individual
(fasting, BMI) and exposure (smoking) factors were identified
which could be used as a basis for hypothesis development.

Several processes associated with smoking were involved in
cardiovascular regulation by G-coupled receptors (i.e. purinergic,
adrenergic beta-1, urotensin II or thromboxan A2 receptors) or
protein activity (i.e. thrombospondin type-1, fibronectin type-3).
Consistent with previous observations that smoking reduces
olfactory sensitivity in a dose- and time-dependent manner
[39,40], we find that smoking significantly impairs blood gene
expression of olfactory receptors. We also observed that smokers
have deregulated gene expressions of several P450 cytochromes
which catalyse mono-oxygenase activity that can both toxify and
detoxify carcinogenic compounds. As established in normal lung
[41] and rats [42], smokers tend to have a small increase in
NAD(P)H:(quinone-acceptor) oxidoreductase compared to non-
smokers.

Two previous studies [7,31] have examined the effects of
cigarette smoking on leukocyte gene expression in circulation and
both of the associated signatures had the most significant
enrichment scores over all gene sets considered here. Inflamma-
tory responses previously associated with smoking [7] were up-

Table 4. Functional enrichment of core probes associated with BMI class in gene-wise mixed linear model based on BIC criterion
and filtered based on global test z-score (N=678).
Functional GO Median p- Median Fold Median
cluster terms (N)  Keywords Genes value Enrichment  FDR (%)
Group 1 5 Immunoglobulin/major HLA-DMB, CD1C, CTSE, HLA-DPAT, HLA-DMA, HLA-DOA, 9.92E-08 6.89 1.51E-04
histocompatibility HLA-DQA2, IGKC, HLA-DPB1, IGHG2, HLA-DRA, HLA-DRBS,
complex motif, HLA-C, HLA-DRBS5, IGHM, IGHD, HLA-B
Immunoglobulin C1-set
Group 2 9 Type | diabetes mellitus, GZMB, HLA-DMB, CTSE, HLA-DPA1, HLA-DMA, HLA-DOA, 1.78E-07 14.2 3.11E-04
MHC class Il LTA, HLA-DQA2, HLA-DPB1, HLA-DRA, HLA-DRB5, HLA-C,
HLA-DRBS, HLA-B
Group 3 4 MHC class II, alpha chain HLA-DPA1, HLA-DMA, HLA-DOA, HLA-DQA2, HLA-DPBI, 8.44E-05 134 1.71E-01
HLA-DRA, HLA-DRB5, HLA-C, HLA-DRBS5, HLA-B
Group 4 5 positive regulation of IL15, HLA-DMA, CD40, UBASH3A, CD46, TRAF2, CD55, 0.001 3.81 1.12
immune system process IGHM, SMAD3, KRT1, FCER1A
Group 5 3 Immunoglobulin E binding  MS4A2, FCER2, LGALS3, FCERTA 0.001 16.1 1.80
Group 6 7 Lymphocyte B/ HLA-DMA, CD40, CD46, CD55, IGHM, TNFSF13, TRAF2, 0.008 341 13.86
immunoglobulin mediated  FCERTA, IL15, KRT1
immune response, adaptive
immune response
Group 7 2 Immunoglobulin C region  IGKC, IGHG2, IGHM, IGHD, TRA@ 0.006 10.8 9.94
doi:10.1371/journal.pgen.1000873.t004

regulated in the blood expression of smokers in our dataset.
Lending support that smoking has immune and inflammatory
effects, specific blood cell gene signatures [13,18] (i.e. increased
monocytes and decreased red blood cell and natural killer cell
signalling) were differentially expressed according to smoking
status. This is consistent with previous observations showing that
the total numbers of peripheral leukocytes differ by smoking status
[43,44]. Core genes up-regulated in non-smokers from the
enriched hormone-related gene sets [10,33] were predicted to be
involved in neuroactive ligand-receptor interactions like prosta-
glandin receptors. Elevated prostaglandin E2 synthesis has been
previously reported in smokers in comparison with non-smokers
[45,46]. The predicted gene network also reflects the effect of
smoking on hormone levels with increased secretion of prolactin
and glucagon [47]. Two pathways related to exercise [32] were
also found up-regulated in non-smokers, which may simply be due
to an underlying prevalence of active exercisers in non-smokers
[48].

In our study, we found BMI class associated with blood gene
expression changes involved in several immune processes includ-
ing diabetes type I. It has been reported that several immune
functions are dysregulated in obesity [49,50] and both genetic and
environmental factors such as obesity have been implicated as

Table 5. Significant gene sets curated from the literature associated with BMI class using global test.

Core genes up-

Core genes up-regulated regulated in

Comparative in women at normal BMI overweighted

Tested genes p-value FDR adjusted p-value (N probes) women (N probes)
Exercise signatures [32]
Inflammatory response 18 0.0005 0.02 <0.0001 GZMB, XCL1, PTGDS, GNLY, NCR3, XCL2, ~ CD22(1)
CST7, CCL4, GZMA, CTSW (10)
Stress response 10 0.0009 0.02 0.004 DUSP2, DUSP1, HIF1A (3)

doi:10.1371/journal.pgen.1000873.t005
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criterion and filtered based on global test z-score (N =269).
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Table 6. Functional enrichment of core probes associated with fasting status in gene-wise mixed linear model based on BIC

Functional GO Median p- Median Fold Median
cluster terms (N)  Keywords Genes value Enrichment  FDR (%)
Group 1 13 Regulation of transcription, cellular ACAD8, MYCBP2, MED29, MTA2, EID2, ZNF182, 0.001 1.60 1.26
metabolic process, RNA metabolic  LIMD1, RBM9, BAZ2A, LOC344167, SLC6A3, SUDS3,
process, nucleobase, nucleoside, ZNF395, BRD7, ZNF555, POGZ, ZNF282, ATF7IP,
nucleotide and nucleic acid PBXIP1, ZKSCAN2, ZNF324, ZNF740, CEBPE, KHSRP
metabolic process
Group 2 1 Zinc finger C2H2 type 2 KLF13, POGZ, PRDM2, RLF, ZNF264, ZNF282, 1.05E-02 2.55 19.66
ZNF333, ZNF345, ZNF396, ZNF585A
Group 3 1 Bromo domain SMARCA2, SMARCA4, CREBBP, BAZ1B 0.009 9.0 17.1

doi:10.1371/journal.pgen.1000873.t006

triggers in the pathogenesis of diabetes. The role of autoimmunity
in the origins of type I diabetes is well-known, including a role in
latent autoimmune diabetes in adults [51] and several observations
suggest that autoimmunity may be part of type II diabetes [52—
55]. Finally, two pathways related to exercise [32] were also up-
regulated in women with normal BMI which may be due to a
higher prevalence of physical exercise than in overweight/obese
women.

Of all the variables considered, fasting was associated with the
largest number of genes, but few genes were identified as core
genes possibly due to the limited number of fasting women
(N=28) at the time of blood sampling. Selection of core genes
aims to select a subset of true positives which work together
(possibly in similar pathways) towards significance of the set. The
significant core genes associated with fasting were generally
involved in gene expression regulation and chromatin modifica-
tion [56-58]. Much of our understanding of the effects of nutrition
on chromatin structure has been gleaned from model organisms,
especially S. cerevisiae, C. elegans, Drosophila, and mice [59]. In
humans, two previous studies were unable to characterize acute
effects of food intake in blood gene expression profiles [13,18].
One putative 784-gene signature exists [34], however only 49
genes associated with fasting overlap with this signature. This may
simply be due to chance.

Due to a significant interaction between HT and MED within
our profiles, further analyses with a larger sample size are needed
in order to investigate the different categories of medications, HT
regimens and hormone levels, as well as their interactions in blood.

Consistency with other studies

Differences between the genes identified and the interpretation
of results in the various studies discussed here are likely to have
resulted from technical differences in the array platforms used, the
subset of blood cells analyzed, and the chosen analytical
procedures. Several studies [12-18] examined how gene expres-
sion profiles of blood samples are affected by technical variables.
Specific blood sample collection methods result in the isolation of
different blood cell subpopulations. White blood cells have been
defined as the most transcriptionally active of all cell types in blood
and may give the most sensitive gene expression profiles in
response to defined factors [60]. In large epidemiological studies,
RNA stabilization is compulsory and PAXgene tubes have been
found satisfactory to stabilize and enable RNA extraction from
whole blood cells [61]. While high proportions of globin RNA
could reduce sensitivity with respect to certain microarray
platforms [60,62,63], we previously investigated two globin
reduction protocols and determined that they were not beneficial
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when Applied Biosystems (AB) microarrays are used [23]. We
found that RNA extraction and one variable related to RNA
degradation (i.e. time between blood collection and freezing) had a
significant global effect on blood gene expression profiles. In
addition to normalization preprocessing, our results suggest that
technical variability should not be ignored and possible adjustment
for technical sources of variability should be considered in any
analysis. Techniques such as surrogate variable analysis [64] may
adjust for hidden sources of heterogeneity and large-scale
dependence in gene expression studies [65]. As an example in
our study, 25 significant surrogate variables were highly correlated
to the strongest identified technical sources of noise, array lot
number (canonical correlation r?=0.95), time between blood
collection and freezing (canonical correlation r? = 0.62) and RNA
extraction (canonical correlation 1% = 0.43),

After adjustment for technical variability, our analysis demon-
strates the ability to find significant similarities between studies by
focusing on the biological implications of the gene sets from each
individual study, rather than the specific single genes that met the
criteria for significant differential expression in each individual
study. They lend support to the idea that blood gene expression
studies can indeed detect exposure-specific differences and that
failure to consider this type of biological variation can result in the
misidentification of genes when investigating predictive, diagnostic
or prognostic signatures in blood.

In conclusion, this study extends the limited baseline informa-
tion currently available that describes normal patterns of variation
in blood gene expression. The data generated have been made
freely available and should represent a useful resource for the
design of future studies including power calculations. Our results
confirm the feasibility of identifying signatures of inter-individual
factors (e.g. fasting, BMI) and exposure factors (e.g. smoking) in
blood-based gene expression profiles, and reinforces the need for
proper study design, sample preparation, and technical analysis.

Methods

Ethics statement

We have received approval from the Regional Committee for
Medical Research Ethics for the collection and storing of
questionnaire information and blood samples. The informed
consent formula explicitly mentions that the blood samples can be
used for gene expression analyses as well as large-scale genotyping.

All data are stored and handled according to the permission
given by the Norwegian Data Inspectorate. The Directorate of
Health and Social affairs (SHD) has given us an exemption from
the confidentiality of information in national registers.
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Before use of the biological material, a request has been sent to
the regional ethical committee for Northern-Norway. Use of
biological material requires permission according to laws pertain-
ing to biotechnology and gene technology, both of which are
administered by the SHD.

Subjects

The women are part of the Norwegian Women and Cancer
(NOWAC) study (http://uit.no/kk/NOWAC/) consisting of
172471 women who were 30 to 70 years of age at recruitment
from 1991 to 2006 [22]. The NOWAC postgenome cohort study
[21] consists of approximately 50,000 women born between 1943
and 1957, randomly drawn in groups of 500 from the NOWAC
registers, who gave blood samples between 2003 and 2006 and
filled in a two-page questionnaire. The two-page questionnaire
included questions regarding menopausal status, weight, height;
past week exposure to smoking, HT, oral contraceptives, other
MED, omega-3 fatty acid, soy or other dietary supplements; and
details concerning blood specimen collection (date, hour, posture).
Women included in the present study received a blood collection
kit and an accompanying two-page questionnaire by mail in April
2005. Among the group of 500 women, 444 (89%) returned both
citrate and PAXgene blood RNA (PreAnalytiX GmbH, Hem-
brechtikon, Switzerland) tubes; 3.3% declined to participate, 0.7%
had died or migrated and 7% did not respond. Samples were
included in the study according to the following inclusion criteria:
the donor was postmenopausal (99 donors excluded), blood was
successfully collected in one PAXgene tube and in two plasma
collection tubes (8 donors excluded), and the samples were frozen
within 3 days from blood collection (9 donors excluded). Based on
these criteria, 328 PAXgene blood samples were included for
RNA extraction.

RNA isolation and quality control

PAXgene blood RNA tubes were thawed at room temperature
for 4 h. 500 pL of blood was removed and stored on —70°C for
future use. Total RNA was isolated using the PAXgene Blood
RNA Isolation Kit, according to the manufacturer’s manual. RNA
quantity and purity was assessed using the NanoDrop ND-1000
spectrophotometer (ThermoFisher Scientific, Wilmington, Dela-
ware, USA). The absorbance ratio of 260 nm and 280 nm (A260/
A280) was between 1.93 and 2.1 for all samples included for
further analysis. The Experion automated electrophoresis system
(BioRad, Hercules, CA, USA) and the RNA StdSens Analysis Kit
was used to evaluate RNA integrity of a randomized 32% of the
samples, according to the instruction manual. The electrophero-
grams were inspected for clear ribosomal peaks. We were not able
to analyze any numerical criteria corresponding to electrophoresis
patterns, because this information was not available. Thirty nine
samples were excluded from further analysis due to insufficient
RNA purity, yield or integrity. RNA samples were kept at —70°C
until further use.

Microarray-based profiling and image analysis

After exclusion based on study design and RNA quality and
quantity criteria, samples were analyzed using the Applied
Biosystems (AB) expression array system (Foster City, Lousiana,
USA). 500 ng total RNA was used for amplification by the
NanoAmp RT-IVT labeling kit from AB for one round of
amplification, in accordance with the manufacturer’s manual.
Briefly, the 1°* strand of ¢cDNA was synthesized by reverse
transcription using the T7-oligo (dT) primer, followed by 2°¢
strand synthesis. The double-stranded cDNA was purified, and
used as template for in wvitro transcription (IVT). During IVT,
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digoxigenin (DIG)-labeled UTP was incorporated into the
cRNA. The quantity and purity of the cRNA was measured
on the NanoDrop ND-1000, and the cRNA was stored on
—70°C until further use. 10 pg of DIG-labeled cRNA was
fragmented and hybridized to AB Human Genome Survey
Microarray V2.0, in accordance with the Chemiluminescence
Detection Kit Protocol.

The AB Human Genome Survey Microarray V2.0 contains 277
control probes and 32,878 probes for the interrogation of 29,098
genes. AB Expression System software was used to extract signal
intensities, signal to noise ratios (S/N) and flagging.

Data analysis

A total of 304 arrays including 15 technical replicates were
analyzed. Data analysis was performed using R (http://cran.r-
project.org), an open-source-interpreted computer language for
statistical computation and graphics, and tools from the Biocon-
ductor project (http://www.bioconductor.org), adapted to our
needs. Using R, we set the expression intensity to “missing” for
genes with flagging value >8191 (threshold recommended by the
microarray manufacturer). For a set of technical replicate arrays
from the same subject, we excluded the array with the least
number of probes that had a S/N exceeding 3. Furthermore,
arrays (N = 3) where less than 40% of the probes had a S/N=3
were also removed from the analysis. Individual probes were not
considered, if the S/N exceeded 3 in less than 50% of the samples.
After sample and probe filtration, we proceeded with a log?2
transformation, quantile normalization and imputation of missing
values using 10-nearest neighbourhood method [66]. A total of
286 arrays and 16185 probes are analyzed. Microarray data have
been deposited at Gene Expression Omnibus (GEO; http://www.
ncbi.nlm.nih.gov/geo) accession number GSE15289.

The global ANCOVA [25] was carried out by comparison of
linear models via the extra sum of squares principle to test for the
univariate and multivariate association between global expression
values and technical variables. All significant technical variables
with a permuted p-value <0.001 identified in the ANCOVA
multivariate analysis were included in the gene-wise linear model
selection as random (array lot number, RNA extraction date) and
fixed (time between blood collection and freezing) variables.

Forward-backward variable selection was used to select gene-
wise model based on BIC. Linear mixed models were used to test
the association of each gene with the significant technical and all
biological variables. The z-score from the global test [26] was used
to select core probes that most strongly explain the difference
between groups setting a FDR [67] threshold which maximizes the
discovery of true positives (weight=2) versus false positives
(weight = 1) associated with each variable. Gene set enrichment
analysis was conducted using the global test [26], which offers the
opportunity to compare two or more groups while taking into
account the association between probe sets as well as their
individual effects. When testing several gene sets curated from the
literature, we adjusted for multiple testing using FDR [67].
Functional clustering and gene networks prediction were per-
formed with the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) at http://david.abce.nciferf.gov/
[27], and the Human Experimental/Functional Mapper (HE-
FalMp) [28] at http://function.princeton.edu/hefalmp, respec-
tively.

Supporting Information

Figure S1 Network between core genes (in grey) related to
smoking in the gene set identified by Lampe et al. [7] and genes (in
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white) predicted by Hefalmp in relation with this query
considering all genes in all biological processes.
Found at: doi:10.1371/journal.pgen.1000873.s001 (1.17 MB EPS)

Table S1 Characteristics of (A) women included in the analysis
and (B) blood sample processing.

Found at: doi:10.1371/journal.pgen.1000873.s002 (0.06 MB
DOC)

Table 82 Gene sets curated from literature.

Found at: doi:10.1371/journal.pgen.1000873.s003 (0.13 MB
DOC)

Table S3 Univariate and multivariate global ANCOVA analysis

investigating technical variables.
Found at: doi:10.1371/journal.pgen.1000873.s004 (0.03 MB
DOC)
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