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Abstract
This dissertation investigates the strategic integration of Proof-of-Work (PoW)-
based blockchains and ml models to improve transaction inclusion, and con-
sequently molding transaction fees, for clients using cryptocurrencies such as
Bitcoin. The research begins with an in-depth exploration of the Bitcoin fee
market, focusing on the interdependence between users and miners, and the
emergence of a fee market in pow-based blockchains. Our observations are
used to formalize a transaction inclusion pattern. To support our research,
we developed the Blockchain Analytics System (BAS) to acquire, store, and
pre-process a local dataset of the Bitcoin blockchain. bas employs various
methods for data acquisition, including web scraping, web browser apis, and
direct access to the blockchain using Bitcoin Core software. We utilize time-
series data analysis as a tool for predicting future trends, and transactions are
sampled on a monthly basis with a fixed interval, incorporating a notion of
relative time represented by block-creation epochs.

We create a comprehensive model for transaction inclusion in a pow-based
blockchain system, with a focus on factors of revenue and fairness. Revenue
serves as an incentive for miners to participate in the network and validate
transactions, while fairness ensures equal opportunity for all users to have their
transactions included upon paying an adequate fee value. Theml architecture
used for prediction consists of three critical stages: the ingestion engine, the
pre-processing stage, and the ml model. The ingestion engine processes and
transforms raw data obtained from the blockchain, while the pre-processing
phase transforms the data further into a suitable form for analysis, including
feature extraction and additional data processing to generate a complete
dataset. Our ml model showcases its effectiveness in predicting transaction
inclusion, with an accuracy of more than 90%. Such a model enables users to
save at least 10% on transaction fees while maintaining a likelihood of inclusion
above 80%. Furthermore, adopting such model based on fairness and revenue,
demonstrates that miners’ average loss is never higher than 1.3%.

Our research proves the efficacy of a formal transaction inclusion model and
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ml prototype in predicting transaction inclusion. The insights gained from our
study shed light on the underlying mechanisms governing miners’ decisions,
improving the overall user experience, and enhancing the trust and reliability of
cryptocurrencies. Consequently, this enables Bitcoin users to better select suit-
able fees and predict transaction inclusion with notable precision, contributing
to the continued growth and adoption of cryptocurrencies.
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“The relative success of the Bitcoin proves thatmoney first and foremost
depends on trust. Neither gold nor bonds are needed to back up a
currency.”

Arnon Grunberg, Writer





1
Introduction
Digital money and cryptocurrencies have revolutionized payment systems, mak-
ing monetary transactions cheaper and faster. These digital currencies, rooted
in public-key cryptography and digital signatures, offer robust authentication
and secure algorithms for confidential and non-repudiable digital communica-
tion. They can be centralized, where institutions or banks control the supply as
Central Bank Digital Currencys (cbdcs), or decentralized, regulated by a net-
work of users through consensus. Decentralized digital currencies encompass
cryptocurrencies and online tokens issued by anyone, operating independently
of specific financial security mechanisms.

The underlying data structure of most cryptocurrencies is called a blockchain.
Blockchains are distributed databases that do not require a central trusted party
to operate. They are append only, immutable, and experts believe that they
will disrupt many industries, from finance [1, 2] and law [3] to healthcare [4]
and education [5, 6].

Cryptocurrencies, such as Bitcoin and Ethereum, have emerged as the main
assets in the digital currency landscape. Bitcoin and Ethereum secure around
80% of the total cryptocurrency market cap, as of mid-2020 [7]. Bitcoin, in
particular, was designed to provide users with a low-cost payment scheme, with
transaction fees initially close to zero [8]. However, the increasing popularity
of cryptocurrencies like Bitcoin has revealed scalability challenges, with the
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underlying pow scheme posing limitations on transaction throughput [9,
10].

These challenges highlight the importance of exploring transaction fees, fee
markets, and scalability issues within cryptocurrencies like Bitcoin. By address-
ing these issues, we aim to enhance the efficiency and cost-effectiveness of
transactions within the Bitcoin network, improving the overall user experience
and facilitating wider adoption of digital currencies.

In this thesis, we address three main aspects related to blockchain technology:
(1) fee mechanisms and overpaying; (2) the incorporation of ml models into
pow-based blockchains at scale; (3) optimization of user experiences and trust
of such systems. Our contributions stem from the analysis of the largest pow-
based blockchain implementation, Bitcoin,1 by examining fee trends, mining-
related monetary costs, and the subsequent fee markets. We introduce a novel
formal model, implemented usingml, to investigate patterns and comprehend
fee complexity in the context of large-scale blockchain systems. The practical
application of this scheme holds the potential to render blockchain technology
more cost-effective and enhance user trust in the system by making it cheaper
to use.

1.1 Blockchain Consensus Types
The pioneering electronic payment system developed in the 1990s by David
Chaum, Digicash [11], provided payments without the need for a trusted third
party. While such invention was innovative and ahead of its time, Digicash faced
challenges in gaining widespread adoption and ultimately filed for bankruptcy
in 1998. The onset of decentralized digital currencies began when the still
anonymous character of Satoshi Nakamoto released in 2008 the Bitcoin pa-
per [8]. Bitcoin’s underlying technology challenged the efficiency of traditional
financial systems. Digital signatures enable trust among participants, while to
prevent double spending Bitcoin uses a Peer-to-Peer (p2p) network that times-
tamps transactions into an ever-growing chain of hash-based blocks. Each block
must carry an evidence, or proof, of the work that has been carried out while
creating it, such that the consensus is reached by the largest pool of CPU power.
Each block is immutable and similarly to hashcash [12], the cost-function used
in the Bitcoin consensus computes a token which can be used as a proof of
work. This function is efficiently verifiable, but expensive to compute alongside

1. Throughout this study, when we talk about Bitcoin blockchain we refer specifically to BTC
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customizable parameters, in order to prevent double spending and Distributed
Denial of Service (ddos) attacks. The Bitcoin blockchain is then secured with
a consensus mechanism called Proof-of-Work (PoW).

pow is a decentralized consensus mechanism that requires members of a
network to solve mathematical puzzles before agreeing on any decision, so to
deter malicious use of computing power, e.g., sending spam emails or launching
ddos attacks. This idea was firstly conceived in 2004 by the developer Han
Finney, when he implemented Reusable Proof-of-Work (rpow), using hashcash
and RSA-signed tokens [8, 13]. In 2009 Bitcoin became the first widely adopted
implementation of a pow scheme, and Finney was proven to be the recipient
of the very first Bitcoin transaction [14]. Systems based on pow proved to
be secure, and decentralized in terms of consensus and governance. However,
they also demonstrated to be inefficient in terms of throughput (tps), and they
struggle to provide cheap fees. Furthermore, the equipment needed to secure
the network, used by the so called miners, is powerful and expensive. This
increase system’s overall energy consumption, miners want to maximize their
revenue, and this impacts how transactions are included in the next mined
block, and eventually, in the blockchain.

In response to ameliorate pow drawbacks, different classes of consensus mech-
anism for blockchain have been designed, and the deep-seated monetary value
for each information exchange, made the cryptocurrency domain well suited
for the advance of new blockchain systems. Ouroboros [15], Casper [16], Ten-
dermint [17, 18] and Ppcoin [19], want to reduce pow computational costs, and
implement a Proof-of-Stake (pos) consensus mechanism, which selects valida-
tors in proportion to their quantity of holdings. Algorand [20], Ripple [21, 22],
and Stellar [23] implement a Byzantine Agreement (ba)-based blockchain
which aim is to improve pow low latency, by using a consensus mechanism
that varies from the traditional Practical Byzantine Fault Tolerance (pbft).
Avalanche [24] does not provide total order of transactions, and it builds instead
a Directed Acyclic Graph (dag)-chain which keeps strong probabilistic safety
guarantee in the presence of Byzantine adversaries, while its Byzantine Fault
Tolerant (bft) nature enables it to achieve high throughput and scalability.
Filecoin [25, 26] implements a Proof-of-Storage (post) consensus mechanism.
The system turns cloud storage into an algorithmic market, and the network
is secured by miners. They make profits by providing storage to clients.

More blockchain protocols have been proposed and studied, such as Proof-
of-Elapsed-Time (poet) [27], Proof-of-Burn (pob) [28, 29], Proof-of-Activity
(poa) [30],Proof-of-Space (posp) [31] using Verifiable Delay Functions (vdf) [32,
33], Proof-of-Authority (poau) [34, 35], Proof-of-Storage-Time (posti) [36],
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Proof-of-Replication (por) [37] whose sets the origin to Filecoin’s post, and
many more. Analysis on such systems is made easier by the public and ac-
cessible nature of blockchains, and the amount of data available is directly
proportioned to their popularity.

1.2 Pattern Recognition and Big Data
The inherent append-only property of blockchains leads to accumulation of data.
Information stored in blockchains is publicly accessible and easy to retrieve. This
sets up a disposition towards big data analysis, and it opens up for technological
progress derived by the study of patterns andmlmodeling [38].ml is a branch
of Artificial Intelligence (ai) that enables programs and algorithms to self-learn
and detect certain patterns in large datasets. Pattern recognition is the discipline
whose goal is to classify data or objects into certain classes or categories [39],
it has applications in statistical data analysis [40, 41], signal processing [42],
image analysis [43, 44], information retrieval [45], and due to the increased
availability of large datasets, ml. We will use this automated mechanism of
decision making during our research and throughout the whole thesis.

The opportunities and challenges ofml and big data are subject of study [46, 47,
48], and prediction models are used to foresee future events when enough data
are available [49, 50]. Furthermore, ml applications span from healthcare [51,
52] and solar energy [53], to financial market predictions [54, 55], and yet not
much attention has been given to the blockchain and cryptocurrency domain.
This thesis analyzes different blockchain technologies, such as pow-based
like Bitcoin, or pos and DAG-based like Avalanche. We conduct an extensive
and longitudinal study on Bitcoin, where a consistent amount of data and
information is retrieved, in order to detect main pow drawbacks. Furthermore,
we evaluate separately, a security analysis on Avalanche. Ourmain contribution
is the study and formalization of the patterns that govern miners’ decisions
in pow-based blockchains, particularly Bitcoin. Finally, we use this pattern
formalization to build a ml model that can predict transaction inclusion in
Bitcoin, while optimizing fees and overpaying.

1.3 Thesis Statement
The high cost of mining has led to an increased usage of transaction fees as a
means for miners to make a profit. This led to serious economic implications
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for users, fee overpaying became the norm, and many fee estimators started to
adopt higher fees than necessary [56].

We conjecture that by combining public data of Bitcoin with ml models, we
can establish a transaction inclusion pattern for pow-based blockchains. This
pattern allows users to predict transaction inclusion, optimize fees, and improve
efficiency. By studying miners’ decisions we aim to enhance trust, reliability,
and utility in cryptocurrencies. It follows the thesis of this dissertation:

Our thesis is that Bitcoin transaction fees can accurately be modeled and
predicted using ml methods, improving utility and efficiency for clients
using such cryptocurrencies, while maintaining a fair compensation for

miners.

To elaborate our thesis we initially conduct a longitudinal study on Bitcoin, so
to evaluate a large amount of data, and how the system behaves in the event
of network saturation, price fluctuations, and transaction fee variations. After
building knowledge on pow systems at scale, we need to formally define our
view on transaction inclusion, in order to use such insights to exploit a ml
model at best.

To measure our scope’s success, a thorough analysis and evaluation of the ml
model needs to be carried out. For that, we will use statistic and probabilistic
metrics, and we will define the evaluation set up used in this dissertation,
so to make results easily replicable. Our thesis recognizes the central role
of pow-based blockchains in matter of security, distributed governance, and
cheap, instant transactions all over the globe, therefore our evaluations and
results will consolidate the use of such systems, in cryptocurrency domain and
elsewhere.

Furthermore, considering the inherent nature of pow-based systems, our in-
clusion pattern study will be easily adaptable to other pow-based blockchains,
facilitating their use at scale, and helping users at not getting overburdened of
fees.

1.4 Scope and Limitations
To focus on our thesis statement, we provide a clear and concise description of
what the study aims to accomplish and outline the boundaries and constraints of
the research. Following, we define research objectives, scope, time constraints,
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limitations, generalization, and ethical considerations.

1.4.1 Research Objectives and Scope
Research objectives of this study include:

• Investigate the strategic integration of pow-based blockchains and ml
models to develop a transaction inclusion pattern for improving utility
and cost-efficiency in cryptocurrencies like Bitcoin.

• Explore the Bitcoin fee market and understand the interdependence
between users and miners.

• Develop the bas for acquiring, storing, and pre-processing a local dataset
of the Bitcoin blockchain, utilizing various data acquisition methods and
time-series data analysis.

• Create a comprehensive model for transaction inclusion in pow-based
blockchain systems, emphasizing factors of revenue and fairness. Revenue
serves as an incentive forminers,while fairness ensures equal opportunity
for users upon paying an adequate fee.

• Construct an ml architecture consisting of an ingestion engine, pre-
processing, and ml model to predict transaction inclusion, with a focus
on feature extraction and data processing to generate a complete dataset.

• Evaluate the effectiveness of themlmodel in predicting transaction inclu-
sion, including accuracy, cost savings on transaction fees, and likelihood
of inclusion.

• Enable Bitcoin users to make informed decisions by selecting suitable
fees and predicting transaction inclusion with precision, contributing to
the growth and adoption of cryptocurrencies.

The scope of this dissertation focuses on the model for transaction inclusion
within pow-based blockchains, with a specific implementation and testing
conducted solely on the Bitcoin network, and specifically, BTC. While the ml
model has the potential for use on a global scale, it is important to recognize
that its full adoption may bring changes in the way miners include transactions.
However, its direct application and testing on a global scale are beyond the
scope of this study. The scope includes an exploration of the Bitcoin fee market,
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which also holds relevance for other pow-based solutions. By investigating
transaction inclusion dynamics, the study aims to enhance user experience,
contribute to the trust and reliability of cryptocurrencies, and ensure miners
continue to receive transaction fee rewards.

1.4.2 Time Constraint and Limitations
The data collection period for the primary findings of this dissertation, involving
data processing and refinement, was conducted from January 2021 to May 2021.
Monthly information on Bitcoin price, transaction fees, and miner consump-
tion was collected monthly to capture the historical trend of the key factors
influencing the study. The research project, including literature review, hypoth-
esis formulation, data collection, and system building, spanned from 2018 to
2021. Following, our focus shifted towards presenting our findings [57, 58], and
subsequently compiling this dissertation.

Limitations

• In the free and decentralized market of Bitcoin we observe a transaction
fee price uptrend, caused by the cost of mining and the fear of “51%
attack”. In such scenario, we assume that users ought to chose a desired
fee, based on their transaction’s total amount and network congestion,
without fearing of being left out from miners. Therefore, we adopt a
solution where users can select their own fee, while monitoring their
transaction confidence of being accepted in the next mined block.

• A rational miner should prioritize transactions based mainly on its rev-
enue. Considering that the reward for mining new blocks is halved
periodically, we assume that miners will keep on enforcing this behavior
in the long run. We therefore consider miners to be rational agents in a
pow-based ecosystem, as they need to establish a Nash equilibrium [59]
among themselves in order to approach complex decisions. Our solution
works in the presence of such rational miners, which we conjecture to be
present in every pow-based systems.

• A Nash equilibrium should be kept also between users and miners. In
order to understand how users and miners interact to approach complex
solutions, we assume that despite miners ought to be greedy as the
network scales and mining costs rise, users should be deterred in leaving
the system. We design for this purpose a model where transactions’
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waiting time is taken into account, and miner’s choices cannot depend
by greediness alone.

• The public nature of blockchains facilitates data retrieval and analysis.
For our purpose, while adopting ml models to focus on our thesis state-
ment, we adopt a supervised learning approach, and therefore, we assume
blockchain data to be always available and retrievable. In this way, the
patterns we define will establish the guidelines for training ml models,
while newer data will shape the model’s outcome during time.

1.4.3 Generalization
The findings and conclusions of this research study hold implications for gener-
alization. While the specific focus of the study is on the strategic integration of
pow-based blockchains andmlmodels for transaction inclusion in Bitcoin, the
insights gained from this research may have broader applicability. Although
the study is conducted within the specific context of Bitcoin, the underlying
principles and methodologies explored in this study can potentially be gener-
alized to other pow-based blockchain systems. The examination of the Bitcoin
fee market and the development of the transaction inclusion model contribute
to a deeper understanding of the dynamics and factors affecting transaction
inclusion in pow-based blockchains more broadly.

Each blockchain network have unique characteristics, and the specific imple-
mentations and considerations within different systems may vary. However, the
insights gained from this research can serve as a foundation for further inves-
tigations and can inform the development of transaction inclusion strategies
in other pow-based blockchain networks. The generalizability of the research
findings beyond the specific case of Bitcoin will depend on various factors,
including the similarities in the underlying blockchain architecture, consensus
mechanisms, and transaction dynamics across different blockchain systems.
Further studies and empirical validations in diverse blockchain environments
are necessary to assess the extent to which the findings and models developed
in this research can be generalized.

1.4.4 Ethical Concerns
Although we acknowledge the ethical concerns associated with pow and its
potential environmental impact, our dissertation does not aim to question
the applicability or sustainability of pow. Instead, our study focuses on a
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widespread phenomenon related to blockchain technology, recognizing that
alternative consensus mechanisms may exist that offer solutions to the ethical
concerns associated with pow.

1.5 Methodology
The empirical approach of acquiring knowledge about a certain phenomenon,
physical or ethereal, is the scientific method. This approach is characterized by
careful observations and systematic study of the subject, followed by hypothe-
sis formulation via inductive reasoning, experimental and measurement-based
testing of deductions, and finally, refinement of the hypothesis based on the
experimental findings. Conclusions reported at the end of the process are
fundamental for hypothesis formulation in a new research cycle.

Natural sciences follow the hypothetico-deductive model [60], where the sci-
entific inquiry is carried out by formulating hypothesis that can be logically
contradicted by an empirical test. Debates on whether computing can be consid-
ered a science or not still animates many [61], and only recently was considered
to be a natural science, and not only a subject of the artificial [62]. In 1989,
the final report of the acm Task Force on the Core of Computer Science [63]
presented a new taxonomy for classifying computing as a science. They root the
field’s research in three main paradigms, theory, abstraction, and design.

Theory roots its fundamentals in mathematical sciences, and it describes ob-
jects or events whose properties can be defined using logical reasoning.
It is characterized by four steps:

1. Definition of the studied objects.
2. Make a theorem on their possible relations.
3. Proof relations validity.
4. Interpret results.

A glaring example is the study of algorithms, where given an ample set
of descriptions, hypothesis can be proven using logical reasoning.

Abstraction roots its fundamentals in natural sciences, where the notion of
scientific progress is achieved by systematically verify and validate certain
hypothesis, about a specific phenomena. It is characterized by four main
steps:

1. Form a hypothesis.
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2. Construct a model, and make predictions.
3. Collect data.
4. Analyze results.

The studied object can span from biological or chemical processes, to
physical phenomena, down to the holistic behavior of a complex com-
puter system. The abstraction paradigm goal is to construct accurate
models of the rules and laws that govern the behavior of observable
phenomena. The model is evaluated by comparing its predictions to ex-
perimentally collected data, and it can be used to predict certain behavior
in circumstances that have not been observed yet.

Design roots its fundamentals in engineering, and it uses a systematic approach
to construct a system that solves a given problem. It is characterized by
three main steps:

1. Define requirements and specifications based on a series of observa-
tions.

2. Design and implement a prototype system based on such specifica-
tions.

3. Build a set of experiments to evaluate such system, by following the
stated requirements.

Engineers expect to iterate these steps, and they share the notion that
progress is achieved by designing a system that solves a posed problem.

In computing these three paradigms are often intertwined [63], and researchers
generally resort to all three paradigms to varying degrees. The work presented
in this dissertation initiates with a theoretical nature. The studied subject needs
a formal definition before any abstraction or design fundamentals are applied.
We use theory to define mathematically the Bitcoin market, and a possible
miners inclusion pattern. Definitions must be rigorous and specific, before
any hypothesis is expressed. We rely on well-established theory regarding
economical principles and market in Bitcoin, including pow properties and
limitations.

The rational and systematic approach used in this dissertation involves a top-
down scheme where, once the broader theory is defined, we use abstraction to
form hypotheses for narrowing down our subject of study. Wemake assumptions
and construct a model that will be evaluated and analyzed after collecting and
storing information. Big data analysis and longitudinal studies are key parts of
this monograph, allowing us to focus our attention in a narrower perspective for
building a ml-based system prototype, and establishing a proof-of-concept [64]
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of it.

Theory and abstraction applied in earlier stages of this study set the backbone
for our system prototype implementation. Based on collected data and the
theoretical knowledge acquired, we apply design principles to define require-
ments of such system. We refine the proof-of-concept in order to build our
ml-based prototype. Afterwards we construct a set of experiments to evaluate
such system, including different metrics to verify its performance and yielding
evidence for usability in a real world scenario, although its proof lay outside the
scope of this dissertation. Such performance metrics include theory of pattern
recognition, information retrieval, and classification in ml.

This dissertation focuses on deriving principles that govern pow-basedmarkets
and miners decisions, when such systems scale. Within our research, we use a
top-down approach that focalize in building a prediction model for transaction
inclusion. Results are subject of a process of continuous refinement, and the
model we build is not final nor static. Empirical measurements and practical
experiences might challenge initial assumptions when new network statuses
or events occur. Ultimately, we aim to set the baselines for studying such
systems at scale, by formalizing market fundamentals and a plausible inclusion
model.

1.6 Research Context
This dissertation has been carried out in the context of csg2 atuit. The project
has been founded by the Research Council of Norway, together with BBChain3
project, and Nofima.⁴ Studies on blockchain security have been conducted in
the context of Cryptology and Data Security Research Group at the University
of Bern.⁵ The dissertation here presented relates with previous scientific studies
done in the csg [65, 66], and to place this dissertation in the right context, a
brief overview of previous works is surveyed.

The csg is investigating fundamental system problems rooted in practical appli-
cation domains. The group undertakes high-impact interdisciplinary research
and innovation at the intersection of computer science, law, sports science,

2. Cyber Security Group at uit, Norway https://site.uit.no/arcsecc/
3. BBChain at University of Stavanger (uis) https://bbchain.no
4. The Norwegian food research institute https://nofima.com
5. Cryptology and Data Security Research at University of Bern, Switzerland https://
crypto.unibe.ch

https://site.uit.no/arcsecc/
https://site.uit.no/arcsecc/
https://bbchain.no
https://bbchain.no
https://nofima.com
https://nofima.com
https://crypto.unibe.ch
https://crypto.unibe.ch
https://crypto.unibe.ch
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psychology, statistics, and medicine, and it is now also focused on blockchains
and big data analysis. Early works of the csg include creating streaming infras-
tructure for football [67], devising a mobile agent middleware architecture for
supporting distributed applications in a wide-area network [68], optimizing
adaptive streaming and video composition over http [69], and proposing a
mechanism for expressing and enforcing security policies for shared data [70].
The cutting-edge and innovative nature of csg, allowed to explore p2p and
early-blockchain domain since 2006 with Fireflies [71], a leaderless bft con-
sensus protocol. The group research focuses also on ai solutions. One example
is monitoring and surveillance in privacy-sensitive and unstable offshore envi-
ronments. For that purpose, systems for executing distributed ai applications
on the edge has been built [72, 73]. Further works using ai have been deployed,
Dorvu [74] is a digital platform for real-time privacy-preserving sustainability
management in the domain of commercial fishery surveillance operations, and
it implements distributed artificial intelligence algorithms onmobile. The group
expertise inml solutions is fundamental for the purpose of this research.

The BBChain project aims to combine blockchain and biometrics to build a
privacy-preserving and fault-tolerant public database of digitally authenticated
documents. This to enable academic degree certificates to be issued and
verified from any place in the world with a high degree of trust [75]. They
also use a permissioned blockchain to form verifiable contracts between clients
and storage providers [76]. Their knowledge in the blockchain domain is the
key for a valuable background education and backbone knowledge for this
dissertation.

Nofima is a leading food research institute that explores and develops for
the aquaculture, fishing, and food industries. Their projects include using
blockchain technology for traceability in the food industry [77, 78, 79], and
studying blockchain applicability for enterprises dealing with aquaculture,
fisheries, and agriculture, providing a farm-to-consumer holistic view. Their
competence in blockchain technology applied in real world scenarios exhibits
an indispensable resource of this dissertation applicability.

During the exchange in Bern, at the Cryptology and Data Security Research
Group, we surveyed the Avalanche protocol and analyzed its security [80]. The
group research is notorious for addressing cryptographic protocols [81], dis-
tributed consistency, consensus [82, 83, 84], and cloud-computing security [85],
with applications to blockchains [86], distributed ledger technology, crypto-
currencies [87, 88], and their economics. The group’s theoretical knowledge
in the area of blockchain consensus mechanisms and cryptography, is funda-
mental to deepen security constraints of such technology, and to understand
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protocol limitations even under non-optimal circumstances.

1.7 Impact
This research has far-reaching implications for the rapidly evolving field of
cryptocurrencies and the broader financial landscape. By providing a detailed
understanding of the transaction fee mechanism in Bitcoin and developing a
ml model that accurately predicts transaction inclusion, our work contributes
to enhancing the trust, efficiency, and utility of cryptocurrencies for end-users.
The insights gained through this research have the potential to improve user
experiences, enabling them to make more informed decisions about fee selec-
tion and increasing their confidence in the likelihood of transaction inclusion
in the next mined block.

Furthermore, our findings may guide future research, policy-making, and the
development of practical applications, ultimately fostering the growth and
adoption of cryptocurrencies in various sectors of the global economy. This
study, therefore, represents a significant step towards bridging the gap between
the theoretical understanding and practical application of cryptocurrencies,
paving the way for a more accessible and efficient financial ecosystem.

1.8 Summary of Contributions
The major contributions of this dissertation are based on the publications
listed in Appendix B. From a longitudinal study on Bitcoin [65, 66], we made
assumptions and conjectures about correlation between transaction fees and
latency. We refined our linear regression approach to a more accurate ml-
based one [57]. After that we formalized and defined a pattern for transaction
inclusion [58], and gathered information in our datasetwith amechanism based
on block-epochs [89], useful for increasing prediction accuracy. Following, is a
brief summary of each contribution:

Longitudinal Study and Initial Analysis
We identified three main issues of pow-based blockchains as (1) scalability, (2)
performance, and (3) costs. We conducted a longitudinal analysis on Bitcoin to
study relations between transaction fees and latency. We showed how scalability



16 chapter 1 introduction

affects performance, then how costs and fees are dependent on them both.
Using polynomial interpolation we defined two functions for characterizing
fee/latency relation. We stated that applications can improvemessaging latency
by paying transaction fees, although overpaying does not always improve
transaction latency. In our future works we investigated the reasons for that,
thus opening our research to a careful study on Bitcoin market ecosystem, and
a more thorough approach on prediction models.

Machine Learning Approach
Using data from previous longitudinal studies, we explored the Bitcoin market
ecosystem and made some conjectures on what could cause the latency to
drastically increase. We analyzed the first-price auction market in Bitcoin, and
presented a novel ml model solving a binary classification problem, that can
predict transaction fee volatility in the Bitcoin network so that users can
optimize their fees expenses and the approval time for their transactions. A
feature that we included provides information on howmany bytes were already
occupied by other transactions in the mempool, assuming they are ordered by
fee density in each mining pool. With such information, the ml model could
predict transaction inclusion with an accuracy of 86%.

Model Formalization
In order to be more accurate in predicting transaction latency, we formally
defined a novel inclusion model that describes the mechanisms and patterns
governing miners decisions to include individual transactions in the Bitcoin
system. We abstracted and defined concepts like fairness and revenue, adding
new definitions and approaches for increasing prediction accuracy. We also
defined a new method for storing local dataset of the Bitcoin blockchain. The
approach we followed is based on a block-epoch collection of transactions. Each
transaction has time-based information according on when it was observed.
And the time metric used is the block creation time (or block epoch). Using
this model and data collected, we devised a novel ml approach to predict
transaction inclusion, with an overall accuracy of 91%.

Dataset Definition
The dataset we built stores part of the Bitcoin blockchain. Blocks are sampled
every month and information about transactions and blocks were separated to
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save disk space and avoid redundancies. This dataset was used to generate aml
model that predicts transaction inclusion. Information is stored to generate all
the necessary features for themlmodel, and one transaction can be represented
as a multivariate time series, based on the block-epoch approach we have
previously described.

Security Analysis
Our study on blockchain technologies adjourns with an orthogonal project
whose aim is to study security of a newer protocol. We inspect the dag-based
chain of Avalanche [24]. Theoretical studies outlined how Avalanche lacks a
complete abstract specification and a matching formal analysis. To address this
drawback, we presented a detailed formulation of Avalanche through pseudo-
code. Furthermore, we performed an analysis of the formal properties fulfilled
by Avalanche in the sense of a generic broadcast protocol that only orders
related transactions. And finally, the security analysis revealed a vulnerability
that affects protocol liveness. Despite the considerable investment of time and
effort dedicated to researching the security of Avalanche, culminating in a
published paper [80], the content of this research is not incorporated into
the main body of this dissertation. Instead, the paper and its findings can be
found in Appendix B, accompanied by a concise introduction to dag-based
blockchains in Section 2.2.2.

1.9 Outline
In this dissertation, we first provide a background on cryptocurrencies, block-
chains, and ml in Chapter 2, which lays the foundation for the subsequent
chapters. Following this, Chapter 3 discusses the principles and rules governing
the Bitcoin ecosystem at scale, specifically focusing on the interdependence
between users and miners, as well as the emergence of a fee market in pow-
based blockchains. This chapter establishes the importance of understanding
the fee market for formalizing a transaction inclusion pattern.

In Chapter 4, we present the Blockchain Analytics System (BAS), which we
developed for acquiring and storing a local dataset of the Bitcoin blockchain. We
explain the data acquisition methods and techniques, as well as the structuring
and pre-processing of the data for further analysis. In Chapter 5, we discuss our
approach using time-series data analysis as a tool for predicting future trends,
specifically focusing on the factors of revenue and fairness in a comprehensive
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model for transaction inclusion in pow-based blockchain systems.

Chapter 6 presents theml architecture used in our study, covering the ingestion
engine, pre-processing stage, and themlmodel itself. This chapter details how
raw data is transformed and processed to be suitable for analysis, including
feature extraction and training set generation. In Chapter 7, we evaluate the
mlmodel and discuss the datasets used for training and testing, the evaluation
metrics employed, and the results of the analyses. The findings of this study
demonstrate the efficiency of our ml model in predicting transaction inclusion
and its potential as a powerful tool for end-users, offering significant savings
in transaction fees.

Chapter 8 delves into a discussion of our findings, exploring the implications and
potential applications of our study. We reflect on the limitations of our work and
suggest areas for future research to further refine and expand upon our model.
In the final chapter,Chapter 9,we present our concluding remarks, summarizing
the key takeaways from the research and emphasizing the significance of ourml
model for predicting transaction inclusion in the Bitcoin blockchain. Our study
not only contributes to the understanding of the fee market and transaction
dynamics but also showcases the potential benefits for end-users in terms of
transaction fee savings.



2
Background
This chapter provides an overview of blockchain technologies and their ap-
plications in cryptocurrencies. The history of blockchain technology will be
discussed, including the transition from centralization to decentralization and
distribution. The various types of Distributed Ledger Technology (DLT) will
be compared and the advantages and disadvantages of using blockchains in
different business sectors will be examined. The consensus protocol of Bitcoin
will be discussed, along with its limitations at scale and alternative consen-
sus mechanisms used in cryptocurrencies. Additionally, the role of ml in this
research will be explained, including the specific ml models that have been
adopted.

2.1 Blockchains
It is important to note that the terms blockchain and cryptocurrency are often
used interchangeably, but they refer to distinct concepts. A distinction between
the two can be made as follows:

A blockchain is a dlt that allows multiple nodes to maintain and share a
consistently replicated and verifiable record of data, without the need for
central administration or governance.

19
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Figure 2.1: In a centralized database system, data is stored on a single point and all
workload is placed on a single node. The authority to manage the database
is held by a single entity (red user). On the other hand, in a decentralized
database system, a consistent and replicated view of the data is maintained
across multiple nodes, allowing for users to be geographically distributed.
However, the governance of the decentralized database is still centralized.

A cryptocurrency is a decentralized digital currency that is used as a medium
of monetary exchange through a network of computers. It is not controlled by
any central authority.

Blockchain technology enables the creation of systems for storing distributed
data without relying on a central trusted authority. Cryptocurrencies utilize
this technology to facilitate the exchange of information based on the principle
of distributed trust inherent in blockchains.

2.1.1 Centralization and Decentralization
Before discussing dlts and blockchains, it is useful to provide an overview
of centralized and decentralized systems (showed in Figure 2.1), particularly
databases, as the main function of blockchains is to securely and permanently
store data while maintaining eventual consistency.

Centralized A centralized database is stored and maintained on a single
location, often used by an organization or institution that also holds
governance over it. Data can be added, modified, or deleted by the
central authority. Users must connect to the sole available node to access
the database, which has the advantages of less duplication, data integrity,
and ease of organization.
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Decentralized A decentralized database is a system in which data is stored
and replicated across multiple physical locations. This architecture pro-
vides increased fault tolerance by eliminating a single point of failure.
The central authority maintains governance rights in a manner similar to
that of a centralized database. This type of system has the potential to ac-
commodate a larger number of users, even those who are geographically
dispersed, as depicted in Figure 2.1.

The governance of distributed systems refers to the process of establishing
and maintaining the legitimacy of decision-making within the system [16].
In traditional centralized and decentralized systems, this process is typically
carried out by a trusted authority or small group of reliable parties, with
hierarchical structures and control maintained through legal systems. In a
distributed environment, governance is distributed equally among participants,
following rules established by the consensus algorithm.

2.1.2 Distribution and DLTs
The primary characteristic of dlts is distribution. This refers not only to the
Peer-to-Peer (P2P) gossip-based substrate messaging protocol, but also to the
governance and decision-making process for preserving data consistency and
integrity. An illustration of the distribution of governance in a dlt network is
shown in Figure 2.2.

Figure 2.2: Distribution in dlts. The governance is distributed, and the consistency is
maintained by a consensus algorithm that enables each party to observe
the same order of events.
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Distributed A distributed ledger, or dlt, is a type of digital database that,
like a decentralized one, is replicated, shared, and synchronized among
multiple geographic sites, countries, or institutions. Its consistency and
integrity are maintained through a consensus mechanism that enables
parties to trust each other despite operating in a potentially untrustwor-
thy environment. Unlike centralized and decentralized databases, there
is no central administrator or trusted authority in a distributed ledger.

In adlt, each replica maintains a copy of the ledger and independently updates
itself. When an update occurs, every node constructs an updated view of the
ledger, and each participant in the consensus process votes on which copy is
correct. Once a consensus has been reached, all other nodes update themselves
with the new, accurate copy of the ledger [90]. Finally, security is ensured
through the use of cryptographic keys and signatures.

dlts can be classified based on their data structure and consensus mecha-
nism, each of which have their own advantages and disadvantages. Figure 2.3
presents three common implementations of dlts: blockchains,dags, and hash-
graphs.

Blockchains are a linear linked list data structure in which each block is
totally ordered. In the event of conflicts, the longest chain prevails, as

Blockchain DAG Hashgraph

A B C DTime

Figure 2.3: A comparison of the data structures of different dlts. Blockchains use
linked lists to connect blocks with cryptography, while dags and Hash-
graphs use a Directed Acyclic Graph. In the first two diagrams, the green
blocks represent accepted blocks, while the red sets represent conflicts or
instances of double spending. The third diagram illustrates that all parties
should eventually agree on the same order of events (shown as the green
set).



2.1 blockchains 23

depicted in Figure 2.3. The first widely implemented blockchain technolo-
gies, Bitcoin [8] and Ethereum [91], were introduced in 2008 and 2014,
respectively. Bitcoin uses a pow consensus mechanism, while Ethereum
recently switched to Proof-of-Stake (PoS), with validators referred to as
miners and minters, respectively. These solutions (especially pow) offer
high reliability and security, but have low throughput and high energy
consumption at scale.

dags are tree-like data structures in which the total ordering of transactions is
not necessarily important, unless conflicts arise. In Figure 2.3, one of the
two conflicting blocks (red set in dag) is discarded, and therefore it does
not have any child blocks. Systems that implement a dag-based chain
emerged in 2018 with IOTA [92] and in 2019 with Avalanche [24]. While
implementing a dag is more complex than creating a blockchain, it is
more efficient in terms of scalability, although its reliability and security
are not necessarily proven to be as strong as those of pow systems.

Hashgraphs are a type of dlt that utilize a dag as their core data structure.
Transactions in hashgraphs are stored in parallel among all validators
and the order of these transactions is not based on timestamps but
rather on the occurrence of events. In hashgraphs, events are generated
through a process called gossip about gossip, [93], in which validators
reach agreement on the order of events. Each event contains one or more
transactions, a timestamp, a digital signature, and cryptographic hashes
of two earlier events. The hashgraph technology was first introduced
in 2016 [93], and a cryptocurrency implementation called Hedera [94]
was released in 2019. Hedera utilizes an asynchronous Byzantine Fault-
Tolerant (abft) consensus algorithm. Hashgraphs are known for their
scalability and speed compared to other dag-based technologies, but the
correctness of the entire protocol has faced criticism [95] and their use
typically requires a private chain or a closed consortium of voters.

This dissertation focuses on a specific type of dlts, known as blockchains.
In particular, we examine the most widely used one of Bitcoin, which uti-
lizes a pow-based consensus mechanism. Additionally, in our recent publica-
tion [80], we provide a brief security analysis of Avalanche, a dag-based dlt
solution.
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2.1.3 Elements of Blockchains
Blockchains are distributed ledgers characterized by linked lists of blocks that
contain information about transactions between parties. These blocks are
cryptographically linked to create an immutable ledger with an append-only
structure. The access policy of a blockchain determines who can read the
information, leading to a classification as either public or private. The control
policy determines who can participate in the advancement of the blockchain
and how new blocks can be appended, resulting in classification as either
permissioned or permissionless. The consensus policy regulates the progression
of the protocol.

In 1979, Merkle introduced the concept of using a cryptographic hash to link
information in an immutable chain, a structure now known as a Merkle hash
tree [96]. Each data node in the tree is hashed (H function in Figure 2.4) and
the resulting Merkle leaves are paired and hashed together to form branches,
eventually leading to a root hash that includes the information from every other
node in the tree. This allows for the authentication of a set of messages stored
in the data nodes using a unique signature (the Merkle root) without disclosing
the other information. The verifier only needs to fetch a small portion of the
tree (green nodes in Figure 2.4) to reconstruct the hashes up to the Merkle
root, which can then be compared with the root from a trusted source to verify

1 2 3 4 5 6 7 8

H(1,1) H(2,2) H(3,3) H(4,4) H(5,5) H(6,6) H(7,7) H(8,8)

H(1,2) H(3,4) H(5,6) H(7,8)

H(1,4) H(5,8)

H(1,8) Merkle root

Merkle branches

Merkle leavesData nodes

Figure 2.4: Illustration of a Merkle tree with 8 data nodes. The data nodes are hashed
to create the merkle leaves, and the merkle leaves are then hashed together
in pairs to form higher nodes in the tree. To verify the authenticity of the
data contained in node 4, a verifier must retrieve the nodes in green and
use them to reconstruct the tree from the data to the root. The rebuilt
nodes are marked in red, and the root is used for verification.
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the authenticity of the data. Similarly, in blockchains, the latest records or
blocks contain the history of the entire chain. Such data structure is adopted
by Dynamo [97], the efficient key-value storage system of Amazon. In fact, it
minimizes the amount of data that needs to be transferred for synchronization
and it reduces the number of disk reads performed during the anti-entropy
process.

Access policies refer to the rules that determine which parties have the ability
to access information stored on a distributed ledger. Public blockchains are
accessible to anyone with an Internet connection, while private blockchains are
restricted to certain organizations or consortiums and can only be accessed
by parties who have been granted access. There is a range of control policies
that can be implemented in blockchain protocols [98], which determine the
ability to write information on the ledger and define the blockchain as either
permissioned or permissionless. These control policies have an impact on the
governance of the system. Permissionless blockchains allow anyone with an
Internet connection to become a validator of the network and participate in the
consensus process that drives the progression of the blockchain. In contrast,
permissioned blockchains place restrictions on the ability to append data to
the ledger.

Blockchains are defined by the structure of an append-only linked list of records
that are secured using cryptography. However, the choice of control and access
policies gives rise to different consensus mechanisms. These mechanisms
describe the procedure by which network validators reach agreement on a
single data value among distributed processes. A consensus mechanism should
be fault-tolerant and provide security guarantees of termination, finality, and
consistency for any decision under stated assumptions. Verification of validators
may be required to increase trust, but this also reduces anonymity for nodes. The
trade-off between security and speed, as well as the decision to require node
verification or not, results in a variety of combinations of public and private,
permissioned and permissionless blockchains, as depicted in Figure 2.5.

As mentioned above, various control and access policies determine their inher-
ent consensus mechanisms:

Public / Permissionless Public and permissionless blockchains allow any par-
ticipant to join the consensus mechanism without verifying their identity.
This type of blockchain can provide a high level of anonymity, but it also
requires a higher level of trust and may have slower overall performance
and higher cost due to the use of pow consensus mechanisms like Bitcoin.
Public and permissioned blockchains that require node verification are
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faster than pow, but do not offer anonymity and their security assump-
tions are weaker compared to pow systems. These blockchains often use
consensus protocols such as pbft or Federated Byzantine Fault Toler-
ance (fbft), as implemented by cryptocurrencies such as Ripple [21]
and Stellar [23].

Public / Permissioned Permissioned blockchains require that nodes satisfy
certain conditions to participate in the consensus process. These condi-
tions may include verification requirements or the need to put money at
stake as an incentive to act honestly. These systems are typically faster
than pow systems, but there is a higher risk of having a small number of
wealthy validators control the network. Ethereum, which was originally
a pow system, has transitioned to a pos system [16]. Another example of
a permissioned blockchain is Avalanche [24], which uses a pos protocol.

Private / Permissionless Hybrid blockchains are private systems that allow
access to only a select group of restricted members, but also implement
permissionless features and are controlled by a single organization or
consortium. These systems provide the level of oversight performed by

Public

Private

Pe
rm

is
si

on
ed

Pe
rm

is
si

on
le

ss

Node verification

No node verification

Figure 2.5: Public and permissionless blockchains allow anyone to participate in the
consensus mechanism. Some examples of this type of blockchain include
Stellar and Ripple, whichmay require node verification, and Bitcoin, which
does not. Permissioned but public blockchains impose some restrictions on
participation in the consensus process, with examples including Avalanche
and Ethereum. Private and permissioned blockchains are controlled by a
single organization, such as Hyperledger Fabric. Private and permission-
less blockchains, such as IBM Food Trust, are hybrid solutions that are
controlled by a single entity but implement permissionless functionality.
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public blockchains for transaction validation, while also preserving a level
of privacy. An example of a hybrid blockchain is IBM Food Trust [99],
which uses the private and permissioned blockchain of Hyperledger
Fabric [100] as its core.

Private / Permissioned Private and permissioned blockchains are controlled
by a single entity, with the central authority determining which individu-
als or entities can act as validators. While such systems may be efficient
in terms of throughput, they are only partially decentralized and do not
fully embody the decentralized nature of blockchains. An example of
this type of blockchain is Hyperledger Fabric.

In our opinion, the most significant impact of blockchain technology lies in
its ability to create a fault-tolerant, tamper-proof, immutable, and verifiable
system with decentralized governance. Therefore, the focus of our dissertation
is on permissionless and public blockchains, specifically Bitcoin. In the follow-
ing sections, we will discuss the history of blockchains, the pow consensus
mechanism of Bitcoin, and the pos scheme of Avalanche. In the next chapter,
we will examine the fee market that has emerged as a result of the scalability
limitations of pow systems.

2.1.4 History of Blockchains
A proposal for a blockchain system was first presented in 1982 by Chaum
[101, 11], in which he described the design of a distributed computer system
that could be established, maintained, and trusted by groups that do not
necessarily trust each other. This system implemented a public record-keeping
solution with group membership consistency, utilizing cryptographic primitives
such as symmetric and asymmetric encryption, cryptographic hash functions,
and digital signatures. It is worth noting that Chaum’s system predates the
concept of permissioned and permissionless blockchains, and therefore does
not clearly fit into either of these categories [102].

The problem of reaching consensus among unreliable or fallible processes,
known as the Byzantine Generals problem, has garnered significant attention
from researchers and academics. In 1982, Lamport et al. [103] introduced this
problem, and in 1984 Schneider [104] proposed a solution that laid the foun-
dation for consensus mechanisms in permissioned blockchains. Protocols such
as pbft as presented by Castro and Liskov [105] in 2002 and Paxos introduced
by Lamport [106] in 1998 serve as the basis for achieving Byzantine agreement
in open networks with node verification, such as Ripple and Stellar.
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In 1993, Dwork and Naor [107] introduced a computational method for ad-
dressing junk mail in their publication. Their approach involves requiring users
to perform computationally difficult, but not impossible, functions in order to
gain access to resources, thus preventing frivolous use. In 1997, Back proposed
the concept of Hashcash [12], a mechanism designed to address the systematic
abuse of unmetered Internet resources such as email and anonymous remailers,
without being aware of Dwork and Naor’s earlier work on the subject.

The main idea behind Hashcash is to use a pricing function to create strings
that, when processed through the SHA-1 hash algorithm, result in a string with
the first N bits equal to zero, where N is typically around 20-30. An example
of this process is illustrated in Figure 2.6, which shows an Hashcash token
with a 28-bit collision (N = 28). The hexadecimal output has 7 leading zeros,
corresponding to 28 bits in binary.

This concept of a cost function is similar to the one used by Finney [13] in
2004 to develop the first pow scheme, called Reusable Proof-of-Work. In this
system, Hashcash is used as a pow token, and in exchange, RSA-signed tokens,
or rpow-tokens, are created. These tokens can be transferred from one person
to another and are as rare and valuable as the Hashcash used to create them,
but they are reusable, unlike Hashcash. These primitives are computationally
expensive, as they require a proof of computation, but they offer high security
and resistance to Sibyl attacks [108]. This foundation for establishing consensus
in permissionless and public blockchains that do not require user verification is
known as the pow protocol and is used in Bitcoin and previously in Ethereum. It
allows for consensus to be reached in a distributed and untrusted environment,
and it ensures a high level of security based on computational power rather
than the number of participants.

1:28:040727:halmail1@finney.org::1c6a5020f5ef5c75:63cca52

SHA-1(String)

7 initial zeros
0000000a86d41df172f177f4e7ec3907d4634b58

String

Output

Figure 2.6: The Hashcash cost function maps a string using the SHA-1 hashing algo-
rithm, ensuring that the first 28 bits of the output string are equal to zero
as per the specified rule.
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2.2 Cryptocurrencies
Cryptocurrencies, are generally not considered to be currencies in the tra-
ditional sense, and are instead treated as a separate asset class in prac-
tice [109, 110]. Cryptocurrencies do not have any inherent or legislated value
and their worth is determined by the supply and demand in the market. Despite
having an initial value of less than half a cent in 2009 (when Laszlo Hanyecz
used 10,000 Bitcoins to purchase two pizzas, an event now known as Bitcoin
Pizza Day on May 22 [111]), cryptocurrencies have gained popularity for their
decentralization, anonymity, and cost-effectiveness, leading to an increase in
the overall market capitalization from one billion dollars in 2013 to almost
three trillion dollars in 2022.1

Following the release of Bitcoin, many other cryptocurrencies have been devel-
oped and, at present, there are approximately 23,000 different cryptocurrencies
that can be traded on more than 250 exchanges.2

2.2.1 Bitcoin and Proof-of-Work
In 2008, a person or group using the pseudonym Satoshi Nakamoto published
a paper on Bitcoin [8] and released the open-source software for the crypto-
currency. Bitcoin was the first successful application of blockchain technology
that used pow as a consensus mechanism. It timestamps transactions by
hashing them into a chain of hash-based pow, making it difficult to alter the
recorded information without redoing the pow and rebuilding the chain from
scratch. Since the longest chain is generally considered to be the correct one, as
long as the majority of the computing power is controlled by honest nodes, they
will be able to generate the longest chain and outpace any attackers.

Transactions

According to Nakamoto [8], an electronic coin can be represented as a chain
of digital signatures. In Figure 2.7, we observe that each owner transfers a coin
to the next by signing the hash of the previous transaction with their private
key and including the next owner’s public key. The recipient of the coin can
verify the signature (signed by the previous owner) using the previous owner’s
public key. While this system allows for the transfer of ownership of a single

1. According to Coinmarketcap https://coinmarketcap.com
2. Coinmarketcap https://coinmarketcap.com/rankings/exchanges/

https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com/rankings/exchanges/
https://coinmarketcap.com/rankings/exchanges/
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coin, it does not prevent double spending. In fact, the recipient cannot know if
the previous owner has signed any earlier transactions. To address this issue
and prove the authenticity of transactions without relying on a central trusted
authority, transactions must be publicly announced and participants must reach
consensus on the order of transactions.

tx0 tx1 tx3tx2

Hash tx1

Owner 2’s PubK

Hash tx0

Owner 1’s Sign.

Owner 1’s PubK

Hash tx2

Owner 3’s PubK

Owner 2’s Sign.

Owner 1’s PrvK Owner 2’s PrvK Owner 3’s PrvK

Hash tx3

Owner 4’s PubK

Owner 3’s Sign.

Owner 4’s PrvK
Sign

Verify

Owner 0’s Sign.

Figure 2.7: Bitcoin Transactions. In the context of Bitcoin, the concept of ownership
of a particular coin is established through a sequence of digital signatures.
An example of coin transfer is depicted in green as Transaction 1 (tx1), is
made from Owner 1 (green) to Owner 2 (blue). This transfer is facilitated
through the creation of a hash that incorporates Owner 2’s public key
(PubK), and the previous transaction hash (Hash tx0). The validity of the
transfer can be confirmed through the utilization of Owner 1’s private
key (PrvK) to sign Hash tx1, which can then be verified by Owner 2 using
Owner 1’s public key. Subsequent transfers of the coin, such as the transfer
to Owner 3 (gray), result in the formation of a chain of digital signatures.

Blocks

To address the double spending problem, Nakamoto’s initial solution was to
implement a timestamp server that creates a hash of a block of transactions that
need to be timestamped and publishes this hash as proof of the transactions’
existence at that time. For efficiency and security purposes, each transaction
in the block is represented by a leaf in a Merkle tree, and the root of this
tree is used to generate the timestamp (block) hash. As shown in Figure 2.8,
a single block hash contains information about the previous hash, time, and
Merkle root. This allows every transaction to be publicly announced, and if any
of the transactions are tampered with, the entire block hash will be changed.
Furthermore, each block includes the previous block’s hash in its own hash,
forming a chain where each additional timestamp strengthens the ones before
it and makes manipulations visible at any point in the chain, unless the entire
chain is rebuilt. Once transactions have been proven to be publicly announced,



2.2 cryptocurrencies 31

a distributed timestamp server is needed to reach consensus among validators
(called miners in Bitcoin) on a single record history. This is achieved through
the use of a pow implementation similar to that proposed by Hashcash [12].

tx1 tx2

Block#1 Hash

Block#0 Hash

Nonce Time
Merkle Root

Tx Tx Tx... TxTx TxTxTx Tx ...

Ownership change

of a token
Hash tx1

Owner 2’s PubK

Owner 1’s Sign.
Hash tx2

Owner 3’s PubK

Owner 2’s Sign.

Nonce Time
Merkle Root

Nonce
Merkle Root

Block Header

Block#2 Hash

Block#1 Hash

Block#3 Hash

Block#2 Hash

Figure 2.8: Blocks are linked together through a chain of hashes. Each transaction
in a block is represented by a leaf in the generated Merkle tree, and the
root of this tree is included in the block header. The block header also
includes the time, nonce, and hash of the previous block. These values are
used to generate the hash of the new block, which is then linked to the
previous block through its hash. The chain of digital signatures depicted
in Figure 2.7 can be contextualized in terms of blocks, where tx1 and tx2
represent a change in ownership or a particular token.

Proof-of-Work

In Bitcoin, validators reach consensus on a single record history by verifying that
newly created blocks are valid. When a block is deemed valid, it indicates that a
peer has successfully solved the pow puzzle associated with it, demonstrating
that a certain amount of work has been done. This peer becomes the leader
for this round and proposes a new block. To solve the pow puzzle, a miner
must find a block hash with a specified number of leading zeros that is below a
certain target value. This target value is determined by the network difficulty,
as described in Section 2.1.4.

The SHA-256 algorithm is used to hash the block header twice, and the nonce
(a number used only once) is incremented by one for each failed attempt. The
probability of finding the target value (shown as the yellow box in Figure 2.9)
through this process is low, requiring a significant amount of trial and error. The
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solution can be verified quickly by re-hashing the block header and comparing
it to the posted block hash.

In a pow-based system, the individuals responsible for validating blocks are
calledminers, and the process of solving the pow puzzle is calledmining. Once
a block has been mined, it is immutable and cannot be altered without building
a longer chain starting from the tampered block. Therefore, the more hashing
power the network has, the harder it is for an individual or group to overtake the
original chain and confirm the tampered block. pow was originally developed
to combat spam emails and ddos attacks, but Bitcoin was the first system to
use it for both mining (where validators are compensated when they find a
new block) and achieving consensus [102]. In summary, pow involves finding
the nonce that, when hashed twice with the rest of the block header using the
SHA-256 algorithm, produces a block hash with a specified number of leading
zeros. The main drawbacks of using pow are the high energy consumption
required for mining and the low transaction throughput due to block size and
time constraints for producing new blocks [58].

Figure 2.9: For each attempt, the nonce is incremented and the block header is hashed
twice using the SHA-256 algorithm. The first miner to solve the puzzle
broadcasts the solution to other peers. If the proposed hash is valid, each
peer aborts their current pow and begins a new one with a new set of
transactions and a new Merkle root to hash.



2.2 cryptocurrencies 33

Difficulty

In relation to pow, difficulty refers to the measure on how hard is to find a
hash below a specified target. This difficulty can be increased or decreased by
modifying the target value according to the scheme in Figure 2.10. Difficulty
serves to maintain a consistent block creation frequency, despite variations
in Bitcoin’s overall hashing power over time. The desired block creation time
in the Bitcoin network is set at 600 seconds, which is determined by the
core algorithm and design of the network. The difficulty level of mining is
adjusted approximately every 2,016 blocks, equivalent to around 14 days. This
adjustment ensures that the network maintains a consistent block creation rate.
The calculation of the difficulty adjustment involves normalizing the mean
creation time of the past 2,016 blocks. This mean creation time is denoted as
T ′ and can be calculated using Equation 2.1:

T ′ =

∑2016
i=1 T i

2016
(2.1)

In this equation, T ′ represents the average block creation time, which is ob-
tained by summing the creation times of the past 2,016 blocks and dividing
the sum by 2,016. This normalization process helps adjust the mining diffi-
culty to maintain the desired block creation time. The difficulty value at a
specific block height,3 denoted as x (where x mod 2016 = 0), is represented

Figure 2.10: In the Bitcoin network, the difficulty of creating new blocks adjusts in
response to changes in the overall hashing power of the network. When a
miner joins, the overall hashing power increases, leading to the likelihood
of faster block generation and an increase in difficulty to maintain a
stable block creation time. Conversely, when a miner leaves, the difficulty
decreases to compensate for the decrease in hashing power. While the
illustration shown depicts the creation of a single new block, in the Bitcoin
network, the difficulty is actually adjusted every 2,016 blocks.

3. The height represents the number of blocks that have been added to the blockchain from
its inception. The condition x mod 2016 = 0 indicates that the height of the block is a
multiple of 2,016, which typically corresponds to the point at which the network adjusts
the mining difficulty.
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by Equation 2.2.

dx =

{
1 if x = 0
dx−1

T
T′

if x > 0
(2.2)

At every block creation, the miner or pool of miners who successfully completes
pow with a given difficulty will be compensated with a coinbase transaction.
This transaction is included as the first transaction in every block and consists
of the sum of transaction fees plus a block reward of newly mined Bitcoins,
which is periodically halved every 210,000 blocks.

2.2.2 Avalanche and Proof-of-Stake
In 2018, a group of scientists, initially referred to as Team Rocket, published a
novel metastable consensus protocol family for cryptocurrencies [24]. These
protocols provide a high level of probabilistic safety in the presence of Byzantine
adversaries and are claimed to be both fast and environmentally friendly, as
they do not rely on pow-based blockchains. The protocol family includes a
naïve implementation known as Slush and a more sophisticated consensus
algorithm called Snowball, which serves as the backbone of the Avalanche
protocol.

Slush Slush introduces the concept of metastability and serves as the foun-
dation for this protocol family. It allows for the eventual reaching of
consensus by choosing between two conflicting colors (blue and red
in Figure 2.11) in m rounds, wherem is a sufficiently large value. This
algorithm is almost memoryless meaning that a node retains no state be-
tween rounds other than its current color and does not maintain a history
of interactions with other peers. Each round involves randomly sampling
a small, constant-sized group of k nodes from the network, and once the
querying node collects k responses, it checks the color of the fraction
≥ αk, where α > 0.5. The querying node adopts the winning color as
its own and re-issues the query with a different set K . Even if peers are
divided in a 50/50 split, the network will eventually reach a decision
withinm rounds. However, Slush is not tolerant to Byzantine faults, as
an adversary could attempt to flip nodes to the opposite color decision
in an effort to maintain balance within the network. Figure 2.11 (1–2)
shows the first ofm cycles for a blue-queried node (1), while Figure 2.11
(3–4) represents the second cycle form = 2.

Snowflake Snowflake extends the Slush protocol by adding a counter that
tracks a node’s conviction about a particular color choice. This counter
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stores the number of consecutive samples of the network that have
all yielded the same color. Snowflake introduces bft through the use
of the parameter β , which indicates the counter threshold required to
reach consensus. At every color change, the node resets β . Whenever
a successful query (≥ αk) occurs, the node increments the counter.
Consensus is reached when the threshold β is reached. The protocol
preserves liveness, but it can be significantly delayed, as there is no finite
counterm present and β can be reset every time there is a disagreement,
leading to an ephemeral notion of state in Snowflake [24].

Snowball Snowball augments Snowflake by incorporating confidence counters.
Each validator stores in memory its confidence level for each color. Mul-

Figure 2.11: In the Slush protocol, during the first frame, node (1) is queried with the
color blue. Node (1) then selects k random nodes and sends its decision
to choose blue. In the second frame, node (3) has already decided on
blue, node (6) has been confirmed as red, and node (5) has not yet made
a decision. Node (3) and node (6) reply with their preferred colors, while
node (5) becomes blue and issues a new query with blue as the preferred
color. The pool for node (1) at stepm = 1, P (1)1 , contains two blue and
one red answer, so node (1) becomes blue. In the third frame, them = 2
cycle is represented, and a new set K2 is selected. Node (1) sends its blue
view to the k chosen nodes. In the final frame, node (1) turns red as its
pool for node (1) atm = 2, P (1)2 , has a majority of reds, while node (7)
turns blue and issues a new blue query. The algorithm continues until the
mth cycle.
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tiple counters track the number of queries that have yielded a result of
≥ αk for their corresponding color. Whenever a successful query occurs,
the node increments its confidence counter for that color. A node will
switch colors when the confidence level for its current color becomes
lower than that of the other color. When a counter reaches the threshold
of β , the current color is accepted. Snowball is more resistant to attack
than Snowflake and serves as the backbone of the Avalanche protocol.

Avalanche Avalanche generalizes Snowball by implementing a dynamic,append-
onlydag of all known transactions. Eachdag vertex contains a collection
of items starting from the genesis vertex. The dag structure offers two
main benefits: (1) increased efficiency, as a single vote on a vertex implic-
itly means voting for all transactions on the path to the genesis vertex;
and (2) improved security, as the dag intertwines the history of transac-
tions, making it difficult for an attacker to reverse a decision without the
approval of the correct nodes, similar to the Bitcoin blockchain.

Figure 2.12: In Avalanche, Proof-of-Stake is used to determine the selection of a minter
to propose a new block. The minter is chosen based on the amount of
funds they have staked. Once the block is proposed, the minters must
reach consensus on the solution using the Snowball consensus process.
Upon successful consensus, the new block is added to the dag.
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Proof-of-Stake

Proof-of-Stake is a consensus mechanism that reduces the computational cost
of pow by requiring validators to put their funds at risk while participating in
the consensus process. Miners in pos systems are referred to as minters, and
the verification of nodes is not necessary due to the amount of stake held by
the minters. In pos, the honest majority of computational power is replaced
by the honest majority of stake values. To maintain the integrity of the single
history of records in pos systems, minters must honestly verify new blocks to
avoid having their stake slashed or destroyed. A pool of minters is selected at
each round to review newly proposed blocks, with the validators chosen based
on the amount of their stake. If a validator submits fraudulent transactions,
their stake will be destroyed and they will no longer be able to participate in
the system. On the other hand, honest minters are rewarded with additional
coins.

Avalanche consensus does not solely rely on pos, but it also incorporates the
substratebft-based-based consensus protocol earlier described,Snowball. pos
is utilized in Avalanche to prevent Sybil attacks and preserve the anonymity of
validators, while the stake of each minter plays a role in determining who will
lead the bft consensus at each round. Typically, validators with larger stake
are more likely to be selected for block proposal,making it difficult for dishonest
actors to execute a Sybil attack without risk of losing their funds. One major
concern with pos is the potential for centralization, particularly when stake
is based on financial resources. This can lead to a situation where the wealthy
become even wealthier, making it financially prohibitive for many individuals
to become validators and undermining the decentralization of governance. In
Avalanche, the minimum required stake for a validator is 2,000 AVAX,⁴ which
is equivalent to $ 30,000 in May 2023.

Directed Acyclic Graph

In contrast to a blockchain,dags do not impose a total ordering on transactions,
instead providing a partial ordering of decisions. dags are constructed using a
similar chain of cryptographic links logic as used in blockchains. For example,
in Avalanche, each vertex in the dag contains information about transactions,
the chain ID, a list of parent IDs, the epoch, and the version. This information is
hashed using SHA-256 to create a new vertex ID. The use of dags significantly

4. From Avalanche documentation at https://docs.avax.network/nodes/
validate/staking

https://docs.avax.network/nodes/validate/staking
https://docs.avax.network/nodes/validate/staking
https://docs.avax.network/nodes/validate/staking
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increases the frequency of block creation, as non-conflicting transactions can be
included simultaneously in two separate vertices that have a common parent,
as illustrated by the vertices b and c in Figure 2.13. At each vertex creation, the
consensus mechanism establishes a shared view of the updated dag.

Consensus Comparison

To summarize, Table 2.1 presents a comparison of the characteristics of various
consensus mechanisms. Ethereum was initially developed as a pow system. It
then adopted a hybrid approach, using both pow and pos, where pow was
used for more critical operations and pos was employed for the remainder. At
the time of writing, Ethereum has fully transitioned to using pos. Avalanche
implements both pos and bft solutions. Finality in pow systems takes longer
to achieve compared to Avalanche pos systems. In Bitcoin, for example, a
transaction is considered finalized once it has been included in six consecutive
blocks in the blockchain. However, the time it takes to create these blocks is
relatively slow in pow systems. pos and bft are generally faster and more
environmentally friendly solutions, while pow offers a more robust system
through the use of hash rate-based leader selection.

2.3 Machine Learning
ml algorithms are able to analyze large datasets and outperform humans in
classifying new data based on what they have previously learned. In contrast to

a

b c

d

e

Figure 2.13: When dags are used as a blockchain, we can establish a partial ordering
of the vertices. For example, we can determine that vertex a comes before
vertex c, vertex c comes before vertex e, and therefore vertex a comes
before vertex e. However, we have no information about the relative
ordering of vertices b and c.
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Consensus mechanism comparison
pow pos bft

Leader selection Hash rate Stake amount Trust
Energy consumption Significant Negligible Negligible

Speed (txs/s) Poor Good Good
Finality Poor Good Immediate

Applications Bitcoin,
Ethereum.

Ethereum,
Cardano,
Algorand,
Avalanche.

Avalanche,
Hyperledger
Fabric, Ripple,

Stellar.

Table 2.1: A summary of various consensus mechanisms.

traditional programming, which uses predetermined patterns to process data
and generate output,ml aims to create patterns by combining input data with
its corresponding output. In this section, we will explore the key elements of
ml and various types of ml models, with a focus on identifying the model
that potentially is best suited for our classification task. We will also consider
how large amounts of data available through public blockchains can be used to
formally define patterns for inclusion, given that miners follow certain criteria
for selecting transactions.

Figure 2.14: Traditional programming and ml.

Figure 2.15: This figure illustrates linear and non-linear classifiers, withmeasurements
for features depicted on different axes (f1, f2, f3). Each point, depicted as
either green or red, represents a labeled feature vector.
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2.3.1 Elements of Machine Learning
ml is a discipline focused on developing and understanding algorithms that
are able to learn from and improve their performance on a given task through
exposure to data [112]. ml has a wide range of applications, including data
clustering [113, 114], data transformation, and transfer learning [115]. In this
thesis, we utilize ml as an automated classification machine. Given a dataset,
our ml model must be able to label data that it has not seen before. In order
to achieve optimal classification performance, it is important to select the
most appropriate input features, which can be represented as a feature vector
that uniquely identifies a single object. A set of feature vectors constitutes a
training set, which is derived from the initial dataset and used to train the ml
model for future predictions on new data. In order to solve a classification task,
we can envision a classifier as a decision boundary that separates different
classes, as depicted in Figure 2.15. In some cases, linear classifiers such as the
perceptron, linear Support Vector Machines (svm), or Least Squares Methods
(lsm) can be used when the classes are linearly separable in two or more
dimensions [39]. However,not all problems are solvable through linearmethods,
so other techniques such as k-means, Random Forest (rf) [116], kernel svm,
or Neural Network (nn) [117] may be employed.

For the purpose of this study, features such as transaction fee and size may be
important, and a specific Bitcoin transaction can be represented as a feature
vector belonging to a specific class. Based on the complexity and variety of
features derived from the non-deterministic interaction of miners and users
in the Bitcoin ecosystem, a solution that can address a wide range of tasks is
required. Literature suggests that using a non-linear classifier is a safer option
in terms of solvability for non-linear problems, as it is generally injective (i.e.,
if a problem is linear, it can also be solved as a non-linear problem, but not vice
versa). Therefore, our approach follows this principle.

2.3.2 Types
The availability or scarcity of data plays a significant role in determining
the methodology employed by a ml model for classifying data. When a set
of labeled training data is available, the classifier is designed to utilize this
prior knowledge to train itself in a pattern recognition task called supervised
learning. When such information is not available, the given non-labeled training
set is used to identify underlying similarities and cluster similar feature vectors
together. This type of classification is known as unsupervised learning, and it is
applicable to a variety of fields, including social sciences and engineering, such



2.3 machine learning 41

as remote sensing, image segmentation, and image and speech coding [39].
Different algorithms can be used to implement each type of pattern recognition
task, with variations in complexity, speed, or efficiency. Careful selection of
the appropriate model algorithm can significantly impact the outcome of the
clustering task.

Supervised learning The ml task of learning a function that maps an input
to an output based on example input-output pairs is known as supervised
learning [118]. In this approach, a function is inferred from labeled
training data in order to map new, unlabeled examples. This is an optimal
solution when the training set is representative of the overall distribution.
Supervised learning models include svm, k-Nearest-Neighbors (knn),
perceptrons, and Artificial Neural Network (ann).

Unsupervised learning Theml task of learning patterns from unlabeled data
is known as unsupervised learning. Unsupervised methods have the abil-
ity to self-organize and capture patterns as probability densities [119].
This approach is particularly useful when the training data is limited.
Unsupervised learning models include clustering, k-means, and the Ex-
pectation–Maximization (em) algorithm. An example of an unsupervised
clustering task is shown in Figure 2.16.

Blockchains are public ledgers of data that can be accessed and read by anyone,
resulting in a large amount of data that is always available and retrievable.
Therefore, it is assumed that labeled data is always available and that the
training set is representative of the overall distribution, with no missing data.
Based on these assumptions, the classification task at hand requires a non-
linear classifier and a supervised approach. As a result, anns, specifically Deep
Neural Networks (dnns), were chosen as the model of choice, as ml theory
suggests that they are the most suitable solution for this problem.

Figure 2.16: This figure illustrates a clustering task, in which unlabeled data is grouped
into clusters based on a pattern that minimizes errors for feature vectors
belonging to the same guessed cluster, using methods such as euclidean
distance, probability density, or nearest neighbors.
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2.3.3 Artificial Neural Networks
Artificial Neural Networks (ANN), or Neural Networks (NN) for short, are
models inspired by the structure of the brain, including biological neurons
and synapses. nns are defined by Hopfield [120] as networks or circuits of
biological neurons, or, in a technological context, as being composed of artificial
neurons (or nodes). Each artificial neuron is a computational structure with
multiple inputs and a single output. The building block of an nn model is
the artificial neuron, and the simplest nn implementation consists of a single
artificial neuron with a set of inputs and a single output.

Artificial Neuron

An artificial neuron, also known as a perceptron, is an algorithm used to learn
a binary classifier, or linear discriminant function, that takes in a feature vector
as input and produces a value ψ (a) as output, where a is the result of the
weighted features plus the bias, andψ is an activation function that activates
the neuron and forwards the final output. Figure 2.17 illustrates the feature
vectors fff and weights www. The input to the activation function ψ is then the
dot product fff ·www plus the bias w0, which is formalized in Equation 2.3. The
bias term w0 is a randomly initialized value that shifts the discriminant and
increases the neuron’s ability to classify inputs. If the number of features is n,
then a is given by:

a =
n∑
i=0

fiwi +w0 (2.3)

The activation function is a non-linear function that is used to introduce non-

Figure 2.17: An artificial neuron, also known as a perceptron, receives a feature vector
fff as input and applies a set of weights www and a bias termw0. The resulting
output is then passed through an activation functionψ .
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linearity into nns. Without an activation function, a nn with N layers can
be reduced to a single linear layer, which is the linear combination of all the
other layers. The activation function determines how information is propagated
through the network. Some commonly used activation functions include:

Unit step function It sets the value to either 0 or 1, to elements that comes
before, or after a certain threshold. This function works well with binary
classifiers, but it is less suitable for problems concerning more than two
classes. Formally (a < 0) → ψ (a) = 0, and (a > 0) → ψ (a) = 1. The
neuron can either be active or non active, as the function can fire or
inhibit the neuron.

Sigmoid function One of the most commonly used activation function. It is
easy to analyze and to compute, and it provides a soft transition between
0 and 1, with a threshold of 0.5. The most used sigmoid function type
is the logistic function: ψ (a) = 1/1+e−a . The resulting curve is more steep
towards 0, meaning that a → 0 values are mapped in a significantly
distant space from each others. On the other hand, values for a → ±∞
are mapped not far enough for the neuron to change its activation, and
consequently, it will learn slowly or not learn at all. This is know as the
vanishing gradient problem. The output is a continuous value.

Rectified Linear Unit The Rectified Linear Unit (relu) activation function is
defined as the positive part of its argument:ψ (a) = a+ =max(0,a). It is
widely used because it is computationally efficient, as only comparison,
addition, and multiplication are involved. It offers a better gradient prop-
agation, with fewer vanishing gradient problems compared to sigmoidal
activation, as relu only activates after a certain threshold, and not in
both directions [121], it is scale-invariant, as max(0,ba) = bmax(0,a)
for b ≥ 0.

Softmax function The softmax function is often referred to as normalized
exponential function, and it is a generalization of the logistic function to
multiple dimensions. It is also commonly used as the last activation func-
tion of a nn. The softmax function is used for multi-class classification in
ann, and it normalizes the network output to a probability distribution
for every predicted class.

The implementation discussed in this dissertation utilizes a dnn with softmax
and relu activation functions.
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Deep Neural Networks

The nn architecture consists of multiple artificial neurons that are connected
together. Each neuron utilizes algorithms to process mathematical equations,
such as multi-dimensional polynomials (as described in Equation 2.3). Fig-
ure 2.18 illustrates a multi-layer nn with one hidden layer, input features (f1
and f2), and two potential outputs (green and red). In this model, the neurons
are organized into layers, with each layer fully connected to the preceding one.
The output of each artificial neuron in the previous layer serves as an input for
each neuron in the subsequent layer, as depicted by the arrows in Figure 2.18.
This type of ann is referred to as a fully connected nn.

A nn model learns through the process of training. The resulting trained
nn model is representative of the specific dataset it was trained on, so it is
important that the training set accurately reflects the desired pattern for the
classification task. Each input in the nn has a weighted parameter, allowing
for the classification impact of each input to be controlled and adjusted as
necessary. Every layer in the nn handles dependencies by calculating the
values of adjacent inputs, creating both weak and strong paths through the
network based on the activation functions. It is challenging to represent the
information contained within annmodel, and it is common for twonnmodels
trained on the same dataset to have different content.

The perceptron employs a discriminant function to linearly separate classes.

Figure 2.18: A fully connected Artificial Neural Network is depicted, with inputs, one
hidden layer, and outputs represented. Each input constitutes a feature
vector, and the hidden layer(s) can consist of one or multiple layers. The
connections between the various components of the ann are weighted
according to the strength of the relationship between a particular feature
and its corresponding outcome.
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In cases where this is not possible, and the classes are not linearly separable,
an arbitrary number of neurons (and therefore discriminant functions) can be
added to separate the classes. An example of this can be seen in Figure 2.19,
which depicts the OR and XOR problems plotted on a two-dimensional plane.
While the OR task can be solved with a single neuron (shown on the left plane
in Figure 2.19), due to its linear separability, the XOR problem requires a non-
linear classifier. The right plane of Figure 2.19 illustrates that two discriminant
functions can be used to efficiently classify the elements, meaning that two
perceptrons arranged in parallel (forming a layer of neurons) can be utilized
to solve this classification task.

Neural Networks are considered deep if they consist of more than one hidden
layer. Each layer trains a distinct set of features, which are determined by
the output of the previous layer. The hidden layers can be understood as an
ensemble of perceptrons that are arranged in parallel in order to solve nonlinear
classification tasks, and in series in order to combine previous information with
a new classification task. The use of weight calculations and dot products limits
the input data to be either floating point or integer values. In cases where the
points in the multidimensional space are widely scattered, it is often necessary
to employ normalization techniques.

Backpropagation is a key component of nns. It calculates weight gradients,
allowing the network to be trained by minimizing the loss function. This is
achieved through backward passes, updating the weights to bring the out-
put closer to the target [122]. The frequency of backpropagation depends on
the batch size of the training set. Negative gradients are propagated and
weights are adjusted to reduce errors within each batch. Training occurs over
multiple passes (epochs) of the entire dataset. The required training time
is indeterminate, as it depends on the distance the weights must move to

Figure 2.19: The OR and XOR problems demonstrate that a single perceptron is unable
to effectively distinguish between ones and zeros when plotted on a two-
dimensional plane using the XOR operation. However, the OR problem
can be solved through linear means.
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reach a solution. The minimum number of neurons, layers, and weights is also
indeterminable.

Residual Neural Networks

Residual Neural Network (resnet) implements skip connections in nn. The
construction of dnn using this technique is provided in a way to bypass certain
layers of the network. In a standard dnn, each layer is connected to the
subsequent layer such that the input to a given layer is the output of the
preceding layer. In contrast, skip connections allow the input to be passed
directly to a layer that is further down the network, effectively creating a
shortcut. This way, the network can learn not only from the output of the
preceding layer but also from the input itself, resulting in better training and
more accurate predictions.

Skip connections were first introduced in the resnet architecture in 2015 [123].
Since then, they have become a popular technique in neural network design,
particularly for dnns with many layers. By providing a way for information
to flow directly through the network, skip connections can help prevent the
vanishing gradient problem that can occur in very deep networks. This can lead
to improved performance and faster convergence during training, despite their
effectiveness may depend on the specific problem being addressed. In our study,
it has been determined that the implementation of the resnet architecture is
more effective and useful than standard dnn models.

Summary
This chapter provided a comprehensive overview of blockchain technologies
and their applications in cryptocurrencies. It covered the historical development
of blockchain, and the advantages and disadvantages of using blockchains in
various business sectors are explored. The chapter focused on explaining pow
and pos consensus mechanisms applied to cryptocurrencies such as Bitcoin
and Avalanche. The consensus protocol of Bitcoin is discussed, highlighting
its limitations at scale and alternative consensus mechanisms employed in
cryptocurrencies. Furthermore, a brief introduction to ml is provided, and its
role in this research is explained, including the specific ml models that have
been adopted.
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The Fee Market in Bitcoin
In this chapter we unravel principles and rules governing the Bitcoin ecosys-
tem at scale, focusing on user-miner equilibria and showing how these parties
depend on one another. We explain how miners make profits, what are their
resulting costs, and how such factors are crucial for transactions inclusion.
We discuss how a fee market emerges in pow-based blockchains, describing
the auction schemes that miners could adopt, and how this can lead to fee
dynamism in Bitcoin. Notions of cryptocurrencies and pow explained in Sec-
tion 2.2 are useful for understanding mechanisms and reasons behind main
issues in Bitcoin, including expensive fees, low throughput, and high energy
consumption. In this dissertation, we focus on high fees and overpaying, we
study how miner’s criteria for transactions inclusion changes over time, and
how these regime shifts are dictated by the mass adoption of Bitcoin and
its inner throughput limitations, favoring a fee market to emerge. The study
of such market is fundamental for our purpose of formalizing a transactions
inclusion pattern.

3.1 Profits in Proof-of-Work
In this section, we investigate mining revenue and costs. We formalize the
profit equation and calculate the cost of mining with and without fees. For that
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we take into account various parameters, such as electricity and Bitcoin prices
and individual and total hash rates. As we discuss in Section 2.2.1, the security
of the Bitcoin network increases as the number of miners grows. However, we
also show that the individual cost of mining rises in tandem with the total
hash rate, prompting rational miners to develop strategies for optimizing their
profit. This makes their critical role in securing the network more expensive
than originally intended, and therefore, it is essential to explore the sources of
profit for the sustainability of the system.

3.1.1 Formalization
In Section 2.2.1, we discussed coinbase transactions and explained that the
concept of creatio ex nihilo does not apply to digital tokens, as a certain amount
of computational work is required to secure the network. The coinbase transac-
tion enables miners to generate revenue from two sources: (1) transaction fees,
denoted asM; and (2) block reward, denoted as R. However, explaining miners’
profit solely in terms of coinbase transactions is overly simplistic. Rizun [9]
formalizes miners’ profit, denoted as 〈Π〉, as the difference between revenues
〈V 〉, and costs 〈C〉, as shown in Equation 3.1.

〈Π〉 = 〈V 〉 − 〈C〉 (3.1)

The expected cost for a single miner, denoted as 〈C〉, is formally defined in
Equation 3.2 as the product of its hardware’s price per hash, denoted as η, its
hash rate, h, and the time required to mine a block, denoted as T .

〈C〉 = ηhT (3.2)

Figure 3.1: Block reward R (BTC) and transaction fees M (USD) are represented
respectively on the left y-axis, and on the right y-axis. Public data of
Bitcoin fetched from blockchain.com at https://www.blockchain.com/
explorer/charts

https://www.blockchain.com/explorer/charts
https://www.blockchain.com/explorer/charts
https://www.blockchain.com/explorer/charts
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The expected revenue from mining is given by the earnings from the coinbase
transaction, denoted as M+R, multiplied by the probability of orphaning,1
based on the individual miner’s hashing power relative to the total hash rate
of the Bitcoin network, denoted as H . The expected revenue, denoted as 〈V 〉,
is formalized in Equation 3.3.

〈V 〉 = (R +M)
h

H
(1 − Porphan) (3.3)

Replacing equations 3.2, 3.3, and A.1, with Equation 3.1, the miner’s profit
equation is defined as:

〈Π〉 = (R +M)
h

H
e−

τ
T − ηhT (3.4)

A rational miner’s goal is to maximize 〈Π〉, which is inversely proportional to
the total hashing power of the Bitcoin network, but directly related to three
main factors: (1) the reward and transaction fees (R +M), (2) the individual
hashing power (h), and (3) the probability of not orphaning the block just
mined (1 − Porphan). The individual hashing power’s margin for increasing
revenue is minimal, as it is normalized with the total hash rate of Bitcoin.
Additionally, reducing the probability of orphaning a block would require
reducing the orphaning rate of the network, which a miner cannot directly
control. Considering that factors (2) and (3) have a diminishing effect on a
miner’s potential earnings, it can be concluded that a rational miner can earn
additional revenue solely from factor (1). Figure 3.1 illustrates the proportion
of miners’ earnings over time. As the mining reward is periodically halved every
210,000 blocks, transaction fees become the main source of revenue for miners in
the long run.

3.1.2 Calculations
To support our previous statement, we analyzed real-world miners’ profit using
the revenue and cost equations above. We observed that with a zero-fee policy,
miners struggle to make any profit and instead lose money unless the electricity
price is near zero. To conduct this analysis, we assume that miners are using
Antminer S19 Pro, which has a hashing rate of 110 TH/s and a Miner Power
Efficiency (mpe) of 29.55 J/TH. We then examine electricity prices (ep) for
countries with low (Qatarwith 0.032 $/kWh),medium (U.S. with 0.162 $/kWh),
or high (Denmark with 0.469 $/kWh) costs. Finally, we adapt Rizun’s equations

1. Detached or orphaned blocks are valid blocks that are not part of the main chain. They
can occur when two miners produce blocks at the same time, and one block gets discarded
because of higher propagation delay. See Appendix A.1
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to calculate the daily profit assuming a block creation time of ten minutes, a
Bitcoin price of $ 15,000, and minimum and maximum fees of $ 1 and $ 70,
respectively. We ignore the orphaning rate as it was recorded to be 0.31% of
blocks mined per day from 2014 to 20172, and Shahsavari et al. [124] measured
it to be even lower at 0.09%, resulting in a negligible decrease in daily revenue
if the block size is kept at 1.1MB. We calculate the daily profit 〈Π〉day as:

〈Π〉day = 〈V 〉day − 〈C〉day (3.5)

if s = 86,400 seconds in one day, we have:

〈V 〉day = дB
h

H
Bday дB = (R × BTCP) +M Bday =

s

T

〈C〉day = epηday ηday = sηh η =
mpe

3.6 × 1012

Since 1W = 1 J/s, the cost per hash in kWh/TH can be calculated by dividing
the mpe by 60 seconds/minute × 60 minutes/hour and then by 1,000 W/kW.
Since η is represented in kWh/hash, it is further divided by 1012.

Figure 3.2 shows profit calculations for miners using Antminer S19 Pro in
different countries. It is evident that, with the selected Bitcoin price of $ 15,000
and a reward of B 6.25, it is not feasible to expect low fees. In fact, with a
uniform fee of $ 1, mining is only profitable for individuals where the electricity
price is near zero. With the current Bitcoin hash rate, it is not possible to profit
with a uniform fee of $ 1 in the U.S., and a rational miner should not try to
recover from this loss by increasing their individual hash rate, as this will only
increase their mining costs. Looking at the first U.S. plot in Figure 3.2 and
fixing the x-axis value at the current Bitcoin hash rate while moving along the
y-axis, we can observe a downward profit trend as the individual hash rate
increases.

As shown in Table 3.1, the price of Bitcoin also plays an important role in
determining profit. However, this price cannot be controlled by miners, and
the uncertainty associated with it means that adopting a uniform fee of $ 1
will lead to a loss of profit in many different scenarios, such as changes in
the Bitcoin price, increases in the total hash rate, or shifts in electricity prices.
Table 3.1 also considers the upcoming scenario of halving the reward. It shows
that even with a uniform high fee of $ 70 per transaction, miners will have little
profit unless the Bitcoin price increases again above $ 30,000.

2. According to data stored in blockchain.info at https://www.blockchain.com/
explorer/charts/n-orphaned-blocks

https://www.blockchain.com/explorer/charts/n-orphaned-blocks
https://www.blockchain.com/explorer/charts/n-orphaned-blocks
https://www.blockchain.com/explorer/charts/n-orphaned-blocks
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Figure 3.2: The profitability of Bitcoin mining operations is influenced by several
factors, including the miner’s individual hashing power (e.g., 110 TH/s per
second for the Antminer S19 Pro) and the overall hash rate of the Bitcoin
network (currently 260EH/s). In this analysis, the cost of electricity is
considered for three countries: Qatar, the United States, and Denmark,
with average fees ranging from $ 1 to $ 70. The daily profit for these
miners is estimated to fluctuate between a loss of $50 and a gain of $ 100,
depending on the specific market conditions.

ep ($/kWh) Daily profit in U.S. dollars with $ 1 fee
Bitcoin price ($) 1000 10000 15000 30000 60000 100000
Qatar : 0.032 -1.99 1.43 3.33 9.04 20.47 35.7
US : 0.162 -12.13 -8.7 -6.8 -1.09 10.33 25.56
DK : 0.469 -36.08 -32.65 -30.75 -25.04 -13.61 1.61

Daily profit in U.S. dollars with $ 70 fee
Qatar 6.41 9.84 11.74 17.45 28.87 44.1
US -3.72 -0.3 1.6 7.31 18.73 33.96
DK -27.67 -24.25 -22.34 -16.63 -5.21 10.01

Daily profit with $ 70 fee and halved R

Qatar 6.22 7.93 8.88 11.74 17.45 25.07
US -3.91 -2.2 -1.25 1.06 7.31 14.92
DK -27.86 -26.15 -25.2 -22.34 -16.63 -9.01

Table 3.1: The profitability of the Antminer S19 Pro mining operation is influenced by
fluctuations in both the market price of Bitcoin and the cost of electricity.
At present, the Bitcoin network’s hash rate is measured at 260 EH/s.
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Why do fee-markets emerge?

As Bitcoin’s popularity grew, the number ofminers and total hash rate increased,
resulting in a significant loss in miners’ revenue. This popularity also translated
into more transactions being submitted per second, leading to increased compe-
tition for inclusion due to the inherent throughput limitations of pow (1 block
every 10 minutes). As discussed in Chapter 3.1.2, rational miners cannot rely
on the price of Bitcoin for revenue, and they should not attempt to compensate
for the loss of profit due to the rise of the total hash rate (H) by increasing their
individual hashing power (h). Their mining power would be outperformed by
H regardless of any individual boost, and the total costs would increase. The
only rational way for miners to continue profiting is to change their behavior
towards transaction inclusion in a profit-oriented manner, focusing on fees and
transaction size.

3.2 Auction Market Types
This section presents different auction schemes that can be adopted by miners
when fee markets emerge in pow-based blockchains. In an auction market,
buyers and sellers enter competitive bids simultaneously, and the good trades
when the highest bidding price matches the lowest selling price. This com-
petitive bidding process helps determine the equilibrium price at which the
market clears and the trade is executed. For pow-based cryptocurrencies, min-
ers act as auctioneers while users are bidders. The users are buying space in
the next mined block, while the miners are selling their block space availability
as competition increases. In the largest blockchain implementations of Bitcoin
and Ethereum, miners have adopted different inclusion schemes over time, in-
cluding the well-known First-Price Sealed-Bid Auction (fpsba), Uniform-Price
Auction (upa), and Second-Price Auction (spa).

3.2.1 First-Price Sealed-Bid Auction
A fpsba is a common type of auction in which all bidders simultaneously
submit sealed bids, unknown to other participants. The highest bidder pays the
submitted or truthful price. For pow-based blockchains governed by miners
who use fpsbas, users propose their transaction fees without knowing the bids
of other users. If their transactions are included in a block, the submitted bids
will be paid. While Bayesian Nash equilibrium (bne) (see Appendix A.3) is
efficient forfpsbas with identical items and symmetric bidders, these equilibria
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are unlikely to occur in practice. The result is a strategic bidding scheme in
which transactions initially bid low and then increase their fee if approval is
taking too long. This scheme leads to fee instability in Bitcoin, particularly
when the number of transactions to be processed increases and bidders fear
being left out of the next mined block. Figure 3.3 shows different outcomes for
two bidders. The first bidder, who submits tx1, overpays for their space in the
block due to incorrect assumptions about other sealed bids, while the second
bidder, with tx2, is able to be included with a minimal fee increment.

3.2.2 Uniform-Price Auction
The upa scheme, as depicted in Figure 3.4, charges each bidder with the price
paid by the lowest included bid. The concept behind this approach is that any
bidder can offer as much as they believe their transaction is worth, regardless
of the size of their bid. This means that a bidder’s bid may be high, but they
will not necessarily have to pay that amount unless every other offer is equally
high. This scheme allows bids to affect only their inclusion in the next block,
and not the price paid (non-truthfulness concept).

If a bidder offers a price of x for a transaction tx and that transaction is
included in a block, the bidder will pay a fee that is less than or equal to x .
If the minimum price required for inclusion in the block is higher than x , the

Figure 3.3: In this scenario, Users 1 and 2 submit transactions tx1 and tx2, respectively,
but the fees they have paid are insufficient to be included in Block 1.
User 1 then proposes a new bid using the average of all fees in Block 1.
However, the other bids in Block 2 are considerably lower, resulting in User 1
overpaying for their transaction. User 2 instead decides to slightly increase
their fee without taking into account the fees of previous transactions, and
in this particular case, this strategy is successful. When miners adopt the
fpsba scheme, fee unpredictability is common.
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transaction will not be included since the bidder is not willing to pay more
than x .

Despite this solution generally preventing overpayment, in a fee market gov-
erned by rational and profit-oriented miners, it can result in two major weak-
nesses: (1) a block proposer can include their own transactions in a block
in order to increase the clearing accepted price (as illustrated by the red $ 2
transaction in Figure 3.4); (2) a block proposer could collude with some por-
tion of bidders, asking them to submit higher offers and then refunding them
through a separate channel. These attacks are possible because a bidder can
substantially boost a miner’s revenue by making only a slight increase in their
bid. In contrast, the fpsba does not exhibit this vulnerability.

3.2.3 Second-Price Auction
Even though the fpsba method discourages auctioneers from including their
own transactions, bidding the true valuation can at times hinder the achieve-
ment of Nash equilibrium. An alternative solution, known as the spa, or Gen-
eralized Second Price (gsp), is a non-truthful bidding method for multiple
items. In this scheme, each bidder places a bid and, if there are more bids than
available slots (N > K), the slots are assigned from the highest to the lowest
bid. Unlike the fpsba, the highest bidder pays the second-highest bid, the

Figure 3.4: In this scenario, Users 1 and 2 submit transactions tx1 and tx2, respectively,
but the fees they have paid are insufficient to be included in Block 1. User
1 then offers the previously accepted fee of $ 0.8, while User 2 slightly
increases their fee. Although User 1 does not overpay, a rational and profit-
oriented miner may still choose to exclude User 2’s transaction and include
one of their own transactions instead (e.g., the red $ 2 one) in order to raise
the clearing price to $ 0.8 rather than receiving a uniform compensation
of $ 0.3, as no other bidder was offering more.
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second-highest bidder pays the third-highest bid, and so on. This is illustrated
in Figure 3.5, where each bidder, if their bid is among the top K bids (top 3
in Figure 3.5), pays the highest bid before their own. In this example, tx1 is
among the top 3 bids for Block 2 with k = 2, and therefore it pays the k = 3
bid.

Designing a mechanism to improve the fpsba in Bitcoin is challenging, as
an spa scheme can easily be manipulated by miners who can submit fake
transactions after observing the fees in the mempool. Miners can use any
criteria for including transactions and can manipulate the results of the auction
after learning the proposed fees, which can lead to overpayment as shown in
Figure 3.6.

3.3 Evolution of Transaction Fees
The policies that miners follow for the inclusion of transactions in blocks
are not publicly known, making it difficult to determine the adopted auction
scheme and the preferred patterns used by validators. However, it is known
that transaction fees in the Bitcoin network have evolved from a mining-based
structure to a market-based ecology [125]. The distributed nature of Bitcoin and
the absence of a central authority contribute to a dynamic fee structure that can
be unpredictable due to a range of endogenous and exogenous factors.

Figure 3.5: In this scenario, Users 1 and 2 submit transactions tx1 and tx2, respectively,
but the fees they have paid are insufficient to be included in Block 1.
Despite this, tx2’s fee is used to pay for the last bid included in Block 1.
User 1 then offers a higher fee of $ 0.9, while User 2 only slightly increases
their fee without being aware of the auction scheme adopted by miners.
As a result, User 1’s transaction is included in Block 2 at position k = 2,
with a fee pool of [1, .9, .8, .3]. This means that User 1 pays the bid of the
user in position k = 3, which is $ 0.8.
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This section discusses the implications of these changes and provides an
overview of previous research on high fees, pow limitations in terms of scal-
ability and throughput, and the factors that influence miner behavior. Early
works in 2014 [126, 127] anticipated the high fee issue before it occurred, and
later research in 2017 [65, 57] examined the relationship between transaction
fees and latency. Understanding the evolution of transaction fees in Bitcoin is
important as it can provide insight into the potential evolution of fee markets
in other pow-based systems at scale.

3.3.1 Donations for Miners
The Nakamoto [8] paper states that Bitcoin is designed as a low-cost payment
scheme, with occasional fees serving as an incentive for miners:

“The incentive can also be funded with transaction fees.”
Nakamoto [8]

The quote suggests that miners can often ignore transaction fees. Furthermore,
in the official online documentation of Bitcoin before 2014 [126], we read:

“At the moment, many transactions are typically processed in a way
where no fee is expected at all, but for transactions which draw coins
from many bitcoin addresses and therefore have a large data size, a
small transaction fee is usually expected.”

While such statements may be true in relatively small environments, they do
not take into account global Bitcoin adoption. Already in 2014, the study of
Kaskaloglu [126] discussed the issue of high fees. The author argues that an
increase in transaction fees in Bitcoin is inevitable, transforming the so-called
donations into real fees. Donations are financially unsustainable in the long
term for two reasons: (1) the cost of mining, and (2) mitigating the 51%attack.
The cost of mining depends on electricity prices and the variation between
individual mining power and the total hash rate. To mitigate the 51% attack,
a majority of hashing power must remain honest, leading security in Bitcoin
to follow the principle of the more miners the merrier, which in turn increases
mining costs.

Bitcoin is also highly energy inefficient by design, and to prevent Sybil attacks,
the work required to secure blocks must be difficult for miners but easy to verify
for any verifier, as a form of nondeterministic polynomial time (np) decision
problem. The predetermined parameter T makes it impossible to speed up
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the mining process, and as the total network hash rate increases and costs
rise, miners must find new ways to generate profits. Other exogenous factors
such as difficulty, Bitcoin price, and cost of mining can change in a dynamic
ecosystem ofminers, investors, and users, resulting in an unpredictable scenario
for determining fees and prices.

Distributed governance enables Bitcoin to transition from its current opera-
tional mode, where transaction fees are mostly a voluntary tip to miners, to
a situation where a fee market effectively regulates all traffic. With such a fee
market, low-fee transactions may potentially remain pending for hours, days,
or even weeks while waiting for approval and inclusion by a miner. As the
energy demands of the Bitcoin network increase and mining becomes more
costly, the transition to a fee market becomes more evident. Despite being
designed as a low-cost payment scheme, the system has become expensive for
all parties involved.

3.3.2 Fee is Mandatory
Later studies began to examineminers’ behaviorwith respect to transaction fees.
In 2015,Möser and Böhme [127] acknowledged the role of fees as a critical factor
in the stability of the system. The study provided empirical evidence of agents’
behavior regarding payment of transaction fees, along with several regime shifts
caused by changes in the default client software. The research demonstrated
the trend of a long-established pow-based blockchain moving towards a fee-
oriented market. Two years later, Bitcoin experienced a significant scalability
issue with regard to transactions. Blocks became saturated and miners started
to reject zero-fee transactions, in what appeared to be a fixed price auction
scheme.

In 2017, we conducted a study [65] that investigated the relationship between
fees and waiting times. Our findings suggest that latency and fees are in-
versely related, although spending more than 300 sat/byte was found to be
ineffective.

In 2019, Easley et al. [125] examined endogenous and exogenous features of
Bitcoin. Endogenous properties, which can be changed internally by users or
miners, include transaction fees and the voluntary inclusion of transactions by
miners. In contrast, exogenous properties, which are imposed by the Bitcoin
protocol, include factors such as block size, network difficulty, and block reward.
Althoughwaiting time is influenced by both endogenous and exogenous factors,
not all external factors affect transaction inclusion. For example, block reward
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(R) does not impact waiting time. If delays are reasonable, a fpsba scheme
may be effective, as transactions carrying a minimum fee will eventually be
included. However, as the number of transactions per second increases, fpsba
has been shown to be a costly solution for users.

3.3.3 Overpaying
Figure 3.6 illustrates the average transaction fee per transaction in Bitcoin
from 2016 to 2022. From this data, we can observe that the scheme adopted by
miners led to excessive fee payments, particularly when blocks were saturated
in 2017 and 2022. The fpsba scheme has failed to provide users with stable
prices for their services, and historical analysis shows that Bitcoin users could
have saved $ 272,528,000 in transaction fees, while miners could have reduced
the variance of fee income by an average factor of 7.4 times [128]. Clearly, an
fpsba market is unsuitable for large-scale pow blockchains. The market does
not provide stable coin prices, resulting in unpredictable transaction fees and
enormous variance. Additionally, capacity and demand do not always align,
forcing users to overpay for space in the block.

In 2018, Ethereum co-founder Vitalik Buterin proposed improving how miners
in Ethereum are paid by adopting the upa scheme [129], which benefit both
miners and users. As discussed in Section 3.2.2, the proposed solution mitigates
overpayment as no transaction affects the fee paid by other transactions. How-
ever, it also has major drawbacks, such as the potential for malicious miners to
increase the fee paid by every bidder.

The study of Messias et al. [130] reveals that miners in practice deviate from
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Figure 3.6: The chart shows the daily average of Bitcoin transaction fees in USD from
2016 to 2022, with significant unexpected spikes that result in excessive
fee payments for users. Data source: blockchain.com at https://www.
blockchain.com/explorer/charts/fees-usd-per-transaction.

https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
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the fpsba scheme and instead adopt alternative strategies. A commonly used
approach by many fee estimators is to adopt the fee-per-byte dequeuing policy,
where transactions are ordered by their feerate (fee per byte) rather than by
their fees. This has significant economic implications for users, as overpayment
is the norm. Messias et al. [130] demonstrate that in June 2019, more than
30% of transactions offered a feerate that was two orders of magnitude higher
than the minimum recommended.3

Basu et al. [128] introduce a mechanism inspired by the gsp, where each
transaction is assigned a value. Every bidder knows their assigned value and
the number of bidders, but not the values assigned to other bidders. Prices
are paid using a upa, where all bidders pay the (K + 1)th bid. This could
be a potential solution for Bitcoin if miners could commit to an auction form
and the protocol could use bids to resolve payments. Another variant of the
gsp auction model is presented by Li et al. [131, 132], where they employ a
novel rank-by-cost rule to order transactions. The cost is calculated using the
user-submitted fee and the waiting time. With this approach, they show that
the daily saved fees for users can reach an average of B 24.5985. Our model
for transaction inclusion does not rely on a single auction scheme. Instead,
we group the possible K -slots available at every block epoch and use a novel
ranking system based on feerate, waiting time, and current space available in
the block to generate a scheme that is likely followed by miners.

3.3.4 Miners and Users Equilibria
Figure 3.7 compares the evolution of transaction fees with exogenous factors
such as the total hashing rate in Bitcoin and the number of new incoming
transactions in the mempool. The first plot shows that the hashing rate, which
affects difficulty, does not appear to have a significant impact on transaction
fees. Drops in the total hashing power are caused byminers leaving the network
(e.g., May-June 2021), as they no longer have incentives to continue mining
due to low fees or high mining costs. The overall hashing rate has followed a
monotonically increasing trend, indicating that it has always been profitable for
miners to mine. The second plot in Figure 3.7 shows that the mempool count
and transaction fees follow a similar trend. Although we acknowledge that
correlation does not imply causation, an understanding of pow ecosystems
can help us make educated conjectures about miner behavior. We observe that
when the rate of incoming transactions is low, fees tend to be lower. However, as
the mempool starts to fill, the equilibrium shifts, and only high-fee transactions

3. 10−5 BTC/kB ≡ 1, 000 sat/kB ≡ 1 sat/byte, according to Bitcoin Core
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are included by miners. In May 2017, the influx of new incoming transactions
saturated the mempool, resulting in high fees (in BTC) but low relative USD
value due to the favorable BTC-USD conversion rate for USD fees.

The transaction fee equilibria between miners and users must take into con-
sideration a range of factors, such as the price of Bitcoin, the cost of elec-
tricity, and network difficulty, which exhibit strategic complementarity. Often,
such equilibria are Pareto-ranked,⁴ as transaction fees can lead to user non-
participation, and conversely, low fees can cause miners to exit the market.
The unpredictability of pow-based blockchain systems at scale, coupled with
the insecurity stemming from the uncertain non-inclusion of transactions, can
result in overpayment. Increasing transaction fees may attract more miners,
but it also raises the difficulty level, thereby increasing the costs of mining.
This demonstrates that higher revenue does not necessarily equate to higher
profits. Figure 3.8 presents the calculation of the revenue over time for a single
miner using Antminer S7 from 2015 to 2017, Antminer S9 from 2018 to 2020,
and Antminer S19 Pro from 2020 under the assumption that no fees are paid
by users. It should be noted that the profit is also influenced by changes in
electricity prices, Bitcoin hash rate, Bitcoin price, and block rewards over time.
Our analysis shows that revenue was particularly high when the Bitcoin price

Figure 3.7: Factors that may contribute to high fees in Bitcoin are represented by the
sum of transaction fees (in USD) paid daily from 2016 to 2021. This value
is compared first with the total hashing rate in Bitcoin and then with the
daily mempool count, which is the number of new incoming transactions
submitted to Bitcoin each day. Open and available data of Bitcoin are
fetched of blockchain.com.

4. No improvements can be made to at least one participant’s well-being without reducing
any other participant’s well-being

https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
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increased in late 2017. However, despite the fact that the Bitcoin price was
even higher in 2020, revenues were lower due to an increase in the total hash
rate. We also observe that revenues began to increase again after January 2021,
possibly due to a decrease in the number of miners on the network (as indicated
by the drop in hash rate in Figure 3.7). Determining a pattern for transaction
inclusion poses a dynamic challenge for the evolving Bitcoin blockchain, where
transaction fees cannot solely determine inclusion. Our approach offers an
alternative by considering fees as a significant factor in transaction inclusion,
but not the only one.

Approach

Our objective is to address two key challenges arising from the fee market in
Bitcoin: (1) unpredictability of fees and (2) instances of users overpaying. For
this, we propose to construct a model that employs ml techniques, such as
a multi-layer nn, to define a pattern for the inclusion of transactions in the
Bitcoin network. The model considers both the block size and the mempool
size, which sets it apart from traditional fpsba predictors. Additionally, we
incorporate features that are not fee-based so that our model is not solely
dependent on a spa scheme for its predictions.
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Figure 3.8: The calculation of revenues without fees takes into account the total hash
rate of Bitcoin, its price, and historical electricity prices in the United
States from 2016 to 2022 for each point. The block reward decreases from
a starting value of B 50 to B 6.25, and it is assumed that a miner will switch
from using the Antminer S7 (released in 2015), Antminer S9 (released in
2017), to the Antminer S19 Pro as mining hardware advances. We derived
the revenue using open data of Bitcoin about total hash rate, transac-
tion fees, and Bitcoin price, fetched on blockchain.com at https://www.
blockchain.com/explorer/charts/fees-usd-per-transaction.

https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
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The utilization of ml models for the identification and prediction of patterns
within large datasets has been widely adopted across various fields. For exam-
ple, in the field of hydrology studies such the one by Diez-Sierra and del Jesus
[133] have employed large amounts of data to recognize patterns and trends.
Similarly, within the domain of network security, research such as Nanda et al.
[134] have leveraged these models to detect and prevent cyber-attacks. Addi-
tionally, the work of Yazdinejad et al. [135] has demonstrated the efficacy of
ml techniques in identifying cryptocurrency malware threats.

When analyzing patterns related to transaction inclusion, a significant volume
of heterogeneous data is often encountered, which necessitates organization
and structured analysis. An ml-based approach, in this case, allows for pre-
dictions and decisions to be made using a subset of the data (i.e., training
data) and has been widely adopted across multiple industries, including ed-
ucation [136, 137], business and marketing [138, 139], healthcare [140, 141],
financial services [142, 143], and transportation [144, 145]. As was demon-
strated in our previous study [57], the utilization of ml techniques to analyze
and identify patterns in large datasets is a viable approach, and the transparent
and readily available Bitcoin blockchain serves as an excellent source for this
purpose.

Summary
This chapter delved into the principles and rules that govern the Bitcoin ecosys-
tem at scale, with a specific focus on the interdependence between users and
miners. We explored how miners generate profits, the associated costs they
incur, and the crucial role these factors play in determining transaction inclu-
sion. We also presented mining profit calculations for corner case countries
with an high, medium, and low electricity price, and show how mining can be
profitable or not. The emergence of a fee market in pow-based blockchains,
including miners’ auction schemes, is discussed, emphasizing its impact on fee
dynamics in Bitcoin. Understanding this market is crucial for formalizing a
transaction inclusion pattern.

In the upcoming chapter, we outline our data acquisition and organization
methodology. We discuss essential elements for proper model functioning and
explore unnecessary elements. We cover different data acquisition methods,
such as using the Bitcoin core client software and external apis. The effective-
ness of our approach relies on optimizing and organizing the dataset to meet
our objectives.
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Blockchain Analytics
System
In this chapter, we present the methods and techniques used for data acquisi-
tion from the Bitcoin blockchain, as well as the structure of our dataset. Our
study employs a combination of web scraping, apis, and direct access to the
blockchain using dedicated Bitcoin Core software, to acquire relevant data. The
acquired data is structured and pre-processed to be suitable for the analysis in
the following chapters. The system we designed and implemented to automate
these tasks is referred to as the Blockchain Analytics System (BAS). This chap-
ter provides an overview of the data acquisition process and the structure of
the dataset, including any cleaning or pre-processing steps taken, which will
be used in the subsequent analysis.

4.1 Data Sources
The Bitcoin blockchain is a rich source of information that can be used to gain
valuable insights into the workings of the Bitcoin network and its underlying
technology. Despite the availability of this data, the process of acquiring and
storing it in a manner that is suitable for analysis requires a comprehensive
understanding of the underlying technology as well as the various methods and
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tools available for data collection. The sheer volume of data generated by the
Bitcoin network can exacerbate the difficulty of this task. Effectively collecting
and storing data from the Bitcoin blockchain necessitates a combination of
technical expertise and careful planning to ensure that the data is acquired
in a manner that is both efficient and rigorous. In this study, three distinct
methodologies are employed to acquire blockchain data: utilization of web
sockets and apis offered by blockchain.com, utilization of the Bitcoin Core
client software, and implementation of web scraping techniques.

4.1.1 Web Sockets and APIs
The blockchain.com website offers web socket apis as a service.1 While we
have not extensively utilized this service, we found it useful for real-time
monitoring of the Bitcoin mempool. Specifically, it allows for the observation
of the number of pending transactions awaiting confirmation. To monitor
pending transactions,we subscribed to a designated endpoint and implemented
a process to periodically update a local file at regular intervals. This file stores
the hash of each retrieved unconfirmed transaction. Through this method, we
were able to compare instances of unconfirmed transactions to the contents of
the file and subsequently identify those that have been confirmed, allowing for
their removal from the list.

Pseudo-code in Algorithm 1 demonstrates how to use web socket apis to
fetch unconfirmed transactions in the Bitcoin network. We assume that the
WebSocketAPI class has implemented methods for subscribing, fetching data,
and unsubscribing. Our processData() function is available to process the
fetched data, and to manage the storage of unconfirmed transactions on a local
level. This includes periodically updating the unconfirmed transactions at a
specified timer interval and removing transactions that have been approved
upon the creation of new blocks.

bas primarily obtains stored information from the blockchain.com2 platform by
utilizing their restful apis. bas includes a function dedicated to the retrieval
of block information, FetchBlocks() in Algorithm 2, utilizing restful api
endpoints (e.g., the RAW BLOCK endpoint listed in Appendix C.1) to fetch and
store said information within a locally maintained dataset.3 The FetchBlocks
function in Algorithm 2 takes three parameters: the hash of the block where

1. connection URL: wss://ws.blockchain.info/inv
2. blockchain.com at https://www.blockchain.com/explorer/api
3. Raw block endpoint at height 600000: https://blockchain.info/rawblock/
600000

https://www.blockchain.com/explorer/api
blockchain.com
https://www.blockchain.com/explorer/api/api_websocket
wss://ws.blockchain.info/inv
https://www.blockchain.com/explorer/api
https://www.blockchain.com/explorer/api
https://blockchain.info/rawblock/600000
https://blockchain.info/rawblock/600000
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Algorithm 1 Retrieve unconfirmed transactions using web sockets.
1: procedure FetchUnconfirmedTxs(timer, sub, unsub)
2: ws← WebSocketAPI(sub, unsub)
3: ws.subscribe() . subscribe at {"op":"unconfirmed_sub"}
4: while True do . time listening the socket is arbitrary
5: sleep(timer)
6: unconfirmed_txs = ws.fetchData()
7: processData(unconfirmed_txs) . manipulate data, store it locally
8: ws.unsubscribe() . unsubscribe at {"op":"unconfirmed_unsub"}

the retrieval should start, if it is not provided, it will try to read from a previous
stored file; the number of blocks to be fetched; a boolean read flag, that
if set to True, it will read from a previous stored file. The function uses a
getJson() procedure to fetch the json data of the first block (starting from
the provided hash or height) and converts it into a Block and Transaction
objects. On each iteration, the json data of the current block is obtained,
parsed into a Block object, and appended to the previously initialized block
dataset (dsb in Algorithm 2).

Additionally, a transaction dataset (dst in Algorithm 2) is initialized and popu-
lated with transaction objects extracted from the current block. The iteration
proceeds by updating the hash to the next block, until the specified number of
blocks have been downloaded. The function ultimately returns both the block
and transaction datasets.

4.1.2 Bitcoin Core
Bitcoin Core is the reference open source implementation of the Bitcoin pro-
tocol.⁴ That provides functionality for full node participation were the entire
history of the Bitcoin blockchain is downloaded and maintained on the user’s
device. Bitcoin Core is considered the most secure implementation of the Bit-
coin protocol but also requires a significant amount of storage and memory to
run. In our case, we hosted a full node on Azure, which is currently maintaining
a storage capacity of over 400GB for the purpose of holding blockchain data.
The process of retrieving data from the Bitcoin Core platform can be challeng-
ing in terms of efficiency and time. One specific example is the calculation
of transaction fees, which requires the examination of spent outputs across
multiple transactions, as a result of the Unspent Transaction Outputs (utxo)

4. https://bitcoin.org/en/bitcoin-core/

https://bitcoin.org/en/bitcoin-core/


66 chapter 4 Blockchain Analytics System

Algorithm 2 Retrieve block information using restful api.
1: procedure FetchBlocks(hash, n, read)
2: dsb← Pandas.DataFrame() . initialize block dataset
3: if read is True then
4: dsb, dst← readDS() . read last stored dataset instance
5: else
6: for 0 to n do
7: data← getJson(RAW BLOCK + hash) . raw block endpoint
8: b← Block(data) . create a Block instance
9: dst← Pandas.DataFrame() . initialize transaction dataset
10: for all tx in b do
11: t← Transaction(tx, b) . create Transaction instance
12: append(t, dst) . append row to dst
13: append(b, dsb) . append row to dsb
14: hash← b.next_block
15: return dsb, dst

model implemented by Bitcoin.

During our experiments we have observed that Algorithm 3 results in an
average retrieval time of 30 seconds for fee information within a single block.
In contrast, utilizing apis for data retrieval can provide the same amount of
fee information across 10 blocks within the same time frame, illustrating a
significant improvement in efficiency.

Algorithm 3 Obtaining information about one transaction fee in Bitcoin Core.
1: procedure getTxFee(t)
2: sin, sou← 0 . sums of transaction inputs and outputs
3: for inp in t.vin do . for each input in t
4: index← inp.vout . index of the spent output in inp
5: txin← getRawTransaction(inp.txid) . local call using bitcoin-cli
6: vin← txin.vout[index].value . current input value
7: sin← sin + vin . update transaction input
8: for out in t.vout do . for each output in t
9: vou← out .value . current output value
10: sou← sou + vou . update transaction output
11: return sin - sou . return transaction fee

The function detailed in Algorithm 3 is utilized to calculate the transaction
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fee of a given transaction in json format. The algorithm iterates through
the transaction inputs, t.vin, of the transaction and retrieves corresponding
information by utilizing the getRawTransaction command provided by the
Bitcoin-cli (Appendix A.1). The sum of all inputs, sin , is then computed. Subse-
quently, the algorithm iterates through the transaction outputs, t.vout, and
computes the sum of all outputs. The transaction fee is calculated as the dif-
ference between the sum of inputs and the sum of outputs. The function then
returns this value as the transaction fee.

4.1.3 Web Crawling
The use of web crawling for data acquisition, presents a significant challenge
due to the need for a comprehensive analysis of each individual html page.
This process cannot be easily fully automated, and thus requires manual ex-
amination of each page. In our study, we utilize web crawling only in specific
instances where alternative methods of data retrieval are not feasible. One
example is the identification of miners utilizing their names rather than IP
addresses, as this information may not be readily available through alternative
means. The class representation of the web crawler, as depicted in Figure 4.1,
illustrates the inheritance relationship between the classes TransactionPage,
BlockPage and the parent class Page. The former two classes implement spe-
cific methods, namely get_latency(), get_fee(), and get_miner(), which
extract and parse relevant information such as the latency of a transaction
in seconds, the transaction fee in satoshi,⁵ and miner information, from the
content of an html web page of a certain transaction, or block, on the Bitcoin
blockchain. Algorithm 4 is an example of how the crawler methods work. The
helper function findHTML() takes in a page content string, a starting substring,
and an ending substring as input. It finds the first occurrence of the starting

TransactionPage

+ hash: str

+ get_latency(): int

+ get_fee(): double

BlockPage

+ hash: str

+ height: int

+ get_miner(): str

Page

+ page_content: str

+ get_page_content(): str

Figure 4.1: A class diagram representing the entity-relationship model for web crawler
classes, with the TransactionPage and BlockPage classes inheriting
from the Page class, and implementing methods for obtaining transaction
latency, fees, and miner from the web page content.

5. satoshi, or sat, is the unit of Bitcoin, 1satoshi = 0.00000001 BTC
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substring in the page content and finds the first occurrence of the ending
substring after it. It then returns the substring of the page content between
these indexes, or an empty string if either substring is not found.

Algorithm 4 Retrieving transaction fee from an HTML page.
1: procedure get_fee
2: p← find ’Fees’ in page content and returns a portion
3: p← findHTML(p, ’">’, ’BTC</’) . start and end char
4: fees← re.findall("\d+\.\d+", p) . find float
5: fees← float(fees[0]) ×108 . from BTC to satoshi
6: return fees

4.2 Data Structure
Once the data is retrieved, it is stored locally in the following structure:

dataset
Mmm-yy : samples for a specific month and year

blocks
info.txt : metadata for block files
DB : block dataset, partitioned every 30MB

transaction
info.txt : metadata for transaction files
DT : transaction dataset, partitioned every 30MB

Our approach to data storage involves separating blocks and transactions, and
storing their respective information in separate datasets. This design mitigates
redundancies and conserve storage space, as certain information pertaining
to blocks is deeply ingrained within every transaction, and would otherwise
be repeated numerous times within a single block. Hence, we categorize the
datasets containing raw transactions and raw blocks, referred to as DT and
DB , respectively, as those in which information is stored in its original format
as it was fetched, prior to any processing or feature engineering. The data is
organized by month, for facilitating the construction of ml models and the
evaluation process in the future. To mitigate the potential issues associated
with handling large files, the transaction dataset is partitioned into smaller files
with a maximum size of 30MB. The file structure of the dataset is depicted
above and a portion of the dataset have been made publicly available on the
Dataverse platform as referenced in [89].
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4.2.1 Blocks
For each month the block folder contains the metadata file, info.txt (Ap-
pendix C.2), and the data. The former serves as ameans to store key information
about the dataset, such as the start and end date, start and end hash, and the
number of blocks retrieved. The latter comprises information about the blocks
that occurred during that month. The Block class in Figure 4.3, is a represen-
tation of a single block in the blockchain, and is instantiated with a block in
json format. It comprises various attributes, both raw data, which are saved
as they are retrieved, such as the block hash, height, hashes of previous and
subsequent blocks, or block size. Processed data derives from various attributes
or is acquired from external sources when those attributes are not available
within the json object, for instance, the block creation time.

The Algorithm 5 defines two methods for calculating processed data. The
get_miner() procedure uses theweb crawler defined in Section 4.1.3 to retrieve
information about a miner associated with a block. The get_bct() procedure
calculates the block creation time by fetching the previous block from the
analyzed block’s epoch.

Algorithm 5 Block’s methods.
1: procedure get_miner . using web crawler to get miner info
2: return BlockPage(self.hash).get_miner()
3: procedure get_bct . block creation time
4: prev_b← getJson(RB + prev_b) . fetch previous block
5: return self.epoch − prev_b.epoch

4.2.2 Transactions
Similarly to that of the block files, the transaction folder comprises the
metadata file, referred to as info.txt, as well as the corresponding data. The
representation of the Transaction class is illustrated in Figure 4.3, and, similar
to the block files, it encompasses both raw and processed data. Algorithm 6
outlines the methodology utilized to calculate the processed features for each
retrieved transaction. The calculation of the transaction fee is accomplished by
utilizing information regarding the inputs and outputs of the transaction, as
described in Appendix C.3. As this information, present in the json response,
is not germane to our research objectives, it is not retained in our local dataset
DT .



70 chapter 4 Blockchain Analytics System

Algorithm 6 Transaction’s methods.
1: procedure get_tl
2: return self.b_epoch − self.epoch
3: procedure get_delta . transaction waiting time
4: prev← self.b_epoch − self.bct . previous block epoch
5: return prev − self.epoch

4.2.3 Data Processing Pipeline
Figure 4.2 illustrates the data processing pipeline in the bas system, starting
with the retrieval of data from various sources, as described in Section 4.1. Most
of data exchanged between the sources and the ingestion engine is through
jsonmessages. Processed data is stored locally using the Pandas library [146].
The ingestion engine performs pre-processing, selecting, and extracting rele-
vant features, which are saved in the form of NumPy text files [147] for use as
training sets for the ml model. The chosen ml model is implemented using a
TensorFlow [148] backend with Keras [149] modules. The rationale behind the
selection of features is discussed in the next chapter.

The illustration presented in Figure 4.3 depicts the relationship between the
datasets designated as DB and DT . This relationship is established through
a many-to-one association, utilizing the block hash (called ha) as a unique
identifier, denoted as r : DT → DB . It can be inferred that for every element,
ha′, within the dataset DT , there exists a corresponding element, ha′′, within
the dataset DB , such that ha′ = ha′′. The resulting dataset, referred to as the

Ingestion Engine Pre-processing

Feature Selection Feature Extraction

Data Processing

Data Storage

Data Sources ML Model

BTC Core Node
Blockchain API Multi-Layer NN

Figure 4.2: In bas, data flow is facilitated from the blockchain to the ml framework.
In this process, various datasets are utilized, denoted as R, C, and X.
Specifically, dataset R represents raw data extracted from the blockchain,
dataset C represents a comprehensive dataset utilized during runtime,
and dataset X encompasses all data utilized for training purposes.
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Block

+ hash: str
+ size: int
+ bct: int P
+ height: int
+ epoch: int
+ txs: int
+ miner: str	P
+ prev_b: str
+ next_b: str

+ get_miner(): str

+ get_bct(): int

Transaction

+ hash: str
+ size: int
+ fee: int P
+ tl: int P
+ epoch: int
+ delta: int P

+ b_hash: str

+ get_tl(): int

+ get_delta(): int

Figure 4.3: Structure that organizes the preservation of information related to both
DB and DT . The red P serves as an indicator to signify that the corre-
sponding data has undergone processing as opposed to being obtained
directly.

raw dataset and denoted as R.

Summary
The chapter discussed data retrieval and storage methods for analyzing the
Bitcoin blockchain. It mentioned three approaches for data acquisition: using
web sockets and apis for real-time and historical monitoring, utilizing the
Bitcoin Core client software, and employing web scraping in specific cases.
Data storage involved separating blocks and transactions into separate datasets
to reduce redundancies. The data processing pipeline involved retrieving data,
storing it locally, and performing pre-processing for feature selection. Efficient
data handling was crucial for analysis and future modeling.

Chapter 6 will provide a comprehensive explanation of the three datasets, while
in the next Chapter we formalize the transaction inclusion model based on our
conjectures.





5
Transaction Inclusion
Model
Time-series data analysis has been widely recognized as a valuable tool for
predicting future trends in various fields, including finance [150], physics [151,
152], and economics [153, 154, 155]. In this study, we adopt a time-series
observational approach to analyze transactions in a blockchain system. Our
methodology is based on the collection of time-series data, where transactions
are sampled on a monthly basis with a fixed interval. We also incorporate a
notion of relative time, represented by the block creation epochs.

In this chapter, we present a comprehensive model for the inclusion of transac-
tions in a pow-based blockchain system. In Section 5.1, we explain the ratio-
nale behind our choice, and how transaction data is analyzed. The time-series
approach allows accurate analysis of the dynamics of transaction inclusion.
Building on this foundation, we define and analyze two main factors that can
affect the inclusion of transactions in a blockchain system. These factors are
referred to as revenue and fairness. In Section 5.2, we examine the concept of
revenue and its impact on transaction inclusion. Revenue is a critical factor as
it serves as an incentive for miners to participate in the network and validate
transactions. Section 5.3 explores the notion of fairness in the context of trans-
action inclusion. Fairness implies that all users have an equal opportunity to

73
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have their transactions included in the blockchain, regardless of their compu-
tational power or resources, upon paying an adequate fee value. Our model
takes into account both revenue and fairness as complementary factors for an
accurate study and prediction of transaction inclusion. A holistic view of the
inclusion process must be sought through the consideration of both revenue
and fairness concepts.

5.1 Observational Approach
The present study adopts a time-series-based methodology that considers the
sequential arrangement of transactions and their status at the point of each
block creation. The conceptual framework is explicated in the subsequent
section and formalized in the one that follows.

5.1.1 Block-Epoch-Based Collection
The idea behind our observational approach is that a transaction carries dif-
ferent information throughout the time it is pending in the network. This
phenomenon arises from the inherent supply and demand dynamics in the
blockchain domain, which continually change every time a new block is ap-
pended to the blockchain. The approach uses a block-epoch-based collection,
meaning that a transaction can potentially change its worth to miners every
time a new block is created. As a result, we define the time interval as the time
between two consecutive block creation epochs.

Each transaction is uniquely identified in each time frame by a pair of values
hat and bex . Here, hat is the hash of transaction t and bex represents the block
epoch at block height x . The transaction at a specific block height is referred to
as t (x ), representing an instance of the transaction during the time slot between
block creation epochs bex and bex+1.

The goal of this study is to gain insights about network saturation and waiting
times at each block epoch by tracking transactions over time. To accomplish
this, three concepts are defined: (1) timeline set, which represents the set of all
block time epochs; (2) lifespan, which represents the time interval between a
transaction’s first and last occurrence in the dataset; (3) number of occurrences,
which represents the number of times a transaction appears in the dataset.
These concepts allow us to describe and analyze the state of the network at
specific points in time and how transactions are behaving within it.
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5.1.2 Formalization

Definition 5.1.1: Timeline set

The timeline set, identified as T, is a set that contains all the block-time
epochs, defined as:

T = {bex |0 ≤ x ≤ ξ } (5.1)

�

Where bex is the block time epoch at height x and ξ is the maximum block
height. This set is used to delineate the time slots used for the analysis of
transactions in our system.

Definition 5.1.2: Lifespan

The lifespan of inclusion of a transaction t , represented as L(t), is a range
in epoch time, that starts when the first node sees the transaction to when
it is included in a mined block. More formally, if t is included at height x ,
a transaction lifespan is defined as:

Lx
t = [ept ,bex ] (5.2)

�

Here, ept is the time the first node sees the transaction andbex is the block-time
epoch at which the transaction is included in the blockchain. Understanding
lifespan helps unravel its inclusion dynamics and determines how many occur-
rences can be counted in the complete dataset (denoted with C and explained
in Chapter 6.2.3).

Definition 5.1.3: Occurrences of t

The number of occurrences (or cardinality) of a transaction t in a dataset,
represented by γt , is identified by (hat ,be) pairs with same hat but dif-
ferent be as follows:

γt = |(hat ,be)|∀be ∈T (5.3)

�
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This equation sums the number of times the transaction t occurs in the dataset,
where n goes from min(be ∈ L(t)) to max(be ∈ L(t)), and a value is summed
if be ∈ T. The occurrence value defines how many times a transaction appears
to the miners before it is included in a block, and as such it is a measure of
the network saturation and waiting time at each block epoch. A transaction
t has as many occurrences in C as the number of blocks appended to the
blockchain before its inclusion. In Table 5.1 we represent γ occurrences of
the same transaction before its approval. The waiting time differs at each
block epoch. As we will demonstrate in subsequent sections, the inclusion of
additional features allows for a more comprehensive understanding of how
network conditions affect the transaction’s waiting time at each block epoch.

hash be w time
1 49baa25... ...22049 -958
2 49baa25... ...23235 38
...
γ 49baa25... ...27793 5399

Table 5.1: Representation of one transaction in a block-epoch-based collection.

5.2 Revenue for Miners
As seen in Chapter 2.2.1, Bitcoin’s mining difficulty is determined by the total
hashing power on the network (H). When the total hashing power grows, of
difficulty of mining also increases, making it more expensive for miners to
scale their operations.1 As long as the honest nodes have more computational
power than the malicious nodes, the blockchain will be secure. A high total
hashing power is therefore preferable for the security of the network, but yields
higher operational expenses for the miners to maintain their operations. Hence,
transaction fees tend to correlate with hashing power. High security on the
blockchain may be desirable for the integrity of the network, but it also comes
with a cost that ultimately affects the miner’s profit.

1. The adjustment of difficulty levels in a blockchain network is contingent upon the speed
at which the collective pool of miners can solve the Proof-of-Work puzzle. An increase in
the number of miners results in higher consumption levels, even though the frequency
output of blocks remains unchanged.
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5.2.1 Revenue Optimization Strategies
To mitigate a loss of revenue as the total hashing power (H) grows, a miner
can adopt one of the following four strategies:

1. reduce its mining costs,
2. increase its hashing power h,
3. reduce the chances of block orphaning (Porphan),
4. increase the sum of transaction fees M and reward it receives R.

Reducing costs is challenging as the exogenous properties T and η cannot
be altered, since they are normally distributed with a fixed known mean
(600 seconds in Bitcoin). Therefore, reducing hashing power (h) would be
in conflict with the second strategy. Furthermore, as previously discussed in
Chapter 3.1.2, augmenting the individual hashing power does not always result
in a higher revenue, as the associated costs may outweigh the benefits gained
from the increased h. The probability of block orphaning depends on the block
propagation delay, which is impacted by the block size [156]. In theory, a
rational miner could reduce the orphaning rate by making its blocks lighter
and faster to disseminate, but this only partially increases revenue as fewer
transactions would also lead to less fees and decrease the overall network
throughput. Additionally, the occurrence of orphaning has been calculated to
happen only 3 times in every 1,000 blocks, and thus has limited impact on
miner revenue [156].

Since the block reward R is halved every 210,000 blocks, transaction fees
M are the only remaining source of profit. Most miners are assumed to act
rationally [157] and implement individualized policies for transaction inclusion
that maximize their profits. Because miners can arbitrarily select transactions,
their main endogenous source of profit is transaction fee, and it is assumed
that a transaction’s inclusion is highly dependent on its fee and is selected
rationally.

5.2.2 Feerate
Miners increase their potential revenue with each transaction they include,
but simultaneously reduce their block propagation rate, thus reducing the
probability of earning a reward. The time required for the propagation of
blocks and achieving consensus among participants depends on the block
size [158], which is generally fixed at 1MB in the case of Bitcoin. Miners
may attempt to optimize their revenue by including the maximum number



78 chapter 5 transaction inclusion model

of transactions paying higher fees within the fixed block size by calculating
the feerate (ρ), defined as the ratio of transaction fee and transaction size as
follows:

ρ = ϕ/q (5.4)

The dequeueing feerate policy is the commonly accepted norm among min-
ers [130], and it forms the foundation of their revenue. However, many fee
estimators that incorporate the feerate still result in overpayment.2 Analyses
indicate that on average, between 50% and 70% of transactions offer fee rates
that are two orders of magnitude higher than the recommended minimum,3
and that 88% of all Bitcoin transaction inputs pay higher fees than neces-
sary [130]. Thus, we contend that revenue is not the only metric to consider,
and that a miner must also consider fairness by allocating space for transactions
that have been waiting for a longer period of time, as long as they are offering
fair fees, in order to sustain the overall system.

5.3 Fairness for Users
The concept of fairness in transactions encompasses the idea that a transaction,
upon payment of a fee, should not be subjected to unjustified delay as a result
of the arrival of newly submitted transactions with higher fees. In other words,
the scheduling of transactions should ensure that no transactions are left in
a state of starvation. It is essential to incorporate fairness into our model, as
transactions should not be left in a state of indefinite waiting, especially after
the payment of an expected fee. The expected fee is a value that is deemed
reasonable by both parties to secure prompt processing of a transaction. The
concept of fairness ensures that, once a fee is paid, a transaction should not
experience undue delay due to the presence of transactions with higher fees
that arrived after it.

To provide a clearer understanding of fairness, we introduce the concepts
of Epoch Before Inclusion (ebi) and Relapsed Pending Transactions (rpts).
Additionally,we provide a definition for the expected fee value,which represents
the fee that a transaction ought to pay in order to receive prompt processing
and inclusion within reasonable time.⁴ These concepts serve to form a basis
for evaluating the fairness of transactions within the system.

2. E.g. bitcoinfees https://bitcoinfees.earn.com
3. Recommended minimum feerate is 10−5 BTC/kB ≡ 1, 000 sat/kB ≡ 1 sat/byte, according

to Bitcoin Core
4. By reasonable time we refer to a timeframe typically ranging from a few minutes to a few

hours

https://bitcoinfees.earn.com
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5.3.1 Epoch Before Inclusion
ebi represents the epoch of the most recent block mined prior to the inclusion
of a given transaction t . This value can be expressed formally through the
Equation 5.5 as βt , where the latest block epoch is represented by beξ , and ξ
is the height of the last block mined.

Definition 5.3.1: Epoch before inclusion

For a transaction t at height x , denoted as t (x ), if t has yet to be in-
cluded, the Epoch Before Inclusion (EBI) is defined as βt (x ) = bex , where
[bex ,bex+1] represents the time slot at height x .

βt =

{
bex−1 if t is included in block at epoch bex
beξ if t is yet to be included

(5.5)

�

5.3.2 Expected Fee
The expected fee value determines the appropriate fee for a given transaction
based on its size. The value is calculated by multiplying the feerate (denoted as
ρ∗ in the equation) by the size of the transaction (denoted as q).

Definition 5.3.2: Expected fee

The feerate must be greater than or equal to 1 sat/byte, which is the
minimum feerate required for a transaction to be processed. The expected
fee value is expressed as:

E[f ] = ρ∗q, where ρ∗ ≥ 1 sat/byte. (5.6)

�

In this equation, E[f ] represents the expected fee value, and the condition
ρ∗ ≥ 1,sat/byte ensures that the fee rate is sufficient to meet the network’s
minimum fee requirements.
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5.3.3 Relapsed Pending Transaction
Next we introduce the concept of Relapsed Pending Transaction (RPT).

Definition 5.3.3: Relapsed pending transactions

Given a block heighty, P(y) represents the set of rpts at that height. The
set includes transactions that have not been included in any block until
height y, have experienced at least one block creation in their lifespan,
have not been included up until heighty, and have a fee equal to or greater
than the expected fee. The conditions are specified in Equation 5.7.

P(y) = { t |ept − βt
(y) < 0 ∧

bey < bex , if L(t) = Lx
t ∧

ϕt ≥ E[ft ] }

(5.7)

�

We say t is a rpt at height x , if t (x ) ∈ P(x ). The more generic definition of P
is obtained by taking the union of all block-epoch-based P sets as

⋃ξ
i=0 P

(i).
We conjecture that a transaction appearing multiple times in P has a higher
chance of being included in the next mined block.

5.4 Model Formalization
A successful transaction inclusion framework must consider the pivotal notions
of rpts, ebi, and the lifespan of each transaction. Additionally, it is critical
that the framework continuously monitors the current status of the network
during both the training and testing phases. To attain this goal, it is crucial to
accurately record the moment of inclusion of each analyzed transaction into a
newly generated block. In support of this objective, we propose the definition
of a set of Temporarily Approved Transactions (tats) which incorporates the
previously mentioned key concepts.

5.4.1 Temporarily Approved Transaction
To understand the transaction inclusion process in a block-epoch-based time
division, we must determine each transaction’s status in each time frame. The
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set of tats offers valuable information regarding the inclusion prospects of
each transaction, serving as a valuable resource during both the training and
testing phases. This set allows for a comprehensive understanding of the specific
moments at which a transaction is slated for inclusion in the blockchain. We
formalize the set A of tats in Definition 5.4.1.

Definition 5.4.1: Temporarily approved transactions

Let us define the set A(y) as the collection of Temporarily Approved
Transactions at height y. This set comprises all transactions that are
selected for inclusion at height y during the time interval [bey,bey+1] and
are eventually included at height y + 1. We shall refer to a transaction
t as a tat at height y if t (y) ∈ A(y). This set can be mathematically
represented as defined in equation (5.8).

A(y) = { t |L(t) = L
y+1
t } (5.8)

�

Time
bex-1 bex bex+1

t1
t2

t1
(x-2) t1

(x)t1
(x-1)

Figure 5.1: Two distinct transactions, denoted as t1 and t2, are initiated at a different
time, respectively ept1 and ept2 . The transaction t1 is recorded in the block
at height x + 1, whereas t2 is immediately recorded in the block at height
x following its initiation in the same block-epoch time frame. The number
of occurrences for t1 can then be represented as γ = 3, and for t2 as γ = 1.

Figure 5.1 depicts two instances of block-epoch-based transactions, designated
as t1 and t2. The information conveyed by t1 varies based on its location and is
therefore nameddifferently, such as t (x−2)1 , t (x−1)1 , and t (x )1 . Themembership of t1
and t2 in setsA and P changes over time, which is formalized in Equations 5.9
and 5.10. Given that the lifespan of t1 is defined as L(t1) = Lx+1

t1 , it follows
that:

t (x−2)1 : < P(x−2)∧ < A(x−2)

t (x−1)1 : ∈ P(x−1)∧ < A(x−1)

t (x )1 : ∈ P(x ) ∧ ∈ A(x )
(5.9)
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In a similar manner, the lifespan of t2 is defined as L(t2) = Lx
t2 , resulting in

the following equation:

t (x−1)2 : < P(x−1)∧ ∈ A(x−1) (5.10)

5.4.2 Ordered Pending Transactions
It follows the definition of the Ordered Pending Transaction (opt) set.

Definition 5.4.2: Ordered pending transactions

We define S at a given block height x as the set of the opt, denoted as
S (x ). The set includes all non-approved transactions whose lifespans end
in a block height greater than x and whose inceptions occur before bex+1.
The set is ordered in ascending order based on the transactions’ feerate,
ρt , as follows:

S (x ) = { t |L(t) = L
y
t ∧ ept < bex+1 } ∀y > x

S (x ) = [t1, t2, . . . tn] is an ordered set
where ρt1 ≤ ρt2 ≤ · · · ≤ ρtn

(5.11)
�

Miners play a crucial role in verifying and confirming transactions. Their
incentive to do so is driven by the reward of block subsidies and transaction
fees. As mentioned in Section 5.2, it is widely acknowledged that miners seek
to maximize their profit by including transactions with the highest feerate (or
ρ) first. This behavior is rational as it leads to the greatest financial reward
for the miner. Given this reality, it is imperative that the transaction inclusion
model takes into account the miners’ priority of selecting transactions with
the highest feerate. To this end, we introduce the concept of an ordered
set of pending transactions, S , which prioritizes transactions based on their
feerate. This concept is formally defined in Definition 5.4.2. By incorporating
this principle, our proposed transaction inclusion model is better aligned with
the financial incentives of the miners and the widely accepted norm in the
blockchain ecosystem.

The proposed model employs information garnered from sets P, A, and S
in order to make informed decisions regarding the inclusion of transactions.
Understanding the impact of revenue and fairness (as described in Sections 5.2-
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5.3) on sets P and S is crucial in determining the dynamic membership of a
transaction within setA. This information is utilized to generate new features
through a feature extraction process (as detailed in Section 6.1.1).

Figure 5.2 illustrates the evolution of the P A S ecosystem over time, taking
into account four transactions with varying feerate values. It can be observed
in Figure 5.2 that transaction t1, initiated within the block-epoch time frame
of bex−2, is included in the first block created at epoch bex−1, and thus it is
present in A(x−2) and not in P at any time. On the other hand, transaction
t2, which was also initiated during the block-epoch time frame of bex−2, has
a lower feerate, implying that it could potentially remain in a pending state
for a longer duration. As a result, it appears in both Px−1 and P(x ). The same
criteria apply to transactions t3 and t4, initiated in the block-epoch time frame
of bex−1, and ultimately included in the blockchain, with the former being
included immediately and the latter after a single block creation. The lifespan
of t4 is shown in the figure and can be represented as Lx+1

t4 .

Figure 5.2: We examine a selected group of transactions, denoted as t1, . . . , t4, span-
ning from time bex−2 to bex+1, in order to graphically demonstrate their
progression towards inclusion and their designation within the P,A, and
S sets. Upon creation, transactions are inserted into the mempool and pos-
sess information regarding their feerate. Throughout various time epochs,
these transactions may or may not belong to the aforementioned sets. The
S set orders transactions based on feerate, the P set provides a temporal
view of their waiting period, and finally, transactions are part of theA set
when they are imminent for inclusion.



84 chapter 5 transaction inclusion model

Summary
In this chapter, we have established a formalized perspective on the transaction
inclusion model, emphasizing the notions of fairness for users and revenue for
miners. Additionally, we have introduced our observational approach, which is
based on the consistent evaluation of pending transactions by miners during
each block creation. This emphasized the significance of utilizing a block-epoch-
based collection methodology for our research goals. These foundations are
crucial as they lay the groundwork for the selection and extraction of relevant
features, enabling the generation of the necessary training set.

In the subsequent section, the methodology for data retrieval, processing, and
feature engineering will be explained, and the model for transaction inclusion
will be developed and evaluated.



6
Machine Learning
Architecture
This chapter outlines our methodology for constructing training datasets, fo-
cusing on the ingestion engine and pre-processing stages. The ingestion engine
utilizes locally stored data, selects relevant features, and performs data pro-
cessing and storage. The pre-processing stage involves features extraction and
data processing to generate a comprehensive dataset with relevant and non-
redundant features. Throughout these stages, we ensure the training dataset
adheres to principles of fairness and revenue, previously described. This chapter
also introduces the ml model, employing the resnet architecture to forecast
future trends in the Bitcoin blockchain market. The model’s optimization in-
cludes the use of the relu activation function, resulting in improved accuracy
and faster training times.

6.1 Ingestion Engine
The ingestion engine processes and transforms raw data obtained from the
blockchain into a format suitable for further analysis and storage. Data analysis
libraries like Pandas and NumPy are used to perform various data processing
tasks such as filtering, aggregation, and transformation. For instance, Pandas

85
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is used to read raw data from the blockchain into a data frame, perform
data cleaning and pre-processing, and then write the transformed data into
a storage system such as a database or a file. NumPy is used for numerical
computations and analysis, such as calculating various statistics or performing
matrix operations on the data. With the ingestion engine, we extract relevant
information from the Bitcoin blockchain and prepare this data for further
analysis.

6.1.1 Features Selection
The process of feature selection begins by downloading data from the block-
chain and storing it locally. Only relevant1 data is retrieved, allowing us to
maintain a partial local copy of the Bitcoin blockchain with the necessary data
for fast access. This results in an average disk space savings of 68% comparing
to store the full blockchain.2 The space saving are achieved by eliminating re-
dundancies, preserving only the information needed for prediction, separating
blocks and transactions data, and incorporating newly extracted features. The
features selected for analysis are initially listed in Section 4.2 and summarized
again in Tables 6.1-6.2. To construct the block-epoch-based collection discussed
in Section 5.1.1, it is necessary to select features that include information about
the creation time epoch of a block (bepoch), the inception time epoch of a
transaction (tepoch), and the block height. Additionally, gathering data on

Block b(x )

Feature Symbol Type Processed
bhash ha string False
bsize Q int False
bct T (x ) int True
height block height int False
bepoch bex int False
n_txs tB int False
miner block’s miner string True
prev_block previous block’s hash string False
next_block next block’s hash string False

Table 6.1: Features of blocks within R.

1. Data that are useful for the purpose of our research, like transaction data about fee or
size, while information related to security and block/transaction verification are omitted

2. We store 1.3GB of information from the actual Bitcoin blockchain, in only 0.4GB. We
refer to Table 7.1 and 7.2 for more information
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transaction fee (fee), transaction size (size), and transaction latency (tl) is
important for obtaining information on miners’ revenue.

Transaction t
Feature Symbol Type Processed
hash hat string False
size q int False
fee ϕ int True
tl lt int True
tepoch ept int False
delta ∆P int True
bhash ha string False

Table 6.2: Features of transactions within R.

The processed column of the tables above indicates whether any manipulation,
editing, or other form of processing has been applied to the data prior to
storage in our local dataset instance. The value of features, such as the block
creation time (bct), is not directly recorded in the Bitcoin blockchain; instead,
it must be derived during the data processing phase to define the time frame
of each block-epoch-based transaction instance (as described in Section 6.2).
Additionally, some newly engineered features (e.g., delta) require further
aggregation and transformation, as we will explain in Section 6.2.2. Careful
feature selection is necessary to construct the sets P, A, and S discussed in
Chapter 5.

6.1.2 Data Processing and Storage
The features subjected to data processing prior to storage encompass transac-
tion fee, transaction latency, feerate, and bct. Notably, feerate is computation-
ally straightforward to derive during runtime, and its omission from saving it
locally can save space. Nonetheless, we choose to include it within the stored
features in our locally stored raw blockchain, R, for ease of analysis.

Transaction Fee and Feerate

Transaction fee and feerate are revenue-based features that we use to identify
inclusion patterns. The fee is computed using function fϕ , which is listed in
Algorithm 3 and is based on the inputs and outputs of transactions. When a
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transaction t involves n inputs andm outputs, the transaction fee is calculated
using Equation 6.1, where ϕ represents the transaction fee, inpi represents the
i-th input of the transaction, and out j represents the j-th output.

ϕ =
n∑
i=1

inpi −
m∑
j=1

out j (6.1)

Finally, we define the fee-function fϕ as:

(inp,out) 7→ ϕ = fϕ(inp,out)

The feerate-function fρ is designed to acquire information pertaining to trans-
action feerate,3 in keeping with the revenue principle. Feerate is calculated
using Equation 5.4, which gives us the function fρ as follows:

(ϕ,q) 7→ ρ = fρ (ϕ,q)

Transaction Latency

The function for transaction latency computes the duration from the initiation
of a transaction t or its first sighting by a miner until its approval. Transaction
latency is calculated as showed in Equation 6.2, if be is the epoch of the block
that includes t .

lt = be − ept (6.2)

Then the function for calculating transaction latency can be identified as fl ,
where:

(be, ept ) 7→ lt = fl (be, ept )

Block Creation Time

In our block-epoch-based approach, the unit of measurement is represented
by the block creation time, which refers to the duration between the creation
of one block and the subsequent block. The formalization of the function that
computes bct is presented in Equation 6.3.

T (x ) = bex − bex−1 (6.3)

The function is denoted as fT , which is defined as a mapping that takes the
block epoch bex and the previous block epoch bex−1 as input parameters

3. as previously described, the feerate represents the ratio between the transaction fee and
its size
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and outputs the computed value T (x ). The function and its mapping can be
expressed as follows:

(bex ,bex−1) 7→ T
(x ) = fT(bex ,bex−1)

Raw Dataset

In Section 4.2.3, we briefly outlined the procedure for generating the raw
dataset R, which involves utilizing the datasets DB and DT to perform a join
operation over the block hash ha, which can be expressed as:

R = DB ./ha DT

Each row in R represents a transaction t at the time of its approval, while
each column corresponds to a specific feature. The dataset R is used to store
information locally, perform real-time data processing, and generate additional
datasets, as depicted in Figure 4.2.

Algorithm 7 illustrates the process of generating the dataset R. The algorithm
employs the Pandas library routines to parse the datasets DB and DT and
generate the resulting datasetR. The algorithm begins by reading themetadata
files corresponding to the transactions and blocks and instantiates runtime
objects for DT and DB . Subsequently, for each block and transaction file in
their respective directories, the algorithm combines the block and transaction
instances. Finally, the two instances are merged based on the block hash,
yielding the dataset R as the output.

Algorithm 7 Reads DB and DT and produces R.
1: procedure read_all
2: infob, infot← read(info files for txs and blocks)
3: dft, dfb← empty dataframes
4: for bf in infob.files do . bf is block file name
5: df∗b← read(bf)
6: dfb ← concat(dfb, df∗b) . concatenates two Pandas datasets
7: for tf in infot.files do . tf is transaction file name
8: df∗t ← read(tf)
9: dft ← concat(dft, df∗t )
10: return merge(dfb, dft) . on block hash
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6.2 Pre-Processing
The pre-processing phase is a crucial step in preparing the data stored in R
for training the ml model. This involves a series of steps that transform the
raw data into a suitable form for the subsequent analysis. The first step in-
volves dividing the transaction information into a block-epoch-based collection,
which facilitates the analysis of the current network state based on the time
period.

The second step extracts new features that are related to fairness and revenue.
This step aims to enhance the discriminatory power of the data and improve
the accuracy of the model.

Finally, the complete set C is assembled to serve as the input for the generation
of the training set X, and to proceed with the subsequent training phase of the
model. The effectiveness of the pre-processing phase is important for the overall
performance of the ml model, impacting both the accuracy and reliability of
the predictions.

6.2.1 Feature Vector and Complete Transaction
Next, we detail the representation of a transaction and its associated features
in a block-epoch-based format, and represent a feature vector in the context
of the dataset C. Once the selection of features has been made, we establish
their structure in the data set R, so that they can be used in a systematic
manner by the ml model. Our ingestion engine and pre-processing phases
create a temporary, locally generated version of R referred to as C. Each row
of C constitutes an instance of a feature vector ttt, which identifies a transaction
within a specified time frame, as described in Chapter 5.1.2. Subsequently,
the block-epoch-based representation of a transaction t ∈ R is defined as TTT ,
which encompasses all information pertaining to the transaction over its entire
lifespan.

Definition 6.2.1: Feature vector ttt

A feature vector ttt is a list of features that identify a block-epoch-based
transactionTTT in a specific time slot, and it is defined as: ttt= [k1,k2, . . . ,kn]
with |K | = n. �
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Definition 6.2.2: Complete transactionTTT

A Multivariate Time Series (mts)TTT = [ttt1, ttt2, . . . , tttγ ] is an ordered set of
feature vectors ttt, and consists on γ different univariate time-series with ttt
∈ Rn,∀ttt ∈ TTT , and |K | = n. �

The information contained withinTTT can be utilized to extract novel features
(e.g., delta) that convey contextual information over distinct temporal in-
tervals, in our case, block epochs. Such information is leveraged by the pre-
established set S to create a feature, denoted as offset, which is explained
further in the subsequent paragraph.

6.2.2 Features Extraction
The procedure of feature extraction entails the creation of engineered features
that are used for a supervised classification in a dnnmodel. The feature we are
using are rooted in the notions of fairness and revenue, and computed using
the pending transactions function and the offset function, as will be described
below.

Pending Transaction Function

This fairness-based function evaluates the extent to which a transaction t
belongs to the set of the relapsed pending transactions P, and consequently
ascertain the probability of it being included in the set of the temporarily
approved transactions A in the near future. The function fP generates the
feature ∆P (or delta, presented in Table 5.1), described in Equation 6.4, and
depicted in Figure 6.1.

Time
bex-1 bex bex+1

t1

∆P(x+1)

∆P(ξ)

∆P(x)∆P(x-1)

Figure 6.1: A transaction t1 submitted at time ept1 and yet-to-be included, such that
L(t1) = L

ξ
t1 , takes different ∆P values over time. For instance, at height

x + 1 we have that ∆P(x+1) = bex+1 − ept1 . Blue ∆P represents a positive
number, while the red ∆P(x−1) indicates a negative value.
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Definition 6.2.3: Pending transaction function

fP is the duration a transaction t (x ) has been waiting inclusion into A,
starting from its inception until the closest block epoch bex .

∆P(x )t = βt
(x ) − ept

(β, ep) 7→ ∆P = fP(β, ep)
(6.4)

�

Note that if t (x ) is not part of P(x ), then ∆P(x ) assumes a negative value, as is
evident from the case of ∆P(x−1) in Figure 6.1. The feature ∆P enables us to
consider the maximum amount of time a transaction can wait for approval if it
has paid a fair fee. Moreover, since γ represents the number of instances inTTT ,
we can compute the time elapsed in relation to the number of blocks seen byTTT
before being approved, and accordingly determine time with respect to both,
an absolute view in seconds and a relative view in γ -occurrences. Consequently,
a block-epoch-based transaction will have γ different instances of the feature
∆P, as described in Section 5.1.2.

Offset Function

The offset function fδ is a revenue-oriented metric that orders pending trans-
actions based on their feerate while considering the restrictions on block space.
The output of this function is the engineered feature offset which is denoted
by δ .

Definition 6.2.4: Offset function

For each transaction ttt in a block-epoch, the offset value at height x
indicates the quantity of bytes that have already been taken up in the
block space by unconfirmed transactions with a higher feerate. This value
is represented as δ (x )t .

δ (x )i =

n∑
i

qi ,

(S (x ),q) 7→ δ = fδ (S
(x ),q).

(6.5)

�
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The offset assigns a position to each transaction in the forthcoming block. A
higher offset indicates a lower likelihood that t is included in the set A(x ).
Assuming that the set S at height x includes n transactions ordered by feerate,
the offset value for any index 0 ≤ i ≤ n can be defined as in Equation 6.5.

Like the scenario with ∆P, every block-epoch-based transaction possesses γ
distinct offset values, as the offset for each transaction is recalculated with
every block creation. Algorithm 8 presents the procedure for calculating the
offset for transactions in S (x ). The algorithm is composed of two procedures:
defineS and offset. These procedures define the set S and the offset δ
for each transaction in S . Specifically, the defineS procedure takes as input
R (with the ∆P feature), a block height x , and it generates a set S (x ). S ′

contains all transactions that occurred between two block epochs. The set S
is then formed by adding any pending transactions from P. The transactions
in S (x ) are ordered by feerate, after which the offset is calculated for each
transaction.

The offset procedure takes as input a transaction t and the set S . It initializes
δ and, for each transaction at a position i after t ∈ S , it adds its size, qi , to
δ .

Figure 6.2: Data sampled for five consecutive blocks, and within each block-epoch
time slot, transactions are arranged by feerate, followed by the calculation
of their corresponding offset value. As observed in this example, the
offset value for transaction t (x ) fluctuates according to the block-epoch.
Specifically, the offset value for t (1) at height x = 1 is larger than its offset
value at height x = 2 for t (2). Thus, we can infer that δ (1)t � δ (2)t .
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Algorithm 8 Defining S and δ .
1: procedure defineS(R∆P , x) . R including ∆P feature
2: S ′ = {t |t ∈ R∆P,bex ≤ ept < bex+1} . txs between bex , and bex+1
3: S ← ∅
4: for all t ∈ S ′ ∪ P(x ) do . waiting txs in P(x )

5: ρt ← fρ (ϕt ,qt ) . calculate feerate of t
6: S ∪ {t} . add t to the set S (x )

7: sort(S , ρ) . ascending order of txs in S by feerate
8: for all t ∈ S do
9: δt ← offset(t , S) . set the offset for every transaction in S

10: return S
11:
12: procedure offset(t , S) . index i is the place of t in the set S
13: δt ← 0
14: i ← 1
15: for all t ∈ S after position i do . for txs in S that come after t
16: δt ← δt + qi
17: i + +

18: return δt

Compared to other features, the offset requires a significantly higher com-
putational overhead. The procedure defineS in Algorithm 8 has a time
complexity of O(n2), where n is the number of transactions in S (x ). This is due
to the fact that the execution time of offset is upper-bounded by O(n), and
since the latter procedure is executed n times, the total number of operations
can be approximated by

∑n
i=0, j=0 ij ∼ O(n

2). Figure 6.2 depicts the trend of the
calculated offset over time for five consecutive blocks. Within each block-epoch
time frame (be1–be5), transactions waiting for confirmation are organized in
the mempool according to their feerate and assessed for their relative offset
value. For instance, transaction t (x ) appears in the pool at height x = 1 and
x = 2 with different offset values. As a result, the same transactions can provide
distinct information based on their block-epoch snapshot, providing valuable
insights into the network status at each block-epoch time slot.

6.2.3 Complete Set
After data collection and feature engineering, the runtime dataset C is gen-
erated to include information about every transaction in a block-epoch-based
manner. The creation of C is described in Algorithm 9, where all the block
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epochs present in the input dataset R are iterated over, and for each epoch,
the algorithm adds the ∆P feature, defines the set P and the set S using the
defineP (Algorithm 10) and the defineS (Algorithm 8) functions, respec-
tively. Subsequently, the algorithm appends the rows of S for each block height
x to the complete set C.

Algorithm 9 Creation of C.
1: procedure complete_set(R)
2: beall ←list(R.bepoch) . list of all block epochs with no duplicates
3: for all be ∈ beall do
4: x ← height(be) . gets height of a block from the epoch
5: R∆P ← delta(R, x) . add ∆P feature
6: P(x ) ← defineP(R∆P , x , be) . make P set, used in defineS
7: S (x ) ← defineS(R∆P , x) . make S set
8: C ← append rows in S (x )

9: return C

The C dataset is utilized to generate the training and test datasets X, where
the cardinality of C is greater than X, which in turn is greater than the input
dataset R. Additionally, the features that are used in X is a subset of the
features used in C, which themselves are a subset of the features used in R.
To derive new features, as explained in Sections 6.1.2-6.2.2, several functions
are applied to the datasets to generate new features with unique names. The
pre-processing layer and ingestion engine exchange and update information,
enabling the inclusion of these new features in the dataset R. Subsequently,
these new features can be incorporated into the training and test datasets,
thereby enhancing model performance and improving prediction accuracy.

Algorithm 10 Creation of P.
1: procedure defineP(R, x , be)
2: bex−1 = epoch(x − 1) . get epoch from height
3: P(x ) ← {t |t ∈ R,ϕt ≥ E[ft ]} . remove cheap txs
4: P(x ) ← {t |t ∈ P(x ), ept ≤ bex−1} . remove new txs
5: return P(x )
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6.3 Machine Learning Model
We have chosen a supervised learning method for our model because the vast
amount of available data on Bitcoin blockchain allows us to train and test
our algorithm with precision. When there is an abundance of labeled data
available, resnet is considered the most appropriate models for generating
accurate predictions [159, 160]. In line with this theory, we have employed the
resnet architecture, as presented in Section 2.3.3, to develop our prediction
model for forecasting future trends in the Bitcoin blockchain market. The main
purpose of the prediction model is to define whether or not a transaction t at
height x is likely to be included in A(x ).

To optimize our resnet model, we use the relu activation function. relu
offers several advantages over other activation functions, such as being compu-
tationally efficient, easier to optimize, and able to prevent vanishing gradients,
which can be a common issue in deep neural networks [121]. With relu, our
model achieves better accuracy and faster training times, leading to more accu-
rate predictions. Overall, our dnn prediction model using relu is a powerful
tool for predicting future trends in the Bitcoin blockchain market, providing
insights for both investors and researchers.

6.3.1 Training and Test Sets
Our resnetmodel is trained and tested using two datasets:XXX for training and
XteXteXte for testing. These sets are constructed from the larger dataset X based
on a percentage criterion. For example, if 5% of X is allocated for testing, the
remaining 95% is used for training inXXX . In accordance with the definitions of
feature vector and complete transaction, represented by ttt andTTT respectively
(as per definitions 6.2.1-6.2.2), the training and test datasets are characterized
as an M-dimensional multivariate time series collection. Each pair (TTT i ,YYY i )

within this collection constitutes an instance of a block-epoch-based transaction
i with relative labeled information for the validation. In this notation, YYY i
identifies information about the inclusion of a specific transaction, while TTT i
represents some of its corresponding features. More specifically, YYYi represents
the corresponding one-hot label vector⁴ of transactionTTT i . In particular, X is
expressed as (TTT 1,YYY 1), (TTT 2,YYY 2), . . . , (TTTM ,YYYM ). The one-hot label vector YYYi has
a length of γi , and each of its elements, j ∈ [1,γi ], is equal to 1 if j = γi ,
which is the corresponding time slot ofTTT ’s inclusion, and 0 otherwise. Table 6.3

4. A one-hot label vector is a representation of a categorical variable in ml, where each
category is assigned a unique binary value.
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X TTT i YYY i

i hash bepoch w time offset incl.
i
=
1

ttt 1 49baa25... ...22049 -958 1,630,459 0
ttt 2 49baa25... ...23235 38 12,312,700 0
...
ttt γ1 49baa25... ...27793 5399 897,480 1

. . .

i
=
M

ttt 1 860b21a... ...21154 -732 1,882,965 0
ttt 2 860b21a... ...21759 128 2,592,452 0
...
ttt γM 860b21a... ...23528 4892 978,382 1

Table 6.3: Representation of an M-dimension multivariate time series collection.

illustrates an instance of amultivariate time-series pair, (TTT i ,YYY i ). Specifically, the
hash feature within the transaction remains constant throughout its lifespan,
while the remaining features, identified as be (or block epoch), ∆P, and δt ,
are dependent on the contextual block-epoch.

Algorithm 11 Creation of X.
1: procedure training_set(C, k=[δt ,∆P,ϕ, . . . ]) . k is vector of keys
2: for all key in k do . for each feature name in k
3: X ← add_feature(C, key) . add "key" column from C to X
4: X ← inclusion(X) . make YYY
5: X ← X.values . NumPy representation of Pandas dataframe
6: X ← normalization(X) . z-score normalization
7: return X
8:
9: procedure inclusion(d) . inputs a dataset
10: d[incl]← np.where(d[be] == d[βt ], 1, 0) . 1 if be =βt , 0 otherwise
11: return d . same dataset with new "inclusion" feature, or YYY

Algorithm 11 outlines the procedure to generate the setX. This involves utilizing
the normalization techniques illustrated in Algorithm 12 in combination with
the NumPy libraries to construct the set X = (TTT ,YYY ). Algorithm 11 computes
the training set X for a given set of feature names k and a the complete set
C. The procedure begins by iterating through each feature in k and adding
the corresponding column from C to X. Then, the inclusion function is
applied to X to create the binary YYY feature, where 1 indicates the inclusion of
a transaction and 0 otherwise. If the block-epoch value (be) for a block-epoch-
based transaction matches the block epoch when the transaction is included
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(βt ), then the corresponding element in the new column is set to 1. Next, the
NumPy representation of X is obtained and passed through the normalization
process. Finally, the normalized NumPy array is returned as the final training
set X.

Normalization

The selection of an appropriate normalization method is influenced by the prop-
erties of the data and the objectives of the specific task. Each normalization
technique offers distinct advantages and disadvantages, and selecting an ap-
propriate method can have a profound effect on the quality and effectiveness of
the model or analysis. For example, the decimal scaling normalization method
is advantageous for preserving the order of magnitude of the data, while min-
max normalization is useful for comparing variables that have varying units
and scales.

Algorithm 12 Normalization of X.
1: procedure normalization(X)
2: µ ← np.mean(X) . expected value (using NumPy as np)
3: σ ← np.std(X) . standard deviation
4: Xnorm ← (X−µ)/σ . set the normalize training set
5: return Xnorm

The normalization technique employed in Algorithm 12 is a commonly used
method known as z-score normalization, or standardization. This method in-
volves transforming a distribution of data points to have a mean of 0 and a
standard deviation of 1 by subtracting the mean of each data point and divid-
ing it by the standard deviation [161]. The z-score normalization technique is
valuable for comparing variables with different units and scales and for iden-
tifying outliers. It is particularly advantageous when working with normally
distributed data and it can help to ensure that input features have similar
ranges, preventing the dominance of one feature over the others. Furthermore,
it can aid in improving the convergence of training algorithms by preventing
them from getting trapped in local optima.

6.3.2 Prediction Model
To ensure accuracy and maintain up-to-date knowledge of the network status,
our model needs to be updated after some time, typically on a monthly basis
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(weekly for a better outcome). For this study, we have considered to deploy
two different models: a standard dnn and a resnet model that utilizes skip
connections.

Considering the superior performance demonstrated by the resnet model
compared to the dnnmodel [57], we adopt the former as the model of focus in
this dissertation. Theresnet architecture consists of several densely connected
layers, with each layer fully connected to the previous one. The activation
function used for each hidden layer is relu, which facilitates the learning of
non-linear relationships between the input and output variables. To initialize
the weights in the neural network and improve the speed and stability of
training, the He normalization technique⁵ is used as the kernel initializer.
Additionally, the resnet model incorporates several skip connections, which
enable information to bypass certain layers and be directly fed to subsequent
layers, thus improving the flow of information throughout the network. The
output layer of the resnet model has a softmax activation function, which
generates a probability distribution over the classes. The present study does
not include the outcomes of the dnn model, as it has been surpassed in
performance by the resnet model. The results and discussions regarding the
dnn model can be found in our previous work [57].

The trained resnet model takes a transaction t as an input and generates
a vector θθθ t , with the confidence level of inclusion or exclusion in the next
mined block. Since we have a binary classification problem, the output vec-
torθθθ t = [Pt (υ0), Pt (υ1)] assigns the class υ1 to inclusion andυ0 to exclusion. As
such θθθ t represents the probability P(υi ) of transaction t falling within the class
υi , where i ∈ {0, 1}. We adopt a supervised classification approach whereby
the known outcomes of transactions in the training set, denoted as XXX , are
used to assess the accuracy of the model during the training phase, which is
accomplished through the use of the labels YYY. A subsetXteXteXte ⊆ X of the data is
reserved for testing.

During validation we employ a dynamic approach that alters the number of
hidden layers in the neural network, with each node in the network being
characterized by the relu, except for the output layer where the Normalized
Exponential Function (softmax) is used. The weights are initialized using the
He normalization technique, which accounts for relu, thereby facilitating
convergence in deep models [162]. During training and testing phases, as

5. is a technique used to initialize the weights of artificial neural networks. By using He
normalization, the weights are initialized in a way that prevents them from becoming
too large or too small. This technique helps the network converge faster and improves its
ability to learn complex patterns and representations from the data
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outlined in the previous section, X is normalized with the z-score method,
which was useful as the features exhibit varying orders of magnitude.

The hyperparameters of the resnet that cannot be estimated from data are
determined manually through a trial-and-error. This include the number of
hidden layers, the number of skip connections, the batch size, and the number of
epochs. The batch size governs the granularity or precision of gradient descent,
thereby optimizing the internal parameters of the model for every batch size
of tuples. On the other hand, the number of epochs determines the number
of times that the learning algorithm will iterate through the entire training
dataset, ideally getting closer to the optimal solution with each iteration. The
configuration of the model’s hyperparameters is critical to achieve optimal
model performance and accuracy.

Summary
In this chapter, we provided an in-depth overview of the architecture of our
mlmodel. We outlined the entire data processing and transformation pipeline,
beginning with the ingestion engine. The ingestion engine was responsible for
processing and transforming the data, selecting relevant features, and storing
them locally.

We then delved into the pre-processing phase, which consisted of three key
steps. First, we divided transactions into block-epoch-based tuples, enabling
efficient analysis. Next, we performed feature extraction to derive meaning-
ful characteristics from the data. Lastly, we created a complete dataset by
integrating all relevant features.

Additionally,we introduced theresnetmodel that we developed. We discussed
the composition of the training set, the normalization of data, and the output
of the model.

In the following section, we present experiments and evaluations of the ml
model described thus far. A detailed account of the hyperparameters can be
found in Appendix A.



7
Evaluation
In this chapter, we present the evaluation of our ml model. In Section 7.1, we
give a detailed description of the datasets used for both training and testing
our model, including how we selected relevant features. In Section 7.2, we
outline the evaluation metrics we use and elaborate on our definition of model
accuracy, as our accuracy assessment transcends the mere measurement of the
proportion of correctly classified instances out of the total instances. We also
account for other metrics such as the completeness of the data used for training
and testing the model, as well as the degree to which the dataset is updated. By
incorporating these additional metrics in our assessments, we obtain a more
comprehensive evaluation of our model’s performance, while also accounting
for potential sources of bias. In Section 7.3, we report the results of our analyses
in terms of overall accuracy, feature importance, and model cyclicity. We inves-
tigate how the model’s performance is affected by the selected features and
how often the model’s predictions are influenced by its current network status.
Finally, in Section 7.4 we quantify howmuch our solution can benefit end-users.

101
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7.1 Experimental Setup
In this section, we describe a comparative analysis of various datasets in
relation to the disk space consumption associated with the Bitcoin blockchain.
We introduce the distinct metrics used to evaluate the accuracy of the model
and ultimately examine and enumerate the chosen features.

7.1.1 Datasets Analysis
We first investigate the data derived from the public Bitcoin blockchain. Our
analysis includes over 30 million transactions across 15,000 blocks from Jan-
uary 2021 to May 2021. Table 7.1 demonstrates the requisite disk space for these
three datasets when accommodating 100,000 to 5,000,000 transactions. As
shown, the complete dataset C exhibits a superlinear growth pattern. This
observation aligns well with our expectations, considering that C not only in-
cludes all transactions in R, but also captures the block-epoch based dependent
features delineated in Chapter 6, and possesses knowledge of P and S sets. The
comparison in Table 7.1 highlights the disk space efficiency of the developed
datasets in relation to the actual Bitcoin blockchain.

Disk storage (bytes)
N of txs 100k 500k 1M 5M
Dataset
R 2.9 × 107 1.45 × 108 2.9 × 108 1.2 × 109

C 4 × 107 7.3 × 108 1.6 × 109 1.37 × 1010

X 7 × 106 1.3 × 108 2.88 × 108 2.4 × 109

B 6 × 107 3 × 108 6 × 108 3 × 109

Table 7.1: This table displays the amount of disk space utilized by various sets of
instances containing information on 100,000, 500,000, 1,000,000, and
5,000,000 transactions, respectively. The final row presents the correspond-
ing space occupied by an equivalent number of transactions in the real
Bitcoin blockchain.

7.1.2 Metrics
We obtain and store various instances of R, one for each month of evalua-
tion (see Table 7.2). For each evaluation period, 3,010 blocks1 are fetched.
A predictive model is constructed from each dataset Ri , using the inclusion

1. Which is the equivalent of the number of blocks mined on 20 days on average
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pattern delineated in Section 5. Also, a Ci dataset is produced, from which
novel information and features are derived. Afterwards, data is selected from
the Ci dataset to form the training and testing datasets (Xi). For each period
i, a model is trained using the initial 50% of transactions in Ri . For testing
such model, the remaining 50% of transactions is used. Tests are performed
and evaluated with parameters denoting the completeness and freshness of the
testing set. These parameters are identified as α andψ , respectively, as defined
below.

Completeness

Definition 7.1.1: Completeness

The completeness parameter α of a testing set identifies the proportion
of transactions used for testing relative to the total number of points used
for training.

α =
|XteXteXte |

|XXX |
(7.1)

�

From Equation 7.1, we can see that when α = 0.5, the testing volume of
transactions is equal to half of the training volume. The completeness value is
crucial for precise prediction in the absence of live (or real-time) information.2

Raw dataset for each period
i Date |Ri | Ri size B price
1 Jan 6.5M 1.09GB 29k to 35k $
2 Feb 6.7M 1.12 GB 33k to 56k $
3 Mar 6.2M 1.05GB 49k to 58k $
4 Apr 6.2M 1.04GB 58k to 56k $
5 May 5.2M 877MB 58k to 36k $

Table 7.2: Specification of the raw time-series datasets used for evaluation. For each
month, 3,010 blocks are analyzed. |Ri | is the number of transactions ana-
lyzed in each set, while Ri size identifies the set’s storage requirements. We
also include the Bitcoin price at time of evaluation to discuss any correlation
with model prediction and coin price at that time.

2. Since the offset value is determined by the number of transactions evaluated, having a
complete set of transactions is crucial to compute the transaction space in the next mined
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Due to the supervised nature of our testing methodology and the simultane-
ous analysis of millions of transactions, we were precluded from relying on
unlabeled real-time data, and therefore we needed to distinguish a complete
testing set from a non complete one. As α → 1, the set becomes complete, and
the constructed offset value for testing closely approximates the one employed
for training, thus reducing false-positive points when α � 1 or false negatives
when α � 1. A complete set offers an accurate representation of the mempool
size over time.

Freshness

Assuming mo represents the difference between the index i in Table 7.2 of
training and testing datasets, as:

mo = iXte − iX

then the freshness is normalized through a sigmoid function to yield a bounded
range of [0, 1].

Definition 7.1.2: Freshness

The freshness parameter of a testing set,ψ , identifies the temporal distance
between the test and training sets, normalized through a sigmoid function.

ψ = sigmoid(mo) (7.2)

�

When training and test data are derived from the same month, where ψ is
equal to sigmoid(0) = 0.5, designating the model as new, or fresh. If testing is
conducted with an older model, mo > 0 and ψ → 1. Conversely, if the model
is trained a-posteriori and applied to prior data, mo < 0 and ψ → 0. The ψ
parameter reflects the degree of freshness of the tested transactions relative to
the trained ones, thereby measuring the model’s currency with respect to the
existing network status. Additionally, information onψ proves valuable during
subsequent analysis of model cyclicity.

block. Evaluating and testing live data results in having a complete set.
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7.1.3 Features
The selection of features to be used for training our model, is a combination of
parameters that are extracted from the blockchain, and data that are computed
according to the guidelines presented in Section 6.1.1. The training set X is
expected to contain relevant information about fairness and revenue,as detailed
in Sections 5.3 and 5.2. Our model is trained using a set of features denoted
by:

KX = [ϕ,q, ρ,∆P, δ ,∆PN , δN ]

where ∆PN and δN represent normalized values of ∆P and δ , respectively. The
feature ∆PN is determined as the number of blocks a particular transaction tttγ
has encountered since its inception (as indicated by Equation 7.3).

∆P
(γ )
N =

γ∑
i=0

ω(i) where

ω(i) =

{
0, if ttti < P(i)

1, if ttti ∈ P(i)

(7.3)

The second feature, δN , corresponds to the normalized offset in relation to the
maximum block space of approximately 1.1MB. This normalization results in
δN being represented as a percentage, which provides information about what
portion of the mempool is already occupied by richer transactions (as showed
by Equation 7.4).

δ (x )N =
δ (x ) × 100

Q
(7.4)

7.2 Evaluation Metrics
While classification accuracy is our primary evaluation metric, it may not always
be sufficient to fully assess performance. To address this, we also evaluate
performance using the confusion matrix and the area under the curve metric.
The confusion matrix provides information about the number of true and false
positive and negative classifications made by our model, which help identify
areas of strength and weakness. The area under the curve metric measures the
performance of our model across a range of classification thresholds, providing
a more nuanced assessment of its ability to correctly classify instances. The
following sections provide a brief description of the evaluation metrics we have
used, while Section 7.3 presents our evaluation results.
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7.2.1 Classification Accuracy
To evaluate our model, we initially employ the classification accuracy metric,
which measures the ratio of the number of correct predictions to the total
number of input samples using the formula:

Accuracy =
Number of correct predictions
Total number of predictions

Classification accuracy is a straightforward measure that we use as a general
tool to compare accuracy between different models. However, it may not always
provide an accurate evaluation of a model’s performance, particularly when the
class distribution is heterogeneous. In our study, we observed an unbalanced
class distribution and chose not to reduce the number of sampled data. As a
result, we incorporated additional metrics to evaluate our model.

7.2.2 Confusion Matrix
The confusion matrix is useful for analyzing the accuracy of our model. The
confusionmatrixCM is defined in Equation 7.5, and formalized in Table 7.3. The
matrix CM is obtained by dividing the raw count of correctly and incorrectly
classified instances by the total number of instances, and then scaling the
resulting values by a factor Fr−1. The matrix Fr2,2 represents the total number
of actual classifications for each class.

CM = Fr−1 ·
[
a00 a01
a10 a11

]
where Fr2,2 = [bii ], bii =

∑
j

ai j
(7.5)

The values ai j in the confusion matrix CM represent the number of elements
that truly belongs to class i but were classified as belonging to class j. We use
twometrics derived from CM, namely recall and precision. The recallRi for class
υi represents the proportion of instances in υi that were correctly classified,
while the precision Pi for class υi represents the proportion of instances that
were classified as belonging to υi that actually belong to υi . These metrics are
calculated using Equation 7.6.

Ri =
aii∑1
j=0 aji

Pi =
aii∑1
j=0 ai j

(7.6)
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7.2.3 Area Under Curve
The Area Under Curve (auc) measures the probability that a model will rank
a randomly selected sample in class υ1 higher than another randomly selected
sample in υ0. auc is commonly used in binary classification problems. The
range of values for the auc is zero to one, with higher values indicating better
classifier performance. An auc value of one indicates that the classifier is able
to perfectly distinguish between the two classes, while a value of 0.5 indicates
that the model cannot differentiate between points in the υ0 and υ1 classes. A
value of zero indicates that the classifier would predict all points in υ0 as υ1
and vice versa.

Evaluation of binary classification models benefits from careful consideration
of several performance metrics, including the Area Under Curve of Receiver
Operator Characteristic (auc-roc). To calculate the auc-roc, we follow the
scheme presented in Table 7.3 and use the formulas:

TPR =
TP

TP + FN
FNR =

FN
TP + FN

TNR =
TN

TN + FP
FPR =

FP
TN + FP

(7.7)

where TP represents true positives, TN represents true negatives, FP represents
false positives, and FN represents false negatives. The True Positive Rate (tpr)
identifies R1, or sensitivity, while the True Negative Rate (tnr) represents
the specificity, or the proportion of negative class υ0 samples that are correctly
classified. The False Positive Rate (fpr) is equal to 1−specificity and represents
the proportion of υ0 samples that are incorrectly classified. Finally, the False
Negative Rate (fnr) indicates the proportion of positive class υ1 samples that
are incorrectly classified.

The Receiver Operator Characteristic (roc) curve is a graphical representation
of the tpr against the fpr and is useful for evaluating the performance of
binary classifiers. The auc is equal to the area under the roc curve.

7.3 Performance
In Section 7.3.1, we provide an overview of the classification accuracy of our
classifier based on the evaluation metrics defined in Section 7.2. Specifically,
we report the classification accuracy for each month of the evaluation period
(January 2021 to May 2021) under optimal conditions of α = 1 and ψ = 0.5.
Additionally, a confusion matrix representing the entire evaluation period
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Table 7.3: The confusion matrix model is utilized as the foundation for computing the
auc-roc.

is presented. Section 7.3.2 discusses the significance of selecting appropriate
features, examines how the inclusion or exclusion of certain information affects
accuracy, and highlights the potential impact of incorrect assumptions. In these
experiments, we set hyperparameters to an optimal case scenario. Finally, in
Section 7.3.3, we emphasize the importance of updating the model regularly.
We evaluate different model parameters and report the auc-roc score for
each of them, which are subsequently compared.

7.3.1 Overall Accuracy
Next, we report the overall classification accuracy of each month from January
to May 2021 using the optimal parameters of α = 1 andψ = 0.5, summarized
in Table 7.4. The average accuracy for the entire period of analysis is also
included in the table. Table 7.5 displays the computed confusion matrix for all
the points analyzed over the course of the evaluation, which includes more
than 30 million transactions.

As indicated in Table 7.4, the overall accuracy of the model is above 90% for
three out of five months during the entire training/test period,while it struggles
between April and May due to the coin price plunge (discussed in Section 8).
Nonetheless, even in our worst-case scenarios, the model remains relatively
robust. The confusion matrix in Table 7.5 demonstrates that the model correctly
classified 91% of the transactions in the υ0 class and 88% in the υ1 class.
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Classification accuracy 2021 (%)

α ψ Jan Feb Mar Apr May Overall

1 0.5 90.07 90.9 91.08 85.52 88.29 89.17

Table 7.4: The presented results include the classification accuracy for each month of
the evaluation period, which spans from January to May 2021. The overall
accuracy is calculated as the average classification accuracy across the entire
evaluation period. The optimal parameters of α and ψ are employed in
order to ensure that the model is complete and up-to-date with respect to
the tested data.

Overall CM score

υ0 υ1

υ0 0.91 0.09

υ1 0.12 0.88

Table 7.5: The presented confusion matrix represents the overall score for a test
conducted between January 2021 and May 2021, with parameters α = 1 and
ψ = 0.5. The matrix depicts how over 30 million transactions were classified
using five distinct models, each of which corresponded to a different month,
thereby providing a complete and up-to-date view. The false negative rate
is determined to be 9% for the negative class, while the false positive rate
is observed to be 12% for the positive class.

Classification accuracy 2021 (%)

Feature set Jan Feb Mar Apr May Overall

1 : Primitive 75.13 78.54 77.77 62.52 69.97 72.78

2 : Fairness 84.57 86.24 84.63 83.64 82.11 84.23

3 : Revenue 88.24 87.73 89.4 80 86.21 86.31

4 : Complete 89.51 90.36 90.04 85.35 88.23 88.69

Table 7.6: The accuracy of classification across various sets was assessed. Each set
denotes a distinct feature property. The primitive set includes only transac-
tion fee and size, while a revenue-based solution include features that are
associated with miners’ revenue, such as fee, offset, and feerate.
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7.3.2 Features Performance
To validate our assumptions on the importance of certain features in predicting
transaction inclusion, we conducted tests and verified the relevance of four
specific feature subsets. The classification accuracy and confusion matrix for
models trained using each of the four feature sets are presented in the following
results.

The first set, denoted as primitive information, includes only fetched features
such as transaction size and fee, commonly used by fee predictors but with
poor results in terms of fee overpaying.

The second set, denoted as fairness assumptions, excludes features based on
the revenue principle, assuming that a miner needs only to be fair to include
transactions in the next block.

The third set, denoted as revenue assumptions, excludes features based on the
fairness principle to monitor the impact of revenue on the transaction inclusion
pattern.

60%

65%

70%

75%

80%

85%

90%

95%

January February March April May

Primitive Fairness Revenue Complete

Figure 7.1: Classification accuracy outcomes for each set of features. The findings
demonstrate a substantial enhancement in model accuracy when utilizing
a complete feature set, as opposed to relying solely on transaction size
and transaction fee as features.
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Finally, the fourth set, denoted as complete information, includes fetched and
extracted features, aiming to verify the reliability of our initial assumptions,
including both fairness and revenue concepts. The specific feature sets for each
evaluation are defined as follows:

1. Primitive: [ϕ,q]

2. Fairness: [ϕ,q,∆P,∆PN ]

3. Revenue: [ϕ,q, ρ, δ , δN ]

4. Complete: [ρ,∆P,∆PN , δ , δN ]

The experiments conducted in this study were designed with a completeness of
α = 1 and freshness ofψ = 0.5. Observed classification accuracy are reported
in Table 7.6 and the corresponding plot is presented in Figure 7.1. We observed
that the resnet classifier struggles when Bitcoin prices experience a sudden
and significant drop, such as in April 2021. Specifically, the accuracy dropped by
15% when the primitive set of features was used, while the accuracy drop was
limited to 5% when complete information was used. This finding highlights
the relevance of assumptions made in predicting transaction inclusion. Notably,
when fairness and revenue principles were applied separately to the data, the
model achieved an average improvement in accuracy ranging from 12% to
14%, and up to 23% when these principles were combined.

The variance of the fairness sub-feature set classification accuracy appeared to
be smaller than that of revenue sub-feature set, underscoring the importance
of the fairness concept in determining transaction inclusion. In April 2021, an
inversion of the Bitcoin price uptrend was observed and miner revenue reached
an all-time high. During this period, data indicates that miners appeared to be
prioritizing revenue over fairness.

7.3.3 Model Cyclicity
To demonstrate the potential improvement in model classification accuracy
when trained on well-formed data, this paragraph illustrates a deviation from
the optimal parameter settings. This updated model is cyclically trained over
time with complete (α = 1) and fresh (ψ = 0.5) information. By varying
the value of ψ , we can test the model’s behavior with both older and newer
transactions. Testing is conducted for each month with various combinations of
values for α andψ . Although some of these scenarios may be unrealistic, they
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Figure 7.2: Classification accuracy values (z-axis) for multiple models, tested with
diverse settings. The y-axis, represented by theψ parameter, indicates the
extent to which a particular model is updated, while the x-axis identifies
the model’s completeness, as determined by the α parameter. To improve
classification accuracy, it is important to highlight the importance of the
model’s cyclicity.

Evaluations on model cyclicity

type α ψ Accuracy (%) auc-roc

Worst- 0.04 0.02 78.63 0.82

Average- 0.2 0.12 84.71 0.92

Optimal 1 0.5 91.08 0.97

Average+ 0.2 0.88 81.25 0.89

Worst+ 0.04 0.98 70.25 0.8

Table 7.7: auc-roc results obtained for different parameter values. The optimal eval-
uation is achieved when the model is complete and the testing is performed
within the same month as the training. The average evaluation is obtained
using a model that is 20% complete and with a two-month deviation be-
tween training and testing. The worst evaluation case corresponds to a
model that is only 4% complete and tested four months after training.
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are useful for monitoring the model’s performance under different conditions.
For each month, we perform tests on various combination of values for α , which
include 0.05, 0.1, 0.5, and 1, as well asψ , which includes 0.01, 0.05, 0.12, 0.26,
0.5, 0.73, 0.88, 0.95, and 0.98.

Figure 7.3: Five tests conducted to measure auc-roc in optimal, average, and worst-
case scenarios. The optimal test was performed using α = 1 andψ = 0.5,
and is indicated by the green continuous line. The two average tests were
conducted with α = 0.2 andψ = [0.12, 0.88], and are represented by the
dot-dashed light blue lines. The two worst-case tests were conducted with
α = 0.04 andψ = [0.02, 0.98], and are represented by dotted yellow and
red lines, respectively. When the auc is equal to 0.5, the classifier can no
longer distinguish between positive and negative class points.

The results are presented in Figure 7.2. Each data point corresponds to the
average classification accuracy over five months, for a specific combination of
parameter values (α on the x-axis andψ on the y-axis). The plot demonstrates
that the accuracy is highest (indicated by yellow color) when ψ is close to
0.5 and α is close to 1. When the precision of the offset decreases (smaller
α values), the impact of model cyclicity (ψ ) becomes less significant. These
findings highlight the importance of selecting appropriate values for both
parameters. Specifically,ψ is relevantwhen it incorporates accurate information
about the mempool size, which is provided by an appropriate choice of α . By
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contextualizing the model over time through the offset, accurate predictions
can be made. Without an accurate calculation of the offset, the model would
rely solely on the fairness concept, which appears to have less accuracy variance
over time (as demonstrated in Figure 7.1, fairness bar).

Figure 7.3 displays the auc-roc curves obtained from five tests that were
conducted using different parameter values. These values were carefully se-
lected to represent optimal, average, and worst-case scenarios, as described
in Table 7.7. We distinguish between two average cases and two worst cases,
depending on whether testing was performed before (–), or after (+) train-
ing. In the optimal case, the model achieves a solid classification result, with
an area under the curve of 0.97, indicating its ability to distinguish between
classes. Even when allowing for a fpr of 10%, the fnr does not exceed 10%.
Furthermore, if a fpr of 20% is accepted, the fnr remains below 5%.

7.4 Benefits for End-Users
Analyzing fee reduction for end-users is essential as it provides valuable insights
into the extent to which our solution can benefit users. In this context, our
study focused on testing the impact of fee reductions across all months of
the evaluation period, covering all transactions in our local dataset R. We
specifically focused on transactions belonging to υ1, namely, those that were
selected by miners in the next round of mining.

Purpose We aim to determine the extent to which users can potentially de-
crease their transaction fees while stillmaintaining a favorable probability
of inclusion in the next mined block.

Methodology We analyze the effect of fee reductions, ranging from 0% to
80% of the original fee, on our ml model for each block-epoch-based
transaction in our complete set C. We also take into account the overall
adoption of our model, as this directly affects parameters like feerate
and offset values at each block-epoch. To explore this effect, we test
various levels of overall adoption, ranging from 1% to 100%. In the
lowest adoption scenario, only a random 1% sample of transactions will
have their fees reduced, while in the highest adoption scenario, fees of
all transactions will be reduced.

Experimental setup The tests are conducted as simulations of reduced fees
rather than real-world transactions executed on the Bitcoin network.
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In these simulations, we utilize transactions stored in our local dataset,
lower their transaction fees, and input them into our ml model to assess
the variance in accuracy score. We have deliberately chosen to focus
on labeled transactions in υ1, as they have already been selected for
inclusion. Consequently, it is essential to examine the extent to which a
fee reduction will affect their likelihood of being included.

Analysis In order to evaluate the significance of our results, we analyze the
variance in the accuracy score of the identical ml model when applied
with different fee and adoption parameters. This analysis helps us un-
derstand the impact of varying these parameters on the accuracy of our
ml model.

Results Figure 7.4 indicates that on average, a hypothetical adoption rate of
80% can result in a reduction of transaction fees up to 30%, without
compromising the 80% threshold of inclusion prediction score. Further-
more, tests showed that with complete adoption, transaction fees could
be reduced by as much as 50%, without resulting in a predicted likeli-
hood of transaction inclusion falling below 70% in any of the months
evaluated. The remarkable finding was that our model demonstrated a
predicted likelihood of transaction inclusion of over 80% in most months
of the evaluation period, even when fees were reduced by as much as
10%. Hence, our model enables users to reduce their fee expenses with
great confidence while still maintaining a high probability that their
transactions will be included in the next mined block. Our analysis can
help guide end-users in optimizing their transaction fees, resulting in
significant cost savings. These findings contribute to our understanding
of the practical applicability of our model and its ability to assist users in
optimizing transaction costs.

Limitations By conducting these tests, we aim to determine the extent to
which users can potentially decrease their transaction fees while still
maintaining a favorable probability of inclusion in the next mined block.
However, it is important to note that these findings are based on sim-
ulations. In practice, miners may decide to alter their policy regarding
transaction inclusion if they observe changes in trends across the entire
user base. Nonetheless, our model should possess the ability to accom-
modate such modifications if they are founded on comparable concepts
as those expounded in our study. Analyzing fee reduction for end-users
can provide valuable insights into the benefits that our solution can offer
and help to guide decision-making processes related to transaction fees.
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(a) Jan-21 (b) Feb-21

(c) Mar-21 (d) Apr-21

(e) May-21

Figure 7.4: Inclusion prediction score for transactions with reduced fees. In our simu-
lated tests, the adoption rate refers to the proportion of users who have
hypothetically adopted our model and subsequently decreased their fees
to the percentage levels indicated on the x-axis. It is important to note
that these tests do not involve real-life observed data, but rather simulated
scenarios.
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7.5 Miners’ Profit After Fee Reduction
Our fee inclusion model enables users to achieve substantial savings in trans-
action fees within the Bitcoin network, while maintaining a high likelihood of
inclusion. However, a pertinent question emerges regarding potential adverse
implications of such fee reduction on miners. To address this question, we
assess the extent to which miners are impacted by this fee reduction, using the
methodology described in Section 3.1.2.

Purpose We aim to quantify the profit loss for miners resulting from a reduc-
tion in transaction fees, as predicted by our model.

Methodology In order to determine miners’ profit, we employ the formulas
described in Section 3.1.2. Specifically, we calculate the profit under two
scenarios: without any fee reduction and with a 10% fee reduction. The
latter calculates the profit assuming a 100% adoption rate of our model,
which is expected to have a more pronounced negative impact on miners
compared to lower adoption rates.

Experimental setup In this evaluation, we perform a profitability analysis
specifically for a miner using the Antminer S19 Pro. Our assessment is
based on several assumptions: each block comprises 2,500 transactions,
and we consider the average transaction fee to be $ 7.5.3 We analyze the
daily profitability of miners in Qatar, where electricity prices are low, and
in the US, where electricity prices are average. Our assessment includes
various case scenarios, taking into account a range of Bitcoin prices
from $ 10,000 to $ 100,000. Additionally, we take into account the block
reward of B 3.125, factoring in the imminent halving event that reduces
the current block reward of B 6.25. This emphasizes the importance of
transaction fees in the overall profitability calculation.

Analysis We examine the daily profit of miners in Qatar and the US, taking
into account the specified parameters mentioned earlier. Subsequently,
we calculate the variance in profit resulting from a 10% reduction in fees.

Results The analysis conducted, as shown in Table 7.8, reveals that the re-
duction in fees generally leads to minimal losses for miners. However,
in specific scenarios where the profitability approaches zero (such as
when the Bitcoin price is at $10,000 and the miner operates in Qatar),

3. based on the yearly average fee in Bitcoin for 2023, sourced from blockchain.com at https:
//www.blockchain.com/explorer/charts/fees-usd-per-transaction

https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
https://www.blockchain.com/explorer/charts/fees-usd-per-transaction
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the losses exhibit a relatively higher percentage value (20%), yet remain
insignificant in absolute terms. This relatively larger percentage of loss
can be attributed to the marginal profit/loss nearing zero. It is crucial
to note that despite the notable percentage, the actual impact on daily
profit is minimal, amounting to few cents of difference. As the daily
profit increases for miners, the impact of this fee reduction on their profit
diminishes, with the loss remaining below 1.3%.

Limitations It is important to note that this analysis is conducted through
simulation, which means that the expected profit and loss may slightly
differ from real-world scenarios. In real-world situations, various factors
such as fluctuations in electricity prices, Bitcoin price, transaction fees,
and mining probabilities would be considered, potentially impacting the
outcomes. Therefore, it is crucial to acknowledge that these simulated
results provide an approximation and may vary when accounting for the
complexities of actual operational environments.

Summary
In this chapter, we presented the evaluation of our ml model. Firstly, we
conducted a comparative analysis of various datasets used in the experiments.
We defined metrics such as completeness and freshness to test the quality of
these datasets.

ep ($/kWh) Daily profit with $ 7.5 fee

Bitcoin price ($) 10000 30000 60000 100000

Qatar : 0.032 0.54 4.35 10.06 17.68

US : 0.162 -9.59 -5.78 -0.07 7.54

10% fee deduction

Qatar 0.43 4.24 9.95 17.57

US -9.71 -5.89 -0.18 7.42

Table 7.8: The table presents the effects of a 10% fee reduction on miners operating in
Qatar and the US across different Bitcoin price variations. The block reward
is set at B 3.125, with 2,500 transactions per block, $ 7.5 fee per transaction,
and a single miner using Antminer S19 Pro.
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Secondly, we defined evaluation metrics to assess the performance of the
model. These metrics included classification accuracy, confusion matrix, and
roc analysis.

Thirdly, we evaluated the model’s performance by considering different subsets
of features and examining their individual contributions. We also conducted
experiments to vary the model’s freshness. The classification accuracy of the
model reached peaks of 91%. Notably,using our complete set of features resulted
in an average accuracy boost of 16% compared to the more common approach
of using transaction size and fee alone.

Finally, we analyzed the potential benefits of our solution for end-users, as well
as the corresponding potential loss that miners may incur. We demonstrated
that a 10% reduction in fees would not negatively impact transaction inclusion.
This finding highlights the positive impact our solution can have on transaction
costs. Additionally, our analysis demonstrates that implementing a 10% fee
reduction results in a minimal impact of less than 1.5% on miners’ profits.

In the upcoming chapter, we discuss our results concerning several crucial
aspects. These include the suitability of pow-based systems as a low payment
scheme, the storage requirements for training the model, feature selection
techniques, model cyclicity, transaction sampling approaches, and ethical con-
siderations associated with pow.





8
Discussion
This chapter focuses on the discussions drawn from the analysis performed on
Bitcoin. The limitations of the low-payment scheme for users is discussed. The
importance of selecting the appropriate set of features for building an accurate
prediction model is highlighted, and the comparison between different feature
sets is presented. The impact of exogenous events on the accuracy of the model
is also discussed. The significance of model cyclicity and the appropriate choice
of hyperparameters in boosting the accuracy score is analyzed. Overall, this
chapter provides valuable insights into the importance of selecting appropriate
parameters and features to build an accurate model that can be used in a
pow-based environment.

This dissertation is, to our knowledge, the first work that systematically use
modern ml techniques to forecast transaction inclusion. Given this unique
contribution, we acknowledge the challenges involved in conducting a compre-
hensive comparison with existing works. Therefore, interpreting our findings
without a genuine real-world case comparison may appear less pertinent. Nev-
ertheless, executing such assessments is a costly endeavor since it necessitates
generating actual transactions with a relatively high fee based on the current
average fee and subsequently adjusting it based on our model’s prediction.
Nonetheless, since our model accuracy exceeds 90%, the simulated outcomes
demonstrate a high degree of solidity and dependability.
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8.1 Bitcoin as Low-Payment Scheme
This dissertation provides insights on how suited pow-based systems, such as
Bitcoin, are as low-payment schemes. We can list some reasons on why pow
fails on this matter:

1. High Transaction Fees: the negative impact of interblock interval time
and block size constraints on the system’s throughput, fee markets have
emerged. Fees provide a stable income for miners, which in turn leads to
overpricing of transaction fees to guarantee immediate inclusion in the
blockchain, causing users to pay fees that are two orders of magnitude
higher than the recommended one.

2. Scalability Challenges: limitations on block size and frequency limits
transaction throughput. As a consequence, it becomes challenging to
handle a high volume of low-fee transactions in a timely manner.

3. Confirmation Time: pow systems have confirmation times that can vary
depending on factors such as network congestion and mining difficulty.
The time required for a transaction to be confirmed and included in
a block can range from several minutes to hours. This delay is not
suitable for low-payment schemes where quick and near-instantaneous
transactions are desired.

4. Environmental Impact: pow algorithms require substantial energy con-
sumption for mining activities. The process of solving computational
puzzles in pow systems consumes a significant amount of electricity,
leading to a substantial carbon footprint. This environmental impact
and energy consumption make pow systems less desirable for low-fee
transactions that do not justify the ecological cost.

To address issue number one, our study proposes a transaction inclusion model
that extracts the necessary features for accurate classification. By training
the model periodically, with a cadence of at least once a month, it is possible
to classify incoming transactions into two classes with an accuracy score on
average of 89%, which aims to optimize user expenditure.
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8.2 Dataset Storage
Figure 8.1 illustrates the storage efficiency of the dataset we have generated.
The complete set is somehow prohibitive to store and for that, our approach
enables good results while saving a lot of space on disk. Compared to the actual
size of the Bitcoin blockchain, our raw dataset R saves an average of 53.75%
of disk space (see Figure 8.1).

Additionally, the training setX, which contains block-epoch-based information,
is 54.25% smaller on average than the original blockchain size, and saving
up to 88.33% of disk space when smaller portions of the blockchain are ana-
lyzed.

We set a threshold of 3,000 blocks (approx. 20 days, or ca. 6million transactions)
for dataset evaluation, as the resnetmodels we produce are designed for short-
term predictions and are more accurate when generated cyclically. The dataset
C has been found to be the heaviest among all the sets analyzed,with an average
disk size of 158% greater than that of the Bitcoin blockchain when analyzing
transactions greater than 100,000. For transactions below this threshold, C is
33% lighter than the Bitcoin blockchain. However, it is important to note that C
is only stored during run-time and not permanently. In conclusion, the dataset
R demonstrated to save 60% of space compared to the Bitcoin blockchain for

Figure 8.1: The following illustration demonstrates how various datasets we imple-
mented scale in proportion to the size of the Bitcoin blockchain.
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5 million transactions.

8.3 Selection of Features
During our experiments we outlined that careful selection of features is impor-
tant Although more common and simpler fee estimators, which we refer to as
primitive in this study, typically perform with an accuracy slightly above 70%.
For example the command line call Bitcoind estimatesmartfee included
in Bitcoin core, which relies solely on past blocks, transactions, and fee rates,
our study employs a more comprehensive real-time based approach, with an
accuracy score never below 85%.

We analyze the set of engineered features based on our intuition over a period
of five months, which we refer to as the complete solution, and compare it with
the primitive solution. We demonstrate that our proposed approach leads to
a 16% improvement in accuracy score, on average. The accuracy score of the
model experiences a downward trend during the months of April and May. This
can be attributed to a series of events within the Bitcoin network, including
a Bitcoin price drop of 46%, a surge in transaction fees to an all-time high,
and an increase in miners’ revenue. We argue that these exogenous events
impacted the inclusion of transactions.

8.4 Model Cyclicity
The accuracy score of a classifier can be improved by maintaining the complete-
ness and novelty of information in the model, particularly when unexpected
events occur. This is demonstrated in Figure 7.2, which shows that classification
accuracy drops when older models are used to classify recent data (ψ → 1), or
when information in the test set is incomplete (α → 0). Accuracy also drops
considerably if models prior to the price inversion trend are used to classify
more recent data. Two tests in April 2021 are compared in Table 8.1, one with
complete data (α = 1) and one with incomplete data (α = 0.5), both classi-
fied with a model from January 2021. Despite data completeness, the mode
incorrectly classifies 26% of transactions in υ1 as υ0 (false positive) due to the
all-time-high fees in April. When data completeness is reduced to α = 0.5, the
false positives increase to 41%, while false negatives represent only 5%. In
such cases, the model should be trained more frequently than once per month
to reduce the number of misclassified transactions caused by deviations from
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the previous inclusion pattern.

Overall CM score,ψ = 0.95

α 0.5 1

υ0 υ1 υ0 υ1

υ0 0.95 0.05 0.89 0.11

υ1 0.41 0.59 0.26 0.74

Table 8.1: This table displays the overall confusion matrix score for April 2021 data
using the January 2021 model. The ψ value is fixed at 0.95, while two
different values ofα , 0.5 and 1, are evaluated. The importance of a complete
dataset during training is highlighted, and the table demonstrates how
classification accuracy can benefit from having complete information.

Figure 7.1 demonstrates that the selected features are crucial for accurate
classification, and both parameters are fundamental for boosting the accuracy
score. A complete set of information is needed to correctly calculate the offset
value and have the right information on the current mempool size. An up-
dated or new dataset helps to have knowledge of the current miner inclusion
trend.

8.5 Transactions Sampling
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Figure 8.2: Cumulative distribution functions for transaction fees and feerate in our
dataset.

Despite obtaining a good classification accuracy score, we observe that the
model could be biased towards a specific range of transaction fees. In fact, bias



126 chapter 8 discussion

gets into the model through the data that is used for building our classification
model [163]. We carry out a supervised approach, thus our model only knows
the outcome for transactions occurred in the blockchain. If most users pay a fee
greater than the optimal value, the model lacks samples for small transaction
fee values.

Figure 8.2 shows the fee and feerate Cumulative Distribution Function during
the period of analysis. We observe that after the price drop occurred in late
April 2021, fees were considerably lower (May 2021), and that transaction fees
between 104 and 105 sat represent nearly the 75% of the total. Although
the recommended transaction feerate should be 1 sat/byte, we observed an
extremely low number of accepted transactions that utilize such a low fee rate.
Consequently, one might conclude that ourmodel is biased and it is not accurate
when predicting transactions with feerate of 1 sat/byte. However, the overall fee
trend of approved transactions delineates a pattern itself,meaning that a too low
fee will rarely end up in an inclusion, which is in line with our model’s outcome.
In fact, lower fee transactions are evicted from the network and never included.
Our model optimizes expenditure within the range of the already approved
transactions, and its scope is not to detect possible evicted transactions, but to
determine an inclusion in the next block. Information about eviction is not of
particular relevance. Finally, any transaction issuer could consult the model’s
output in order to trade-off its probability of inclusion with more, or less fee
to pay.

8.6 Ethical Concerns of Proof-of-Work
The computational power and energy required to mine results in a high en-
ergy consumption as the network scales and gets more secure. The carbon
footprint can have negative impact to the environment, contributing to climate
change and other environmental problems. Moreover, the cost of energy is
a major barrier to entry for smaller miners, and despite the availability of
renewable energy sources such as hydroelectric, solar, or wind power, many
miners still depend on non-renewable sources like coal or natural gas. This
reliance on non-renewable sources negatively impact the environment and it
does contribute to greenhouse gas emissions. However, if most miners adopt
renewable energy sources, a pow-based blockchain system has the potential to
replace the worldwide banking system. Compared to the operational costs of
the banking system, the operational costs of pow are relatively low. However,
the transaction throughput may become a bottleneck to its adoption.



8.6 ethical concerns of Proof-of-Work 127

Another ethical concern related to pow is the unequal distribution of mining
power. Mining requires specialized hardware and software, that is expensive
to purchase and maintain. Consequently, mining is often more accessible to
those with greater financial resources, leading to a concentration of mining
power among a small group of individuals or organizations. This can give rich
entities undue influence over the network, raising concerns about the overall
decentralization and democratic governance of the network.

Mining generates a significant amount of e-waste. The specialized hardware
used for mining quickly becomes obsolete as new, more powerful hardware is
developed, contributing to the global issue of e-waste and further emphasizing
the sustainability issues of pow mining at scale.

Acknowledging these ethical concerns, pow it is still considered the most
secure and widely-used consensus mechanism in the blockchain industry. Our
dissertation does not aim to question the applicability or sustainability of
pow, although we are aware of its limitations. Instead, our study focuses
on a widespread phenomenon related to blockchain technology, recognizing
that alternative consensus mechanisms may exist that offer solutions to the
ethical concerns associated with pow. Nevertheless, we propose an approach
to reduce the cost for users in the Bitcoin network by employing transaction
inclusion prediction. This reduces the negative burdens associated with the
network.

Summary
This chapter examined the limitations of Bitcoin as a low-payment scheme,
emphasizing high transaction fees, scalability challenges, confirmation time,
and environmental impact. A transaction inclusion model was proposed with
periodic training to optimize user expenditure.

The chapter also discussed the efficiency of dataset storage, with the generated
dataset saving significant disk space. It highlighted the importance of selecting
the right features for accurate prediction models, showing a 16% improvement
compared to more simple estimators.

The impact of external events on model accuracy was considered, suggesting
that factors like price drops and fee surges affected transaction inclusion.
Model cyclicity was emphasized, recommending frequent training to maintain
accuracy when faced with deviations.
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The chapter also addressed the potential bias in the model towards a specific
range of transaction fees. It acknowledged that the model’s performance may
be affected when predicting transactions with extremely low feerate, how-
ever, the model optimizes expenditure within the range of already approved
transactions.

In summary, the discussion chapter provided insights into the limitations of
Bitcoin as a low-payment scheme, the importance of feature selection, efficient
dataset storage, model cyclicity, and ethical concerns associated with pow
systems.



9
Concluding Remarks
The high fees reates that haunts pow-based systems at scale, makes ground-
breaking system such as Bitcoin less appealing for end-users. This dissertation
aims to improve our understanding modeling of the transaction fee mecha-
nism and provide a method for users to optimize their fee expenditure. In this
chapter, we provide a comprehensive listing of our contributions, we aim to
provide a conclusive affirmation of the key arguments, and provide insights
that we have developed throughout the course of this work.

To summarize the focus of this dissertation, our starting point is the thesis
that:

Our thesis is that Bitcoin transaction fees can accurately be modeled and
predicted using ml methods, improving utility and efficiency for clients
using such cryptocurrencies, while maintaining a fair compensation for

miners.

We conclude that our research has provided valuable insights into the chal-
lenges posed by the scalability bottleneck and high fees in pow-based systems
such as Bitcoin. By thoroughly examining the transaction fee mechanism and
integrating pow-based blockchains withml models, we have made significant
contributions to improving the utility and efficiency of cryptocurrencies for
clients. Our findings demonstrate the efficacy of a formal transaction inclusion

129
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model in predicting transaction acceptance, shedding light on the underlying
mechanisms and patterns governing miners’ decisions. Moreover, our work has
the potential to enhance the overall user experience, trust, and reliability of
cryptocurrencies, empowering Bitcoin users with precise transaction inclusion
predictions and enabling them to make more informed decisions regarding suit-
able fees. Through the strategic integration of pow-based systems and resnet,
we have paved the way for a more robust and user-centric cryptocurrency
ecosystem.

9.1 Summary of Research Methodology and
Findings

In Chapter 3, we discuss the principles and rules governing the Bitcoin ecosys-
tem at scale, with a focus on the interdependence between users and miners.
We explain how miners make profits, with related cost of mining, and miners’
importance in transaction inclusion. The emergence of a fee market in pow-
based blockchains is also explored, including the auction schemes that miners
could adopt, and how this can lead to fee dynamism in Bitcoin. The chapter
also relates these issues to the high fees and overpaying in Bitcoin, which
are dictated by the mass adoption of Bitcoin and its inner throughput limita-
tions. Understanding such fee market is important for formalizing a transaction
inclusion pattern.

Chapter 4 presents the design and implementation of the Blockchain Analytics
System (BAS), which we developed for acquiring and storing a local dataset
of the Bitcoin blockchain. The chapter presents the methods and techniques
used for data acquisition, including web scraping, apis, and direct access to the
blockchain using Bitcoin Core software. The acquired data is then structured
and pre-processed to be suitable for analysis in subsequent chapters.

Chapter 5 discusses the use of time-series data analysis as a tool for predicting
future trends. The methodology is based on the collection of time-series data,
where transactions are sampled on a monthly basis with a fixed interval, and
a notion of relative time is incorporated, represented by block creation epochs.
The chapter presents a comprehensive model for the inclusion of transactions
in a pow-based blockchain system, with a focus on the factors of revenue
and fairness. Revenue serves as an incentive for miners to participate in the
network and validate transactions, while fairness ensures equal opportunity
for all users to have their transactions included in the blockchain upon paying
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an adequate fee value. The model takes into account both revenue and fairness
as complementary factors for an accurate study and prediction of transaction
inclusion.

Chapter 6 presents ml architecture. The chapter covers three critical stages:
the ingestion engine, the pre-processing stage, and the ml model. The inges-
tion engine is responsible for processing and transforming raw data obtained
from the blockchain. The pre-processing phase transforms raw data into a
suitable form for the analysis, including feature extraction and additional data
processing to generate a complete dataset. Finally, the chapter describes the
ml model used for the prediction.

Chapter 7 evaluates ml model used in the study. It describes the datasets used
for training and testing the model, the evaluation metrics employed, and the
results of the analyses. The section reports on the overall accuracy of the model,
feature importance, andmodel cyclicity. The findings of this study offer valuable
insights into the effectiveness of the model as well as the appropriateness of the
selected features for the intended purpose. Specifically, the study demonstrates
the efficiency of the ml model in predicting transaction inclusion, which can
potentially serve as a powerful tool for end-users. By utilizing our model,
transaction issuers can maintain a high degree of confidence, with a likelihood
of inclusion higher than 80%, in the next mined block while saving up to 10%
in transaction fees.

9.2 Contributions
After examining the research presented in this dissertation and analyzing our
thesis statement, we have drawn the following list of contributions:

1. Our research sheds light on the complexities of the transaction fee mecha-
nism in Bitcoin, and the results of our study provide valuable insights into
the underlying mechanisms and patterns governing miners’ decisions to
include individual transactions.

2. By integrating pow-based blockchains and ml models, we have shown
that it is possible to improve the utility and efficiency of cryptocurrencies
for clients, and we demonstrate the efficacy of a formal transaction inclu-
sion model in predicting transaction acceptance in the blockchain.

3. Our work has significant implications for improving the overall user
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experience and enhancing the trust and reliability of cryptocurrencies,
providing Bitcoin users with a notable precision in predicting transaction
inclusion and enabling them to better select suitable fees.

In summary, answering our thesis statement we can say that, yes, our thor-
ough examination of pow-based blockchains and the application ofmlmodels
has indeed demonstrated that the strategic integration of these technologies
can improve utility and efficiency for clients using cryptocurrencies, while
still ensuring miners to get their revenue. Our research has demonstrated the
efficacy of a formal model and ml prototype in predicting transaction inclu-
sion, providing valuable insights into the underlying mechanisms governing
miners’ decisions and paving the way for improved utility and efficiency of
cryptocurrencies for clients. Our work has significant implications for enhanc-
ing the trust and reliability of cryptocurrencies and improving the overall user
experience by enabling Bitcoin users to better select suitable fees and predict
transaction inclusion with notable precision.

9.3 Future Work
To enhance our confidence in the effectiveness of our model, it is crucial to
conduct real-world tests of transaction fee reduction. In these tests, transactions
would be submitted based on the predictions generated by our model, allowing
to calculate the potential cost savings for end-users. This practical validation
would provide valuable insights into the actual benefits and performance of
our model in a live environment. The primary goal is to determine the extent
to which transaction issuers can reduce their fees while still maintaining a
high degree of confidence in the inclusion model’s output. By conducting
such research, it will be possible to quantify the amount of overspending that
occurs in the Bitcoin network and contribute to improving the overall user
experience.

It is crucial to continue observing blockchain data as the inclusion model may
change over time, especially for developers who wish to utilize pow-based
systems without overpaying for transaction space in blocks. Therefore, we are
currently working on a modified version of the inclusion model that aims to
improve the accuracy score. Our approach takes a holistic view of new block
alternatives and penalizes transaction offset levels falling in the > 1MB space
of the mempool, thereby orienting the model towards a stronger second-price
auction approach.
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Furthermore, it would be beneficial to categorize transactions at each block
epoch into ranks and incorporate transaction rank as a feature in the predic-
tion model. Additionally, to mitigate training data bias arising from high-fee
transactions, it would be valuable to introduce a significant number of low-fee
transactions into the actual blockchain and record their latency in the model.
By adopting these approaches, we can gain more precise insights into the dy-
namics of transaction inclusion, leading to the development of a more resilient
and effective model that better serves end-users.
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List of Symbols
Sign Description Unit

Bday Blocks mined in a day

H Total hash rate of Bitcoin network hash/s

M Revenue of a block. Sum of all ϕ in a block B or $

Q Block size, ∼ 1.1MB bytes

R Block reward, currently at B 6.25, halved every 210, 000
blocks

B

S Set of ordered pending transactions

∆P It represents the waiting time for a transaction t , before
it is included in a block

s

βt Block epoch (be) of the block before t ’s inclusion

δt Feature that represents the offset, in bytes, of a certain
transaction t

bytes

ηday Consumption per day kWh

η Cost per hash kWh/hash

〈C〉 Expectation value of a miner’s hashing cost per block B

〈V 〉 Expectation value of a miner’s revenue per block B

〈Π〉 Expectation value of a miner’s profit per block B

E[f ] Expected transaction fee value. What is considered to
be "a fair amount"

B

PorphanProbability that, mined a new block, it gets orphaned [0, 1]

T Set containing occurrences of block creation times, in
epochs
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Sign Description Unit

A Set of temporary approved transactions

DB Locally stored dsataset containing raw fetched blocks

DT Locally stored dsataset containing raw fetched transac-
tions

Lx
t Lifespan of a transaction t

M Set containing all active miners in Bitcoin

P Set of relapsed pending transactions, rpt

R Raw dataset, containing the stored portion of the block-
chain

T ′ Calculated block interval time s

T Interblock time interval, equals to 600 s s

ϕ Transaction fee B

TTT Complete block-epoch-based representation of a trans-
action

XteXteXte Testing set

XXX Training set

θθθ t Model output array, θθθ t = [Pt (υ0), Pt (υ1)]

ρ Price per byte for block space, or feerate sat/bytes

BTCP Bitcoin price in U.S. dollars. $/B

υ0 Class of not approved transactions

υ1 Class of approved transactions

ξ Latest block created height

beξ Latest block creation time (epoch), x = −1 s

bex Block creation time (epoch). It represents the epoch of
a certain block at height x

s

dt Difficulty to solve Proof-of-Work at time t

ep Electricity price $/kWh
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Sign Description Unit

ept Timestamp of a transaction t . Epoch which represents
first appearance of t in the network

s

дB Gain in USD for mining a block B $

hat Transaction hash

hax Block hash at height x

h Miner’s individual hash rate hash/s

inp Transaction input of the utxo model. Money received
in a specific transaction

B

lt Latency of a transaction t s

out Transaction output of the utxo model. Money sent in
a specific transaction

B

q Transaction size bytes

tB Number of transaction approved in a block B.

ta Transaction that belongs to the setA of the Temporarily
Approved Transaction

tp Transaction that belongs to the set P of the Relapsed
Pending Transaction





A
Other Definitions
A.1 Bitcoin
Orphaning
The likelihood of a miner, denoted as m, successfully publishing a block de-
creases if the chosen block is slow to propagate to other miners. In such a
scenario, even ifm successfully solves a block b, this block may be discarded
if a newer block b ′ mined by another miner m′ propagates faster. This phe-
nomenon is referred to as orphaning, and the probability of orphaning is
determined by the block propagation time τ . As the block creation time follows
a Poisson distribution, it can be formalized as:

Porphan = 1 − e−
τ
T (A.1)

51% Attack
51% refers to an attack on a pow-based blockchain by an attacker that amasses
a majority of the hash rate in the targeted cryptocurrency [164]. Proof-of-Work
is intended to make such attack prohibitively expensive, but if accomplished,
the attacker could rewrite the blockchain and reverse transactions that are
considered settled. For instance, if an attacker tries to double spend its tokens,
it will first purchase goods with them. Once the transaction is approved, the
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attacker forks the blockchain and it uses its 51% hash rate to re-build and
overtake the honest chain, and new blocks, including the malicious transactions
that spends again the same token, is included and approved by the network.
Such attack would not destroy Bitcoin or any other cryptocurrency, but it
could provide severe damage to its users, and to the fame of the currency
itself [165].

Full Node
Node that stores and processes the entirety of every block, saving locally the
entire blockchain.

Light Node
Node that only stores the part of the blockchain it needs.

Bitcoin-cli
Bitcoin-cli is a command-line interface for interacting with a local or remote Bit-
coin Core instance, which is a full node implementation of the Bitcoin protocol.
It allows users to send commands to the Bitcoin Core daemon (bitcoind) and
receive the results. This enables developers to easily query the Bitcoin block-
chain, retrieve transaction details, and perform other actions such as sending
transactions, or managing wallets.

A.2 Machine Learning
Model Hyperparameters
Our implementation of resnet consists of three sets of residual blocks, each set
consisting of two fully connected (Dense) layers followed by a skip connection
(Add) that bypasses the two Dense layers. The first layer in the resnet is a
Dense layer with 256 hidden units and a relu activation function. The output
of the first Dense layer is passed through three more Dense layers with 256
hidden units each and relu activation functions. Then, the output of the first
Dense layer is added to the output of the last Dense layer in this set using a
skip connection. The output of the first residual block is then passed through
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two more residual blocks, each consisting of two Dense layers with 64 hidden
units and relu activation functions. The output of the second residual block
is added to the output of the first residual block using another skip connection.
The output of the second set of residual blocks is passed through one more
residual block with 64 hidden units, and its output is added to the output of
the second residual block using another skip connection. The final layers of the
network are two Dense layers with 32 and 16 hidden units, respectively, both
with relu activation functions. The output layer is a Dense layer with two
number of units and a softmax activation function, which gives the probability
distribution over the possible classes.

The weight initialization of all the Dense layers is done using the He normal
initializer, which helps in initializing weights that are well-suited for deep
neural networks. Finally, the resnet is compiled using the categorical cross-
entropy loss function, an Adam optimizer, and accuracy as the evaluation
metric.

A.3 Statistics
Bayesian Nash equilibrium
In game theory, Bayesian Nash equilibrium (BNE) is a strategy profile that max-
imizes the expected payoff for each player given a prior beliefs and strategies
played by other players. A strategy profile σ is a bne if and only if for every
player i, each one with their prior beliefs and strategies of other players fixed,
σi maximizes the expected payoff [166].

σ is bne ⇐⇒ ∀i,
∑
i

payoff(σi ) ≥
∑
i

payoff(σ′i ) (A.2)

for any possible strategy σ′.





B
Publications
This dissertation is based on the work presented in the following five publica-
tions:

Publication I
Tedeschi, E., Johansen, H.D. and Johansen, D., 2018. “Trading Network Perfor-
mance forCash in the Bitcoin Blockchain”, in CLOSER 2018, the 8th International
Conference on Cloud Computing and Services Science, pp. 643-650.

Scope
In this paper we perform an initial longitudinal study on the Bitcoin network,
where we observe a consistent correlation between fee paid and transactions
latency. Using linear regression methods we design a model for fee-cost esti-
mation, and we outline that paying above a certain threshold it will not result
in better acceptance performances.
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Abstract
Public blockchains have emerged as a plausible cloud-like substrate for appli-
cations that require resilient communication. However, sending messages over
existing public blockchains can be cumbersome and costly as miners require
payment to establish consensus on the sequence of messages. In this paper
we analyze the network performance of the Bitcoin public ledger when used
as a massaging substrate. We present several real-world observations on its
characteristics, transaction visibility, and fees paid to miners; and we propose
two models for fee-cost estimation. We find that applications to some extent
can improve messaging latency by paying transaction fees. We also suggest
that spendings should be kept below 300 Satoshi per byte.

Publication II
E. Tedeschi, T. S. Nordmo, D. Johansen and H. D. Johansen, “Predicting
Transaction Latency with Deep Learning in Proof-of-Work Blockchains”, 2019
IEEE International Conference on Big Data (Big Data), 2019, pp. 4223-4231,
https://doi.org/10.1109/BigData47090.2019.9006228.

Scope
In this paper we illustrate our first model idea using dnn to predict transaction
latency in pow-based blockchains. This solution is based on our previous
longitudinal study and on a careful feature selection. This paper defines what
we consider the foundations for defining transaction inclusion pattern.

Abstract
Proof-of-work based cryptocurrencies, like Bitcoin, have a fee market where
transactions are included in the blockchain according to a first-price auction
for block space. Many attempts have been made to adjust and predict the
fee volatility, but even well-formed transactions sometimes experience delays
and evictions unless an enormous fee is paid. In this paper, we present a
novel machine-learning model, solving a binary classification problem, that
can predict transaction fee volatility in the Bitcoin network so that users can
optimize their fees expenses and the approval time for their transactions. The
model’s output will give a confidence score whether a new incoming transaction

https://doi.org/10.1109/BigData47090.2019.9006228
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will be included in the next mined block. The model is trained on data from a
longitudinal study of the Bitcoin blockchain, containing more than 10 million
transactions. New features that we generate include information on how many
bytes were already occupied by other transactions in the mempool, assuming
they are ordered by fee density in each mining pool. The collected dataset
allows to generate a model for transaction inclusion pattern prediction in
the Bitcoin network, hence telling whether a transaction is well formed or
not, according to the previous transactions analyzed. With this, we obtain a
prediction score for up to 86%.

Publication III
Enrico Tedeschi, Tor-Arne S. Nordmo, Dag Johansen, and Håvard D. Johansen.
2022. “On Optimizing Transaction Fees in Bitcoin using AI: Investigation on
Miners Inclusion Pattern”. Association for Computing Machinery (acm) Trans.
Internet Technol. 22, 3, Article 77 (August 2022), 28 pages. https://doi.org/
10.1145/3528669

Scope
In this paper we refine ml methods to obtain a better inclusion prediction
for transactions in the Bitcoin network, and we describe new methods for
data gathering and manipulation. Data are stored on a time-series like ap-
proach and the study is characterized by a formal definition of the model for
transaction inclusion pattern. A new series of evaluations and experiments are
conducted. The results obtained here represent the main contribution of our
dissertation.

Abstract
The transaction-rate bottleneck built into popular proof-of-work-based crypto-
currencies, like Bitcoin and Ethereum, leads to fee markets where transactions
are included according to a first-price auction for block space. Many attempts
have been made to adjust and predict the fee volatility, but even well-formed
transactions sometimes experience unexpected delays and evictions unless a
substantial fee is offered. In this paper, we propose a novel transaction in-
clusion model that describes the mechanisms and patterns governing miners
decisions to include individual transactions in the Bitcoin system. Using this

https://doi.org/10.1145/3528669
https://doi.org/10.1145/3528669
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model we devise a ml approach to predict transaction inclusion. We evaluate
our predictions method using historical observations of the Bitcoin network
from a five month period that includes more than 30 million transactions and
120 million entries. We find that our ml model can predict fee volatility with
an accuracy of up to 91%. Our findings enable Bitcoin users to improve their
fee expenses and the approval time for their transactions.

Publication IV
Amores-Sesar, I., Cachin, C. and Tedeschi, E., 2022. “When is Spring coming?
A Security Analysis of Avalanche Consensus”. https://doi.org/10.48550/
arXiv.2210.03423.

Scope
In this paper we study the security of a dag-based blockchain, Avalanche.
We provide a detailed formulation of the Avalanche blockchain consensus
protocol using pseudo-code, addressing features that were omitted from the
original white-paper. Additionally, the paper provides an analysis of the formal
properties of Avalanche as a generic broadcast protocol that orders related
transactions. The analysis highlights a vulnerability that affects the liveness of
the protocol and proposes a potential solution to address the issue. Despite
the success of Avalanche, the consensus protocol lacks a complete abstract
specification and formal analysis, making this work a valuable contribution to
the field.

Abstract
Avalanche is a blockchain consensus protocol with exceptionally low latency
and high throughput. This has swiftly established the corresponding token
as a top-tier cryptocurrency. Avalanche achieves such remarkable metrics by
substituting proof of work with a random sampling mechanism. The protocol
also differs from Bitcoin, Ethereum, and many others by forming a Directed
Acyclic Graph (DAG) instead of a chain. It does not totally order all trans-
actions, establishes a partial order among them, and accepts transactions in
the DAG that satisfy specific properties. Such parallelism is widely regarded
as a technique that increases the efficiency of consensus. Despite its success,
Avalanche consensus lacks a complete abstract specification and a matching

https://doi.org/10.48550/arXiv.2210.03423
https://doi.org/10.48550/arXiv.2210.03423
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formal analysis. To address this drawback, this work provides first a detailed
formulation of Avalanche through pseudo-code. This includes features that are
omitted from the original white-paper or are only vaguely explained in the
documentation. Second, the paper gives an analysis of the formal properties
fulfilled by Avalanche in the sense of a generic broadcast protocol that only or-
ders related transactions. Last but not least, the analysis reveals a vulnerability
that affects the liveness of the protocol. A possible solution that addresses the
problem is also proposed.

Publication V - Dataset
Tedeschi, Enrico, 2022, "Bitcoin blockchain optimized for machine learning pre-
diction model", https://doi.org/10.18710/8IKVEU, DataverseNO, V1

Scope
This dataset stores part of the Bitcoin blockchain. Blocks are sampled every
month and information about transactions and blocks are separated to save
disk space and avoid redundancies. This dataset is used in the work presented
by Tedeschi et al. [58] which is submitted for review, in order to generate a
machine learning model that predicts transaction inclusion. In each month of
analysis, there is a block folder and a transaction folder. Information can be
merged runtime through ’bhash’ attribute (block hash). (2022-02-12)

https://doi.org/10.18710/8IKVEU
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Source Code
C.1 Blockchain APIs
Listing C.1: RAW BLOCK json response of blockchain.com apis at height 600000

1 {
2 "hash": "000000...",
3 "ver": 536870912,
4 "prev_block": "000000...",
5 "mrkl_root": "66...",
6 "time": 1571443461,
7 "bits": 387294044,
8 "next_block": ["000000..."],
9 "fee": 3764047,

10 "nonce": 1066642855,
11 "n_tx": 1925,
12 "size": 870371,
13 ...
14 "height": 600000,
15 "weight": 2848472,
16 "tx": [
17 {
18 "hash": "93955...",
19 "ver": 1,
20 "size": 200,
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21 "fee": 0,
22 "relayed_by": "0.0.0.0",
23 ...
24 "time": 1571443461,
25 "block_index": 600000,
26 "block_height": 600000,
27 "inputs": [ ... ],
28 "out": [ ... ]
29 },
30 { ... }, //More txs in the blocks.
31 ]
32 }

C.2 Data Storage
Listing C.2: Transaction info.txt file

1 {"__fileinfo__":
2 [
3 {"filename": "data/dataset/Feb-21/transactions/Dt0.csv",
4 "start": 668405,
5 "end": 668514,
6 "start_ha": "0000000000000...",
7 "end_ha": "0000000000000...",
8 "start_time": 1612054039,
9 "end_time": 1612116675},

10 {"filename": ... }
11 ]
12 }

C.3 Data Manipulation
Listing C.3: Calculate transaction fee

1 def transaction_fee(jsontx):
2 """ calculates transaction fee based on UTXO model.
3 :param jsontx: transaction in json format
4 :return: int, transaction fee in satoshi """
5 if ’fee’ in jsontx:
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6 fee = jsontx[’fee’]
7 else:
8 inputs = 0
9 outputs = 0

10 for inp in jsontx[’inputs’]:
11 if ’prev_out’ in inp:
12 inputs += inp[’prev_out’][’value’]
13 for out in jsontx[’out’]:
14 outputs += out[’value’]
15 fee = inputs - outputs
16 if fee < 0:
17 fee = scraper.TransactionPage(jsontx[’hash’]).

get_transaction_fee()
18 return fee
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