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Abstract—Detection of anomalies within data streams is an
important task that is useful for different important societal
challenges such as in traffic control and fraud detection. To
be able to perform anomaly detection, unsupervised analysis of
data is an important key factor, especially in domains where
obtaining labelled data is difficult or where the anomalies that
should be detected are often changing or are not clearly definable
at all. In this article, we present a complete machine learning
based pipeline for real-time unsupervised anomaly detection
that can handle different input data streams simultaneously. We
evaluate the usefulness of the proposed method using three well-
known datasets (fall detection, crime detection, and sport event
detection) and a completely new and unlabelled dataset within
the domain of commercial fishing. For all datasets, our method
outperforms the baselines significantly and is able to detect
relevant anomalies while simultaneously having low numbers of
false positives. In addition to the good detection performance,
the presented system can operate in real-time and is also very
flexible and easy to expand.

Index Terms—Event detection, Unsupervised, Sustainable Fish-
ing

I. INTRODUCTION

Data streams containing video, images and sensor data are
being generated in multiple areas of society. Humans and
machines are constantly observed at different frequencies and
qualities. Examples include traffic or security video surveil-
lance, monetary fraud transaction monitoring, or detection of
errors in industry production facilities. To be able to build
useful and efficient analysis applications in such domains,
one usually requires data streams with labelled data like, for
example, bounding boxes around people in surveillance videos
or annotations of events in sensor data streams. For some
applications and data steams, this is feasible, but for others,
it is not. This often depends on the amount of data (too
much data to annotate, requiring large amounts of manual
labor), or the simple fact that one does not know what to
annotate. Proper datasets are key to development of machine
learning applications. Problems in many existing datasets
include completeness, quantity, validity, and correctness of

data, and correct labelling of data for supervised learning
approaches. For some application domains, proper datasets are
not available at all, or have very limited value. For instance,
finding outlier values in a series of data, that is to temporally or
spatially localize the anomaly events in a time-series sequence,
can be challenging.

These challenges are specifically relevant for anomaly de-
tection, because it is often not know what anomalies can
happen, and it would require a huge number of annotations.
In addition, feature extraction comes with a computational
cost that might be a bottleneck in, for instance, a real-
time surveillance context. The current trend in research is
to find alternative solutions often incorporating semi-, self-
or unsupervised [1]–[3] learning. Most of these solutions are
focused on one specific type of data stream, i.e., video or
sensor data only, although some application scenarios provide
several data streams simultaneously that can be analysed to
produce a better result (e.g., multiple video streams from
different angles, video and sensor data from traffic, or sensors
measuring different bio signals from an intensive care unit
patient).

To address the challenge of anomaly detection when multi-
ple data streams are provided, we propose an unsupervised
anomaly detection system that is able to handle several,
multimodal data streams simultaneously. The system is de-
signed based on the specific use-case given in the Dutkat
project targeting sustainable harvesting of marine resources
off-shore [4]. This is a multi-billion dollar industry worldwide,
but one that also comes with serious problems according
to, for instance, the United Nations and their sustainability
focus [5]. The main goal of Dutkat is to detect potential crim-
inal activity on large off-shore fishing vessels by introducing
robust, privacy-preserving edge-computing systems [6], and
multimodal data streams on each vessel. Although the Dutkat
use-case was one of the main motivators for developing the
system, we also show that it is very flexible and can be
applied to totally different use-cases involving data streams



and anomaly detection. We demonstrate that our system is
relatively application domain agnostic by using datasets from
the surveillance, elderly care (unexpected falls), and sport
domains.

The main contributions of this paper are as following: (i)
we propose an unsupervised anomaly detection system that
can handle several, multimodal data streams simultaneously in
the environment of a fishing trawler that come with specific
requirements and limitations, (ii) we evaluate our system on
three different datasets with temporal annotations; and (iii) we
apply it on unlabeled data from a fishing trawler’s surveillance
system, where we manually validate the results.

Our experiments show that the proposed system is able
to detect anomalies completely unsupervised in an efficient
manner, and utilizes information from different data streams
if available. In addition, we show that it outperforms several
core baselines for the labeled datasets. Finally, and most
important we show that it can be used for the specific use
case of anomaly detection on fishing trawlers that comes with
requirements.

II. RELATED WORK

Anomaly detection has been researched extensively in the
past years. Most novel methods rely on deep-learning based
approaches [7] that require a lot of training data. Less research
has been performed in the direction of unsupervised machine
learning for anomaly detection. This is probably due to several
factors such as difficulty to verify and evaluate the output
and the general lower performance of unsupervised methods
compared to supervised ones [8]. Some methods also rely on
a combination of supervised and unsupervised learning [9].

[10] present an unsupervised anomaly detection algorithm
for traffic video data that achieves an F1 score of 0.5926 on
the NVIDIA AI CITY 2020 challenge test dataset [11]. [12]
proposed another unsupervised method using autoencoders to
detect anomalies in high-performance computing systems. The
challenge in this specific area is that the available datasets are
rather small and supervised methods cannot easily be used. In
addition to the challenges of lacking enough training data,
detecting unknown abnormalities in real-time has attracted
focused research. This is often an important requirement for
systems that intend to be used in real world scenarios that are
time-critical [13], [14].

Applying anomaly detection in real-world scenarios comes
with several challenges that we are tackling with the pre-
sented work here. First, a real-world capable system needs
to handle the input data in real-time and optimally should
also be able to deal with new data or additional data streams.
Furthermore, depending on the application, one might not
know what different types of anomalies can happen and how
these anomalies might change over time. Thus, a complete
system needs to be agile and able to react to changes and
new anomalies. This comes with a trade-off in terms of recall
and precision, that is whether all relevant events are captured
versus how many of the captured events reported actually are
relevant ones. In scenarios like capturing potential fraudulent

activities on fishing vessels, one rather would like to detect all
suspicious events and accept a larger number of potentially
false positives [4]. Additionally, the fishing trawler use case
also comes with limitations such as very limited bandwidth
due to satellite connections, computational power limitations
and that the detected anomalies will change over time due to
different reasons such as change of crew or behaviour on the
boat. This rules out most existing related work since we cannot
rely on a model that is trained on annotated data or methods
that are computational heavy. Thus, we present in this paper
a method that is light weight and specifically designed for the
application on fishing trawlers.

III. SYSTEM

Our goal is to provide real-time anomaly detection from
multiple data streams using an analytics engine running on
the edge nodes onboard fishing vessels. For this, we propose
an efficient and highly modular pipeline system consisting of
three steps: (1) feature extraction, (2) an optional embedding
layer, and (3) a moving average-based anomaly detection
method. The pipeline allows for analysis of multidimensional
input, such as multicamera-based datasets, or combinations of
anomaly detection methods. We emphasize that our design is
modular and can be configured with multiple inputs, feature
extraction methods, and embedding processes, depending on
the target context. An example configuration of our use-
case can be seen in Figure 1, with multiple inputs, different
pretrained feature extraction approaches, with the result be-
ing combined at the end. The combination of the anomaly
detection outputs can also be performed in numerous ways,
for example by using simple boolean OR/AND operations,
or more clever weighting strategies. Below, we describe the
specific components used for our evaluation.

Embedding 
process

Video

Sensor data

GPS data

RNN

CNN 
action recognition

CNN 
imagenet

Speed extractor

Output anomaly

Fig. 1. Example of pipeline configuration. Notice how multiple, multimodal
data streams can be processed in different ways and run through the anomaly
detection algorithm, before being combined. The embedding process is also
dependent on the feature extractor, and thus is not always necessary.

A. Feature Extraction

The feature extraction step of our pipeline can be based
on a general machine learning model like a pretrained neural
network. Such a model does not have to be trained on the use-
case. For example, in this work we use an action recognition
network trained on tasks not relevant for anomaly detection
on a fishing trawler. We chose this model due to the fact
that it is not well know which actions happen on a fishing
boat and a more general action recognition dataset might the
best to generalize to our case. The specific predictions do not



matter in isolation, only the change in predictions over time.
To perform action recognition, we utilize an 18-layer R(2+1)D
network, introduced by [15]. The network was pretrained on
the Kinetics-400 dataset [16], which consists of 400 action
classes. For the used architecture, the pooling layer outputs
a 512-dimensional feature vector that is fed to the fully-
connected layer with softmax. The output from this network
functions as feature extraction, where the predicted class of a
subsequence of the video, is a data point in the transformed
time-series.

For alternative data sources, feature extraction can take
different forms, such as neural network based classification
of the time series data, or direct use of the raw data without
any feature extraction steps.

An important thing to note is that we chose this particular
pretrained network due to our Dutkat use-case where we are
attempting to identify unexpected and potentially illicit actions
of the fishermen. However, due to the lack of data of such
actions, we are particularly interested in changes of actions
which the pretrained network predicts. These actions will often
not be correct, but changes between different actions will most
likely reflect a change in the actual actions as well.

B. Embedding of labels

The output vector from the pretrained neural network is
ordered alphabetically. That is, the indices of the output vector
are ordered by the alphabetical order of the corresponding
labels. Thus, values that are close together in the output vector
will not represent any realistic ordinal relationship. In our
experiments we observed that this can cause the anomaly
detection method to misclassify certain data points due to
the output value changing dramatically, while the underlying
labels are semantically similar. For example, the output value
might change from 112 to 353, which corresponds to class
indices that are sorted alphabetically, but the underlying labels
corresponding to these values could be, for instance, “eating
chips” and “tasting food”, which are semantically close. To
address this problem, we applied an embedding on the labels
to investigate if it can lead to better results. This embedding
would place semantically similar labels close together and thus
should lead to better input for the anomaly detection.

The embedding process is shown in Figure 2. The textual
labels that correspond to the output vector indices are first
embedded via a sent2vec model, devised and implemented
by [17], that was trained on a Wikipedia corpus. Then, ten
high-intensity and low-intensity activities were chosen from
the labels to function as “support-vectors”, analogous to how
a support vector machine works. A line is then drawn between
the means of the low-intensity support-vectors and the high-
intensity support-vectors. This line represents an intensity axis.
Every point is then projected onto this line, and they are then
max-min scaled to values between 0 and 1.

The axis used is based on the assumption that anomalies in
videos containing people only arise when a drastic change in
intensity occurs. We conjecture that such changes are context

dependent and might change depending on the dataset on
which the method is to be used.

sent2vec

...

1. Class 1

2. Class 2

N Class N

...

1. Class 1
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0.32

0.09
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normalization
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running
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reading

reading

walking dog
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Fig. 2. Illustration of embedding process. Note how the classes are distributed
when they are embedded by sent2vec, and that in the embeddings are in a
different order than the index provided in the beginning.

C. Anomaly detection method

Most anomaly detection methods evaluate if a data point
is part of the dataset distribution, and if not, labels it as
an anomaly. We, however, are interested in an unexpected
transition in the values of a time-series from single or multiple
data streams, where the values are still part of the distribution.
These are known as changing points [18].

Since we are interested in changing points, i.e., points in
a time-series where the sequence changes for an interval of
time, we chose a moving average approach. This approach
compares the median of the previous n points to the current
point in a time-series. If the current point is outside of the
historical interquartile range, it is deemed an anomaly.

For features extracted from video data (e.g. which class does
a given subsequence belong to), the anomaly detection method
looks for drastic changes in the features.

IV. DATASETS

The system was applied on three different labeled datasets
for evaluation, and an additional unlabeled dataset for test-
ing. The datasets depict varied situations and actions, with
different video durations and potential artifacts. The datasets
also consist of very different camera positions and movements,
with static, moving, and multi-positional cameras depending
on the dataset. The action recognition model was pretrained
on the Kinetics-400 dataset [16]. The reason for choosing
the Kinetics-400 dataset for pretraining is twofold: (i) models
trained on this dataset were most easily accessible, (ii) it
contains many classes, which makes it more likely that the
model can react on a potentially similar event in the other
datasets.

The Multiple cameras fall (Falling) dataset by [19] consists
of 24 videos with eight cameras filming the scenarios. Of
these, 23 depict a person performing several activities, before
falling onto a mattress or chair. The remaining video does not
contain a fall. The videos have a resolution of 720× 480 and
a framerate of 30 frames per second (FPS).



Fig. 3. Frames from different videos of the Falling dataset [19]. Notice
the different angles and objects in the scene. (The images are from publicly
available videos.)

The Falling dataset is different from the other datasets that
are explored in this paper, because it is based on eight cameras
capturing each fall from different angles. The different angles
can be seen in Figure 3. This allows us to detect anomalies
that might otherwise be obscured by the orientation of the
person in the video and test the system for its multiple streams
capabilities.

The Real-world Anomaly Detection in Surveillance Videos
(AV) dataset, created by [20], consists of 1,900 videos con-
taining for example actions like abuse, arrests, arson, assaults,
and accidents. The videos are from static surveillance cameras
and contain varying backgrounds and numbers of people. The
videos have a resolution of 320 × 240 and a framerate of 25
FPS. Despite the videos having the same resolution they might
have different letterboxing, as can be seen in Figure 4.

Fig. 4. Frames from different classes within the AV dataset [20], e.g., image
three is depicting a robbery and image six is depicting an arrest. (The images
are from publicly available videos.)

We will only utilize the videos that have corresponding
temporal annotations, as this is needed for the evaluation.
This reduces the dataset size to 304 videos. Moreover, the
majority of these videos are the “Normal” videos (i.e., they do
not contain any anomalies), so these are also ignored, which
reduces the dataset further to 154 videos on which we can
evaluate our system.

Fig. 5. Frames illustrating the variety in the Soccernet-v2 dataset [21],
with close-ups, wide-angle shots, and the camera following a specific
player/referee. (The images are from publicly available videos.)

The Soccernet-v2 dataset ( [21], [22]) consists of 500
broadcast soccer games with 300,000 temporal annotations
including action and camera labels. We randomly chose a

subset of all the games from 2015-2016, which totals 45
games. Each video lasts for approximately 45 minutes, which
is much longer than the videos of the two previous datasets
discussed above. The videos have a resolution of 398 × 224
and a framerate of 25 FPS.

Two groups of events from the videos are labeled; the cam-
era movements and actions. The camera movements consist of
events like close-ups on players/referee or behind the goal, and
when switching between different cameras. The action labels
consist of soccer events like goals, free-kicks, and fouls.

A major difference with this dataset compared to the two
above is that the camera often is far away from the players to
capture the coordinated flow of the game involving multiple
players and their opponents. Therefore, detecting actions can
be relatively easy in certain cases, such as in the fourth picture
in Figure 5, but more difficult in other cases.

Fig. 6. Frames from the FT dataset. Since the videos are from a live-stream,
several unnatural artifacts and subsequences are included. Notice the eighth
image containing an overlay explaining where the boat is at the time, but it
obscures the background which we are interested in. (The images are from
publicly available videos.)

The fishing trawler dataset consists of a collection of 30
videos of approximately one hour each. They are a series
of live-streams from 2019 filmed aboard the Hermes1 fishing
trawler during operation in the Arctic Sea. The videos contain
ten different camera positions, including a camera on front of
the trawler, another angled on the deck, and a camera on the
factory level of the ship. These are alternated between at semi-
regular intervals. The videos have a resolution of 1, 280×720
and a framerate of 25 FPS.

The FT dataset contains many artifacts since it is from
a live-stream, This can be, for instance, as overlay map
explaining where they are or information about what they are
catching, or even external sequences which are not part of the
video stream captured on board. This can be seen in Figure 6.

V. EVALUATION

Evaluating an unsupervised anomaly detection system is
difficult. Comparing against labeled datasets can be potentially
misleading, due to temporal labels only reflecting when a
human detects a change in the time-series. However, the
change in the flow of the time-series might have occurred
earlier. Therefore, it is important to consider the interval
around a temporal label that decides whether a prediction is
classified correctly or not. In addition an unsupervised system
might detect anomalies that are not detected by the human
or are not normal from a data perspective but from a human
perspective depending on the use case nothing special (e.g., a
bird flying trough the scene).

1https://www.hermesas.no



A. Experimental Setup

We implemented the system in Python using PyTorch ( [23])
and the Anomaly Detection Toolkit (ADTK)2. The pretrained
neural network model was imported from the torchvision
module. The frames are extracted from the videos and are
resized and combined into a tensor in the batch generator.
The feature extraction was performed on each dataset, and
the results were saved in comma-separated files. Then, the
anomaly detection was applied to the extracted features. Each
data point corresponds with an 8-frame clip, which is one of
the accepted inputs to the action recognition network used.
Due to the specific use case the system is designed for and
the requirements coming with it, it would not provide any
insights if we compare the system with other existing anomaly
detection methods. But to compensate for this we tested the
system on three datasets not coming from the fishing domain
to show that it is able to detect anomalies at a acceptable level.

All datasets except the Falling dataset were analyzed using
a simple linear pipeline which consists of the input, a pre-
trained action recognition network, an embedding layer, and
the anomaly detection algorithm. The Falling dataset contains
multiple data streams capturing the same event, therefore
the configuration is slightly different. Multiple data sources,
corresponding with the different camera angles, are fed into the
same pretrained network and embedding layer, before being
the processed data is run through the anomaly detection algo-
rithm separately. These detection streams are then combined
naively using a simple boolean-OR combination, i.e., at the
current timestep, if an anomaly is detected in any of the
streams, it is regarded as an anomaly in the combined output.

The evaluation was prohibitively expensive on the
Soccernet-v2 dataset due to the length of the videos, and
required optimization. The evaluation of each predicted point,
which consists of a comparison against temporal annotations,
was divided across multiple nodes. This allowed us to evaluate
detected anomalies in a parallelized fashion.

All the experiments were run on a Linux machine with
Ubuntu 20.04 LTS distribution having a 3.70GHz Intel Xeon
CPU E5-1620, 64GB DDR3 RAM, and an OCZ-VERTEX 4
512GB SSD. The feature extraction was run on an NVIDIA
RTX 2080Ti GPU. We assume this system will run on large
trawlers, which are equipped with similar computational ca-
pabilities, sufficient for running inference on pretrained CNNs
or similar architectures.

B. Evaluation Methodology

For evaluation purposes, we compare our system to multiple
baseline classifiers, namely a uniform random baseline and
two constant baselines (i.e., classifying every data point as an
anomaly or non-anomaly). We compare accuracy, recall, preci-
sion, F1-score, and Matthew’s correlation coefficient (MCC)3.
The metrics are calculated as macro-averages over the two

2https://arundo-adtk.readthedocs-hosted.com/en/stable/
3Note: MCC cannot be calculated for the constant baselines due to division

by zero.

classes (anomaly/non-anomaly). Due to the imbalanced nature
of the datasets, the accuracy will generally be quite high
and misleading, but we include it for completeness. For the
AV dataset, we further evaluate the performance per class, to
determine whether our approach is better at detecting specific
types of anomalies. Finally, we evaluate how the interval range
of whether a point is deemed as a true positive or a false
positive affects the results.

Furthermore, we benchmark our system in terms of pro-
cessing performance to evaluate if it can be applied in a real-
time scenario, i.e., processing the videos at the speed of the
framerate. However, the ADTK framework is not designed for
real-time analysis, i.e., it expects a complete Pandas dataframe
before performing any analysis. Thus, we have chosen to first
generate a dataframe that is the length of the comparison
window of the anomaly detection method, then actively append
new data points and remove the oldest data points to maintain
a fixed size. The average framerate is calculated based on ten
random videos within each dataset.

Finally, we manually inspect and analyze the results of
applying our system on the FT dataset, to gain some insight as
to how it handles this specific scenario. We particularly focus
on what type of events are classified as anomalies, and also
carefully investigate what the system misses.

C. Results and Discussion

In this section and the respective subsections we present
the results and discussions around them. We start with a more
general perspective followed by deeper analysis of different
interesting aspects of our evaluation.

Falling Dataset
Method Recall Precision F1-score Accuracy MCC
Uniform 0.49 0.49 0.46 0.50 0.009
Constant 1 0.50 0.38 0.43 0.23 N/A
Constant 0 0.50 0.12 0.19 0.77 N/A
Ours 0.76 0.82 0.79 0.86 0.57

AV Dataset
Method Recall Precision F1-score Accuracy MCC
Uniform 0.50 0.50 0.34 0.50 -0.003
Constant 1 0.50 0.01 0.01 0.01 N/A
Constant 0 0.50 0.49 0.50 0.99 N/A
Ours 0.58 0.57 0.57 0.99 0.15

Soccernet-v2 Dataset
Method Recall Precision F1-score Accuracy MCC
Uniform 0.50 0.50 0.43 0.50 -0.001
Constant 1 0.50 0.07 0.12 0.14 N/A
Constant 0 0.50 0.43 0.45 0.86 N/A
Ours 0.50 0.82 0.48 0.87 0.10

TABLE I
COMPARISON OF OUR SYSTEM AGAINST BASELINES. EACH TABLE
CORRESPONDS TO THE RESULTS FROM A SPECIFIC DATASET. BOLD

INDICATES THE BEST PERFORMANCE.

1) Compared to baseline: Falling Dataset. As documented
in Table I, our system achieves the best results on the Falling
dataset. We conjecture this is due to multiple reasons; first, this
dataset consists of multiple cameras filming the scene from
different angles, thus erroneous changes in predicted actions
will be filtered out due to the boolean-OR combination ap-
proach in the anomaly detection algorithm, which is different



from the other datasets which do not require combination of
multiple data sources. Secondly, each video only contains a
single person throughout the majority of the duration which
makes it easier for the algorithm to focus on the specific action.

AV Dataset. The results on the AV dataset are a bit closer
to the baselines compared to the Falling dataset, but we still
get better results for all metrics which show that the proposed
method is able to detect anomalies even in difficult scenarios.
The reason for the results being worse than for the Falling
dataset is most likely due to the variety of the content and
quality of the videos. Some actions are visually easier to
detect than others. A more detailed discussion on this specific
challenge is provided in subsection V-C2.

Soccernet-v2. Our system was closest to the baseline when
applied on the Soccernet-v2 dataset. We assume this is due
to the large distance between the camera and the players
in the majority of the duration of the videos. The greatest
difference is for the precision, which implies that the system is
performing well at detecting events/anomalies, while detecting
few false positives.

With regard to the MCC, as stated previously, we can only
compare the uniform classifier to our system. The MCC is a
metric that handles imbalanced data well, taking all elements
of the confusion matrix into account. A value of zero would
indicate a classifier predicting correctly 50% of the time. A
value of one would indicate a perfect classifier. We see that
the uniform classifier has an MCC of approximately zero.
The largest difference in the MCC is for the Falling dataset,
with 0.57 for our system. Though MCC might not be a
reliable indicator of how good a classifier is [24], it clearly
correlates to a certain degree and gives a better understanding
of the performance when the datasets are biased. For all three
datasets, the MCC was above random predictions for our
system.

From this first analysis, we can see that the system is per-
forming well on the task of unsupervised anomaly detection.
Specifically, we can see that multiple data streams appear to
lead to better results (Falling vs the other two). It is apparent
that the type of classifier that produces the input for the
anomaly detector is important. The basic action recognition
model used was best suited for the falling detection whereas
the event in the other two datasets where not specifically part
of the actions. Using more specific models most probably
would lead to better results, for example, a soccer or crime
event-specific model for the respective dataset (or even com-
bination of models capturing different aspects of the stream).

2) Deeper analysis on AV and Soccernet-v2 datasets:
We assumed that certain classes in the AV dataset would be
difficult to detect, such as the shoplifting class. Shoplifters try
to be inconspicuous while performing their illicit activity, and
as such, the detected actions might not change very much.
Results documented in Figure 7 demonstrate that our system
performs closest to the baseline on the Arson and Vandalism
classes of videos. We can also observe a difference between the
Constant 1 and Constant 0 baseline showing that Constant 1 is
performing worse. This indicates that the dataset is containing
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Fig. 7. Per class performance on the AV dataset. The circle, triangle and
square markers indicate the results of the baseline classifiers for each metric.

a lot of normal frames and not so many positive frames which
makes it again a difficult dataset. Most classifiers would easy
start focusing on the normal frames and basically become a
Constant 0 classifier. Our method avoided this and was able
to detect some of the anomalies correct which is shown in the
MCC with 0.15. Visually inspecting videos in these classes, we
saw that, for the Arson videos, the actions of the arsonist do
not change significantly over the course of the videos except
for when they flee the scene. The system usually detects when
the fire has reached a certain size, but not when it is ignited
in the beginning. With the Vandalism videos, the system’s
performance highly depends on the type of vandalism and the
distance from the camera to the perpetrator. Videos of tagging
or videos where the camera is far away are more difficult for
the system.

Soccernet-v2: Camera vs Actions
Labels Recall Precision F1-score Accuracy MCC
Camera labels 0.51 0.78 0.49 0.90 0.11
Action labels 0.51 0.67 0.51 0.95 0.08

TABLE II
PERFORMANCE OF OUR SYSTEM ON THE SOCCERNET-V2 DATASET USING

THE CAMERA LABELS VS. THE ACTION LABELS.

Regarding the Soccernet-v2 dataset, there are a total of
14,969 camera labels and 10,008 action labels. Due to the
distance between the camera and the players, our hypothesis
was that it might be difficult for our system to detect the
actions described by the action labels. Looking at Table II,
we can see the the recall is the same for both sets of labels,
which implies that the system that the same relative number of
relevant anomalies/events are detected. However, the precision
is quite different, with our system achieving better precision
using the camera labels. This implies that fewer false positives
are generated. This might align with our hypothesis, because
the camera events are easier to detect.

3) Interval range for evaluation: In Figure 8, we are
evaluating how the interval range around a true label affects
the performance on the different datasets. As we remarked in
the beginning of this section, evaluating time-series detection
methods is difficult. Using only the true labels timestamp as a
correct classification would be equal to results when range size
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Fig. 8. How the interval range around a temporal label affects the results of
our system. Due to a data point representing 8-frame clips, an interval range
of 100 (x−100, x+100) corresponds with ± 30 seconds around a temporal
label for a 25 FPS video.

is set to zero. This would not be a realistic goal to optimize.
As long as the system manages to detect an event/anomaly
within a certain interval, this should be classified as a true
positive. The range size in Figure 8 ranges from 0 to 100 data
points in either direction around a true label. 100 data points
correspond to approximately 32 seconds, so that would allow
for any anomaly detected within a minute around a true label
to be classified as a true positive.

In the Falling dataset, we can see that the results plateau at
a range size of about 55, which corresponds with 20 seconds.
As the longest video in this dataset is 44.6 seconds (average
11.1 seconds), it makes sense that the results plateau around
this value, because at this point every predicted anomaly will
correspond with one of the labels. We see a similar plateauing
in the soccernet-v2 dataset, however the duration of these
videos are always approximately 45 minutes. We assume this
might instead be due to the camera movement, and a player
rarely being in focus for a long time.

For both the AV and the soccernet-v2 dataset, the accuracy
is consistently high regardless of range size. This is probably
due to the imbalance of anomalies/events versus non-events
being relatively greater than for the Falling dataset. This is
because the videos in the Falling datasets are usually very
short, thus the section of the videos containing the fall makes
up a significant portion of the video.

FPS Benchmark
Dataset #Input streams (res.) Preprocessing Avg. Framerate
Falling 8 (720× 480) Act. Recog. 108.2
AV 1 (320× 240) Act. Recog. 219.3
Soccernet-v2 1 (398× 224) Act. Recog. 200.9
FT 1 (1280× 720) Act. Recog. 157.6

TABLE III
RESULTS FROM FPS BENCHMARK. AS WE CAN SEE, THE SYSTEM CAN BE

APPLIED ON REAL-TIME LIVE-STREAMED DATA.

4) Real-time benchmark: Based on the results in Table III,
we observe that the system can be utilized when analyzing live
data streams. Due to differences in FPS and resolution between
the different datasets, the preprocessing causes the results to

Anomalies detected in FT dataset
Event Type Percentage
Scene Change 34.4
Human Activity 25.6
Lighting Change 7.6
Overlay 3.9
High Seas 5.7
Camera 2.8
Other 22.0

TABLE IV
MANUAL INSPECTION RESULTS FROM FT DATASET.

differ. Due to the Falling dataset consisting of multiple data
streams per video, this obviously causes the framerate to be
lower. The data streams are processed sequentially through
the pretrained network and embedding layer, but the anomaly
detection algorithm is applied in parallel. The results on the
FT dataset are also quite lower than the AV and Soccernet-
v2 datasets. This is most likely due to the resolution of the
videos being higher and the duration being longer. However,
despite the different results, we conclude that the system can
be applied in a real-time context and deployment.

5) False Positives: It is important to note that events that
are classified as false positives are not necessarily wrong. The
system might detect events that were not deemed important
by the annotators of their dataset. Nevertheless, these points
might still be interesting, as they might indicate event such
as the change in flow of a soccer match, or new people
entering the frame in a surveillance video. With unsupervised
approaches it is therefore impossible to be completely sure
what is a false positive versus a true positive, but for the
evaluations in the previous sections we have assumed the
temporal annotations to be correct. However, based on our
system’s precision in Table I, we can see that, generally, the
system does not introduce too many false positives.

6) FT dataset: Finally, we look at the manual inspection
of the results on the FT dataset trying to detect anomalies
on the fishing boat. We have applied the system on the
entire dataset, and manually gone through and evaluated the
predicted anomalies. The majority of events that are detected
are changes between different cameras/scenes. After that, hu-
man activity is the next largest group, which contains actions
such as “talking”, “talking on the phone”, “Leaning forward”,
“working”, etc. Of the ten different camera positions, the
angles within the bridge are the ones that depict most scenes
with people on-screen. Then, we have lighting changes, which
are either due to electric lights being turned on/off, or the
sun lighting up different areas of the vessel due to rocking
waves. The “High Seas” tag is also dependent on large waves
rocking the vessel, which for example causes the horizon to
cover more/less of the screen, or the sun to move in and out of
frame. As such, there may be some overlap between these two
classes. There are two types of overlays that are added over
the videos; small notes containing factoids related to fishing
and the sea, and larger overlays that cover most of the screen
and show a map of where the vessel is at the moment. Finally,
camera movement refers to a specific angle where the camera



can be manually controlled by the skipper to show interesting
events such as whale sightings or other vessels. Regarding the
predicted events under “Other”, these include all events that
are relatively rare, like movement of cranes/heavy machinery,
whale spottings, compression artifacts, and “nothing”, which
are events where we do not observe any obvious change
and constitute 14.3% of the detected events. Some of these
anomalies can be seen in Figure 9.

Fig. 9. Example frames of anomalies found in the dataset, containing (from
left to right) “talking on the phone”, “high seas”, “whale spotting”, and
“working”. (The images are from publicly available videos.)

17.2% of the scene changes were not detected. False neg-
atives other than scene changes are difficult to evaluate, but
certain events that are detected previously, like overlays, but
not later are relatively easy to spot during manual inspection
(2.1% of these are missed).

Overall, we can observe that the proposed system has
capabilities to detect interesting and relevant anomalies. This
makes it a possible alternative to check all content or not
checking at all for the specific use-case. In addition, we only
tested it with one data stream and a general action recognition
model. If we combine different streams from trawlers and
build more specific models, the performance will increase most
certainly. Furthermore, it can be used to build datasets since it
can be used to determine which possible events can occur,
label them and make them usable for building supervised
models that again can be used in the system.

VI. CONCLUSION

In this paper, we presented an unsupervised machine learn-
ing approach for anomaly event detection of multimodal data
streams. The system is highly modular and can combine the
results from multiple data streams, using different pretrained
feature extraction methods that are not necessarily trained
for the use-case. We apply our system on three labeled
datasets, and one unreleased, unlabeled dataset. The system
outperformed the baselines on all labeled datasets examined
in this paper, however on the Soccernet-v2 dataset, which
consists of far-away video shots of multiple players, performed
the worst and was slightly above baseline.

In the future, we would like to try a more complex con-
figuration of the system pipeline. The system pipeline can
be expanded to utilize more pretrained networks for feature
extraction, e.g., using a network trained on the Imagenet
dataset [25] could make it easier to detect road accidents.
It would also be interesting to use a detection network to
detect and crop around individuals within the videos to see
whether that could result in better performance, particularly
on the videos where the camera is filming multiple people
from a distance.

We aim to apply our system when annotating the FT dataset,
and we will release this dataset in the near future. We will also
apply our system when we deploy the Dutkat system on fishing
vessels in the near future. In the actual use-case, we will utilize
surveillance video data, sensor data from scales and other
tools, etc. to try to incorporate as many sources as possible
for the anomaly detection. Based on our preliminary analysis
of the problem of detecting criminal/anomalous activity on
fishing vessels based on video data, we have concluded that
acquiring data of such specific events is infeasible. Therefore,
we will in the future use multiple different data streams
and perform anomaly detection on these combined, using the
system described in this paper. These data streams would
potentially consist of surveillance video data, sensor data es-
timating catch biomass, AIS (automatic identification system)
data, etc. The resulting events and anomalies we detect from
this data will be used to incrementally build labelled datasets
that can be used in the system to improving performance and
detect other anomalies.
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