Outlier classification using Autoencoders: application for fluctuation driven flows in fusion plasmas

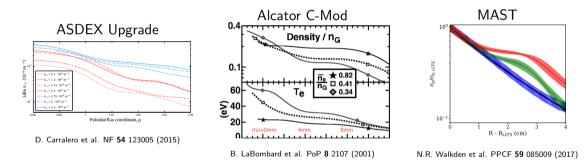
R. Kube¹ F. M. Bianchi¹ D. Brunner² B. LaBombard³

¹Department of Physics and Technology, UiT - The Arctic University of Norway ²Commonwealth Fusion systems ³MIT Plasma Science and Fusion Center

May 30, 2018

UIT / THE ARCTIC UNIVERSI

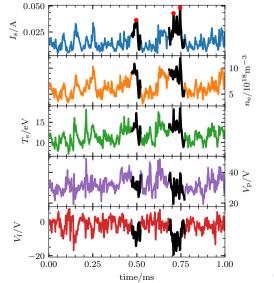
Universality: Density profiles in the SOL broaden with increasing plasma line-averaged density



How are changes in fluctuation driven flows connected to this broadening?

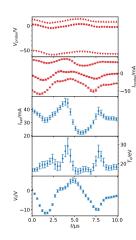
・ロト・日本・日本・ 日本・ シック・

Working hypothesis: Fluctuation driven ExB flows govern SOL dynamics



ロ ト 4個 ト 4 回 ト 4 回 ト 1 回 三 り へ ()

MLP measures plasma state parameters on time scales shorter than the turbulent flows



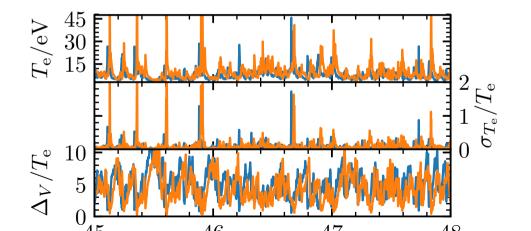
$$I_{
m probe} = I_{
m sat} \left[\exp \left(rac{V_{
m probe} - V_{
m f}}{T_{
m e}}
ight) - 1
ight]$$

- Turbulence time scale $t_{\rm turb} \approx 10 \mu {\rm s.}$
- Classical Langmuir probes: $t_{\rm sweep} \approx 1 {
 m ms}$
- ▶ MLP electronics switches between V^+ , V^0 , V^- in $1\mu s$
- Attempt Fit on U-I characteristic
- \blacktriangleright Map $\mathit{I}_{\mathrm{sat}}, \mathit{V}_{\mathrm{f}}, \mathit{T}_{\mathrm{e}}$ one-to-one on $\mathit{I}_{\mathrm{probe}}, \mathit{V}_{\mathrm{probe}}$ samples

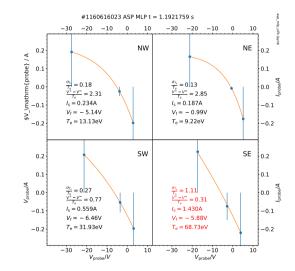
Problem: How do we set V^+ , V^0 , V^- ?

- \blacktriangleright Use average ${\it T}_{e}$ sample value from last 1 ms
- Intermittent, large-amplitude bursts require large fit domain.

Some large amplitude T_{e} -peaks are inconsistently identified



Poor fits can be identified through $T_{\rm e}$, $\sigma_{T_{\rm e}}$ and $\bigtriangleup V/T_{\rm e}$



- ▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ④ ● ●

Error threshold allow to identify good and bad samples. What about the rest?

	Quantity	relaxed	mid	strict							
-	$T_{ m e}/{ m eV}$	45/50	40/45	35/40							
	$\sigma_{\mathcal{T}_{\mathrm{e}}}$	0.75/1	0.5/0.75	0.25/0.5							
	$ riangle V/T_{ m e}$	2.5/1.5	3/2	3.5/2.5							
	uncertain/ bad	20.3% / 0.1%		40.2% / 0.2%							
outliers: \geq 2 bad fits											
inliers: > 2 good fits											
uncertain: neither condition is fulfilled											
Idea: Label uncertain data as valid or invalid, depending on how											
"close" they are to good/bad data.											
Problem: The data is 12-dimensional.											

Dimensionality reduction

- Reduces the number of random variables in the data by obtaining a set of principal variables.
- > Two different approaches: feature selection and features extraction.
- Feature extraction transforms the data in the high-dimensional space to a space of fewer dimensions.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Anomaly detection

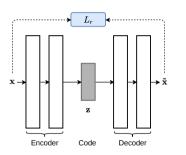
- Identification of items, events or observations which do not conform to an expected pattern or other items in a dataset.
- Methods based on dimensionality reduction procedures: anomalous samples do not belong to the subspace containing nominal data learned during training.
- Subspace is computed considering only samples of a nominal class (in our case, measurements with a good fit).
- The representations generated for samples of a new, unseen class will arguably fail to capture important characteristics of the data.
- ► Such representations will be very different from the ones of good measurements.
- Easy to discriminate between good and bad measurements in the low dimensional space.

Principal Component Analysis

- Performs a linear mapping of the data to a lower-dimensional space in such a way that the variance of the data in the low-dimensional representation is maximized.
- The new space is spanned by the first eigenvectors of the empirical covariance matrix.
- PCA is a linear method and captures only 2nd order moments of variations among the data.

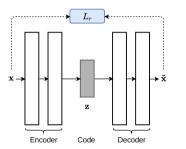
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

- Nonlinear models, such as kernel PCA and Autoencoder, learn nonlinear embeddings of the data.
- > Those methods can model higher order dependencies in the data.



- AEs are a particular class of neural networks, which learn unsupervised compressed, or lossy, representations of data.
- AEs are trained to map the input into a lower dimensional space through a bottleneck layer and then reconstruct the original input.
- The output of the innermost layer of the network z is called *code* and is the low dimensional representation of the input x.

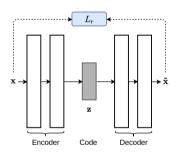
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●



AE learns two functions at the same time. The first one is called *encoder* and provides a mapping from an input domain, X, to a code domain, Z, i. e. the latent representation space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

The second function, called *decoder*, implements a mapping from Z back to X.

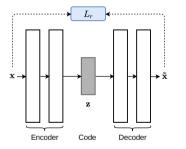


The encoding function E(·) : X → Z and the decoding function D(·) : Z → X of the AE define the following deterministic posteriors

 $\begin{aligned} \mathbf{z} &= E(\mathbf{x}) = p(\mathbf{z}|\mathbf{x}; \theta_E) \\ \mathbf{\tilde{x}} &= D(\mathbf{z}) = q(\mathbf{\tilde{x}}|\mathbf{z}; \theta_D), \end{aligned}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- θ_E and θ_D are the trainable parameters of the two functions.
- The encoding and decoding function are usually implemented as two feed-forward neural networks, which are constrained to be symmetric.



► To minimize the discrepancy between \mathbf{x} and $\tilde{\mathbf{x}}$, the parameters θ_E and θ_D are adjusted by minimizing through stochastic gradient descent the following reconstruction loss

$$L = L_r + \lambda L_2 = \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\|\mathbf{x} - \tilde{\mathbf{x}}\|^2 \right] + \lambda \left(\|\theta_E\|^2 + \|\theta_D\|^2 \right).$$

- ► The term *L_r* minimizes the mean squared error between original inputs and their reconstructions.
- L₂ penalizes large model weights. The hyperparameter
 λ controls the latter contribution to the total loss.

Autoencoders hyperparameters

- Regularization parameter λ for the L_2 norm penalty in the loss function L.
- Network configuration (number of layers and neurons per layer).
- Probability p_{drop} to drop neural connections during the training (prevents overfitting).
- Learning rate η used in stochastic gradient descent:

$$\Theta_{k+1} = \Theta_k + \eta \nabla L(\Theta_k).$$

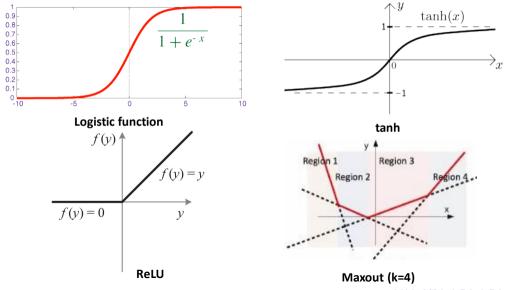
with $\Theta = \{\theta_E, \theta_D\}.$

- > Type of activation function implementing the non-linearities within each AE layer.
 - In case of fully connected layers, each layer output is

$$\mathbf{x}_t = f(\mathbf{W}_t \mathbf{x}_{t-1} + \mathbf{b}_t),$$

with f() the activation function.

Activation functions



Classification

- One the AE is trained on good data X^g, both good and bad data are processed to obtain the low dimensional representations Z^g and X^b.
- A classifier is trained to discriminate between \mathcal{Z}^g and \mathcal{X}^b .
- Thanks to the AE pre-processing, the class should be easier to separate, compared to the original input space.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- ► In our work, we considered:
 - Support Vector Machine classifier;
 - Least square classifier;
 - Prototype classifier.

Prototype classifier

For each class c, a prototype is computed as

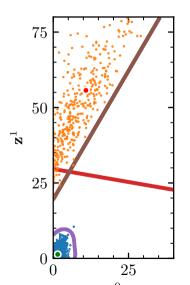
$$\mu_c = \frac{1}{|\mathcal{X}^c|} \sum_{i \in \mathcal{X}^c} x_i \tag{1}$$

• The class label ℓ of an uncategorized data sample \bar{x} is assigned as

$$\ell = \operatorname{argmin}_{j \in \{g, b\}} \|\bar{x} - \mu_j\|^2 \tag{2}$$

- This classifier does not depend on any hyperparameter and requires to maintain only the representative of each cluster to classify new data.
- Due to its simplicity, this classifier cannot identify complex decision boundaries to separate samples of different classes.
- Is a viable option for easily separable data.

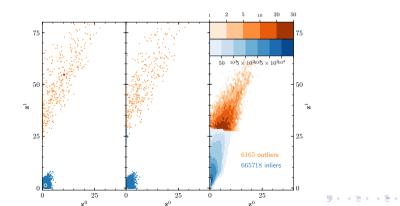
Classifier algorithms learn a decision boundary in code space from labelled data



- Least-squares classifier (brown): Tight boundary around outliers
- Nearest prototype (Red): Boundary approximately equidistant between prototypes
- SVM with Radial basis function kernel (purple): Tight boundary around inliers

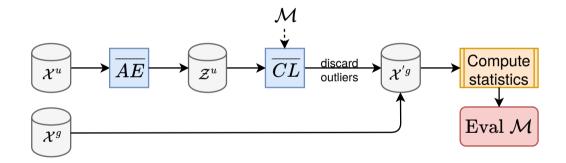
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Assign label to uncategorized data in code space

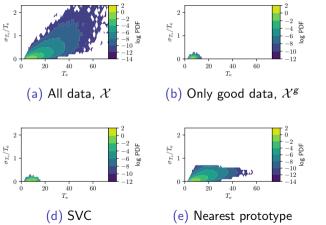


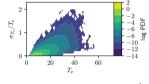
э.

Proposed pipeline to find the optimal classifier ${\cal M}$

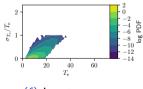


Classifiers remove qualitatively different samples





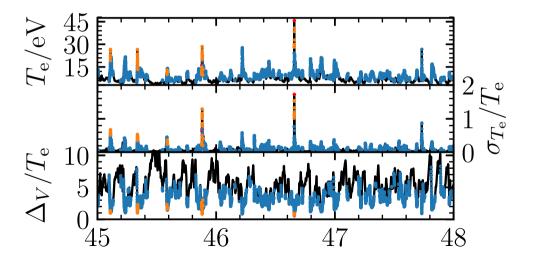
(c) No bad data, $\mathcal{X} \setminus \mathcal{X}^b$



(f) Least squares

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Large amplitude fluctuations are often identified as outliers.



Removing outliers reduces mean contributions by 10 - 20%.

		\mathcal{X}	\mathcal{X}^{g}	$\mathcal{X} \setminus \mathcal{X}^{b}$	$\mathcal{X}^{'g}_{pro}$	$\mathcal{X}_{SVC}^{'g}$	$\mathcal{X}_{lsq}^{'g}$
г	Mean	21.0	1.83	19.4	18.3	9.93	17.0
$\Gamma_{\mathcal{T},cond}$	Std	101	11.9	82.2	74.4	32.8	66.0
г_	Mean	11.8	2.18	11.3	11.0	7.18	10.4
$\Gamma_{T,conv}$	Std	38.8	8.83	35.0	33.1	19.3	39.0
г_	Mean	8.72	-0.093	6.58	5.72	1.21	4.65
$\Gamma_{\mathcal{T},tcor}$	Std	102	2.63	59.0	49.5	13.3	39.0
Γ _T	Mean	41.4	3.92	37.3	34.9	18.3	32.1
ΙŢ	Std	232	19.8	170	151	61.0	130

Heat flux in units of heat flux, in units of $10^{20}\,\mathrm{eVm^{-2}s^{-1}}$