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ABSTRACT: Robust estimates of climate sensitivity are important for decision-making on mitigation of climate change.
However, climate sensitivity and its governing processes are still subject to large uncertainty. Recently it has been estab-
lished that climate sensitivity changes over time in numerical climate model experiments with abrupt quadrupling of the
CO2 concentration. Here we conduct an analysis of such experiments from a range of climate models from phases 5 and 6
of the Coupled Model Intercomparison Project (CMIP). Climate feedbacks associated with clouds, lapse rate, Planck radi-
ation, surface albedo, and water vapor and their changes over time are diagnosed based on a radiative kernel method. We
find two clearly distinct model groups, one with weak and one with strong lapse-rate feedback change. The Arctic is the
region showing the largest differences between these two model groups, with respect to both warming change and individ-
ual feedback changes. We retrace this change to the development over time of the Arctic sea ice, which impacts both the
surface-albedo and lapse-rate feedbacks. Generally, models that warm quickly, both globally and in the Arctic, also quickly
lose their Arctic sea ice and change their total global-mean climate feedback only little, and vice versa. However, it remains
unclear if the Arctic changes are a cause or rather a by-product of the total global-mean feedback change. Finally, we find
support for the results of previous studies finding that the relative warming in the tropical Indo-Pacific region may control
the change of total climate feedback over time.

KEYWORDS: Climate change; Climate sensitivity; Feedback; Radiative fluxes; Regional effects; Climate models;
Coupled models; Model comparison

1. Introduction

The response of Earth’s climate system to a forcing due to
an increase in atmospheric greenhouse gas concentration has
been of interest for more than 100 years (Arrhenius 1896).
Equilibrium climate sensitivity (ECS), which is the equilib-
rium global-mean temperature increase due to a doubling of
the CO2 concentration in the atmosphere, is a traditional
measure for the climate system’s response to such a forcing
(Charney et al. 1979; Sherwood et al. 2020). It is often esti-
mated based on numerical climate model experiments. A
straightforward model-based method for deriving ECS is to
start from a model state in radiative equilibrium, then imple-
menting a forcing corresponding to a doubling of the CO2

concentration in the atmosphere, and finally running the
model until radiative equilibrium is restored. However, in
complex Earth system models (ESMs), which realistically rep-
resent the climate system, more than 1000 simulation years
are necessary for the model to reach a new equilibrium
because the deep ocean has a large heat capacity and thus
warms only slowly. Hence, large computational resources are
required in order to equilibrate a perturbed ESM (e.g.,
Paynter et al. 2018; Rugenstein et al. 2020). Gregory et al.

(2004) introduced an alternative but indirect approach
(known as the Gregory method) to estimate ECS from a
much smaller amount of simulation years in instantaneous
CO2 forcing experiments, hence without the need of running
the model to a new equilibrium. The global-mean top-of-
atmosphere (TOA) radiative imbalance is expressed in terms
of global-mean surface-air temperature (SAT) change as
follows:

N � F 1 aDTs; (1)

where N is the TOA radiative imbalance, F is the forcing
(e.g., due to an increase in CO2), a is the climate feedback
parameter, and DTs is the SAT change. The climate feedback
parameter a represents the total feedback of the climate sys-
tem and is usually estimated by regressing global-mean TOA
imbalance on global-mean SAT change, and climate sensitiv-
ity is estimated by extrapolating this relationship to zero
imbalance [i.e., where N in Eq. (1) is zero]. Sherwood et al.
(2020) call the climate sensitivity thus estimated the effective
climate sensitivity (S), to separate it from ECS derived from
equilibrating an ESM. The climate system’s response and
hence its climate sensitivity is controlled by its total feedback,
which is negative provided that the climate system is stable.

As mentioned by Gregory et al. (2004), and later confirmed
for several other ESMs (e.g., Andrews et al. 2015), the esti-
mates for S and a depend on the interval of simulation years
included in the DTs–N regression. In most simulations, S is
smaller when based on the years directly following the forcing
than when based on years later in the simulation, meaning
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that S increases over time. Correspondingly, the total feed-
back estimate becomes less negative over time.

The time dependence of climate sensitivity and feedback
has been extensively researched but is still not well under-
stood. Understanding the mechanism leading to a weakening
of total feedback and hence an increase in S will help to gauge
the likelihood of the possible occurrence of this shift in ongo-
ing and future climate change. These model-based results are
of great importance since they call into question the reliability
of climate sensitivity estimates based on historical data, which,
by necessity, cannot take into account future feedback
changes. The estimates based on observations and proxy data
typically fall on the lower end of expected climate sensitivity
(Sherwood et al. 2020, and references therein).

Senior and Mitchell (2000) report a change over time of cli-
mate sensitivity in their CO2-doubling experiment with an
early coupled climate model, and argue that this is due to a
change of cloud feedback over time that is associated with sta-
bility changes resulting from the delayed warming of the
Southern Hemisphere compared to the Northern Hemi-
sphere. Williams et al. (2008) take an alternative approach
and introduce the concept of effective forcing, which is the
greenhouse gas forcing adjusted for processes that occur on
time scales that are short compared to those of climate stabili-
zation. They argue that after the initial adjustment process,
the DTs–N relation is linear on centennial time scales and
hence that the change over time of climate sensitivity is an
artifact of not accounting for the relatively fast forcing adjust-
ments. However, Winton et al. (2010) challenge this notion,
since the adjustments occur on time scales on the order of
decades where the “oceanic adjustment” is an important fac-
tor as well. They propose a time-varying ocean heat uptake
efficacy, considering ocean heat uptake as a forcing that
accounts for the change in the DTs–N relationship over time.
Armour et al. (2013) show that the evolution of global total
feedback can be explained by a change over time in spatial
weighting of time-invariant local feedbacks due to evolving
patterns of surface warming. However, Ceppi and Gregory
(2017) find that this cannot explain the global total feedback
changes in a suite of ESMs that they analyze.

The perhaps most recent hypothesis for explaining the
time dependence of climate feedback and S as presented by
Ceppi and Gregory (2017) is the following: Upon CO2 qua-
drupling, sea surface temperature (SST) warming patterns
change over time to increasingly favor stably stratified
regions where surface warming remains trapped near the
surface and is not readily communicated vertically and hori-
zontally, thus inducing weaker global cooling efficiency over
time. In the following we refer to this as the stability hypoth-
esis. The southeastern tropical Pacific (EP) is a region of
descent (stably stratified) and the tropical western Pacific
(WP) a region of ascent (close to neutrally stratified). Across
members of phase 5 of the Coupled Model Intercomparison
Project (CMIP5) a delayed warming in the EP and an early
warming in the WP in response to an instantaneous forcing
are observed (e.g., Andrews et al. 2015). A physical mecha-
nism is suggested by Zhou et al. (2016) and further devel-
oped by Andrews and Webb (2018) that explains how this

change in warming pattern causes a weakening of total feed-
back over time: The earlier warming in the WP readily
affects higher levels in the atmosphere whereby energy is
efficiently radiated out to space. Over time the warming
shifts more to the EP and because this region is stably strati-
fied, the heat remains trapped close to the surface, implying
a less negative lapse-rate feedback and a reduction of the
cooling efficiency of the Earth system. Moreover, the surface
warming in the stably stratified regions decreases the stabil-
ity there, reducing the low cloud cover (see also Wood and
Bretherton 2006). Since low clouds mainly act to reflect
incoming solar radiation back to space, a reduction in low
cloud cover enhances the absorption of solar radiation,
implying a positive cloud feedback. This means that as the
warming shifts from WP to EP over time, the total feedback
becomes less negative, due to a change in both lapse-rate
and cloud feedback. Andrews and Webb (2018) confirm this
mechanism for one atmosphere-only model (HadGEM2-A;
Martin et al. 2011) by performing experiments with pre-
scribed surface warmings in the dedicated regions. Ceppi
and Gregory (2017) show that changes over time in climate
feedbacks (especially cloud and lapse rate) are consistent
with this mechanism and the corresponding stability reduc-
tion over a range of CMIP5 members. Andrews and Webb
(2018) construct the tropical Pacific warming pattern index
(TPI) where the mean warming change in the WP is sub-
tracted from that in the EP. If the mechanism proposed by
Zhou et al. (2016) and Andrews and Webb (2018) is a main
driver of feedback change over time across models we would
expect a positive correlation of the TPI change with the
change of total feedback across models. However, Andrews
and Webb (2018) do not find such a correlation, but suggest
that this lack of linkage might be because the index is not
refined well enough, or that other regions are drivers of
the total feedback change. Zhou et al. (2017) introduced a
Green’s function approach to investigate the influence of
regional warming on global cloud feedback evolution and
Dong et al. (2019) expand this to global total feedback. They
find that the influence of the EP as well as of northern and
southern polar regions on total feedback is small and argue
that this is because these regions are stably stratified and
local changes are confined there. However, their analysis
points to the Indo-Pacific warm pool (IPWP) region, includ-
ing the WP and large parts of the Indian Ocean, as having
the largest impact on the change over time of total feedback.
In a follow-up study, Dong et al. (2020) succeed to recon-
struct the change of total feedback from the IPWP surface
warming reasonably well for members of CMIP5, but not of
CMIP6. Dong et al. (2020) suggest that the failure of recon-
struction for CMIP6 results from strong EP and Southern
Hemisphere midlatitude cloud feedbacks.

Like Dong et al. (2020), we perform a feedback analysis of
instantaneous CO2 forcing experiments in a suite of ESMs
from CMIP5 and CMIP6. We adopt their terminology in
assigning the years 1–20 to the early period and the years
21–150 to the late period (see also Ceppi and Gregory 2017).
“Change over time” in the following refers to the change
from early to late period. Unlike in previous studies, which
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either use individual models (e.g., Andrews and Webb 2018;
Dong et al. 2019) or compare CMIP5 and CMIP6 (e.g., Dong
et al. 2020), we group models according to their feedback
changes in order to find prominent similarities and differences
that potentially can explain the differences in total feedback
change. Given our model grouping, we examine the influence
of surface warming, stability, and feedback changes in various
specific regions on total feedback change and we investigate
correlations across models.

The remainder of this study is structured as follows. Section 2
gives a short overview over the model simulation data we con-
sider and section 3 describes the radiative kernel method used
to estimate individual climate feedbacks. In section 4 we present
the results and offer some discussion. Section 5 concludes with
a summary.

2. Models and experiments

We use data from the CMIP5 and CMIP6 abrupt4xCO2
experiments where the CO2 concentration is abruptly
increased by a factor of 4 in comparison to a preindustrial
equilibrium condition. The minimum length of this experi-
ment in CMIP5 and CMIP6 is 150 years although there exist
longer simulations for some models (Taylor et al. 2009; Eyring
et al. 2016). Hence, we only analyze the first 150 years for
each available model run. All abrupt4xCO2 experiments have
a corresponding preindustrial control experiment (piControl)
that is in radiative equilibrium. For each of the quantities, fol-
lowing Zelinka et al. (2020), we take a 21-yr running mean
over this control run and subtract from the abrupt4xCO2 run
to derive the changes due to the CO2 forcing and to remove a
possible model drift. All models used in the present study are
listed and referenced in Tables S1 and S2 in the online
supplemental material.

3. Methods

Radiative kernel method

The radiative kernel method (Soden et al. 2008) can be
used to derive the magnitude of individual radiative feed-
backs activated due to a temperature change associated with
a forcing of the climate system. It is based on the assumptions
that 1) the TOA net radiation (N) can be described as a func-
tion of independent climate system variables (i.e., these varia-
bles do not interact or interact only little) and that 2) the
radiative flux change due to a small change in one of these
variables is linear. As an example, the surface albedo (SA)
kernel can hence be defined as

N a 1 da;T;w;c( ) 2 N a;T;w;c( )

� N da( ) � N
a

a;T;w;c( )da ≡ Kada; (2)

where a is the SA, T the temperature, w the water vapor
(WV) mixing ratio, c a set of cloud properties, and da a small
SA perturbation; Ka represents the SA kernel.

Radiative kernels for a specific climate system variable are
derived from a climate model or a reanalysis. In a given

climate state with TOA imbalance N(a, T, w, c), the variable
in question is perturbed by a specific amount (e.g., 1% for SA
per grid cell) and then only the radiation code is executed.
This yields the TOA imbalance of the given climate state with
perturbed SA, N(a 1 da, T, w, c), where da is 1%. The radia-
tive kernel, Ka, can then be calculated from Eq. (2). Since
radiative transfer schemes in climate models are well tested
and fairly similar across models, a set of kernels based on a
given model is expected to be applicable across models (e.g.,
Shell et al. 2008). This is supported by the fact that feedbacks
calculated with radiative kernels derived from different cli-
mate models yield mostly similar results (e.g., Soden et al.
2008), although results for SA feedback can vary considerably
across kernels (Donohoe et al. 2020; Hahn et al. 2021). Radia-
tive kernels can be generated for surface and air temperature,
WV mixing ration, and SA. These are all either direct outputs
of the here-used CMIP model simulations or can be calcu-
lated from them.

Since the effects of clouds on radiation are strongly nonlin-
ear, the radiative kernels described here are not appropriate
for cloud feedback [for radiative kernels for cloud feedback
using cloud-top pressure and optical thickness that are not
available in the simulations used here, see Zelinka et al.
(2012, 2016)]. However, the radiative flux change due to cloud
changes, N(dc), can still be estimated by adjusting the change
in cloud radiative effect (CRE; calculated as TOA all-sky
minus TOA clear-sky radiation, for TOA radiation being pos-
itive downward) by the cloud masking of the other radiative
feedbacks. This procedure is described in Soden et al. (2008)
and can be performed by adding the difference of kernel-
derived clear-sky minus all-sky radiative flux changes to the
CRE as calculated from model output:

N dc( ) � CRE 1 Ka
cs 2 Ka

as
( )

da 1 KT
cs 2 KT

as

( )
dT

1 Kw
cs 2 Kw

as
( )

dw 1 F4x
cs 2 F4x

as

( )
: (3)

The subscripts “as” and “cs” denote all-sky and clear-sky,
respectively, and F4x represents the forcing due to a quadru-
pling of the CO2 concentration. For a derivation of Eq. (3)
see appendix A.

The above-given assumptions of the kernel method allow a
decomposition of the total feedback parameter a in Eq. (1)
into individual feedback parameters related to physical pro-
cesses and we can rewrite the equation as

N � F 1 aa 1 aT 1 aw 1 ac( )DTs; (4)

where aa, aT, aw, and ac are the feedback parameters due to a
change in SA, surface and air temperature, WV mixing ratio,
and cloud properties, respectively. This decomposition
together with the kernel-derived radiative responses for the
individual variables yields the possibility of performing the
Gregory method for each individual feedback and the feed-
back parameters themselves can be derived via a linear
regression, similar to the total feedback parameter (e.g.,
Block and Mauritsen 2013). As an example we can write for
the radiative effect of the SA feedback:
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N da( ) � aaDTs; (5)

where N(da) is the TOA radiative flux change due to the
change in SA, which is derived with the radiative kernels
according to Eq. (2). Note that the forcing terms in Eqs. (3)
and (4) are constant in abrupt forcing experiments. Thus, they
do not influence the feedback which is calculated as the linear
regression slope. The temperature feedback (aT) may be split
into the Planck feedback and the lapse-rate (LR) feedback.
The Planck feedback can be derived by assuming a uniform
temperature change equal to the surface temperature change
throughout the atmospheric column. It can hence be calcu-
lated by using the surface (skin) temperature change on all
atmospheric levels and multiplying it on the air temperature
kernel. Subtracting the Planck feedback from the air tempera-
ture feedback gives the LR feedback. This feedback is
strongly linked to tropospheric stability because it originates
from the stratification of warming in the atmosphere. In a sta-
bly stratified region a surface warming is confined at lower
levels, which implies that, excluding other influences, the
warming at higher levels in that region is lower (i.e., the stabil-
ity decreases). This results in a positive LR feedback, since
the lapse rate reduces the cooling efficiency. Hence, a reduc-
tion in tropospheric stability is typically connected with an
increase in LR feedback. On the other hand, if there is an
upper-level warming, while the surface warming is compara-
tively weaker, meaning an increase in stability, a negative LR
feedback ensues since the cooling to space is hereby stronger
than it would have been under uniform warming. An increase
in stability therefore tends to be associated with a decrease in
LR feedback.

If the assumptions of the kernel method are appropriate,
the sum of the individual feedback parameters should be
approximately equal to the total feedback as derived from
model output radiative fluxes using the Gregory method. To
test if these assumptions are sufficiently fulfilled in a given
model simulation, we employ the clear-sky linearity test
(CSLT; Shell et al. 2008). This test consists of comparing
the sum of the kernel-derived clear-sky feedbacks (i.e.,
acs
a 1 acs

T 1 acs
w ) with the total clear-sky feedback derived

from the Gregory method using model output clear-sky
radiative fluxes. In appendix B we show that in the kernel
decomposition used here it does not matter if all-sky or
clear-sky feedbacks are compared. Following Ceppi and
Gregory (2017), we exclude models whose kernel-derived
clear-sky feedback sum deviates more than 15% from the
total clear-sky feedback in both the early and late period
calculated independently.

We calculated the feedbacks for 66 members of CMIP5 and
CMIP6 listed in Tables S1 and S2 using six different sets of
radiative kernels (Soden et al. 2008; Shell et al. 2008; Block
and Mauritsen 2013; Huang et al. 2017; Pendergrass et al.
2018; Smith et al. 2018). A maximum of 37 members pass the
CSLT for the Shell et al. (2008) kernels and we focus our
analysis on these results. There is, however, only a small vari-
ation in feedbacks derived from different kernels. It is
found that three outliers (MIROC-ES2L, GISS-E2-R, and

GISS-E2.2-G) lie on opposite sides of the distribution of mod-
els, especially for the WV and LR feedbacks. We exclude
these models since they may artificially enhance correlations
across models of different aspects that are investigated in the
present study. Where in the following we mention “all mod-
els” we refer to the remaining 34 models. The whole analysis
was repeated with a CSLT error threshold of 20% for which
50 models pass using the Shell et al. (2008) kernels. Generally,
the results are little different from the original analysis and
the conclusions do not change. The same is true if the com-
plete analysis is conducted using the Pendergrass et al. (2018)
kernels for which 36 (CSLT threshold 15%) and 44 models
(CSLT threshold 20%) pass the CSLT. Note that SA feed-
back and its change over time calculated with the Shell et al.
(2008) kernels exhibit the smallest standard deviation across
models of all tested kernels while for the Pendergrass et al.
(2018) kernels they exhibit the largest standard deviation.
Hence, we conclude that the above-mentioned dependence of
SA feedback on the chosen set of radiative kernels does not
significantly impact our results.

We apply a simple mask for the stratosphere by excluding
values on pressure levels exceeding a lower threshold that
varies with the cosine of the latitude between 300 hPa at the
poles and 100 hPa at the equator. Thus, our feedbacks do not
include stratospheric adjustments.

4. Results

We now first present the results of the kernel feedback
analysis and then proceed to compare groups of models dis-
tinguished by their feedback changes. Informed by this analy-
sis we investigate the impact of regional warming and stability
changes on total feedback change.

a. Feedback analysis

Figure 1 shows the distribution of total feedback change
from early to late period derived from the Gregory
method across all models. Most models concentrate

FIG. 1. Distribution of total feedback change from early (years
1–20) to late period (year 21–150) across models (“all models”;
refer to section 3 for details). For the distribution of all 66 models
with available data see Fig. S1 in the online supplemental material.
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around 0.5 W m22 K21 change but there is considerable
spread with some models showing little feedback change while
others show considerable change of close to 1 W m22 K21.
Notably, none of the investigated models exhibits a negative
change. The few models that do in fact exhibit negative change
fail the CSLT or are considered outliers (see section 3 as well
as Tables S1 and S2 and Fig. S1).

We now proceed with the kernel feedback analysis, and
decompose the total feedback into individual components
to investigate the cause for the total feedback change. Fig-
ure 2 shows the intermodel linkage between individual feed-
back changes and the total (i.e., kernel sum) feedback
change. For some models with a large feedback change,
the change of the cloud feedback is particularly strong
(Dac . 0.5 W m22 K21; Fig. 2a and Table S3). From com-
parison with the other feedbacks it is clear that for these
models, the change in cloud feedback is the dominating
mechanism. These models are shown with 3 markers in
Fig. 2 and correlations are shown both for all models (black
dotted line) and for models excluding the strong cloud feed-
back change models (black solid line). In the latter set of
models, a large total feedback change mostly results from a
large LR feedback change (Fig. 2b), although the cloud
feedback change seems important as well. For this set of
models there appears to be a strong and significant correla-
tion between the LR feedback change and the total feedback

change. The SA (Fig. 2c) and Planck (not shown) feedback
changes are generally smaller but their correlation with the
total feedback change is strong provided that the models
with large cloud feedback change are excluded. The WV
feedback change is anticorrelated with the total feedback
change (Fig. 2d), and this anticorrelation is again strong if
the strong cloud feedback change models are excluded. We
conclude that the set of models with strong cloud feedback
change responds somewhat differently to a forcing com-
pared to the remainder of models in that the cloud feedback
change is exceptionally large and explains most of the total
feedback change while the other feedback changes are less
important for these models. Most models in this group (this
also holds in the case of a CSLT threshold of 20%) have
particularly large positive cloud feedback change over the
Southern Ocean (not shown). This region has been noted
for positive cloud feedback change due to cloud solid–liquid
phase change due to recent updates of cloud-physics param-
eterization (i.e., feedback changes not directly related to
stability changes; Bjordal et al. 2020). Hence, we disregard the
models with strong cloud feedback change from our analysis.
For the other models there appears to be a strong dependence
of the total feedback change on the change of the LR feedback
indicating that the change of this feedback explains a large
part of the total feedback change. In the following section we
thus investigate this group more extensively.

FIG. 2. Total vs individual kernel-derived feedback changes from early (years 1–20) to late period (years 21–150).
The dotted black line represents the linear regression for all models and the solid black line represents the regression
if the strong cloud feedback change models are excluded (see text for discussion). These models are indicated by 3

markers. In (a) the dashed gray vertical line shows the threshold value (0.5 W m22 K21) for “strong cloud feedback
change”. Members of CMIP5 are depicted in gray and members of CMIP6 in black. The R and p values are the corre-
lation coefficient and significance based on a two-sided p value calculated from a Wald test with a t distribution,
respectively.
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FIG. 3. (right) Maps and (left) zonal means of surface-warming change relative to the global-mean change time aver-
aged over models with (top) weak (G1) and (middle) strong (G2) lapse-rate feedback change, and (bottom) their dif-
ference (G2 2 G1). The surface-warming change is calculated by first regressing local annual-mean surface tempera-
ture on global annual-mean surface temperature for the periods of years 1–20 (early) and 21–150 (late), and then
subtracting the results of the early from the late period (cf. Ceppi and Gregory 2017). Note that the y axis in the zonal-
mean plot is scaled by the cosine of the latitude to obtain an equal-area perspective. See Figs. S2 and S3 for the maps
for the early and late period, respectively.
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b. Comparing two model groups

Excluding the models with strong cloud feedback change, we
now more closely examine the remainder for which a strong cou-
pling between the LR feedback change and the total feedback
change is found. To investigate general differences between
models, we divide this group into two subgroups, models with a
weak LR feedback change (G1; DaLR . 0.1 W m22 K21; see
Table S4) and models with a strong LR feedback change (G2;
DaLR . 0.5 Wm22 K21; see Table S5). We conduct a sensitivity
analysis by varying the thresholds by 1 and 20.05 W m22 K21,
respectively, and find that the overall conclusions do not
change. Notably, since for these models the LR feedback
change dominates the total feedback change, G1 tends to
include models with weak total feedback change whereas G2
models with strong total feedback change. The slight positive
feedback change in G1 is due to small positive changes in
cloud and WV feedback that are counteracted by even
smaller negative changes in Planck, LR, and SA feedback.

Similar to Ceppi and Gregory (2017) and Andrews and
Webb (2018), we focus first on surface temperature. Figure 3
shows the change from early to late period of local surface
temperatures regressed on global-mean surface temperature
averaged over G1 (top panel) and G2 (middle panel), as well
as the difference between the two groups (G2 minus G1, bot-
tom panel). It is clear that both groups exhibit positive warm-
ing change relative to the global-mean change in the eastern
subtropical Pacific as well as over the Southern Ocean and
Antarctica. Furthermore, G1 exhibits stronger positive changes
relative to the global average across almost the whole Southern
Hemisphere, while G2 shows mostly negative changes between
308S and 308N. Accordingly, the difference between G1 and G2

is mostly negative south of 308N with the exception of some
parts north of Antarctica. The IPWP is noticeably different
between the two groups, with little change in G1 but negative
change in G2. However, the largest difference between the
groups occurs in the Arctic. Here G1 exhibits negative change
while the G2 change is positive. This means that the models
showing little LR feedback change tend to quickly warm the
Arctic in response to the abrupt greenhouse gas forcing while
the Arctic warming relative to global mean during the later
period is weaker. In contrast, there is a delay in relative Arctic
warming in the models having large LR feedback change and
this relative warming increases over time.

We now proceed with an investigation of individual regions
with respect to their warming and stability change. As a stabil-
ity metric we use the lower tropospheric stability (LTS),
which is taken as the difference between surface and 700-hPa
potential temperature (Klein and Hartmann 1993). First, we
examine the Arctic since this region exhibits the largest differ-
ence between the two model groups. We also consider the
regions pointed out in Andrews and Webb (2018) and Dong
et al. (2019), namely the EP and the WP as well as the IPWP
(see section 1). The warming and LTS changes averaged over
the four regions are shown in Fig. 4 for both model groups.
Note that the Arctic, the EP, and the WP are of roughly simi-
lar size, while the IPWP is considerably larger (∼20 times as
large; see Table S6).

In the Arctic (which we define as 758–908N) the largest sur-
face-warming and LTS changes as compared to the other
regions are found. Moreover, also here the biggest difference
between the two model groups is apparent. G1 exhibits a
strong negative warming change over time, while in G2 the
change is positive but much weaker. The changes in LTS are
opposite those of the surface warming. In accordance with
accelerated early relative Arctic surface warming, the Arctic

FIG. 4. Indo-Pacific warm pool, western Pacific, eastern Pacific,
and Arctic surface-warming change (black) as well as lower-tropo-
spheric stability (LTS; see text for details) change (gray) averaged
over models with weak (G1) and strong (G2) lapse-rate feedback
change (refer to the text for details). As in Fig. 3, the change of sur-
face warming and LTS is calculated similarly by first regressing
local surface temperature and LTS on global-mean surface temper-
ature for both the early (years 1–20) and late period (years 21–150)
and then subtracting the results of the early from the late period
(cf. Ceppi and Gregory 2017). Note that while the Arctic, eastern
Pacific, and western Pacific regions are of similar size, the Indo-
Pacific warm pool region is much larger (see text for discussion and
Table S6).

FIG. 5. Indo-Pacific warm pool, western Pacific, eastern Pacific,
Arctic, global mean without Arctic, and global-mean feedback
changes from the early (years 1–20) to the late period (years
21–150) decomposed into parts indicated by the color coding aver-
aged over models with weak (G1) and strong (G2) lapse-rate feed-
back change (refer to the text for details). Feedbacks are added on
top of each other for each sign and ordered according to their indi-
vidual magnitudes. The black diamonds represent the total local
feedback change.
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LTS in G1 decreases strongly in the early period but as the
relative Arctic surface warming subsequently slows down (cf.
Fig. 6a), the decrease of LTS is much weaker in the late
period, leading to the positive change of LTS seen in Fig. 4. In
G2 the relative Arctic surface warming does not slow down
(cf. also Fig. 6a) and the Arctic LTS decreases similarly in
both early and late period, leading to the small negative
change seen in Fig. 4.

The EP exhibits a positive surface warming change in G1,
which is much larger than in G2. However, the magnitude of
the change of G1 in the EP is generally much smaller than in
the Arctic. Regarding the LTS change in the EP, G1 and G2
show smaller difference as compared to the surface warming.
Note that the change is slightly more negative in G2. Hence,
even though the surface in the EP warms less strongly in G2,
the EP stability in G2 decreases more than in G1. Since total
global-mean feedback changes more in G2 than in G1, this

may indicate that the delayed EP surface warming, although a
robust feature across ESMs in response to an abrupt green-
house gas concentration increase, does not significantly influ-
ence total feedback change. This supports the findings of
Dong et al. (2019) that it is the IPWP surface warming rather
than the tropical east–west SST gradient that is important for
total global feedback change.

As expected for regions of ascent, the LTS changes only
little in the WP and the IPWP in both groups. In G1, both
the WP and IPWP exhibit little or no surface warming
change, while there is a negative change in both regions in
G2. Since G1 consists mostly of models with weak total feed-
back change and G2 mostly of models with strong total feed-
back change this lends support to the findings of Dong et al.
(2019, 2020) that the IPWP surface warming largely controls
the total feedback change. Since the IPWP is a region of
ascent, a surface warming there is quickly spread vertically

FIG. 6. (a) Polar amplification factor (PAF), (b) Northern Hemisphere (NH) sea ice area, (c) global mean,
and (d) Arctic surface temperature anomaly, and (e) global mean and (f) Arctic lower-tropospheric stability
(LTS; see text) averaged over models with weak (G1; blue) and strong (G2; red) lapse-rate feedback change
(refer to the text for details). The lines indicate the multimodel means and the shading denotes the 61-sigma
spread. The PAF is calculated as the Arctic (758–908N) surface temperature anomaly divided by that of the
global mean. The Northern Hemisphere sea ice area is calculated by multiplying the sea ice fraction in a grid
cell by the grid cell area and then integrating over the NH. The black line shows the p value of a two-sided
Welch’s t test for the difference in group mean and the gray horizontal line indicates a p value of 0.05. No sea
ice data were available for one member of G2 (BCC-CSM2-MR) so this model is excluded in (b).
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and in upper levels also horizontally through the atmosphere
and hence increases the global cooling efficiency. In contrast,
energy associated with a surface warming in other, generally
more stable regions is not radiated to space as efficiently.
The surface warming change in the IPWP thus determines
the total global feedback change to a significant degree.
Since G2 experiences a reduction in IPWP surface warming
relative to the global average while in G1 it is almost cons-
tant, this implicates a reduction of the magnitude of the neg-
ative total feedback in G2 while the G1 total feedback
should only change little, which is what we see.

We further investigate the changes of the kernel-derived
feedbacks in the respective regions. Figure 5 shows the indi-
vidual feedback changes averaged over the regions IPWP,
WP, EP, and Arctic as well as the globe without the Arctic,
and the entire globe, for G1 and G2.

For both groups the most important feedback changes in
the Arctic are the Planck, SA, and LR feedbacks. However,
the groups differ in the magnitude of the individual changes
and, more importantly, the sign of each individual feedback
change is different between groups. As expected from the sur-
face warming change (Fig. 4), the Planck feedback change is
positive in G1 and negative in G2. In contrast, the LR and SA
feedback changes are both negative in G1 while they are both
positive in G2. The sum of the LR and SA feedback change is
stronger than the Planck feedback change in both groups so
that for G1 the Arctic feedback change is in total negative,
while for G2 it is positive.

The LR and SA feedbacks in the Arctic are both strongly
connected to the melting of sea ice and they are known to
interact considerably with each other (e.g., Graversen et al.
2014). As Earth warms, the sea ice melts and exposes the
darker ocean surface, reducing the albedo and hence causing
a positive feedback. Furthermore, the sea ice acts as an insu-
lating layer impairing heat exchange between the atmosphere
and the much warmer ocean so that above the sea ice low
atmospheric temperatures far below the melting point of sea
ice may prevail especially during the dark seasons. The melt-
ing of sea ice therefore strongly enhances the heat exchange
between atmosphere and ocean, leading to a strong increase
in Arctic surface temperatures. Because the Arctic is stably
stratified, this warming is trapped at the surface and a positive
LR feedback is induced. Hence, the melting of sea ice controls
the evolution of both the LR and SA feedbacks. Thus, a plau-
sible explanation for the large difference in Arctic feedback
changes in G1 and G2 is that as a result of the stronger early-
period Arctic warming in G1 (Fig. 6d), the sea ice quickly
melts (Fig. 6b), causing strong positive LR and SA feedbacks.
In the later period most of the ice has already melted, result-
ing in a weakening of both the LR and SA feedback in the
Arctic. Accordingly, these feedbacks are much less positive in
the late period, inducing the strong negative change of these
feedbacks in G1 seen in Fig. 5. Furthermore, the strong early
warming leads to a considerable reduction in atmospheric sta-
bility, causing an increase of the local cooling efficiency from
the early to the late period, which hampers further warming
(Fig. 6f). In G2, on the other hand, the Arctic warming is
weaker in the early period, inducing much less sea ice melt

and weaker positive LR and SA feedbacks. Also, the Arctic
remains more stable in G2 than in G1. As the Arctic in the
late period continues to warm more strongly in G2 than in G1
(Figs. 6a,d), more sea ice melts (Fig. 6b), hereby strengthening
the LR and SA feedbacks and causing the positive change as
shown in Fig. 5. As the Arctic surface warming is weaker in
G2 than in G1 (Fig. 6d), the stratification remains more stable
and the local cooling efficiency weaker (Fig. 6f), enhancing
the surface warming also in the late period.

In the EP the two model groups exhibit differences espe-
cially in WV and Planck feedback change but in both groups
the total feedback change is strongly positive. Notably, the
difference in total feedback change in the EP between G1
and G2 is the opposite of the global total feedback change.
The feedback changes in the WP and the IPWP are similar in
G2, while in G1 the individual feedback changes have
opposite sign between the two regions. However, the total
feedback change for both regions in G1 and G2 is small com-
pared to the EP and the Arctic. The differences in total feed-
back between G1 and G2 in the regions IPWP, WP, and
Arctic are similar to the difference in global-mean total feed-
back change between G1 and G2 and hence appear important
for the difference between the two model groups. Conversely,
the difference in the EP is opposite that of the global mean,
indicating that this region is less important for the general
between-group difference.

By construction, in the global mean the positive LR feed-
back change dominates for G2 with some smaller positive
changes in cloud and SA feedback. The WV feedback change
is negative and somewhat compensates the other feedbacks
but there still remains a considerable positive total feedback
change. In contrast, the total G1 feedback change is only
slightly positive. The SA and LR feedback changes are small
but negative and compensated for by the positive cloud and
WV feedback changes. In spite of the large changes in the
Arctic, excluding this region from the global mean has little
effect on the feedback decomposition, owing to the fact that
the Arctic (.758N) covers less than 2% of Earth’s surface
area. Thus, in this simple global-mean perspective, the Arctic
changes, though large, have only little influence. However,
previous research has pointed to remote influences of Arctic
changes, especially on the development of the Hadley circula-
tion (Feldl and Bordoni 2016; Feldl et al. 2017). Generally,
positive high-latitude feedbacks reduce the meridional tem-
perature gradient, hereby weakening the meridional heat
transport, which at low latitudes is partly accomplished by the
thermally direct cell constituting the Hadley circulation.
Stronger positive Arctic SA and LR feedbacks are thus asso-
ciated with a stronger weakening of the Hadley circulation.
We find evidence for this coupling since, on the one hand, in
G1 the meridional overturning streamfunction in the North-
ern Hemisphere tropics weakens more strongly in the early
period but then remains constant, and on the other hand, in
G2 this streamfunction weakens less in the early period but
continues to weaken further in the late period (Fig. S4).

Other research highlights the influence of low-latitude
changes on the Arctic. For example, Yoo et al. (2012) show
that convective heating in the IPWP enhances poleward
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propagating Rossby waves leading to increased Arctic surface
air temperatures. Lee (2014) presents a theory for this,
according to which poleward heat transport intensifies and
increases Arctic temperatures given that a greenhouse gas
forcing leads to enhanced localized convection in the tropics.

In summary, previous literature highlights both the influ-
ence of the Arctic on lower latitudes and vice versa. The
effects of the coupling of these regions on our results have not
been disentangled in the present study but are left for future
investigations.

We now move away from the two-model-group frame and
consider correlations across all models.

c. Regional warming and feedbacks across models

Similar to the approach by Andrews and Webb (2018)
using the TPI, we investigate correlations of the change over
time of the surface warming of the four regions described
above with the change over time of total feedback across
models (Fig. 7). If the surface warming in a specific region has
a major influence on the global cooling efficiency, as the sta-
bility hypothesis states, and as shown for the IPWP in Dong
et al. (2019), this should be supported by a correlation of the
change of the surface warming in that region relative to
global-mean surface warming with the change of total feed-
back over time. As Fig. 7 (black solid lines) shows, the

FIG. 8. As in Fig. 2, but for total feedback change derived with the Gregory method vs (a) global- and (b) Arctic-
mean surface warming at year 20 (averaged over years 18–22) of the abrupt4xCO2 simulation. Note the different x-
axis scales.

FIG. 7. As in Fig. 2, but for total feedback change derived with the Gregory method vs surface-warming change in
(a) the Arctic, (b) the Indo-Pacific warm pool (IPWP), (c) the eastern Pacific (EP), and (d) the western Pacific (WP).
Note that the x-axis scale in (a) differs from that in (b)–(d).
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strongest correlation is found for the IPWP and there is a
slightly weaker correlation for the Arctic. There is a moderate
correlation for the WP but close to no correlation for the EP,
supporting the suggestion (see section 4b) that the latter
region has little influence on the global-mean total feedback
change. Note that the correlations weaken considerably if the
models with a strong cloud feedback change are included
(Fig. 7, black dotted lines). However, if the cloud feedback is
excluded from the kernel-derived feedback sum, the correla-
tions for the Arctic, WP, and IPWP, but not the EP, are strong
regardless of these models being included or not (Fig. S5).
This provides support for the stability hypothesis in general
and the findings of Dong et al. (2019) and Dong et al. (2020)
in particular (i.e., the IPWP surface-warming evolution largely
controls total climate feedback change). Here CMIP5 and
CMIP6 are not investigated separately as is done by Dong et al.
(2020). They point out that while they can reconstruct the total
feedback evolution over time from the IPWP surface warming
evolution for CMIP5, this fails for CMIP6. With the caveat
that we use a somewhat different set of models here, our
results support the suggestion in Dong et al. (2020) that the
failure to reconstruct total feedback evolution from IPWP
warming in CMIP6 is because of a particularly large cloud
feedback change in a number of members of CMIP6. If these
members are excluded, the total feedback evolution may still
be reasonably well reconstructed from the IPWP surface
warming. Considering that due to a likely missing negative
cloud lifetime feedback component (Mülmenstädt et al. 2021)
some members of CMIP6 may overestimate the cloud feed-
back change, adjusting the cloud physics parameterization to
include this feedback component might make a reconstruction
of the total feedback evolution from IPWP surface warming as
suggested by Dong et al. (2019, 2020) successful for CMIP6 as
well.

As pointed out above, the surface warming change in the
Arctic is significantly positively correlated with the change
in total feedback. This means that the more a model

increases its Arctic warming relative to the global mean
over time, the more it changes its total feedback over time.
Since the Arctic is a stably stratified region, this fits the sta-
bility hypothesis, since the surface warming over time shifts
to more stable regions, decreasing Earth’s cooling efficiency
and hence weakening the total feedback. However, as
pointed out in section 4b, it is difficult to establish causality
between Arctic and global changes and the large differences
in Arctic warming could be a by-product of the following:
Models that warm strongly in the global mean in the early
period (such as the members of G1) generally exhibit an
even stronger early warming in the Arctic, while in the later
period the global warming has a larger pace than the Arctic
warming (Figs. 6c,d). Notably, these tend to be the models
that have a weak total feedback change (Fig. 8). On the
other hand, models with strong total feedback change tend
to warm less quickly, and while they exhibit similar Arctic
amplification their absolute Arctic warming is weaker (see
Figs. 6a,c,d for the G1–G2 comparison). As explained in
section 4b, the Arctic warming is strongly connected to sea
ice changes and the resulting SA and LR feedbacks, and
due to this double feedback loop, small differences in sur-
face warming are quickly enhanced locally. Hence, the dif-
ference in early warming across models (the stronger the
early warming, the weaker the total feedback change;
Fig. 8) explains the relationship of local Arctic warming and
feedback evolution with total feedback change across mod-
els. However, as discussed in section 4b, Arctic changes
have been found to have remote influences (Feldl and
Bordoni 2016; Feldl et al. 2017) and hence may have impor-
tant indirect influences on feedback change. Further
research is needed to establish the relevance of the large
changes in the Arctic for the total global feedback change.

5. Discussion and conclusions

This study investigates why different numerical climate
models change their total feedback differently over time using
members of the CMIP5 and CMIP6 archives. We perform a
radiative kernel analysis to decompose the total feedback into
individual parts associated with different feedback processes
and group the models according to similarities in individual
feedbacks.

We investigate the differences between a group of models
with weak (G1) and strong (G2) lapse-rate feedback change.
It is revealed that the Arctic is the region with the largest dif-
ference between these groups and a region with large warm-
ing, stability, and individual feedback changes over time.
These changes as well as their differences between the groups
are strongly linked to Arctic sea ice changes. It is found that
members of G1 warm much more quickly and exhibit faster
Arctic sea ice melt, triggering stronger positive early-period
Arctic surface-albedo and lapse-rate feedbacks than those of
G2. Since the Arctic sea ice after a few decades has mostly
vanished in the G1 models, the surface-albedo and lapse-rate
feedbacks are much weaker in the late period for those mod-
els. Conversely, in the members of G2, more Arctic sea ice
remains and the surface-albedo and lapse-rate feedbacks

FIG. 9. Gregory plot for models with weak (G1; blue) and strong
(G2; red) lapse-rate feedback change. The filled circles represent
the early period (years 1–20) and the unfilled circles the late period
(years 21–150). The dashed and solid lines show the early- and late-
period linear regressions, respectively. The regression slope indi-
cates the total feedback (see text for details).
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become more positive in the late period. We furthermore find
evidence for influence of Arctic changes on lower-latitude cir-
culation, in accordance with previous studies (Feldl and
Bordoni 2016; Feldl et al. 2017). However, it is difficult to
determine if the Arctic changes and their low-latitude influ-
ence have causal relevance for the total feedback change.

As the members of G1 warm up much faster than the
members of G2, they also experience much more rapid
changes. Hence, the G1 members quickly reach a new
warmer climate state with almost constant total feedback on
the time scales considered here. In contrast, the members of
G2, due to their slower warming, experience changes over
climate states on longer time scales that become apparent in
the present study. Evidence for this is provided by the fact
that whereas the early-period feedback in G2 is much more
negative than in G1 and the early-period warming of G2 is
smaller than in G1, the late-period feedbacks of both groups
are similar (Fig. 9).

Additionally, we generally find support for the results of
previous studies (Dong et al. 2019, 2020) that the relative sur-
face warming in the tropical Indo-Pacific is well correlated
with total feedback change across models, which fits the previ-
ous finding that the surface warming in this region may con-
trol the total feedback change via the mechanism explained
by the stability hypothesis.

Future research should focus on disentangling the cause-
and-effect relationships. Questions of interest include the fol-
lowing: Why do some models warm much more quickly than
others? Why do models warming slower have a large feed-
back change over time? How much does the sensitivity to
warming of Arctic sea ice vary across models? How strong is
the influence of Arctic changes on the Hadley circulation and
how do changes in the Hadley circulation affect global
feedbacks?

The change of climate feedback in numerical climate models
as investigated here is of relevance, since it affects estimates of
Earth’s sensitivity to a forcing (e.g., due to anthropogenic
greenhouse gas concentration changes in the atmosphere).
Understanding the reasons behind climate feedback change
will make it possible to compare the climate model results
with real-world changes under ongoing climate change and
hence improve the robustness of climate sensitivity estimates.
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APPENDIX A

Derivation of Adjusted Cloud Radiative Effect

Here we present a brief derivation of Eq. (3). We start
by splitting up the clear-sky and all-sky top-of-atmosphere
(TOA) imbalances (Ncs and Nas, respectively) into contribu-
tions of individual climate state variables:

Ncs � Ncs da( ) 1 Ncs dT( ) 1 Ncs dw( ) 1 F4x
cs ; (A1)

Nas � Nas da( ) 1 Nas dT( ) 1 Nas dw( ) 1 N dc( ) 1 F4x
as : (A2)

Note that to fully represent the TOA imbalance, we need
to include the forcing due to the quadrupling of the CO2

concentration in both cases (i.e., F4x
cs and F4x

as ). Since, as
described in section 3, the cloud radiative effect (CRE) is
defined as Nas 2 Ncs we now subtract Eq. (A1) from
Eq. (A2) to derive this quantity:

CRE � Nas 2 Ncs � Nas da( ) 1 Nas dT( ) 1 Nas dw( ) 1 N dc( )
1 F4x

as 2 Ncs da( ) 2 Ncs dT( ) 2 Ncs dw( ) 2 F4x
cs : (A3)

Solving for N(dc), substituting CRE, and rearranging yields

N dc( ) � CRE 1 Ncs da( ) 2 Nas da( ) 1 Ncs dT( ) 2 Nas dT( )
1 Ncs dw( ) 2 Nas dw( ) 1 F4x

cs 2 F4x
as : (A4)

Using Eq. (2) for the surface-albedo flux and its equivalents
for the other climate state variables with both clear-sky and
all-sky kernels, Eq. (3) is obtained.

APPENDIX B

Why Clear-Sky and Not All-Sky Linearity Test?

We here briefly show that in the kernel decomposition
used in the present study the difference between total ker-
nel-derived feedback and total feedback derived from model
output radiative fluxes is the same for both clear-sky and all-
sky conditions. We start from Eq. (A2), but now indicate the
quantities involving radiative kernels by the superscript K:

NK
as � NK

as da( ) 1 NK
as dT( ) 1 NK

as dw( ) 1 NK dc( ) 1 F4x
as : (B1)

Note that NK(dc) is not solely based on radiative kernels
since it involves CRE, which is calculated from model

J OURNAL OF CL IMATE VOLUME 352930

Brought to you by UIT NORGES ARKTISKE UNIVERSITET | Unauthenticated | Downloaded 10/23/23 11:32 AM UTC

https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/


output radiative fluxes. Substituting Eq. (2) for the surface-
albedo flux and its equivalents for temperature and water
vapor as well as Eq. (3) for the cloud flux, this expression
reduces to

NK
as � CRE 1 Ka

csda 1 Kw
csdw 1 KT

csdT 1 F4x
cs : (B2)

On the right-hand side we can now substitute NK
cs as well as

the definition of CRE (i.e., NM
as 2NM

cs ) and obtain

NK
as 2 NM

as � NK
cs 2 NM

cs ; (B3)

where the superscript M denotes a model output radiative
flux quantity. The CSLT is chosen here since this test is the
direct comparison between the sum of the kernel-derived
feedbacks and the total feedback derived from model out-
put radiative fluxes with the Gregory method.
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