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Abstract 
Maritime safety is a critical concern, as any navigation error or unsafe act can result in serious 

consequences or accidents for the crew, passengers, the environment and assets. Officers’ competence 

plays a crucial role in avoiding these consequences or accidents, emphasising the need of proper training 

essential. However, the complex and rapidly evolving maritime industry challenges traditional training 

methods, such as classroom instruction, on-board training and simulation-based exercises. In response 

to these challenges, research interest has been growing in innovative training methods in maritime 

education and training, such as the use of virtual reality (VR) technology; augmented reality (AR) 

glasses; multi-sensor fusion training and mobile, collaborative and blended learning. However, further 

research is needed to assess the impact of these methods and establish best practices for designing and 

implementing future training programmes. Of particular concern is the seafarers’ stress level 

experienced during maritime operations, with the potential for failure. To ensure that maritime training 

programmes remain relevant in the face of technological advancements and changing operational 

requirements, it is vital to continuously evaluate and develop new methods that effectively prepare 

maritime professionals for the potential challenges. 

In this study, we explored the use of wearable sensors with biosignal data collection as a means of 

improving training performance in the maritime sector. With the deepening of the study, three 

experiments were conducted progressively with different purposes. The first experiment focused on 

situation awareness (SA) and the relationship between experience levels and biosignal data. The second 

experiment aimed to determine the effects of different training methods on cognitive workload, stress 

levels and decision-making skills in a complex scenario. For this, a complex towing operation was used 

in this experiment for the study content. The third experiment focused on the classification of scenario 

complexity and the stress levels of seafarers under different scenarios and the impact of stress on training 

performance. During the experiments, data were collected in three categories: (1) questionnaire data on 

the stress levels, workload and user satisfaction of auxiliary training equipment; (2) performance 

evaluation data on SA, decision-making, navigation and ship-handling abilities and (3) biosignal data, 

including electrodermal activity (EDA), body temperature, blood volume pulse (BVP), inter-beat 

interval (IBI) and heart rate (HR). In addition, data collected during the EU-funded Wearable Experience 

for Knowledge Intensive Training (WEKIT) project were analysed to investigate the potential of 

wearable technology, such as AR technology, in hands-on training and evaluate user satisfaction. 

Several statistical methods and machine-learning algorithms were used in the data analysis. 

The present dissertation contributes to the advancement of the field of maritime education and training 

by exploring methods for enhancing learning in complex situations. Through a series of empirical 

studies, this research advances our understanding of the application of cutting-edge technologies, such 

as AR and wearable sensors, in maritime training. The utilisation of wearable sensors to collect biosignal 

data provides insights into the interplay between stress levels and training outcomes in the maritime 

industry. The results of this research emphasise the significance of incorporating biosignal data into 

maritime training programmes, because biosignal data have been shown to effectively gauge stress 

levels, classify the complexity of training scenarios and determine the seafarers’ level of experience, 

which in turn has a significant influence on both safety and performance outcomes. To facilitate future 

research in this area, this dissertation proposes a conceptual training model that underscores the 

relationship between stress and safety factors and offers a framework for the development and 

evaluation of advanced biosignal data-based training systems.  
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Chapter 1 
 

 

1 Introduction 
1.1 Background 
The maritime sector is defined as consisting of shipping, ports, marine and maritime business services 

industries, each of which comprises a diverse array of activities [1]. It plays a crucial role in global 

economic growth, as over 90% of the world's trade relies on sea transportation [2]. Ensuring maritime 

safety is a critical concern, as any unsafe act - such as collisions, groundings, fires, or pollution - can 

have serious consequences for the crew, passengers, assets and the environment. Human errors, such as 

mistakes in ship handling and inadequate decision-making, account for a significant proportion of 

maritime accidents, particularly those related to navigation [3]. Studies reveal that officers’ competence 

plays a significant role in shipping accidents [4], [5], and proper training is beneficial in equipping 

maritime professionals with the necessary knowledge and skills to limit navigation errors, handle 

complex situations and avoid unsafe acts. To achieve this, the unique operating environment of the 

shipping industry and the need for effective training methods are vital. 

Maritime training typically includes both theoretical and practical components, and the specific type of 

training programme, as well as the country in which it is offered, can impact the content, duration, and 

focus of the training [6]. The theoretical components cover subjects such as maritime law, navigation, 

ship stability, meteorology and cargo handling and other related topics, depending on the specific 

training program and its objectives [7]. Practical components include hands-on experience on board 

ships, training in ship-handling simulators and other relevant training exercises that simulate the 

scenario to train the students with traffic clearance, towing and docking operations [8]. Maritime training 

curricula are typically organised according to the standards set by the International Maritime 

Organization (IMO) [9]. For maritime education and training, the IMO has developed the convention of 

standards, known as the International Convention on Standards of Training, Certification and 

Watchkeeping for Seafarers (STCW), which sets out minimum training and certification standards for 

masters, officers and other personnel on-board ships [10]. The STCW divides maritime training into 

several levels, including basic training, advanced training and specialised training [11]. Basic training 

covers the essential knowledge and skills required for the safe operation and maintenance of ships, while 

advanced and specialised training is tailored to specific job roles and duties on board ships [12]. STCW 

also requires seafarers to complete periodic refresher training to maintain their competency and stay up-

to-date with the latest developments in the industry [13]. 
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In recent times, maritime education and training (MET) has transformed from the informal 

apprenticeship model to a more formal, structured and internationally unified education with defined 

learning outcomes for certification and promotion [6]. This system involves a blend of theoretical 

classroom instruction and practical hands-on training, and simulators are increasingly utilized in training 

programs [14]. Simulation-based training exercises provide trainees with a controlled environment to 

practice handling scenarios, including emergency situations, in a safe and controlled manner. However, 

the real-world environment is often more complex than what can be tested out in practice, and 

individuals need to be prepared to handle such complex situations confidently. Simulators offer an 

avenue to bypass the safety implications and associated costs of on-the-job training while providing the 

benefits of repetitive learning in a realistic, safe, and controlled environment [15]. 

In the maritime industry, a growing number of companies operate with a limited workforce, requiring 

employees to possess diverse technical skills and qualifications. Personnel who are well-trained and 

highly qualified are a valuable asset to any organization. However, there are inconsistencies within the 

education and training system that prevent the efficiency of the training. Specifically, the assessment 

system has shifted the focus from acquiring the necessary knowledge and skills for onboard ship 

operations to passing competency examinations [16]. As maritime education and training can be costly 

[17], it is essential to implement effective training methods and achieve the training objectives 

efficiently.    

Studies have shown that the competence of instructors and the teaching methods used are critical to 

improving the learning effectiveness of MET programmes [18]. Such programmes should prioritize 

practical training opportunities and emphasize the development of the necessary knowledge and skills 

for onboard ship operations, rather than solely focusing on passing competency examinations. In 

addition, MET have challenges to adapt to new technology and innovations to keep up with changing 

market requirements, meeting new international standards, addressing language and cultural barriers, 

ensuring safety and providing practical training opportunities [19], [20]. Hence, it is crucial for MET to 

address these challenges and provide high-quality training programmes to produce competent and well-

trained seafarers. 

To overcome these challenges, a need for more effective training methods has drawn research attention 

that can enhance individuals’ ability to handle complex situations in the maritime sector. The 

implementation of innovative training methods that can address the limitations of current training 

methods can be beneficial for improving safety in the maritime industry. Human factors have been 

identified as contributors to safety incidents in the maritime industry [21]. While operators can 

contribute to the safety of complex systems by adapting to new and unforeseen events, it is important to 

address how to limit the negative effects of human behaviours [22]. Therefore, maritime training 

programmes should be designed to mitigate the negative impact of human factors on safety, and address 

how to limit the negative effects of human behaviours. 

In recent years, research interest has been growing in exploring innovative training methods in the 

maritime sector to enhance the learning experience, improve information retention and prepare maritime 

professionals to handle complex situations. To achieve these goals, a variety of innovative approaches 

have been introduced and applied in MET. These approaches include the use of virtual reality (VR) 

technology, augmented reality (AR) glasses, multi-sensor fusion training, mobile learning, collaborative 

learning, and blended learning. 
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VR technology provides a fully immersive virtual environment for training, making the experience more 

engaging and enjoyable [23]. The use of VR technology in maritime safety education allows trainees to 

experience simulations of hazardous situations and practice responding to them in a safe and controlled 

environment [24]. This technology can help overcome some of the logistic and safety challenges 

associated with traditional maritime training methods. In addition, due to their portability and ease of 

use, VR technologies allow students to train at their convenience, increasing opportunities for training 

and enhancing their knowledge and allowing trainees to practice handling complex situations in a 

simulated environment that closely resembles the real world [25]. 

AR glasses offer a semi-immersive experience, allowing students to learn and practice related 

knowledge through digital information overlay in the real world. Students can learn related knowledge 

and practice through the application set up in the AR glasses, reducing the repetitive work of the 

instructor [3]. Using AR technology to overlay digital information onto the real world provides a more 

interactive and engaging training experience. This allows trainees to practice handling complex 

situations in a simulated environment that closely resembles the real world, providing a valuable 

learning experience that is not possible through traditional training methods. 

A multi-sensor fusion training method is another innovative approach that has gained research focus in 

recent years. A pilot study in maritime training employed a multi-sensor fusion framework, using the 

training method of briefing/debriefing in the simulator; collecting audio, video, eye-tracking data, etc., 

and visualising operational procedures, thereby achieving the goal of improving the maritime operation 

skills of seafarers [26]. 

The use of mobile devices and tablets in training has gained popularity in recent years, which can also 

be employed in maritime training programmes due to their ability to provide flexible access to training 

materials and simulations. This allows trainees to access and engage with training materials at their own 

pace and at a convenient location, providing a valuable and flexible learning experience. 

Some other innovative approaches are collaborative learning and blended learning. Collaborative 

learning involves working with others to solve problems and complete tasks; it provides an opportunity 

for individuals to learn from each other and improve their skills. Blended learning combines traditional 

training methods with modern technology to create a more comprehensive, efficient, and effective 

training experience, as trainees receive training that is tailored to their individual needs and learning 

styles. 

The use of innovative training methods in maritime education and training has gained popularity in 

recent years; however, more innovative training methods have yet to be researched and developed. This 

is a crucial area of study, as the maritime industry faces unique and challenging operating environments. 

Effective training is essential for avoiding unsafe acts, such as collisions and groundings, which is a key 

factor in enhancing maritime safety. Considering this, a need arises for further research to identify best 

practices and assess the impact of innovative training methods on the acquisition and retention of the 

necessary knowledge and skills for safe and efficient maritime operations. This can be achieved through 

a systematic and comparative analysis of both innovative and traditional training methods, which can 

provide valuable insights for the design, implementation and evaluation of future training programmes 

in the maritime sector. The development of new training methods can also play an important role in 

meeting the potential evolving needs of the maritime industry. With advances in technology and 

changing operational requirements, maritime training programmes must keep pace and remain relevant. 
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This will require the continued development and evaluation of new training methods that can effectively 

prepare maritime professionals for the challenges they are likely to face in their work. 

1.2 Motivation for the PhD project 
This PhD work was initially part of the EU-funded Wearable Experience for Knowledge Intensive 

Training (WEKIT) project and was carried out at the Department of Technology and Safety, UiT The 

Arctic University of Norway. The WEKIT project is multi-disciplinary research that provides an 

innovative learning experience enabled by tailoring existing wearable smart devices and sensors [27]. 

However, the WEKIT project ended in 2019 in the middle of my PhD work. However, due to insufficient 

resources after the closure of the project, my PhD was dedicated to focusing on maritime sector training, 

as we could utilise our maritime simulator training centre in Tromsø and develop novel simulator-based 

training and assessment methods. To enhance learning opportunities and continue the previous research 

direction of WEKIT, wearable sensors are deployed as technologically advanced training aids in 

maritime training. Analysing the data collected from wearable sensors is one of the essential parts of 

this thesis, and my background in computer science is just right for this job. 

The motivation for this PhD project is, ‘To study enhanced learning to handle complex situations in the 
maritime sector and better understand maritime education and training from theoretical and 
methodological perspectives’. 

1.3 Problem statement 
Based on the defined problems and purposes of this research, this PhD work was conducted with 

attention to approach the following research questions (RQ): 

RQ1: Can wearable technology, for example AR technology, be used in hands-on training satisfactorily? 

RQ2: How does experience affect maritime SA and stress levels? 

• RQ2.1: Which methods can be used to measure trainees’ performance in maritime navigational 

tasks, specifically SA during maritime navigation, and how does experience impact the 

navigator’s SA? 

• RQ2.2: Does experience affect the stress levels of navigators in maritime navigation tasks? 

RQ3: How can efficient training progress be made during stressful maritime tasks? 

RQ4: Can we build a system to analyse the objective stress levels of navigators based on biosignal data? 

According to the research questions, this PhD work is structured as follows: 

The main focus of the research questions in this PhD project is illustrated in Figure 1, which highlights 

the domain, experimental methods and data analysis methods used. The use of AR glasses as an 

innovative training tool has garnered research interest across a range of sectors due to their potential for 

hands-on training. RQ1 is dedicated to evaluating user satisfaction with AR glasses and their application 

to gain a better understanding of the feasibility of implementing AR in maritime training. As depicted 

in Figure 1, the experimental approach is centred on utilising wearable sensors and simulator-based 

training, which addresses the latter four research questions and aims to investigate the efficacy of 

innovative training methods in the maritime sector. The focus of the data analysis in RQ2.2 and RQ4 is 
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to gain a deeper understanding of the impact of trainees’ stress levels on experience levels and their 

training performance through biosignal data analysis. RQ3 emphasises the development of decision-

making skills through training in complex situations. To provide a comprehensive understanding of the 

study and arrive at compelling results, various techniques, including descriptive statistics and machine-

learning algorithms, were employed in the data analysis. 

 

Figure 1: Flow diagram of the PhD work. 

 

1.4 Objectives of the PhD project 
This study aims to address the need for effective training methods that can help individuals in the 

maritime sector limit navigation errors, avoid unsafe acts and improve overall maritime safety. The 

primary objective of the thesis is to investigate the effectiveness of existing tools utilized in maritime 

training to achieve the training objectives in an innovative way. Specifically, the study focuses on 

exploring innovative and effective training methods that can enhance individuals' ability to handle 

complex situations in the maritime sector. The assessment of cognitive states and their impact on 

decision-making and performance are important components of maritime training and will be examined 

in this study. To enhance individuals' abilities to handle complex situations in the maritime sector, this 

study explores the concept of maritime complex situations through various simulator scenarios, 

including towing operations, emergency situations, complex traffic situations, and tasks with low 

visibility. The goal is to identify effective training methods that can help individuals improve their 

performance in handling such situations. 

1.5 Employed technique list 
Research in maritime training education is usually mainly concerned with human factor studies; thus, it 

does not involve highly sophisticated physical and data sciences. However, this study is different from 

the traditional method, in that, as a multi-disciplinary study, it involves a variety of methods employed 

to address the aforementioned research questions, which are included but not limited to Table 1. 
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Table 1: Summary of techniques used 

No. Title Main techniques employed 

Paper I User satisfaction in augmented reality-

based training using Microsoft 

HoloLens 

Descriptive statistics, exploratory data 

analysis, inferential statistics and parametric 

estimation 

Paper II Development of a SAGAT query and 

simulator experiment to measure 

situation awareness in maritime 

navigation 

Inferential statistics, development of SAGAT 

query and semi-interview 

Paper III Biosignal-based driving skill 

classification using machine learning: 

A case study of maritime navigation 

Data pre-processing, feature selection, deep 

learning, convolutional neural network 

(CNN) and inferential statistics 

Paper 

IV 

A study on the effects of rapid training 

method on ship handling, navigation 

and decision-making skills under 

stressful situations 

Descriptive statistics, exploratory data 

analysis and inferential statistics 

Paper V Assessment of stress levels based on 

biosignal during the simulator-based 

maritime navigation training and its 

impact on sailing performance 

Data pre-processing, descriptive statistics, 

inferential statistics, feature selection, 

exploratory data analysis and representative 

machine-learning algorithms 

1.6 Outline of the thesis 
This thesis consists of five distinct sections. The first section provides an overview of the pressing 

concerns surrounding safety in the maritime industry as well as the training requirements in maritime 

education. The second section comprises a comprehensive review of the relevant literature. The third 

section outlines the research methodology employed in this PhD study. The fourth section presents the 

results and contributions of this PhD project, including the associated scientific publications and 

applications as well as a discussion of these findings. The fifth and final section offers concluding 

remarks and recommendations for future work. A comprehensive bibliography is also provided at the 

end. 
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Chapter 2 
 

 

2 Theory and related work 
This chapter summarises the important literature in the related area. This chapter, thus, serves five main 

purposes. Firstly, it presents the theoretical framework for optimizing learning and practice for 

performance. Secondly, it presents a brief introduction to the current situation of maritime education 

and training (MET) in general with special attention paid to covering situation awareness (SA) and 

decision-making. Thirdly, it gives a brief description of wearable technology applied in assisting 

maritime training. Fourthly, it highlights the state-of-the-art biosignal data and stress applied in maritime 

training. Finally, it introduces machine learning (ML) as a method of biosignal data analysis.  

2.1 Theoretical framework 
In the maritime industry, a particular set of competencies is required to succeed, which encompasses 

knowledge, skills, and abilities (KSAs) [28]. These KSAs can be developed through both training and 

experience [29]. For instance, successful maritime navigation tasks demand a deep understanding of the 

relevant equipment, policies, rules, strategies, and procedures. To illustrate, navigators must possess 

knowledge of international regulations, such as Convention on the International Regulations for 

Preventing Collisions at Sea 1972 (COLREGs), be adept at using nautical charts, comprehend bridge 

resource management principles, and have a strong grasp of the fundamentals of radar and automatic 

radar plotting aids (ARPA) [10]. 

Skills are technical or manual proficiencies which are usually learned or acquired through training or 

hands-on experience and should be observable and measurable [30], [31]. In maritime operations, some 

of the skills are essential for ensuring safety at sea, including problem-solving, cognitive skills, 

situational awareness, decision-making, route planning and following, as well as social and 

communication skills [10]. These proficiencies are necessary to navigate and operate vessels effectively 

in various maritime contexts. 

Abilities refer to an individual's present, demonstrable capacity to apply various knowledge and skills 

simultaneously in order to complete a task or perform an observable behavior [32]. Abilities are 

considered traits because they exhibit a degree of stability over relatively long periods of time [33]. 

However, it is recognized that abilities may develop over time and with exposure to multiple situations 

[34]. In the context of maritime operations, navigators are required to possess a specific set of abilities. 

After acquiring the necessary knowledge and gaining proficiency in relevant skills, navigators should 

be able to demonstrate the ability to perform tasks effectively. These include operating equipment and
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 correctly applying information, executing planned decisions, maintaining situational awareness, 

communicating effectively, demonstrating leadership, and taking appropriate actions following a 

collision or grounding [10], [35]. These abilities are essential for ensuring the safety and efficiency of 

maritime operations. Navigators who possess these abilities are better equipped to handle the demands 

of their job and can perform their duties with greater confidence and effectiveness. As such, the 

development and assessment of abilities is an important consideration for employers and organizations 

seeking to ensure the success of their maritime operations. 

In the field of maritime training, there exists a discrepancy between the actual proficiency levels and the 

desired proficiency levels of KSAs required for effective maritime navigation [36]. One way to bridge 

this gap is by improving the training methods [37]. The Zone of Proximal Development (ZPD) is a 

concept in educational psychology from Vygotsky (1978) [38] that can serve as a useful framework for 

enhancing the training methods in maritime education and training [39]. 

The ZPD is the gap that exists between what a learner can do independently and what they can achieve 

with guidance and support from a more knowledgeable other (MKO) [40], [41]. In the context of 

maritime navigation training, the MKO could be an experienced navigator, a qualified instructor, or a 

training program that provides guidance and support to learners. The training program can identify a 

learner's ZPD and tailor the instruction to meet their specific needs. By providing guidance and support 

within a learner's ZPD, the training program can facilitate the learner's growth and development in the 

KSAs required [42] for effective maritime navigation. This approach enables learners to acquire new 

knowledge, skills, and abilities that are just beyond their current level of competence, while still within 

their reach with guidance and support from the MKO [43]. 

To achieve optimal learning outcomes, it is essential to find the appropriate challenge point for trainees, 

which enables them to reach their ZPD [42]. The concept of the challenge point, developed by 

Guadagnoli and Lee, emphasizes the importance of identifying the ideal level of difficulty for a learner 

to maximize their learning and skill development [44]. As noted by Marteniuk (1976), providing too 

much information or difficulty can overwhelm the learner, hindering their ability to learn and reducing 

the potential benefits of the learning process [45]. It is therefore important to ensure that the learning 

process is structured in a repeatable and stress-resistant manner, allowing trainees to build on their 

existing knowledge and skills gradually [46]. 

Moreover, studies have indicated that psychophysiological states such as cognitive workload and stress 

levels significantly affect performance [47]–[49], [50]. The Yerkes–Dodson law is an empirical 

relationship between pressure and performance that was developed by psychologists Robert M. Yerkes 

and John Dillingham Dodson in 1908 [51], explains that performance increases with physiological or 

mental arousal, but only up to a point. When levels of arousal become too high, performance decreases 

[52]. Additionally, Nixon published the Stress Response Curve in 1979, illustrating how performance 

is improved by a certain amount of stress, but then rapidly decays if the stress level (arousal) crosses the 

fatigue threshold [53]. Research also shows that stress is not always dysfunctional, and when it is 

positive, stress can prove to be one of the most critical factors in increasing organizational productivity. 

If not positive, stress can contribute to a variety of physical and mental disabilities in a person and can 

lead to depression, haste, and poor performance [54]. This relationship between stress and performance 

is illustrated graphically in Figure 2, based on the aforementioned theories. In the maritime industry, 

stressors, such as mental and work stress, can lead to fatigue and reduced performance in seafarers, 
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thereby increasing the risk of incidents and accidents [55]. Therefore, understanding the impact of stress 

and arousal on performance is critical in the development of effective maritime training programs. 

  

Figure 2: Stress response curve [40] according to Nixon P: Practitioner 1979 [45] and Yerkes–Dodson Law 
(Yerkes RM, Dodson JD) [43]. 

Based on the above theory studied, the theoretical framework is developed and presented in Figure 3. 

The framework illustrates the connection between the challenge point and the ZPD, and how stress 

management is involved in identifying the appropriate challenge point to improve the training 

performance of the learner. By identifying the optimal level of difficulty of the training program, the 

learning process can be structured to provide enough stimulation for learners to maximize their learning 

and skill development without overwhelming them, thereby optimizing learning outcomes. Meanwhile, 

to ensure that the learning process is structured effectively, trainers can consider the Yerkes-Dodson law 

and the Stress Response Curve, which demonstrate the relationship between stress and performance. By 

understanding and managing stress levels appropriately, trainers can tailor their instruction to meet the 

specific needs of each trainee, thus promoting optimal learning outcomes and efficient acquisition of 

competencies such as knowledge, skills, and abilities.  

 

Figure 3: Flow diagram of the theoretical framework. Note: developed by the author. 

Drawing on the theories discussed above and the present project, a comprehensive literature review was 

conducted. Figure 4 illustrates the framework of the literature review undertaken in this study. The 

review primarily focused on improving training methods for situation awareness and decision-making 

skills in MET, as well as exploring the application of wearable technology, stress monitoring in maritime 

training, and biosignal data analysis. The review examined the latest research in these areas, with a 

particular emphasis on integrating machine learning methods for the analysis of biosignal data. By 
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integrating these innovative approaches into maritime training programmes, it can.  enhance training 

effectiveness and promote the development of learning outcomes and essential competencies. 

 

Figure 4: Flow diagram of the literature review. Note: developed by author. 

2.2 Maritime education and training (MET) 
Maritime education and training (MET) play a crucial role in enhancing safety in the maritime industry, 

given the complexity and dynamism of the sector. To effectively manage risks and handle emergencies 

at sea, seafarers must possess a solid foundation of knowledge and skills. As such, maritime training 

programmes aim to equip seafarers with the necessary knowledge and skills and provide them with 

opportunities to apply and practice these skills in simulated and real-life situations [6]. 

However, designing and delivering high-quality maritime training programmes is a complex and 

challenging task that takes into consideration various factors, such as student levels, exercise design and 

assessment of learning outcomes [56]. To ensure that these programmes meet the specific needs of the 

learners, the training programme design should include a variety of exercises and assessments that test 

the learners’ knowledge, skills and abilities to apply these skills in real-life situations. 

One significant aspect of maritime education training is the consideration of stress and its impact on 

learning and performance. A relationship exists between stress and training outcomes: when stress levels 

become excessive, they can have adverse effects on both health and performance, thereby compromising 

compliance and participation in safety performance. Based on the maximal adaptability model, stress to 

a certain degree can also benefit training outcomes [55]. Therefore, it is critical to have a comprehensive 

understanding of the relationship between stress and training outcomes and develop stress-based training 

systems that reduce the impact of stress on seafarers. 

In maritime training, a wide range of skills is typically taught and trained, including navigation, ship 

handling, communication and SA and decision-making [15]. These skills are fundamental to ensure 

safety at sea, making training in SA and decision-making skills particularly crucial in maritime 

education [59]. 

2.2.1 Situation awareness 
Situation awareness (SA) is a critical component of performance in complex domains, such as the 

maritime industry, where the operational environment is constantly changing and requires the ability to 
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perceive, understand and anticipate potential threats [60]. SA refers to the cognitive process of 

perceiving and understanding elements of the environment, comprehending their meaning, and 

projecting their status in the near future [61]. This process enables individuals to make informed 

decisions, especially in high-stakes scenarios such as maritime navigation and operations, based on their 

perception, understanding, and predictions of the current situation [62]. 

However, acquiring and maintaining SA can be challenging in the complex maritime sector [63]. 

Seafarers require training in various aspects of SA, including environmental awareness, navigation and 

communication skills, risk assessment and emergency response procedures [64]. Only conducting SA-

related exercises can only improve trainees' capacity to analyze a complex situation and may not have a 

clear impact on manoeuvre performance [65]. Effective training programmes must be flexible and 

adaptable to meet the ever-evolving demands of the maritime environment. These programmes can be 

developed through a combination of theoretical training and practical exercises, such as simulation-

based training and real-life scenario training [66], [67]. MET programmes play a crucial role in 

developing SA in seafarers and provide them with the necessary knowledge, skills and attitudes for safe 

and efficient ship operations. 

The assessment of SA is crucial for measuring the effectiveness of training programmes and ensuring 

safe and efficient maritime operations [68]. SA assessment can be carried out through either subjective 

or objective measures [69]. Subjective assessment of SA relies on self-reporting and the subjective 

perceptions of the trainee, instructor, or evaluator. Questionnaires are typical subject measures. During 

a training exercise or simulation, trainees may be asked to complete a questionnaire or provide verbal 

feedback, on their level of SA. Such questionnaires can measure an individual’s SA level based on his 

or her perception of the current situation, understanding of the situation and prediction of future events 

[70]. Techniques such as Situational Awareness Rating Technique (SART) [70], Mission Awareness 

Rating Scale (MARS) and Situational Awareness Rating Scales (SARS) [71] are applied in subjective 

measurements. While subjective assessments can provide valuable insights into trainees' perceptions of 

their own SA, they can also be influenced by biases and may not accurately reflect the trainee's actual 

level of SA. Therefore, objective measures of SA are also necessary to provide a more accurate 

assessment. 

Objective measurement involves the use of standardised tests or performance metrics to evaluate an 

operator’s SA skills. One such technique is the Situation Awareness Global Assessment Technique 

(SAGAT), which uses the freeze online probe method to objectively measure SA [72]. Another example 

is performance measures. Performance metrics provide objective measurements of an individual's SA 

skills, including measures of effectiveness and measures of performance. Measures of effectiveness 

typically assess reaction time, accuracy, and response time, while measures of performance evaluate an 

individual's performance on specific tasks or subtasks, such as tracking time or reaction time to a specific 

event [73]. Performance-based measurement of SA is indeed based on the subject’s observable 

behaviors and actions. When combined with other measures of SA, performance-based measures can 

provide a more comprehensive evaluation of an individual's SA skills [74]. This multi-dimensional 

approach can help identify broader concerns about the actions taken by operators and improve the 

effectiveness of training programs. 

In addition, several other tools (simulator, computer, telephone, video and audio recording equipment, 

eye-tracking device, pen and paper, etc.) also aid in SA measurements [75]. Simulation-based training 

places operators in realistic virtual environments where they can practice and demonstrate their SA 
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skills. This provides a controlled and repeatable platform for evaluating SA skills. Eye-tracking [76] 

and physiological monitoring devices, such as wearable devices, can track an individual’s eye 

movements and physiological responses in real-life situations and provide insights into their level of 

SA. Video-based analysis records and analyses an individual’s behaviour and actions to assess SA skills 

in real-life situations [77].  

Moreover, it is essential to consider factors such as workload, fatigue, stress and distractions, as they 

can impact SA and decision-making abilities of individuals [73]. The selection of the appropriate 

assessment tool or method depends on the specific requirements and goals of the evaluation as well as 

the resources and expertise available. A combination of tools and methods can provide a more 

comprehensive and accurate assessment of a seafarer’s SA skills [74]. 

Overall, the assessment of SA skills is a critical aspect of improving decision-making skills and 

preventing errors and incidents [78]. Particularly, objective SA measures are necessary if simulators are 

to be used to evaluate the skills and training [79]. While there are some objective SA measures available, 

more research is needed to develop and refine objective measures in the maritime domain. Objective 

SA measurements are not well developed in the maritime domain, which makes it challenging to 

evaluate and improve seafarers' SA skills. Utilising appropriate tools and methods, in conjunction with 

considering relevant factors, can enhance safety and ensure the continued success of maritime 

operations. It is important to invest in the development of reliable and valid measures of SA to assess 

the effectiveness of training programs and improve the overall safety of maritime operations. 

2.2.2 Decision-making 
The importance of effective decision-making in the maritime industry cannot be overstated, as the safety 

and well-being of the crew, passengers and vessels are contingent upon it [80], [81]. Effective decision-

making involves SA and the ability to process information, weigh options and choose the best course of 

action. Seafarers must be able to make informed decisions quickly and effectively, even under high-

stress situations and adverse conditions. 

The effective decision-making process is a crucial aspect of maritime operations, where rapid and 

accurate decision-making can distinguish between success and failure [82]. To assist in the decision-

making process, various decision-making models have been developed and applied in the maritime 

industry. These models provide a structured and systematic approach to decision-making and can be 

used to help seafarers identify, analyse and resolve complex problems in a timely and efficient manner. 

One such model is the ‘observe, orient, decide, act’ (OODA) loop that emphasises the importance of 

speed and agility in decision-making [83]. Another model is the ‘strengths, weaknesses, opportunities 

and threats’ (SWOT) analysis that helps to identify and evaluate internal and external factors that may 

impact a decision [84], [85]. Naturalistic decision-making (NDM) is a cognitive approach that 

emphasises the importance of experience, expertise and context in the decision-making process [86]. 

NDM views decision-making as an iterative process and plays a crucial role in ensuring safe and 

efficient operations in the maritime industry. 

To support NDM in maritime operations, seafarers must be trained to develop and refine their decision-

making skills. This training can take the form of simulation-based exercises, scenario-based training and 

practical experience in real-life situations. NDM also involves continuous monitoring and feedback, 

allowing for the refinement of decision-making skills over time. 
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Other decision-making models commonly used in various domains, including maritime operations, 

include rational, bounded rationality [87], intuitive decision-making, satisficing and administrative 

models [88]. These models offer different approaches to decision-making and can be used in different 

situations, depending on the constraints and available information. 

The choice of a decision-making model to be used in maritime operations depends on various factors, 

including the nature of the problem, the available resources and the goals and objectives of the operation. 

However, all of these models provide a systematic and structured approach to decision-making that can 

help improve the accuracy and efficiency of maritime operations. 

MET play a critical role in the development of decision-making skills among seafarers [65]. Training in 

effective decision-making skills must comprise a combination of theoretical training and practical 

exercises [65]. Theoretical training includes lectures, case studies and group discussions, while practical 

exercises include simulation-based training, real-life scenarios, gaming, video-based training and 

behaviour-based training. 

In high-stakes scenarios, such as navigation and emergency response, decision-making skills become 

particularly crucial, requiring the employment of a multi-faceted approach that encompasses both 

theoretical and practical training as well as continuous monitoring and feedback. Opportunities for 

feedback and reflection through self-assessment, peer assessment or instructor feedback can provide 

seafarers with valuable insights into their areas of strengths and those that need improvement [89]. 

Moreover, having a high level of SA enables seafarers to make informed decisions and respond promptly 

and appropriately to changes in their environments. In high-stress situations, decision-making can 

become impaired, leading to errors and potentially hazardous outcomes [90], [91]. Hence, improving 

decision-making skills is critical for ensuring safety in the maritime industry and can be achieved 

through effective training programmes that help seafarers acquire the knowledge and skills required to 

manage risk, make informed decisions and respond appropriately in emergencies. 

In conclusion, the utilisation of a combination of theoretical training and practical exercises, along with 

opportunities for feedback and reflection, can help enhance decision-making skills and ensure the 

continued success of maritime operations. 

2.3 Wearable technology (AR, VR, wristband, etc.) 
Wearable technology refers to electronic devices that are designed to be worn by the user and provide a 

variety of features, such as AR, VR, and the health and fitness tracking field [25]. In the maritime sector, 

the integration of wearable technology, such as AR, VR, and wristbands, has the potential to improve 

training outcomes, enhance navigational decision-making and promote overall safety in marine 

transportation [92], [93]. For example, AR and VR technology can provide a more immersive and 

interactive learning experience for seafarers by simulating real-life situations and allowing them to 

practice and apply their skills in a safe environment. In addition, wristbands equipped with sensors can 

be used to monitor the physiological responses of seafarers, such as heart rate (HR), body temperature, 

blood pressure volume, and skin conductivity (GSR), which can provide valuable insights into their 

level of stress and performance during training and operations [94]. These data can provide insight into 

navigators’ stress and experience levels and can be used to tailor training programmes to meet the unique 

needs of each individual. By collecting and analysing data from wearable devices, it is possible to create 
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personalised training programmes that address the specific strengths and weaknesses of each navigator, 

ultimately leading to improved learning outcomes and increased safety. 

Overall, wearable technology has the potential to revolutionise the way maritime training is conducted 

and enhance the safety of the maritime industry by improving the effectiveness of training programmes 

and increasing navigators’ ability to handle complex situations. 

2.4 Biosignal data and stress applied in maritime training 
Biosignal data refer to various physiological signals generated by the body, which can be measured 

using various instruments, such as electroencephalograms (EEGs), electrocardiograms (ECGs) and 

electromyograms (EMGs) [95]. These signals provide valuable information about the body’s 

physiological responses to various internal and external stimuli, such as stress, as well as external stimuli 

like long working hours, irregular shift patterns, and physically demanding tasks [96], [97]. 

Stress is a common issue in many industries, including the maritime industry, and it has a significant 

impact on the health and performance of employees [49], [98]. In the maritime sector, stress can lead to 

navigation errors, decreased attention and memory and decreased decision-making ability, all of which 

can lead to compromise in the safety of life at sea [99]. 

Objectively quantifying seafarers’ stress levels using biosignal data is vital because self-reported stress 

levels are often unreliable. For example, the level of cortisol, a stress hormone, can be measured in 

saliva or blood, providing an objective measure of stress levels of an individual [100]. By analysing 

biosignal data, researchers and practitioners can gain a deeper understanding of the physiological 

responses to stress and develop more effective strategies for managing stress in the workplace. 

In the maritime sector, the use of biosignal data to analyse stress levels can be especially valuable in 

training programmes, as stress levels can impact the learning outcomes and performance of navigators. 

By monitoring stress levels and providing targeted feedback, training programmes can help minimise 

the negative impact of stress on trainees’ performance and decision-making abilities. 

2.5 Machine learning 
Machine learning (ML) is a rapidly growing subfield of artificial intelligence concerned with developing 

algorithms and models that can improve performance over time through experience. It has the potential 

to significantly impact various industries, including the maritime sector, where it can be used to enhance 

decision-making, situation awareness (SA) and overall safety. 

In the context of maritime safety, ML can be applied to large amounts of data, such as automatic 

identification system (AIS) data, to predict vessel behaviour, traffic patterns and shipping routes [101]–

[104]. In addition, ML can also be used in combination with biosignal data analysis to determine the 

level of stress experienced by seafarers and its impact on their performance. Biosignal data, such as HR, 

electroencephalogram (EEG) signals and skin conductance, can provide valuable information on the 

physiological and emotional states of individuals, and ML algorithms can be used to identify patterns 

and relationships in data that are not easily noticeable by the human eye [96]. 

By combining ML and biosignal data analysis, it is possible to gain a deeper understanding of the 

relationship between stress levels and decision-making in maritime workers and develop new 
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approaches and technologies to improve safety and training outcomes. The ability to predict stress levels 

in real time can help identify factors that contribute to stress and inform the development of effective 

training programmes. 

Overall, the application of ML and biosignal data analysis in the maritime sector has the potential to 

revolutionise the way maritime safety is studied and improved, leading to better decision-making, 

improved training outcomes and a safer working environment for seafarers. 

2.6 Summary 
In summary, the theoretical framework proposed in this study has the potential to improve MET. By 

identifying the appropriate challenge point for learners, trainers can optimize learning outcomes and 

promote skill development. The Yerkes-Dodson law provides guidance on the level of stimulation 

required for learners to achieve their full potential without becoming overwhelmed, thereby reducing 

performance. Incorporating the ZPD, challenge point, and stress response curve concepts can 

significantly enhance stress-resistant learning and bridge the gap between actual and desired levels of 

proficiency in the KSAs required for effective maritime operations. 

Furthermore, the results of the literature review highlight the use of wearable technology and biosignal 

data analysis to help in enhancing training at sea. This information can assist in the development of 

effective training programs for maritime professionals. 

In conclusion, identifying the ZPD and “challenge point” of learners and providing appropriate guidance 

and support can facilitate the acquisition of necessary KSAs for effective maritime navigation. By 

incorporating the theoretical framework proposed in this study, training programs can be optimized for 

better outcomes, thereby promoting skill development and enhancing the safety and efficiency of 

maritime operations. 
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‘The goal is to turn data into information, and information into insight’. 

             Carly Fiorina, former CEO of Hewlett-Packard 
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Chapter 3 
 

 

3 Research design and methodology 
This section summarises the main techniques applied in this thesis. Each of these techniques, experiment 

design, data collection and data analysis will be discussed in detail in the relevant subsections. Figure 5 

shows a flowchart of the way experiments and data collection methods are structured and data analysis 

techniques are applied to solve the research questions. 

 

Figure 5: Flowchart showing how the employed data collection methods are structured and techniques 

are applied to solve the research questions. 

3.1 Tools and measures utilized in the study 
The purpose of this section is to describe the tools and measures used in this study.  

3.1.1 Assessment of AR user satisfaction  
The assessment of AR user satisfaction is a key element of technology acceptance of AR and wearable 

technologies [105]. AR user satisfaction is dependent on both the design of the user interface (UI) and 

the choice of the AR hardware. There are several concepts and subjective measures for evaluating the 

user experience of AR services. With regards to the user, satisfaction questionnaires are common tools 

used to evaluate a user’s experience. One such tool — the Questionnaire for User Interaction Satisfaction 

(QUIS) — is designed to assess users’ subjective satisfaction with specific aspects of the human–
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computer interface [106]. The results of QUIS facilitate new developments by addressing reliability and 

validity problems found using its satisfaction measurements. Therefore, the measure is highly reliable 

across many types of interfaces. The other tool is The Smart Glasses User Satisfaction (SGUS) 

questionnaire was created for the WEKIT trials. It is a tool designed to assess users’ subjective 

satisfaction with smart glasses. The general objective of the questionnaire is to understand the potential 

end users’ central expectations of AR services with smart glasses, especially from an experiential point 

of view. The following is a brief description of these two questionnaires. 

• Questionnaire for user interface satisfaction (QUIS) 

The Questionnaire for User Interaction Satisfaction (QUIS) measures subjective satisfaction with 

specific aspects of the interface and interaction between the user and the AR application. QUIS consists 

of a demographic questionnaire, a six-scale measure of overall system satisfaction, and hierarchically 

organized measures. The measures include the following specific interface factors [107]: screen factors, 

terminology and system feedback, learning factors, system capabilities, technical manuals, online 

tutorials, multimedia, teleconferencing, and software installation. Each area is measured by a seven-

point scale according to the user’s overall satisfaction with the interface and the above factors. 

• Smart glasses user satisfaction (SGUS) 

SGUS is a method and measure to scrutinize aspects, such as an enhanced perception of the 

environment, interaction with the augmented environment, implications of location and object 

awareness, user-created AR content, and the new AR features that users typically use [108]. In this 

study, the smart glasses used for the different use cases were Microsoft HoloLens. SGUS measures 

subjective satisfaction on the basis of different features associated with user satisfaction, such as the 

content and interaction with the content. SGUS is based on evaluation criteria for web-based learning 

[109] and statements evaluating the user experience of mobile augmented reality services [108]. Some 

of the items from the table “Evaluation criteria for web-based learning—a framework” [109] and table 

“Examples of formative subjective statements with regard to the value and overall goodness of the 

service in terms of the UX category in question” [108] were picked and modified. SGUS consists of 11 

items (statements) on a seven-point Likert scale (1–7) [18]. The 11 statements include three categories 

of evaluation criteria, which are general interface usability criteria, AR interaction-specific criteria for 

an educational AR app, and learner-centered effective learning [109]. 

3.1.2 Development of Situation Awareness Global Assessment 
Technique (SAGAT) queries  

In this study, the Situation Awareness Global Assessment Technique (SAGAT) for SA for maritime 

navigation and collision avoidance (SA-MA) is developed and evaluated using interviews with experts 

and a simulator experiment. The interviewees, who have extensive experience as navigators in the 

merchant fleet and the navy, were consulted to develop a Hierarchical Task Analysis (HTA) of the 

navigation and collision avoidance tasks. Each task was defined with a goal to achieve, and the HTA 

was adapted to different situations and needs [110]. The HTA was developed based on a literature study 

and discussions with subject matter experts. Figure 6 presents the HTA of radar tasks in the navigation 

process, which was used to list the navigation and collision avoidance tasks as input to the SA queries. 

The SAGAT was initially developed to assess pilots' SA across the three SA levels [60]. In this study, 

the SAGAT procedure comprises ten steps: defining tasks, developing SA queries, selecting 
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participants, briefing participants, pilot runs, task performance, freezing the simulation, administering 

SA queries, evaluating query answers (query answer by a subject matter expert), and calculating 

SAGAT scores [111]. The procedure of developing SAGAT Queries is shown in Figure 7. 

The SA queries used in the simulator experiment were developed based on the results of the SA 

requirements analysis [112]. The queries encompass all three levels of SA for a global measure and were 

administered at four stops along a fixed course line. These stops provided a consistent and controlled 

environment for the administration of the queries. 

 

Figure 6: Hierarchical task analysis of radar tasks in the navigation process. Noting that AIS stands for automatic 
identification system, the true vector is related to the North and the relative vector is related to the motion of your 
own ship. 

 

Figure 7: The procedure for developing the SAGAT queries. 
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3.1.3 Stress and workload assessments in maritime training scenarios 
This study provides a comprehensive examination of stress and workload assessments in maritime 

training scenarios through the use of questionnaires and biosignal data analysis. The objective stress 

levels were analyzed using biosignal data collected through wristbands worn by participants during 

maritime tasks. Machine learning algorithms were applied to the biosignal data for analysis. In addition, 

subjective stress levels and workload were assessed using validated questionnaires. Statistical tests were 

performed to determine the significance of subjective stress level and workload differences among 

various complex scenarios. To access the subjective workload, NASA Task Load Index (NASA-TLX) 

was utilized, while the subjective stress was assessed by the state-trait anxiety inventory (STAI) form 

Y-1. The following is a brief description of these two questionnaires. 

• NASA Task Load Index (NASA-TLX)  

NASA-TLX is a widely recognized assessment tool that is used to evaluate the perceived workload of 

participants in a given task [113], [114]. It consists of six categories that are rated by participants 

following the completion of the sailing scenario. These categories include mental demand, physical 

demand, temporal demand, performance, effort, and frustration level [115]. The ratings are then 

converted to a ten-point scale score, with 0 representing low levels and 10 representing high levels. The 

scores from each subscale are combined to give an overall workload score. 

• State-trait anxiety inventory (STAI) form Y-1 

STAI Y-1 form is a widely used self-assessment tool for evaluating state and trait anxiety in individuals 

[116]. The questionnaire consists of 20 items that measure state anxiety, which refers to a temporary 

and situational emotional state [117]. Participants are required to rate the intensity of their anxiety 

symptoms. The scores obtained from the STAI Y-1 form are commonly classified into three categories: 

"no or low anxiety" (20-37), "moderate anxiety" (38-44), and "high anxiety" (45-80). These ranges are 

used as a benchmark to classify the level of anxiety experienced by the participants. 

3.2 Design of the experiment and data collection 
The purpose of this section is to detail the data collection procedures employed in this study. 

Specifically, data were collected through three experiments designed for this research including three 

categories: (1) questionnaire data on the stress levels, workload and user satisfaction of auxiliary training 

equipment; (2) performance evaluation data on SA, decision-making, navigation and ship-handling 

abilities and (3) biosignal data, including electrodermal activity (EDA), body temperature, blood volume 

pulse (BVP), inter-beat interval (IBI) and heart rate (HR). 

In this study, user satisfaction data were collected through an experiment conducted by the WEKIT 

project. The remaining data were collected through the following experiments designed specifically for 

this study: 

 

• Experiment I: An experiment examining SA in maritime navigation among both experts and 

students 

• Experiment II: An experiment measuring stress levels and classifying the complexity of sailing 

scenarios 

• Experiment III: An experiment examining stress in a complex situation, specifically comparing 

the learning outcomes of different teaching methods in towing operations 
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3.2.1 Experiment I 
In this experiment, a maritime navigation task was designed to investigate the relationship between two 

factors: navigating experience and stress. The task was performed on a 240° view simulator equipped 

with Kongsberg Digital’s K-sim Navigation software using a vessel model called BULKC11 (which has 

an overall length of 90 m and a moulded beam of 14 m). The task consisted of the following two parts: 

sailing and completing Situation Awareness Global Assessment Technique (SAGAT) queries on a 

frozen simulator screen. Each participant sailed a 40-min. voyage with four stops, with each section of 

the sailing lasting approximately 8–12 min. During the sailing section, participants completed the 

SAGAT queries in approximately 15 min. (4 stops with an average of 4 min. to answer the SAGAT 

queries). The entire experiment lasted approximately 55 min. For the four stops, each stop was 

conducted within a fixed range on the course line (see Figure 8). An expert completed the same SA 

queries with the correct answers on the simulator, and the participants’ answers were compared with the 

expert’s results. During the experiment, each participant wore a wearable device to collect biosignal 

data. 

 

Figure 8: Chart layout with the route and horizontal lines indicating the four SAGAT stops. 

Hierarchical task analysis (as shown in Figure 6) was used to map the navigation and collision avoidance 

tasks. The results of the simulator experiments and inputs from subject matter experts were used to 

determine the SAGAT score. During the experiment, questionnaire data, performance data and biosignal 

data were collected for analysis. 

3.2.2 Experiment II 
This experimental study aimed to investigate the effects of different training methods on cognitive 

workload, stress levels and decision-making during a towing operation scenario. The experiment used 

a within-subject factorial design where second-grade students were assigned to the control group and 

first-grade students were assigned to the experimental group, resulting in a quasi-experiment design due 

to the lack of random assignment of participants to groups [118]. The control group consisted of second-

grade students who had completed 32 simulator exercises or 96 h, including two externally evaluated 
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examinations, while the experimental group consisted of first-grade students who had completed half of 

the required simulator exercises (16 exercises or 48 h, including two externally evaluated examinations). 

In addition, the experimental group received a project-specific rapid training course specifically 

designed for the towing operation task, including a 20-min. video lecture and 1 h of hands-on training 

and practice on the simulator. Within each group, pairs of participants were assigned as teams to 

complete the towing operation under the designed scenario. The participants were randomly assigned to 

two tugboats, and they could communicate with each other via maritime VHF radiocommunication and 

with the instructor station using UHF radiocommunication. 

In this experimental study, the scenario took place in good weather and involved the failure of both 

engines at a specific location during the towing operation. The location of the engine failure was decided 

to be near Ryøya Island, which is located south of Kvaløya and southwest of Tromsø, and the 

geographical locations were held constant throughout the experiment. Three-dimensional views of the 

sailing route in two different directions of vision can be found in Figure 9. 

Data collection for this study involved the measurement of several dependent variables, including 

training methods, cognitive workload, stress levels and decision-making. These variables were assessed 

using a range of methods, including the Empatica E4 Wristband for biosignal data collection, 

questionnaires about workload and stress levels and a customer decision-quality rating scale to measure 

decision-making performance. 

 

Figure 9: View from the simulator at UiT, The Arctic University of Norway. The location where the critical situation 
took place is shown on the map and its corresponding 3D views in two different directions of vision. 
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3.2.3 Experiment III 
In this experiment, two complex scenarios were designed for maritime navigation tasks to examine and 

classify different scenarios in terms of complexity and the stress levels of seafarers. The control scenario 

was conducted under fair weather conditions with six events, while the experimental scenario was 

conducted under snowy weather conditions. In addition, the experimental scenario included four more 

events than the control scenario to create different levels of difficulty. Other simulated variables, such 

as location and traffic situation, were held constant across both scenarios. The experiment was 

conducted using three simulator bridges equipped with Kongsberg Digital’s K-sim Navigation software, 

each with either a 240° or 360° view, and three independent instructor stations. The vessel model used 

was the BULKC11 Hagland Saga, a small bulk carrier with a length between perpendiculars of 85 m. 

The sailing route chosen was the Sandnessundet strait in Tromsø, Norway, which is frequently used for 

navigational training for nautical students at UiT. The route consisted of six waypoints (as shown in 

Figure 10), with a significant turn at the third waypoint, and the participants encountered two fishing 

vessels and a tug (as shown in Figure 11). 

Data collection for this experiment involved the use of a medical-grade wearable device, the Empatica 

E4 Wristband, to collect biosignal data from the participants (as shown in Figure 12). These data 

included sample respiratory rate (RR) intervals with activity windows (as shown in Figure 13). In 

addition to biosignal data, questionnaires about workload and subjective stress levels were collected 

after each section of the navigational tasks (as shown in Figure 12). To assess learning objectives, 

performance was measured using the following criteria: 

• Number of position fixes on the chart 

• Deviation from the planned route and score based on the distance from the planned course using 

the assessment tool (K-Sim Instructor) in the simulator 

• Score based on the closest point of approach (CPA) 

 

Figure 10: The planned route Sandnessundet consists of five straight legs. Waypoint 5 is under the middle point 
of the bridge. 
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Figure 11: Illustration photo of the sailing route of one of the participants and geographical points of the traffic 
situations. 

 

 

Figure 12: Mixed-methods approach for stress level analysis in maritime training. Note that ML stands for 
machine-learning. 

 

 

Figure 13: Sample respiratory rate (RR) intervals with activity windows recorded by a participant. Note that the 
gaps between windows are the time between activities. 
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3.3 Analytical methods 
To answer the research questions, several analytical procedures were adopted, which are described 

below. 

3.3.1 Statistical method 
The research tools employed in this work consisted of questionnaires that included measures of user 

satisfaction, perceived stress and workload as well as performance evaluation data. The collected data 

were analysed using a combination of statistical methods, including the analysis of variance (ANOVA), 

the Kruskal–Wallis H test, the Spearman rank correlation coefficient and the Welch Two-Sample t-test 

to conduct a robust and comprehensive analysis of the data and identify any significant relationships 

and patterns that may exist between the specific variables of interest, which were the data collected in 

the study. The results of this analysis were then used to inform the development of a stress-based training 

model for maritime navigation, with the goal of improving the quality and effectiveness of such 

programmes and ultimately enhancing safety at sea. 

In this PhD work, it is noteworthy that the statistical methods were not calculated manually; instead, the 

analyses were performed using the programming language R. 

The following are the statistical methods used: 

(1) Analysis of variance (ANOVA) 

Analysis of variance (ANOVA) is a statistical method used for determining information about the means 

between two or more groups. The analysis used variances between and within samples. In this PhD 

work, one-way and two-way ANOVA have mainly been used in the analysis of user satisfaction. 

Depending on the type of ANOVA being used and the assumptions met by the data, different formulae 

are used to calculate ANOVA. 

For one-way ANOVA, the formulae for the F-statistic are Equations (1), (2), and (3) [119]: 
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where 

§ #$! is the mean square between groups, which is calculated as the sum of squares between 

groups divided by the degrees of freedom between groups. 
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§ #$" is the mean square within groups, which is calculated as the sum of squares within groups 

divided by the degrees of freedom within groups. 

§ $$!	is the sum of squares between groups. 

§ $$" is the sum of squares within groups. 

§ %&! are degrees of freedom between groups. 

§ %&" are degrees of freedom within groups. 

§ - is the total of all the data sets combined together. 

§ .  is the number of groups. 

§ )* is the total mean. 

§ )*# is the mean in different groups with 1 donated to the 1() group. 

The p-value was then calculated using the F-distribution with the appropriate degrees of freedom. 

For a two-way ANOVA, the formula for the F-statistic is more complicated as it includes multiple 

sources of variation, such as the main effects of each independent variable and the interactions between 

and among them. The formula can be derived by dividing the total sum of squares into component sums 

of squares, each of which represents a different source of variation. 

In this work, a special case of one-way ANOVA, a t-test, was also used. In the presence of only two 

groups, the F-statistic from ANOVA will be equivalent to the t-statistic from the t-test; thus, the 

calculated p-value will be the same. However, ANOVA is more powerful when more than two groups 

are present, and it allows the test of the overall effect of the independent variable and not just compare 

two groups. 

(2) Kruskal–Wallis H test 

The Kruskal–Wallis H test (also known as ‘one-way ANOVA on ranks’) is a rank-based non-parametric 

statistical test that can be used to determine whether there are statistically significant differences 

between two or more independent groups on a continuous or ordinal dependent variable [120]. This test 

was applied to the data obtained from the questionnaires used to assess the participants’ stress levels 

and workloads. 

The test statistic was calculated using Equation ( 4 ) [121] and the degrees of freedom were determined 

using Equation ( 5 ). The corresponding p-value was calculated using the chi-square distribution with 

corresponding degrees of freedom. 
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where 

§ 2 is the test statistic. 

§ 4 is the total data sample size (e.g. three groups rated for two different-level tasks) for each 

questionnaire. 

§ . is the number of groups compared. 
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§ -* is the sample size for group 8. 

§ 7** is the average of the ranks in a group 8. 

§ 7 is the average of all the ranks among all samples. 

§ %& is the degree of freedom. 

 

(3) Spearman rank correlation coefficient 

The Spearman rank correlation coefficient, also known as Spearman’s rho (ρ), is a statistical measure 

used to determine the strength and direction of the association between two variables that are measured 

on an ordinal or continuous scale. Unlike Pearson’s correlation coefficient, which is used to measure 

the linear association between two continuous variables, Spearman’s rank correlation coefficient is 

based on the ranks of the data rather than the actual values. 

The formula for the Spearman rank correlation coefficient is given in Equation (6) [119]: 
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where 

§ 9 is the Spearman rank correlation coefficient. 

§ ∑ %*
$+

*&'  is the sum of the squared differences between the ranks of the two variables. 

§ - is the number of observations. 

§ %* =	;* − <* , where ;* is the rank of variable = and <* is the rank of variable > 

It is important to note that the value of ρ ranges from -1 to 1, where 

• A value of 1 indicates a perfect positive correlation, meaning as one variable increases, the other 

variable also increases, and as one variable decreases, the other variable also decreases. 

• A value of -1 indicates a perfect negative correlation, meaning as one variable increases, the 

other variable decreases, and as one variable decreases, the other variable increases. 

• A value of 0 indicates no correlation, meaning there is no relationship between the two variables. 

Spearman’s rank correlation coefficient is commonly used when the data. do not meet the assumptions 

of normality and linearity required for Pearson’s correlation coefficient. It is often used in non-

parametric statistical analyses and can be used to examine the correlation between ordinal or continuous 

variables. 

(4) Welch two-sample t-test 

The Welch Two-Sample t-test is a statistical method used to compare the means of two independent 

groups when the variances of the two groups are not necessarily equal [122], [123]. 

The basic steps for conducting the Welch Two-Sample t-test are as follows: 

§ State the null and alternative hypotheses. 

§ Determine the level of significance. 
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§ Collect and organise the data. 

§ Check the assumptions of normality; this test makes no assumptions about the variances 

between the two groups. 

§ Calculate the test statistic and the p-value. 

§ Make a decision and interpret the results. 

Welch’s t-test defines the statistic t by the following formula of Equation (7) [124]: 
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where 

§ )*' and )*$ are the means of the two groups. 

§ <' and <' are the sample variances of the two groups. 

§ -' and -$ are the sample size of the two groups. 

 

3.3.2 Biosignal data analysis in ML 
Biosignal data are often high-dimensional, time-series data that can be challenging to analyse using 

traditional methods. The purpose of this section is to detail the process of using ML techniques to 

analyse and extract information from biosignal data. 

A. Data pre-process 
Using ML for biosignal data analysis can be challenging, as the data are often highly variable and noisy. 

In addition, the quality and quantity of the data may be limited, and the data may be collected under 

different conditions and from different individuals, leading to variability in the data. Therefore, it is 

important to pre-process and clean the data, such as by removing noise or artefacts, before applying ML 

techniques. In this study, following methods were applied for pre-processing the data: (1) downsample 

the data to the same frequency; (2) normalise the data; (3) detect and remove the artefacts; (4) collect 

the window mean data and (5) select the event extracted data. The details can be found in the research 

papers that are attached as an appendix at the end of the dissertation.  

B. Feature selection 
ML techniques can be used to extract features from biosignal data. In this study, the following features 

were extracted and used alone or in combination to improve the performance of a ML model. 

(1) Statistic-based features 

In this study, statistic-based features were extracted from the biosignal data set using a range of statistical 

analysis techniques. These features included measures of central tendency, such as the mean and median, 

and measures of dispersion, such as the range and standard deviation. In addition, the study extracted 

measures of skewness and kurtosis, which describe the symmetry and peakedness of the data 

distribution, respectively. These features were collected as feature vectors including mean vectors, 
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standard deviation vectors, variance vectors, median skewness vectors and kurtosis vectors that have 

been extracted from the data set (shown in Equation ( 8 )). These vectors were a numerical representation 

of each feature, containing the values of the feature for each data set sample. Using these feature vectors 

in ML models was beneficial in identifying and classifying the biosignal effectively, providing useful 

insights and improving the system’s overall performance. 

 !- = AB.! , D.! , E.! , $..! , F.!G,										(8 = 1,2, … I) ( 8 ) 

where: 

§ !- are the statistic-based feature vectors. 

§ B.! is the mean of the data set. 

§ D.! is the standard deviation of the data set. 

§ E.! is the variance of the data set. 

§ $..! is the skewness of the data set. 

§ F.! are the kurtosis vectors. 

§ )* is the data set of each participant in each task, where I is the length of )* 

(2) Wavelet-based features 

In this study, wavelet-based features were extracted from biosignal data using a technique called discrete 

wavelet transform (DWT). In particular, the study used Daubechies wavelets (the number of vanishing 

moments was 4), which are a commonly used set of wavelets known for their mathematical properties 

and suitability for signal processing [125]. 

To extract the wavelet-based features, the study computed the coefficients of the Daubechies wavelets 

at different scales. In this case, the scales used were 2, 4 and 8 to obtain three levels of resolution for 

the wavelet coefficients. The result of this process was a matrix with three rows representing the 

different scales and columns equal to the length of the data for each participant in each task. 

Then, two different types of wavelet-based features were computed from this matrix, as seen in Equation 

( 9 ). The first type was the sum of the square of the wavelet coefficients, as shown in Equation ( 10 ), 

and the other type was the sum of the product of the square of the wavelet coefficient and the natural 

logarithm of the square of the wavelet coefficient, as shown in Equation ( 11 ). These features capture 

and describe different aspects of the signal, providing additional information that may be useful for the 

identification and classification of biosignals. 
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§ !/ is the wavelet-based feature. 

§ !/" and !/# are the two different ways of computing. 

§ M is the Daubechies wavelet coefficient in three levels R', R$ and R, . 

§ I is the length of the data sample. 

(3) Higher-order crossing (HOC)-based features 

Higher-order crossings (HOC)-based features, also known as zero-crossing-based features, are a set of 

features extracted from the analysis of the patterns of zero-crossings in a signal. Zero-crossing, a 

commonly used concept in signal processing, refers to the point at which the signal changes from 

positive to negative or vice versa [126]–[128][123]–[125]. In this study, the HOC features were 

extracted in the following steps: 

Computation of the difference between adjacent elements was done in the data series in different orders. 

The .() order difference is shown in Equation  

(12). From ∇%3'T4 in the Equation (13), a binary process )4
(%)

 is defined in Equation  

(13). The count of the symbol changes from )4
(%)

, U%, was calculated in Equation  

(14). 

 

∇
%3'

T4 =	6V*3'
%3'

%

*&'
(−1)

*3'
T47'3* 					W8?ℎ				V*3'

%3'
=

(. − 1)!

(8 − 1)! (. − 1)!

 

 

(12) 

 
)4
(%)

=	Z

	1, 						∇
%3'

T4 	≥ 0

0, 						∇
%3'

T4 < 0

			 

 

(13) 

 

U% =	6[)4
(%)

− )43'
(%)
]
$

8

4&$
 

 

(14) 

where 

§ . = 1,2, … 

§ ∇
9 is the zero-mean data series. 

§ U% is the count of symbol changes in .() order. 

In this study, the extraction of HOC-based features from the biosignal data was represented by a vector 

consisting of the number of axis crossings in a zero-mean data series outlined in Equation (15). The 

resulting HOC-based features were found to be beneficial in improving the performance of ML models 

used in this study, providing useful insights and better accuracy in identifying and classifying biosignals. 

 !:;< = [U', U$, … , U0],							(1 < R < ^) (15) 

where 

§ !:;< is the HOC-based feature. 

§ ^ donates the maximum order of the estimated HOC.  
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§ R is the HOC order used in this study. 

§ U' denotes the number of axis crossings in the zero-mean data series, U$ denotes the number of 

axis crossings in the first difference of the series, U, denotes the number of axis crossings in the 

second series and so on. 

 

C. ML models 
In this PhD research, a comprehensive analysis of various ML models was undertaken to make 

predictions or make decisions based on biosignal data. A diverse set of models was employed, including 

support vector machine (SVM), K-nearest neighbours (KNN), Naive Bayes, linear discriminant analysis 

(LDA), logistic regression and convolutional neural network (CNN). These models were selected based 

on their suitability and effectiveness in dealing with biosignal data. 

In particular, CNN is a better approach for the time-series classification tasks of biosignal data compared 

to other algorithms. A CNN is a type of neural network that is particularly well suited for image and 

video data. Using a CNN for analysing biosignal data treats the biosignal time-series data as a 2D image, 

where x-axis denotes time and y-axis denotes amplitude values. Then, a CNN can be applied to the 2D 

image to extract features in the data. The extracted features can then be used to classify the biosignal 

data into different classes or conditions. CNNs are based on the idea of a ‘convolution’, which is a 

mathematical operation that combines input data (such as an image) with a set of learnable filters (also 

known as kernels or weights) to produce a set of output features. These features are then processed by 

additional layers in the network to extract increasingly complex representations of the input data. 

(1) Architecture of CNN 

The architecture of a CNN typically consists of several layers (see Figure 14), including the following: 

Convolutional layers that perform convolution operations on the input data to extract features [129]. 

Pooling layers that reduce the spatial dimensions of the features to reduce the computational cost and 

introduce some form of translation invariance [129]. 

• Fully connected layers that are usually added to the end of CNNs to generate global semantic 

information and perform classification based on the features extracted by previous layers [130]. 

In simple words, it can be interpreted that fully connected layers take the outputs of the previous 

layers and use them to make predictions or decisions. 

It is noteworthy that the convolution layer and the polling layer can be repeated several or many times. 

The output of the pooling layer becomes the input of the next convolution layer. Similar to fully 

connected layers, they can also be stacked. 
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Figure 14: Illustration of a simple CNN for data classification in this work. Note that in deep stacking, layers can be 
repeated several or many times. 

(2) Bayesian optimisation in CNN 

In this study, Bayesian optimisation was employed to optimise the hyper-parameters of a CNN to 

improve its performance on a specific task. Hyper-parameter optimisation is a crucial step in ML, as it 

seeks to find the optimal set of hyper-parameters for a model that maximises its performance. The study 

focused on optimising the following hyper-parameters: number of layers, number of filters in each layer, 

learning rate, batch size and number of training epochs. These hyper-parameters have a significant 

impact on the performance of the CNN, and finding the optimal values can be challenging and 

computationally expensive. 

Bayesian optimisation is a powerful method for automating the process of hyper-parameter optimisation 

by efficiently exploring the hyper-parameter space and selecting the best set of hyper-parameters. It is 

an effective and computationally efficient method for fine-tuning ML algorithms compared to manual 

grid searches. In this process, the next parameter settings depend on the performance of the previous 

configurations. The configurations are inferred and decided by the relationship between the hyper-

parameter settings and the model performance. Bayesian optimisation for hyper-parameter automatic 

tuning is a frequently used method for automating the tuning of hyper-parameters, and it was applied in 

this study for finding an optimal set of hyper-parameters [131], [132]. 

The process of Bayesian optimisation for CNNs in this study is summarised as follows: 

• Initialising the Gaussian process (GP) model with a set of random hyper-parameters and 

evaluating CNN performance on the validation set 

• Using the GP model to predict the performance of the CNN for different hyper-parameter 

settings 

• Using an acquisition function such as Expected Improvement (EI) to decide the next set of 

hyper-parameters to evaluate 

• Evaluating the CNN performance on the validation set for the chosen hyper-parameters and 

updating the GP model with the new observations 

• Repeating the process of predicting, choosing and evaluating until a stopping criterion is met 

(3) Implementation 

The ML models were implemented using various libraries and frameworks, specifically TensorFlow 

and Scikit-learn, in the Python programming language. In addition, some aspects of the study also 

utilised MATLAB to assist in building, training, testing and deploying the ML models. The use of these 
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tools allowed for the efficient and accurate handling of the data, facilitating the analysis and 

interpretation of the results. 

3.4 Summary 
This chapter presented the research methodology adopted in this study. The focus of the methodology 

was on experimental design, data collection and data analysis methods. The objectives, procedures and 

types of data collected for the three experiments established to answer the research questions were 

discussed in detail. 

The research methodology employed both statistical and ML methods for data analysis. Statistical 

methods including analysis of variance (ANOVA), Kruskal–Wallis H test, Spearman rank correlation 

coefficient and Welch Two-Sample t-test were applied. For the analysis of biosignal data, ML methods 

were primarily used, with a focus on application of convolutional neural networks (CNN) and Bayesian 

optimisation as innovative methods. 

The combination of statistical and ML methods was aimed at providing a comprehensive understanding 

of the research questions and ensuring the validity of the findings. Thus, this chapter focused on 

providing a clear understanding of the research methodology, including the data collection procedures, 

data analysis methods and the techniques used to analyse the data collected.
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Chapter 4 
 

 

4 Results and discussion 
This section presents a summary of the research results via a list of academic papers, as follows from 

the main findings and discussion. 

 

4.1 List of papers 
This PhD thesis includes five scientific articles that are completed or published through international 

scientific journals or various international conferences on related topics. This thesis includes pre-prints 

of the following five scientific papers and the contributions of the papers are listed in Table 2: 

Paper I. 
H. Xue, P. Sharma, and F. Wild, “User satisfaction in augmented reality-based training using Microsoft 

HoloLens,” Computers, vol. 8, no.1, p. 9, 2019. https://doi.org/10.3390/computers8010009 

Paper II. 
H. Xue, B.-M. Batalden, and J.-F. Røds, “Development of a SAGAT query and simulator experiment 

to measure situation awareness in maritime navigation,” in: N. Stanton, Eds. Advances in Human 
Aspects of Transportation, AHFE 2020, Advances in Intelligent Systems and Computing, vol. 1212. 

Cham: Springer. https://doi.org/10.1007/978-3-030-50943-9_59 

Paper III. 
H. Xue, B.-M. Batalden, P. Sharma, J. A. Johansen, and D. K. Prasad, “Biosignals based driving skill 

classification using machine learning: A case study of maritime navigation,” Applied Sciences, vol. 11, 

no. 20, p. 9765, 2021. https://doi.org/10.3390/app11209765  

Paper IV. 
H. Xue, J. F. Røds, Ø. Haugseggen, A. J. Christensen, B.-M. Batalden, and O.T. Gudmestad, “A study 

on the effects of rapid training method on ship handling, navigation and decision-making skills under 

stressful situations”. 

(Manuscript is submitted to The Journal of Navigation.) 
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Paper V. 
H. Xue, Ø. Haugseggen, J.-F. Røds, B.-M. Batalden, and D. K. Prasad, “Assessment of stress levels 

based on biosignal during the simulator-based maritime navigation training and its impact on sailing 

performance.” 

(Manuscript is submitted to Transportation Research Interdisciplinary Perspectives.) 

Table 2: Contribution of the PhD candidate to the papers in the PhD thesis 

Contributor role Paper I Paper II Paper III Paper IV Paper V 

Conceptualisation ✓ ✓ ✓ ✓ ✓ 

Experiment design 
  

✓ ✓ ✓ 

Data collection 
 

✓ ✓ ✓ ✓ 

Formal analysis ✓ ✓ ✓ ✓ ✓ 

Investigation 
 

✓ ✓ ✓ ✓ 

Methodology ✓ ✓ ✓ ✓ ✓ 

Software ✓ ✓ ✓ ✓ ✓ 

Visualisation ✓ ✓ ✓ ✓ ✓ 

Validation ✓ ✓ ✓ ✓ ✓ 

Writing the 

manuscript 

✓ ✓ ✓ ✓ ✓ 

Submitting and 

revising 

✓ ✓ ✓ ✓ ✓ 

 

4.2 Research findings 
This section summarises the research findings of the five included papers, which can be found in the 

appendix. The papers are presented together with the research questions that they answer. Paper I studied 

user satisfaction with wearable technology for hands-on training, while Paper II to Paper V focused on 

enhanced learning with wearable technology in maritime sector training.     

RQ1: Can wearable technology, for example AR technology, be used in hands-on training 

satisfactorily? 

Paper I – User satisfaction in augmented reality-based training using Microsoft HoloLens 

When a new technology is introduced into the traditional training field, user satisfaction should be one 

of the top priorities for research and testing. This research has been addressed in Paper I. This paper 

investigated user satisfaction in AR technologies applied to training in three different industrial sectors, 

namely, aeronautics, medicine and astronautics. 

AR technologies provide a different user experience than that of, for example mobile phone apps. The 

user interacts with the surrounding real world, combining inputs from the environment with digital 

augmentations. Therefore, in the past decade, AR has been increasingly employed for a number of 

training applications, such as medical education [125], rehabilitation engineering [133], automotive 
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safety [134], task assistance [135] and manufacturing [136]. However, for the successful adoption of 

AR-based training across different domains, one of the key factors, user satisfaction, has never been 

well studied. 

User satisfaction with AR can be broken down into two components: satisfaction with the interaction 

and that with the delivery device. In this study, Microsoft HoloLens AR glasses were used to experience 

an AR application designed for training and learning purposes. This application consisted of the 

following two modes: recorder and player. The recorder was designed to capture an expert’s workplace 

experience and combine it with the technical documentation associated with a given scenario. The player 

was used to re-enact the scenario to verify the recordings and was usually employed to train a novice 

for the scenario. 

This study had the following specific goals: (1) Test and observe user satisfaction with AR applications 

and AR glasses. (2) Find if experts and students are satisfied with the prototype application. (3) See if 

the application can increase interest in learning new skills. (4) Evaluate whether users find the 

application easy to use. 

For these purposes, a questionnaire was implemented as a tool to evaluate and assess users’ subjective 

satisfaction, and later interviews were conducted to better understand the results of the questionnaires. 

The measures of the questionnaires included the following specific interface factors: screen factors, 

terminology and system feedback, learning factors, system capabilities, technical manuals, online 

tutorials, multimedia, teleconferencing and software installation. The results were analysed and reported 

using descriptive statistics. 

From the results of analyses of the questionnaires, it was observed that most participants were satisfied 

with the AR glasses and applications. It was also found that the system and content helped the 

participants to accomplish the task quite well, and their attention was captivated in a positive way. In 

other words, the results show that the user interface was well-designed. When using AR glasses, the 

user is able to see 'useful information' displayed in close proximity to each relevant part or object in the 

real world. The main factors of age, gender, education level, roles of the participants and organisations 

did not have significant effects on satisfaction with using smart glasses and AR applications. However, 

computer/internet knowledge level did influence user satisfaction. Participants who had better 

computer/internet knowledge were more satisfied with smart glasses and AR applications. There was 

no significant interaction between these factors. Since most participants had a moderate or better than a 

moderate level of knowledge of using computers and the internet, it can be predicted that most educated 

people can easily accept smart glasses and AR applications. 

Overall, the results of this study indicated that using augmented reality glasses for hands-on training is 

a feasible approach, and that both teachers and learners reported acceptable levels of satisfaction with 

the approach. 

 

RQ2: How does experience affect maritime navigation tasks? 

• RQ2.1: Which methods can be used to measure trainees’ performance in maritime navigational 

tasks, specifically SA during maritime navigation, and how does experience impact the 

navigator’s SA? 
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• RQ2.2: Does experience affect the stress levels of seafarers in maritime navigation tasks? 

The research questions RQ2 including RQ2.1 and RQ2.2 are answered by Paper II and Paper III. 

Paper II – Development of a SAGAT query and simulator experiment to measure situation 
awareness in maritime navigation 

Paper III – Biosignal-based driving skill classification using machine learning: A case study of 
maritime navigation 

This study is the first experiment that focused on research on maritime training. In maritime, many ship 

collisions and groundings occur due to navigators’ erroneous SA. In particular, unsafe acts and pre-

conditions for unsafe acts are important causes of ship collisions and groundings [137]. Many 

researchers have found that 71% of navigators’ errors are SA-related problems [138]. Hence, SA is a 

key skill in maritime training. It is interesting to discover how experience affects maritime navigational 

tasks. 

This experiment compared SA performance and stress levels between experienced navigators and 

nautical science students. RQ2 was broken down into two secondary research questions: RQ2.1 and 

RQ2.2, which were addressed in separate papers; Paper II answered research question RQ2.1 about 

performance assessment methods and the role of experience in SA performance, while Paper III 

addressed research question RQ2.2 regarding stress levels between experienced navigators and nautical 

science students based on biosignal data collected by wearable sensors during navigational tasks.  

In Paper II, using SAGAT as a tool, a method for measuring SA–MA was developed. The procedure for 

developing the SAGAT queries can be found in Figure 7. HTA was used to map the navigation and 

collision avoidance tasks, and the results of simulator experiments and input from subject matter experts 

were used to determine the SAGAT score. The study found that it was difficult to measure SA–MA, 

especially for levels 2 and 3 of SA. The results also showed a difference in SA–MA between the 

experienced navigators and novices (students with less experience). Hence, experience was found to 

have an effect on a navigator’s SA. Therefore, it can be concluded that SA performance can be improved 

through training and practice. 

In Paper III, the focus was on detecting changes in stress levels between experienced navigators and 

novices. The study aimed to investigate whether differences existed in stress levels between experienced 

seafarers (experts) and novices (students) as they performed navigation tasks in a simulated maritime 

environment. The goal was to improve training methods for maritime students and potentially improve 

safety in the maritime industry by identifying and addressing any differences in stress levels between 

experts and students. To do this, biosignal data, including electrodermal activity (EDA), body 

temperature, BVP and HR, were collected from a wearable sensor as indicators of stress levels. These 

data were then analysed using a ML algorithm called the convolutional neural network (CNN). To 

validate the study, the results from the CNN analysis were compared to subjective measurements of 

workload using the NASA Task Load Index (NASA-TLX) tool. 

The results of the CNN analysis showed that the biosignal data from the experts could be categorised 

differently from those of the novices, which was consistent with the results of the NASA-TLX ratings. 

This suggested that the proposed algorithm was successful in detecting differences in stress levels 
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between experts and novices, as measured by both the biosignal data and NASA-TLX ratings. Here is a 

summary of the key findings of the study: 

• Biosignal data from experienced seafarers (experts) and novices (students) can be classified 

using a ML algorithm with an accuracy of 75.5%. 

• Subjective measurements of workload using the NASA-TLX tool showed differences between 

experts and students. 

• The results of the NASA-TLX ratings showed that experts had a smaller workload than students. 

• The study suggested that there may be a relationship between workload, stress and SA in 

maritime navigation, with experts experiencing less stress and having better SA scores than 

students. 

• The sample size was small; hence, further research with a larger population is needed to confirm 

these findings. 

• The study’s results may contribute to the development of an automated assessment system for 

evaluating SA performance in maritime navigation. 

 

RQ3: How can efficient training progress be made during stressful maritime tasks? 

Paper IV – A study on the effects of rapid training method on ship handling, navigation and 
decision-making skills under stressful situations 

This research question is answered mainly in Paper IV. In navigation tasks, decision-making skills are 

critical for safe sailing [139], especially in tasks such as collision avoidance, where the navigator must 

decide which means to use for determining the risk of collision and taking appropriate action [140]. In 

addition, environmental stress is one of the dominant factors that causes accidents at sea [81], [141], 

[142]. Working at sea is inherently stressful [143]–[145], especially when faced with rapidly changing 

situations and the need to make many decisions under pressure [146]. Decision-making situations can 

also increase the individual’s stress level and affect decision-making ability under uncertainty by 

altering the underlying decision-making mechanism [147]. As a result, high stress levels can lead to 

flawed decision-making, which can be dangerous in a maritime setting. 

This study had the following specific goals: 

• Determine the learning objectives of the training programme. These should be specific and 

measurable and should reflect the skills and knowledge that the participants will need to 

demonstrate to complete the task(s) successfully. 

• Investigate the effectiveness of simulator-based training in improving decision-making skills in 

the maritime industry. 

• Investigate the stress levels of the participants during a particular task. 

• Assess or evaluate participant learning outcomes. 

• Understand how stress affects decision-making. 

For these purposes, a project-aimed rapid training programme was developed to focus on the towing 

operation, and both the subjective and objective stress levels of the participants were measured during 

the tasks. The study included a simulated critical situation of an engine failure in the tugs at a critical 
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location during which the participants were required to make decisions. A custom decision-quality rating 

scale was proposed to assess decision-making quality. Therefore, the interactions between workload, 

stress and decision quality can be determined. Finally, the study compared the outcomes of the rapid 

training programme with those of the routine training programme in terms of manoeuvring, navigational 

and decision-making skills. 

The key findings of the study are as follows: 

• Compared to the experimental group, participants in the control group, who received more 

routine training, had a higher average score on the decision-quality rating scale and a shorter 

average time for the back tugboat to cut the line in the emergency situation. 

• Participants in the control group perceived higher levels of stress than those in the experiment 

group, and objective stress levels, as measured by HR, also increased significantly during the 

towing operation compared to the relaxing time in both groups. 

• The NDM model was found to be suitable for analysing the participants’ decision-making in 

this study. From the NDM framework, the main protocol used was the recognition-primed 

decision-making (RPD) mode. The results suggest that the control group used the RPD mode 

more frequently, while the experimental group had difficulty following the RPD mode because 

of their lower level of knowledge and experience. 

In summary, this research found that (1) project-aimed rapid training can give participants enough 

knowledge to make efficient decisions in stressful and critical situations to some degree and (2) different 

training methods can affect the decision-making model applied by the participants. The findings suggest 

that participants who had received conventional teaching over a longer period demonstrated a deeper 

understanding of how to apply their knowledge and skills in unfamiliar and critical situations than those 

who received rapid project-aimed training. However, for the experimental group that received the rapid 

training, the decisions they made under time pressure in critical situations were often creative and 

unconventional, rather than based on recognition-primed decision-making. This suggests that the rapid 

training approach may encourage learners to explore different decision-making strategies beyond what 

they have learned, which could be beneficial in certain contexts but may also present challenges. This 

hypothesis is supported by high number of different solutions from this group. As these solutions are 

analysed, some that are not in line with either the crash course theory or other simulator-based exercises 

may be found. For example, a participant may have a risky decision to pass between the front tug and 

the object being towed (see Figure 15). 

 

Figure 15: A map of an example of a risky decision and its corresponding 3D view. One of the participants decided 
to cross the narrow passage between the tugboat and the disabled ship, an action that requires considerable ship-
handling skills. 
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This study made several contributions to the field of maritime education and training (MET): 

• First, it provided evidence that project-aimed rapid training can be an effective way to train a 

certain skill in an efficient and cost-effective way in a safe environment. This is important 

because maritime training requires high investment and incurs high running costs [24], and the 

quality of MET is critical for ensuring the safety of life at sea. 

• Second, the study used a decision-quality rating scale to evaluate the decision-making of 

participants, providing a more comprehensive understanding of the decision-making process in 

the maritime industry. This is valuable, as decision-making is a critical skill for navigators, and 

it is one of the main causes of maritime accidents. 

• Third, the study used subjective and objective stress measures to assess the impact of training 

on stress levels. This allowed for a more complete understanding of the effect of training on 

stress in the maritime industry. 

Overall, the findings of this study have the potential to inform the development of more effective and 

efficient training programmes in the maritime industry, which can ultimately improve navigational 

safety. 

 

RQ4: Can we build a system to analyse the objective stress levels of navigators based on biosignal data 

so that it can improve training outcomes in maritime training programmes? 

Paper V – Assessment of stress levels based on biosignal during simulator-based maritime 
navigation training and its impact on sailing performance 

This research question was addressed in Paper V. The study described the critical impact of stress on 

safety and training outcomes in the maritime industry. It highlighted the challenges in assessing learning 

outcomes and performance and the need for objective stress analysis. The study aimed to build a system 

for analysing the objective stress levels of navigators based on biosignal data, with the goal of improving 

training outcomes in maritime training programmes. This study explored the relationship between stress 

and training outcomes in the maritime industry by comparing self-reported stress levels with objective 

stress levels measured from biosignal data. It also investigated the relationship between stress levels and 

safety factors and the impact of stress levels on training programmes by assessing learning outcomes 

and performance. A conceptual model was also proposed in Figure 16, demonstrating the relationship 

between safety factors and stress levels and highlighting the connection between stress and maritime 

training programmes. 
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Figure 16: Conceptual model of a stress-based maritime training programme. 

In this study, the subjective stress levels of the participants were self-reported using several 

questionnaires. Statistical methods were employed to analyse the results. Objective stress levels were 

assessed by analysing HR data obtained from IBI data collected via wearable sensors. Five different ML 

algorithms were selected to analyse the biosignal data, and their results were compared using three 

different methods of pre-processing the HR data: using the original data directly, using event-extracted 

data, and using window mean data. The results, as shown in Figure 17, indicated that when using the 

event extraction method, all five ML algorithms achieved high accuracy in classifying the stress levels 

of the participants from a complex training scenario and an easy training scenario. Both subjective stress 

levels and objective stress levels have good in-line results. 

The study determined that the control and experimental scenarios resulted in different levels of stress 

for the participants, which affected their performance. The impact on training performance was 

evaluated through the proposed performance criteria and an examination of the deviation from the 

planned route. Results from the deviation measurements, shown in Figure 18, indicate that most 

instances of deviation in the control scenario remained within 300 m of the planned route, with the 

majority between 0 and 200 m away. In contrast, the deviation in the experimental scenario was 

primarily greater than 200 m. Moreover, participants in the experimental scenario were able to return to 

the planned route more swiftly, while participants in the control scenario took more time to do so (as 

shown in Figure 19). The results suggest that the deviation may have been caused by participants starting 

their turns too late or not turning back towards the planned route quickly enough. In addition, the time 

taken to return to the planned route after deviation was substantial, with some participants passing 

Waypoint 4 before returning to or nearing the planned route, which coincided with the point at which 

they encountered the second fishing vessel, resulting in a closer passing distance. The analysis of 

performance measures also revealed that the participants were not intense. 

In conclusion, the results of the study contribute to a better understanding of the relationship between 

stress and training outcomes and have the potential to improve safety and optimise training programmes 

in the maritime industry. 
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Figure 17: Comparison of machine-learning results from five different algorithms in different ways of pre-processing 
data. 

 

 

Figure 18: Deviation from the planned route for the experimental scenario (orange) and the control scenario (blue) 
in the comparison graph. (Experts suggest that the deviation of less than 100 m is negligible.) 
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Figure 19: Participants sailed routes from the control scenario (left) to the experimental scenario (right). The 
magenta lines represent the planned route. 

 

4.3 Discussion 
This section discusses the research outcomes from various aspects. It covers the connections between 

articles, strengths of the work, limitations, and implications. Additionally, it evaluates the contribution 

of the research to the field. This in-depth discussion provides a deeper understanding of the research 

outcomes and advances knowledge in the field. 

4.3.1 Relationship between the articles 
For this research, we sought to limit navigation errors, avoid unsafe acts and improve training and 

learning methods in the maritime sector. All five papers were built together to form the foundation of 

this dissertation and answer the research questions proposed in the introduction section. These research 

questions are connected by their focus on exploring different aspects of training and performance in 

maritime navigation, with a particular emphasis on using technology and measuring the impact of 

experience and stress on performance. Together, these research questions aim to provide insight into the 

optimisation of training and performance within the context of maritime navigation tasks. Paper I 

addressed the research question whether wearable technology, specifically AR-based training using 

Microsoft HoloLens, can be used for hands-on training and the satisfaction of users with this technology. 

This question is important, as it lays the groundwork for the subsequent papers’ focus on enhancing 

learning outcomes in the maritime sector. Papers II–V, supporting RQ2–RQ4, focused on how this type 

of technology can be used to enhance learning outcomes. 
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4.3.2 Strengths of the work 
The work presented in this study has several strengths, primarily in the innovative and practical solutions 

proposed for improving safety and enhancing learning outcomes in the maritime industry. In the context 

of MET, identifying the zone of ZPD [43] of students is useful. A key aspect is pinpointing the challenge 

point [44] during the training process (see Figure 3). The findings of this study indicate that employing 

biosignal analysis to measure students' stress levels can assist instructors in providing effective 

guidance. Moreover, the results show a clear correlation between stress management and training 

performance. These outcomes underscore the necessity for innovative and effective training methods in 

the maritime domain (see Figure 4), emphasizing their pivotal role in enhancing the overall quality of 

maritime training.  

In particular, this research investigated the effectiveness of training programmes conducted on bridge 

simulators, which are a vital component of contemporary MET [89]. Simulations provide an immersive 

and realistic training environment that mirrors real-life situations, enabling trainees to gain practical 

experience within a safe and controlled setting that reduces the risk of accidents and injuries [148]. 

Moreover, the use of maritime training simulators enables trainees to experience a broad range of 

scenarios that may otherwise be too dangerous or expensive to replicate in real life, thereby enhancing 

their ability to manage risks and respond effectively to emergency situations [149]. Simulation training 

also offers trainers an opportunity to assess trainees’ performance within a controlled environment, 

providing valuable feedback for areas requiring improvement [150]. In addition, simulation training can 

be used to promote teamwork, communication and leadership skills, which are essential in the maritime 

industry [14]. 

In addition to the traditional training methods in the simulator bridge, the present study introduced new 

technological advancements in the field of MET, including the application of wearable technology, 

biosignal data analysis and ML techniques. Objective data collection methods, such as surveys, 

experiments and case studies, provided a comprehensive understanding of the effectiveness of wearable 

technology in this context. Incorporating ML techniques and statistical methods into data analysis 

strengthened the research outcomes. The use of the SAGAT query as an objective tool for measuring 

situational awareness enhanced the study’s ability to identify the impact of experience on navigational 

tasks and, ultimately, to improve training outcomes. 

Finally, the study presented practical implications for the maritime industry, including the adoption of 

rapid training methods and a decision-quality rating scale to objectively evaluate participants’ decision-

making processes, providing a more comprehensive understanding of decision-making in the maritime 

industry. Thus, this research provided valuable insights and practical solutions for enhancing safety and 

learning outcomes in the maritime industry. 

4.3.3 Limitations of the work 
Despite the promising findings, this work has certain limitations. First, the sample size used in the study 

was relatively small, which may restrict the generalisability of the results. Therefore, further research 

with a larger population is necessary to validate the findings and ensure their applicability to a broader 

range of individuals. Moreover, it is noteworthy that all data utilised in the maritime training 

experiments were obtained from a single university, specifically from a cohort of students. Hence, 

incorporating data from multiple universities would not only strengthen the study’s outcomes but also 
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lend greater credence to its conclusions. Unfortunately, due to the logistical challenges associated with 

the ongoing pandemic, procuring additional data from other academic institutions was not feasible. 

Second, it should be noted that the experimental scenario only captures a snapshot of the entire maritime 

education programme scenario. Conducting a longitudinal study, which follows the same group of 

participants over an extended period, could have provided more comprehensive and accurate results. 

This is because a longitudinal study is useful for studying changes and development in individuals and 

allows for the measurement of changes over time. However, due to constraints on the resources and time 

available for the PhD project, it was not feasible to conduct such a study. In addition, technical issues, 

such as limited battery life and the high cost of acquiring an adequate number of sensors, further 

complicated the implementation of a longitudinal study. 

Third, while the current study provides a foundation for understanding the potential use of wearable 

sensors for evaluating stress levels and training performance in maritime navigation, further 

investigations are required to develop an automated assessment system to adjust training intensity based 

on the trainee’s stress levels. However, due to constraints associated with the PhD project, this task had 

to be left for future work. 

Moreover, the study only utilised one type of wearable device in the maritime sector, which raises 

questions about the sufficiency of this approach. Incorporating additional wearable sensors could 

provide more comprehensive and nuanced insights into training performance in this context. A multi-

sensor framework beyond a single type of wearable sensor could enhance training performance by 

providing a more accurate and holistic evaluation of the trainee’s performance. Regrettably, due to the 

limited time and budgetary constraints associated with the PhD project, it was not feasible to include 

multiple wearable sensors in the current study. 

4.3.4 Implications of the work 
The findings of this study suggest that wearable technology, such as AR technology and biosignal 

monitoring, can be effective tools for enhancing learning outcomes and improving performance and 

safety in the maritime industry. In the realm of MET, universities and institutions follow a study plan 

based on the STCW convention set by the IMO. As illustrated in Figure 20, the compliance matrix is an 

administrative document developed by universities or institutions in accordance with the STCW 

convention. The compliance matrix describes how the MET study programmes fulfil the requirements 

from the STCW code, including the knowledge, understanding and skills required for each competency, 

the methods needed to demonstrate competence, the criteria necessary for competence evaluation, the 

topics covered by the competency and the assessment methods utilised. The compliance matrix is 

certified by the Norwegian Maritime Authority (NMA), and it is a vital part of the certification for 

universities or institutions to commence maritime training programmes. Course plans are then designed 

according to the compliance matrix of universities or institutions, and lecturers or instructors develop 

lecture plans that can vary depending on individual instructors or lecturers. 
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Figure 20: An example of maritime education and training hierarchical work. Note that IMO stands for International 
Maritime Organization, NMA stands for Norwegian Maritime Authority and STCW stands for International 
Convention on Standards of Training, Certification and Watchkeeping for Seafarers. 

Enhancing simulation exercises and training scenarios can lead to more efficient training outcomes. For 

example, the MET programme at UiT mandates that each student complete eight simulation training 

exercises every semester during the first 2 years of study, resulting in 32 simulation training exercises. 

The duration of each simulation exercise can range from 0.5 to 4 hours, depending on its complexity. 

While instructors design and assess the content of these exercises before use, many of them might not 

have been updated for years, even if different instructors had taken over the courses. 

Despite the established protocols, designing effective simulation exercises and training scenarios that 

cater to the needs of all students is a challenging task due to the varying mental capacities and learning 

paces of individual students. Instructors are required to identify students who are unable to meet the 

training requirements and gain an understanding of the factors that contribute to their inability to achieve 

the desired training outcomes. This process requires a deep understanding of the cognitive and 

behavioural aspects of learning and the ability to tailor training approaches to suit individual needs. In 

particular, instructors should be able to identify and address individual learning difficulties as well as 

recognise when a student is not receiving new knowledge or learning effectively. Furthermore, a good 

instructor may possess extensive sea experience but not necessarily a strong academic background. For 

instance, they may know how to design a training scenario to improve students’ performance in complex 

situations, but they may not comprehend certain terms when asked to train students’ in SA or decision-

making skills. Therefore, the current study can help improve MET in the following areas: 

The use of wearable sensors and the analysis of biosignal data can offer insight into the stress levels of 

students and guide instructors in adjusting the training intensity to optimise learning outcomes. These 

objective measures can enhance the effectiveness of training and improve performance and safety in the 

maritime industry. Thus, this study contributes to the development of a more thorough understanding of 

the relationship between stress and training outcomes, with the aim of improving the performance and 

safety of maritime training. 

In addition, the inclusion of the SAGAT query in maritime training can assist instructors in identifying 

students' deficiencies during navigation tasks. SAGAT query is a well-established and objective method 

of assessing situational awareness, which is crucial for decision-making in complex and dynamic 

environments [151]. Although it has traditionally been used in aviation training [152], a modified 

version of SAGAT query can be adapted to maritime training. SAGAT queries are focused on specific 
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data or data criteria that correspond to the three levels of situational awareness (perception, 

comprehension, and projection). By measuring and analysing students' scores at each level, instructors 

can identify their weaknesses and tailor their training accordingly. The use of SAGAT in MET can thus 

enhance the effectiveness of training and contribute to the development of more competent maritime 

professionals. 

Furthermore, the research proposes approaches for delivering project-aimed rapid training that enables 

seafarers to quickly acquire the necessary knowledge and skills for their specific roles. By reducing the 

time required for training, this approach allows students to gain on-the-job experience faster, thus 

reducing costs and significantly improving the efficiency of maritime training programmes. Based on 

the current results, instructors can design the training scenario in the following two steps: the first step 

focuses on project-aimed skills acquisition, while the second step aims to improve the weak areas of 

students’ learning. 

Finally, the study emphasises the importance of user satisfaction in the adoption and success of AR and 

wearable technology in training and learning. AR glasses can enhance the effectiveness of training 

programmes and increase user engagement. 

In summary, this dissertation offers innovative solutions for enhancing learning outcomes in the 

maritime industry, leading to improved performance outcomes, enhanced safety and better training 

programmes. Furthermore, this research provides valuable insights and implications for the broader field 

of training and learning. 

4.3.5 Contributions to the research field 
The research outlined in this dissertation makes several contributions to the field of enhanced learning 

in the maritime sector. Currently, in MET, performance assessment is often evaluated subjectively by 

instructors, which can lead to unreliable, invalid and unfair evaluations [153]. The research offers 

methods and tools used in a new way for measuring training performance, SA, decision-making skills 

and stress levels, such as the SAGAT query and ML-based biosignal classification [151], [152]. These 

methods provide objective data for assessing performance and identifying areas for improvement in 

training programmes, resulting in more effective and personalised training plans. 

Stress is a common concern in the maritime domain, as it is often seen as a harmful factor for safety. 

Stress can negatively impact maritime navigation safety by distracting attention, memory retrieval, and 

decision-making [154]. Although many researchers have studied stress, the research presented in this 

dissertation takes a unique approach by investigating the ‘comfort zone’, where the level of learning and 

response is optimal [50]. As mentioned in Section 2.2, it is common to use self-reported stress levels. 

Some researchers have tried to quantify stress levels objectively by measuring cortisol levels in saliva 

or blood samples [100]. However, these methods are either unreliable or too complicated and inefficient. 

In this PhD work, we used biosignal data to obtain objective stress levels. By analysing biosignal data, 

researchers and practitioners can gain a deeper understanding of the physiological responses to stress 

and develop more effective strategies for managing stress in the workplace. The research provides a 

basis for developing personalised training plans based on objective data on performance and stress 

levels. This approach can lead to more effective training programmes that focus on improving individual 

skills and addressing specific areas for improvement. The use of biosignal data analysis to objectively 

measure stress levels is a novel and useful contribution to the field. 
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In this dissertation, deep learning has proven to be a powerful tool for generating meaningful 

representations of data. Particularly when dealing with small sample data, deep learning, coupled with 

HOC feature selection, can effectively address this challenge. Other ML algorithms can also provide 

good accuracy when the data are appropriately processed. 

The objective of this dissertation is to enhance the efficiency and effectiveness of maritime training 

programmes using cutting-edge technology and data-driven approaches. By combining AR technology, 

wearable sensors, rapid training techniques and ML models, the proposed methods have the potential to 

improve learning outcomes and assist navigators in handling complex situations in the maritime sector, 

thereby leading to improved safety and optimised training outcomes. 
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Chapter 5 
 

 

5 Conclusion and future work 
5.1 Concluding remarks 
The scope of the work presented in this dissertation is defined by the four research questions described 

in the introduction. How the conclusions that can be drawn from the five papers supporting this 

dissertation provide an answer to these research questions is explained below. 

RQ1: Can wearable technology, for example AR technology, be used in hands-on training 

satisfactorily? 

The conclusion that can be drawn from the work presented in Paper I is that wearable technology, 

specifically AR-based training using Microsoft HoloLens, can be used for hands-on training and the 

satisfaction of users with this technology. This question is important as it lays the groundwork for the 

subsequent papers’ focus on enhancing learning outcomes in the maritime sector. 

RQ2: How does experience affect maritime navigation tasks? 

• RQ2.1: What methods can be used to measure trainees’ performance in maritime navigational 

tasks, specifically SA, during maritime navigation, and how does the experience impact the 

navigator’s SA? 

• RQ2.2: Does experience affect the stress levels of seafarers in maritime navigation tasks? 

The conclusion that can be drawn from Papers II and III is that the use of the SAGAT query to measure 

SA is challenging but achievable. Training and practice can improve SA performance. The study 

suggests that there may be a relationship between workload, stress and SA in maritime navigation, with 

experts experiencing less stress and having better SA scores than novices (students). However, the 

SAGAT query can be improved for measuring the higher level of SA, and larger studies are needed to 

confirm these findings. Nevertheless, the study’s results may contribute to the development of an 

automated assessment system for evaluating SA performance in maritime navigation, which can 

ultimately enhance safety and efficiency in the maritime industry. 

RQ3: How can efficient training progress be made during stressful maritime tasks? 

The conclusion that can be drawn from Paper IV is that project-aimed rapid training can give participants 

enough knowledge to some degree to make efficient decisions in stressful and critical situations.
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Different training methods can affect the decision-making models applied by the participants. 

Participants who have received conventional teaching over a longer period are able to apply their 

knowledge and skills at a deeper level when faced with unfamiliar and critical situations compared to 

those who have received project-aimed rapid training. In addition, the study contributes to the field of 

MET by demonstrating the effectiveness of project-aimed rapid training, using a decision-quality rating 

scale to evaluate decision-making and assessing the impact of training on stress levels through subjective 

and objective stress measures. 

RQ4: Can we build a system to analyse the objective stress levels of navigators based on biosignal data 

so that it can improve training outcomes in maritime training programmes? 

The conclusion drawn from Paper V is that biosignal data can be used to objectively assess stress levels 

in navigators during maritime training programmes and this assessment can have a positive impact on 

training outcomes and performance. The combination of ML algorithms for analysing biosignal data 

and statistical methods for analysing questionnaire data allowed for a comprehensive analysis of stress 

levels and their impact on training outcomes. 

More generally, the work presented in this dissertation has contributed to the development of methods 

for enhanced learning to handle complex situations in the maritime sector. The studies presented in this 

dissertation have advanced our understanding of the relationship between stress and training outcomes 

in the maritime industry. It concludes that wearable technology can be used in hands-on training and 

user satisfaction is generally positive. In addition, the study supports the idea that experience affects 

maritime navigational tasks, such as SA. The results demonstrated the importance of considering stress 

levels in maritime training programmes, as stress can significantly impact safety and performance. Also, 

the proposed conceptual model in Paper V highlights the relationship between stress and safety factors 

and provides a framework for future research in this area. 

5.2 Future work 
In the future, it would be valuable to continue exploring the relationship between stress and training 

outcomes and further develop and test biosignal data-based training systems. The model is shown in 

Figure 21. 

 

Figure 21 : Future work for a reliable and safe maritime training system. 

Biosignal data-based training systems comprise a relatively new approach to improving the performance 

and safety of maritime training. The system uses various physiological signals, such as HR, skin 

conductance, and respiration rate, to measure trainees’ stress levels during training sessions. These 
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signals are then used to provide real-time feedback to the trainees and instructors, allowing them to 

adjust the training programme according to the trainee’s stress level. 

One of the main advantages of biosignal data-based training systems is that they provide a more 

objective measure of stress levels than traditional self-reporting methods. This allows for a more 

accurate assessment of stress levels and can help instructors adapt the training programme to better suit 

the needs of each trainee. In addition, these systems can help improve maritime training safety by 

identifying when trainees may be at an increased risk of making errors due to high stress levels. This 

information can then be used to adjust the training programme, such as reducing the complexity of the 

task or providing more support, to reduce the risk of errors and accidents. Furthermore, by providing 

real-time feedback, these systems can help trainees develop better stress management strategies and 

improve their overall performance. This can be achieved by providing training in stress management 

techniques, such as relaxation techniques or cognitive-behavioural strategies, which can help to reduce 

stress levels and improve performance. 

The process of implementing such a system, including the development of a real-time stress-level-

detecting application and field testing in various scenarios with sufficient biosignal data, is left for future 

work. 
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Abstract: With the recent developments in augmented reality (AR) technologies comes an increased
interest in the use of smart glasses for hands-on training. Whether this interest is turned into market
success depends at the least on whether the interaction with smart AR glasses satisfies users, an aspect
of AR use that so far has received little attention. With this contribution, we seek to change this.
The objective of the article, therefore, is to investigate user satisfaction in AR applied to three cases
of practical use. User satisfaction of AR can be broken down into satisfaction with the interaction
and satisfaction with the delivery device. A total of 142 participants from three different industrial
sectors contributed to this study, namely, aeronautics, medicine, and astronautics. In our analysis,
we investigated the influence of different factors, such as age, gender, level of education, level of
Internet knowledge, and the roles of the participants in the different sectors. Even though users were
not familiar with the smart glasses, results show that general computer knowledge has a positive
effect on user satisfaction. Further analysis using two-factor interactions showed that there is no
significant interaction between the different factors and user satisfaction. The results of the study
affirm that the questionnaires developed for user satisfaction of smart glasses and the AR application
performed well, but leave room for improvement.

Keywords: augmented reality; Microsoft HoloLens; AR application; user experience; user satisfaction

1. Introduction

Augmented Reality (AR) means enhancing the user’s perception “with additional, artificially
generated sensory input to create a new experience including, but not restricted to, enhancing
human vision by combining natural with digital offers” [1]. Augmented Reality typically has three
characteristics [2]: (1) AR combines the virtual with the real world; (2) objects are registered from both
the real and virtual world in one coordinate system; and (3) the interaction between the objects of both
worlds is possible in real time.

Hands-on training is important for many disciplines and professions, such as medical workers,
mechanics, technicians, electricians, engineers, sailors, pilots, and firefighters. In the past decade, AR
has been increasingly employed for a number of training applications, such as medical education [3],
rehabilitation engineering [4], automotive safety [5], task assistance [6], and manufacturing [7].

For the successful adoption of AR-based training across different domains, one of the key factors
is user satisfaction. User satisfaction is defined as a combination of different factors associated with
the usage of the AR application and the associated delivery device [8]. These factors include: a feeling
of powerfulness and achievement; an efficient use of time, effort, and other resources; meaningful
content; a better insight into the training environment; a natural interaction; a feeling of amazement;
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performance that exceeds expectations; playfulness; the invoking of positive feelings and pleasing
memories; immersion and engagement; a transparent interaction; the feeling of participation in a
community; a sense of privacy of the user’s content; inspiration, encouragement, and motivation;
and, finally, artistic creativity [8].

The main objective of this study was to test and observe user satisfaction in using AR applications
and using AR glasses. The method for evaluating included questionnaires and interviews. The AR
app used in this evaluation, therefore, has two parts: one is the expert recording the experience in the
workplace, and the other is the novices training on work-related procedures using said recordings.
In this study, we evaluated the following research hypotheses: to find if experts and students are
satisfied with the prototype application, to see if the application can increase interest in learning new
skills, and to evaluate if the users find the application easy to use.

The rest of this paper is organized as follows. First, we turn to the state of the art, summarizing
what the research has found so far with respect to AR user interaction, AR user satisfaction,
and questionnaires used for evaluating user satisfaction. Next, the AR app used in the trials is
described. Subsequently presented are the research methodology and a summary of the information
of the participants, devices, design of trial tasks, and evaluation methods. Finally, findings and results
are illustrated, and the discussion and conclusion are given at the end.

2. State of the Art

2.1. AR User Interaction

AR technologies provide a different user experience than that of, for example, mobile phone apps.
The user interacts with the surrounding real world, combining inputs from the environment with digital
augmentations. Popular examples include PokemonGO and SnapChat. These types of apps certainly
brought the term “augmented reality” into the spotlight [9]. With the advent of consumer-grade
AR glasses, different types of AR user interactions are becoming necessary. For example, a user
who is wearing Microsoft HoloLens can communicate diagrams and other types of graphics directly
embedded into the environment to a different, remote user (see Figure 1).

Figure 1. With Microsoft HoloLens, a user connects the wires with remote assist (Used with permission
from Microsoft Corporation) [10].

2.2. AR User Satisfaction and Questionnaires for Evaluating User Satisfaction

AR technology has evolved from offline to online, from static devices to mobile devices, and from
desktop and mobile to wearable devices [11]. Consequently, with AR development over the past
decade or so, special attention has been drawn to the maximization of AR user satisfaction. AR
user satisfaction is dependent on both the design of the user interface (UI) and the choice of the
AR hardware. Personalization of AR glasses can lead to greater AR user satisfaction [12]. AR apps
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designed for a good user experience result in a more overall satisfied AR user. This applies to AR
navigation apps, AR health apps, AR education apps, and certain AR smart glasses games [13].

There are several concepts and subjective measures for evaluating the user experience of AR
services. With regards to the user, satisfaction questionnaires are common tools used to evaluate a
user’s experience. One such tool—the Questionnaire for User Interaction Satisfaction (QUIS)—is
designed to assess users’ subjective satisfaction with specific aspects of the human–computer
interface [14]. The results of QUIS facilitate new developments by addressing reliability and validity
problems found using its satisfaction measurements. Therefore, the measure is highly reliable across
many types of interfaces.

QUIS consists of a demographic questionnaire, a six-scale measure of overall system satisfaction,
and hierarchically organized measures. The measures include the following specific interface
factors [14]: screen factors, terminology and system feedback, learning factors, system capabilities,
technical manuals, online tutorials, multimedia, teleconferencing, and software installation. Each area
is measured by a seven-point scale according to the user’s overall satisfaction with the interface and
the above factors [14].

3. The AR Application

The AR application consists of two modes:recorder and player. This AR application is part of the
work from WEKIT (Wearable Experience for Knowledge Intensive Training) project.

The recorder is designed for capturing an expert’s workplace experience and combining it with
technical documentation associated with a given scenario. The player is used to reenact the scenario to
verify the recordings and usually employed to train a novice for the scenario.

To capture an expert’s experience, a set of transfer mechanisms were defined by Limbu et al. [15].
The so-called transfer mechanisms allow us to map the key aspects of an expert’s performance to low
level data and subsequent sensors. For more details on the different sensor components and their
integration, please see the work by Sharma et al. [16]. The recorder (as shown in Figure 2 [17]) consists
of a radial menu that allows us to select different options for capturing diverse annotations such as:
pictures, videos, text annotations (for adding text information to different objects in the environment),
audio, ghost hands (to capture the locations and movements of user’s hands) and 3D models (useful
for performing the task).

Trainers can use a so-called “ghost track” to record their own position and indoor movement,
while at the same time recording voice explanations. When replaying such recording to the trainees,
the holographic “ghost” representation of the expert provides more intuitive guidance on where to
be, where to focus, and what to do than merely reading about the task to be learned in a manual
using text and illustration. Figure 3 shows an example of such ghost track recording and replay for an
aircraft maintenance task. The app was recording the expert when he was maintaining the aircraft
(Figure 3a [18]). After recording, in the replay, as shown in Figure 3b [18], we can see a representation
of the expert’s position and his or her hand position (represented by the white sphere).

The player is the mode designed for trainees to learn how to do procedural operations (kind of
“do-torial” mode). The app executes AR learning experience models (IEEE standard association,
working group p1589), thus allows loading different learning and training activities. Activities can
be transferred from device to device as well as from place to place, using a calibration marker to
recalculate the relative positions of all points of interest, while utilizing 3D environmental mapping to
provide stable projections.

The WEKIT player starting screen is shown in Figure 4 [17]. Once the task starts, the first action
step and its associated augmentations are shown on the smart glasses display. From the perspective of
the users, this typically means that the visual annotations overlay onto their unimpeded real-world
view (optical see-through). Step by step, they guide the user through the learning task at hand.
Gesture commands, voice commands, and the hardware clicker are all available when using the app.
Figure 5 [19] shows an example of the WEKIT player in action. When the sensors on the HoloLens
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detect the particular tangible object, the virtual button is displayed in front of the trainee, while
instruction on handling and movement are given at the same time.

Figure 2. User interface of the recording mode. Image from the WEKIT consortium in 2017 [17].

(a) (b)
Figure 3. A ghost track in WEKIT Recorder mode: (a) recording a ghost track; and (b) ghost track
replay. Image from [18].

Figure 4. Starting screen in WEKIT (Wearable Experience for Knowledge Intensive Training) player
mode. Image from Jaakko Karjalainen, WEKIT consortium in 2017 [17].
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Figure 5. Example of user interface of WEKIT Player mode. Image from [19].

4. Research Design/Experiment Methodology

4.1. Participants

To evaluate the satisfaction of the user interaction and the smart glasses user experience, the WEKIT
application was deployed in three different pilot testing scenarios: aviation, medical imaging, and
space. In total, 142 people participated in the three scenarios, 55 in aviation, 48 in medical imaging,
and 39 in space. Moreover, in the experiments, the test population was divided into two main groups,
experts and students, respectively. A total of 47 experts (8 females and 39 males) with a high level of
technological competency in their respective fields were recruited. A total of 95 learners (23 females
and 72 males) from the three different fields voluntarily participated in the trials. The majority of the
participants (68) were in the 18–24 age group, followed by 48 of the participants in the range between 25
and 34. Most of the participants had moderate or better computer knowledge and Internet knowledge,
expressed on a five-point Likert scale ranging from very poor, poor, moderate, good, to very good.
All participants gave written consent for their participation in the trials.

4.2. Material and Apparatus

The trial used the Microsoft HoloLens as wearable AR glasses for assessing the user’s satisfaction
with AR training. There are two parts in the WEKIT technology platform [20] deployed on HoloLens.
One is a recorder for capturing expert experience and the other one is a player for presenting the
expert’s experience to the trainees. During the trial, all interactions and manipulations were done by
using gesture and voice command only.

4.3. Trial Design/Task

The trial tasks were separated into three different areas, as mentioned in Section 4.1. Tasks in the
Aeronautics use case were performed at Lufttransport, Norway. The scenario used for the aeronautics
use case was a pre-flight inspection consisting of checking and securing different items such as baggage,
exits, locks, and checking the status of components such as landing gears, brakes, engine switches,
battery, and fuel. The experts comprised of maintenance apprentices, skilled workers (mechanics),
and technicians working on base maintenance at Lufttransport. The novice group comprised of student
volunteers from UiT The Arctic University of Norway [18]. Figure 6 shows a novice engaging in the
pre-flight inspection task. Experts had been using the different types of annotations to create the
required instruction for the training procedure, which then was provided to the trainee in the player
mode of the AR app. The novice followed the instructions in order to complete the task in the cockpit.

The pre-flight inspection scenario consisted of the steps shown in Table 1.
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Table 1. Steps of the pre flight inspection scenario for Beechcraft B200 [18].

No. Cabin/Cockpit Action Content

1. Baggage Secure Ensure that the baggage compartment and net
is secured.

2. Emergency Exit Secure and unlocked
Emergency exit handle must be in the secured
position and the lock must be in the
unlocked position.

3. Control locks Remove and stowed The control locks must be removed and stowed.

4. Trim Tabs Exit Set to “0” Including elevator trim tab, aileron trim tab,
elevator trim tab.

5. Condition levers Fuel cut-off Must be set to the fuel cut-off position.

6. Landing gear control Down Must be in down position.

7. Parking brake Set If required, ensure that the parking brake is set on.

8. Ignition and engine
start switches Ensure off Must be in the off position.

9. Battery Check for minimum
23 V

Turn on the battery master switch. Check for
minimum 23V on the voltmeters by pushing the
push-to-test knobs on the voltmeters.

10. Fuel quantity Check

Check the fuel quantity in main fuel tanks. Move
and hold the “fuel quantity”-switch to auxiliary
position and check the fuel quantity in auxiliary
fuel tanks.

Figure 6. Maintenance Engineer in the cockpit of a Beechcraft B200 King Air model. Image: Mikhail
Fominykh, WEKIT consortium in 2017 [21].

The medical task involved imaging and diagnostic workers and was conducted at EBIT (Esaote’s
Healthcare IT Company) in Genoa, Italy [22]. This task was for training medical students and
radiologist apprentices on using MyLab8, an ultrasound machine produced by ESAOTE [23]. Similar
to the trial at Lufttransport, the users executed the steps of the procedure using the player mode
of the application. The scenario for the medical use case was to perform a particular ultrasound
examination to analyze a patient’s condition. The patient was a paid actor. During the task, the novice
doctors needed to combine data from different sources in order to arrive at the correct diagnosis.
As for the holographic training instruction, the guidance was set up for the player mode again using
experts, adding the step-by-step description needed to guide the trainee through the full scanning
and assessment procedure. The novice doctors then wore the HoloLenses and tried to perform the
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examination. The tasks are shown in Table 2. In Figure 7, we can see a novice performing a task by
positioning the probe in the target direction and taking measurements using the player application.

Table 2. Steps of diagnostic training of radiology students performing an ultrasound examination [23].

No.
Ultrasound

Equipment
Action Content

1. Probe Choose

Choose the proper probe. Point to the linear probe
and listen to the audio annotation explaining
which probe to select and why, and how to hold it
(with a raised edge).

2. Button Select the mode Point to the “B/M” button to select the
correct mode.

3. Probe Transversal position Position the probe in a transverse direction.

4. Probe Longitudinal direction Position the probe in a longitudinal direction.

5. Button Change the mode Change the mode to Color Mode.

6. Button Choose button Position the center line in the middle of the artery.

7. Button Change the mode Change the mode to Doppler Mode. If required,
ensure that the parking brake is set on.

8. Circle button Pointing Point to Circle button highlighted in the
following figure.

9. Measure button Measure Choose correct button to start reading.

10. Trackball button Measure

Position the cursor over the highest peak in the
curve, then click the left trackball button to set
the first data point. Repeat for the lowest point in
the graph.

11. Image button Snapshot Take a snapshot with the measure.

Figure 7. A radiologist conducting ultrasound training. Image: WEKIT consortium in 2017 [21].

The space task that was conducted at the facilities of ALTEC in Turin, Italy and it involved training
astronauts on how to install a Temporary Stowage Rack (TSR). The TSR installation is a procedure
that astronauts have to perform on the International Space Station (ISS) [24]. Similar to the trials at
the other two organizations, experts designed the training scenario, while a larger number of trainees
then executed the scenario on the player application. The evaluation of the expert’s experience was
conducted using the recorder mode of the app as well as the player, while the trainees used only the
player mode. The steps for this procedure are as follows. First, trainees were asked to scan the working
area to create the 3D model of the environment, and then to identify the six seat track studs location on
the structure, the position of the ball bearing and brackets. Next, they were instructed to fix the six
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studs in specific locations. Finally, they were asked to extract TSR, deploy it, and fix it to the correct
places. The novices performed the task based on the recorded content. Table 3 shows the details of the
steps. In Figure 8, we can see a participant of the trials performing a task in a replica module of the
International Space Station.

Table 3. Steps of the installation of the Temporary Stowage Rack (TSR) in the Automated Transfer
Vehicle (ATV) Part Task Trainer [24].

No. Training Facility Action Content

1. Rack Identify Identify the TSR interfaces.

2. Rack Localize and fix Install the 6 studs in the correct position.

3. CTB Localize Extract the TSR from Cargo Transfer Bag (CTB)
and deploy it.

4. Label Orient Orient the TSR with the label on top.

5. AR glasses Note
Show note regarding the step: “Start with rear side
attachments. Do not tighten rear straps or front
straps will be short.”.

6. Rack Connect Connect the rack straps to the corresponding
Automated Transfer Vehicle (ATV) interfaces.

7. Experts/Trainees Change position Move to the front side of the TSR.

8. Rack Fix Fix the TSR straps to the studs.

9. Rack Fix Fix the TSR straps to the brackets.

10. Straps Check Check the tightness of the straps and tighten
as needed.

Figure 8. Astronaut trainer in a replica training module of the international space station. Image:
WEKIT consortium in 2017 [21].

4.4. Smart Glasses User Satisfaction (SGUS)

The Smart Glasses User Satisfaction (SGUS) questionnaire was created for the WEKIT trials. It is
a tool designed to assess users’ subjective satisfaction with smart glasses. SGUS is a method and
measure to scrutinize aspects, such as an enhanced perception of the environment, interaction with the
augmented environment, implications of location and object awareness, the user-created AR content,
and the new AR features that users typically use [8]. The general objective of the questionnaire is to
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understand the potential end users’ central expectations of AR services with smart glasses, especially
from an experiential point of view [8]. In this study, the smart glasses used for the different use cases
were Microsoft HoloLens. SGUS measures subjective satisfaction on the basis of different features
associated with user satisfaction, such as the content and interaction with the content. SGUS is based on
evaluation criteria for web-based learning [25] and statements evaluating the user experience of mobile
augmented reality services [8]. Some of the items from the table “Evaluation criteria for web-based
learning—a framework” [25] and table “Examples of formative subjective statements with regard
to the value and overall goodness of the service in terms of the UX category in question” [8] were
picked and modified. SGUS consists of 11 items (statements) on a seven-point Likert scale (1–7) [18].
The 11 statements include three categories of evaluation criteria, which are general interface usability
criteria, AR interaction-specific criteria for an educational AR app, and learner-centered effective
learning [25].

4.5. Questionnaire for User Interface Satisfaction (QUIS)

The Questionnaire for User Interaction Satisfaction (QUIS) measures subjective satisfaction
with specific aspects of the interface and interaction between the user and the AR application [26].
In this study, QUIS was modified for AR glasses, i.e., HoloLens. There are five sections in the “User
Evaluation of an Interactive Computer System” (see Appendix A) [26]. We picked some items from
this questionnaires for our study: all the questions in the overall reactions to the software section; No. 44
and 46 in screen section; No. 50 and 51 in terminology and system information; No. 54, 55, and 57 in
learning section; and No. 60 and 61 in system capabilities section. All of these are directly used, except
No. 54, which was modified to AR glasses to adapt this study. The rest of the items were not applicable
for our setting, therefore were not used. Hence, a questionnaire with 15 items was used. To maintain
consistency with the survey in other sections, each item was mapped to a numeric value of 1–7 instead
of the nine-point scale.

4.6. Procedure

As most participants had no experience with AR glasses, at the beginning of the trial, they were
asked to familiarize themselves with the AR glasses, i.e., HoloLens. To do this, gesture training with
HoloLens was done before they started using the application. The application comprised a scenario
that the participants had to complete in a particular use case setting. The content of the application
was generated by experts in that specific use. After the participants completed all the tasks, they were
provided with the QUIS and SGUS questionnaires to complete.

5. Results/Findings

5.1. Descriptive Statistics

In this section, we report on descriptive statistics for the smart glasses user interaction and the
interaction satisfaction. We organize the findings alongside the investigation of eight hypotheses,
with the summary of these shown in Table 4.

Hypothesis 1. Does gender matter? In Science and Engineering, gender is not balanced and there are fewer
women than men [27]. Gender stereotypes can affect use of established technologies. We therefore investigated
whether the influence on user satisfaction of these new media will be moderated by gender.

Hypothesis 2. Does age matter? Studies imply that younger people embrace new technologies more easily [28].
Since we used AR glasses and applications for training, we wanted to know whether age affects user satisfaction.

Hypothesis 3. Are experts more tech savvy? It is likely that experts have more experience with technology
applications, as in general they also have more domain-specific knowledge and skills. We assumed that they
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would be more able to grasp the app concept, thus be more satisfied with the interaction. The novices, however,
may have less knowledge and skills, hence, may find the app difficult to use.

Hypothesis 4. Does education matter? Higher levels of education go hand in hand with higher levels of ICT
skills. It is justified to hypothesize that the educational level predicts satisfaction.

Hypothesis 5. Does computer knowledge matter? Higher levels of ICT and media skills typically involve
transfer skills. The AR smart glasses headset used, Microsoft Hololens, is a stand-alone device. We need basic
computer knowledge to use it. Those with better computer knowledge might find it easy to use, and hence, give a
higher score in terms of user satisfaction.

Hypothesis 6. Does Internet knowledge matter? In analogy to computer skills, one can expect Internet skills
to influence the user satisfaction levels in a positive manner.

Hypothesis 7. Are there differences in satisfaction levels between the participants of the three test-beds?
The trials involved three different learning tasks, in three different environments, with three different groups
of participants. As all three trials are about training a particular procedure, there are no differences identified
across test-beds.

Hypothesis 8. Is there any interaction between the above-mentioned factors?

Table 4. Summary of the hypotheses.

# Description Expectation

H1 Gender Men are more satisfied with the user interaction than women.

H2 Age Younger participants give a higher score.

H3 Experts vs. novices Experts have higher satisfaction levels.

H4 Education level Higher education users have higher satisfaction levels.

H5 Computer knowledge level Users with better computer knowledge might be more satisfied.

H6 Internet knowledge level Might have influence.

H7 Three different test-beds Might have different results.

H8 Above seven factors There might be interactions between factors.

5.1.1. SGUS

As mentioned before, SGUS has 11 items. The summation of the score for the 11 items is the
SGUS score. As shown in Table 5, we provide data the following data: n (number of participants),
mean, standard deviation, minimum value, Q1 (the first quartile: “middle” value in the first half
of the rank-ordered data set), median, Q3 (the third quartile: “middle” value in the second half
of the rank-ordered data set), and maximum value for the variables gender, education level, roles,
and organizations. Based on these results, it is clear that the mean scores are similar across the different
levels associated with the variables.
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Table 5. Descriptive statistics of the Questionnaire for Smart Glasses User Satisfaction (SGUS).

Variable Level n Mean St.Dev Min Q1 Median Q3 Max

Gender Female 31 58.74 7.96 43 54.5 58 64.5 72
Male 111 58.49 8.45 20 54 60 64.5 72

Role Experts 47 56.98 8.83 33 49.5 58 64 72
Students 95 59.32 7.99 20 55 60 65 74

Education level
Upper secondary 45 57.98 7.92 33 54 57 64 70school or lower
Bachelor’s or higher 97 58.8 8.52 20 55 60 65 74

Organization
Space(1) 39 59.54 9.46 20 57 61 65.5 71
Medicine(2) 48 58.69 7.43 38 54.75 59 64 72
Engineering(3) 55 57.71 8.26 33 52 57 64 74

5.1.2. QUIS

Similarly, the overall Questionnaire for User Interface Satisfaction (QUIS) score was calculated by
summation of the score for the 15 QUIS items. Summary data for all questions in QUIS are presented
in Table 6. The 15 items were designed independently from each other. These items aim to investigate
the satisfaction of users with different aspects of the interface, including usability and user experience
in using AR applications.

Table 6. Descriptive statistic of the Questionnaire for Smart Glasses User Satisfaction (QUIS).

Variable Level n Mean St.Dev Min Q1 Median Q3 Max

Gender Female 30 75.94 11.44 55 69 76.5 82.75 98
Male 103 76.99 13.23 18 71 78 86 103

Role Experts 43 76.28 12.06 49 69 77 85.5 97
Students 90 77.01 13.21 18 72 78 85 103

Education level Upper secondary school or lower 43 75.14 13.82 18 69.5 75 85 95
Bachelor’s or higher 90 77.56 12.30 33 71 78 85.75 103

Organization
Space(1) 39 76.67 12.44 33 72 77 86 96
Medicine(2) 42 80.50 9.71 55 75 80 85.75 97
Engineering(3) 52 73.85 14.61 18 66 74.5 83.5 103

5.2. Correlation

In this section, we discuss correlation for SGUS and correlation for QUIS.

5.2.1. Correlation of SGUS

Spearman’s correlation coefficient, r, measures the strength and direction of association between
two ranked variables in the range [�1, 1]. Based on the 11 items, the results of Spearman’s rank
correlation are shown in Table 7: the first value of each row represents Spearman’s correlation
coefficient, and the second value of each row represents the p value. It can be seen that almost
all items are statistically significant (p < 0.05) and have a low positive correlation. This implies that all
the items are independent.

In the study of SGUS, each of the items investigates a different aspect of the user experience.
For the analysis, the overall averages for all items were calculated. Figure 9 shows the plot of the
average score from individual items. The box in the plot depicts the answer of 50% of the participants,
with the line in the middle indicating the median. The dotted lines span the 95% confidence interval.
Outliers are depicted with black dots. The connected red dots indicate the medians. The results imply
that most of the participants had a good conception of what is real and what is augmented when using
AR-glasses (GL5). The participants indicated that the system and content helped them to accomplish
the task quite well (GL7) and their attention was captivated in a positive way (GL6). The provided
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content was also seen as contextually meaningful (GL2). However, performing the task with AR
glasses was experienced as less natural (GL9 and GL4), and following and understanding the task
phases (GL8 and GL10–11) was not very easy [18]. The results were very much in line across the three.

Table 7. Spearman’s rank coefficient of correlation for SGUS: the first value of each row represents
Spearman’s correlation coefficient, and the second value of each row represents the p value.

GL1 GL2 GL3 GL4 GL5 GL6 GL7 GL8 GL9 GL10 GL11

GL1 1 0.316 0.209 0.269 0.164 0.301 0.270 0.323 0.285 0.376 0.336
0.000 ** 0.013 0.001 0.053 0.000 ** 0.001 0.000 ** 0.001 0.000 ** 0.000 **

GL2 1 0.335 0.371 0.239 0.308 0.345 0.227 0.287 0.354 0.398
0.000 ** 0.000 ** 0.005 0.000 0.000 ** 0.007 0.001 0.000 ** 0.000 **

GL3 1 0.487 0.172 0.270 0.444 0.312 0.320 0.265 0.289
0.000 ** 0.041 0.001 0.000 ** 0.000 ** 0.000 ** 0.002 0.001

GL4 1 0.121 0.293 0.376 0.337 0.492 0.226 0.243
0.154 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.008 0.004

GL5 1 0.260 0.178 0.170 0.026 0.062 0.166
0.002 0.036 0.046 0.763 0.468 0.052

GL6 1 0.416 0.387 0.453 0.317 0.403
0.000 ** 0.000 ** 0.000 ** 0.000 0.000 **

GL7 1 0.490 0.500 0.453 0.435
0.000 ** 0.000 ** 0.000 ** 0.000 **

GL8 1 0.563 0.442 0.390
0.000 ** 0.000 ** 0.000 **

GL9 1 0.455 0.364
0.000 ** 0.000 **

GL10 1 0.558
0.000 **

GL11 1

Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001.
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5.2.2. Correlation of QUIS

The correlation for QUIS is based on 15 items. The results of Spearman’s rank correlation are
shown in Table A1 (see Appendix A). The values in the table have the same meaning as in Table 7.
The results are similar to those of SGUS; most of the items are statistically significant (p < 0.05) and
have a low positive correlation. This implies that most of the items are independent.

In the study of QUIS, each of the items investigated different aspects of the user experience.
For the analysis, the overall average from all items was calculated. Figure 10 shows the plot of the
average score from individual items, and the description of the plot is the same as that of the SGUS
plot. The results imply that most of the participants agree that learning to operate the AR glasses
(QS13) seemed to be rather easy, and the overall enthusiasm towards the system seemed (QS1 and
QS5) to be very positive. The characters on the screen were relatively easy to read (QS9). The means of
QS3, QS4, QS6, QS7, and QS8 indicate that the system was experienced as rigid, unreliable, and slow,
which may cause frustration [18].

User Interaction Satisfaction (All)

1

2

3

4

5

6

7

Terrible Difficult Frustrating Inadequate
power

Dull Rigid Unreliable Slow Hard to read Confusing Inconsistent Confusing Difficult Difficult Never

Wonderful Easy Satisfying Adequate power Stimulating Flexible Reliable Fast Easy to read Very clear Consistent Very clear Easy Easy Always
Characters on the display

Information organization
on the display

Positioning of messages

Messages on screen
which prompt user for input:

Learning to operate the glasses

Exploring new features
by trial and error

Tasks can be performed
in a straightforward manner

Figure 10. Plot of QUIS score for each item.

5.3. Analysis of Variance and Interaction Plots

The participants were described by seven factors: gender, age, role, education skill level,
computer knowledge level, Internet knowledge level, and organization. Each factor was divided
by two levels, except for organizations, which were in three levels. Please note that none of the
participants claimed that they have a poor or very poor Internet knowledge level. The following
section discusses the analysis of variance (ANOVA) of QUIS and of SGUS. In this ANOVA study, SGUS
and QUIS scores were investigated for using the application on the AR glasses with six independent
variables, i.e., the relationships between: age distribution, gender, roles, highest level of education,
organization, and computer knowledge. Therefore, there were six main effects and 57 interactions.
We were interested in whether there is a relationship between the satisfaction levels (measured by the
questionnaire) and these factors.

5.3.1. ANOVA of SGUS

In this study, we investigated whether the age, gender, roles, computer knowledge level,
or different organizations have an effect on the satisfaction of using AR glasses. To determine this,
we needed to look at the simple main effects: the main effect of one independent variable (e.g., age) at
each level of another independent variable (e.g., for students and for experts).

Figure 11 shows the main effects of the six factors. Participants with different computer knowledge
levels have the greatest differences in the SGUS results. This means that the participants with
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good computer knowledge and poor computer knowledge gave different scores for user satisfaction.
The results show that participants with good or very good computer knowledge were, in general, more
satisfied with the smart glasses application, and there is a significant effect from computer knowledge
levels (F value = 8.87, p = 0.003). The result implies that the SGUS score was affected by the effects of
good computer knowledge.

Table 8 shows the summary results of the linear model of the independent variables. The estimate
for the model intercept is 54.688 and the coefficient measuring the slope of the relationship with
computer knowledge level is 4.324. There is strong evidence that the significance of the model
coefficient is significantly different from zero: as the computer skill level increases, so does the
satisfaction. The information about the standard errors of these estimates is also provided in the
Coefficients table. In the result of the multiple regression model, only 8.8% of the variance in the
SGUS scores is explained by each of the factors (Multiple R-squared is 0.088). There is no statistically
significant factor that explains the variation in the SGUS scores (overall p value is 0.08).

Figure 11. Main effects of SGUS.

Table 8. Results of the linear model of the independent variables.

Source of Variation Estimate Std. Error t Value Pr (>|t|)

(Intercept) 54.688 2.652 20.622 <2 ⇥ 10�16 ***
Medicine �1.604 1.835 �0.874 0.384

Engineering �0.996 1.906 �0.523 0.602
Role 2.862 1.624 1.762 0.080

Gender 1.250 1.756 0.712 0.478
Age 0.563 1.634 0.344 0.731

Education level �0.147 1.716 �0.086 0.932
Computer skill 4.324 1.452 2.978 0.003

Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001.

To investigate the interaction, it was interesting to find whether the SGUS score depends on an
interaction between good computer knowledge and the other factors. The two-factor interaction plot
is shown in Figure 12. The following are the findings from the plot:

• Female participants with good computer knowledge have a higher SGUS score than males
with good computer knowledge; both females and males with moderate and worse computer
knowledge have nearly the same, lower SGUS score (Figure 12a).
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• Participants from medicine with good computer knowledge tended toward a higher SGUS score
than participants from engineering, and there is no significant difference between them and the
participants with good computer knowledge from astronautics and medicine (Figure 12b).

• There is no significant interaction between participants with different computer knowledge levels
from astronautics and engineering (Figure 12b).

• There is no significant interaction between students and experts with different computer
knowledge levels (Figure 12c).

• Participants younger than 25 years old with good computer knowledge tended toward a higher
SGUS than participants older than 25 years old; however, participants younger than 25 years
old with a moderate and worse computer knowledge level tended toward a lower SGUS score
(Figure 12d).

• Participants with secondary school or lower education level and good computer knowledge
tended toward a higher SGUS score than participants with a bachelor’s or higher education level
and good computer knowledge level. However, participants with secondary school or lower
education level and moderate and worse computer knowledge tended toward a lower SGUS score
than participants with a bachelor’s or higher education level and moderate and worse computer
knowledge level (Figure 12e).

From the result of the ANOVA table (Table 9), there is insufficient evidence of statistical
significance for two-factor interactions, since all p values are higher than 0.05.

Table 9. ANOVA results for SGUS with regard to organization, role, and computer knowledge level
(reducing factors).

Source of Variation Df Sum Sq Mean Sq F Value Pr (>|F|)

Organization 2 77.9 38.95 0.576 0.563
Role 1 184.4 184.39 2.729 0.101
Gender 1 0.2 0.19 0.003 0.958
Age 1 4.2 4.16 0.062 0.805
Education level 1 0.0 0.02 0.000 0.988
Computer knowledge 1 589.3 589.31 8.723 0.004 **
Education level: Computer knowledge 1 65.0 64.98 0.962 0.329
Gender: Computer skill 1 121.5 121.49 1.798 0.182
Organization: Computer knowledge 2 28.9 14.47 0.214 0.807
Age: Computer knowledge 1 11.6 11.60 0.172 0.679
Roles: Computer knowledge 1 28.6 28.55 0.423 0.517
Residuals 128 8647.7 67.56

Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001.

(a) (b)
Figure 12. Cont.
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(c) (d)

(e)
Figure 12. Interaction effects plots for SGUS: (a) different computer knowledge levels with different
genders of the participants; (b) different computer knowledge levels with different organizations
of the participants; (c) different computer knowledge levels with different roles of the participants;
(d) different computer knowledge levels with different age groups of the participants; and (e) different
computer knowledge levels with different education levels of the participants.

5.3.2. ANOVA of QUIS

In this section, the effect of the six independent variables (age, gender, roles, computer knowledge
level, and different organizations) on user interaction satisfaction is reported. Satisfaction includes
specific aspects of the interface, usability, and user experience of the AR application.

A total of 133 participants were used for this part of the study and completed the questionnaire.
The simple main effects are shown in Figure 13. The results obtained by using the ANOVA in
Table 10 indicate that the significance of the two-factor interaction of computer knowledge levels and
organizations is not supported since all p values are more than 0.05. Table 10 also shows that the
computer knowledge levels and different organizations have a significant effect on QUIS (p value is
0.008 for computer knowledge levels and 0.041 for different organizations).
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Figure 13. Main effects of QUIS.

Table 10. ANOVA results for QUIS with regard to organization, role, and computer knowledge level
(reducing factors).

Source of Variation Df Sum Sq Mean Sq F Value Pr (>|F|)

Organization 2 1029.3 514.65 3.279 0.041 *
Role 1 10.4 10.37 0.066 0.798
Gender 1 90.3 90.31 0.575 0.450
Age 1 5.8 5.79 0.037 0.848
Education level 1 32.0 32.02 0.204 0.652
Computer knowledge 1 1138.1 1138.14 7.251 0.008 **
Education level: Computer knowledge 1 165.5 165.55 1.055 0.307
Gender: Computer skill 1 449.7 449.74 2.865 0.093
Organization: Computer knowledge 2 0.9 0.46 0.003 0.997
Age: Computer knowledge 1 28.2 28.18 0.180 0.673
Roles: Computer knowledge 1 31.8 31.84 0.203 0.653
Residuals 119 18679.1 156.97

Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001.

Figure 14 shows that in all three organizations, participants with moderate or worse computer
levels were given lower scores than participants with good and very good computer levels. There are
no significant interactions between them.

We selected the factors of organization and computer knowledge level to investigate the
interaction between them, and the summary results of the linear model regression (see Table 11)
shows that the estimate for the model intercept is 73.533, while there is no significant interaction
between them. The information about the standard errors of these estimates is also provided in the
coefficients table (Table 11). From the result of the multiple regression model, 10.6% of the variance in
QUIS scores is explained by each of the factors (Multiple R-squared is 0.106). There is a statistically
significant factor to explain the variation in the QUIS scores (overall p value is 0.0133).
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Figure 14. Interaction plot of different computer knowledge levels and the different organizations
for QUIS.

Table 11. Summary results of the linear model of the independent variables for QUIS.

Source of Variation Estimate Std. Error t Value Pr (>|t|)

(Intercept) 73.533 3.188 23.063 <2 ⇥ 10�16 ***
Medicine 2.533 4.509 0.562 0.575
Engineering �2.748 3.951 �0.695 0.488
Computer knowledge 5.092 4.064 1.253 0.213
Medicine: Computer knowledge 1.805 5.686 0.317 0.751
Engineering: Computer knowledge 1.539 5.322 0.289 0.773

Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001.

6. Discussion

This study established a set of norms to be used for the evaluation of satisfaction of using AR
glasses and AR applications. The relationship between each questionnaire item shows weak correlation,
both in SGUS and in QUIS. Each questionnaire item is designed for evaluating a specific aspect of
satisfaction of the smart glasses and AR applications. From the mean score of both questionnaires,
we observed that most of the participants are satisfied with the AR glasses and the AR applications.
It was found that the system and content helped the participants to accomplish the task quite well
and their attention was captivated in a positive way. In other words, the result shows that the user
interface is well designed. The user sees “useful information” displayed next to each part.

The main factors age, gender, education level, roles of the participants, and organizations do
not have significant effects on the satisfaction of using smart glasses and AR applications. However,
computer/Internet knowledge level does influence user satisfaction. Participants who have better
computer/Internet knowledge are more satisfied with the smart glasses and AR applications. There
is no significant interaction between all these factors. Since most participants have a moderate level
or better than moderate level of knowledge using computers and the Internet, it can be predicted
that most educated people can easily accept smart glasses and AR applications. The summary of the
findings are shown in Table 12.
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Table 12. Summary of findings

Hypothesis

Number
Description Accepted/Rejected

H1 Gender matters Rejected
H2 Age matters Rejected

H3 Experts and novices will have different level of
user satisfaction Accepted

H4 Education level matters Rejected
H5 Computer knowledge level matters Accepted
H6 Internet knowledge level matters N/A
H7 Three different test-beds might give different results Accepted in QUIS, Rejected in SGUS
H8 There is interaction effects among all these factors Accepted in SGUS, Rejected in QUIS

Based on the results associated with the eight hypotheses, we outline the following statements:
Statement 1. Based on the results, we could not identify any gender differences in user satisfaction.

It could be a limitation of our experiment set up, as we asked for volunteers, so we ended up with
mainly people who were interested in the technology, thus not giving us the option to explore,
whether there would be any gender differences in the general population with respect to AR training
satisfaction.

Statement 2. Our results suggest that user satisfaction is not influenced by age. A possible
explanation for not finding any differences by age could be that the target group had no prior exposure
to AR smart glasses, hence age effects of younger people, typically being more open to experimentation
of emerging technologies in their home context, could not yet affect the picture.

Statement 3. It is probably to do with our applications. The recorder is a more complicated
application, challenging experts in their interaction. Even if, usually, experts would be more technical
savvy, in this case, the findings probably reflect more the differences in user friendliness of the
applications.

Statement 4. Only the space case had people in higher education. Most participants in the
aviation test bed come from upper secondary backgrounds. However, there were no differences found
in the impact of education level on user satisfaction. The differences may not be obvious in satisfaction
levels, but—judging from observation during trials—there were differences across test-beds with
respect to how long it took to explain the applications and their use. The application and the use cases
enabled everyone, regardless of whether secondary and tertiary education to use the app.

Statement 5. Computer knowledge possibly matters: Better computer knowledge can drive
satisfaction with holographic applications. However, in self assessment tests, users tend to overestimate
their computer knowledge [29,30]. This means that it is also possible that user satisfaction levels are
not influenced by computer knowledge. It seems that existing knowledge is still relevant. At the
same time, this also clearly indicates that the required support and assistance needs to be provided
in order to make the introduction of AR applications on smart glasses a success. Not everyone is a
digital native.

Statement 6. Internet knowledge matters: All participants in the trial claimed that they have
good Internet knowledge and very few people claimed that they have poor Internet knowledge, so
there was no chance to observe any differences.

Statement 7. There is no difference between the three test-beds in SUGS: We did not find
significant differences between the three test-beds. This indicates that occupation does not have direct
influence on satisfaction of the AR glasses. Procedure oriented trainings seem to be covered well.
There are some difference between the three test-bed in QUIS. The medicine test-bed have the highest
satisfaction of the AR app, while the engineering test-bed gave the lowest scores. The procedures of
the tasks might effect the satisfaction of the AR app.

Statement 8. There are no interaction effects for QUIS results but some interaction effects amongst
the SGUS results. Young people with good computer knowledge are more satisfied the AR glasses.
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People with lower education and good computer knowledge are more satisfied with the AR glasses
than the others.

7. Conclusions

This study was started by noting the scarcity of AR applications for hands-on training. As a first
step toward incorporating the recorded teaching activities into learning procedures, the AR application
was developed on AR glasses. In this work, the Questionnaire for Smart Glasses User Satisfaction
(SGUS) and Questionnaire for User Interaction Satisfaction (QUIS) were investigated for augmented
reality applications using Microsoft HoloLens.

The results of this study show that the approach is feasible. The experts wore the AR glasses to
show the process, and the activities were recorded. The AR applications can facilitate the students to
learn the process. The results show that the satisfaction of both teaching and learning are acceptable.
The results indicate that satisfaction does increase when participants have higher computer knowledge
levels. It also shows that gender, age, education level, and roles of students or experts do not have any
effect on user satisfaction.
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Appendix A

Table A1. Spearman’s rank coefficient of correlation of QUIS: the first value of each row represents Spearman’s correlation coefficient, and the second value of each
row represents the p value.

QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS8 QS9 QS10 QS11 QS12 QS13 QS14 QS15

QS1 1 0.39 0.53 0.50 0.49 0.34 0.53 0.47 0.17 0.37 0.37 0.28 0.31 0.32 0.44
0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.05 0.000 ** 0.000 ** 0.001 0.000 ** 0.000 ** 0.000 **

QS2 1 0.53 0.41 0.34 0.30 0.37 0.43 0.16 0.35 0.25 0.33 0.58 0.50 0.52
0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.07 0.000 ** 0.003 0.000 ** 0.000 ** 0.000 ** 0.000 **

QS3 1 0.56 0.55 0.39 0.49 0.45 0.16 0.33 0.27 0.22 0.35 0.37 0.40
0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.06 0.000 ** 0.001 0.009 0.000 ** 0.000 ** 0.000 **

QS4 1 0.49 0.23 0.42 0.41 0.18 0.35 0.38 0.30 0.27 0.27 0.40
0.000 ** 0.008 0.000 ** 0.000 ** 0.04 0.000 ** 0.000 ** 0.000 ** 0.001 0.001 0.000 **

QS5 1 0.22 0.41 0.45 0.14 0.22 0.13 0.14 0.24 0.36 0.34
0.01 0.000 ** 0.000 ** 0.11 0.01 0.12 0.10 0.005 0.000 ** 0.000 **

QS6 1 0.36 0.26 0.26 0.18 0.25 0.09 0.28 0.33 0.33
0.000 ** 0.002 0.001 0.03 0.003 0.28 0.000 ** 0.000 ** 0.000 *

QS7 1 0.54 0.17 0.38 0.39 0.28 0.24 0.35 0.44
0.000 ** 0.05 0.000 ** 0.000 ** 0.001 0.004 0.000 ** 0.000 **

QS8 1 0.23 0.40 0.26 0.33 0.26 0.40 0.43
0.006 0.000 ** 0.002 0.000 ** 0.002 0.000 ** 0.000 **

QS9 1 0.35 0.31 0.31 0.19 0.32 0.24
0.000 ** 0.000 ** 0.000 0.024 0.000 ** 0.005

QS10 1 0.57 0.45 0.27 0.29 0.44
0.000 ** 0.000 ** 0.001 0.001 0.000 **

QS11 1 0.43 0.25 0.33 0.38
0.000 ** 0.003 0.000 ** 0.000 **

QS12 1 0.34 0.30 0.42
0.000 ** 0.000 ** 0.000 **

QS13 1 0.57 0.48
0.000 ** 0.000 **

QS14 1 0.47
0.000 **

QS15 1

Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001.
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Abstract. Many ship collisions and groundings occur due to navigators’
erroneous situation awareness (SA). The objective of this study is to develop a
method to measure SA for maritime navigation and collision avoidance (SA-
MA). This study uses the Situation Awareness Global Assessment Technique
(SAGAT) as a basis and tool to assess SA. Both interviews with experts and
simulator experiments are used. Ten participants, five navigators with extensive
experience, and five second-year students at a nautical science program par-
ticipate in the simulator experiment. Hierarchical Task Analysis (HTA) is used
to map the navigation and collision avoidance tasks as input to the SA queries.
The objective measurements collected from the simulator and subject matter
experts are used for the SAGAT score. A well-developed SAGAT query and
simulator experiment results in a difference in the SA-MA between the expe-
rienced navigators and the students with less experience. The study found it is
difficult to measure SA-MA, especially for level 2 and 3 SA.

Keywords: Situation Awareness (SA) ! SAGAT ! Maritime ! Navigation !
Hierarchical Task Analysis (HTA) ! Simulator

1 Introduction

Many ship collisions and groundings occur due to navigators’ erroneous situation
awareness (SA). In particular, unsafe acts and preconditions for unsafe acts are
important causes for ship collisions and groundings [1]. For both ship collisions and
groundings, decision-errors and resource management are the two most frequent causes
[1]. Grech et al. [2] found that 71% of navigators’ errors are SA related problems.

The concept of SA is based on the interaction between the operator and the sur-
rounding environment [3]. There is an underlying assumption that the situation in the
working environment can be changed in different ways. For example, it can change fast
or slow, significantly or not significantly, obviously or concealed, repeatedly or not
repeatedly, planned or unplanned [4]. In the maritime domain, during the different tasks
related to sailing a ship, the navigator should be able to adjust and adapt the perfor-
mance based on the current situation or the change of the situation, taking future
development into account. SA of navigators can be improved by training and practising
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[5, 6]. Therefore, in order to improve the SA of navigators, developing reliable and
valid measures of SA has been the focus of this experiment.

The objective of the research is to develop and assess a Situation Awareness Global
Assessment Technique (SAGAT) Query to measure SA-MA.

2 Theory of SA and SA in Maritime

Endsley and Jones [7] explain situation awareness as “being aware of what is hap-
pening around you and understanding what that information means to you and in the
future”. It relates to what is important for a task or goal. Several definitions of situation
awareness exist [8], but in this paper, we choose to use the definition “Situation
Awareness is the perception of the elements in the environment within a volume of
time and space, the comprehension of their meaning, and the projection of their status
in the near future.” [9].

Through human sensory systems, being either vision, audition, vestibular system,
the somatic sensory system, gustation or olfaction, it is possible to perceive information
about the elements (Proctor and Proctor, 2006) [10]. The use of these sensory systems
will vary depending on the domain and type of job or task, and the data necessary to
achieve or address level 1 SA can be hard to map in many domains [7]. Endsley [9]
identify that SA challenges mostly relate to level 1 SA.

Level 2 SA is to convert the sensory information to create an understanding of the
current situation. Regarding level 2 SA for a deck officer on a ship, Sharma et al.
(2019) [8] present information elements that refer to the parameter Closest Point of
Approach (CPA) and Time to CPA (TCPA) as examples. The novice operator may
achieve the same level 1 SA as the experienced operator but not being able to convert
this information into level 2 SA, achieving a lower level 2 SA [7].

The last level from the definition, level 3 SA, is how an operator manages to
translate the information gathered, and understanding of the current state, into a future
state. Endsley and Jones [7], state that good level 3 SA can only be achieved from an
operator having a sound level 2 SA and an understanding of the “functioning and
dynamics of the system they are working in”. To achieve a good level 3 SA requires
sound domain understanding and time spent on achieving good level 3 SA is often
extensive among experts Endsley and Jones [7]. Sharma et al. [8] refer to extending
vectors from targets and radar trials as methods to assist in achieving good level 3 SA
for deck officers. Insufficient mental capacity and insufficient knowledge of the domain
are two possible reasons for not achieving a good level 3 SA [7].

3 Methodology

This study uses both interviews with experts and a simulator experiment to develop and
assess the SAGAT for SA-MA. The interviewees have extensive experience as navi-
gators in both the merchant fleet and the navy. The study uses Hierarchical Task
Analysis (HTA) to list the navigation and collision avoidance tasks as input to the SA
queries. The simulator experiment uses ten participants, five navigators with extensive
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experience, and five second-year students at a nautical science program with little
experience. The 240° view simulator used for the experiment is equipped with the K-
sim Navigation software from Kongsberg Digital. The vessel-model used in the
experiment is called BULKC11 (length overall of 90 m and a moulded beam of 14 m).
The procedure of developing SAGAT Queries is shown in Fig. 1.

In this study, the HTA was developed in the navigation tasks. Each task has a goal
to achieve. The carry out of an HTA can be adapted to different situation and needs
[11]. Before starting the process of developing the HTA, a literature study was con-
ducted to enhance the knowledge regarding the field of research. A draft HTA was then
discussed with a subject matter expert for input. The revised HTA was presented to a
second subject matter expert and further adjusted and finalised.

SAGAT was initially developed to assess the SA of pilots across the three levels of
SA [6, 7]. The procedure of SAGAT comprise of ten steps: (1) Define tasks,
(2) Development of SA queries, (3) Selection of participants, (4) Brief participants,
(5) Pilot run, (6) Task performance, (7) Freeze the simulation, (8) SA query admin-
istration, (9) Query answer evaluation (by a subject matter expert), (10) SAGAT score
calculation [5].

The results of the SA requirements analysis are used to develop a set of SA queries
for the experiment in the simulator [12]. As a global measure, SAGAT includes queries
about all operator SA requirements, including Level 1, Level 2 and Level 3 compo-
nents [12, 13]. Participants were briefed regarding the purpose of the study and the

Fig. 1. The procedure of developing the SAGAT Queries.
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voyage plan. There were four stops where the simulator was frozen, handing out the
queries based on all three levels of SAGAT. For the four stops, each of the stops was
conducted within a fixed range on the course line (Fig. 2). In total, it is an approximate
forty minutes voyage. An expert completed the same SA Queries with the correct
answer on the simulator. The participants’ answers were compared to the results of the
expert.

Five expert participants were interviewed face to face (Mean age = 41.8, Stand
deviation = 14.0). The interviews were semi-structured with the purpose to elicit expert
knowledge and experience from the SAGAT queries and simulator experiment [8, 14].
The average length of the interviews was around 10 min. The participants have an
average of 9.7 years’ experience as navigators with the longest being 18 years and the
shortest being one year.

4 Results

The results were collected from both the students and experts SA scores and interviews
with the experts. Each of the results will be presented respectively. The analysis
identified that the students and experts have different performance in each of the three
SA levels. The results and analysis of the SA scores are presented in Table 1. It was
possible to achieve in total a maximum of 45 points on all three levels together. The
results of the SA scores show that the students have 42.7% correct in total, while the
experts get 46.2% in total. Students score higher than the experts do on level 1 SA
while the experts score higher on level 2 SA. For level 3 SA, the students and experts

Fig. 2. Chart layout with the route and horizontal lines indicating the four SAGAT stops.
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score close to the same, the students scoring 1.8% points above the experts. The scores
show that students got better scores than experts on level 1, experts got better scores on
level 2, and they have similar scores on level 3.

Table 2 breaks the results further down and show each stop for level 1, 2 and 3 SA.
There is no difference between the expert and student on level 3 SA except for the last
stop. For level 2 SA, experts scored noticeably higher than the students on all four
stops.

The interviews with the experts gave valuable insight into possible strengths and
weaknesses with the SAGAT queries. The development of SAGAT queries will be
scenario- and time-dependent. As an example, two different candidates conducting the
same simulator experiment but with slightly different location or time when the query is
conducted may have shifted what needs to be focused on by the candidate. Sometimes
the time to arrive a certain position is important while for others the position, as a result
of speed and time, is important. The experts meant that it is more important to know
where two vessels meet than to know the time when they meet. The candidates need to
focus on many information sources, and it is less likely that they remember details from
all sources when the query is handed out. Most of the experts agreed that for different
situations, some information is not important to remember. It is also not always
important to remember how many target ships there are when there is not too much
traffic.

Table 1. Results of the SA scores at different levels and different stops.

Role Level 1 Level 2 Level 3 1st Stop 2nd Stop 3rd Stop 4th Stop Overall
Student 67.1% 25.9% 30.9% 37.3% 38.5% 48.6% 60.0% 42.4%
Expert 58.8% 44.7% 29.1% 42.7% 46.2% 50.0% 46.7% 46.2%

Table 2. Results of the SA scores at all levels of SA for all four stops.

Role 1st Stop 2nd Stop
Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Student 72.0% 16.0% 24.0% 48.0% 36.0% 26.7%
Expert 64.0% 40.0% 24.0% 56.0% 48.0% 26.7%
Role 3rd Stop 4th Stop

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3
Student 76.7% 26.7% 30.0% 80.0% 20.0% 80.0%
Expert 60.0% 46.7% 30.0% 40.0% 40.0% 60.0%
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5 Discussion and Concluding Remarks

From a maritime point of view, it is found to be difficult to measure SA, especially for
level 2 and 3. The participants’ answers from the queries are analysed by a subject
matter expert, which decides if the answers are correct, or within the acceptable range.
For level 1 SA, the information necessary to analyse the answers from the queries can
be collected directly from the simulator. For level 2 SA and level 3 SA, it is more
complex to analyse the answers from the queries. Experts may have to decide if the
answers are within an acceptable range based on their experience in the given situa-
tions. This may be a challenge since different experts may have different experiences
and different opinions. Further, the experts have to combine the information and their
experience in order to analyse the situation.

Several explanations may be given to why students score higher on level 1 SA.
Firstly, the students may be more focused on the information on the screens but have a
lower capacity to understand and utilise the information to comprehend the situation.
Secondly, experts have more experience in selecting important information in a situ-
ation. Experts may be better at selecting relevant information while the SA query tries
to measure too much information. This is in line with Sharma et al. [8]. Thirdly, better
memory might also help the student group to get higher scores on level 1 SA since
research shows that memory loss is age-related [15, 16]. Fourthly, the students are
familiar with the instruments since they practice very often on the simulator while most
of the experts are less familiar with the instruments, and rely more on looking out and
just collect basic information.

When it comes to level 2 SA, experts got markedly higher scores than students,
which may indicate that experts are better in converting the sensory information to the
understanding of the current situation. This is in line with the results of Endsley and
Jones [7], that novice are not being able to convert this information into level 2 SA.
Another explanation could be that some part of the information asked for in the queries
did not affect the experts understanding of the current situation. Based on the results of
the leve1 3 SA, it indicates that the students and experts have a similar capacity of
translating the current state into a future state. This is an unexpected result. It might be
that the existing queries are not good at measuring level 3 SA. This is supported by the
difference detected from level 1 SA to level 2 SA.

SAGAT queries should perhaps focus more on the required situation rather than
specific parameters such as CPA and TCPA. Based on the interviews and the exper-
iments, it is necessary to spend more time on making clearer questions in the queries.
The participants need to understand the questions correctly. A well-developed SAGAT
query and simulator experiment should result in a difference in the SA-MA between the
experienced navigators and the students with less experience. For future studies, it is
recommended to create queries that enable utilisation of all tools in the simulator to
reduce the subjective assessment. A tested SAGAT for the SA-MA will be a valuable
tool for future studies related to maritime navigation and collision avoidance and as a
tool to assess the training of the nautical students. With an overall score of between
42.4 and 46.2, there is a need to further develop the SAGAT query for SA-MA.
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Abstract: This work presents a novel approach to detecting stress differences between experts and
novices in Situation Awareness (SA) tasks during maritime navigation using one type of wearable
sensor, Empatica E4 Wristband. We propose that for a given workload state, the values of biosignal
data collected from wearable sensor vary in experts and novices. We describe methods to conduct
a designed SA task experiment, and collected the biosignal data on subjects sailing on a 240° view
simulator. The biosignal data were analysed by using a machine learning algorithm, a Convolutional
Neural Network. The proposed algorithm showed that the biosingal data associated with the experts
can be categorized as different from that of the novices, which is in line with the results of NASA
Task Load Index (NASA-TLX) rating scores. This study can contribute to the development of a
self-training system in maritime navigation in further studies.

Keywords: biosignal; maritime navigation; classification; situation awareness (SA); neural network;
maritime training

1. Introduction
The classic methodology for maritime training generally involves multiple sensors

in addition to simulator for improving situation awareness (SA) in maritime navigation
and seafaring skills [1]. The purpose of this study is to determine if a wearable sensor
can be used to detect stress changes with skills during a maritime navigation task. We
define stress as the task requirement for both experienced seafarers (experts) and novices
(students). We collected the biosignal data of subjects for indicating the stress differences
under the SA tasks during maritime navigation. Biosignal data including electrodermal
activity (EDA), body temperature, blood volume pulse (BVP) and heart rate (HR) are some
of the indicators to present the stress level, since stress is the body’s reaction to pressure
and a physical response to situations in which people feel threatened.

Safe maritime navigation in the Arctic region is challenging because there is less
infrastructure, long distances between harbours and harsh weather conditions [2]. How-
ever, the safety of the Arctic route is of great significance to the economic development
of Scandinavia, and at the same time has an impact on environmental protection and the
safe growth of marine life. The sailing route in the Vessel Traffic Services area on the west
coast of Norway, north of Bergen, is a typical route for training the seafarers because of
its complexity and busy traffic, especially for training SA in the safety of the maritime
navigation.

In maritime, the study of situation awareness (SA) has always been an important
topic of discussion. Studies show that many ship collisions and groundings occur due
to navigators’ erroneous SA. Grech et al. [3] found that 71% of navigators’ errors can be
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attributed to SA-related problems. Therefore, training maritime students to improve their
SA is one of the most important tasks in maritime education.

In maritime navigation, an experienced navigator can keep track of multiple tasks
and deal with more complex situations without losing SA as compared to a novice. For a
novice, managing multiple tasks required for navigation can be quite challenging [4]. As
navigating a ship can be stressful, managing this stress can bring different results. In this
study, we aim to investigate whether there are differences in the biosignals between the
experts and novices for a given sailing task.

1.1. Related Research Work
There are only a few works related to performance assessment of SA objectively during

maritime training navigation. In the existing literature, survey and interview are usually
the common tools for assessing SA. From its conception, SA was defined by Endsley in 1988
as “the perception of the elements in the environment within a volume of time and space,
the comprehension of their meaning, the projection of their status in the near future” [5,6].
In simple terms, it can be understood as “being aware of what is happening around you
and understanding what information means to you now and in the future” [6]. In maritime
operations, the awareness refers to the important information for sailing and being safe on
board (particular job or goals in general), and only the situations that relate to the tasks
are important to SA. For example, the navigator of a ship must be aware of other ships,
the weather, the water, the grounding, and so on. When sailing a ship, during the different
tasks, the navigator should be able to adjust and adapt the performance based on the
current situation or the change of the situation. In order to improve the training system for
SA within maritime navigation, several studies of sensor fusion technology have been used
on simulators in the past few years [1,7]. However, as far as we know, use of bio-sensor
data with the SA training system is not common. The main contribution of this paper is to
provide a possibility for doing such research.

1.2. Objective and Contributions
The main objective of this study is to investigate the differences in the stress levels of

experts and novices in SA experiment during a maritime navigation task. In this study, we
investigate the following research hypotheses: First, the biosensor data from experienced
experts can be distinguished from the biosensor data from students. Second, the stress
levels obtained from the biosensor data show a correlation to the NASA-TLX rating results.
Third, compared to the novices, the experts feel less stress during a navigation task.

The main contribution can be summarised as follows:
• Maritime transport requires safety and security. SA in maritime is the effective under-

standing of activity that could impact the security and safety. This study discovers
that the stress level varies according to the experience of the seafarers, which matters
in the performance of SA during the maritime navigation.

• SA training is common in the aviation domain and the maritime domain. While SA
training-related stress level analysis is widely studied for aviation, SA training-related
stress level analysis in maritime navigation is less studied. This paper is a pilot case
study towards classifying stress level among the expert and novice seafarers. We
have used a ’hybrid’ convolutional neural network approach in combination with
statistical, wavelet and higher-order crossing features to classify the stress level based
on biosignals during the maritime navigation. We are first extracting features and
then passing those features to a Convolutional Neural Network so we refer to is as a
’hybrid Convolutional Neural Network’.

2. Methodology
In order to study the SA-based stress level analysis, we used the Kongsberg K-Sim

navigation platform. Both expert and novice drivers were given the same driving scenario
and their biosignals were recorded using Empatica E4 band while they were driving on
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the simulator. In the next sub-section we elaborate on the information about participants,
materials and apparatus used for this study.

2.1. Participants
The trial was performed with 10 healthy male participants. In order to compare

the performance and emotion between the experts and novice in maritime navigation
tasks, both experts and novices were invited to participate in the experiment. There were
five navigators with extensive experience (mean age = 41.8 years, standard deviation
= 14.0 years) and five second-year students from a nautical science program with little
experience (mean age = 22.8 years, standard deviation = 1.2 years). The experts had an
average of 9.7 years’ experience as navigators with the longest period being 18 years and
the shortest being one year.

2.2. Materials and Apparatus
A maritime navigation task was designed for testing the relationship between the

navigating experience and stress. The maritime navigation task was performed on a 240°
view simulator. It is equipped with the K-sim Navigation software from Kongsberg Digital.
The vessel-model used in the experiment is called BULKC11 (overall length of 90 m and a
moulded beam of 14 m). The task consists of two part, one part is sailing, the other part is
filing the The Situation Awareness Global Assessment Technique (SAGAT) queries when
the simulator screen is frozen. Each participant sailed a 40-minute voyage with four stops.
Each section of the sailing lasts approximately 8 to 12 min. During the sailing section,
participants had to complete the SAGAT queries in around 15 min (4 stops with an average
of 4 min to answer the SAGAT queries). The whole experiment takes approximately 55 min.
Figure 1 shows a participant sailing on the simulator.

Figure 1. One of the participants was sailing on the simulator.

During the experiment, each participant wore a wearable device for collecting the
biosignal data. In this study, among the diversity of wearable sensors, a medical-grade
wearable device, Empatica E4 Wristband (see Figure 2), was chosen for recording the real-
time physiological data to conduct in-depth analysis. EDA and PPG sensors were equipped
in the E4 Wristband that can simultaneously enable the measurement of sympathetic
nervous system activity and heart rate [8]. Following is the description of the sensors in
the E4 Wristband:

• PPG Sensor: Measures blood volume pulse (BVP), from which heart rate variability
can be derived [8];
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• Infrared Thermopile: Reads peripheral skin temperature [8];
• EDA Sensor (GSR Sensor): Measures the constantly fluctuating changes in certain

electrical properties of the skin [8];
• 3-axis Accelerometer: Captures motion-based activity [8].

The data from E4 Wristband such as Electrodermal Activity (EDA), body temperature,
blood volume pulse (BVP) and heart rate (HR) are collected and used in the analysis.

Figure 2. Empatica E4 wristband [8].

3. Experiment
In this experiment, we used NASA Task Load Index (NASA-TLX) as a reference. The

rating result of NASA-TLX is a subjective measurement evaluated by the participants
themselves. The result show that there are different workload and stress level between
experts and students. In the light of this result, we hypothesize that it is possible to classify
the biosignal data we collected during the sailing task. Hence, we extracted the features of
the data and analyzed it by using convolutional neural network(CNN) in deep learning.

3.1. NASA Task Load Index (NASA-TLX)
The NASA Task Load Index (NASA-TLX) was used as an assessment tool to rate

the perceived workload in order to assess the performance of the participants [9,10]. The
six categories were required to be rated from low to high level, namely, Mental Demand,
Physical Demand, Temporal Demand, Performance, Effort, and Frustration Level. The
rating was transferred to a ten-point scaler scores. All the participants were given NASA-
TLX after the experiment.

NASA-TLX Rating Results
There are two ways of analysing the NASA-TLX scores: one is a two-step process

that needs participants to give both scores for each item and a pairwise comparison score
between each pair of items (there will be in total 15 pairwise comparisons); another way is
simple and convenient—calculating the average score of the six items for each participant
[11,12]. In this study, only the “Raw TLX” was used [13] and the average score was
calculated in order to keep the experimental validity [12]. When using the “raw TLX”,
individual subscales may be dropped if less relevant to the task [14].

Figure 3 shows the average scores from the experts and students. Students considered
the workload was higher than expected by experts, however, it was not highly significant.
Figure 4 shows the comparison of the raw scores for students, experts and overall. The
results show that both students and experts felt that the task was low in physical demand
and temporal demand, while it was a highly mentally demanding. There is not much
difference between the students and experts in the rating results.
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Figure 3. Comparison of the NASA-TLX rating raw score for students, experts.

Figure 4. Comparison of the NASA-TLX rating results for students, experts and overall. The number
from 1 to 6 presents Mental Demand, Physical Demand, Temporal Demand, Performance, Effort, and
Frustration Level, respectively.

3.2. Data Pre-Processing
The dataset consists of four signal channels associated with EDA, body temperature

(Temp.), BVP and HR. EDA is collected from electrodermal activity sensor measured in µS
with frequency of 4 Hz. Body temperature data are measured on the Celsius (°C) scale with
a frequency of 4 Hz [15]. BVP data are from photoplethysmograph (PPG) and sampled at
64 Hz [15]. HR data are the average heart rate values per second, derived directly from the
BVP analysis [16]. All the signals were downsampled to 1 Hz for data analyses. The data
are associated with ten participants, each participant has four sailing sections, the data
can be split into forty samples (see Table 1). In order to compare the data with different
resolutions, and to make it easier to analyse, we have normalized the downsampled data.
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Table 1. The form of the data samples.

No. of
Samples

No. of
Participants

No. of
Sailing
Sections

Signal
Channel
1

Signal
Channel
2

Signal
Channel
3

Signal
Channel
4

Sample
1

Participant 1

Sailing
section
1

EDA
data

Temp.
data

BVP
data

HR
data

Sample
2

Sailing
section
2

.. .. .. ..

.

.

.

Sailing
section
3

.. .. .. ..

Sailing
section
4

.. .. .. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Participant 10

Sailing
section
1

.. .. .. ..

Sailing
section
2

.. .. .. ..

Sample
39

Sailing
section
3

.. .. .. ..

Sample
40

Sailing
section
4

EDA data Temp. data BVP data HR data

Normalization of the data is done by calculating the standard normal distribution.
The standard normal distribution is the simplest case of the normal distribution when
the data are standardized to have a mean of zero and a standard deviation of one [17].
Before calculating the standard normal distribution, the standardized value of the signal
data is computed from the mean and standard deviation using the following formula (see
Equation (1)) [18]:

zi =
xi � x̄

S
, i = 1, 2, . . . , n (1)

where zi = {z1, z2, . . . , zn} is standardization value of the sample, xi = {x1, x2, . . . , xn} is
the value of the downsampled signals, x̄ is the mean of xi on each file, S is the sample
standard deviation, n is the number of the data on each file.

Finally, the standard normal distribution of the data was calculated using Equation (2) [19]:

f (zi) =
1p
2p

e�
z2
i
2 , i = 1, 2, . . . , n (2)
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where zi = {z1, z2, . . . , zn} is standardization value of the sample and n is the number of
the data.

All 40 samples were labelled into two categories: expert and novice.

3.3. Classification Features Extraction
The normalized signal data were split into 40 samples as we mentioned in Section

3.2. Next, the features vectors (FVs) were collected from each sample. Since each sample
of data has four signal channels, the total number of rows of the data is 160. The FVs
include statistical-based feature vectors (SFV), wavelet-based feature vectors (WFV), and
higher-order crossings (HOC)-based feature vectors.

3.3.1. Statistical-Based Features
For the statistical-based feature vectors (SFV), for each signal channel in each data

sample, we calculated five types of vectors. These are mean vectors, the standard deviation
vectors, variance vectors, median skewness vectors and kurtosis vectors. All SFVs were
collected by the statistic feature vectors, i.e., (see Equation (3)):

SFV = [µSFV , sSFV , Var, SkSFV , KurSFV ] (3)

where µSFV are the mean vectors, sSFV are the standard deviation vectors, Var are variance
vectors, SkSFV are the median skewness vectors, KurSFV are kurtosis vectors.

1. Mean vectors

Mean vectors are a collection of the mean of the normalized sample in each signal
channel and defined as :

µSFV = [x̄(i)EDA, x̄(i)temp, x̄(i)BVP, x̄(i)HR]
T , i = 1, 2, . . . , N (4)

where x̄(i)EDA is the mean of the EDA data for each sample, x̄(i)temp is the mean of
body temperature data for each sample, x̄(i)BVP is the mean of the BVP data for each
sample, x̄(i)HR is the mean of heart rate data for each sample, and N = 40 is the
number of the data samples.

2. Standard deviation vectors

The standard deviation vectors sSFV are defined in the following (see Equation (5)):

sSFV = [S(i)EDA, S(i)temp, S(i)BVP, S(i)HR]
T , i = 1, 2, . . . , N (5)

where S(i)EDA is the standard deviation of the EDA data for each sample, S(i)temp
is the standard deviation of body temperature data for each sample, S(i)BVP is the
standard deviation of the BVP data for each sample, S(i)HR is the standard deviation
of heart rate data for each sample, N = 40 is the number of data samples.

3. Variance vectors

Variance is the average of the squared differences from the mean. It is the square of
the standard deviation. In a similar manner as above, variance vectors are calculated
and represented as Var. It can be calculated using the following (see Equation (6)):

Var = s2
SFV = [S(i)2

EDA, S(i)2
temp, S(i)2

BVP, S(i)2
HR]

T , i = 1, 2, . . . , N (6)

where sSFV is the standard deviation of each signal for each sample defined in Equa-
tion (5).

4. Median skewness vectors
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Median skewness is also called Pearson’s second skewness coefficient. It is defined
as [20]):

Sk2 =
3(µ � n)

s
(7)

where Sk2 is the Pearson’s second skewness coefficient, µ is the mean of the data, n is
the median, and s is the standard deviation of each signal in each file. This formula
compares the mean to the median in a precise way and shows how many standard
deviations apart they are [21]. The median skewness vectors SkSFV are the collection
of median skewness of each signal channel for each sample:

SkSFV = [Sk2(i)EDA, Sk2(i)temp, Sk2(i)BVP, Sk2(i)HR]
T , i = 1, 2, . . . , N (8)

where Sk2(i)EDA is the median skewness of the EDA data for each sample, Sk2(i)temp
is the median skewness of body temperature data for each sample, Sk2(i)BVP is the
median skewness of the BVP data for each sample, Sk2(i)HR is the median skewness
of heart rate data for each sample, N = 40 is the number of samples.

5. Kurtosis vectors

Kurtosis is an important descriptive statistic of data distribution. It describes how
much the tails of a distribution differ from the tails of a normal distribution. Is is
defined as the fourth central moment divided by the square of the variance [22,23]:

Kurtosis(X) = E[(
X � µ

s
)4] =

µ4
s4 (9)

where X is the dataset, Kurtosis(X) is the kurtosis value of the normal distribution for
the dataset, µ4 is the fourth central moment, µ is the mean (defined in Equation (4)),
and s is the standard deviation of each signal in each sample defined in Equation (5).

The kurtosis vectors are the collection of kurtosis of each signal channel for each
sample:

KurSFV = [Kur(i)EDA, Kur(i)temp, Kur(i)BVP, Kur(i)HR]
T i = 1, 2, . . . , N (10)

where Kur(i)EDA is the kurtosis of the EDA data for each sample, Kur(i)temp is the
kurtosis of body temperature data for each sample, Kur(i)BVP is the kurtosis of the
BVP data for each sample, Kur(i)HR is the kurtosis of heart rate data for each sample,
N = 40 is the number of the samples.

3.3.2. Wavelet-Based Features
Wavelet Transform is a powerful tool for analysing and classifying the time series

signal data. Daubechies wavelets was selected because it is the most commonly used set
of discrete wavelet transforms [24]. Among the extremal phase wavelet of Daubechies
family, db4 wavelet was chosen in this study, where the number 4 refers to the number of
vanishing moments [25].

In this study, the signal from each sensor collected during each sailing section was
subjected to wavelet decomposition into N levels, and the result of the decomposition is
divided into two parts as one set (of the Nth level) of approximation coefficients (cA) and
N set (from 1 to Nth level) of and detail coefficient (cD). The cA represents low-frequency
signal and the cDs represent high-frequency signal. The original signal usually can be
decomposed to several levels, and each layer decomposition coefficients are obtained from
the previous decomposition. In other words, the original signal S is decomposed into (see
Equation (11)):

S = cD1 + cD2 + . . . + cDN + cAN (11)
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where S is the dataset, cD1, cD2, . . . , cDN are high-frequency signal obtained by decom-
position from the first layer, the second layer and the N layers respectively, cAN is the
low-frequency signal obtained by decomposition of the Nth layer.

In the wavelet decomposition, the greater the gain, the more obvious the performance
of the different characteristics of noise and signal is, and the more conducive to the separa-
tion of the noise and signal. On the other hand, the greater the number of decomposition
levels, the greater the distortion of the reconstructed signal, which affects the final de-
noising effect to a certain extent. In this study, in order to handle the contradiction and
choose an appropriate decomposition level, the highest six values of both cA and cD from
the first level decomposition were selected. In addition, the mean, standard deviation,
entropy of cD and cA are added into the feature vectors.

3.3.3. Higher-Order Crossings (HOC)-Based Features
The higher-order crossings (HOC) method is also often called zero-crossing and level-

crossing method [26]. It counts the number of axis-crossing, i.e., the symbol changes in
the dataset. In our dataset, we set the zero mean signal data from each sensor collected
from each stop of each participant as a series {~Z} = {Zt, t = 1, 2, . . . , N}. The number of
crossing of the horizontal axis, is denoted D1, and it is the same as the number of sign
changes in {~Z} [26].

The higher-order crossings are defined by using the difference operator O, and OZt is
defined (see Equation (12) [27]):

OZt = Zt � Zt�1 (12)

For the second order of the difference, it is:

O
2Zt = O(OZt)

= O(Zt � Zt�1)

= Zt � 2Zt�1 + Zt�2

(13)

Higher orders can be computed in the same manner as above. In general, the kth order
difference is (see Equation (14) [28]):

O
k�1Zt =

k

Â
i=1

Ck�1
i�1 (�1)i�1Zt+1�i

with Ck�1
i�1 =

(k � 1)!
(i � 1)!(k � i)!

(14)

where k = 1, 2, . . ., and O
0 is the identity.

From {~Z} , a binary process, {~X} is defined by (see Equation (15) [27–29]):

Xt =

⇢
1, Zt � 0
0, Zt < 0 (15)

Let

dt =

⇢
1, Xt 6= Xt�1
0, otherwise, (16)

where dt is the indicator. It indicates that there is a symbol change in {~X} when it is 1. The
number of crossing of the horizontal axis, D1, in {~Z} is defined as [27,28]:

D1 = d2 + d3 + . . . + dN

=
N

Â
t=2

[Xt � Xt�1]
2
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where N is the length of the data.
For the kth order, the count of the symbol changes is:

Dk = d(k)2 + d(k)3 + . . . + d(k)N

=
N

Â
t=2

[Xt(k)� Xt�1(k)]2

Above all, for the signal channel for each sample, the HOC-based feature vector,
FVHOC, is formed as follows (see Equation (17) [28]):

FVHOC = [D1, D2, . . . , DL], 1 < L  J (17)

where J is the maximum order of the estimated HOC and L is the HOC order chosen in
this study.

For our dataset, the FVHOC was extracted from the four signals within a range of order
K = 1, . . . , 50(= J).

3.4. Deep Learning Model
In this study, deep learning algorithm was applied to classify the data. Convolutional

Neural Network (CNN) was the approach employed for classification. Compared with
traditional neural networks, the advantage of CNN was obvious, it has fewer parameters
to learn for processing high-dimensional data, which helps to accelerate the training speed
and reduce the chance of overfitting [30]. The steps of creating and training CNN are
described below:

• First, load the dataset and separate the data into training and validation datasets. In
this study, 80 percent of the data is used for training and 20 percent for testing. In
order to protect against over fitting, cross-validation was applied. Cross-validation is
5-fold.

• Second, define the CNN architecture. For the first layer, the spatial input and output
sizes of these convolutional layers are 32-by-32, and the following max pooling layer
reduces this to 16-by-16. For the second layer, the spatial input and output sizes
of these convolutional layers are 16-by-16, and the following max pooling layer
reduces this to 8-by-8. For the next layer, the spatial input and output sizes of these
convolutional layers are 8-by-8. The global average pooling layer averages over the
8-by-8 inputs, giving an output of size 1-by-1-by-4 times of initial number of filters.
With a global average pooling layer, the final classification output is only sensitive
to the total amount of each feature present in the input image, but insensitive to the
spatial positions of the features. In the end, add the fully connected layer and the final
softmax and classification layers.

• Third, specify the training options. We used Adam (adaptive moment estimation)
optimizer, set the maximum number of epochs to 100, mini batch size to 128, and
monitored the network accuracy during training by specifying validation data and val-
idation frequency, shuffling the data every epoch, and plotting training progress [31].

• Fourth, train the network using the structure defined by layers, the training data, and
the training options.

• Last, predict the labels of the validation data using the trained network, and calculate
the final validation accuracy [31].

3.5. Optimization
The performance of CNN depends on an appropriate setting of hyper-parameters,

including the batch size, learning rate, activation function, network structure, etc. [32].
Optimizing hyper-parameters yields better behaviour of the training algorithm, since
hyper-parameters effect the performance of the training result for the model. Among
the techniques of fine-tune machine-learning algorithms, automatic hyper-parameter tun-
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ing is an effective and computational power saving method compared to manual grid
search. In this process, the next parameter settings is dependent on the performance
of previous configurations. Configurations are inferred and decided by the relation be-
tween the hyper-parameter settings and model performance [33]. Bayesian optimization
for hyper-parameter automatic tuning is one of the frequently used automating tuning
hyper-parameters, and we applied it on this dataset for finding a good optimum.

Bayesian optimization approaches use the results of previous configuration perfor-
mance to constitute a probabilistic model. The probability is the scores given by the
hyper-parameters [34]. This model is used as a surrogate function for the objective function
for choosing the best hyper-parameters [35]. The surrogate can be easily modeled by
Gaussian Process, and a set of hyper-parameters are selected to give the best performance
on the surrogate function. These hyper-parameters are applied on the actual objective
function. The surrogate model is updated and the previous steps are repeated until it is
optimized [35].

Choose Variables to Optimize
In this study, four variables were chosen to optimize using Bayesian optimization, and

their search ranges were specified. The four variables are: network section depth, initial
learning rate, stochastic gradient descent momentum and L2 regularization strength. The
following is the illustration of the variables:

• Network section depth: Network section depth is the variable which controls the
depth of the network.

• Initial learning rate: Select the best initial learning rate.
• Stochastic gradient descent momentum: Momentum adds inertia so that the network

can update the parameters more smoothly and reduce the noise inherent in stochastic
gradient descent [36].

• L2 regularization strength: Choose a good value of regularization to prevent overfit-
ting issues.

Optimization variables with properties are as below (see Table 2):

Table 2. Optimizing variable with properties.

Name Possible Values Type Transform Optimize

Section Depth [1, 3] integer none 1
Initial Learn Rate [0.01, 1] real log 1
Momentum [0.08, 0.98] real none 1
L2 regularization [1.00 ⇥ 10�10, 0.01] real log 1

3.6. Results
The following section presents the results including feature selection and data classification.

3.6.1. Dataset
The dataset consists of statistical based features (5 columns), wavelet-based features

(12 columns) and HOC-based features (50 columns). The data collected from 10 participants
with 4 sailing sections and 4 different signal channels (EDA, BVP, body temperatures and
HR), i.e., the data comprises 160 rows and 67 columns in total.

3.6.2. Feature Selection
In this section, the results of the feature selection and the method are discussed.
From the original dataset, 73 features are extracted, out of which five are statistic-based

features, eighteen are wavelet-based features, and fifty are HOC-based features. Among
these features, seven different combinations can be made to give different accuracy results.
After comparing the results by using the same learning algorithm from a different set of
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features or combinations, the best results from the combination of the features will be
chosen. The learning algorithms random forest and support vector machine (SVM) were
chosen for comparing the results.

Table 3. Results of accuracy by using the random forest and SVM (kernel = ’linear’) for different
amount of features selection.

Feature Type Feature
Amount Random Forest SVM

Statistic-based features 5 0.51 (+/� 0.25) 0.54 (+/� 0.20)
Wavelet-based features 18 0.46 (+/� 0.24) 0.49 (+/� 0.17)
HOC-based features 50 0.64 (+/� 0.30) 0.58 (+/� 0.09)
Statistic-based + Wavelet-based
features 23 0.54 (+/� 0.17) 0.53 (+/� 0.17)

Wavelet-based + HOC-based
features 68 0.57 (+/� 0.39) 0.59 (+/� 0.06)

Statistic-based + HOC-based
features 55 0.61 (+/� 0.40) 0.59 (+/� 0.21)

Statistic-based + Wavelet-based
+ HOC-based features

73 0.62 (+/� 0.21) 0.61 (+/� 0.09)

The accuracy of different combinations of feature selection by using random forest
and SVM is listed on Table 3. It shows that HOC-based features give the highest accuracy
by using the random forest algorithm, and combining all the 73 features gives the highest
accuracy by using SVM algorithm. When using all of the 73 features, the accuracy by using
random forest and SVM are very close to each other and the standard deviation of the
accuracy is lowest among all the results. Therefore, selecting all the features to do the
analyse will give a stable results. We propose a hybrid CNN approach for the classification
task, where a combination of extracted features like statistical, wavelet and HOC features
will be used instead of raw biosignals for CNN-based classification of stress level of user
during maritime navigation.

3.6.3. Results from the Data Classification
The final result for the training accuracy is calculated by applying deep learning using

Bayesian optimization on our optimal model. The results are given in Table 4. For better
understanding, the histogram of results is shown in Figure 5 as below. The result shows that
by selecting all the features, we got the highest accuracy which is 75.5%. The approximate
95% confidence interval (written as “testError95CI”) of the generalization error rate are
also given in the table. "testError95CI" is the interval resulting from Equation (18):

testError � 1.96 · testErrorSE 6 testError95CI 6 testError + 1.96 · testErrorSE (18)

where testErrorSE is the standard error.
The standard error is calculated in Equation (19):

testErrorSE =

r
testError · (1 � testError)

NTest
(19)

where Ntest is the number of elements in the array of label of testing data.
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Table 4. Bayesian Optimization Results for CNN from different feature selections.

Feature Types Validation
Error testError testError95CI Accuracy

Statistic-base + wavelet-based
features (method 1) 0.357 0.357 0.193 0.522 64.3%

HOC-base features (method 2) 0.263 0.263 0.119 0.407 73.7%

Statistic-based +
Wavelet-based + HOC-based
features (method 3)

0.245 0.245 0.101 0.388 75.5%

Figure 5. Histogram of Bayesian optimization results for CNN from different feature selections. In
this figure, method 1 represents the selection of statistic-based feature and wavelet-based features,
method 2 represents the selection of HOC-based features, and method 3 represents the selection of
statistic-based feature, wavelet-based features and HOC-based features.

By increasing the number of features by applying CNN Bayesian Optimization, we
obtained the highest accuracy. When adding the 50 HOC-based features, the prediction
accuracy increased significantly. When using Wavelet-based features, the accuracy was
poorer than using other features. Therefore, wavelet-based features do not affect much
the results when combined with other features. However, it still gives the best results
when adding all of the 73 features. The result presents that feature selection improves the
classification accuracy. Nonetheless, we do not claim that it can apply to all types of data,
since classification accuracy achieved with different feature reduction strategies is highly
sensitive to the type of data [37].

4. Discussion
This study conducted an experiment for finding out the stress differences between

experienced experts and students in SA in maritime navigation. The result of data analysis
shows that the biosignal data from experts and students can be classified by a certain
machine learning algorithm. The result of subjective measurement of workload shows that
there is a difference between experts and students. The summary of findings is shown in
Table 5.
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Table 5. Summary of findings.

Hypothesis
Number Description Accepted/Rejected

H1
The bio-sensor data from experienced experts
can be distinguished from the biosensor data
from students

Accepted

H2
The stress levels obtained from the bio-sensor
data show a correlation to the NASA-TLX
rating results

Accepted

H3 Compared to the novices, the experts feel less
stress during a navigation task Accepted

Based on the results associated with the three hypotheses, we outline the following
statements:

Statement 1. Biosignal data are considered as stress monitoring analysis, since stress
can be a physical, mental or emotional reaction, and it causes hormonal, respiratory, cardio-
vascular and nervous system changes. For example, stress can make your heart beat faster,
make you breathe rapidly, sweat and tense up. Based on the results of the classification
of the biosensor data, we can see that the data from the experts and the students have
different patterns. Accuracy of 75.5% is an acceptable result for distinguishing the data.
This could have implication for stress difference with maritime navigating skills. Previous
research shows that experts obtain better results in SA task [38]. When facing the same
task, with different level of skills, the stress level is different.

Statement 2. NASA-TLX contains subjective data which was evaluated by the
participants themselves. Results from the NASA-TLX show that experts and students had
different evaluation of the workload, which is consistent with the results from classification
of biosignal data, i.e., biosignal data show a different pattern for experts and students. This
result is also consistent with other research suggesting that mental effort and anxiety are
closely related to HRV [39].

Statement 3. The results of NASA-TLX rating show that experts have a smaller
workload compared to students. Many research articles show that there is a high corre-
lation between workload and stress. When there is the overload of the work, the stress
is increasing [40,41].Therefore, there have implication that experts feel less stress than
students. In addition, some other research also shows that higher levels of stress had a
negative relationship with work SA [42]. Since experts have better SA score [38], they
should be under less stress.

5. Conclusions
In this paper, we propose a deep learning approach using Bayesian optimization for

classifying the biosignal data of navigators during the maritime operation. We extracted
different types of the features to improve the prediction accuracy. We also compared the
objective results to the subjective results, NASA-TLX rating results, that the two results are
correlated.

We would like to highlight that number of samples were few in order to make any
statistical claims of our findings. Based on our current study in the next step, we plan to
experiment further with a larger set of population. Nevertheless, the results of our current
data analysis as well as this study will contribute to auto-assessment system for evaluating
the SA performance in maritime navigation.
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Abstract 
Navigational safety is one of the important focuses of Maritime Education and Training (MET), 
and the quality of MET is the key to cultivating competent officers at sea. The objective of this 
study is to better understand the effects of a rapid training method on ship handling and 
navigation in restricted waters, as well as decision-making skills under stressful situations. 
Tests were carried out in a simulator-based maritime training environment to explore the 
decision-making skills of maritime students in stressful situations under different training 
levels and methods. This study compares routine maritime training and task-aimed rapid 
training in improving manoeuvring, navigational and decision-making skills, and examines the 
training outcomes. The data used in this study is based on a comparison of the task performance 
and stress levels of the two groups of students, using simulator-based training results from a 
designed scenario. Through the results, the training outcomes of decision-making skills and 
maritime operation performance are analysed by applying a specific decision-making model. 
In addition, the impact of students' stress levels was analysed, both subjectively and objectively. 
The article concludes with a set of recommendations for the design of future MET. The research 
is helpful for enhancing decision-making skills in maritime training programmes and for 
understanding how learning in simulator-based maritime training environments can be 
improved.  
 
Keywords: navigation, simulator-based maritime training, decision-making, rapid training 
 
 

 
1.  Introduction 
On the basis of Safety System Project theory, the navigation system is basically a ‘ship-human-
environment’ (Inoue, 2000; Xiufeng et al., 2005). Hence, approximately 85% of maritime 
accidents are accounted for by navigation accidents (i.e., collision and grounding) (Jaeyong, et 
al., 2016), caused by human errors such as mistakes in ship handling and impropriate decision-
making (Wróbel et al. 2017; Wu et al., 2020). In addition, studies found that incompetent 
officers have frequently contributed to ship accidents. Therefore, navigational safety is one of 
the important focuses of Maritime Education and Training (MET), and the quality of MET has 
drawn more attention from both academics and employers in the shipping industry (Bao et al., 
2021). Good quality MET is critical for seafarers to acquire knowledge and skills to manage 
risks, solve problems and complete operations safely and efficiently, and thus ensures the safety 
of life at sea (Basak, 2017). However, there are challenges involved in MET, in that it requires 
high investment and incurs high running costs (Markopoulos et al., 2019), as well as being 
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time-consuming. An important challenge facing MET is how to train a certain skill in an 
efficient and cost-effective way in a safe environment.  

It is well known that the tradition of using simulator-based maritime training has a long 
history in MET (Kim et al., 2021). Simulators provide a non-risk environment for trainees to 
practise what they have learned from the classroom. Simulator-based training is an effective 
way to simulate scenarios that may occur on board, for trainees to obtain practical experience 
and hopefully be capable of handling unexpected scenarios in future offshore work. 
Throughout the specific simulation exercises, technical, procedural and operational skills are 
acquired by trainees and therefore their capabilities can be improved. After training, trainees 
can have a better understanding of the required decision-making process and how different 
actions will affect a situation (Markopoulos et al., 2019); thus, they learn how to prioritize in 
challenging traffic and emergency operations and situations. 

In navigation tasks, decision-making skills are the key to safe sailing (Nooros and Hukki, 
2003). For instance, in the task of collision avoidance, the navigator must decide which means 
are appropriate (radar, visual means, Automatic Identification System, etc.) in the situation. 
Afterwards, he/she must determine (decide) whether the risk of collision exists and which 
action should be taken (Allen, 2004. P.217). Environmental stress is also one of the dominant 
factors that cause accidents at sea (Sampson and Thomas, 2003; Hetherington et al., 2006; Gug 
et al., 2022). Working at sea is inherently stressful (Hystad and Eid, 2016; Carotenuto et al., 
2013; Jensen and Oldenburg, 2021), especially when the situation changes and many decisions 
must be made under pressure (Størkersen et al., 2018). In addition, many decision-making 
situations themselves can trigger stress responses. Therefore, stress can affect decision-making 
under varying degrees of uncertainty, while changing the underlying decision-making 
mechanism (Starcke and Brand, 2012). As a result, high stress levels undoubtedly cause faults 
in decision-making, and this can be dangerous at sea.  

As we know, training in decision-making skills is challenging, due, for instance, to ill-
structured environments (Klein, 1997), and the maritime field can be described as such an 
environment. Therefore, this leads to maritime education and training (MET) being a 
challenging field of education in general. The environment at sea can change rapidly, and 
decision-makers do not always find themselves in a familiar and predictable situation. 
Therefore, developing skills in decision-making is an essential subject in MET. The objective 
of the present study is to better understand the effect of training in decision-making skills in a 
simulator-based MET environment and to explore the decision-making skills of maritime 
students in stressful situations under different training levels and methods. 

MET is costly (Sampson, 2004); hence, it is important to ensure it is effective and efficient. 
In addition to the expensive training equipment (simulators), devices and laboratories for 
maritime practice, teaching costs, such as wages, academic staff costs, administration and 
support staff costs, account for a large part of the budget (Cicek and Er, 2008). Therefore, it is 
necessary to continuously update and upgrade the contents of MET education (Čampara et al., 
2017). For instance, reducing the training time without compromising training effectiveness or 
learning more skills during the same MET period are effective ways to reduce the MET costs. 
From Skill Acquisition Theory (DeKeyser, 2020), we know that learning ship handling and 
navigation skills involves the learning of habits and skills. This kind of learning is always slow 
because it requires practice and overcoming mistakes from practising. However, it is possible 
to speed up this kind of learning if we provide a psychologically safe coaching environment. 
In the process of learning skills, when mistakes occur, the learner will feel uncomfortable with 
the temporary incompetence. If learners do not make the same mistake again, they are rewarded. 
Once learners get consistent rewards for correct responses, the learning progress speeds up and 
the learning is reliable (Schein and Sloan School of Management, 1992). Therefore, it is 
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possible to have rapid training methods for trainees to acquire skills. However, these are not 
widely used in maritime training. 

Based on the aforementioned literature, it is necessary to perform studies of the training 
process. This study aims to discover the impact of rapid training methods in MET on ship 
handling, navigation and decision-making skills’ development in a stressful situation. In 
addition, the learning outcomes from different teaching methods, especially in decision-making 
competence and communication skills in maritime operations, need to be compared. The 
innovation of the paper is, firstly, that we explain how the decision-making model has been 
chosen in different situations in the maritime domain, based on different decision-making 
models. Secondly, by the use of simulators in MET, a case study is presented to document the 
development of decision-making skills. In this context, the workload and stress levels were 
assessed by studying the interaction between the subjective workload, stress level and quality 
of the decision-making.    

This study attempts to formulate answers to the two questions: (1) Can project-aimed rapid 
training give enough knowledge for participants to make efficient decisions in stressful and 
critical situations? and (2) Can the training method affect the decision-making model applied 
by the participants?  
 The paper is presented as follows: Firstly, a brief introduction of the theoretical basis, 
including the decision-making model and simulator-based MET, is presented. In Section 3, the 
designed training scenario is presented, and a customer decision quality rating scale is proposed 
for evaluating the impact of the MET programme on decision-making. Section 4 presents the 
results of the training scenario, including the workload assessment, the stress level and the 
quality of the decision-making. In Section 5, the results are discussed. The final section presents 
conclusions from the study and future work. 
 
2. Theoretical basis  
Decision-making plays an important role in maritime operations (Allen, 2004. P.217) and 
constitutes the foundation of the present study. At every stage in maritime activities, seafarers 
make decisions by accessing information, understanding the situation and assessing risks, to 
make sure that situations are safe, and that activities are performed effectively. Here, we will 
use the term “risk” to represent a combination of the probability of an unwanted incident and 
the consequences of the incident. These decisions are not only critical for the continued safety 
of the ship but also have major implications for the environment and the economy. Therefore, 
the training in decision-making skills is essential in MET.  
 Decision models can be used to describe how people decide in realistic settings. There is no 
unified decision theory, but researchers have proposed different models in different settings 
(Klein et al., 1993. P.103). One such model is naturalistic decision-making (NDM) (Klein et 
al., 1993. P.9). During maritime activities at sea in a high-risk environment, some of the 
decisions must be made under time pressure, where the information is insufficient, and the 
goals are not well defined. In addition, the decision-makers never have access to all the 
information. Therefore, it is impossible for them to assess all the possible options and the 
consequences. Hence, making rational and optimal decisions under time constraints is difficult. 
NDM does not require the decision-makers to possess the rationality, knowledge and the 
information-processing capacity to make the decisions. NDM is suitable for situations under 
limited time, changing context and unstable conditions involving persons with different levels 
of experience.  
    Under the NDM framework, the decisions do not need to be the best possible option; the 
solution should be satisfactory but not the ultimate best. In MET, most of the time, students are 
given classical decision-making training such as situation awareness training for collision 
avoidance. In the real world, however, naturalistic decision-making (NDM) is more common 
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than classical decision-making. Unlike the classical decision-making approaches, NDM 
training is more challenging because it does not rely on decision theory or other formal models; 
it is based on intuition. In order to make acceptable decisions, a large number of experiences 
formed in patterns are needed to get different forms of tacit knowledge (Cohen et al., 1998). 
The process of obtaining these experiences can be speeded up by certain training programmes.  
 From the NDM framework, the main protocol is the Recognition Primed Decision-making 
(RPD) mode. This mode describes how people use their experience to make quick and effective 
decisions in complex situations. It relies on the decision-maker's mental simulation, that is, the 
decision-maker examines their memory for the situational cues that match previous events as 
patterns. The RPD mode shows how to implement decisions from four aspects of recognition 
(plausible goals, relevant cues, expectancies and a series of actions) to generate a plausible 
course of action (COA) and use mental simulation to evaluate the COA, when people are 
experiencing a challenging situation ( Klein, 1993) (Fig. 1). For the RPD mode, it is most 
important for the decision-makers to identify a reasonable COA as rapidly as possible. The 
quality of the decisions is highly dependent on the knowledge, experience and training of the 
decision-makers. 
 

 
 

Fig. 1 RPD mode in a complex situation is re-illustrated, based on Klein (1993). 

3. Materials and methods 
3.1  Participants  
A total of 22 (mean age = 22.4 years, standard deviation = 2.04, 5 females and 17 males) 
undergraduate students in nautical science at UiT The Arctic University of Norway (UiT) 
voluntarily participated in a simulator based experiment. Some of them have practical 
experience at sea from part-time jobs. The assessment of participants’ skill levels can be found 
in Appendix A. According to the participants, they were mentally and physically healthy at the 
time of the experiment. The participants numbered fourteen from the first-grade course and 
eight from the second-grade course. Students from each grade were randomly divided into 
groups of two and two persons for handling two tugs of a towing operation. The reason for 
choosing a towing operation was because it not only is a basic operation in the maritime domain 
but also provides the environmental conditions that determine the level of ship-handling 
difficulty, which is an important factor affecting the likelihood of accidents. Beforehand, every 
participant signed a form consenting to their participation in the experiment.  
 
3.2  Materials and apparatus 
The experiment was conducted on two simulator bridges, both with 240° view and equipped 
with the K-sim Navigation software from Kongsberg Digital. A common instructor station was 
assigned to both simulator bridges for acting the multiple roles, such as machine, deck, the 
crew on the towing object, etc. Two types of vessel models were used in the experiment. The 
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vessel model of the towing object was a small bulk carrier, Hagland Saga (HS), with a length 
between perpendiculars of 90 metres. The vessel model used in the experiment was two tugs 
with 2 pitch propellers with rudder named SMIT Panama. The three vessels were connected by 
a line of 200 metres in length. 
 A medical-grade wearable device, Empatica E4 Wristband, was introduced for collecting the 
biosignal data relevant to the experiment.    
 
3.3  Experiment design 
In this study, the experiment scenario was based on a towing operation as a within-subject 
factorial. Based on the different training methods, the second-grade students were assigned to 
the control group, and the first-grade students were assigned to the experiment group. The 
experiment can be considered a quasi-experiment, as the students were not randomly assigned 
to the experiment and control groups. Although the absence of random assignment casts some 
doubt on internal validity, the results of such studies are still compelling because they are not 
artificial interventions in social life and because their ecological validity appears strong 
[Bryman, 2012.  P. 50]. In each group, every two participants assigned as a team accomplished 
the towing operation under the designed scenario. The participants were randomly assigned to 
the two tugboats. The experiment also included several dependent variables for analysing the 
results: training methods, cognitive workload, stress level, and decision-making. 
 
3.3.1  Scenario 
The participants were asked to tow an object (a small bulk carrier, Hagland Saga) near Ryøya 
island area (south of Tromsø) towards Tromsø (an Arctic city in Norway). Each participant 
sailed a tug. Tug Bravo was in front of the object to lead the way and tug Charlie was at the 
back of the object to secure the object. Participants could communicate with each other via 
maritime VHF (very high frequency) radiocommunication; they could also communicate with 
the instructor station by using UHF (ultra-high frequency) radiocommunication, so that the 
other tug would not hear their conversation.  
 Good weather was chosen for the scenario. The weather condition can be found in Table 1. 
During the towing operation, failure of both engines would be induced when the tugs were in 
a critical location where they were going to pass Ryøya island, located south of Kvaløya, 
southwest of Tromsø. Geographical locations are presented in Table 2, and the 3D view in two 
different directions of vision can be found in Fig. A1 in Appendix B. With the suggested sailing 
speed, which is 6 knots, tug Bravo would receive the first failure information from the machine 
department around 20 minutes after they started. After an approximately 30 seconds to 1 minute 
time gap, tug Bravo would receive the second failure information, and it would lose all the 
power to continue sailing.  
 
Table 1 Weather condition applied in the scenario. 
 Speed Direction 
Wind 6 knots From 040°  
Current 0.5 knots 270° (going to 

west) 
 
Table 2 Geographical location of the start point, and failure induce location (based on HS).  
 Start point First failure induced Second failure induced 
Latitude 69°32.948’N Depends on the current 

location 
Depends on the current 
location 

Longitude 18°38.026’E 18°43E 18°43.5E 
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3.3.2  Training methods 
In this study, the training programme was conducted on the bridge simulators. The reasons for 
using simulator-based training and the description of the training programme are presented 
below.  

• Why use simulator training? 
The use of simulators is a key part of modern maritime training and education. The training of 
maritime students is based on the regulations found in The International Convention on 
Standards of Training, Certification, and Watchkeeping for Seafarers (IMO 2018). This 
regulatory framework (STCW-code, tables A-2/1 and A-2/2) describes the minimum 
requirements for the students, regarding competence, knowledge, understanding and 
proficiency. In the tables mentioned above, methods for demonstrating competence are 
described. For several of the modules described in the code, the available methods for 
demonstrating competence are by the use of either a vessel or simulators. For practical and 
economic reasons, the use of simulators is the preferred method in most cases. 
 Although the training and education programmes might differ in organization and content 
(Nazir et al., 2019), the use of simulators is still a key part of the training. There are also studies 
that describe how the use of simulators in the training process can reduce the risk of maritime 
accidents (Hanzu-Pazara et al., 2008). Maritime simulators can be used for training on a wide 
spectrum of situations, for instance training on complex tasks (Hjelmervik et al., 2018). It has 
also been used for training on towing operations as specific tasks (Gudmestad et al., 1995). 

• Description of the training programme 
The students participating in the experiment are all part of the bachelor programme in nautical 
science at UiT. During the three-year programme, the students will have, in total, 32 simulator 
exercises with an instructor present or 96 hours of simulator training for each student. The 
simulator is also available for self-study exercises, and most of the students will have achieved 
a significantly higher number of hours in the simulator by the end of their studies. The students 
participating in the experiment were in the first or second year of their studies. The first-year 
students had fulfilled half of the simulator exercises (16 exercises or 48 hours, including two 
examinations with external evaluation) and the second-year students had fulfilled all the 
simulator exercises (32 exercises or 96 hours, including two examinations with external 
evaluation). 
 After the first-year course study, students are able to critically analyse and communicate the 
interplay between regulations, technology and human factors and their significance for the 
safety of life, the environment and property at sea. Through the simulator exercise, students 
practise position determination by terrestrial navigation, coastal navigation and blind 
navigation. They should have knowledge of using electronic systems for position determination 
and navigation. They can use and interpret information from on-board meteorological 
instruments, radar and automatic radar plotting aid (ARPA) and use this information to make 
decisions for the safety of sailing. They can carry out a safe bridge guard by being able to 
demonstrate the ability to handle resources, communication, leadership and situational 
awareness. 
 After the second-year course study, students can carry out an independent analysis and 
communicate how navigation procedures and technical equipment in combination affect 
maritime safety, as well as further identify weaknesses and limitations in the system and find 
solutions to these. Students have the ability to decide, implement and communicate an optimal 
use of technical and human resources on board in order to plan and carry out safe, efficient and 
environmentally friendly maritime transport. Through the set of simulation exercises, students 
are trained to handle emergency situations, such as no Global Positioning System (GPS) 
availability and loss of radar. The students must choose the route themselves, learn to deal with 
other traffic in the trail, deal with the other simulator ships, in addition to other traffic. 
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Anchoring and towing operations are learned and practised in several simulation training 
exercises during the second semester of the second-year study. Situation awareness and 
decision-making skills and communication skills are improved during their second-year 
studies.  
 For the first-year students, an extra towing operation training course (project-specific rapid 
content training) was conducted in a rapid way for them to obtain the skill to fulfill the task. 
The content of towing operation training was the same as that for the second-year students. 
Key points, such as towing theory, methods and dealing with emergencies, were covered in a 
20-minute video lecture. One-hour hands-on training and practising on the simulator were 
carried out before the experiment was conducted. After this rapid training, the first-year 
participants gained the ability to complete the towing operation. 
 
3.3.3  Workload assessment 
In this study, a reliable assessment tool, NASA Task Load Index (NASA-TLX) (Hart and 
Staveland, 1988; Sharek, 2011), was employed to access the workload. Six categories, 
including Mental Demand, Physical Demand, Temporal Demand, Performance, Effort and 
Frustration Level, were rated by the participants after the experiment. For each category, the 
rating was transferred to a ten-point Likert-type scale from low to high levels, where 0 is low 
and 10 is high.  
 
3.3.4 Stress level assessment 
The stress level was assessed in both subjective and objective ways. The State-Trait Anxiety 
Inventory (STAI) Form Y-1 (Spielberger, 1983) was used to access the self-assessment of the 
stress level. Each participant filled in the STAI Y-1 form immediately after leaving the 
simulator bridge. The STAI Y-1 form has a brief self-rating scale for the assessment of state 
and trait anxiety. It consists of 20 questions that evaluate the participant’s present feeling. STAI 
scores can be up to 80 and are commonly classified on three levels as “no or low anxiety” (20-
37), “moderate anxiety” (38-44), and “high anxiety” (45-80) (Fountoulakis et al., 2006). 
 The objective stress level can be reflected by changes in the heart rate (HR). The HR 
increases when people are overwhelmed by stress (Vrijkotte et al., 2000). The reason is that 
the stress state of the body triggers the release of the hormones, cortisol and adrenaline, which 
raises the body's blood pressure and causes the HR to increase. In this study, a medical grade 
biosignal data acquisition device, E4 Wristband, was used to measure the HR data of the 
participants. A photoplethysmogram (PPG) sensor equipped with the E4 wristband measured 
blood volume pulse (BVP), from which heart rate variability could be derived. Before a 
participant entered the simulator, they were asked to sit and relax for 10 minutes, so that the 
baseline of biosignal data could be collected. Ten minutes was found to be sufficient relaxing 
time, based on its use in other comparable studies (Ciabattoni et al., 2017; Grewen et al., 2005). 
 
3.3.5 Decision-making (Learning Objectives and Performance Criteria) 
The towing operation is a complex task that requires knowledge, experience and cooperation. 
During the case study, the towing performance, communication skills, decision-making skills 
and reaction time after the emergency occurred were evaluated.  During the experiment, two 
experts/instructors commented on the participants’ performance during the task. For decision-
making, we only examined the decisions taken after the emergency was induced.    
 When the emergency happens during the towing operation, the most important thing for the 
decision-makers is to decide a safe and reasonable action as soon as possible. The quality of 
the decisions is not the most important aspect in this case, the efficiency is considered the 
priority. This is what the RPD mode requires. However, the quality of the decision can still be 
evaluated afterwards. In this study, an expert rating is proposed for the assessment (see Fig. 2). 
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From the rating of the decision, we can analyse the impact of the knowledge, experience and 
training method on the decision-making.  

 

 
Fig. 2 Proposed customer decision quality rating scale. 

 In this proposed expert rating scale, there are five levels of requirements reflecting 
navigational safety. These requirements are presented in the form of questions, and status is 
judged based on the actual situation after a decision has been made. In order to obtain an 
accurate rating score, it is important to define the decisions correctly based on the situation. 
Regarding these requirements, the first level is whether the decision is “controllable”. It is 
necessary to know that all the vessels involved should be under control, which means that 
participants will know what to expect after the decision has been made. For example, neither 
the towed object nor the tugboats should drift. Otherwise, another decision is required, and the 
first decision will be considered a failed decision. The second level, “safe situation” means that 
there will not be any incident or accident after the decision-making. For instance, if there is a 
possibility or tendency to collide, it is considered an unsafe situation. The next level of the 
requirement is the ship handling skills involved. "Easy to implement" means that it does not 
require a high standard of ship handling skills to complete the operation. For instance, after the 
decision is made, the situation is expected to be under control and safe. However, if the 
navigator does not have sufficient skills to handle the operation, and the situation is not a 
controllable and safe situation, then if the operation fails and the situation is in low risk 
category, the rating score to this decision will be higher (a score of 4 in expert rating) than if 
the situation is in high risk category, which gives a score of 3. Next, we consider whether the 
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decision is “satisfactory”. If there is no better option for the decision, we move to the last stage 
to check whether the situation is “back in control”. In this case, it means that the problem is 
solved, and the emergency is lifted. 
 
4. Results 
4.1 Workload  
A one-way ANOVA (Analysis of Variance) method was used to find the effects of the different 
tugboats and different groups on the perceived workload. Results show that there was no 
statistically significant difference (F (1,20) = 0.114, p > 0.05) in the perceived workload on the 
different tugboats during the experiment. (Note that, commonly, if the p-value is higher than 
0.05, we say that there is no statistically significant difference between the groups.) In another 
word, during the experimental task, the participants rated the workload of sailing on the front 
tugboat and the back tugboat as similar. In addition, participants in the experiment group 
perceived a higher workload (M = 4.85, SD = 1.44) than those in the control group (M = 4.13, 
SD = 0.85). However, the result of the one-way ANOVA also shows that there was no 
statistically significant difference (F (1,20) = 1.65, p > 0.05) in perceived workload as an effect 
of teaching methods. The overall perceived workload is 4.59 out of 10 with a standard deviation 
of 1.28. The summary statistics are depicted in Fig. 3. 
 

  
(a) (b) 

Fig. 3 Perceived workload measured using NASA-TXL. (a) The summary statistics 
(distribution and median) of the NASA-TXL score by all the participants. (b) The summary 
of the minimum, first quartile, median, third quartile, and maximum of NASA-TXL scores in 
groups. 
 
4.2  Stress level 
The subjective stress level was measured by STAI Form Y-1. Similar to the workload, one-
way ANOVA was employed to analyse the effect of teaching methods and tugboats on the 
perceived stress. The results show that participants in the control group perceived higher stress 
(M = 46.5, SD = 3.78) than in the experiment group (M = 41.0, SD = 6.85), with a statistically 
significant difference (F (1,20) = 4.34, p = 0.05). Sailing on different tugboats had no effect on 
the perceived stress (F (1,20) = 0.347, p > 0.05). Based on the classification, the control group 
is considered to have a high anxiety stress level, and the experiment group is considered to 
experience a moderate anxiety stress level (Fountoulakis et al., 2006). 
 The objective stress level was measured by the HR of the participants. The data shows that 
HR increased significantly when the participants were towing (mean HR = 84.9, standard 
deviation = 8.13) compared to the situation during the relaxing time (mean HR = 76.6, standard 



 10 

deviation = 5.93). A paired t-test was employed to analyse the comparison.  The results show 
a significant increase in HR when participants were performing the towing operation, t (21) = 
5.885, p < 0.001. The HR data shows that participants were stressed under the towing operation, 
which is in line with the results from the STAI Form Y-1. 
 
4.3  Decision-making and performance 
Navigating and towing operations require frequent decision-making. Evaluating each decision 
along the way is more complicated than you might think because of the information available, 
number of outcomes, uncertainty in outcome, risk involvement, etc. Therefore, any type of 
decision is acceptable, as long as navigation is safe. In this study, we only looked at one critical 
situation and decision-making related to this situation where the emergency occurred. In order 
to examine the participants' ability to respond to emergencies, a chain of failures occurred in a 
short time. After the failures were induced, the quality of the decision-making was analysed by 
the proposed custom decision quality rating scale. For example, one of the towing team did not 
do anything after they were informed that the front tugboat had engine failure. After a while, 
they decided to drop anchors in the middle of the sea channel (Fig. A1), one after another, 
without communication. The situation is uncontrollable since it could be dangerous to all 
vessels, and the decision was rated as a failed decision. Moreover, the average time of the back 
tugboat cutting the line was counted as a critical factor in the evaluation. The results are 
presented in Table 3.   
 The scenario was the same for all the participants during the experiment. However, based on 
the speed and location when the failure occurred, participants with different training 
backgrounds make different decisions. For instance, when the emergency occurred, the front 
tugboat informed after some time the back tugboat that they had lost engine power. However, 
regarding the decisions of what to do next, each team made very different decisions. Some of 
the decisions and consequences are listed in Table 4. Even if participants make the same 
decision, the consequence may vary, as it is based on the current situation and other factors 
such as the participant's ship operating skills, experience and previous training.  Fig. 4 shows 
an example of risky decision-making.  
 
Table 3 Results of the reaction time and decision quality for the two groups. 
Teaching methods 
(Groups) 

Back tugboat cut line time 
(average in minutes) 

Decision quality 
rating 

Control group 0.87 min 71.4% (rating 5 out of 
7) 

Experiment group 3.59 min 47.1% (rating 3.3 out 
of 7) 

 
Table 4 Different options for decision and the consequences of the decisions. 
Decision-
maker 

Options for decision (after 
the second engine failure is 
induced): 

Consequences of 
decisions 

Control 
group 

Front tugboat staff cut the line 
immediately, while the back 
tugboat staff need to cut the 
line and sail to the front. 
 

The towing object may be 
lost, it starts drifting. 

Experiment 
group 

Front tugboat staff do not cut 
the line and want to be tugged 
together with the other tugboat. 

Pulling both the towing 
object and the other tug is 
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higher risk than tugging 
only one vessel. 

Experiment 
group and 
control 
group 
 

Front tugboat changes direction 
after the engine failure. 
 

Avoiding being hit by the 
towed ship and giving a 
way for the back tugboat to 
go to the front.  
 

Experiment 
group 

Front tugboat staff decide to 
launch anchor. 
 

No consequences if it is 
detached from the towed 
ship. If it is still connected 
to the towed ship, it creates 
an unstable situation. 
 

Experiment 
group 

Back tugboat reduces the 
speed and tries to stop the 
towed ship. 
 

Avoid collision. 

Experiment 
group 

Back tugboat sails backwards. 
 

Difficult to maintain 
safety. 

Control 
group 

Back tugboat staff cut the line 
without reducing the speed and 
sail to the front. 
 

Good ship handling skill is 
demanded, and an unstable 
situation is created. 
 

Experiment 
group 

Back tugboat sails between the 
towing object and the front 
tugboat. 

This represents a short cut, 
but there is a high risk of 
collision. Good skill is 
required. 

  

 
Fig. 4 An example of a risky decision and its corresponding 3D view are shown on the map. 
One of the participants decided to cross the narrow passage between the tugboat and the 
disabled ship, an action which requires considerable ship handling skills.  

4.4  Correlation 
Correlation analyses were performed to determine the interaction among the workload, stress, 
and quality of decisions as the factors dependent on the teaching methods. The correlations 
between these variables are listed in Table 5. In order to calculate the correlation, we set the 
experiment groups who had undergone a rapid training course as index 1 and the control groups 
who had received conventional training as index 2. The results show that a higher stress level 
is associated with the period of the participants’ study (r = 0.42, p = 0.05). In addition, the 
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quality rating of the decision is also correlated with the length of time the participants have 
been studying (r = 0.55, p = 0.008).  
 
Table 5 Correlations between variables; results presented are the Pearson Correlation 
coefficient, r  
(Note that, for numbers marked *, then p £ .05 and we have strong correlation.) The matrix is 
presented in such a way that it is symmetrical. 
  1. 

Teaching 
Methods 

2.NASA-
TXL Total 

3.Stress 
Level 

4.Decision 
Quality 
Rating 

1. Teaching Methods (Groups) -    
2. NASA-TXL Total   -.28 -   
3. Stress Level (STAI Form Y-1) .42* -.04 -  
4. Decision Quality Rating .55* -.29 .11 - 

 
5. Discussion  
In this study, teaching methods were examined and evaluated using decision-making 
performance in a towing task. The aim was to better understand the effect of training decision-
making skills in a simulator-based maritime MET environment. By utilizing the simulator at 
the university and inviting different groups of participants with different training backgrounds, 
this study investigated the impact of routine maritime training on improving decision-making 
skills and how individual decisions are reflected in ship handling skills. In addition, perceived 
workload and different levels of stress were compared, to test the sensitivity.  
 The utilization of the NASA-TXL rating as a subjective measurement to measure the towing 
workload revealed that all participants perceived a similar workload, and that there was no 
significant difference between those working on the front and back towing tugs. This reflects 
that the teaching methods did not result in different perceived workloads. Furthermore, the 
towing operation simulated represents a collective operation with two persons working as a 
pair, and hence it is difficult to distinguish the workloads of working on different tugboats.  
 The towing operation is a stressful task. From results of the self-assessment of stress level, 
the participants in the control group (being in their second year of study) perceived more stress 
than those in the experiment groups (with limited training in using the simulator). The HR data 
also shows that all the participants experienced a significant increase in heartbeats per minute 
from their relaxing time to the time they were performing the towing task. However, there was 
no significant difference in heart rate increases among participants who received different 
training methods. This reflects the limitation of HR as an objective measurement of stress in 
discriminating between the different stress levels.  
 From the results of the decision-making, the control group is found to have made more 
homogeneous decisions than the experiment group. This can be explained from the assumption 
that the participants in the control group had a deeper theoretical knowledge regarding towing 
operations than the participants from the experiment group. The experiment group had been 
through a project-specific rapid content training (crash course), consisting of a 20-minute video 
lecture and a one-hour simulator session, with seven participants participating in each session. 
The control group had been through several simulator exercises, including three towing 
operation tasks and lectures over a certain amount of time. The results imply that it is possible 
to teach students how to handle a tug through such a crash course, but it is difficult to obtain 
the same level of knowledge, skills and understanding of the situation, compared to regular 
teaching over a longer period.  
 The results from analysis of the participants' decision-making show that the model of 
naturalistic decision-making is suitable for this kind of analysis. Many of the characteristics of 
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naturalistic decision-making, such as high stakes, time stress and uncertain dynamic 
environments (Orasanu and Connolly, 1993), are present in this exercise. For example, the 
participants can experience high stakes and a certain amount of time pressure during the 
experiment; meanwhile, the surrounding conditions change, caused or not as a result of the 
decision made by participants, as time passes. The decisions can also be considered a chain of 
events, as one decision will affect the next decision. An example could be the decision to cut 
the line between the functional tug and the object being towed. This decision will lead to a 
change in the number of options, increase the time pressures and certainly affect the 
participants’ next decision. 
 From the results, it seems that the decisions made by the control group can be explained by 
the use of the RPD mode because the participants in the control group had undergone three 
towing operation exercises at different levels during their routine training and one more year 
of study with several simulator-based training exercises than the participants in the experiment 
group. Therefore, the scenario was somewhat familiar to them, and they used their experience 
from previous simulator-based exercises and lectures as input for making their decisions. Since 
all the control group participants had been through the same exercises and lectures, that could 
be the reason for them making homogenous decisions, as the RPD mode is applied. Moreover, 
the reason for the participants in the control group experiencing a higher level of stress could 
be their awareness that they should know this task and be able to handle this situation, based 
on their previous exercises and lectures. They might expect to perform better than before. 
However, the participants in the experiment group might think that their performance is not as 
important, as they only have been through a short and rapid training course, and therefore their 
perceived stress level is lower. In addition, the participants in the experiment group also have 
limited experience, so they might not realize the severity of the situation and what could go 
wrong. 
   When it comes to the decisions for the participants in the experiment group, it can be assumed 
that they also initially try to follow the RPD mode; however, their level of experience is not 
high enough to apply this mode effectively, which means that they are not able to find relevant 
input from the crash course or other simulator-based exercises to assist them in making their 
decision. This hypothesis is strengthened, for instance, by the data from the time elapsing 
before they decide to cut off the line. It is significantly longer for the experiment group, which 
means that they took more time to assess the situation, search for previous experience that 
could guide them to their decisions and/or wait for more information. As the time pressure 
increases, there is reason to believe that many of them would start exploring the field of creative 
decisions rather than recognition-primed decisions. This hypothesis is strengthened by the high 
number of different solutions from this group. As the different solutions are analysed, solutions 
can be found that are not in line with either the theory from the crash course or other simulator-
based exercises. These solutions might by effective, as the example mentioned above where 
the participant decided to pass between the front tug and the object being towed. However, the 
solution is connected to high risk and could lead to increased complexity for the next set of 
decisions that must be made. 
 To summarize, it seems that the participants who have been through conventional teaching 
over a longer period are able to apply their knowledge and skills at a deeper level when exposed 
to unfamiliar and critical situations, compared to participants who have been through project-
aimed rapid training.  
 
6. Conclusions and future work 
Consequently, this study answered the two questions: (1) Project-aimed rapid training can give 
enough knowledge for participants to some degree to help them make efficient decisions in 
stressful and critical situations and (2) Different training methods can affect the decision-
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making model applied by the participants. This research finds that the participants who have 
been through conventional teaching over a longer period are more able to apply their 
knowledge and skills at a deeper level when exposed to unfamiliar and critical situations, 
compared to participants who have been through project-aimed rapid training. Participants who 
had only rapid training did not have enough experience to apply the RPD mode; however, most 
of them managed to use creative decisions to solve the problems.  
    In this experiment, the participants had a very compressed training content, including a high 
number of participants simultaneously in the simulator-based practising. Based on the findings, 
we recommend that, in project-aimed rapid training, the training time should be increased 
appropriately and the number of simultaneous participants in simulator-based practising should 
be reduced, as this can effectively improve the learning outcomes. Good learning outcomes can 
improve decision-making skills in emergency situations. Well-designed project-aimed rapid 
training enables the trainees to accomplish the training task effectively.  

Further, the results indicate that conventional teaching over a longer period is important for 
establishing a solid fundament. Solid fundamentals are the foundation for creative solutions to 
unfamiliar situations, for instance emergency situations. To be able to deal with emergencies 
safely and effectively, experience and knowledge are required. In particular, the number of 
simulator-based exercises can have an impact on the success rate of a specific task, even if the 
exercises are not necessarily task-aimed. The more simulator-based training undertaken, the 
better the decision-making skills. 

For future work, we intend to implement project-aimed rapid training in other parts of 
training and education, to make the routine/regular education programme more efficient. 
Another option is to execute extended project-aimed rapid training with increased training time, 
to measure the effect of the length of the training.  
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Appendix A.  Assessment of participants’ skill levels  

Groups  Number of 
participants 

Skills on average  Simulator-based 
training time  

Control 
group 
 

8 Good navigation skills, good ship handling 
skills, reasonably good communication 
skills, some emergency handling skills. 
  

32 exercises or 96 
hours of training 
 

Experiment 
group 
 

14 Good navigation skills, moderate ship 
handling skills, less efficient 
communication skills, no emergency 
handling skills. 

16 exercises or 48 
hours of training 

Note that the project-aimed rapid training was aiming to minimize the skills gap between the two groups. 
 
 
Appendix B View from simulator 
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Fig. A1 View from the simulator at UiT, The Arctic University of Norway. The location where the critical situation took 
place shown on the map and its corresponding 3D views in two different directions of vision. 
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Abstract

Maritime training can improve safety by equipping seafarers with the knowledge
and skills to manage risk. However, designing a quality training program can be
challenging and stress can negatively impact performance and safety. To address
this, the present study aims to investigate the relationship between stress and
training outcomes, with the goal of developing more e↵ective stress-based train-
ing systems. Two stressful scenarios were designed with varying safety factors
involved during navigation tasks. The study examines the impact of stress levels
on training outcomes and performance based on safety factors and the correla-
tion between self-assessed stress levels and objective stress levels obtained from
biosignal data. The study was conducted in a simulated bridge environment in
Tromsø, Norway, and analyzed using statistical tests and machine learning mod-
els. The findings of this study indicate that training scenarios can be classified
by stress levels, which were found to be associated with reduced visibility, equip-
ment failures, and severe weather conditions. Additionally, the study revealed
that stress levels can negatively impact performance in maritime navigation and
sailing route reliability. These findings provide insights into how to improve the
quality and e↵ectiveness of maritime training programs and ultimately enhance
safety at sea.
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Abbreviations

The next list describes several symbols that are used within the body of the
document:

AR Augmented Reality
BVP Blood volume pulse
CPA Closest point of approach
DWT discrete wavelet transforms
ECG Electrocardiogram
EEG Electroencephalography
EOG Electrooculogram
HOC Higher-Order Crossings
HR Heart Rate
HRV Heart Rate Variability
IBI Inter-beat interval
KNN K-nearest neighbors
LDA Linear discriminant analysis
ML Machine learning
NASA-TXL NASA Task Load Index
NAVAID Navigational aid
NM Nautical miles
PPG Photoplethysmography
SA Situation awareness
STAI State-Trait Anxiety Inventory
SVM Support vector machine
VAS Psychometric evaluation of a visual analogue scale
VHF Very High Frequency
VR Virtual reality

1. Introduction

The growth of advanced technology on board ships in the maritime industry
has led to an improvement in safety measures over the years. Despite these
e↵orts, however, the rate of accidents has not seen a significant decrease. A
plethora of studies have indicated that human factors are a major contributing
factor to this phenomenon, with estimates of contributing to 75-96% of the
accidents [1, 2, 3].

Traditionally, risk assessment in the maritime industry has been hindered
by a lack of standardized accident reporting systems [4, 5]. However, with the
advent of alerting and reporting systems for maritime incidents [6], analysis of
accident trends through statistical methods has become more prevalent. Ad-
ditionally, the use of virtual maritime simulators to study human factors has
gained popularity, as they provide a comprehensive means of collecting infor-
mation on board.

2



Studies have also revealed that incompetent o�cers are often a significant
contributor to shipping accidents. This highlights the importance of high-quality
maritime training in order for seafarers to acquire the knowledge and skills nec-
essary to e↵ectively manage risk and ensure safety at sea [7]. Simulator-based
maritime training is a widely used method, due to its ability to provide a con-
trolled environment, adjustable task di�culty levels, cost-e↵ectiveness, and a
risk-free practice environment. Furthermore, virtual maritime simulators are
useful in designing exercises that allow for the comparison of student perfor-
mance and learning outcomes.

However, developing and evaluating a quality maritime training program is
challenging, as it involves a variety of factors such as student skill levels, exercise
design, and assessment of learning outcomes, etc. In particular, assessing learn-
ing outcomes can be di�cult, as traditional methods such as written and oral
exams may not accurately reflect a student’s capacity to process information
during a sea voyage [8, 9]. Additionally, performance assessment is often eval-
uated subjectively by instructors, which can be unreliable, invalid, and unfair
[10]. Furthermore, studies have indicated that psychophysiological states such
as cognitive workload and stress levels are key factors a↵ecting performance [11].
Therefore, monitoring stress levels and workload during assessments is crucial.

Furthermore, human behavior and physiology adapt to stress in such a way
that performance remains stable within a certain range of stress levels, this is
called the “comfort zone” where the level of learning and response is optimal
[12]. In the maritime domain, stress not only a↵ects the health and well-being
of seafarers but also negatively impacts maritime navigation safety by distract-
ing attention, memory retrieval, and decision-making [13]. In other words, high
safety-related stress can impair safety performance by allocating limited cogni-
tive resources to di↵erent aspects of performance, such as work requirements
or emergency tasks, leading to compromised compliance and participation in
safety performance [14].

The above description illustrates the critical nature of stress as it a↵ects
safety and training outcomes in the maritime industry. However, stress-based
training systems have not been thoroughly studied, and research on objective
stress analysis in the maritime field is limited, particularly in the measurement
of biosignal-based stress levels. There is a need for further research in this
area to e↵ectively assess and address the impact of stress on maritime training
and safety. In light of this, the current study aims to examine the relation-
ship between stress and training outcomes and establish a foundation of data
for stress-based training systems. The study is designed to accomplish this
by: (1)Creating two di↵erent scenarios involving stress with varying numbers
of stressful events in the same navigation tasks; (2)Measuring the relationship
between self-reported stress levels and objective stress levels measured from
biosignal data; (3)Determining whether stress levels are associated with safety
factors in navigation tasks such as visibility, equipment failure, and tra�c situa-
tions; (4)Assessing learning outcomes and performance to determine the impact
of stress on training programs. Overall, this study aims to contribute to a better
understanding of the relationship between stress and training outcomes in the
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maritime industry in order to improve safety and optimize training programs.
The research paper is organized in the following manner: Section 2, the

methodology for evaluating the workload and stress levels in maritime naviga-
tion is presented. Section 3, the details of the study’s experiment are outlined,
including both self-assessment and biosignal-based assessment of the stress level
and workload during maritime tasks. The process of applying machine learning
algorithms for biosignal data analysis is also illustrated in this section. Section
4, the results of the data analysis are presented and discussed. Section 5, the
findings from the biosignal data and simulation data are discussed in terms of
stress levels and training performance. Finally, the conclusions of the study are
presented and suggestions for future work are provided in section 6.

1.1. Related Work

Research in the field of maritime safety and training has shown that marine
accidents are closely related to the untimely, negligent, and incorrect decision-
making of seafarers’ situation awareness (SA) forecasting. Quality maritime
training is essential in equipping seafarers with the knowledge and skills to
manage risks, solve problems, and conduct operations safely and e�ciently,
thus ensuring the safety of life at sea [7]. With the advancement of technol-
ogy, maritime training has evolved from traditional simulator-based training
to training methods that incorporate the use of various advanced technologies,
such as augmented reality (AR) and virtual reality (VR) technology, and multi-
sensor frameworks as auxiliary equipment. These technologies have been found
to enhance the training of seafarers’ SA and decision-making skills. For exam-
ple, the use of VR glasses provides a fully immersive virtual environment for
training and makes the experience more engaging and enjoyable, like playing
a game [15]. Due to their portability and ease of use, VR technologies allow
students to train at their convenience, increasing opportunities for training and
enhancing their SA and other skills.

Other training methods are used in conjunction with the simulator, including
the use of AR glasses in simulators, providing a semi-immersive experience.
Students can learn and practice related knowledge by the application set up in
the AR glasses, reducing the repetitive work of the instructor [16]. Another pilot
study in maritime training employed a multi-sensor fusion framework, using the
training method of briefing/debriefing in the simulator, collecting audio, video,
eye-tracking data, etc., visualizing operational procedures, thereby achieving
the goal of improving the SA of seafarers [17].

In addition to training, the assessment of stress and workload states is also
a crucial indicator of maritime safety. Research has shown that working at sea
can be stressful and is a risk factor for maritime safety. Assessing the stress
and workload of seafarers and improving the working environment at sea is
vital for ensuring safety [18, 19]. In the past, research has predominantly relied
on subjective measurements, such as surveys and self-reported measures, as
stress is di�cult to measure objectively [20]. However, with the advancement of
sensor and system technology, researchers have begun to use wearable sensors
and biosignal data to analyze stress levels in various fields. For example, the use
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of the human voice to detect pilot stress and workload [21], and eye movements
measured with an Electrooculogram (EOG) to identify di↵erent emotional states
[22]. The use of an Electrocardiogram (ECG) to monitor stress while driving
has been found to prevent safety risks and tra�c accidents caused by driving
fatigue [23].

In the field of maritime navigation, for the advantage of wearable sensors
that can continuously monitor the psychophysiological state of the human body
without interfering with the subject’s activities, biosignal-based tools are in-
creasingly being used. Pilot studies have been conducted using Electroen-
cephalography (EEG) data to identify seafarers’ cognitive stress and workload
during simulator exercises and to recommend performance improvements [11].
These technologies, however, are complex, costly, and may not be practical for
use with large numbers of students. These shortcomings make various training
methods still in the pilot study stage and have not been widely popularized.
In light of these limitations, heart rate (HR) and heart rate variability (HRV)
have been identified as the most convenient, simple, and accurate indicators of
stress emotion assessment when compared to other methods. This is because
the collection of HRV and HR data only requires the subject to wear a device
with a photoplethysmography (PPG) sensor on the wrist, which is commonly
available in smartwatches and wristbands. Additionally, it is well established in
the literature that stress is correlated with high heart rate levels, hence HRV
can be utilized to estimate stress levels with a high level of accuracy. This has
been demonstrated in various studies that have focused on using HRV as the
primary feature for stress assessment [24, 25, 26, 27, 28].

Additionally, the use of machine learning (ML) algorithms in biosignal data
analysis have been found to significantly improve the accuracy of stress level
assessment. ML, which comprises a set of methods for learning from data and
uncovering patterns within it, can be used to extract meaningful insights from
physiological data [29]. However, it is essential to note that the accuracy of
using publicly available physiological datasets in maritime settings, which are
typically emotionally annotated in environments where users are exposed to in-
tense stressors, remains uncertain [30]. This is due to the subjective nature of
stress, which can vary greatly across di↵erent settings. Therefore, the use of
appropriate data and proper methodology is crucial for ML-based stress assess-
ment studies. To the best of our knowledge, there have been few studies on
the use of biosignal data, specifically HR/HRV data, to assess stress levels and
evaluate performance in maritime training.

To establish a stress-related maritime training system, we aim to investigate
the following research hypotheses: (1) determine if biosignal data is su�cient
to be an objective tool to assess stress levels in maritime training, (2) examine
if the complexity of scenarios can be classified based on biosignal data, and (3)
evaluate how stress levels a↵ect training performance. The conceptual model
illustrated in Fig. 1 demonstrates the relationship among safety factors and
highlights the connection between stress and maritime training programs. The
results of these analyses will be studied in the subsequent sections.
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Figure 1: Conceptual model of a stress-based maritime training program.

1.2. Objective and Contributions

The objective of the study is to evaluate the e↵ectiveness of using biosignal
data, specifically heart rate and heart rate variability, as an objective tool for
assessing stress levels in maritime training. The main contributions of the study
include the following:

1. Investigating the relationship between stress levels and performance dur-
ing maritime training through a systematic evaluation of stress level analysis in
simulator-based training.

2. Demonstrating the reliability of analyzing stress levels using biosignals
obtained from wearable sensors, providing a new tool for assessing the reliability
of maritime training, and laying the foundation for a proposed stress-based
training system.

3. Introducing a novel method for analyzing biosignal data, including the use
of preprocessing techniques and feature selection methods, specifically the use
of Higher-Order Crossings (HOC)-Based Features extraction, which provides a
good classification result on the biosignal data.

4. Proposed a conceptual model that illustrates the relationship among
the safety factors and shows the connection between stress and the maritime
training program. This model can serve as a guide for future research in the
field of stress analysis and maritime training.

2. Methodology

2.1. Participants

A total of 23 nautical science students from UiT The Arctic University of
Norway (UiT) voluntarily participated in the study. The demographic charac-
teristics of the participants include a mean age of 22.43 years (standard devia-
tion = 2.35 years) and a gender distribution of 7 females and 16 males. Prior
to the study, all participants were administered the Patient Health Question-
naire (PHQ-9) [31, 32, 33] for a screening of depression. The participants were

6



randomly divided into three groups for the sailing tasks, with 22 (mean age
= 22.36 years, standard deviation = 2.38 years) valid data samples analyzed
and included in the study. All participants provided informed consent for their
participation in the trial.

2.2. Materials and Apparatus

In order to investigate the relationship between the complexity of maritime
navigation training scenarios and the stress levels of participants, two distinct
levels of complexity were evaluated using a simulated environment. The ex-
periment was conducted on three di↵erent simulator bridges, all of which were
equipped with the K-sim Navigation software from Kongsberg Digital and fea-
tured a 240° and 360° view. Each simulator bridge was equipped with an inde-
pendent instructor station, enabling the simultaneous execution of three exer-
cises. The vessel model utilized in the study was the BULKC11 Hagland Saga,
a small bulk carrier with a length between perpendiculars of 85 meters, and
was deemed appropriate for the tasks being evaluated. Additionally, all partic-
ipants were familiar with the vessel model as a result of their prior navigational
training.

The participants were randomly divided into three groups: a control group
(Group C), an experiment group 1 (Group E1), and an experiment group 2
(Group E2). Group C performed the easy scenario twice, while the experiment
groups completed either an easy scenario followed by a complex scenario (Group
E1) or a complex scenario followed by an easy scenario (Group E2), with a 10-
minute break between the two sections.

Each participant wore a medical-grade wearable device, the Empatica E4
Wristband, to collect biosignal data. The E4 wristband is equipped with a
PPG sensor that measures blood volume pulse (BVP) from which HR can be
derived. Before the trial, participants were asked to spend 10 minutes in a
seated and relaxed position, and the resulting biosignal data were collected as
the baseline.

2.3. Scenario Design

Sailing route. The experiment utilized the sailing route of Sandnessundet as
the location for navigational training. Sandnessundet is a strait located be-
tween Tromsøya and Kvaløya in the Tromsø municipality of Troms in Norway,
which spans approximately 14 kilometers in length and is traversed by the Sand-
nessund bridge, connecting the Kvaløysletta district to the Tromsø city center,
as described in Norgeskart [34]. This route is commonly used for navigational
training for nautical students at UiT The Arctic University of Norway. The
route, as depicted in Figure 2, starts in the southern region of the strait and
proceeds north, making a sharp turn towards the northeast. It then passes un-
der a tall, narrow bridge before opening up until it reaches the end of Tromsøya.
The participants will encounter two fishing vessels and a tug during their navi-
gation on this route, as shown in Figure 3.
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Figure 2: The planned sailing route Sandnessundet consists of five straight legs. Waypoint
5 is located at the midpoint of the Sandnessund Bridge. The map of the route includes
the placement of four navigational aids (NAVAIDs) which were distinguished by two distinct
colors.

Figure 3: An illustration of the sailing route of one of the participants, highlighting the
geographical locations of the tra�c situations.
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Table 1: Events design.

Event time Event in control task scenario Event in experiment task scenario

0.5 min None. Steering pump failure.

2 min Weather forecast VHF. Weather forecast VHF.

4 min None. Echo sounder failure.

After 6.5 min Meeting fishing vessel. Meeting fishing vessel.

9 min None. Gyro failure.

After 13 min Meeting fishing vessel. Meeting fishing vessel.

Add the snow intensive 100% at 16 min,
and then change the snow intensive back to 50%16 min to 18.5 min None.
at 18 min. Stop the snow after 18.5 min.

After 20 min Passing narrow bridge. Passing narrow bridge.

22 min GPS failure. GPS failure.

Reduce visibility (fog intensive 100%),
After 22 min Meeting tug.

and meeting tug.

Total: 6 10

Events in the sailing task. In this study, the maritime navigation training sce-
narios were designed to have no current, tidal stream, or wind. Two di↵erent
levels of complexity were used, based on the number of events that occurred
during the sailing tasks. The control task scenario was conducted under fair
weather conditions with six events, while the experimental task scenario was
performed under snowy weather conditions with an additional four events com-
pared to the control task scenario. Table 1 presents a comparison of the events
in the two di↵erent scenarios at the same time point. Other simulated variables,
such as location and tra�c situation, were kept constant across the two trials.

2.4. Learning Objectives and Performance Criteria

The learning objectives of the control task and the experimental task are
identical, which include::

• Learning when and where to fix the position in the chart during the sailing.

• Adhering to the planned route.

• Managing and maintaining a safe distance from other vessels while navi-
gating.

• Handling equipment malfunctions.

In order to evaluate the achievement of the learning objectives, performance
was evaluated using the following metrics:

• Number of position fixes in the chart.

• Deviation of the actual route from the planned route, with the deviation
score being calculated based on the distance from the planned course using
the assessment tool within the simulator. Deviation also can be calculated
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mathematically as follow: The distance between two points in geographic
coordinates can be calculated using a mathematical formula, Eq. (1) :

D =arccos[sin(LatA) ⇤ sin(LatB)

+ cos(LatA) ⇤ cos(LatB) ⇤ cos(LongA� LongB)] ⇤ 3440.1 ⇤ 1852
(1)

whereD is the distance in meters, LatA is the latitude of point A expressed
in radians, LatB is the latitude of point B expressed in radians, LongA is
the longitude of point A expressed in radians, LongB is the longitude of
point B expressed in radians, 3440.1 is the radius of the earth in nautical
miles (NM), and 1 NM is 1852 meters.

The distance between the sailing point and the planned route between two
waypoints can be derived using Heron’s formula [35].

• Score graded based on the closest point of approach (CPA). CPA was
calculated based on the speed and direction of the approaching ship, as
CPA is an essential factor of ship safety, particularly in situations where
the ship must avoid a collision. [36].

3. Experiment

In this study, a comprehensive analysis of both questionnaire data related to
stress and workload assessment, as well as biosignal data, is conducted to inves-
tigate the classification of complexity of maritime navigation training scenarios
and the associated stress levels. As illustrated in Figure 4, the analysis includes
data pre-processing and the application of machine learning (ML) algorithms.
To assess the subjective stress levels of the participants, several validated ques-
tionnaires were utilized. The results of these questionnaires were analyzed using
statistical tests to determine the significance of the di↵erences in stress levels be-
tween the control and experimental scenarios. The results indicate a significant
di↵erence in stress levels between the two scenarios. Based on these findings,
it is hypothesized that the biosignal data collected during the control and ex-
perimental scenarios can be classified. To verify this hypothesis, features were
extracted from the biosignal data and analyzed using various ML algorithms.

3.1. Self-assessment of the Stress Level and Workload

Psychometric evaluation of a visual analogue scale (VAS) for the assessment

of stress . VAS was administered to each participant following the completion
of each scenario. The VAS scale ranges from 0 to 10, with 10 indicating the
highest level of stress. Participants were instructed to mark their perceived
stress level on the scale immediately after completing each sailing scenario. The
use of a VAS for the assessment of stress has been previously validated in clinical
research [37].
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Figure 4: Mixed-methods approach for stress level analysis in maritime training.

State-Trait Anxiety Inventory (STAI) Form Y-1 [38]. STAI Y-1 form is a widely
used self-assessment tool for evaluating state and trait anxiety in individuals.
The questionnaire, which consists of 20 questions, is designed to measure the
participant’s current feelings and emotions [39]. The scores obtained from the
STAI Y-1 form are commonly classified into three categories: ”no or low anx-
iety” (20-37), ”moderate anxiety” (38-44), and ”high anxiety” (45-80). These
ranges are used as a benchmark to classify the level of anxiety experienced by
the participants.

NASA Task Load Index (NASA-TLX) . NASA-TLX is a widely recognized
assessment tool that is used to evaluate the perceived workload of participants
in a given task[40, 41]. NASA-TLX consists of six categories that are rated by
participants following the completion of each sailing scenario. These categories
include Mental Demand, Physical Demand, Temporal Demand, Performance,
E↵ort, and Frustration Level. The ratings are then converted to a ten-point
scale score, with 0 representing low levels of workload and 10 representing high
levels of workload [42].

3.2. Biosignal Data Pre-Processing

In this study, data on the inter-beat interval (IBI) was extracted from a pho-
toplethysmogram (PPG) sensor embedded in an Empatica E4 wristband. The
IBI also referred to as the RR interval, is the time interval between individual
heartbeats. Data on incorrect peaks were removed prior to analysis. A sample
of RR intervals for a participant is illustrated in Figure 5. The instantaneous
heart rate, measured in beats per minute (bpm), was derived from the IBI values
using the following formula (Eq.(2) ) :
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HR[bpm] = 60/IBI (2)

Figure 5: Sample RR intervals with activity windows recorded from a participant during the
sailing task are shown. Note that the gaps between windows represent the time between
activities.

In the analysis, HR data were analyzed from the collected IBI data. The
frequency of HR data is 1 Hz. The average HR during the relaxation period was
calculated for each group as the baseline. The cleaned HR data of each partici-
pant were subtracted from the group’s baseline, resulting in the HR di↵erence
(HRD) data. Additionally, two data preparation methods were employed:

• Window mean data (DW ):

The mean of the window data was calculated for each HRD data of each
participant using a window size of every 30 seconds and a step size of every
15 seconds.

• Event extracted data (DE):

The HRD data were extracted after one minute of every event.

3.3. Classification Features Extraction

Three types of features are extracted:

(1) Statistical-Based Features.
In this study, statistical-based features were created in two types (Eq.(3)).
The first one was the mean of the HRD of each participant in each task.
The second one was the standard deviation.

FS = [µXi ,�Xi ], (i = 1, 2, ..., l) (3)

where FS is the statistical-based feature vector, µXi is the mean of the data
series, �Xi is the standard deviation of the data series, Xi is the HRD of
each participant in each task, l is the length of the Xi.

(2) Wavelet-Based Features.
In this study, wavelet-based features were extracted based on the coe�-
cients of the discrete wavelet transforms(DWT), specifically the Daubechies
wavelets (with a number of vanishing moments of 4) [43, 44]. The wavelet
coe�cients were computed for specified scales [45], in this case, 2, 4, and
8, in order to obtain three levels of scales. The resulting matrix of the
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wavelet coe�cients had three rows and columns equal to the length of the
HRD data for each participant in each task. Subsequently, wavelet-based
features were computed using two di↵erent methods, as outlined in Eq.(4).
The first method was the sum of the square of the wavelet coe�cients, while
the second method was the sum of the product of the square of the wavelet
coe�cient and the natural logarithm of the square of the wavelet coe�cient.

FW = [FW1 , FW2 ]

FW1 = [
lX

i=1

Y
2
L1
,

lX

i=1

Y
2
L2
,

lX

i=1

Y
2
L3
]

FW2 = [
lX

i=1

(Y 2
L1

⇤ ln(Y 2
L1
)),

lX

i=1

(Y 2
L2

⇤ ln(Y 2
L2
)),

lX

i=1

(Y 2
L3

⇤ ln(Y 2
L3
))]

(4)

where FW is the wavelet-based feature, FW1 and FW2 are the two di↵erent
ways of computing, Y is the Daubechies wavelet coe�cient in three levels
L1, L2, and L3, and l is the length of the prepared data.

(3) Higher-Order Crossings (HOC)-Based Features.
Higher-Order Crossings (HOC)-based features, also known as zero-crossing-
based features, are a set of features that are extracted from the analysis of
the patterns of zero-crossings in a signal. Zero-crossing, a commonly used
concept in signal processing, refers to the point at which the signal changes
from positive to negative or vice versa [46]. In this study, the HOC features
were extracted in the following steps:

• Computing the di↵erence between adjacent elements in data series in
di↵erent orders. The k

th order di↵erence is (see Eq. (5) [47]):

• From O
k�1

Zt, a binary processX(k)
t was defined in Eq. (6) [48, 47, 49]):

• The count of the symbol changes from X
(k)
t , Dk, was calculated in Eq.

(7) [47, 48, 42]:

O
k�1

Zt =
kX

i=1

C
k�1
i�1 (�1)i�1

Zt+1�i

with C
k�1
i�1 =

(k � 1)!

(i� 1)!(k � i)!

(5)

where k = 1, 2, ..., and O
0 is the zero-mean data series we computed before.

X
(k)
t =

⇢
1, O

k�1
Zt � 0

0, O
k�1

Zt < 0
(6)

where k = 1, 2, ....
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Dk =
NX

t=2

[X(k)
t �X

(k)
t�1]

2 (7)

where Dk is the count of symbol changes in k
th order.

Above all, the extraction of HOC-based features from the biosignal data
was represented by a vector consisting of the number of axis crossings in
a zero-mean data series outlined in Eq. (8). The resulting HOC-based
features were found to be beneficial in improving the performance of the
machine learning (ML) models used in the study, providing useful insights
and better accuracy in identifying and classifying biosignals. As illustrated
in Figure 6, the number of crossing with the order of derivative varies for
the two HR signals from the same participant performing tasks of di↵erent
levels.

FHOC = [D1, D2, .., DL], (1 < L < J) (8)

where FHOC is the HOC features, J denotes the maximum order of the
estimated HOC and L is the HOC order used in this study. D1 denotes
the number of axis crossing in the zero-mean data series, D2 denotes the
number of axis crossing in the first di↵erence of the series, D3 denotes the
number of axis crossing in the second series, and so on.

Figure 6: Graphical comparison of HOC features from the same participant doing a di↵erent
level of the task.

3.4. Machine learning (ML) algorithms

Following ML algorithms are used to be compared in the study (see Table 2).
The classification models and their main parameters are resented in the table.
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Table 2: A summary of classification models’ parameters.

Classification model Main parameters

SVM Kernel function: Linear.
KNN Using 6 nearest neighbour(s) for classification.
Naive Bayes Use a kernel estimator for numeric attributes.
LDA Multivariate Gaussian for each class, ridge 10�6.
Logistic Regression With ridge parameter of 10�8 coe�cients.

3.5. K Folds Cross-validation and ML Performance Measure

In this study, in order to ensure that every sample is included in both the
training and testing sets, a commonly used machine learning validation method,
K-folds cross-validation, was employed. Ten folds were selected as a standard
utilization.

In the context of ML classification problems, precision and recall metrics
were employed as performance measures in addition to classification accuracy.
This is because when the class of samples is imbalanced, the large number of
examples from the majority class can overwhelm the number of examples in
the minority class, resulting in unskilled models achieving high accuracy scores.
Precision and recall metrics include precision, recall, and F-Score. Precision
evaluates the fraction of correctly classified instances among those classified as
positive [50]. Recall is typically used to measure the coverage of the minority
class [51]. The F-Score weights precision and recall equally [50]. The following
equations, (9), (10), and (11), provide the definitions for these measures.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

F � Score =
2 ⇤ P ⇤R
P +R

(11)

where P denotes precision, R to recall, TP to True Positives, FP to False
Positives, and FN to False Negatives. TP and FP belong to Positive Prediction,
and FN belongs to Negative Prediction.

4. Results

4.1. Self-Assessment of the Stress Level Results

The present study aimed to investigate the relationship between self-assessment
stress levels and training performance in the context of maritime navigation. To
do so, several questionnaires were used to measure the stress levels and work-
load of participants during training sessions in both control and experimental
scenarios. Results were analyzed using a combination of statistical methods,
including the Kruskal-Wallis H test, Spearman rank correlation coe�cient, and
Welch Two Sample t-test.
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(1) Kruskal-Wallis H test.
The present study utilized the Kruskal-Wallis H test to determine whether
the medians of ratings from the three groups (C, E1, and E2) were di↵erent.
The Kruskal-Wallis H test (also as known as ”one-way ANOVA on ranks”)
is a rank-based non-parametric statistical test that can be used to deter-
mine if there are statistically significant di↵erences between two or more
independent groups on a continuous or ordinal dependent variable [52, 53].
This test was applied to the data obtained from the three questionnaires
that were used to assess the stress levels and workload of the participants
in each group.
The results of the Kruskal-Wallis H test were visualized in Figure 7 and
are presented in Table 3. The test statistic was calculated using Eq. (12)
[54] and the degrees of freedom were determined using Eq. (13). The cor-
responding p-value was calculated using the chi-square distribution with 2
degrees of freedom.
The results of the Kruskal-Wallis H test showed that there was a statistically
significant di↵erence in stress levels and workload between the three groups
in the three questionnaires. These findings indicate that the experimental
scenarios had a relatively strong e↵ect on the stress levels and workload of
the participants and support the use of the Kruskal-Wallis H test as a tool
for analyzing the data obtained from the questionnaires in this study.
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Figure 7: Visualization of the results of the questionnaires from each group.

H =
12

N(N + 1)

kX

i=1

ni(Ri �R)2 (12)
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where H is the test statistic, N = 44 is the total data sample size (three
groups and rated for two di↵erent level tasks) for each questionnaire, k = 3
is the number of groups we are comparing, ni is the sample size for group i

(nC = 14, nE1 = 14, nE2 = 16), Ri is the average of the ranks in a group i,
R is the average of all the ranks among all samples.

df = k � 1 = 2 (13)

where df is degrees of freedom, and k = 3 is the number of groups we are
comparing.

Table 3: Questionnaire statistical results, Kruskal-Wallis H test results.

Questionnaire H statistic p-value E↵ect size Conclusion

VAS 8.0353 0.01800
0.1869
(Relatively strong)

Statistically significant

STAI Form Y-1 8.0894 0.01752
0.1881
(Relatively strong)

Statistically significant

NASA-TLX 7.3748 0.02504
0.1715
(Relatively strong)

Statistically significant

(2) Spearman rank correlation coe�cient.

The relationship between the performance of participants and their per-
ceived workload was also of interest in this study. The Spearman rank
correlation coe�cient (also known as the Spearman rho) was employed to
assess the association between the two variables. The results indicated that
there was a moderate and statistically significant association between the
workload rating given by the participants and their scores on the perfor-
mance assessment. Specifically, the Spearman correlation coe�cient (rho)
was ⇢ = �0.3171226, with a p-value of 0.03595. This suggests that as the
perceived workload of the participants increased, their performance scores
decreased, and vice versa.

(3) Welch Two Sample t-test.
A question of interest in this study was the self-evaluated stress levels of
participants during both the sailing control scenario and the experimental
scenario. The results of this investigation are presented in Figures 8 and
9. Figure 8 illustrates the results from the three questionnaires as grouped
by participant groups (C, E1, and E2) respectively. The results, presented
in figures 8, indicate that participants reported higher levels of stress as
measured by the Visual Analog Scale (VAS) and NASA-Task Load Index
(NASA-TLX) during the experimental scenario compared to the control
scenario. Scores on the State-Trait Anxiety Inventory Form Y-1 (STAI-Y1)
were found to be similar across both scenarios. Subsequently, the ques-
tionnaire results from participants who sailed in both the control and ex-
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perimental scenarios were analyzed. Figure 9 compares the results of the
questionnaires, as grouped by E1 and E2, respectively. The results, pre-
sented in Figure 9, indicate that participants in both groups E1 and E2
reported higher levels of stress in the VAS and NASA-TLX questionnaires
during the experimental scenario compared to the control scenario. How-
ever, the results for the STAI-Y1 questionnaire revealed a di↵erent pattern,
with group E1 reporting higher scores during the experimental scenario and
group E2 reporting lower scores.

To further investigate these findings, a Welch Two Sample t-test was con-
ducted on the data, with a 95% confidence interval (CI) for the mean dif-
ference. The Welch t-test is a parametric test that assumes a normal distri-
bution of data, and thus, a normality test (Shapiro-Wilk) was performed to
ensure that the assumptions of the test were met. In this study, the trans-
formation method of the square root was used for moderate positive skew
(see Eq. (14)). The results of the t-test, presented in Table 4, indicate that
there was a statistically significant di↵erence in stress levels as measured by
the VAS between the control and experimental scenarios, with participants
reporting higher levels of stress in the experimental scenario. No significant
di↵erences were found for STAI-Y1, and there was a statistically significant
di↵erence in perceived workload as measured by NASA-TLX between the
control and experimental scenarios, with participants reporting a higher
workload in the experimental scenario. Cohen’s d was also calculated to
measure the e↵ect size, and it was found to be a large e↵ect on VAS and
NASA-TLX while small on STAI-Y1.
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Figure 8: Visualization of the results of the questionnaires from two di↵erent levels of
scenarios.
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Figure 9: Comparison of the questionnaire results from two di↵erent levels of the scenario
by groups E1 and E2 (E1 and E2 have di↵erent orders of sailing the control scenario and
experimental scenario).

Snorm =
p
S (14)

where S is the data sample (scores of VAS of doing control task), Snorm is
the normally distributed data sample.

Table 4: Welch t-test results of the questionnaires. The star * means the value was calculated
after transforming the data to normal distribution.

Questionnaires
Shapiro test Welch Two Sample t-test E↵ect size

normality

(p-value)
Mean SD df t-statistic p-value 95% CI Cohen’s ds

C.Scenario 0.4548* 1.9069 1.9840 15.13 -4.2886 0.00063 -4.4993 -1.5133 1.0179
VAS

E.Scenario 0.3376 4.1800 2.6622 (large)

C.Scenario 0.2674 46.3793 4.0037 38.101 1.3969 0.1705 -0.6493 3.5413 0.3968
STAI Form Y-1

E.Scenario 0.5404 44.9333 2.7894 (small)

C.Scenario 0.4342 19.9862 8.5724 29.945 -3.5714 0.0012 -14.7398 -4.0144 1.1145
NASA-TLX

E.Scenario 0.5140 29.3633 8.0871 (large)

4.2. Results of the Objective Assessment

In this study, the stress level of the participants was objectively assessed
by analyzing HR data obtained from IBI data collected via wearable sensors.
Figure 10 illustrates that the range of HR values for participants in the control
scenario is generally smaller than that in the experimental scenario. However, it
is di�cult to discern a significant di↵erence in the average HR between the two
scenarios. To address this, ML algorithms were employed to classify HR data
from the two di↵erent scenarios. Five di↵erent ML algorithms were selected
and their results were compared using three di↵erent methods of pre-processing
the HR data. The results, as shown in Figure 11, indicated that when using
the event extraction method, all five ML algorithms achieved high accuracy.
Conversely, when using the window mean data or raw data directly, the accuracy
was found to be relatively low, as detailed in Table 5.
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Figure 10: Maximum and minimum HR of participants in the control scenario and experi-
mental scenario. The dashed lines represent the mean HR.
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Figure 11: Comparison of the machine learning results from five di↵erent algorithms in a
di↵erent way of pre-processing data.

4.3. Results of the Performance

In this study, the performance of the participants was evaluated based on
a set of established criteria. The criteria used to assess performance included
the number of times participants fixed their position during the voyage, the
deviation from the planned route, and the participant’s ability to maintain safe
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Table 5: Detailed accuracy by the recall, precision, and F-Score for biosignal data classification
in di↵erent types of data pre-processing.

Classification model
Recall Precision F-Score

DR DW DE DR DW DE DR DW DE

SVM 0.705 0.705 1 0.796 0.796 1 0.619 0.619 1
KNN 0.614 0.636 1 0.424 0,429 1 0.501 0.513 1
Naive Bayes 0.636 0.682 0.977 0.576 0,677 0.979 0.572 0.603 0.977
LDA 0.545 0.636 1 0.588 0.662 1 0.557 0.644 1
Logistic Regression 0.591 0.591 1 0.591 0.578 1 0.591 0.583 1

clearance when encountering two fishing vessels. Each criterion was scored on
a scale from 0 to 3, with higher scores indicating better performance. For
example, a score of 3 was awarded for fixing a position more than 3 times,
while a score of 0 was given for fixing a position less than 3 times. Similarly, a
maximum score of 3 was awarded for deviations from the planned route less than
180 meters and a minimum score of 0 for deviations greater than 1000 meters.
When encountering fishing vessels, a maximum score of 3 was given for CPA
greater than one nautical mile (nm), and a minimum score of 0 for CPA less
than 0.5 nm. The total maximum score was 12. The results, presented in Table
6, indicate that participants tended to fix their position more frequently in the
control scenario and maintained closer proximity to the planned route and better
tra�c clearance when encountering fishing vessels. Overall, the participants
performed better in the control scenario.

Table 6: The comparison of the scores from sailing in di↵erent scenarios based on the proposed
criteria.

Criteria Positioning (3) Deviation (3) TC 1 (3) TC 2 (3) Scores in total (12)

Control scenario 0.86 2.71 2.50 1.79 7.86
Experimental scenario 0.25 2.43 2.03 2.03 6.75

In addition to the performance criteria, an examination of the deviation
from the planned route was conducted. The result, as illustrated in Figure 12,
indicates that while participants generally adhered to the planned route in the
initial stages, deviation increased as they approached the midpoint of the route.
A two-sample t-test was performed to compare the deviation in the control sce-
nario and experimental scenario. The results reveal a statistically significant
di↵erence in a deviation between the control scenario (geometric mean M =
39.34, SD = 60.76) and experimental scenario (geometric mean M = 43.21, SD
= 70.25); t(41431) = 8.2681, p < .001. Furthermore, as shown in Figure 13,
the majority of deviation in the control scenario remained within 300 meters
from the planned route, with the majority of instances between 0 and 200 me-
ters away. Conversely, deviation in the experimental scenario was primarily
greater than 200 meters. Additionally, the results suggest that participants in
the experimental scenario were able to return to the planned route more swiftly,
whereas participants in the control scenario took more time to do so.
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Figure 12: Deviation from the designed route for the control scenario (upper) and the exper-
imental scenario (lower). The black dashed lines represent the mean of the deviation.

Figure 13: Deviation from the planned route for the experimental scenario (orange) and the
control scenario (blue) in the comparison graph ( experts suggest that the deviation of shorter
than 100 meters is negligible).

22



Table 7: Summary of findings.

Hypothesis

Number
Description

Accepted/

Rejected

H1
The biosignal data is su�cient to be an objective
tool to assess stress levels in maritime training.

Accepted

H2
The complexity of the scenarios can be classified
based on the biosignal data.

Accepted

H2.1
The more events in the scenario, the more stress
the seafarers will get, especially an event on top of
another event at the same time.

Accepted

H2.2
Abysmal visibility and complex tra�c situations
cause high-stress levels.

Accepted

H3 Stress levels a↵ect training performance. Accepted

5. Discussion

In this study, the impact of stress levels on simulator-based maritime train-
ing was investigated through the analysis of biosignal data. The performance
of participants was measured objectively through the number of position fixes
made during the simulated voyage and data collected from the simulator tools.
Additionally, machine learning (ML) algorithms were employed to identify the
most e↵ective methods for pre-processing biosignal data, extracting relevant
features, and classifying stress levels. It was determined that the control and
experimental scenarios resulted in di↵erent levels of stress for participants, which
a↵ected their performance. A summary of the findings is presented in Table 7.

Results obtained from the proposed performance criteria (presented in Table
6) revealed that overall scores between the two groups were similar, but there
were notable di↵erences in each individual term. For example, participants in
the control scenario exhibited better positioning and maintained a greater dis-
tance from the first encountered vessel, while those in the experimental scenario
demonstrated better overall deviation and a greater distance from the second
encountered vessel.

This similarity in overall performance despite di↵ering levels of stress can
be explained by the concept of maximal adaptability, which states that human
behavior has the ability to adapt within a certain range of stress such that
performance remains stable. However, this approach is not su�cient in dis-
tinguishing specific di↵erences in performance if a more precise assessment is
desired. For instance, when participants were under a higher stress level, they
may have found it di�cult to take multiple positionings, leading to uncertainty
in their location and a larger deviation from the planned route. Additionally,
when under high stress, participants may have been more focused on the situa-
tion, resulting in a greater distance from encountered vessels.

In this study, the stress levels of participants were analyzed and their impact
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on training performance was evaluated through the classification of biosignal
data and examination of deviation from the planned route. Results from the
deviation measurements (shown in Fig 14) indicate that participants in the con-
trol scenario deviated towards the port side (left) of the route after Waypoint
3. This deviation may be attributed to the participants starting their turns too
late or not turning back toward the planned route quickly enough. Additionally,
the time taken for participants to return to the planned route after deviation
was substantial, with some passing Waypoint 4 before returning to or nearing
the planned route. This deviation also coincided with the point at which partic-
ipants encountered the second fishing vessel, which resulted in a closer passing
distance. Furthermore, the analysis of performance measures revealed that the
participants were not intense.

On the other hand, in the experimental scenario, deviation from the planned
route was larger in comparison to the control scenario. The time and distance
taken to return to the planned route after the turn at Waypoint 3 were shorter
than in the control scenario, which may be an indication that participants had
more di�culty following the planned route due to uncertainties such as lower
visibility in heavy fog or snow, and therefore practiced safer sailing. Overall,
this study highlights the importance of analyzing deviation from planned routes
in order to understand the impact of stress levels on training performance.

Figure 14: Participants sailed routes from the control scenario (left) and the experimental
scenario (right). The magenta lines represent the planned route.
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Results from the experimental scenario revealed that eight out of the fifteen
participants deviated to the port side before making a significant course change
(Waypoint 3) to starboard. This deviation may have been caused by heading
loss (the event created in the experiment scenario), or the switching o↵ of the
autopilot to manual steering mode while the rudder was set at an angle. Hence,
the switch happened to make the rudder turn the vessel to the wrong side.
However, the proximity of this deviation to the loss of the gyro (also an event
added in the experiment scenario) suggests that the participants may have made
this decision based on the planned route. All the participants who turned to
port first managed to get back to the planned route as fast or faster as those
who did not take the wrong turn to port before turning to starboard. In the
experimental scenario, there is more phenomenon to consider. Before the turn
to starboard, the gyroscope error is induced and the participants experience the
alarm. In the distance, the fog is also visible and may give uncertainty at the
time. This may be a factor that focuses the participants’ attention on following
the planned route better in order to handle something unexpected later.

The experimental scenario was designed to be more intense cognitively than
the control scenario. This is in line with real-world incidents, where most ship
tra�c accidents occur under fair weather conditions with good visibility [55]
and fewer happened during night-time periods [56]. The present study’s results
suggest that under these conditions, seafarers may become more relaxed and
less focused on their tasks, thus increasing the risk of accidents. In contrast, the
experimental scenario in this study appears to have increased the participants’
level of focus and attention to the task at hand.

The current study has contributed to the understanding of the relation-
ship between stress levels and training performance in the maritime indus-
try. Through the analysis of biosignal data and examination of deviation from
planned routes, a correlation was observed between sailors’ stress levels and
route complexity. It was found that in many cases, deviation from the planned
route exceeded 100 meters, which is not considered an unsafe level in a narrow
water sailing task.

Given these findings, interventions can be made to improve the maritime
training system by considering the impact of stress on performance. Instructors
should be aware that low-stress levels may lead to overconfidence and delayed
decision-making among students. Conversely, increasing stress levels may lead
to heightened alertness and improved adherence to the planned route. However,
it is important to note that under high stress, students may prioritize tasks dif-
ferently and may be more prone to human errors as a wrong decision, erroneous
action, missing action, or lack of action [57] might be a factor in the threat
to maritime safety. Therefore, it is crucial for instructors to pay attention to
the safety behaviors of students under di↵erent stress levels, rather than solely
focusing on overall deviation from the planned route. It is always helpful for the
instructors to have good control of the students’ stress levels before and during
the training, because the students who have less sea experience and are at the
beginning of their education, may find it di�cult to understand the situation
and make the correct decision.
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Additionally, it is essential to note that individuals may have varying per-
ceptions of stress levels under the same training scenario. Thus, a flexible
and adjustable training program, guided by objective stress level data, such
as biosignal data, may be beneficial in achieving consistent learning outcomes
while accounting for individual di↵erences.

6. Conclusion and future work

Biosignal data-based training systems represent a novel approach to enhanc-
ing the performance and safety of maritime training by utilizing biosignals to
measure trainees’ stress levels during training sessions. These signals are then
used to provide real-time feedback to trainees and instructors, enabling them to
adjust the training program according to the trainee’s stress level. One of the
key benefits of biosignal data-based training systems is that they o↵er a more
objective measure of stress levels compared to traditional self-report methods,
thereby allowing for a more precise assessment of stress levels and enabling in-
structors to adapt the training program to better suit the needs of each trainee.

The present study analyzed questionnaire data using statistical methods
and biosignal data using ML methods to investigate the impact of stress on
training and performance in maritime navigation. The results of the study
suggest that the stress levels of trainees are di↵erent under various training
scenarios and that the complexity of the training scenarios can be classified
based on the students’ biosignal data. Additionally, di↵erent stress levels have
specific e↵ects on trainees’ training performance, particularly in terms of safety
behaviors. These findings provide a deeper understanding of the impact of stress
on maritime training and performance, which can be used to improve the quality
and e↵ectiveness of maritime training programs and ultimately enhance safety
at sea.

As shown in Figure 15, a reliable and safe maritime training system that
utilizes biosignal data to measure trainee stress levels and provide real-time
feedback is proposed in this study. This system aims to improve the performance
and safety of maritime training by providing a more objective measure of stress
levels, allowing instructors to adapt the training program to better suit the
needs of each trainee. Furthermore, by providing real-time feedback, this system
can help trainees to develop better stress management strategies and improve
their overall performance, ultimately enhancing safety at sea. The process of
implementing such a system, including the development of a real-time stress-
level-detecting application and field testing in various scenarios with a su�cient
amount of biosignal data, is left as future work. Additionally, it would be
valuable to use the application to evaluate the assessment of SA and the training
of decision-making in maritime contexts.
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Figure 15: Future work for a reliable and safe maritime training system.
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