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Thesis Summary 

The immune system is efficiently protecting us against infections by recognizing foreign 

structures; however it can occasionally cause complications during pregnancy by eliciting 

immune responses against foetal blood cells. Blood platelets have surface proteins that exist in 

different variants in the population. Those that are known to be a target for alloimmune 

responses are referred to as human platelet antigens (HPA). In cases where the foetus has 

inherited an HPA-determinant from its father that differs from the mother’s own, there is a risk 

of immunisation. Maternal antibodies are transferred over the placenta to the foetus during 

pregnancy, where platelet-reactive antibodies can cause depletion of foetal platelets and increase 

the risk of bleeding – a condition defined as neonatal alloimmune thrombocytopenia (NAIT). 

There is currently no treatment that can prevent immunisation. The vast majority of NAIT cases 

are due to incompatibility in the HPA-1 system, defined by a single amino acid difference 

(Leu33/Pro33) in β3-integrin on platelets. The knowledge of the underlying cellular mechanisms 

that result in production of maternal platelet-reactive antibodies has been limited. This thesis 

sheds light on cellular mechanisms, by characterizing HPA-1a-specific T cells isolated from 

HPA-1a-immunised women who have given birth to a child affected by NAIT. Formal evidence 

for these cells is important, as antigen-specific T cells are generally orchestrating any given 

antigen-specific immune response. Furthermore, the characteristics of these HPA-1a-specific T 

cells were studied; both regarding specific recognition and HLA-restriction.  

There are certain genetic factors that are associated with alloimmunisation with HPA-1a, and by 

experiments with the HPA-1a-specific T cells in culture, the functional role for one of the 

strongest genetic association markers, HLA-DRB3*01:01, was demonstrated. The allogeneic 

residue Leu33 ensures efficient binding to the peptide-presenting MHC molecule 

DRA/DRB3*01:01, while the epitopes recognized by the T cells are common in both HPA-1a 

and HPA-1b, thus representing a “self” epitope, that allows for a more diverse T cell response 

than if the epitope was restricted to the allogeneic amino acid alone. In addition, the HLA class II 

alleles are located in close proximity on the chromosome, and are therefore inherited in confined 

entities defined as haplotypes. The DRB3*01:01 allele seen in HPA-1a immunised women, are 

associated with only a few DR-DQ haplotypes. By identifying the DR-DQ haplotypes in HPA-

1a-immunized women, an overrepresentation of the DR3-DQ2 haplotype was demonstrated 

compared to the general population, suggesting that other properties in the DR3-DQ2, additional 

to the HLA-DRB3*01:01, can influence immunisation. The understanding of the cellular 

reactions that results in production of anti-HPA-1a antibodies and subsequent NAIT, are 

important for potential treatment strategies to prevent immunisation. 
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Introduction 

Alloimmunisation in pregnancy 

Allogenicity; differences between individuals in the same species, is an intrinsic property of 

viviparous reproduction, as the foetus inherits half of its genomic material from its father. 

Successful pregnancies are a result of maternal tolerance of the allogeneic foetus, and the 

phenomenon has intrigued scientists for more than a century; the mechanisms that allow a 

semiallogeneic foetus to grow without compromising the maternal immune response to 

pathogens. However, pregnancy-related alloimmune disorders, in which maternal immunisation 

results in the destruction and depletion of foetal blood cells can complicate pregnancies. The 

manifestation of the conditions depends on the target of the maternal alloantibodies; antibodies 

against red blood cell antigens may cause anaemia in the newborn, antibodies against neutrophils 

cause neutropenia, while antibodies against foetal platelets can cause thrombocytopenia.  

Neonatal alloimmune thrombocytopenia - NAIT 

Neonatal alloimmune thrombocytopenia (NAIT) is a condition in which maternal alloantibodies 

sensitise foetal platelets during pregnancy and reduce their survival in circulation, rendering the 

foetus thrombocytopenic and at risk of bleeding. The condition of thrombocytopenia in 

otherwise healthy newborns, due to platelet isotype incompatibilities were described back in 

early 1950’s.1  

Thrombocytopenia in the newborn is defined as a platelet count <150 × 109/L, while platelet 

counts <50 × 109/L are defined as severe thrombocytopenia. NAIT can result in intracranial 

haemorrhage and death, and severely affected neonates may suffer brain damage and lifelong 

severe disability.2-4 NAIT cannot be foreseen without screening programs; and therefore most 

cases of alloimmune thrombocytopenia are diagnosed after birth by obvious skin bleedings 

(petechiae or purpura) or by accidental detection of low platelet counts. NAIT due to  

anti-HPA-1a antibodies is reported to occur in about 1 of 1100 newborns.4,5 Without screening 

programs, the detection rate of NAIT in Norway is poor.6 In Norway, postnatal treatment by 

compatible platelet transfusions is given if the platelet count is less than 35 × 109/L, and may be 

a logistical challenge in unexpected cases.  

 

There is no international consensus on the management of alloimmune thrombocytopenia.7 

Intravenous immunoglobulin (IVIg) with or without additional steroids given to the mother 

during pregnancy is the recommended intervention in some countries.7 Good, but variable, 
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efficiency of this treatment is reported by several studies,8-11 however the protective mechanism 

is not clear. 

NAIT has been regarded as the platelet counterpart of RhD alloimmunisation - the clinically 

most important red cell antigen. About 15% of the Caucasian population lack the gene (RHD) 

encoding the protein and thus the structural antigen, rendering RhD-negative women at risk of 

alloimmunisation in connection with pregnancy. Most cases of RhD alloimmunisation are caused 

by foetal-maternal bleedings around time of delivery and rarely takes place during the first 

pregnancy.12 The incidence of RhD alloimmunisation were reduced from ~13-16% to ~2% by 

administration of prophylactic post-natal maternal anti-D treatment implemented (in most 

countries), successfully reducing the incidence of subsequent neonatal alloimmune anaemia 

(HDN) correspondingly.12-14 

Most comparisons have emphasised that NAIT, unlike HDN, also frequently occurs in 

primigravida, implicating that the mechanisms of RhD- and platelet-immunisation are potentially 

different. The prophylactic approach has therefore not seemed optimal to prevent platelet 

alloimmunisation and subsequent thrombocytopenia. However, prospective screening studies 

have found that the incidence of immunisation in primigravida is low (~25%).4,5,15 A further 

follow-up of the women included in the Norwegian screening study (1995-2004),5 showed that 

several women were alloimmunised in connection with delivery.16 This matter is under debate, 

as several other groups have reported previously that ~50% of NAIT cases were detected in the 

firstborn child.17-19  

Platelets 

Platelets, or thrombocytes, are the smallest of all blood cells, with a 1-3µm disc-shaped form in 

their resting phase. They originate from megakaryocytes matured under tight regulation by 

cytokines and hormones in the bone marrow, and the platelets are shed by shear forces in the 

blood circulation.20 The size of the released platelets is determined at release, and their size is 

maintained through their approximately nine days of life.21 The platelets are anucleate but carry 

cytoplasmic material such as dense granules, alpha granules, mRNA and miRNA, derived from 

the megakaryocyte from which they originate. The normal platelet count in healthy individuals is 

within the range of 150-450×109/L. Despite their small size, the platelets serve as critical 

mediators in maintaining normal haemostasis.22 Whenever damages in vascular tissue lead to 

bleeding, the platelets are immediate rescuers by detecting subendothelial tissue and forming an 

aggregate that stops the bleeding. When activated, the platelets rapidly changes shapes, to a 

contracted spherical form with dendritic structures essential for adhesion. The clot formation 

process is initiated by the attachment of platelets as a monolayer on the site of bleeding, due to 
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the exposure of vWF and collagen, followed by release of chemo-attractants, leading to massive 

recruitment and aggregation of additional platelets to form a stable plug. In the course of the past 

decade, interest in platelets has risen, as their functions have been found to extend beyond their 

role in clot formation following vascular tissue damage.23   

Platelet surface molecules  

The role of platelets in regulation of haemostasis depends on their ability to adhere and 

aggregate, mediated by glycoprotein receptors on the platelet surface. 

The α/β heterodimeric receptors expressed on platelets are α IIβ1 (collagen receptor), αVβ1 

(fibronectin receptor), αvIβ1 (laminin receptor), αVβ3 (vitronectin receptor) and αIIbβ3; the latter 

being primarily a receptor for fibrinogen, but it can also bind vWF, fibronectin and vitronectin.24 

αIIbβ3, also called GPIIb/IIIa, is the most abundant glycoprotein, with 50-80,000 molecules 

distributed on the surface of each platelet.25,26 GPIIb/IIIa is essential for platelet aggregation, and 

is activated by inside-out signalling, by an intracellular signal cascade caused by signalling from 

other receptors. The activation of GPIIb/IIIa results in a conformational change in the 

extracellular domains, forming a high-affinity fibrinogen- and vWF-binding site that allow stable 

platelet-platelet interaction.22 

   

Several single nucleotide polymorphisms (SNP) in genes encoding platelet surface glycoproteins 

result in single amino acid polymorphisms, which have been shown to be immunogenic.27 These 

polymorphisms are defined as Human Platelet Antigen (HPA) systems.28 Generally, the systems 

have two allelic variants, with the most common allele being designated a, and the other, b; 

however additional infrequent alleles have been described in several systems,29,30 while not yet 

studied worldwide. Most HPA-systems are defined as polymorphisms in the GPIIb/GPIIIa 

encoding genes ITGA2B and ITGB3 (gene IDs:3674 and 3690, respectively). From an 

alloimmune point of view, HPA-1 and HPA-5 are the clinically most important systems in 

Caucasians: anti-HPA-1a antibodies cause most cases of NAIT (85%), whereas 6-15% are 

caused by anti-HPA-5b antibodies, with other HPA specificities adding in by a few percent.31,32 

Alloimmunisation to HPA-1a 

The genetic basis of the HPA-1 system is a C/T polymorphism (rs5918) in exon 3 of ITGB3. 

This corresponds to mRNA position 196 and amino acid residue 59 in the β3 integrin precursor 

protein, resulting in a leucine/proline substitution at residue 33 in the mature β3 integrin, where 

the HPA-1a (Leu33 variant) is immunogenic.33 HPA-1b (Pro33 variant) is the minor allele, and 

in the Norwegian population about 2% are homozygous (HPA-1bb),5 representative for most 
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Caucasian populations studied; updated information about HPA antigens and their allele 

frequencies can be retrieved from the IPD - HPA Database.34 An infrequent Val33 variant is also 

described.29 Women homozygous for HPA-1b, and thus lacking the HPA-1a epitope, can 

become alloimmunised in connection with pregnancy, when carrying an HPA-1a positive foetus. 

Immunisation can occur during the pregnancy, or in connection with delivery, resulting in anti-

HPA-1a IgG antibody production.  

Anti-HPA-1a antibodies – clinical relevance 

Maternal anti-HPA-1a antibodies are transported across the placenta during pregnancy by FcRn 

receptor-mediated transfer.35-37 The international gold standard for detection and quantification 

of anti-HPA-1a antibodies has been the Monoclonal Antibody Immobilization of Platelet 

Antigen assay (MAIPA).38-40 A correlation of the maternal anti-HPA-1a antibody level and the 

severity of thrombocytopenia in the newborn is reported in several studies.4,16,18,41 It has also 

recently been shown that low-avidity anti-HPA-1a antibodies in the plasma of women with an 

affected neonate can be detected by plasmon-surface resonance measurements.42 These 

antibodies cannot be measured by MAIPA, due to their low avidity for the platelet antigen, as 

MAIPA requires several washing steps and these antibodies are probably washed away. The 

frequency of such low-avidity antibodies is difficult to determine, as their presence is potentially 

masked by high-affinity antibodies in many cases. 

The cellular immune response as a premise for antibody production 

The maternal platelet-reactive IgG antibodies are indisputably the effector molecules that can 

cause thrombocytopenia in the foetus or neonate. However, IgG antibodies are classically 

produced by plasma cells differentiated from activated B cells that have received stimulating 

signals from antigen-specific CD4+ T cells. The role for such antigen-specific T cells in NAIT 

has been plausible for several reasons. First, the antigen is derived from a protein, and most 

immune responses to peptide antigens are T cell-dependent. Second, there is a strong HLA 

association with this condition, which implies that an HLA molecule plays a functional role in 

antigen presentation. Third, the maternal antibodies are of IgG class, and T cell help is generally 

required for class transition and isotype switching, from IgM to IgG isotypes.   
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Figure 1.  A hypothetical scenario in which a primed HPA-1a-specific T cell helps a HPA-1a-specific B cell, 

which subsequently differentiates into an antibody-secreting plasma cell.  

 

Processing foreign antigens 

Our immune system protects us against pathogens through its constant hunt for foreign antigens 

in the body. The innate and adaptive immune systems and their interplay, by direct interaction 

via membrane-bound receptors or via secreted molecules, are the key to fully efficient functional 

immune responses against pathogens. Innate response mechanisms are essential for immediate 

alertness to foreign antigens and for efficient presentation to the adaptive system, which then can 

contribute with specificity and memory to the immune defence process. The T cells function as 

very critical surveyors, scanning proteolytic peptide fragments presented to them on MHC 

molecules on other cells. Most of the proteolytic waste presented, obviously consists of 

fragments of self-proteins as cellular proteins are degraded due to misfolding during synthesis or 

by down-regulation of proteins. The capability of T cells to discriminate foreign from self is 

therefore fundamental to the normal immune response. 

The two main mechanisms for dealing with proteins of both self and foreign origin are 

proteasomal and lysosomal degradation. Ubiquitinated intracellular antigens are processed by 

proteosomal degradation in the cytoplasm, and loaded and presented on MHC class I molecules 

ready for recognition by CD8 cytotoxic T cells in order to eliminate the infected cell. On the 

other hand, extracellular antigens taken up by endocytosis are subject to lysosomal degradation. 

The newly synthesized MHC class II molecules encounter these antigens in the acidic lysosomal-
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like compartment MIIC, from which only stable peptide/MHC complexes are transported to the 

surface.43-45 

Whenever an MHC molecule on the surface has lost its peptide, the heterodimer rapidly converts 

to an inactive “non-receptive” state,46 meaning that the peptide-binding groove is not accessible 

for other exogenous peptides. This appears to be a safety mechanism that ensures that the 

antigens presented in the MHC molecule on the surface, actually represent the peptide repertoire 

present in the MIIC compartment, not just any extracellular peptide binding to empty MHC 

molecules.  

HLA polymorphisms 

The human MHC, also named Human Leukocyte Antigen (HLA), are highly polymorphic, with 

numerous allelic variants.47 The number of reported alleles is continuously increasing, although 

most of the new MHC class II alleles reported are infrequent, or represents subdivisions of 

previously grouped alleles. 

The various HLA alleles are divided into classes (I/II), genes (A/B/C, DR/DQ/DP etc) and allelic 

groups and are then further subdivided on the basis of genetic/phenotypic differences. In April 

2010, an update of the HLA nomenclature was released by the WHO Nomenclature Committee 

for Factors of the HLA System.48 Due to the rapid increase in described alleles, colons have now 

been officially introduced as delimiters to separate the allelic designating fields. According to the 

new nomenclature, the gene and protein names are identical, however discriminated by 

italicisation of gene names. The nomenclature system is illustrated in Figure 2. According to the 

Nomenclature Update 2010, there are 3249 class I alleles and 1198 class II alleles; and newly 

designated alleles are published monthly.49 

Although the various alleles are designated according to their serological properties, the nature 

of the polymorphisms in MHC class II causes difficulties for intuitive logical grouping. This 

diversity also complicates the matter of HLA genotyping. For detection of specific alleles; allele- 

or group-specific primers and probes can be used. For overall typing, commercial kits with 

validation of the detection of new or newly designated alleles should preferably be used, as 

control DNA is not commercially available. 
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Figure 2. Naming of HLA alleles according to the WHO Nomenclature Update April 2010.48 

 

The set of HLA molecules in an individual is defined genetically by, and limited to, allelic 

variants in each HLA-locus. This implies that there are variations in the antigen-specific immune 

response in different individuals, depending on their inherited set of MHCs. The polymorphisms 

in the MHC thus contribute to disease susceptibility. As every individual can have only a limited 

number of different MHC alleles, functional immunity depends on the ability of a wide range of 

peptides to bind to each MHC molecule. 

 

Particular HLA molecules are associated with different immune-related diseases, and in many 

cases only a genetic association can be observed. In most cases there is a positive association, in 

which the associated allelic variants increase susceptibility to the disease. However, negative 

associations have also been reported, which means that the given allelic variants protect against 

the disease. Reports of HLA class II associations have sometimes been surprisingly indefinite 

and occasionally conflicting, due to problems in defining the specific associated allele, since the 

region displays extensive linkage disequilibrium. 

Peptide binding to MHC class II 

Substantial efforts have been made to understand the “rule” of which, and how, peptides bind to 

the different HLA class II molecules, ever since the first crystal structure of an MHC class II 

molecule, DRA/DRB1*01:01, was reported in 1993 by Brown et al., who described the entire 

three-dimensional structure of the an α/β heterodimer.50 Since then, a number of different allelic 

variants of DRA/DRB1 has been structurally resolved,51,52 as well as DRA/DRB3 

(DRB3*01:01,53 DRB3*03:01,54) DRA/DRB5,55 a few DQ molecules,56,57 and the structure of a 

DP molecule has recently been reported.58 Several assessments have attempted to 

computationally predict MHC class II binding.59,60 It has turned out to be particularly difficult to 
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make evaluations of this sort, as the peptide-binding-motifs appear to be less conserved than 

initially believed. 

 

The ectodomains of the alpha and beta chains within each subgroup of MHC class II together 

form an allele-specific peptide-binding groove; which resides the determination of which 

peptides that can be presented by the given MHC class II molecule.  

In contrast to MHC class I, that can fit peptides of 8-10 amino acids length, the MHC class II 

molecules are generally thought to bind peptides of 12-25 amino acids; however, the binding 

core is restricted to nine to twelve amino acids, and the open ends of the MHC class II molecule 

allow the extending residues to continue outside of the peptide-binding groove.   

Within the binding groove of the class II molecules, the general major sites of peptide interaction 

are pockets P1, P4, P6 and P9, according to the peptide amino acid residue with which they 

interact.61 These pockets accommodate the peptide amino acid anchor residues according to their 

intrinsic properties; size, charge, hydrophobicity, and steric conformation. In addition, non-

anchoring peptide residues can also interact with the MHC by hydrogen bonds, thus stabilising 

the complex.  

 

The core peptide residues are certainly required for the peptide to bind to a given MHC class II 

molecule. Nevertheless, peptide-flanking residues (PFRs) also play a role. Studies in which the 

naturally processed peptides have been eluted from their presenting MHC have shown that the 

core peptide residues have conserved PFRs.62 These PFRs can interact with the MHC molecule 

and influence the strength of the peptide-binding conformation of the peptide epitope,63 stability 

and presentation time.64 PFRs can also influence recognition by TCR.65  

 

The DRA locus has only three different alleles, which encode two different DRA proteins; 

DRA*01:01 and DRA*01:02. However, they are identical in the region relevant for peptide 

binding, and the locus is therefore considered to be functionally invariant.  

The DRB3 locus has 52 different described alleles (November 2010) that encode 14 different 

DRB3*01 proteins (*01:01 to *01:14), 25 different DRB3*02 proteins (*02:01 to *02:25) and 3 

different DRB3*03 proteins (*03:01 to *03:03). However, there are only three frequent alleles in 

Caucasians; DRB3*01:01, DRB3*02:02 and DRB3*03:01. They are very similar, although the 

few differences in DNA sequences result in amino acid changes in the peptide-binding pockets, 

which confer different antigen-presenting properties. The regions that interact with the TCR are 

identical in the three allelic variants.54 
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Previous reports have shown that the DRB3 alleles are remnants due to gene duplications,66,67 

and it has been suggested  that they are only weakly expressed,68 and that peptides presented by 

these molecules are cross-presented by DRB1 molecules.69 A recent report emphasises that this 

is not the case, and that the DRB3 is present in significant amounts on the cell surface on CD19+ 

and CD14+ cells, and that  the antigenic peptides presented are, at least to a large extent, not 

cross-presented by any of the DRB3-associated DRB1 molecules.70 

 

Despite that the MHC molecules on the surface, that have lost their low-affinity ligands, are 

thought to be converted into a non-receptive state, the concept of in vitro peptide-pulsing is very 

useful. As no prediction model of peptide-binding to MHC molecules is perfect, peptide-binding 

needs to be determined for any given peptide before any TCR-recognition can been studied.  

In order to measure the binding efficiency of individual peptides to MHC class II molecules on 

APCs,  MHC loading enhancers can be used, assisting the exchange of  naturally bound peptides 

with the exogenous experimental peptides, by interacting with pocket P1, thus stabilising the DR 

heterodimer in a receptive state to allow efficient peptide exchange.71-76 By this method, peptide 

binding can be directly compared to potential T cell activation, since the same peptide-pulsed 

APCs can be employed in both assays.  

HLA-DRB3*01:01 association in HPA-1a induced NAIT 

The HLA class II allelic variant HLA-DRB3*01:01 has been reported to be genetically associated 

with immunisation against HPA-1a in 1990,77 and it has been confirmed by several studies, that 

90-95% of HPA-1a-immunised women carry this allelic variant. 3-5,78,79 The association of the 

DRA/DRB3*01:01 molecule was also addressed on a structural basis, as the molecule was 

crystallized – with the HPA-1a peptide in the peptide-binding-grove.53 The complex of an  

HPA-1a peptide and the DRA/DRB3*01:01 is illustrated in Figure 3. 
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HLA class II  
DRA chain   
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Crystallographic structure 
2Q6W DRB chain 

 

Figure 3. The crystal structure of DRA/DRB3*01:01 with the HPA-1a peptide in the peptide-binding groove. 

Adapted from the Protein Data Bank Entry 2Q6W53 at www.pdf.org. 

 

HLA-DR-DQ haplotypes 

The HLA genes are located in such close proximity within the MHC region that they are 

inherited as confined entities, and different allelic combinations on each chromosome can 

subsequently be defined as haplotypes.80  HLA-DR-DQ haplotypes are defined by the presence of 

specific allelic variants in HLA-DRB1, -DQA1 and -DQB1 loci, illustrated in Figure 4. The 

extended polymorphism seen in MHC genes is thought to be an important intrinsic property of 

the adaptive immune system. Interestingly, even though numerous different alleles have been 

reported,81 most are rare, and there are only 24 common (present in more than ~1% of the 

population) HLA-DR-DQ haplotypes in the Norwegian population.82 

Evolutional investigations have shown that not only are HLA-DR-DQ haplotypes inherited as 

specific units, but also that there are a number of conserved extended haplotypes (CEH) in a 

region from HLA-A (MHC class I) to HLA-DQ (MHC class II) that includes non-MHC loci 

(MHC class III).80 
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Figure 4. A simplified illustration of the human MHC genes. The presence of an additional functional DRB 

locus is associated with specific DR-DQ haplotypes. DR-DQ haplotypes with no associated additional DRB 

carry pseudogenes in this region. Distances are not to scale.  

 

T cell populations 

The thymus is populated by a large pool of immature thymocytes that can proceed to the very 

strict T cell developmental program within the thymus. Every single, naïve, T cell has achieved 

successful rearrangement of its T cell receptor genes, has gone through positive selection, 

(ensuring recognition of self-MHC molecules) as well as negative selection (ensuring no high-

affinity binding of self peptides in complex with MHC), in order to function as a potential 

productive member of the adaptive immune response. The vast majority of potential T cells will 

be deleted due to failure during the positive or negative selection processes. 

Phenotypically, the two major T cell lineages are defined by their co-receptor expression, CD8+ 

and CD4+, determining their antigen-recognition in the context of MHC class I or II, 

respectively. While the CD8+ T cells will acquire a cytotoxic function upon antigen-specific 

priming, the faith of CD4+ T cells as T helper (Th) cells is more indefinite. The classical 

Th1/Th2 paradigm were initially launched by Mosmann et al in 1986,83 and has been 

acknowledged during the years, supported by reports of different chemokine receptors and 

cytokine-production patterns,84,85 characteristic transcription factors,86 as well as a skewed 

balance in many immune-related conditions. 

 

The classical Th1 cells, secreting pro-inflammatory cytokines, IL-2 and IFNγ, were originally 

thought to mainly be involved in antiviral immunity, while the Th2 cells, secreting IL-4, IL-5 

and IL-13, were associated with humoral immune responses. Antibody production is seen in both 

Th1- and Th2- dominating responses. Generally, the antibody responses have been thought to be 

induced by Th2-responses; however, Th1 cytokine IFNγ is required for IgG antibody class 

switching, leaving neither of the two helper profiles as the perfect sole mediator of B cell 
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differentiation.  During the past decade, several additional T helper lineages have been reported, 

complicating the view of T helper cells, but at the same time contributing to the known 

unknowns in T cell helper function, particularly regarding mechanisms that stimulate B cells to 

differentiate. The follicular helper T cells are strong candidates for this.87,88 However, all novel 

theories of lineages and mechanisms of differentiation are in line with the dogma; that the 

commitment to a certain lineage is given by the stimulating signals during the activation of the 

naive T cell.  

 

The T cell receptor 

The T cell receptor (TCR) is a transmembrane heterodimer, where the pair of protein chains 

form a unique receptor for recognizing peptide:MHC complexes on APC. The TCR loci (TCRA, 

TCRB, TCRG, TCRD) contain all the genetic information required to generate all the TCRα/β 

(and TCRγ/δ) receptors needed to ensure a diverse T cell response in the individual; by 

numerous variable (V), diverse (D) and joining (J) gene segments and the process of genetic 

recombination. The generation of the receptor takes place during the early development of the 

thymocyte, by recombination of V and J segments at the TCRA locus and V, D and J segments at 

the TCRB locus, and additional random nucleotide sequences at the recombination sites.89 

 

Both TCRα and TCRβ contain three complementarity determining regions (CDR). The CDR1 

and CDR2 are determined by germ line sequences, as they are encoded completely by the 

variable gene sequences used (TRAV and TRBV). In contrast, the CDR3 regions are derived from 

the VJ and VDJ, including random regions. The CDR3 regions of the TCRα/β molecules are the 

parts that primarily interact with the antigenic peptide, centrally positioned over the peptide. 

However, the CDR1 of the TCRα-chain interacts with the N-terminal part of the peptide, and the 

CDR1 of the TCRβ-chain interacts with the C-terminal part of the peptide,90 while the CDR2 

loops recognize the MHC.91 The interaction of an MHC class II and a T cell receptor is 

illustrated in Figure 5. 

 

The immunological synapse, the local long-lasting junctional structure formed between the T cell 

and the antigen-presenting cell, also includes the interaction of TCR-associated molecules, as co-

receptors CD8 and CD4.     
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A          B                     C 
 

 

 

 

Figure 5. Interaction of an MHC class II molecule and a TCR. (A) Schematic view of variable domains, 

constant domains and transmembrane part. (B) Structural view of ectodomains only. Modified from Kaas 

and Lefranc.90 (C) Schematic overview of the TCR-peptide:MHC sites.91  Top view (upper structure) and side 

view (lower structure) 
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Aims of the study 

The Department of Laboratory Medicine at the University Hospital of North Norway has hosted 

the National Reference Laboratory for Advanced Platelet Immunology since 1995, where the 

main area of research has been neonatal alloimmune thrombocytopenia, which has intrigued the 

researchers in the group since the 1980s. The largest prophylactic screening and intervention 

study that has been carried out to date was performed in collaboration with Ullevål University 

Hospital in 1995-2004, and focused on maternal anti-HPA-1a antibodies. In the wake of this 

study, the cellular mechanism that results in the generation of the platelet reactive alloantibodies 

in these women was addressed, as the majority of women at risk of immunization (HPA-1bb 

women that carry HLA-DRB3*01:01) are not immunised in connection with pregnancy. The 

main focus of this work has been on maternal T cells specific for the HPA-1a epitope, which are 

thought to play an important role in the underlying cellular immune response that may result in 

anti-HPA-1a antibodies and subsequent NAIT in the foetus and newborn. At the origin of this 

project there was no formal evidence for the existence of these cells. In order to study this topic 

in more depth, the following questions were raised and studies initiated to find answers: 

- The frequency of antigen-specific T cells in circulation is low, so the hunt for potential 

HPA-1a-specific cells requires sensitive detection methods. Do HPA-1a-specific helper  

T cells exist, and can such cells be detected in peripheral blood from immunised women 

who have given birth to a child with NAIT?  

- The HLA class II association with HPA-1a alloimmunisation is likely to be due to 

presentation of the HPA-1a derived peptide by the MHC molecule encoded by the 

associated HLA alleles. Can the HLA restriction of HPA-1a-specific T cells be 

determined? 

- The HLA class II allele DRB3*01:01 is associated with only a few DR-DQ haplotypes. 

Can the DRB3*01:01-associated DR-DQ-haplotype influence the risk of immunisation? 

- What is the nature of T cell recognition of HPA-1a; is the allogeneic residue Leu33 

recognized by HPA-1a-specific T cells? Is the recognition of antigen related to specific 

motifs in the T cell receptors?  
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Summary of papers 

Paper I 

T cell responses associated with neonatal alloimmune thrombocytopenia: Isolation of HPA-

1a-specific, HLA-DRB3*0101-restricted CD4+ T cells 

The idea of HPA-1a-specific T cells in HPA-1a-immunised women has been acknowledged for 

years in the field, as the antigen is a peptide epitope, and there is a strong association with a 

specific HLA class II allele (DRB3*01:01), both being characteristic features of T cell-dependent 

immune responses. Several reports have supported this hypothesis; however the cells had never 

been unambiguously detected.  In this paper, we report isolation and characterization of HPA-1a-

specific T cells from an HPA-1a alloimmunised woman who gave birth to a child with severe 

neonatal alloimmune thrombocytopenia. This was done by stimulating maternal PBMCs with 

synthetic HPA-1a-derived peptide in culture, followed by cloning of proliferating cells using 

fluorescent activated cell sorting (FACS). Two long-term clonal T cell cultures were established. 

We confirmed their specificity with both synthetic (peptide) and native platelet antigen 

(platelets), and demonstrated that the recognition of antigen by these cells is in fact restricted by 

the very same HLA variant, DRB3*01:01, which is genetically associated with immunisation. 

These data served as formal evidence of the existence of maternal HPA-1a-specific T cells, and 

the clonal T cells are valuable tools for further research to understand the cellular mechanisms 

that result in anti-HPA-1a antibody production that can cause NAIT. 
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Paper II 

T cell responses associated with neonatal alloimmune thrombocytopenia: HPA-1a-specific 

T cell clones recognize a “self”-epitope that does not include the allogeneic Leu33 residue.  

In paper II, the antigen recognition of HPA-1a-specific T cells was investigated in more detail. 

The repertoire of clonal T cells to use for such studies was increased by the isolation of several 

clones from additional donors. We addressed the question whether or not the allogeneic  

β3-integrin residue Leu33 itself is a part of the T cell epitope recognized by HPA-1a-specific  

T cell clones. A model for measuring both peptide-binding to antigen-presenting cells and the 

corresponding activation of T cells were developed. With this model, we determined that 

substitution of the Leu33 residue with other small hydrophobic amino acids did not disrupt 

binding of these peptides to DRA/DRB3*01:01-positive APCs and subsequently still activate  

T cells clones. These data demonstrate that residues specifically recognized by the T cells are 

present in both HPA-1a and HPA-1b variants and do not necessary include the Leu33 residue. 

The implication of these findings is that immunogenicity of the HPA-1a peptide lies in the 

anchoring to the MHC and not in the distinction between these epitopes by the T cells. 

Furthermore, by using a panel of peptides with selected amino acid substitutions, we revealed 

that the isolated HPA-1a-specific T cell clones are unexpectedly heterogeneous in their 

recognition of peptide-MHC. In line with thus finding, the TCRs of these clones do not share any 

specific CDR3 sequences, or any characteristic V segment usage. 
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Paper III. 

HLA-DR-DQ haplotypes in HPA-1a-immunised women: DR3-association is stronger than 

expected by random distribution. 

The finding reported in paper I, that the HPA-1a-specific T cells isolated were restricted by 

DRA/DRB3*01:01, raised further interest in this particular MHC molecule. There are only a few 

common HLA-DR-DQ haplotypes in the Norwegian population that carry the DRB3*01:01 

allelic variant. HLA-DR-DQ investigations were initiated according to our hypothesis that one 

DR-DQ haplotype is overrepresented among HPA-1a-immunized women. High-resolution 

typing of individual HLA class II molecules includes numerous group- and sequence-specific 

tests. HLA-DR-DQ haplotype identification strategies were chosen, followed by typing of 167 

HPA-1a immunised women and 782 healthy volunteers from the blood bank at the University 

Hospital of North Norway (control group of DRB3*01:01 positive individuals). In this paper, we 

report that the DRB3*01:01-associated DR3-DQ2 haplotype is overrepresented among the  

HPA-1a immunised women, compared to the general population of DRB3*01:01-positive 

individuals. Also the DQB1*02 has previously been reported to be associated with 

immunisation. Here, we demonstrate that ~80% of the DQB1*02 alleles among the immunized 

women in our study, are present due to the DR3-DQ2 haplotype. The data in the present study 

suggests that another, not yet identified, genetic element within this haplotype can influence 

HPA-1a-immunisation. Identification and understanding of such novel factors are important to 

attempt prevention of this condition, and may also allow more accurate prediction of women at 

risk of alloimmunisation. 
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Discussion 

Most of the results are discussed in the papers. Some major aspects are further discussed here.  

Methodological Considerations 

In vitro experimental models, using peripheral blood cells from alloimmunised women in cell 

culture systems, can never perfectly mimic the network of biological mechanisms taking place in 

vivo. Still, it allows us to explore characteristic properties of the in vivo players, when it comes to 

genotyping (HPA, HLA and T cell receptors) and biological specificity (T cell recognition and 

HLA-restriction) which are intrinsic properties of the cells, and therefore also representative  

ex vivo.  All methods are described in detail in the papers, and potential methodological biases 

are discussed in their appropriate/specific setting in the following discussion of results. 

 

Flow cytometry and flow cytometry-based cell sorting has been particularly important tools for 

the cellular studies included in the work summarized in this thesis. We have attempted to 

describe the flow cytometry data according to the Minimal Information about T cell Assays 

(MIATA) recommendations as far as reasonable.92 

 

Furthermore, flow cytometry analyses of clonal T cells in culture differ from regular analysis of 

peripheral blood, by the clonal nature of the cells. Due to the intrinsic homogeneity of a clonal 

culture, the characteristics and dynamics of their activation responses can be evaluated in a stable 

and highly reproducible manner. We have chosen to assess the activation responses of each clone 

by measuring median fluorescence intensities and/or percentage of responding cells.  

 

Any given established antigen-specific clonal cell strain has limited life-time, as they are not 

transformed like cell lines. They are instead maintained by monthly re-stimulation and 

expansion. Therefore, it is inevitable that a given clone will reach senescence or lose its potential 

to divide, after numerous expansions in culture. The different clones have different 

growth/expansion rates in culture, and occasionally, newly identified clones show very poor 

expansion and die out after some weeks in culture. For successfully established clonal cell 

cultures, a number of vials are cryopreserved for future use. 
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The existence of HPA-1a-specific T cells 

The notion that HPA-1a-specific T cells exist in HPA-1a-alloimmunised women has been  

recognized for several years, due to the characteristic features of T cell-dependent immune 

responses; a peptide epitope antigen and a strong association with a specific HLA class II allele 

(HLA-DRB3*01:01), resulting in IgG antibody responses. Several reports have supported this 

hypothesis, as cell proliferation in bulk PBMC cultures has been demonstrated following 

stimulation with HPA-1a-derived peptides.93-95 Detailed studies of HPA-1a-specific T cells 

nevertheless require the isolation and long-term culture of these cells. In Paper I, we report 

formal evidence of the existence of these cells, confirming their specificity with both synthetic 

antigen (peptide) and native platelet antigen (platelets), and demonstrating that the recognition of 

antigen is in fact restricted by the very same HLA-molecule DRA/DRB3*01:01 as is associated 

with immunisation. This is important, since it further supports the functional role for this MHC 

in the alloimmune response, previously indicated by genetic association as well as biochemical 

peptide-MHC interaction studies.3,53,77,96 Shortly after the appearance of our paper, our results 

were confirmed by Rayment et al, who also reported HPA-1a-specific T cell clones from 

alloimmunised women.97  Synthetic peptides were used in both studies in the primary stimulation 

PBMC culture, followed by confirmation of recognition of native platelet antigen by the 

established clones. We showed that only HLA-DRB3*01:01-positive, HPA-1bb monocytes  

co-cultured with HPA-1a+ platelets overnight, but not HPA-1bb platelets, could stimulate the T 

cell clones, supporting both the idea that the native HPA-1a antigen on platelets can be naturally 

processed and presented, and that the isolated T cells efficiently recognize the presented epitope. 

This was further supported by Anani Sarab et al., who demonstrated that naturally processed 

HPA-1a peptides are displayed on DRB3*01:01-positive antigen-presenting cells.98 This was the 

first demonstration of cellular processing and presentation of a human alloantigen; by exposing a 

DRB3*01:01-positive B-LCL to the recombinant antigen (the PSI domain of β3 integrin), cell 

lysis and isolation of DRB molecules, followed by elution and characterization of the peptides. 

Together, these findings establish fundamental support for the functional activation of the 

maternal HPA-1a-specific T cells on exposure to the HPA-1a antigen presented by 

DRA/DRB3*01:01 in vivo. However, the role of these T cells in subsequent anti-HPA-1a 

antibody production and profile in vivo has not yet been elucidated. While induction of in vitro 

anti-HPA-1a production in cultures with proliferative responses after stimulation with HPA-1a 

peptides has been reported,95 better controlled experiments and more sophisticated methods will 

certainly be required to unambiguously demonstrate the role of HPA-1a-specific T cells in  

anti-HPA-1a antibody production. 
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In the present study we used different synthetic β3-derived peptide (Leu33/Pro33) variants; in 

the initial stimulation experiments 20-mers β319-38 (VSPMCAWCSDEALP(L/P)GSPRC) were used, 

and in the following epitope studies mainly 12-mer β324-35 (AWCSDEALP(L/P)GS). The choice of 

peptide for stimulations in different studies is interesting. To date, only a few studies have 

reported T cells associated with HPA-1a-related alloimmunsation. Indications of HPA-1a-

specific T cells in PBMCs from alloimmunised women were first reported in 1996 by Gorski’s 

group, employing the spectratyping method.94 While this study was inventive and proposed a 

very important property of HPA-1a-derived peptide in the alloimmunisation, an obvious 

contradiction in the paper needs to be addressed. The study was performed with bulk 

proliferation of PBMC following stimulation with β3 integrin-derived peptide (Leu33/Pro33) 

variants. However, the peptide spans the residues β326-38 (CSDEALPL/PGSPRC) and thus does not 

include the Trp25 residue that the same group showed to be an essential P1 anchor residue a year 

later.96 This certainly complicates the interpretation of the results, and questions the specificity of 

the proliferation seen. Although the cells may have been truly HPA-1a-specific T cells, the later 

finding further emphasizes the importance of isolating the actual antigen-specific cells in order to 

conclusively study their specific recognition and HLA restriction. Moreover, the peptide 

concentration in the stimulation of PBMCs that resulted in detection of specific clonotypes was 

12.5-50 µM, which is about 10-1000 times higher than was required to activate our HPA-1a-

specific T cells. In our hands, the clones are over-stimulated and die if challenged with L33 

peptides (although not LolP1 or P33 peptides) at concentrations ~25 µM (unpublished 

observations). A plausible explanation for the proliferation seen at these high concentrations 

might therefore be the lack of the P1Trp anchor residue in the stimulating peptide, as considerably 

higher peptide concentrations were required for sufficient peptide binding to induce proliferation 

of specific cells, with merely the P4 and P9 anchor residues.  

 

In 2005, two studies reported HPA-1a-specific T cell proliferation on stimulation of PBMC from 

immunised donors, detected by 3H-thymidine incorporation assays.93,95 Both studies were open-

minded in their choice of peptides used for stimulation, in the way that all potential binding 

motifs from the β3 integrin that include the allogeneic residue 33 were taken into account. Thus, 

T cell stimulation due to potential peptide presentation by other MHC class II molecules than the 

DRA/DRB3*01:01 was not excluded. Sukati et al95 used a panel of 15 β3-derived 15-mers, 

allowing the (Leu33/Pro33) residue to occupy all the different positions in the peptide, from  

C-terminal to N-terminal, using a peptide concentration of 20 µg/mL (corresponding to ~12 

µM). Jackson et al.93 used 20-mer β320-39 (SPMCAWCSDEALP(L/P)GSPRCD) and 22-mer β320-39 
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(AWCSDEALP(L/P)GSPRCDLKENLI) peptides at ~0.5-15 µM, probably as an alternative strategy 

aimed at including all the potential binding motifs from the β3 integrin. Hence, considering that 

the core-peptide-binding sequence can be as short as nine amino acids, there is a theoretical risk 

that C/N-terminal peptide-binding motifs from the 20- and 22-mers may leave the allogeneic 

residue 33 outside on either side of the MHC peptide-binding groove.  

 

In these studies we pointed out that the isolation of HPA-1a-specific T cells serves as evidence 

for the existence of such cells in the alloimmunised women from whom they were isolated. The 

implication of these finding is that these cells originates from clonally expanded populations of  

T cells that have participated in previous immune responses. In theory, HPA-1a-specific T cells 

could be developed in vitro from naïve T cells. The priming of antigen-specific T cells in vitro, 

however, depends on interaction with mature dendritic cells (mDC) to present any given antigen 

and the signal 2 (CD28-B7 interaction), by which the signalling cascade induced, ensures the  

T cell that the antigen was presented by a professional APC. The induction of DCs from 

monocytes in PBMCs requires specific protocols, and different maturation cocktails have been 

described as generating mDCs in vitro.99-101 Furthermore, a total of eight of the HPA-1a-specific 

T cell clones (from two donors) were isolated using only pre-FACS isolated CD4+ T cells in the 

stimulation culture, which rules out a fundamental role being played by any professional APCs 

in the culture. Additionally, the fact that the identical clones have been isolated several times 

from the same donor, but from different samples, further supports the priming and activation of 

these cells in vivo.  

 

Traditionally, Th1 and Th2 responses have been associated with inflammatory and non-

inflammatory immune responses respectively. The phenotypic characteristic of the isolated cells 

is informative, even though the in vivo functional Th1/Th2 paradigm is apparently undergoing 

re-evaluation. The T cell clones isolated (Papers I and II) have all been shown to be of a Th1 

type, secreting IFNγ (and TNFα) on stimulation with specific antigen. T cell clones are thought 

to keep their effector profile when established in culture, and we have not seen any changes in 

cytokine production over time. However, during isolation and expansion of clones, we cannot 

ignore the possibility of bias resulting from which cells are successfully expanded. On the other 

hand, some of the expanded clones of irrelevant specificities have shown an IL-4-secreting 

profile, suggesting that the method is not discriminating any potential cells with Th2 profile. 

Several arguments suggest that the cloning and expansion protocol can certainly be optimized. 

First, there is proliferation of T cells with irrelevant specificities in the primary stimulation 

cultures, which reduces the efficiency of cloning of HPA-1a-specific cells (background). Second, 
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although we do isolate identical clones from the same experiments, their frequency should be 

higher than we actually observe, as the cloning sort is performed after a minimum of 12 days of 

proliferation (detected by reduced CFSE intensity). During this time, all HPA-1a-specific T cells 

present in the primary stimulation culture will have divided several times, resulting in a larger 

number of cells with this clonality. Third, the strength of the stimulation is also a matter of 

attention, and there is a risk that some in vivo clones may have been over-stimulated in our in 

vitro experiments, as we have seen that the successfully isolated clones have different 

stimulation thresholds.  

 

Polyclonality of the HPA-1a-specific T cells 

The HPA-1a-specific T cell response appears to be broad (polyclonal). In one of the immunised 

women participating in this study, from whom we have repeatedly received peripheral blood, we 

have so far isolated a total of 13 different clonal T cells, in which the TCRα/TCRβ sequence 

analyses revealed unique CDR3s. 

The actual number of HPA-1a-specific T cells clones in a given donor is probably higher than 

the number identified so far, as repeated experiments typically result in the isolation of further 

unique clones, in addition to re-isolation of previously identified ones. To what extent the 

number of different clonal antigen-specific cells is of importance for the antibody production and 

clinical outcome of the neonate is not yet known. Some alloimmunised women, but not all, 

present continuously high levels of anti-HPA-1a antibodies for years, without any known  

re-exposure to antigen. The donor from whom we have isolated the majority of clones is an 

example of this, as she was alloimmunised in 1980 and still presents relatively high levels of 

anti-HPA-1a IgG antibodies (~30 IU/mL, in 2008 and 2010). Whether the permanently high 

antibody levels and the broad T cell response are connected, or the antibody production is due to 

long-lived plasma cells, is not known. 

 

The recognition of the antigenic peptide by all T cells isolated in this study has been restricted by 

the DRA/DRB3*01:01 molecule. This finding suggests that HPA-1a-specific 

DRA/DRB3*01:01-restricted T cells are dominating the T cell response associated with NAIT. 

However, the isolation of T cells restricted by this molecule may have been biased by the use of 

HPA-1a-derived peptides that are known to bind this MHC. The possibility of isolating HPA-1a-

specific T cells restricted by an MHC class II molecule other than DRA/DRB3*01:01 depends 

on the use of autologous antigen-presenting cells to stimulate PBMCs, as well as intact platelet 

antigen or peptides that span all possible peptide-binding motifs by other MHC class II 
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molecules. It also requires autologous or matched, antigen-presenting cells for specificity testing 

of growing clones to express all the relevant MHC class II molecules. So far, the few efforts that 

we have made to isolate HPA-1a-specific T cells restricted by an MHC class II molecule other 

than DRA/DRB3*01:01 using autologous APCs have been unsuccessful; also using 

DQA1*05:01/DQB1*02:01-positive donors. Indeed, the existence of HPA-1a-specific T cells 

restricted by other MHC class II molecules than DRA/DRB3*01:01 is plausible, as not all 

women producing anti-HPA-1a IgG antibodies carry the DRB3*01:01 allele. However, in a 

hypothetical setting where the Leu33 residue does not function as an anchor residue, the residues 

docking the HPA-1a peptide to a given MHC class II molecule is shared by both HPA-1 variants, 

rendering the allogeneic residue the sole difference between self and allogeneic peptide:MHC 

epitopes, limiting the pattern of recognition dramatically for potential T cells. This could explain 

the low levels of HPA-1a antibodies often seen in DRB3*01:01-negative immunised women, 

that do not result in severe NAIT. 

 

Interestingly, CD4 T cells also express MHC class II molecules,102 and HLA-DR expression on 

these cells was first described as an activation marker. It has also been shown that T cells, in 

vitro, can take up and process antigens, and present on the MHC class II on their surface.103,104 

The MHC class II DR molecules are suggested to be more than activation markers of CD4+ T 

cells, but no evidence for any antigen-presenting mechanism in vivo has yet been found.104  

Proliferation assays with T cell clones stimulated with intact DRB3*01:01-negative, HPA-1aa 

platelets have not shown any stimulation, indicating that the native platelet antigen is not 

endocytosed, processed and presented efficiently enough (unpublished data). However, 

exogenous peptide loading can be the mode of action in T cell activation assays, where peptides 

alone are efficiently stimulating the T cells, as we have detected peptide-binding on the surface 

of the cells, indicating that direct extracellular peptide loading of DRA/DRB3*01:01 is taking 

place in these experiments (unpublished data). 

Reconsidering the immunisation status 

It is possible that there can be HPA-1a-specific T cell responses in women, without B-cell 

activation and anti-HPA-1a antibody production. We have not yet had the opportunity to 

investigate this. This will require screening/identification of truly primigravida, HPA-1bb and 

HLA-DRB3*01:01 women, succeeded by antibody testing during and after pregnancy, 

genotyping of the newborn to confirm the incompatible HPA-1ab genotype to ensure a potential 

antigenic exposure, and finally, a very reliable and sensitive method for measuring the HPA-1a-

specific T cells directly in peripheral blood. By monitoring the T cell responses and generation 
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of antibodies during pregnancies, the progress of events can be followed in detail. Some women 

become immunised in subsequent pregnancies, and it is quite possible that the maternal T cells 

were primed in a prior pregnancy or in connection with delivery, and that generation of 

antibodies is the result of an additional and possibly larger antigenic load. 

 

Today, we define HPA-1a immunisation as detectable anti-HPA-1a IgG antibodies in maternal 

plasma. In our screening and routine follow-up programme for women at risk at HPA-1a 

immunisation, only the presence of IgG antibodies is analysed in the laboratory. The rationale 

for this is obviously that only antibodies of IgG class are transported over the placenta by the 

receptor FcRn. The trans-placental transport of IgG normally protects the foetus from 

pathogens.36 However, platelet-reactive alloantibodies, if present, can cause harm in the 

alloimmune setting during pregnancy by causing NAIT. From a biological point of view, the 

presence of anti-HPA-1a IgM antibodies would also indicate alloimmunisation. By also 

monitoring potential IgM antibody production in the women at risk, the process of immunisation 

could be followed. IgM responses are generally transient and antibodies present in low levels, 

and conversion to IgG responses requires sustained antigenic exposure; the antigenic platelets 

transferred to maternal circulation at delivery, might not be sufficient. 

Additional IgM analyses of IgG-negative women (“non-immunised”) exposed to foetal HPA-1a 

antigens in connection with pregnancy would add substantial information to the debate regarding 

the incidence of alloimmunisation in primigravida. The IgG isotypes of anti-HPA-1a antibodies 

are not routinely tested, but one study reports a tendency of higher levels of IgG3 in cases with 

severely thrombocytopenia compared to mildly thrombocytopenic or compensated cases.105   

T cell recognition of the HPA-1a:DRA/DRB3*01:01  

The allogeneic Leu33 residue is the central focus of paper II. As this is the only difference 

between the HPA-1a and HPA-1b, it obviously plays a critical role for the epitopes recognized 

by the maternal immune system. The HPA-1a epitope for B cells has been shown to be a 

conformational epitope.106 The T cell epitope, however, is necessarily a linear epitope, but might 

also have conformational properties by its docking to the MHC molecule. The idea that the 

Leu33 residue functions as an anchor residue for binding DRA/DRB3*01:01 is not novel. This 

finding was a landmark in HPA-1a-related research when published in 1997, and was beautifully 

illustrated by the crystallographic structure of the HPA-1a-derived peptide bound to 

DRA/DRB3*01:01 in 2007.53,96 Indeed, this notion was the basis for studying the T cell 

responses associated with HPA-1a immunisation. Our studies elucidate the recognition of HPA-

1a by maternal T cells in detail. By demonstrating that the Leu33 residue can be substituted by 
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other small, aliphatic, hydrophobic amino acids, without diminished peptide-binding to 

DRA/DRB3*01:01 and stimulation of HPA-1a-specific T cells, a required specific recognition of 

the Leu33 side chain, can be excluded. We were open to the possibility that even the substitution 

of the Leu33 residue to other aliphatic hydrophobic residues could disrupt the conformation of 

the T cell epitope by docking slightly differently into the P9 pocket, but this was only observed 

for one of the T cell clones. The implication is that the specific amino acid residues that make up 

the epitope recognized by the HPA-1a-specific T cells are in fact present in both HPA-1 variants, 

but that the HPA-1b-derived peptide is not naturally presented in DRA/DRB3*01:01 molecule. 

This binding discrepancy might explain the immunogenicity of this epitope; the amino acid 

polymorphism is intriguingly immunogenic only in this setting. Our data strongly support the 

theory regarding a lack of self-tolerance to the missing epitope; as the maternal T cells have 

probably never encountered the maternal β3 integrin-derived peptide variant in the negative 

selection process during development in the thymus, as the self-variant is so poorly bound. The 

opposite situation, in which the pregnant women are HPA-1aa and carry an HPA-1ab foetus, is 

quite frequent; however anti-HPA-1b antibodies have only been reported occasionally, with no 

clear HLA association.78,107,108 While such HPA-1b antibodies are rare, the fact that they do exist 

rules out the possibility that the HPA-1b B cell epitope is the limiting factor. This is in 

accordance with the notion that a T cell response to an immunogenic T cell epitope is required 

for efficient antibody production.  

 

As the Leu33 residue in the antigenic HPA-1a peptide is not directly recognized by the T cell 

clones, we studied the role of the other residues in the HPA-1a-derived peptide by amino acid 

residue substitutions (Paper II). First, we determined the effect of a given amino acid substitution 

on DRA/DRB3*01:01-binding by peptide-binding assays; this information is essential for 

determining the recognition by the T cell clones.  

In the study by Rayment et al., particular T cell contact sites were indicated,97 a finding based on 

computational modelling of the previously published crystal structure,53 in agreement with other 

T cell epitope-mapping studies with peptide:HLA-DR molecules.90,109 Our results, using a panel 

of modified HPA-1a peptides, presented by DRA/DRB3*01:01, clearly demonstrate that the T 

cell recognition of the peptide:MHC is heterogeneous, as the different clones show individual 

patterns of recognition of the modified peptides. 

 

The TCRA and TCRB loci have been reported to have several SNPs that result in amino acid 

polymorphisms.110,111 Gras et al. recently showed that a single amino acid difference between the 

two common allelic variants of the TRBV9 gene resulted in differential TCR binding affinity and 
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functional recognition of a viral epitope, demonstrating that allelic polymorphisms within the 

TCR loci can influence the immune response.112 Furthermore, specific TCRα/TCRβ loci have 

been reported to be associated with increased susceptibility to immune disorders.110,111 

As the HPA-1a-specific T cells used in this study were isolated from only three women, the 

information that can be deduced from the analyses of T cell receptor genes is limited. However, 

as the T cell recognition of the peptide:MHC was shown to be heterogeneous among the T cell 

clones, this may explain why no conserved TCRα/β CDR3 “motifs” are seen in the T cell clones. 

Furthermore, the number of TRAV/TRBV and TRAJ/TRBJ regions used to build a TCR specific 

for this peptide:MHC-epitope indicates that no particular TCRα/TCRβ allelic variants are 

required for alloimmunisation, thus ruling out this as a possible risk factor. 

 

The DRB3*01:01 allele is the only DRB3 allele predisposing HPA-1a alloimmunisation, 

rationalized by the predicted lack of antigen presentation by other DRB3 variants. The amino 

acid differences in three different HLA-DRB3 variants *01:01, *02:02 and *03:01 are comprised 

to the peptide binding regions, indicating that T cell recognition of these molecules themselves 

should not be discriminated.54 Peptide-binding assays confirm that the DRA/DRB3*02:02 and 

DRA/DRB3*03:01 bind the original L33 peptide poorly. By substituting the P1 and P4 anchor 

residues in the HPA-1a derived peptide (residues 25 and 28), for favourable docking to 

DRA/DRB3*02:02 and DRA/DRB3*03:01 molecules, we could demonstrate peptide-binding to 

APCs expressing these MHC variants, as well as corresponding T cell activation after 

stimulation with these peptide-pulsed DRB3*02:02- and DRB3*03:01-positive APCs (Ahlen et 

al, 2010 unpublished data). 

 

In contrast to the activation of antigen specific B cells, the priming event of antigen specific T 

cells in vivo, the β3-integrin-derived HPA-1a antigen is not necessarily processed from the 

α IIbβ 3  on foetal platelets. It may be processed from any other β 3  integrins on other cells of foetal 

origin.113 The role of α vβ 3 on invasive trophoblasts,114 remodelling of the spiral arteries during 

early pregnancy to ensure increased blood flow to nourish the placenta, was suggested as a 

source of antigen years ago.115 However, also leukocytes and especially monocytes, also carry β3 

on their surface.116  

 

The very obvious idea of platelets as the source of antigen causing immunisation in connection 

with pregnancy probably originates from the Rh(D) immunisation mechanism as a counterpart 

for HPA-1a alloimmunisation. However, the Rh(D) antigen is exclusively expressed on red cells 

in adults, and human trophoblast cells are reported not to carry any Rh(D) antigen in any 
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trimester,117 and therefore the foetal red cells are the certain antigenic origin. For comparison of 

sustained exposure, the lifespan of red cells is ~100 days, compared to ~9 days for platelets. The 

notion that incompatible platelet transfusions can cause alloimmunisation also supports the idea 

that the foetal platelets can function as a source of antigenic exposure to the mother. 

To what extent the antigenic load caused by foeto-maternal bleeding is of importance is not 

clear, but it is certainly plausible, as the volume of the foeto-maternal bleeding is known to be 

critical for RhD alloimmunisation. Small foeto-maternal bleedings in the second and third 

trimesters are considered normal, while larger bleedings are more infrequent.118,119 

Other factors influencing the HPA-1a alloimmunisation  

The functional link between the HLA-DRB3*01:01 allele and reactivity of maternal platelet-

reactive T cells further rationalises the typing of HLA-DRB3*01:01 in HPA-1a-negative 

pregnant women at risk, although ~5% of all HPA-1a alloimmunised women do not carry this 

allele.5 Generally, these women present relatively low HPA-1a-antibody levels, but occasionally 

deliver affected newborns.  

 

It is important to keep in mind, that the majority of women at risk (HPA-1bb and HLA-

DRB3*01:01-positive) are not alloimmunised by the allogeneic exposure in connection with an 

incompatible pregnancy. Hence, other factors yet unknown, apparently influence the 

alloimmunisation process, and the severity of thrombocytopenia and bleeding in the foetus or 

newborn. Several factors implicated in other immune- or pregnancy- related disorders have been 

studied to further understand the mechanism, and to improve the prediction of women at 

particular high risk. Data from the Norwegian screening and intervention study, showed that 

HPA-1a alloimmunised women with blood group A had higher risk (~50%) of giving birth to a 

child with severe NAIT than women with blood group O (~20%), and further that this was 

associated to their ABO genotype (Ahlen et al. Manuscript in preparation), however by far not 

sufficient to rationalise why some women are alloimmunised and others are not. In contrast, a 

recent retrospective study, showed no ABO association.8    

Polymorphisms in killer immunoglobulinlike receptor (KIR) genes have been implicated in 

preeclampsia, by the binding of foetal HLA-Cw to particular KIRs on maternal natural killer 

cells. However, no maternal-KIR/foetal-HLA-Cw gene combinations involved in foeto-maternal 

tolerance appeared to be important for HPA-1a alloimmunisation.120 

The presence of anti-idiotypic antibody was investigated for potentially reducing the anti-HPA-

1a level during the pregnancy, but was not found to play a role.121 

 

 
 

32



The overrepresentation of the DRB3-associated DR3-DQ2 haplotype (paper III) indicates that 

there may be immune-regulating genes within this haplotype that, although not absolutely 

essential, promote immunisation. A quite small study by Hildén et al. suggested an association of 

the DQB1*02:01 allele with severe RhD immunisation (high titre of maternal anti-D 

antibodies).122 It is interesting that pregnancy-related alloimmunisation with both HPA-1a and 

RhD indicates a specific role for this haplotype. DQB1*02 has also been associated with HPA-

1a-related NAIT.3 Although the authors recognized the linkage disequilibrium between DRB1 

and DQB1, the effect of the DR-DQ haplotype does not seem to be taken into account. However, 

no HPA-1a-specific T cells that are restricted by DQA1*05:01/DQB1*02:01 or any other DQ2 

molecule have so far been isolated or unambiguously detected. This might be due to the fact that 

few serious attempts have been made to hunt for these, or simply because they do not exist. DQ2 

molecules have been shown to play a functional role in immune responses by presenting antigens 

to T cells; gluten antigens in celiac disease56 and streptococcal superantigens.123 Whether DQ2 

molecules can present HPA-1a peptides is not yet studied in detail. 

It is worth reflecting that the overrepresentation of the DR3-DQ2 haplotype reported in paper III, 

were indirectly suggested in the earliest years of HPA-1a immunisation research, as HLA allele 

associations were reported in the 1980s. First, the association with HLA-B8 was reported in 

1981 by Reznikoff-Etievant et al.124 and confirmed by Taaning et al. in 1983.125 However, during 

the next years the association to DR3 (DRB1*03:01) was acknowledged.126 In, 1990, Valentin et 

al. showed that the DRB3*01:01 was in fact the associated genetic factor.77 This suggested that 

the associations to the B8 and DR3 was observed due to linkage disequilibrium with the 

DRB3*01:01. This was further rationalized in 1997, when Wu et al presented a role for the HPA-

1 allogeneic polymorphic residue in peptide binding to the DRA/DRB3*01:01 molecule. Now, 

these early HLA association data come together with our recent studies (paper III), and may shed 

light on functional biology of the DR3-DQ2 haplotype. 

 

The antigen-specific T cells are thought to be crucial for stimulation of the antigen-specific B 

cells, through “signal 2”; binding of CD154 to the CD40 receptor on the B cells. CD154 has 

been thought to be uniquely expressed by activated T cells. However, platelets and platelet-

derived membrane vesicles have been shown to deliver the CD154 signal to B cells and thus 

stimulate IgG production in mice.127 Interestingly, expression of CD154 on the surface of 

activated platelets is increased in ITP patients, and in vitro experiments have demonstrated that 

the platelet-associated CD154 can induce CD40-dependent B cell proliferation and production of 

anti-platelet antibodies.128 Whether such mechanisms can contribute to alloimmune responses is 

not yet known. 
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Whether inflammation plays a role in the alloimmunisation process has yet to be determined. 

However, several aspects of the mechanisms unravelled to date suggest that it does. First, the 

apparent inflammatory Th1 profile of the HPA-1a-specific T cells, that secrete the pro-

inflammatory cytokines IFNγ and TNFα. Second, the overrepresented DR3-DQ2 haplotype, 

which is reported to be an “inflammatory” haplotype. Especially the conserved extended 

ancestral haplotype (AH) 8.1,129 which has also been reported by many studies to have higher 

levels of TNFα in serum, although the specific role of the AH 8.1 haplotypic marker promoter 

polymorphism TNF-308A is debated.130,131 Third, signalling from the innate immune response is 

the key to activation of the adaptive immune response to any given antigen. 

Further use of HPA-1a-specific T cell clones 

Nothing is yet known about the presence, time of onset, kinetics or magnitude of in vivo HPA-

1a-specific CD4 T cell responses during or after affected pregnancies, as no techniques are yet 

available for such accurate measurements. In order to gain knowledge about this, and to further 

optimise the T cell detection efficiency, we aim to develop peptide:MHC tetramer reagents. By 

employing such reagents, screening and characterisation of in vivo NAIT-related T cell responses 

can be measured in blood samples from a large number of women with affected pregnancies. 

The peptide-MHC tetramer technology is commonly used, and a very efficient method to 

accurately measure antigen-specific T cell responses in vivo,132,133 which is by nature 

complicated due to the low frequency of these cells in circulation.  

 

With the isolation of more clones we can study the TCRs further, as well as the characteristics of 

the T helper cells. Do women with high antibody levels have a different T cell profile response 

than those with low levels, and how do the diversity of the T cell responses correlate with the 

antibody titres, subclasses of IgG, and severity of thrombocytopenia in the newborn in terms of 

platelet counts or bleeding tendency?  

 

By the demonstration that the recognition of antigen by HPA-1a-specific T cells, from 

alloimmunised women with affected newborns, is restricted by the MHC class II molecule 

DRA/DRB3*01:01, the potential treatment inducing T cell tolerance to HPA-1a, may approach a 

prophylaxis for NAIT.  

Tolerization of T cells with specificity for the HPA-1a:DRA/DRB3*01:01 complex will likely 

prevent any specific T cell activation at subsequent exposure to the HPA-1a antigen. Thus, 

tolerized HPA-1bb women will predictably not produce any anti-HPA-1a antibodies in 
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connection with their first HPA-1 incompatible pregnancy, or only limited amounts, insufficient 

to induce severe thrombocytopenia in the foetus or newborn.  

However, knowledge of in vivo T cell responses and sophisticated methods to measure them 

directly in patient samples will be essential to monitor and evaluate the effectiveness of any 

prophylactic treatment. 

 

Historically, MHC class II tetramers have proven to be more complicated to successfully 

produce than MHC class I tetramers which have been commercially available for years.134 T cell 

clones with known specificity and MHC-restriction are absolutely required to test the quality of 

these reagents, which we aim to develop in our laboratory in near future. We have already tested 

tetramers provided to us in a limited amount as a part of collaboration with Dr. William Kwok at 

Benaroya Research Institute (Seattle, USA). These reagents reacted specifically with clonal 

HPA-1a-specific T cells (unpublished data), thereby proving the feasibility of synthesizing 

tetramer reagents with a HPA-1a derived peptide in complex with a synthetic DRA/DRB3*01:01 

molecule. 

 

Concluding remarks 

From a philosophical point of view, it is intriguing that a single nucleotide difference in the 

maternal and foetal DNA can have such profound effect of the health of the newborn, 

considering that every pregnancy is in fact semi-allogeneic, and normally proceeds without 

alloimmune complications. There is now evidence for a diverse T cell response in these 

alloimmunised women, which most likely is crucial for the development of the platelet-reactive 

antibodies transferred to the foetus, and subsequently may cause NAIT. Only by elucidating the 

mechanisms in detail, a preventive therapy for HPA-1a alloimmunisation, and possibly also for 

other alloimmune conditions in association with pregnancy can be introduced, in order to 

successfully reach the goal of healthy newborns. 
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