Structure Reports

Online
ISSN 1600-5368

Lars Kr. Hansen, ${ }^{\text {a }}$ * Freddy Tjosås ${ }^{\text {b }}$ and Anne Fiksdahl ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, and ${ }^{\text {b }}$ Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.116$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Methyl 5-nitro-2-(phenylamino)pyridine-4-carboxylate

In the crystal structure of the title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$, there are two independent molecules in the asymmetric unit. In each case, the methylcarboxylate group is twisted by about 90° relative to the rest of the molecule. The molecules are packed in the crystal structure through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Many pharmaceutical products consist of oxygen and/or nitrogen heterocycles, and the title compound, (I), is the result of a study to produce bis-heterocyclic compounds from pyridyl isocyanates. It crystallizes in the space group $P \overline{1}$ with two molecules in the asymmetric unit (Fig. 1). The phenyl and pyridine rings make a dihedral angle of 11.9 (2) ${ }^{\circ}$ in one molecule and $11.9(3)^{\circ}$ in the other. In both molecules, the nitro group is almost coplanar with the pyridine ring, while the methylcarboxylate group is approximately perpendicular to this ring, due to steric hindrance; this is demonstrated by the selected torsion angles in Table 1. Bond lengths are all within the normal ranges (Allen et al., 1987) and equivalent bond lengths in the two independent molecules are equal within their standard deviations. The molecules are packed in the crystal structure through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

(I)

Experimental

Methyl 5-nitro-2-(phenylamino)-4-pyridinecarboxylate, (I), was prepared by oxidative nucleophilic substitution (Finch et al., 1980) of methyl 3-nitro-4-pyridinecarboxylate (Holt et al., 2005) by sodioformanilide and subsequent hydrolysis (Tjosaas \& Fiksdahl, 2006). Crystals were grown by vapour diffusion of pentane into a solution in acetone in a refrigerator.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4} \\
& M_{r}=273.25 \\
& \text { Triclinic, } P \overline{1} \\
& a=9.990(2) \AA \\
& b=10.913(3) \AA \\
& c=12.6758(19) \AA \\
& \alpha=81.055(17)^{\circ} \\
& \beta=78.137(16)^{\circ} \\
& \gamma=70.86(2)^{\circ}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (ABSCALC in OSCAIL;
McArdle \& Daly, 1999; North et
al., 1968)
$T_{\min }=0.948, T_{\max }=0.968$

4900 measured reflections
4452 independent reflections
2078 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.0^{\circ}$
3 standard reflections
frequency: 120 min
intensity decay: 1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.116$
$S=0.95$
4452 reflections
364 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0576 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.021 \\
\Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0074 (14)

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{O} 14-\mathrm{N} 13-\mathrm{C} 19-\mathrm{C} 110$	178.7 (2)	$\mathrm{C} 111-\mathrm{C} 110-\mathrm{C} 112-\mathrm{O} 12$	90.4 (3)
$\mathrm{C} 211-\mathrm{C} 210-\mathrm{C} 212-\mathrm{O} 22$	-94.7 (3)	$\mathrm{O} 24-\mathrm{N} 23-\mathrm{C} 29-\mathrm{C} 210$	-172.3 (3)

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N21-H21 \cdots O11	0.86	2.25	$3.060(3)$	158
N21-H21 \cdots O11	0.86	2.62	$3.107(3)$	117
N11-H11 O^{ii}	0.86	2.23	$3.094(3)$	179

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x, y-1, z$.
H atoms were positioned geometrically and refined using a riding model, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA, \mathrm{~N}-\mathrm{H}=$ $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C}, N)$ or $1.4 U_{\text {eq }}$ (methyl C).

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD4 (McArdle \& Higgins, 1995); program(s) used to solve structure: OSCAIL (McArdle, 2005) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1993) and ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: OSCAIL.

Figure 1
The asymmetric unit of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Enraf-Nonius. (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Finch, N., Campbell, T. R., Gemenden, C. W. \& Powalski, H. J. (1980). J. Med. Chem. 23, 1405-1410.
Holt, J., Andreassen, T., Bakke, J. M. \& Fiksdahl, A. (2005). J. Heterocycl. Chem. 42, 259-264.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.
McArdle, P. (2005). OSCAILX for Windows. Version 1.0.7. Crystallography Centre, Chemistry Department, NUI, Galway, Ireland.
McArdle, P. \& Daly, P. (1999). ABSCALC. PC version. National University of Ireland, Galway, Ireland.
McArdle, P. \& Higgins, T. (1995). XCAD4. National University of Ireland, Galway, Ireland.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tjosaas, F. \& Fiksdahl, A. (2006). J. Heterocycl. Chem. In the press.

