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Abstract: In artificial intelligence (AI), computer vision consists of intelligent models to interpret and
recognize the visual world, similar to human vision. This technology relies on a synergy of extensive
data and human expertise, meticulously structured to yield accurate results. Tackling the intricate
task of locating and resolving blockages within sewer systems is a significant challenge due to their
diverse nature and lack of robust technique. This research utilizes the previously introduced “S-BIRD”
dataset, a collection of frames depicting sewer blockages, as the foundational training data for a deep
neural network model. To enhance the model’s performance and attain optimal results, transfer
learning and fine-tuning techniques are strategically implemented on the YOLOv5 architecture, using
the corresponding dataset. The outcomes of the trained model exhibit a remarkable accuracy rate
in sewer blockage detection, thereby boosting the reliability and efficacy of the associated robotic
framework for proficient removal of various blockages. Particularly noteworthy is the achieved mean
average precision (mAP) score of 96.30% at a confidence threshold of 0.5, maintaining a consistently
high-performance level of 79.20% across Intersection over Union (IoU) thresholds ranging from 0.5 to
0.95. It is expected that this work contributes to advancing the applications of AI-driven solutions for
modern urban sanitation systems.

Keywords: AI; object detection; S-BIRD dataset; computer vision; transfer learning; YOLOv5;
wastewater management

1. Introduction

Computer vision is a field of artificial intelligence (AI) with its own conventional
algorithms that extract required information from various visual forms such as photos and
videos, and based on that information form, perform actions, or make recommendations in
order to detect and identify distinct objects. Thus, the large datasets should increase the
performance properties of computer vision.

Object detection techniques of computer vision detect the occurrence of objects in an
image or video with bounding boxes and identify their classes. Initially, machine learning
was mainly used for object detection tasks but when deep neural networks, i.e., deep
learning methods emerged, they became popular due to automatic representative feature
extraction from large datasets for training purposes [1]. Occlusion, clutter, and low resolu-
tion are some of the sub-problems that are handled very efficiently by deep learning-based
detection frameworks [2,3]. It has two method types such as single-stage, which works for
inference speed and real-time use, and two-stage, which works for model performance, i.e.,
detection accuracy. The single-stage detectors remove the process of region of interest (ROI)
extraction and moves for classification and regression whereas two-stage detectors extract
ROI and then apply classification and regression. The YOLO detection model (YOLOv2 [4],
YOLOv3 [5], YOLOv4 [6], and YOLOv5 [7]), SSD [8], CenterNet [9], CornerNet [10], etc., are
some single stage detectors. Region proposal models (R-CNN [11], Fast-RCNN [12], Faster
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RCNN [13], Cascade R-CNN [14], and R-FCN [15]) are two-stage detectors. Classification
and localization accuracy and inference speed are two important metrics for object detec-
tors. In the advancement of detection models, transfer learning techniques with quality
datasets meet the requirements with a minimum training time [16,17]. Transfer learning
harnesses prior knowledge to enhance performance on novel tasks. By fine-tuning, pre-
trained deep neural models are adapted to new contexts with certain layers preserved and
others refined. This leads to many advantages such as achieving quick convergence, good
performance, and adaptability in real-world scenarios. As the applications of AI evolve,
such as video surveillance, military applications, security aspects, health monitoring, and
critical detection tasks, the AI techniques are being enhanced to suit these needs.

Addressing the application-based needs to produce sensible and accurate results, de-
tection models need to be adapted and modified, which usually have heavy computational
demands. However, there are methods such as the embedded vision approach with AI
that has an ability to enable real-time, efficient, and intelligent visual processing directly on
edge devices, which reduces dependency on cloud computing and enhances privacy and
responsiveness in many applications [18,19].

Detecting various sewer blockages is a major challenge due to their complex and
heterogeneous nature. Moreover, their locations in the sewer network may vary, including
main lines, lateral connections, and junctions. Blockages can exhibit varying levels of
severity, from partial restrictions that gradually reduce flow to complete blockages that
cause sewer overflows. The dynamic and unpredictable nature of urban wastewater
systems, influenced by factors such as climate, wastewater composition, and hydraulic
conditions adds another layer of complexity. In this research work, transfer learning
and fine-tuning techniques are utilized to achieve a high precision rate in the detection
of blockages within urban wastewater systems. This approach is intended for real-time
implementation on mobile devices and other environments with limited resources, with the
goal of effectively removing such blockages. Our primary emphasis is on the training of the
single-stage YOLOv5 model using the S-BIRD dataset [20,21], which contains representative
and critical multi-class images depicting prevalent sewer blockage scenarios.

The study implements all computer vision and model training procedures using
Python programming, OpenCV, PyTorch framework, and other machine learning libraries.
These operations are carried out on a DGX GPU workstation system running on the
Linux platform, ensuring a robust and efficient experimental environment. The results are
analyzed and discussed to demonstrate the effectiveness of the methodology used.

2. Structural Insights of YOLOv5 Model

YOLOv5 is an anchor-based single-stage detection model, which is built on the PyTorch
framework. It focuses on simplicity, model scaling, and transfer learning, making it versatile
for a wide range of object detection tasks. The model’s backbone is CSP Darknet-53, which
incorporates Cross Stage Partial (CSP) connections to enhance information flow and feature
representation.

To create feature pyramids for effective object scaling and generalization, YOLOv5
employs the Path Aggregation Network (PAN) as its neck. The head design utilizes anchor
boxes to generate output vectors that contain class probabilities, objectness scores, and
bounding box coordinates (center_x, center_y, height, and width). The model parameters
are updated during training using the following loss function:

Loss = λ1 ∗ L_cls + λ2 ∗ L_obj + λ3 ∗ L_loc (1)

where L_cls represents the Binary Cross Entropy loss for predicted classes, L_obj represents
the Binary Cross Entropy loss for objectness scores, and L_loc represents the Complete
Intersection over Union loss for bounding box locations. Here, λ1, λ2, and λ3 are hyperpa-
rameters controlling the contribution of each component to the overall loss. The employed
auto anchor automatically determines and generates anchor boxes based on the distribution
of bounding boxes in the custom dataset using K-means clustering and a genetic learning
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algorithm. In this, SiLU (Sigmoid Linear Unit) activation function in hidden layers acquire
intricate details and Sigmoid activation function in the output layer functions for binary
classification.

As shown in Figure 1, the backbone employs Convolutional and C3 layers to extract
image features, which are then combined at various levels using Conv, Upsample, Concat,
and C3 layers in the head. The object detection process is facilitated by a Detect layer
that uses anchor boxes and the indicated class count. Particularly, each C3 (CSP-3) block
consists of two parallel convolutional layers, the first layer channels input features through a
bottleneck layer, compressing the information and the second layer directly outputs feature.
These streams are then concatenated and processed through pooling and convolutional
layers. The C3 blocks also use skip connections and attention mechanisms to enhance
information flow and reduce noisy features.
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3. Details of Training Instances in Critical Multi-Class S-BIRD

The dataset comprises a total of 14,765 training frames of classes (grease, plastics, and
tree roots), which are meticulously annotated with 69,061 objects as shown in Figure 2,
resulting in an average of 4.7 annotations per frame. Specifically, the dataset comprises
26,847 annotations for grease, 21,553 annotations for tree roots, and 20,661 annotations
for plastics. To ensure uniformity and standardization, the frames were preprocessed and
augmented, resulting in an average frame size of 0.173 Megapixels. The frames were resized
to a square aspect ratio of 416 × 416 pixels, thereby maintaining a 1:1 aspect ratio class. The
angle of the diagonal was calculated to be 0.785 radians (equivalent to 45 degrees), with the
diagonal length measuring 588 pixels.
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Figure 2. Labelling details of training instances from dataset.

Regarding pixel density, the dataset exhibits a density of 12 pixels per millimeter
or 290 pixels per inch. These specific computational details are vital for understanding
the characteristics and intricacies of the S-BIRD dataset, which plays a crucial role in
effectively training the deep neural network. Figure 3 illustrates the distribution of object
classes in each training frame based on the center x for the S-BIRD dataset. Figure 3 shows
the relative distribution of center x coordinates across different classes during training.
Each segment is color-coded and displays data values and percentiles, providing a clear
understanding of object positions along the x-axis. This section provides valuable insights
into the dataset’s dimensions, resolutions, and geometric properties, which contribute to
the successful implementation of transfer learning and fine-tuning techniques for the deep
neural detection model.
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4. Training Method and Evaluation

The training process for the YOLOv5-s model (Based on PyTorch 1.10.0a0 with CUDA
support) on the S-BIRD dataset involved a series of steps aimed at achieving the highest
precision in detecting sewer blockages. Through the application of transfer learning
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and fine-tuning techniques, the model’s formulation was optimized to suit the specific
characteristics of the representative dataset, enabling its effective adaptation for real-world
scenarios. To facilitate the training process, annotations for object classes were applied in
PyTorch TXT format, as needed. The training process was performed over 6000 epochs,
using the stochastic gradient descent (SGD) optimizer with specified hyperparameters. The
training process utilized the configurations listed in Table 1. The DGX-1 (utilized 32 GB
GPU Card) available at UiT, Narvik, running a Docker container with a defined image
served as the training platform, leveraging GPU parallelization for faster computations.
Overfitting was mitigated using Early Stopping with a patience of 100 epochs.

Table 1. Principal training configurations.

Attributes Implications

learning model YOLOv5-s
Annotation data type PyTorch TXT

max_epoch 6000
patience 100

batch_size 16
fp16 True

num_classes 3
Params 7.2 M
Gflops 15.9
depth 0.33
width 0.5

input_size (416, 416)
workers 8
anchor_t 4.0

scale 0.5
hsv_h, hsv_s, hsv_v 0.015, 0.7, 0.4

warmup_epochs 3
weight_decay 0.0005
momentum 0.937

translate 0.1

The training progression concluded at 933 epochs due to a lack of improvement in
the last 100 epochs. The most promising results were obtained at epoch 832, leading to the
selection of the corresponding model for practical applications. The evaluation metrics
are essential for quantifying the model’s performance, and they are computed using the
following formulas:

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

mAP = ∑(AP for each class)/Number of classes (4)

F1 score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (5)

Here, TP—true positive, FP—false positive, FN—false negative, and mAP—mean
average precision.

During the training, at epoch 832, the model exhibited impressive precision (P) and
recall (R) values of 94.40% and 93.90%, respectively, across all classes. Notably, Figure 4
illustrates that the developed detection model achieved outstanding average precision
values of 95.90% for grease blocks, 98.40% for plastic blocks, and 94.50% for tree root blocks.
These high precision values are indicative of the model’s ability to accurately detect and
classify instances belonging to these specific classes. The overall mean average precision
(mAP) for all classes, as indicated in Table 2, is remarkably high at 96.30% with a confidence
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threshold of 0.5. This highlights the model’s proficiency in making precise detections across
all classes within the dataset. Moreover, the calculated mAP over various Intersection
over Union (IoU) thresholds, ranging from 0.5 to 0.95 with an increment of 0.05, yielded a
consistent performance of 79.20%. This demonstrates that the model maintains accurate
localization of objects across a broad range of IoU thresholds. The timing results in Table 3
show that the model has efficient inference times, with an average forward time of 0.2 ms,
average NMS time of 1.1 ms, and average inference time of 11 ms. These low inference
times make the model suitable for real-time applications.
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Table 2. Temporal evaluation details.

Timing Attributes Outturns (Milliseconds)

Average forward time 0.2 ms
Average NMS time 1.1 ms

Average inference time 11 ms

Table 3. Precision assessment details.

Object Class Average Precision map_5095 map_50

tree roots 0.945
0.792 0.9630grease 0.959

plastic 0.984

The confusion matrix in Figure 5, provides an overview of the model’s performance in
correctly classifying instances of grease, plastic, and tree roots. This visualization provides
a clear breakdown of correct and incorrect classifications for each category.

Figure 6 shows correlation connections within the frames of the dataset, demonstrating
the exact connection between instances and their labels among discrete views. It is also
evident that a majority of instances in the dataset are situated towards the outer edges of
both the top and bottom sides of the images in the dataset. This indicates the efficiency of
the trained model to detect and classify multiple objects in various real-world scenarios.
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The scatter diagram, Figure 7, displays the instances in the dataset and their corre-
sponding labels. This visualization helps with understanding the distribution of instances
across different classes and assists with identifying potential clustering patterns.
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The graph in Figure 8 illustrates the relationship between precision (P) and confi-
dence (C) that informs concerning changes in the model’s precision at different confidence
levels, providing insights into the model’s ability to make accurate detections at various
confidence thresholds.
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Figure 9 displays the correlation between recall (R) and confidence (C), which clarifies
how well the model can recall positive instances at different confidence levels, giving
sensitivity details to detection of true positives.
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Figure 10 showcases the mean average precision (mAP) of the model, comparing
the truth bounding box and the detection box. A higher mAP indicates better overall
performance in detecting and localizing objects across all classes.
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Figure 11 exhibits the F1 score at a 94% threshold with a confidence level of 0.566.
The F1 score considers both precision and recall, making it a valuable metric for assessing
model performance.
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Figure 12 exhibits the training and validation losses of the detection model over
932 epochs on the S-BIRD dataset. This graph helps in understanding the model’s learning
progress during training and validation phases. A decrease in loss indicates that the model
is learning to make better predictions.
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Figure 12. Detailing of losses in training and validation.

Figure 13 exhibits the detection outcomes obtained by deploying the trained model
on Google Source frames [22–27] as input data. The outcomes include the location of
objects and corresponding class labels (tree roots, grease, or plastic) predicted by the model.
These results are of utmost importance as they enable a thorough evaluation of the model’s
performance and adaptability when dealing with new and diverse data in real-world
scenarios. Additionally, the model has been specifically optimized to handle multiple
sewer blockages within the same frame, making it highly suitable for real-time detection in
various practical situations.
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5. Comparing AI-Driven Approach to MOEAs

The AI-driven approach presented in this research offers several advantages over
Multi-Objective Evolutionary Algorithms (MOEAs) [28] commonly used in wastewater
system management. While MOEAs such as NSGA-II, SPEA2, MOPSO, and MODE are
effective at optimizing multiple objectives, they often come with the burden of complex
mathematical models and high computational requirements [29,30]. In contrast, the AI
approach leverages advanced computer vision and deep learning techniques to detect
sewer blockages promptly and accurately. The model achieves a remarkable mean average
precision (mAP) of 96.30% at a confidence threshold of 0.5, highlighting its exceptional
precision in sewer blockage detection, which in turn enhances the reliability and efficiency
of wastewater management systems.

Furthermore, the AI approach relies on labelled training data and lightweight deep
learning models, enhancing its efficiency and real-time capabilities. This aligns well with the
urgent need to address sewer blockages swiftly and prevent disruptions and overflows. The
model’s accuracy, speed, and specialized focus on sewer blockage detection make it a highly
promising solution for immediate and effective urban wastewater system management. In
comparison, MOEAs such as the sensitivity-based adaptive procedure (SAP) [31], optimal
control algorithms [32], and novel methodologies [33] have shown efficiency in various
aspects of wastewater management, such as sewer rehabilitation and optimal scheduling.
However, their computational demands and reliance on complex algorithms might hinder
their real-time applicability. The AI-driven approach’s ability to process data in real-time,
coupled with its high accuracy in detection, gives it a distinct edge for addressing dynamic
and critical scenarios like sewer blockages.

Overall, while both AI-driven approaches and MOEAs contribute to the advancement
of wastewater management, the AI approach’s ability to quickly detect and respond to
sewer blockages makes it particularly well-suited for immediate, on-the-ground applica-
tions in modern urban sanitation systems.

6. Conclusions

This research highlights the potential of artificial intelligence, by employing the
YOLOv5 single-stage detection model and transfer learning on the critical S-BIRD im-
age dataset in sewer blockage detection. By harnessing the power of AI, we achieved a high
precision rate suitable for real-time deployment on resource-constrained mobile devices.

Based on the current work, the following specific conclusions may be made.
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• The developed model demonstrated noticeable precision and recall rates, achieving
94.50%, 95.90%, and 98.40% average precision for tree roots, grease, and plastics,
respectively. The mean average precision (mAP) reached an outstanding 96.30% at a
confidence threshold of 0.5 and maintained consistent performance at mAP of 79.20%
across IoU thresholds ranging from 0.5 to 0.95, indicating the model’s proficiency
in handling different sewer blockage scenarios. The inference times were efficient,
making the model suitable for real-time applications. The detection outcomes on
Google Source frames further validated the model’s adaptability to diverse data.

• The results emphasize the effectiveness of transfer learning and fine tuning, reducing
training time, enhancing performance, and in adapting deep neural network models
to new contexts.

• The presented model’s ability to accurately detect sewer blockages holds promise for
its application in modern wastewater management systems. The AI-driven sewer
blockage detection system showcased in this research has significant implications for
real-world applications, ranging from urban infrastructure management to environ-
mental conservation.

As AI technologies continue to advance, the integration of computer vision and deep
learning models will pave the way for more efficient and intelligent solutions in various
new domains.
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