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Abstract Theories of gravity based on teleparallel geome-
tries are characterized by the torsion, which is a function of
the coframe, derivatives of the coframe, and a zero curva-
ture and metric compatible spin-connection. The appropri-
ate notion of a symmetry in a teleparallel geometry is that of
an affine symmetry. Due to the importance of the de Sitter
geometry and Einstein spaces within General Relativity, we
shall describe teleparallel de Sitter geometries and discuss
their possible generalizations. In particular, we shall analyse
a class of Einstein teleparallel geometries which have a 4-
dimensional Lie algebra of affine symmetries, and display
two one-parameter families of explicit exact solutions.

1 Introduction

Teleparallel geometries, which are characterized by the tor-
sion (which is a function of the coframe and its derivatives),
and a zero curvature and metric compatible spin-connection,
provide an alternative to Riemmannian geometries in which
to formulate a theory of gravity. A particular subclass of
teleparallel gravitational theories is dynamically equivalent
to General Relativity (GR) and is often referred to as the
Teleparallel Equivalent to General Relativity (TEGR) [1].
In the covariant approach to the more general class of F(T )

teleparallel gravity theories [2], the teleparallel geometry is
defined in a gauge invariant manner as a geometry having a
spin connection with vanishing curvature. The spin connec-
tion can be zero in a very special class of “proper” frames
and is non-zero in all other frames [1,2].
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The torsion scalar, T , is defined in terms of the torsion
tensor

T = 1

2
T a

μνS
μν
a , (1)

where the superpotential, Saμν , is constructed from the tor-
sion tensor by

Sμν
a = 1

2

(
Tμν
a + T νμ

a − Tμν
a

) − hν
aT

φμ
φ + hμ

a T
φν
φ . (2)

The variations of the Lagrangian h
2κ

F(T )+LMatt , which
include a non-trivial spin-connection [2,3], lead to Lorentz
covariant field equations (FEs) and the resulting theory is
locally Lorentz invariant [4]. Treating the spin-connection
as an independent field, the Lagrangian can then be writ-
ten using Lagrange multipliers to impose the two con-
straints of zero curvature and metric compatibility. Assum-
ing an orthonormal frame, the corresponding variations with
respect to (w.r.t.) the Lagrange multipliers lead to the follow-
ing equations (eqns.)

ωa
bμ = �a

c∂μ�c
b and ω(ab)μ = 0, (3)

where �a
b ∈ SO(1, 3) (and �c

b ≡ (�−1)cb). Variations of the
Lagrangian with respect to the coframe can be decomposed
into symmetric and antisymmetric parts:

κ�(ab) = F ′′(T )Sν
(ab)∂νT + F ′(T )G̃ab + 1

2
gab

(
F(T ) − T F ′(T )

)
,

(4a)
0 = F ′′(T )Sν[ab]∂νT, (4b)

where G̃ab is the Einstein tensor calculated explicitly from
the metric [2]. Note that any quantity with an overtilde is
computed using the Levi-Civita connection in terms of the
metric. In the above FEs, �(ab) is the matter energy momen-
tum tensor (and �[ab] = 0 due to the invariance of the FEs
under SO(1, 3)).
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The determination of new solutions in a given F(T ) theory
is vital for investigating the validity of the theory. Further-
more, distinguishing a new solution from a known solution
can be difficult from the perspective of coordinates, as this
necessitates finding the coordinate transformation that brings
one solution to the other. As an alternative, it is possible to
use torsion invariants to determine the equivalence of two
solutions. The Cartan–Karlhede algorithm is an algorithmic
approach to generate a geometrically preferred frame and
connection which can characterize a given solution in terms
of invariant quantities [5].

The algorithm exploits the canonical form of theq-th order
torsion tensors (that is the torsion tensor and its q-th covari-
ant derivatives) to fix the frame. At the zeroth iteration, the
torsion tensor is computed and the Lorentz frame freedom
is used to adapt the frame so that the torsion tensor takes on
a canonical form. The number of functionally independent
components, t0, are recorded and the remaining frame free-
dom, which does not affect the torsion tensor, is denoted as
the 0-th order linear isotropy group, H0.

For the q-th iteration, the q-th order torsion tensor is com-
puted and the q − 1 linear isotropy group, Hq−1 is used
to determine a canonical form for the q-th torsion tensor
and the number of functionally independent components, tq ,
are recorded along with the q-th linear isotropy group, Hq .
The algorithm stops at iteration p + 1, when tp = tp+1 and
Hp = Hp+1. The subgroup Hp of the Lorentz group is then
called the linear isotropy group of the geometry.

The resulting invariant quantities that characterize the
geometry are then {tq}p+1

q=0 , {Hq}p+1
q=0 and the set of compo-

nents T = {T a
bc,∇d1T

a
bc, . . . ,∇dp+1 . . . ∇d1T

a
bc}. The set T

are torsion invariants known as Cartan invariants. If two
solutions share the same discrete sequences, with Cartan
invariants T and T ′, respectively, equivalence of the solu-
tions can be proven in a non-algorithmic way by solving the
equations arising from equating the components of T and T ′.

In teleparallel geometries, the tetrad (or (co)frame) and the
corresponding spin-connection replace the metric as the pri-
mary objects of study. Consequently, the appropriate notion
of symmetry in a teleparallel geometry is that of an affine
symmetry (and not a metric symmetry; i.e, a Killing vector).
An affine frame or intrinsic symmetry on the frame bundle is
a diffeomorphism from the manifold to itself which is charac-
terized by the existence of a vector field, X, satisfying [5,6]:

LXha = λ b
a hb and LXωa

bc = 0, (5)

where ωa
bc denotes the spin-connection relative to the geo-

metrically preferred invariantly defined frame ha determined
by the Cartan–Karlhede algorithm and λ b

a is an element of
the linear isotropy group determined by the algorithm.

There do not exist any teleparallel geometries admitting
a maximal group of affine frame symmetries other than
Minkowski space [5,7]. If a four-dimensional teleparallel

geometry has a non-zero torsion, then the maximum dimen-
sion of the group of affine symmetries is at most seven [5].
Therefore, in analogy with de Sitter geometries in GR, we
define the teleparallel de Sitter (TdS) geometry as that non-
trivial teleparallel geometry which has a seven dimensional
group of symmetries that is also a subgroup of the group of
the Killing symmetries of the de Sitter metric [8].

Due to the importance of the de Sitter geometry within GR,
we shall study TdS geometries and their generalizations in
this paper. After a brief introduction to the TdS geometry, we
discuss generalizations of this geometry mathematically and
describe some physical applications, with particular empha-
sis on possible analogues of Einstein spaces. In particular,
we shall discuss a class of Einstein teleparallel geometries
which have a 4-dimensional Lie algebra of affine symmetries
(in the case where the Einstein space parameter λ is equal to
zero). We display the governing symmetric FEs explicitly
in the first of the two solutions of the antisymmetric FEs.
We shall investigate power law solutions and display two
one-parameter families of explicit solutions (where we can
implicitly find the form of F(T ) for each parameter value).

2 Teleparallel “de Sitter” (TdS)

We will work in a coframe in which the tangent space met-
ric has the form gab = ηab = Diag[−1, 1, 1, 1], which
still allows a O(1, 3) subgroup of GL(4,R) of residual
gauge transformations which leaves the metric gab = ηab
invariant. We can then restrict attention to proper ortho-
chronous Lorentz subgroups, SO(1, 3) or SO(1, 3)+. Within
this orthonormal gauge choice, the resulting field equations
transform homogeneously under the remaining O(1, 3) (or
SO(1, 3) or SO(1, 3)+) Lorentz gauge transformations.

Using the Cartan–Karlhede algorithm [5], we can deter-
mine the G7 geometries obtained by requiring that the Car-
tan invariants are all constant. This follows from the for-
mula for the dimension of the affine frame symmetry group,
N = s + 4 − tp, where s is the dimension of the linear
isotropy group and tp is the number of functionally inde-
pendent invariants at the conclusion of the algorithm. If all
of the Cartan invariants are constant, then tp = 0 and the
dimension of the linear isotropy group is three, yielding a
seven-dimensional affine frame symmetry group.

Solving the differential equations arising from the require-
ment that the only non-trivial components of the Cartan
invariants are Tabc yields the general case in which a(t) =
A0eH0t is the scale factor, and H0 is a non-zero constant in
the teleparallel k = 0 Robertson–Walker geometry [9]. The
special teleparallel geometry case where H0 = 0, a(t) = A0

a non-zero constant, k = ±1 and the additional affine frame
symmetry X7 = ∂t can be considered as the analogue of
the Einstein static geometry in GR [8] . In the general case
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(H0 �= 0), the affine frame symmetry is of the form

X7 = − 1

H0
∂t + r∂r . (6)

The resulting Lie algebra of {XI }7
I=1 = {X1, X2, X3, X4, X5,

X6, X7} is given by

[X1, X5] = X3, [X1, X6] = X2, [X1, X7] = X1,

[X2, X4] = −X3, [X2, X6] = −X1, [X2, X7] = X2,

[X3, X4] = X2, [X3, X5] = −X1, [X3, X7] = X3,

[X4, X5] = −X6, [X4, X6] = X5, [X5, X6] = −X4.

This is a subalgebra of the Lie algebra for the group of metric
(Killing) symmetries of de Sitter metric. We therefore define
the Teleparallel de Sitter (TdS) geometry as the teleparallel
geometry with a G7 Lie group of affine symmetries which
is the semi direct product of the one-dimensional subgroup
of O(1, 4) and the six dimensional Euclidean group E(3).
Note in this geometry the covariant derivative of the torsion
tensor is zero.

2.1 Properties

The diagonal de Sitter co-frame is

ha =

⎡

⎢⎢
⎣

dt
eH0t dr
eH0t rdθ

eH0t r sin(θ)dφ

⎤

⎥⎥
⎦ , (7)

which has the corresponding spin-connection one form

ωa
b =

⎡

⎢⎢
⎣

0 0 0 0
0 0 −dθ − sin(θ)dφ

0 dθ 0 − cos(θ)dφ

0 sin(θ)dφ cos(θ)dφ 0

⎤

⎥⎥
⎦ , (8)

or the non-trivial components of the spin-connection are (all
indices down)

ω23θ = −ω32θ = −1,

ω24φ = −ω42φ = − sin(θ),

ω34φ = −ω43φ = − cos(θ) (9)

(alternatively, one could use the proper de Sitter coframe
given in [8]). Using Eqs. (7) and (8) we have that

T a = H0

⎡

⎢⎢
⎣

0
h1 ∧ h2

h1 ∧ h3

h1 ∧ h4

⎤

⎥⎥
⎦ . (10)

The non-trivial components of the torsion tensor are

T 2
tr = −T 2

r t = H0e
H0t ,

T 3
tθ = −T 3

θ t = H0e
H0t r,

T 4
tφ = −T 4

φt = H0e
H0t r sin(θ). (11)

The torsion tensor is decomposable into three irreducible
parts [5]:

Tabc = 2

3
(tabc − tacb) − 1

3
(gab Vc − gac Vb) + εabcd Ad ,

(12)

where the vector, axial and tensor components are, respec-
tively:

Va = T b
ba, (13a)

Aa = 1

6
εabcd Tbcd , (13b)

t(ab)c = 1

2
(Tabc + Tbac) − 1

6
(gca Vb + gcb Va) + 1

3
gab Vc.

(13c)

The dual superpotential two form ∗Sa is

∗Sa =

⎡

⎢⎢
⎣

0
−2H0e2H0t r2 sin(θ)dθ ∧ dφ

2H0e2H0t r sin(θ)dr ∧ dφ

−2H0e2H0t rdr ∧ dθ

⎤

⎥⎥
⎦ . (14)

The non-trivial components of ∗Sa are

∗S2
θφ = −∗S2

φθ = −2H0e
2H0t r2 sin(θ),

∗S3
rφ = −∗S3

φr = 2H0e
2H0t r sin(θ),

∗S4
rθ = −∗S4

θr = −2H0e
2H0t r, (15)

or the non-dual non-trivial components are

S212 = −S221 = −2H0,

S313 = −S331 = −2H0,

S414 = −S441 = −2H0. (16)

The part of the superpotential that comes into the FEs
in terms of coordinates is S μ

(ab) and S μ
[ab]. The non trivial

components of S μ
[ab] are

S r[12] = −S r[21] = H0

eH0t
,

S θ[13] = −S θ[31] = H0

eH0t r
,

S φ
[14] = −S φ

[41] = H0

eH0t r sin(θ)
. (17)

The non trivial components of S μ

(ab) are

S r
(12) = S r

(21) = − H0

eH0t
,

S θ
(13) = S θ

(31) = − H0

eH0t r
,

S φ

(14) = S φ

(41) = − H0

eH0t r sin(θ)
,

S t
22 = S t

33 = S t
44 = −2H0. (18)
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The torsion scalar is T = 6H 2
0 , the axial part of the torsion

scalar is zero, and the magnitude of the vector part is −9H2
0

(k = 0, T = 6H 2
0 ; for reference, the vector part is V 2 =

−9H 2
0 and the axial part A2 = 0).

Assuming a comoving perfect fluid as the matter source,
the FEs in the TdS geometry reduce to

κ ρ = −κ P = −1

2
F(T0) + 6F ′(T0) H

2
0 , (19)

where necessarily ρ and P are constants. The equations for-
mally reduce to their GR counterparts only when F(T ) = T .
We note that the effective equation of state

ωe f f = P

ρ
= −1, (20)

is the same as its GR counterpart; however, the effective cos-
mological constant �e f f ≡ κρ depends in principle on the
two parameters F(T0) and F ′(T0). The energy-momentum
conservation eqn.

ρ̇ + 3
ȧ

a
(ρ + P) = 0, (21)

is identically satisfied.

3 Applications

If T = const., then the FEs for F(T ) teleparallel gravity are
equivalent to a rescaled version of TEGR (which looks like
GR with a cosmological constant and a rescaled coupling
constant) [2]. In the case of TEGR, where F(T ) = T , Eq.
(4b) vanishes. For F(T ) �= T , the variation of the gravita-
tional Lagrangian by the flat spin-connection is equivalent
to the antisymmetric part of the FEs in Eq. (4b) [2]. In addi-
tion, since the canonical energy momentum is symmetric,
�[ab] = 0, then the antisymmetric part of the FEs (4b) limit
the possible solutions of spacetimes.

Cosmological models in flat (k = 0) TRW models have
been studied in [10,11] (also see references within). For
example, simple power-law scale factor solutions in specific
F(T ) models (using a priori ansatz such as a polynomial
functions) have been investigated. Futhermore, the late time
behaviour of the usual de Sitter spacetime, and in particular
its stability (as a fixed point), has been studied in [10] (see
also [12]).

3.1 Stability

Let us simply consider the linear perturbations of the scalar
quantities T, ρ, P in the TdS solution:
T = 6 H 2

0 + T1, (22a)

κρ = − F(T0)

2
+ 6F ′(T0) H

2
0 + κρ1, (22b)

κP = −
(

− F(T0)

2
+ 6F ′(T0) H

2
0

)
+ β κρ1, (22c)

where we have used the zeroth order TdS expressions above
with T0 ≡ 6H 2

0 , and we assume the parameter β ≥ − 1
3 from

the energy conditions.
To first order the antisymmetric FEs yield

S γ

0 [ab]T1,γ = 0, (23)

where the non trivial zeroth order components of S μ
[ab] are

given (by Eqs. (22a) to (22c)) above, so that trivially T1,γ = 0
and hence T1 = T1(t).

The FEs and the conservation law then imply that
[
−1

2
F ′(T0) + 6F ′′(T0)H

2
0

]
T1 = κρ1, (24a)

−3H0(1 + β)ρ1 = ρ̇1. (24b)

We immediate have that ρ1 = ρ1(t), so that from the con-
servation eqn. ρ1 → 0 to the future (since H0 > 0), whence
(except in the degenerate case in which the term in square
brackets above might be zero), T1 → 0, and hence T → T0,
a constant, so that the resulting geometry is formally equiv-
alent to that of GR and the corresponding stability results
follow.

3.2 The function F(T )

A number of particular examples of F(T ) theories stud-
ied in the literature include polynomial functions in T , and
especially quadratic T 2 theory [10,11]. Recently, it has been
shown that the theory [13]

F(T ) = −� + T + γ T 2, (25)

can alleviate a variety of cosmological tensions. It is also of
interest to study the theory with

F(T ) = T + γ T β̃ , (26)

where β̃ > 0 ( where β̃ is potentially a positive integer greater
than 2 for sufficient differentiability), or an exponential func-
tion

F(T )=F(0)
[
exp (2γ T )−1

]∼F(0)
[
T+γ T 2 + ...

]

(27)

for small T .

4 Analogues of Einstein spaces

In Riemannian geometries the subclass of Einstein spaces
with R̃ab = λgab, and which contain the de Sitter geometry
as a special case, are of interest [14]. We note that for Einstein
spaces, in which the algebraic structure of the Ricci tensor
R̃ab is special, the frame components of the Ricci tensor R̃ab

are constants and its covariant derivative is zero.

123



Eur. Phys. J. C           (2023) 83:977 Page 5 of 11   977 

It may be of interest to study analogous particular telepar-
allel geometries with special properties (but non-constant T )
which include the TdS geometry. Possible examples might
include teleparallel geometries with special algebraic, topo-
logical or symmetry properties. Such examples often lead
to R̃ab = λgab and hence to a subcase of the usual Ein-
stein spaces (which implies the energy momentum tensor
�ab = λgab).

4.1 Algebraic

Examples include:

1. The components of the torsion tensor are constant or its
covariant derivative is zero.

2. The algebraic properties of some tensor constructed from
the torsion tensor are special.

In addition, the torsion tensor can be invariantly decom-
posed algebraically into its vectorial part Va (Eq. (13a)), axial
part Aa (Eq. (13b)) and tensorial partTabc (Eq. (13c)). Special
invariantly defined subcases occur when the axial and tenso-
rial parts are zero (or tensorial and vector parts are zero). For
example, the TdS geometry has vanishing axial part zero [6].

4.2 Topological

Special classes of spacetimes have topological properties
such as product (or warped product) structures, and hence
decomposable and reducible structures [15,16]. Unlike the
usual Riemannian case, it is the frame and spin-connection
(and/or the torsion tensor) that should have these splitting
properties (rather than the curvature and metric).

In the Riemannian case, the de Rham decomposition theo-
rem states that if the holonomy group of a simply-connected
Riemannian manifold preserves a proper subspace of the
tangent space (i.e., is reducible), then the tangent space is
decomposable (into holonomy invariant subspaces) and the
manifold is (locally) isometric to a product manifold (i.e.,
a Riemannian manifold is locally a product of Rieman-
nian manifolds with irreducible holonomy algebras). The
Lorentzian case was studied in [17], utilizing Wu’s theo-
rem [18,19], that asserts that every simply-connected, com-
plete semi Riemannian manifold is isometric to a product of
simply-connected, complete semi-Riemannian manifolds, of
which one can be flat and all others are indecomposable or
“weakly-irreducible” (i.e., with no nondegenerate invariant
subspace under holonomy representation).

4.3 Symmetries

The teleparallel de Sitter (TdS) geometry has a G7 Lie group
of affine symmetries which is the semi direct product of a
one-dimensional subgroup O(1, 4) and a six dimensional
Euclidean group E(3). We could define an appropriate gen-
eralization of TdS by considering spaces with a subalge-
bra of affine symmetries. For example, if we consider the
subalgebra generated by the 3 rotational affine symmetries
X4 − X6 (spherical symmetry) and the special affine sym-
metry X7 = − 1

H0
∂t + r∂r (Eq. (6)), we obtain a subclass of

geometries with a 4-dimensional Lie subgroup as its affine
symmetry group, which we shall define as Einstein Telepar-
allel (ET) geometries. The TdS geometry is then a special
case in which there are an additional 3 affine symmetries
(X1 − X3) [6,9].

5 Einstein teleparallel geometries

Relative to the representation for the isotropy group used
in [6], we can determine the most general frame and spin-
connection with the three spherically symmetric affine frame
symmetry generators X4 − X6 along with the fourth addi-
tional affine symmetry X7 defined above (see [6] and also
the case λ = 0 in [9]). We can also choose a new coordinate
system to “diagonalize” the frame. The resulting veilbein is:

haμ =

⎡

⎢⎢
⎣

A1(t, r) 0 0 0
0 A2(t, r) 0 0
0 0 A3(t, r) 0
0 0 0 A3(t, r) sin(θ)

⎤

⎥⎥
⎦ . (28)

With this choice of invariant symmetry frame, we can now
obtain the most general metric compatible connection [6]:

ω341 = X1(t, r), ω342 = X2(t, r),

ω233 = ω244 = X3(t, r), ω234 = −ω243 = X4(t, r),

ω121 = X5(t, r), ω122 = X6(t, r),

ω133 = ω144 = X7(t, r), ω134 = −ω143 = X8(t, r),

ω344 = − cos(θ)

A3 sin(θ)
. (29)

Finally, to determine the most general connection for a
teleparallel geometry we must impose the flatness condition.
The resulting equations can be solved so that any spherically
symmetric teleparallel geometry is defined by (the three arbi-
trary functions in the veilbein (28) along with) the following
spin-connection components [9]:
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X1 = −∂tχ

A1
, X2 = −∂rχ

A2
,

X3 = cosh(ψ) cos(χ)

A3
, X4 = cosh(ψ) sin(χ)

A3
,

X5 = −∂tψ

A1
, X6 = −∂rψ

A2
,

X7 = sinh(ψ) cos(χ)

A3
, X8 = sinh(ψ) sin(χ)

A3
, (30)

where χ and ψ are arbitrary functions of the coordinates t
and r .

Thus, to determine the conditions of the inclusion of the
new symmetry generator, we need only examine the condi-
tions LX7h

a = 0, from which we obtain:

A1(t, r) = f1(z), A2(t, r) = f2(z)

r
, A3(t, r) = f3(z),

(31)

where z ≡ re−C0t and C0 ≡ −H0 is a non-zero constant.
The Lie derivatives of the metric g and the spin-connection,
respectively, yield LX7 g = 0 and LX7ω

a
bc = 0, as desired.

It therefore follows that the arbitrary functions in the spin-
connection’s components must be functions of the form:

χ(t, r) = χ(z), ψ(t, r) = ψ(z). (32)

For general situations in which the parameter λ �= 0, we
have that the torsion scalar T = T (z, r) will also contain
terms in rλ as studied in [9] for T (z, r) = T0(z)

r2λ . From the

FEs we obtain the following equation in term of r−2λ F ′(T ):

κ (P + ρ) = 2

[
−g4

[
(h2 + 2 h3) T ′

0(z) + (2m3) T0(z)

h4 T ′
0(z) + m4 T0(z)

]

+ (g2 + g3)] r
−2λ F ′(T ),

≡ 2 H(z) r−2λ F ′(T ). (33)

We note that in general with λ �= 0, H(z) �= 0 [9].
For λ = 0, as considered here, we obtain that T (z, r) =

T (z). In general, without substituting in the solutions of the
antisymmetric FEs solutions (and the symmetric FEs), we
have that H(z) �= 0. However, we will see below that, using
the solution to the antisymmetric FEs, we find that H(z) = 0.
This then implies that ρ + P = 0. This is consistent with the
fact that this is intended as an anologue of an Einstein space.

5.1 Antisymmetric FEs and solutions

For λ = 0, the antisymmetric FEs become (when the torsion
scalar T (z) �= const and F(T ) is not linear in T ):

0 = sin χ(z) [C0 f2(z) sinh ψ(z) + f1(z) cosh ψ(z)] ,

(34a)

0 = cos χ(z) [C0 f2(z) cosh ψ(z) + f1(z) sinh ψ(z)] .

(34b)

There are two solutions:

A: cos χ(z) = 0: sin χ(z) = δ = ±1, χ = (
k + 1

2

)
π and

tanh ψ(z) = − f1(z)
C0 f2(z)

.
B: sin χ(z) = 0: cos χ(z) = δ = ±1, χ = kπ and

tanh ψ(z) = −C0 f2(z)
f1(z)

.

5.2 General form of symmetric FEs

The general symmetric FEs can be expressed in the following
form:

k1 ∂z
(
ln(F ′(T ))

) = g1, (35a)

κ P − F(T )

2
= 2 F ′(T )

[−k2 ∂z
(
ln(F ′(T ))

) + g2
]
, (35b)

κ ρ + F(T )

2
= 2 F ′(T )

[−k3 ∂z
(
ln(F ′(T ))

) + g3
]
, (35c)

k4 ∂z
(
ln(F ′(T ))

) = g4, (35d)

where the functions gi and ki (i = 1 − 4) are explicitly
displayed below for solution A (the functions for solution B
are displayed in the Appendix). By combining the pair of Eqs.
(35b) and (35c) and then Eqs. (35a) and (35d), respectively,
we obtain:

∂z
(
ln(F ′(T ))

) = g1

k1
= g4

k4
, (36a)

κ (P + ρ) = 2 F ′(T )
[− (k2 + k3) ∂z

(
ln(F ′(T ))

) + (g2 + g3)
]

≡ F ′(T )H(z). (36b)

The general torsion scalar expression respecting Eqs. (36a)
and (36b) is the following:

T (z) = 1

f 2
1 f 2

2 f 2
3

[
− 4 f1 f2 z cos χ

( [
( f3 f1)

′ + f3 f2 ψ ′] cosh ψ

+ sinh ψ
[
ψ ′ f1 f3 + C0 ( f2 f3)

′]
)

+ 4 z sin χ cosh ψ χ ′ f 2
1 f2 f3

+ 4C0 z sin χ sinh ψ χ ′ f1 f 2
2 f3 − 2 f 2

1

(
z2 f ′2

3 + f 2
2

)

− 4 z2 f1 f3 f ′
1 f ′

3 + 4C2
0 z2 f2 f ′

3

(
f ′
2 f3 + f2 f ′

3

2

) ]
. (37)

Coordinates

There is a class of transformations that maintain the “diago-
nal” form of the frame in (28). However, in general, this will
also lead to a change in the form of the connection and the
FEs. Therefore, in order to maintain the comoving nature of
the perfect fluid source, we restrict ourselve to transforma-
tions of the form t → f (t) and r → g(r) (i.e., redefining
the r and t coordinates). This may simplify the eqns. further.
Even then, the explicit forms for the symmetry vectors and
the similarity variable z (for example) does change. We shall
not change coordinates here.
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However, since the static case corresponds formally to
C0 = 0, we assume explicitly that C2

0 �= 0 here. In this
case we can then effect a simple time change to set C2

0 = 1,
which we shall do hereafter. This has the effect of changing
the metric, −dt2 → − 1

H2
0
dt2. In the exact TdS solutions

C2
0 = 1 and the metric changes accordingly.

5.3 Solution A

The symmetric FE components (see Eqs. (35a) to (35d)) for
solution A (with C2

0 = 1) are explicitly given by (the sym-
metric FEs components for solution B are displayed in the
Appendix):

g1 =
[

− z2 f1 f2 f3 f ′′
3

(
f 2
1 + f 2

2

)
− z2 f 2

1 f2 f 2
3 f ′′

1 + z2 f1 f 2
2 f 2

3 f ′′
2

+ z2 f ′2
3

(
− f1 f 3

2 + f 3
1 f2

)

+ f3 f ′
3

(
f 2
2 + f 2

1

) (
z2 f2 f ′

1 + f1
(
z2 f ′

2 − z f2
))

+ f 2
3 f ′

1

((
f 2
1 − f 2

2

)
z2 f ′

2 − z f 2
1 f2

)

+ f1 f 2
2

(
z f 2

3 f ′
2 − f 2

1 f2
) ]

, (38a)

g2 = 1

f 3
1 f 2

2 f 2
3

[
− z2 f1 f 2

2 f3 f ′′
3 + z2 f1 f ′2

3

(
f 2
1 − f 2

2

)

+ f3 f ′
3

(
z2 f ′

1

(
f 2
2 + 2 f 2

1

)

− f1 f2
(
z2 f ′

2 + z f2
))]

, (38b)

g3 = 1

f 2
1 f 3

2 f 2
3

[
− z2 f ′′

3 f3 f 2
1 f2 + f2 f ′2

3 z2
(
f 2
2 − f 2

1

)

− f ′
3

(
− z2 f3 f ′

2

(
2 f 2

2 + f 2
1

)

+ f1 f2
(
z2 f3 f ′

1 + z f1 f3
) )]

, (38c)

g4 =
[

ln

(
f1 f2
z f ′

3

)]′
, (38d)

k1 =
(
z2 f1 f2 f3

) [
f ′
3

(
f 2
1 + f 2

2

)
+ f3

(
f1 f ′

1 − f2 f ′
2

)
]
, (39a)

k2 = z2 f ′
3

f 2
1 f3

, (39b)

k3 = z2 f ′
3

f 2
2 f3

, (39c)

k4 =1. (39d)

We simplify the symmetric FEs for solution A into Eq.
(36a), to obtain:

[
− z2 f1 f2 f3 f ′′

3

(
f 2
1 + f 2

2

)
− z2 f 2

1 f2 f 2
3 f ′′

1

+ z2 f1 f 2
2 f 2

3 f ′′
2 + z2 f ′2

3

(
− f1 f 3

2 + f 3
1 f2

)

+ f3 f ′
3

(
f 2
2 + f 2

1

) (
z2 f2 f ′

1 + f1
(
z2 f ′

2 − z f2
))

+ f 2
3 f ′

1

((
f 2
1 − f 2

2

)
z2 f ′

2 − z f 2
1 f2

)

+ f1 f 2
2

(
z f 2

3 f ′
2 − f 2

1 f2
) ][ (

z2 f1 f2 f3
)

×
[
f ′
3

(
f 2
1 + f 2

2

)
+ f3

(
f1 f ′

1 − f2 f ′
2

) ]]−1

= −
(

ln

(
z f ′

3

f1 f2

))′
. (40)

Using the eqns. above and the symmetric FE, we find that
the right-hand side of Eq. (36b) vanishes, thus giving P+ρ =
0. So, for λ = 0, we only have κP(t, r) = −κρ(t, r) ≡
−�0, regardless of the form of F(T (z)). This is consistent
with the fact that this is intended as an anologue of an Einstein
space. This means that we have the following relations:

(k2 + k3) g4 = (g2 + g3) ,

−
(

ln

(
z f ′

3

f1 f2

))′
= g4 = g2 + g3

k2 + k3
. (41)

By putting the Eqs. (40) and (41) together, we arrive at the
following superrelation:

−
(

ln

(
z f ′

3

f1 f2

))′
= g4 = g2 + g3

k2 + k3
= g1

k1
. (42)

The torsion scalar expression for solution A simplifies and is
given explicitly by:

T (z) =2 z2 f ′2
3 (z)

(
f 2
2 (z) − f 2

1 (z)
) + 4z2 f3(z) f ′

3(z)
(
f2(z) f ′

2(z) − f1(z) f ′
1(z)

) − 2 f 2
1 (z) f 2

2 (z)

f 2
1 (z) f 2

2 (z) f 2
3 (z)

. (43)

5.4 Explicit equations: summary

First we satisfied the Antisymmetric FEs (Eqs. (34a) and
(34b)) leading to solutions A and B. Then we set C2

0 = 1
in all of our physical quantities. For the symmetric FEs, we
have Eqs. (35a) to (35d) with gi and ki (i = 1 − 4) given
by Eqs. (38a) to (39d), respectively. We restrict to solution A
hereafter, whence Eq. (36a) becomes Eq. (40) (see also Eqs.
(41) and (42)). After finding H(z) = 0, Eq. (36b) implies that
ρ + P = 0. Then the torsion scalar T (z) is given explicitly
by Eq. (43). The FE described by Eq. (35d), using k4 = 1 and
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the expression above for g4, is replaced by the first integral

dF

dT
= B0

(
f1 f2
z f ′

3

)
, (44)

which is a function of z, and where B0 is a constant. The
remaining FE described by Eq. (35c) yields an eqn. for
F(T (z)) in terms of z. We have that κρ = −κP = �0,
where we have used solution A and set C2

0 = 1. In principle,
the three remaining FEs, Eqs. (35c), (40) and (44) are then 3
ODEs for the 3 functions fi (z) for a given F(T (z)).

For example, for the quadratic function F(T ) explicitly
given by Eq. (25), we find that F ′ = 1 + 2γ T, F ′′ = 2γ

which, when substituted into Eq. (44), yields

T = − 1

2γ
+ B0

2γ

(
f1 f2
z f ′

3

)
, (45)

whence using (43) yields a first order ODE for the fi . Equa-
tion (35c) then yields a quadratic eqn. for T in terms of func-
tions of z (including a term dT

dz ) which upon using Eq. (43)
yields a second order ODE for the fi . Equation (40) consti-
tutes another second order ODE for the fi .

We note again that all potential solutions considered here
(other than TdS explicitly) are not analogues of GR solutions
and are consequently new.

6 Power law solutions

To find solutions to the symmetric part of the FEs describ-
ing an Einstein teleparallel geometry, we use the following
ansatz:

f1(z) = a0 z
a, f2(z) = b0 z

b, f3(z) = c0 z
c, (46)

where a0, b0, c0 �= 0. Using the solution A, from Eq. (35c)
we obtain:

�0 = − F(T (z))

2
+ 2 F ′(T (z))

[
c (2b + c)

a2
0

z−2a − c (2a + c)

b2
0

z−2b
]
.

(47)

We need the exact expressions for T (z) and F(T (z)) before
simplifying further. Using g1 = g4 k1, we obtain from Eq.
(40):

0 = za+b
[
a2

0 c
2
0

(
c2 − 2a2 + ac

)
z2a+2c

− b2
0 c

2
0

(
c2 − 2b2 + bc

)
z2b+2c − a2

0 b
2
0 z

2a+2b
]
. (48)

For the torsion scalar, we obtain:

T (z) =2

[
c(2b + c)

a2
0

z−2a − c(2a + c)

b2
0

z−2b − 1

c2
0

z−2c
]
.

(49)

The derivative T ′(z) is:

T ′(z) = − 4 c

[
(2b + c) a

a2
0

z−2a−1 − (2a + c) b

b2
0

z−2b−1 − 1

c2
0

z−2c−1

]

.

(50)

From Eq. (44) we obtain:

dF(T )

dT
= B1

c
za+b−c, (51)

where B1 is a constant (the degenerate case c = 0 is not
included). For c = a + b we get exactly the TEGR solution.
We will consider a + b �= c for a non-trivial F(T ) solution.

We multiply by the derivative of the torsion scalar to
obtain:

dF(T (z))

dz
= dF(T )

dT
T ′(z)

= −4B1

[
(c + 2b) a

a2
0

zb−c−a−1

− (c + 2a) b

b2
0

za−c−b−1 − 1

c2
0

za+b−3c−1

]

.

(52)

From this equation, we may integrate dF(T (z))
dz w.r.t z

(depending on the power of z – some situations may lead
to z−1 and care should be taken). From Eq. (48), we can
solve the symmetric FEs for a, b and c and then verify Eq.
(47) by taking into account Eqs. (49) to (52) for each possi-
ble situation. In principle, there may be some free parameters
remaining.

6.1 The possible solutions

If we consider Eq. (48) only there are, in principle, the fol-
lowing possibilities:

1. a = b (with a2
0 b

2
0 �= 0), which is not possible because

we need to satisfy:

0 =
(
c2 − 2a2 + ac

)
c2

0

[
a2

0 − b2
0

]
and 0 = a2

0 b
2
0.

(53)

This case includes the special case a = b = c.
2. a = c: which leads to:

0 = −
[
c2

0

(
c2 − 2b2 + bc

)
+ a2

0

]
b2

0, (54)
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which gives the following relation between a and b:

(a + 2b)(a − b) = −a2
0

c2
0

, (55)

where, according to Eq. (55), −2b < a < +b for viable
solutions.

3. b = c: which leads to

0 =
[
c2

0

(
b2 − 2a2 + ab

)
− b2

0

]
. (56)

Equation (56) leads to the following relation between a
and b:

(b + 2a)(b − a) = b2
0

c2
0

, (57)

where it follows that − b
2 < a < +b for viable solutions.

6.2 Case I: a = c

For a = c and
a2

0
c2

0
= −(a + 2b)(a − b) (Eq. (55)), we then

compute Eqs. (49), (51) and (52):

T (z) = 2

[
(a + 2b)(2a − b)

z−2a

a2
0

− 3a2

b2
0

z−2b
]
, (58a)

dF(T )

dT
= F ′(T (z)) = B1

a
zb, (58b)

dF(T (z))

dz
= −4B1

[
(a + 2b)(2a − b)

a2
0

zb−2a−1 − 3a b

b2
0

z−b−1

]

.

(58c)

When we attempt to integrate Eq. (58c), we see that there
may be special cases (b = 0 or a = b

2 ) which yield a z−1

power term, but in each case the corresponding coefficient
is zero and therefore no power of z−1 terms ever occurs in
Eq. (58c). From this, we can integrate Eq. (58c) giving the
relation:

F(T (z)) = −4B1

[
− (a+2b)

a2
0

zb−2a + 3a
b2

0
z−b

]
+ C, (59)

where C is a constant. By substituting Eq. (59) into Eq. (47),
we find that:

�0 + C

2
= 2B1

[
(a + 2b)

a2
0

− (a + 2b)

a2
0

]

zb−2a = 0. (60)

This means that we have C = −2�0 in Eq. (59) (b �= 0).
This constitutes a one parameter (b say) family of solutions.
It is possible to locally find the inverse z = z(T ) from Eq.
(58a) to explicitly find F(T ).

As a simple albeit special example, if a = b
2 , Eqs. (58a)

and (58b) become:

zb =
√

3

2

b

b0
√−T

, (61a)

dF(T )

dT
=

√
24 B1

2 b0
√−T

≡ − F1

2
√−T

, (61b)

where F1 is a constant. We integrate Eq. (61b) w.r.t. to T to
obtain:

F(T ) = F1
√−T + C, (62)

for T ≤ 0. By substituting Eq. (62) into Eq. (47), we get that:

C = −5 b b0 F1

2 a2
0

√
2

3
− 2�0 ≡ F0 − 2�0, (63)

where F0 is also a constant.

6.3 Case II: b = c

For b = c and
b2

0
c2

0
= (b + 2a)(b − a) (Eq. (57)), we must

evaluate Eqs. (49), (51) and (52) (for a �= 0):

T (z) = 2

[
3b2

a2
0

z−2a − (2b − a)(2a + b)

b2
0

z−2b
]
, (64a)

dF(T )

dT
= F ′(T (z)) = B1

b
za, (64b)

dF(T (z))

dz
= −4B1

[
3b a

a2
0

z−a−1 − (2b − a)(2a + b)

b2
0

za−2b−1

]

.

(64c)

When we attempt to integrate Eq. (64c), we see that there
may be special cases when a = 0 or a = 2b which yield z−1

power terms, but in each case the corresponding coefficient
is zero and therefore such a power of z−1 never occurs in Eq.
(64c). We can consequently integrate Eq. (64c), giving the
relation:

F(T (z)) = 4B1

[
3b
a2

0
z−a − (2a+b)

b2
0

za−2b
]

+ C. (65)

By substituting Eq. (65) into Eq. (47), we find that:

�0 + C

2
= −2B1

[
(2a + b)

b2
0

− (2a + b)

b2
0

]

za−2b = 0.

(66)

This again implies thatC = −2�0 as an integrating constant
in Eq. (65). In general, it is possible to locally find the inverse
z = z(T ) from Eq. (64a) then use it to compute F(T ). Note
that from Eqs. (64a) and (65), in the TEGR case we must have
a = 0 (which corresponds to the special case a + b = c),
where

z−2b = 3b2
0

2 a2
0

− b2
0

4b2 T . (67)
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7 Concluding remarks

Since the de Sitter geometry (and Einstein spaces in more
generality) within GR have a number of important mathemat-
ical and physical applications, we have studied TdS geome-
tries and their generalizations in theories of gravity based on
teleparallel geometries. In particular, we have investigated
a class of Einstein teleparallel geometries which have a 4-
dimensional Lie algebra of affine symmetries. We solved
the resulting antisymmetric FEs and we displayed all of the
remaining governing eqns. explictly. We then investigated
power law solutions and displayed two one-parameter fami-
lies (within solution class A) of explicit Einstein teleparallel
solutions (where we can implicitly find the form of F(T ) for
each parameter value). Very few explicit non-trivial exact
solutions are known within teleparallel gravity, and the two
one-parameter families of exact power law solutions obtained
(being possible analogues of Einstein spaces) may have a
number of important applications in cosmology and astro-
physics.
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8 Expressions for solution B

The functions in the symmetric FEs (Eqs. (35a) to (35d)) for
solution B are explicitly given by:

g1 =
[

− z2 f1 f2 f3 f ′′
3

(
f 2
1 + f 2

2

) − z2 f 2
1 f2 f 2

3 f ′′
1

+ z2 f1 f 2
2 f 2

3 f ′′
2 + z2 f ′2

3

(− f1 f 3
2 + f 3

1 f2
)

+ f3 f ′
3

(
f 2
1 + f 2

2

) (
z2 ( f1 f2)

′ − z f1 f2
)

+ f 2
3 f ′

1

(
z2 f ′

2

(
f 2
1 − f 2

2

) − z f 2
1 f2

)

+ f1 f 2
2

(
z f 2

3 f ′
2 − f 2

1 f2
) ]

,

g2 = 1

f 3
1 f 2

2 f 2
3

[
− z2 f1 f 2

2 f3 f ′′
3

+ z2 f ′2
3

(− f1 f 2
2 + f 3

1

) + 2 f ′
3

(
z2 f3 f ′

1

(
f 2
2

2
+ f 2

1

)

− f1 f2
2

[
z2 f3 f ′

2 − δ z

(
f 2
1 − f 2

2√
1 − f 2

2
f 2
1

)
+ z f2 f3

])

+ δ z f1 f2 f3
f1 f ′

1 − f2 f ′
2√

1 − f 2
2
f 2
1

]
,

g3 = 1

f 2
1 f 3

2 f 2
3

[
− z2 f 2

1 f2 f3 f ′′
3 + f ′2

3 z2 (
f 3
2 − f 2

1 f2
)

− f ′
3

[
− z2 f3 f ′

2

(
2 f 2

2 + f 2
1

)

+ f1 f2

(
z2 f ′

1 f3 +
[
δ z f2

(
f 2
1 − f 2

2

f1

√
1 − f 2

2
f 2
1

)
+ z f1 f3

])]

− δ z f1 f 2
2 f3

(
f1 f ′

1 − f2 f ′
2

f1

√
1 − f 2

2
f 2
1

)]
,

g4 =
[

ln

(
f1 f2
z f ′

3

)]′
, (68)

k1 =

⎡

⎢⎢
⎣z2 f1 f2 f3 f ′

3

(
f 2
1 + f 2

2

)

+ f1 f2 f3

⎛

⎜⎜
⎝z2 f1 f3 f ′

1 − f2

⎛

⎜⎜
⎝z2 f3 f ′

2 − δ z
f 2
1 − f 2

2√
1 − f 2

2
f 2
1

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ ,

k2 = z

f 2
1 f3

⎡

⎢⎢
⎣

δ f2√
1 − f 2

2
f 2
1

+ z f ′
3

⎤

⎥⎥
⎦ ,

k3 = z

f 2
2 f3

⎡

⎢⎢
⎣

δ f2√
1 − f 2

2
f 2
1

+ z f ′
3

⎤

⎥⎥
⎦ ,

k4 = 1

z f ′
3

⎡

⎢
⎢
⎣

δ f2√
1 − f 2

2
f 2
1

+ z f ′
3

⎤

⎥
⎥
⎦ . (69)

From Eq. (36a) we explictly get:

⎡

⎢⎢
⎣z2 f1 f2 f3 f ′

3

(
f 2
1 + f 2

2

)
+ f1 f2 f3

⎛

⎜⎜
⎝z2 f1 f3 f ′

1 − f2

×

⎡

⎢⎢
⎣z2 f3 f ′

2 − δ z
f 2
1 − f 2

2√
1 − f 2

2
f 2
1

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦

−1
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×
[

− z2 f1 f2 f3 f ′′
3

(
f 2
1 + f 2

2

)
− z2 f 2

1 f2 f 2
3 f ′′

1

+ z2 f1 f 2
2 f 2

3 f ′′
2 + z2 f ′2

3

(
− f1 f 3

2 + f 3
1 f2

)

+ f3 f ′
3

(
f 2
1 + f 2

2

) (
z2 ( f1 f2)

′ − z f1 f2
)

+ f 2
3 f ′

1

(
z2 f ′

2

(
f 2
1 − f 2

2

)
− z f 2

1 f2
)

+ f1 f 2
2

(
z f 2

3 f ′
2 − f 2

1 f2
) ]

=

⎡

⎢
⎢
⎣1 + δ f2

z f ′
3

√
1 − f 2

2
f 2
1

⎤

⎥
⎥
⎦

−1
[

ln

(
f1 f2
z f ′

3

)]′
. (70)

Using Eqs. (68) and (69) and the symmetric FE, we find
that the right-hand side of Eq. (36b) vanishes, thus giving
P + ρ = 0. So, for λ = 0, we have P(t, r) = −ρ(t, r) ≡
−�0, regardless of the form of F(T (z)). This is consistent
with the fact that this is intended as an anologue of an Einstein
space. This means that we have the following relation:
⎡

⎢⎢
⎣1 + δ f2

z f ′
3

√
1 − f 2

2
f 2
1

⎤

⎥⎥
⎦

−1
[

ln

(
f1 f2
z f ′

3

)]′

= g4

k4
= g2 + g3

k2 + k3
. (71)

By putting the Eqs. (70) and (71) together, we arrive at the
following superrelation:
⎡

⎢
⎢
⎣1 + δ f2

z f ′
3

√
1 − f 2

2
f 2
1

⎤

⎥
⎥
⎦

−1
[

ln

(
f1 f2
z f ′

3

)]′

= g4

k4
= g2 + g3

k2 + k3
= g1

k1
. (72)

The expression for the torsion scalar in the second solution
then simplifies further.
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