Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lars Kr. Hansen, ${ }^{\mathbf{a} *}$ German L.

 Perlovich ${ }^{\text {b,c }}$ and Annette Bauer-Brandl ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway, ${ }^{\text {b }}$ Department of Pharmaceutics and Biopharmaceutics, University of Tromsø, 9037 Tromsø, Norway, and ${ }^{\mathrm{c}}$ Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russian Federation

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.033$
Data-to-parameter ratio $=9.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Redetermination of 3-hydroxybenzamide

The crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$, has been redetermined [Katsube, Y. (1966). Bull. Chem. Soc. Jpn, 39, 2576-2588] to higher precision and with the hydrogenbonding scheme established.

Comment

Hydroxybenzamides (I), (II) and (III) are often used as prodrug compounds to model various physico-chemical processes of the drug molecules. Their different hydrogen-bonding patterns help to establish their structures and determine their solubilities.

(I)

(II)

(III)

The crystal structure of 2-hydroxybenzamide (salicylamide), (I), has been described in detail in the literature (Sasada et al., 1964; Pertlik, 1990), whereas the structure of 4hydroxybenzamide, (III), has not been reported at all. The structure of 3-hydroxybenzamide, (II), was studied some time ago by Katsube (1966) to moderate precision. Here we present a high-precision redetermination of (II) (Fig. 1) and describe its hydrogen-bonding scheme (Table 1).

The bond lengths and angles for (II) are within their normal ranges (Allen et al., 1987). The data obtained by us for the non-H atoms are consistent with Katsube's, but improved by about a factor of twenty in precision. For example, $\mathrm{C} 7-\mathrm{O} 1=$ 1.245 (2) \AA, compared with 1.24 (7) \AA in Katsube's study. The dihedral angle between the mean plane of the aromatic ring and the plane of $\mathrm{C} 7 / \mathrm{N} 1 / \mathrm{O} 1$ is $22.9(2)^{\circ}$.

The packing of (II) is shown in Fig. 2. The molecules form (101) layers held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The layers interact with each other by van der Waals forces. The hydrogen-bond network can be described by the graph set assignments introduced by Etter (1990) as $C(4), C(8)$, and $R_{2}^{2}(14)$.

Experimental

A commercial sample of 3-hydroxybenzamide (Sigma-Aldrich Co. Ltd, St Louis, USA) was used. Crystals of (II) were grown by slow evaporation of a methanol solution.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$
$M_{r}=137.14$
Monoclinic, $P 2_{b} / n$
$V=640.4(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$b=5.064$ (2) \AA
$c=11.641(5) \AA$
$\beta=92.414(11)^{\circ}$

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.938, T_{\text {max }}=0.989$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.033$
$S=1.80$
1103 reflections
119 parameters

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H8 $\cdots \mathrm{O}^{\text {i }}$	$0.93(2)$	$2.07(2)$	$2.990(2)$	$168(2)$
N1-H7	O^{ii}	$0.90(2)$	$2.15(2)$	$2.988(2)$
O2-H6 $^{\mathrm{iii}}$	0.97 (2)	$1.86(2)$	$2.798(2)$	$153(2)$

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x, y+1, z$; (iii) $-x+2,-y+1,-z+1$.

The crystals were of poor quality and weakly diffracting, which accounts for the low fraction of measured reflections. The H atoms were located in difference maps and their positions and $U_{\text {iso }}$ values were freely refined $[\mathrm{C}-\mathrm{H}=0.963$ (18)-1.007 (18) \AA].

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEX (McArdle, 1993) and ORTEPIII (Burnett \& Johnson, (1996); software used to prepare material for publication: CrystalStructure.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Figure 1
The molecular structure of (I), showing displacement ellipsoids drawn at the 40% probability level (arbitrary spheres for the H atoms).

Figure 2
The packing of (I) with hydrogen bonds indicated by dashed lines.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
Katsube, Y. (1966). Bull. Chem. Soc. Jpn, 39, 2576-2588.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.
Pertlik, F. (1990). Monatsh. Chem. 121, 129-139.
Rigaku/MSC (2005). CrystalClear (Version SM-1.4.0 b2 and CrystalStructure (Version 3.7.0). Rigaku/MSC, The Woodlands, Texas, USA.
Sasada, Y., Takano, T. \& Kakudo, M. (1964). Bull. Chem. Soc. Jpn, 37, 940-946.

[^0]: (C) 2007 International Union of Crystallography All rights reserved

