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Abstract. We derive a novel two-component generalization of the nonlinear

variational wave equation as a model for the director field of a nematic liq-
uid crystal with a variable order parameter. The equation admits classical

solutions locally in time. We prove that a special semilinear case is globally

well-posed. We show that a particular long time asymptotic expansion around
a constant state in a moving frame satisfy the two-component Hunter–Saxton

system.

1. Introduction

The nonlinear variational wave equation ψtt−c(ψ)(c(ψ)ψx)x = 0 was derived by
Saxton [30] as a model of the director field of a nematic liquid crystal from Ericksen–
Leslie theory with Oseen–Frank potential. The nonlinear variational wave equation
has recieved wide attention [3, 6, 15, 17] due to mathematical challenges in the
form of wavebreaking in finite time, and distinct ways to extend the solution to
a global weak solution. In this context wavebreaking means that either the time
or the space derivative becomes unbounded at certain points, while the solution
remains Hölder continuous.

In the Ericksen–Leslie theory of nematic liquid crystals the configuration is de-
scribed by a director field n which gives the local orientation of the rods, and an
order parameter field s which gives the local degree of orientation [13, 25]. The
scalar order parameter s can be derived from the Q-tensor of both the macroscopic
Landau–de Gennes theory and the mean-field Maier–Saupe theory in the uniaxial
case [1, 27]. When the nonlinear variational wave equation was first derived the
degree of orientation was assumed constant [30]. Here we will proceed as in the
derivation of the nonlinear wave equation, but account for variable degree of orien-
tation. For some results concerning the well-posedness of models including the order
parameter s in the Ericksen–Leslie systems see [7, 26]. The mathematical analy-
sis of the relationship between equilibrium states of the full Q-tensor Landau–de
Gennes model and Oseen–Frank potentials is an active field of research [12, 14].

Furthermore, from the nonlinear wave equation Hunter and Saxton [18] derived
the equation utx+(uux)x = 1

2u
2
x as an asymptotic equation for small perturbations

in the long time regime in a moving frame. The Hunter–Saxton equation share many
of the features of the nonlinear variational wave equation such as wavebreaking,
conservative and dissipative weak solutions, and Hölder continuity [2, 4, 5, 8, 11,
20, 21, 33, 34]. In addition it exhibited novel features such as complete integrability
and interpretation as a geodesic flow [19, 24]. It also proved easier to work with due
to there being only one family of characteristics and existence of explicit solutions.
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A two-component generalization for the Hunter–Saxton equation was derived from
two-component Camassa–Holm [10], and independently form the Gurevich–Zybin
system [29]. The two-component generalization is similar to the Hunter–Saxton
equation since wavebreaking is possible, there are both conservative and dissipative
weak solutions, and u is Hölder continuous [16, 28, 32]. However when the second
variable is nonzero almost everywhere initially, there will be no wave breaking [28],
and in that sense the introduction of a second variable regularizes the equation.
The two-component Hunter–Saxton system has, however, not been shown to be
related to the theory of nematic liquid crystals, and one of the aims of this paper is
to establish that the two-component Hunter–Saxton system can indeed be derived
from the theory of nematic liquid crystals, and that the second variable is related
to the order parameter s.

In Section 2 we will perform an original derivation of a novel two-component
system of nonlinear wave equations. Moreover, we show that a similar asymptotic
expansion to the one by Hunter and Saxton [18] yields the two-component Hunter–
Saxton equation. In Section 3 existence of global solutions is shown in the case of
constant wave speed, and local solutions is shown to exist in general. The proofs
rely on fixed point iterations and standard theory for evolution equations [22].

2. Derivation of the equations

In Ericksen–Leslie theory a nematic liquid crystal in a domain Ω is desribed by a
director field n : [0, T ]×Ω→ RP2 and an order parameter s : [0, T ]×Ω→ (− 1

2 , 1)
[13, 25]. The Lagrangian of the system is then [13] given by

L = −1

2
(sn)2

t +W2(s,∇s,n,∇n) +W0(s),

with the potential energy term W2

W2(s,∇s,n,∇n) = (K1 + L1s) s
2 (∇ · n)

2
+ (K2 + L2s) s

2 (n · ∇ × n)
2

+ (K3 + L3s) s
2 |n×∇× n|2

+ ((K2 +K4) + (L2 + L4)s) s2
[
tr∇n2 − (∇ · n)2

]
+ (κ1 + λ1s) |∇s|2 + (κ2 + λ2s) (∇s · n)

2

+ (κ3 + λ3s) (∇ · n) (∇s · n) + (κ4 + λ4s)∇s · ((n · ∇)n) ,

and some potential function W0. We are interested in the case n = (cosψ, sinψ, 0),
and s and ψ depends on t and x only. Then the expression for W2 can be written

W2 = s2ψ2
x

(
(K1 + L1s) sin2 ψ + (K3 + L3s) cos2 ψ

)
+ s2

x

(
(κ1 + λ1s) sin2 ψ + (κ̃2 + λ̃2s) cos2 ψ

)
− sxψx sin 2ψ

(
κ3 + κ4

2
+
λ3 + λ4

2
s

)
,

where κ̃2 = κ1 + κ2 and λ̃2 = λ1 + λ2. We simplify the problem by considering the
case where

κ3 = κ4 = λ3 = λ4 = 0,

L1 = L3 = λ1 = λ̃2 = 0,

K1 = κ1, K3 = κ̃2.
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Then with the definition c(ψ)2 = K1 sin2 ψ + K3 cos2 ψ, we get the Lagrangian
density

L2NVW = −1

2
s2
t −

1

2
s2ψ2

t +
1

2
s2c(ψ)2ψ2

x +
1

2
c(ψ)2s2

x +W0(s)

= −1

2
(sn)2

t +
1

2
c(n)2(sn)2

x +W0(s).(2.2)

We define the two-component nonlinear variational wave system to be the Euler–
Lagrange equations for (2.2), namely,

s2 (ψtt − c(ψ) (c(ψ)ψx)x) + 2s
(
ψtst − c(ψ)2ψxsx

)
+ c(ψ)c′(ψ)s2

x = 0,(2.3a)

stt − c(ψ) (c(ψ)sx)x − c(ψ)c′(ψ)ψxsx − s
(
ψ2
t − c(ψ)2ψ2

x

)
+W ′0(s) = 0,(2.3b)

with c(ψ)2 = K1 sin2 ψ +K3 cos2 ψ. We define the energy density

(2.4) E =
1

2

(
s2(ψ2

t + c(ψ)2ψ2
x) + (s2

t + c(ψ)2s2
x)
)

+W0(s),

and the energy density flux

(2.5) F = s2ψtψx + stsx.

For classical solutions of (2.3) the energy density and energy density flux satisfy
the equations

Et −
(
c(ψ)2F

)
x

= 0,(2.6a)

Ft − (E − 2W0(s))x = 0.(2.6b)

The energy E(t) =
∫
R E(t, x)dx is conserved.

We will now derive the two-component Hunter–Saxton system from (2.2). To
follow the work of Hunter and Saxton [18] we introduce ψ(t, x) = ψ0+εu(εt, x−c0t)
and s = s0 + εr(εt, x − c0t) with c20 = K1 sin2 ψ0 + K3 cos2 ψ0. Then expansion of
(2.2) in powers of ε gives

Lε = W0(s0) + εW ′0(s0)r + ε2 1

2
W ′′0 (s0)r2

+ ε3

(
c0rtrx + s2

0c0utux + s2
0 (cc′)0 uu

2
x + (cc′)0 ur

2
x +

1

6
W ′′′0 (s0)r3

)
+O(ε4).

If we select s0 such that W ′0(s0) = W ′′0 (s0) = W ′′′(s0) = 0, the third order terms
in the above Lagrangian gives (possibly by rescaling)

(2.7) L2HS = utux + uu2
x + rtrx + ur2

x.

Proposition 2.1. The two-component Hunter–Saxton system

(ut + uux)x =
1

2
u2
x +

1

2
ρ2,

ρt + (uρ)x = 0,

is the Euler–Lagrange equations for the Lagrangian density (2.7) with ρ = rx.
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3. The two-component nonlinear variational wave system

3.1. The semilinear case. We will first consider the case K1 = K3, that is the
wave speed c is independent of ψ. We will assume s ≥ 0 such that we can introduce
the complex variable ζ = seiψ, and (2.3) reduces to

(3.1) ζtt − c2ζxx +
W ′0 (|ζ|)
|ζ|

ζ = 0,

which is a semilinear wave equation. Recall that the physical interpretation of ψ is
an angle, and thus any solutions ψ and ψ + n · 2π should be considered equal from
an application point of view. We have to assume s ≥ 0 since (−s, ψ+π) and (s, ψ)
are distinct. Energy density defined by (2.4) takes the form E = 1

2 |ζt|
2 + 1

2c
2|ζx|2 +

W0(|ζ|) and energy density flux given by (2.5) takes the form F = 1
2

(
ζ̄tζx + ζtζ̄x

)
,

with bar indicating complex conjugation. The conservation laws (2.6) then reduce
to

∂

∂t
E − c2 ∂

∂x
F = 0,(3.2a)

∂

∂t
F − ∂

∂x
(E − 2W0(|ζ|)) = 0.(3.2b)

Hence both
∫
R Edx and

∫
R Fdx are conserved for any classical solution with bounded

energy. We define the function spaces for the solutions in the next definition.

Definition 3.1. Let ζ∗ ∈ C with |ζ∗| < 1, and

Xζ∗ = {(ζ, σ) | ζ − ζ∗ ∈ H1(R), σ ∈ L2(R)},

and define

E(ζ, σ) =
1

2
|σ|2 +

1

2
|ζx|2 +W0(|ζ|),

F(ζ, σ) =
1

2
σζ̄x +

1

2
σ̄ζx,

and note that both E and F are real valued whenever defined. Define the metric
space

(
XE,ζ∗ , dXE,ζ∗

)
by

XE,ζ∗ = {(ζ, σ) ∈ Xζ∗ | ‖E‖L1 ≤ E},
dXE,ζ∗ ((ζ1, σ1), (ζ2, σ2)) = ‖ζ1 − ζ2‖H1(R) + ‖σ1 − σ2‖L2(R)

+ ‖W0(|ζ1|)−W0(|ζ2|)‖L1(R),

and denote

DT,E =

{
ζ : [0, T ]× R→ C | ζ − ζ∗ ∈ C

(
[0, T ], H1(R,C)

)
∩ C1

(
[0, T ], L2(R,C)

)
and (ζ(t), ζt(t)) ∈ XE,ζ∗ for all t ∈ [0, T ]

}
,

D∞,E = {ζ : [0,∞)× R→ C | ζ|[0,T ]×R ∈ DT,E for all T ≥ 0}.

One should keep in mind that even though ζ∗ is omitted from the notation in DT,E
it is still a part of the definition. In the case T <∞ we equip DT,E with the metric
dDT,E induced from

‖ζ‖ = sup
t∈[0,T ]

(
‖ζ(t)− ζ∗‖H1(R) + ‖ζt(t)‖L2(R) + ‖W0(|ζ(t)|)‖L1(R)

)
.
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In the case of D∞,E we use the topology generated by the open sets BT,ζ̃,δ ={
ζ ∈ D∞,E | dDT,E

(
ζ, ζ̃
)
< δ
}

.

Remark 3.2. Both metric spaces
(
XE,ζ∗ , dXE,ζ∗

)
and

(
DT,E , dDT,E

)
are complete

metric spaces. The metric space
(
XE,ζ∗ , dXE,ζ∗

)
is not a vector space since we will

require W0 : [0, 1) → [0,∞), and finite energy thus implicitly impose ‖ζ‖∞ ≤ 1.
Furthermore, ζ∗ must satisfy W0(|ζ∗|) = 0 for the space XE,ζ∗ to be nonempty.

To analyze solutions we will need conditions on the function W0. From [13] and
[31] we get that W0 tends to infinity as s tends to 1 or − 1

2 , and that W ′0(0) = 0.
We will assume that W0(s) → ∞ rapidly enough as s → 1 to be able to bound
‖W0(|ζ|)‖∞ in terms of the total energy E. In addition we will assume that W0

is non-negative and that W0 is well behaved close to s = 0, and also close to any
zeros of W0. We will require s = 0 to be a stationary point.

Definition 3.3. We define a non-negative function W0 ∈ C4([0, 1)) to be admissible
if the following holds.

A1 There exists a nonzero finite number of s∗ such that W0(s∗) = 0. Further-
more, for all zeros s∗ of W0,

lim
s→s∗

W0(s)

(s− s∗)2
=

1

2
W ′′0 (s∗) ∈ [0,∞).

A2 The function is second order close to zero in the sense that

lim
s→0

W0(s)−W0(0)

s2
=

1

2
W ′′0 (0) ∈ R.

A3 The function tends to infinity quickly enough as s tends to 1,

lim
s↑1

W0(s) =∞,∫ 1

s

W0(u)(1− u) du =∞.

A4 The function tends monotonically to infinity sufficiently close to 1. Partic-
ularly, there exists s̃ ∈ [0, 1) such that W0(s) > 0 and W ′0(s) > 0 for all
s ∈ (s̃, 1).

Proposition 3.4. Let W0 be admissible in the sense of Definition 3.3. Then there
exist positive constants cE , CE, depending on W0 and E only, such that for any
(ζ, σ) ∈ XE,ζ∗ we have

‖W0(|ζ|)‖L∞(R) ≤ CE ,
‖ζ‖L∞(R) ≤ cE < 1.

Moreover for s ∈ [0, cE ] there is a positive constant kE such that

(3.4) W ′0(s)2 ≤ kEW0(s).

Furthermore, we can define

LE = sup
s∈[0,cE ]

|W ′0(s)|,(3.5a)

L′E = sup
s∈[0,cE ]

∣∣∣∣W ′0(s)

s

∣∣∣∣ ,(3.5b)
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L′′E = sup
s∈[0,cE ]

|W ′′0 (s)|.(3.5c)

Finally, ζ 7→ W ′0(|ζ|)
|ζ| ζ is C1 in the open unit disc in two real dimensions.

Proof. Since 1
2‖σ‖

2
2 + 1

2c
2‖ζx‖22 + ‖W0(|ζ|)‖1 ≤ E we have that |ζ(x1) − ζ(x2)| ≤

√
2E1

c

√
|x1 − x2| where E1 = E − 1

2‖σ‖
2
2 − ‖W0(|ζ|)‖1. Since ζ is continuous we

have that there exists x̂ such that |ζ(x̂)| = ‖ζ‖L∞(R) ≤ 1. Then we have that

|ζ(x)| ≥

{
‖ζ‖∞ −

√
2E1

c

√
|x− x̂|, x̂− ‖ζ‖

2
∞c

2

2E1
< x < x̂+

‖ζ‖2∞c
2

2E1
,

0, else.

In particular, by A4, we have for s̃ such that W ′0(s) > 0 for all s > s̃ that∫
R
W0(|ζ(x)|) dx ≥

∫ x̂+ c2

2E1
(‖ζ‖∞−s̃)2

x̂− c2

2E1
(‖ζ‖∞−s̃)2

W0(|ζ(x)|) dx

≥
∫ x̂+ c2

2E1
(‖ζ‖∞−s̃)2

x̂− c2

2E1
(‖ζ‖∞−s̃)2

W0

(
‖ζ‖∞ −

√
2E1

c

√
|x− x̂|

)
dx

=

∫ ‖ζ‖∞
s̃

W0(u) (‖ζ‖∞ − u) du.

By the monotone convergence theorem and A3 we have that

lim
S→1−

∫ S

s

W0(u) (S − u) du =

∫ 1

s

W0(u) (1− u) du =∞.

Hence we have the inequality∫ ‖ζ‖∞
s̃

W0(u) (‖ζ‖∞ − u) du ≤ E − E1,

which proves the existence of cE , CE such that ‖ζ‖∞ = cE < 1 and ‖W0(|ζ|)‖∞ =
sup0≤s≤cE W0(s) = CE <∞.

To prove that W ′20 ≤ kEW0, note that by A1 whenever W0 tends to zero that

lim
s→s∗

W ′0(s)2

W0(s)
= 2W ′′0 (s∗) ∈ [0,∞).

In between zeros of W0 the fraction
W ′20
W0

is continuous. Since there is only a finite

number of points where W0 is zero and [0, cE ] is bounded,
W ′20
W0

has to be bounded
as well by a constant dependent on cE . Since W0 is non-negative we get the desired
inequality (3.4).

We show (3.5b). Note that by A2 we have

W0(s) = W0(0) +
1

2
W

(2)
0 (0)s2 +

1

6
W

(3)
0 (0)s3 +

∫ s

0

1

6
W

(4)
0 (u)(s− u)3 du,

and thus ∣∣∣∣W ′0(s)

s

∣∣∣∣ ≤ |W (2)
0 (0)|+ ‖W (3)

0 ‖L∞([0,cE ])cE .

To prove that ζ 7→ W ′0(|ζ|)
|ζ| ζ is continuously differentiable observe that

d

ds

W ′0(s)

s
=

1

2
W

(3)
0 (0)− 1

s2

∫ s

0

1

2
W

(4)
0 (u)(s− u)2 du+

1

s

∫ s

0

W
(4)
0 (u)(s− u) du.
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Then we can show that the derivative of
W ′0(|ζ|)
|ζ| ζ is bounded and continuous∣∣∣∣ d

ds

W ′0(s)

s
(s)

∣∣∣∣ ≤ 1

2

∣∣∣W (3)
0 (0)

∣∣∣+
3

2

∥∥∥W (4)
0

∥∥∥
L∞([0,s])

s,∣∣∣∣∣ d

ds

∣∣∣∣
s=s1

W ′0(s)

s
− d

ds

∣∣∣∣
s=s2

W ′0(s)

s

∣∣∣∣∣ ≤ 5

2

∥∥∥W (4)
0

∥∥∥
L∞([0,max{s1,s2}])

|s1 − s2| .

Thus ζ 7→ W ′0(|ζ|)
|ζ| ζ is C1 in the open unit disc in two dimensions. �

Remark 3.5. Note that for ζ1 and ζ2 in XE,ζ∗ we have that∫
R
W0(|ζ1(x)|) dx ≤

∫
R

1

2
L′′E |ζ1 − ζ∗|2 dx

≤ 1

2
L′′E‖ζ1 − ζ∗‖22,

and similarly, since W0(|ζ|) =
∫ |ζ|
|ζ∗|W

′′
0 (u)(|ζ| − u) du,∫

R
|W0(|ζ1|)−W0(|ζ2|)| dx =

∫
R

∣∣∣∣∣
∫ |ζ1|
|ζ∗|

W ′′0 (u) (|ζ1| − |ζ2|) du

+

∫ |ζ1|
|ζ2|

W ′′0 (u) (|ζ2| − u) du

∣∣∣∣∣ dx

≤ L′′E‖ζ1 − ζ2‖22 + L′′E‖ζ1 − ζ∗‖2‖ζ1 − ζ2‖2.
We can now prove local well posedness of local strong solutions. First we define

what strong solutions are.

Definition 3.6. We define a local strong solution with initial data (ζ0, ζt0) ∈ XE,ζ∗

to be ζ ∈ DT,E such that

ζ(t, x) =
1

2
(ζ0(x+ ct) + ζ0(x− ct)) +

1

2c

∫ x+ct

x−ct
ζt0(y) dy

− 1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

W ′0(|ζ(s, y)|)
|ζ(s, y)|

ζ(s, y) dyds,(3.6)

ζt(t, x) =
c

2
(ζx0(x+ ct)− ζx0(x− ct)) +

1

2
(ζt0(x+ ct) + ζt0(x− ct))

− 1

2

∫ t

0

[
W ′0(|ζ(s, x− c(t− s))|)
|ζ(s, x− c(t− s))|

ζ(s, x− c(t− s))

+
W ′0(|ζ(s, x+ c(t− s))|)
|ζ(s, x+ c(t− s))|

ζ(s, x+ c(t− s))
]

ds,

for all t ≤ T . If ζ is a strong solution for any T ≥ 0 we define ζ to be a global
solution.

From the definition of strong solutions we immediately get continuous depen-
dence on initial data, uniqueness, and a semigroup property.

Lemma 3.7. For any strong solutions ζ1, ζ2 ∈ DT,E′ in the sense of Definition 3.6
with initial data (ζ10, ζt10), (ζ20, ζt20) ∈ XE we have that there for any time t ≤ T
exists constants CE′(t) such that

dXE′,ζ∗ (ζ1(t), ζ2(t)) ≤ CE′(t)dXE,ζ∗ ((ζ10, ζt10), (ζ20, ζt20)) ,
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and hence
dDT,E′ (ζ1, ζ2) ≤ CE′(T )dXE,ζ∗ ((ζ10, ζt10), (ζ20, ζt20)) ,

which implies uniqueness of solution and continuous dependence on initial data.
Moreover, if ζ ∈ DT,E′ is a solution with initial data (ζ0, ζt0) ∈ XE,ζ∗ , then ζ̄ ∈
DT−s,E′ given by ζ̄(t) = ζ(t+ s) is a strong solution with initial data (ζ(s), ζt(s)) ∈
XE′,ζ∗ .

Proof. We need to estimate the difference of the integral in (3.6) with two ζ1, ζ2 ∈
DT,E′ . First for z1, z2 ∈ C with 0 < |z1| < |z2| < 1 we have∣∣∣∣W ′(|z1|)
|z1|

z1 −
W ′(|z2|)
|z2|

z2

∣∣∣∣ ≤ ∣∣∣∣W ′(|z1|)
|z1|

(
z1 −

|z1|
|z2|

z2

)
+

z2

|z2|
(W ′(|z1|)−W ′(|z2|))

∣∣∣∣
≤
∣∣∣∣W ′(|z1|)
|z1|

∣∣∣∣ |z1 − z2|+ sup
|z1|≤s≤|z2|

|W ′′(s)| |z1 − z2|

Thus, for ξ1, ξ2 ∈ DT,Q, we get

(3.7)

∣∣∣∣W ′(|ξ1|)|ξ1|
ξ1 −

W ′(|ξ2|)
|ξ2|

ξ2

∣∣∣∣ ≤ (L′Q + L′′Q)|ξ1 − ξ2|.

Thus ∣∣∣∣∣ 1

2c

∫ x+c(t−s)

x−c(t−s)

W ′0(|ξ1(s, y)|)
|ξ1(s, y)|

ξ1(s, y)− W ′0(|ξ2(s, y)|)
|ξ2(s, y)|

ξ2(s, y) dy

∣∣∣∣∣
≤ (t− s)(L′Q + L′′Q)‖ξ1(s)− ξ2(s)‖L∞(R),(3.8) ∣∣∣∣∣ ∂∂x 1

2c

∫ x+c(t−s)

x−c(t−s)

W ′(|ξ1(s, y)|)
|ξ1(s, y)|

ξ1(s, y)− W ′(|ξ2(s, y)|)
|ξ2(s, y)|

ξ2(s, y) dy

∣∣∣∣∣
≤ 2(L′Q + L′′Q)‖ξ1(s)− ξ2(s)‖L∞(R).(3.9)

The integrals in (3.6) can be interpreted as convolutions∫ x+ct

x−ct
f(y) dy =

(
1[−ct,ct] ∗ f

)
(x),

and then Young’s inequality implies that for any p ∈ [1,∞],

(3.10)

∥∥∥∥∫ x+ct

x−ct
f(y) dy

∥∥∥∥
p

≤ 2ct‖f‖p.

Application of (3.7) and (3.10) to the expression on the left hand side of (3.8) gives∥∥∥∥∥
∫ x+c(t−s)

x−c(t−s)

W ′0(|ξ1(s, y)|)
|ξ1(s, y)|

ξ1(s, y)− W ′0(|ξ2(s, y)|)
|ξ2(s, y)|

ξ2(s, y) dy

∥∥∥∥∥
2

≤ 2c(t− s)(L′Q + L′′Q)‖ξ1(s)− ξ2(s)‖2.(3.11)

From the strong formulation of the equation (3.6) and estimates (3.8), (3.9), (3.11)
we get

‖ζ1(t)− ζ2(t)‖∞ ≤ ‖ζ10 − ζ20‖∞ +

√
t

2c
‖ζ1t0 −+ζ2t0‖2

+

∫ t

0

(t− s)(L′E′ + L′′E′)‖ζ1(s)− ζ2(s)‖L∞(R) ds,

‖ζ1(t)− ζ2(t)‖2 ≤ ‖ζ10 − ζ20‖2 + t‖ζ1t0 −+ζ2t0‖2
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+

∫ t

0

(t− s)(L′E′ + L′′E′)‖ζ1(s)− ζ2(s)‖2 ds,

‖ζ1x(t)− ζ2x(t)‖2 ≤ ‖ζ10x − ζ20x‖2 +
1

c
‖ζ1t0 − ζ2t0‖2

+
1

c

∫ t

0

(L′E′ + L′′E′)‖ζ1(s)− ζ2(s)‖2 ds,

‖ζ1t(t)− ζ2t(t)‖2 ≤ c‖ζ10x − ζ20x‖2 + ‖ζ1t0 − ζ2t0‖2

+

∫ t

0

(L′E′ + L′′E′)‖ζ1(s)− ζ2(s)‖2 ds.

Grönwall’s inequality then gives

‖ζ1(t)− ζ2(t)‖∞ ≤

(
‖ζ10 − ζ20‖∞ +

√
t

2c
‖ζ1t0 − ζ2t0‖2

)
e

1
2ME′ t

2

,(3.13a)

‖ζ1(t)− ζ2(t)‖2 ≤ (‖ζ10 − ζ20‖2 + t‖ζ1t0 − ζ2t0‖2) e
1
2ME′ t

2

,(3.13b)

‖ζ1t(t)− ζ2t(t)‖2 ≤ ‖ζ1t0 − ζ2t0‖2 + c‖ζ10x − ζ20x‖2
+ME′t (‖ζ10 − ζ20‖2 + t‖ζ1t0 − ζ2t0‖2) e

1
2ME′ t

2

,(3.13c)

‖ζ1x(t)− ζ2x(t)‖2 ≤
1

c
‖ζ1t0 − ζ2t0‖2 + ‖ζ10x − ζ20x‖2

+
ME′

c
t (‖ζ10 − ζ20‖2 + t‖ζ1t0 − ζ2t0‖2) e

1
2 (ME′ )t

2

,(3.13d)

with ME′ = L′E′ +L′′E′ . It remains to estimate
∫
R |W0(|ζ1(t)|)−W0(|ζ2(t)|)|dx. We

have

d

dt
(W0(|ζ1|)−W0(|ζ2|)) = W ′0(|ζ1|)

ζ̄1ζ1t + ζ1ζ̄1t
2|ζ1|

−W ′0(|ζ2|)
ζ̄2ζ2t + ζ2ζ̄2t

2|ζ2|

= (W ′0(|ζ1|)−W ′0(|ζ2|))
ζ̄1ζ1t + ζ1ζ̄1t

2|ζ1|

+W ′0(|ζ2|)
(
ζ̄1ζ1t + ζ1ζ̄1t

2|ζ1|
− ζ̄2ζ2t + ζ2ζ̄2t

2|ζ2|

)
.

Further note that(
ζ̄1ζ1t + ζ1ζ̄1t

2|ζ1|
− ζ̄2ζ2t + ζ2ζ̄2t

2|ζ2|

)
=

1

|ζ2|

[
1

2
(|ζ2| − |ζ1|)

(
ζ̄1
|ζ1|

ζ1t +
ζ̄1
|ζ1|

ζ̄1t

)
+

1

2

(
(ζ̄1 − ζ̄2)ζ1t + ζ̄2(ζ1t − ζ2t)

+ (ζ1 − ζ2)ζ̄1t + ζ2(ζ̄1t − ζ̄2t)
)]
,

and hence

d

dt
‖W0(|ζ1|)−W0(|ζ2|)‖1 ≤

∫
R
|W ′0(|ζ1|)−W ′0(|ζ2|)|

∣∣∣∣ ζ̄1ζ1t + ζ1ζ̄1t
2|ζ1|

∣∣∣∣ dx

+ 2

∫
R

∣∣∣∣W ′0(|ζ2|)
|ζ2|

∣∣∣∣ |ζ1 − ζ2| |ζ1t| dx
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+

∫
R

∣∣∣∣W ′0(|ζ2|)
|ζ2|

∣∣∣∣ |ζ1t − ζ2t| |ζ2| dx
≤ (L′E′ + 2L′′E′)

√
E′‖ζ1 − ζ2‖2

+
√
kE′E′‖ζ1t − ζ2t‖2,(3.14)

where (t) has been omitted to enhance readability. Now, (3.14) together with (3.13)
implies that there are constants CE′(t), increasing in both E′ and t, such that

dDT,E (ζ1(t), ζ2(t)) ≤ CE′(t)dXE,ζ∗ ((ζ10, ζ1t0), (ζ20, ζ2t0)) .

The semigroup property, if ζ ∈ DT,E′ is a solution with initial data (ζ0, ζt0) ∈
XE,ζ∗ , then ζ̄ ∈ DT−s,E′ given by ζ̄(t) = ζ(t+ s) is the strong solution with initial
data (ζ(s), ζt(s)) ∈ XE′,ζ∗ , can be verified by direct computation from the strong
form (3.6) of the equation. �

We are now ready to prove that the Cauchy problem of (3.1) is locally well posed
for strong solutions as defined in Definition 3.6.

Proposition 3.8. Assume that W0 satisfies the conditions in Definition 3.3. Then
given initial data (ζ0, ζt0) ∈ XE,ζ∗ and E′ > E there exists a unique strong solution
in the sense of Definition 3.6 in DT,E′ depending Lipschitz continuously on the
initial data. The existence time T can be made to depend on E and E′ only.

Proof. Uniqueness and continuity with respect to initial data is proven in Lemma
3.7. We will establish local existence of a strong solution by a fixed point argument
on DT,E′ for a to be specified T . We will now assume that 0 < E < E′ and that

(ζ0, ζt0) ∈ XE , and let ζ̂ ∈ DT,E′ with (ζ̂(0), ζ̂t(0)) = (ζ0, ζt0). Then let (ζ, ζt), be
given by Duhamel’s principle

ζ(t, x) =
1

2
(ζ0(x− ct) + ζ0(x+ ct)) +

1

2c

∫ x+ct

x−ct
ζt0(y) dy

− 1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

W ′0(|ζ̂(s, y)|)
|ζ̂(s, y)|

ζ̂(s, y) dy ds,(3.15a)

ζt(t, x) =
c

2
(ζx0(x+ ct)− ζx0(x− ct)) +

1

2
(ζt0(x+ ct) + ζt0(x− ct))

− 1

2

∫ t

0

[
W ′0(|ζ̂(s, x− c(t− s))|)
|ζ̂(s, x− c(t− s))|

ζ̂(s, x− c(t− s))

+
W ′0(|ζ̂(s, x+ c(t− s))|)
|ζ̂(s, x+ c(t− s))|

ζ̂(s, x+ c(t− s))
]

ds.(3.15b)

To prove that the strong solution (3.15) is a member of DT,E′ we will need norm
estimates on the solutions.

Let ζ ∈ DT,Q be given. Then we have directly from Proposition 3.4 that∣∣∣∣∣ 1

2c

∫ x+c(t−s)

x−c(t−s)

W ′0(|ζ(s, y)|)
|ζ(s, y)|

ζ(s, y) dy

∣∣∣∣∣ ≤ LQ(t− s),∣∣∣∣∣ ∂∂x 1

2c

∫ x+c(t−s)

x−c(t−s)

W ′0(|ζ(s, y)|)
|ζ(s, y)|

ζ(s, y) dy

∣∣∣∣∣ ≤ 1

c
LQ,
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Thus, by the estimates on W0 from Proposition 3.4 and (3.10), the solution satisfies
the estimates

‖ζ(t)− ζ∗‖∞ ≤ ‖ζ0 − ζ∗‖∞ +

√
t

2c
‖ζt0‖2 +

1

2
t2LE′ ,

‖ζ(t)− ζ∗‖2 ≤ ‖ζ0 − ζ∗‖2 + t‖ζt0‖2 +
1

2
t2
√
kE′E′,

‖ζx(t)‖2 ≤ ‖ζx0‖2 +
1

c
‖ζt0‖2 +

2

c
t
√
kE′E′,

‖ζt(t)‖2 ≤ c‖ζx0‖2 + ‖ζt0‖2 + t
√
kE′E′.

We need to show that the energy is bounded. Note that (3.15) and Proposition 3.4
implies that

‖ζ(t)− ζ(s)‖∞ ≤
√
|t− s| (‖ζt0‖2 + c‖ζ0x‖2) + |t− s|L′E′ + s|t− s|L′E′ ,

and since (‖ζt0‖2 + c‖ζ0x‖2) ≤
√

2E, we have that for t ≤
√

2E+4L′
E′ (cE′−cE)−

√
2E

2L′
E′

we can bound ‖ζ(t)‖∞ ≤ cE′ . Similarly by Young’s inequality we get

‖ζ(t)− ζ0‖2 ≤ t (‖ζt0‖2 + c‖ζ0x‖2) +
1

2
t2LE′

≤ t
√

2E +
1

2
t2LE′ .

Note that since ζlin(t, x) = 1
2 (ζ0(x+ ct)− ζ0(x− ct)) + 1

2c

∫ x+ct

x−ct ζt0(y)dy is a solu-
tion to the linear wave equation we have that

‖ζlin,t(t)‖22 + c2‖ζlin,x(t)‖22 = ‖ζt0‖22 + c2‖ζ0x‖22.
Then by we get

E(t) =

∫
R
E(t, x) dx

≤
∥∥∥∥1

2
|ζt(t)|2 +

1

2
c2|ζx(t)|2

∥∥∥∥
1

+ ‖W0(|ζ0|)‖1 + ‖W0(|ζ(t)|)−W0(|ζ0|)‖1

≤ 1

2
‖ζt0‖22 +

1

2
c2‖ζ0x‖22 + ‖W0(|ζ0|)‖1

+ 2
√

2EkE′E′t+ 2kE′E
′t2 +

1

2
LE′

(√
2Et+

1

2
L′E′t

2

)2

≤ E + 2
√

2EkE′E′t+ (2kE′E
′ + LE′E)t2 +

1

2

√
2ELE′L

′
E′t

3 +
1

8
LE′L

′
E′

2
t4.

Thus for T small enough we have that the solution map Φ : ζ̂ 7→ ζ defined by (3.15)
maps elements in DT,E′ to elements in DT,E′ . The choice of T can be made to
depend on E and E′ only.

To prove that Φ is a contraction let ζ̂1, ζ̂2 ∈ DT,E′ with coinciding initial data

(ζ0, ζt0), and denote ζ1 = Φ(ζ̂1), ζ2 = Φ(ζ̂2). Then by (3.8), (3.9), (3.11), and
(3.15), we have for p = 2,∞,

sup
t∈[0,T ]

‖ζ1(t)− ζ2(t)‖p ≤ (L′E′ + L′′E′)

∫ t

0

(t− s)‖ζ̂1(s)− ζ̂2(s)‖p ds,

sup
t∈[0,T ]

‖ζ1,t(t)− ζ2,t(t)‖2 ≤ (L′E′ + L′′E′)

∫ t

0

‖ζ̂1(s)− ζ̂2(s)‖2 ds,
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sup
t∈[0,T ]

‖ζ1,x(t)− ζ2,x(t)‖2 ≤
1

c
(L′E′ + L′′E′)

∫ t

0

‖ζ̂1(s)− ζ̂2(s)‖2 ds.

Hence for T small enough Φ is a contraction on DT,E′ . Thus there exists a unique
fixed point in DT,E′ which is a strong solution in the sense of (3.6). �

If the initial data is smooth, the local strong solution is in fact a classical solution.
The energy is then a conserved quantity.

Theorem 3.9. Assume that W0 satisfies the conditions in Definition 3.3. Then
given smooth initial data (ζ0, ζt0) ∈ XE,ζ∗ ∩ (C2(R) × C1(R)) there is a unique
global classical smooth solution in D∞,E. Moreover, the energy is conserved E(t) =∫
R
E(t, x) dx = E(0), and the classical solution can be extended to a global classical

solution in D∞,E.

Proof. Given the initial data (ζ0, ζt0) ∈ XE,ζ∗∩(C2(R)×C1(R)) choose any E′ > E
and let ζ ∈ DT,E′ be the unique strong solution given implicitly by (3.6). To upgrade
the regularity of the solution we employ a bootstrapping argument. To that end
define

I(t, x) =

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

W ′0(|ζ(τ, y)|)
|ζ(τ, y)|

ζ(τ, y) dydτ.

The first derivatives of I are

∂

∂t
I(t, x) = c

∫ t

0

W ′0(|ζ(τ, x+ c(t− τ))|)
|ζ(τ, x+ c(t− τ))|

ζ(τ, x+ c(t− τ))

+
W ′0(|ζ(τ, x− c(t− τ))|)
|ζ(τ, x− c(t− τ))|

ζ(τ, x− c(t− τ)) dτ,

∂

∂x
I(t, x) =

∫ t

0

W ′0(|ζ(τ, x+ c(t− τ))|)
|ζ(τ, x+ c(t− τ))|

ζ(τ, x+ c(t− τ))

− W ′0(|ζ(τ, x− c(t− τ))|)
|ζ(τ, x− c(t− τ))|

ζ(τ, x− c(t− τ)) dτ,

which are continuous since ζ is continuous by assumption. Hence ζ ∈ C1([0,∞)×R).
Similarly the second derivatives are

∂2

∂t2
I(t, x) = 2c

W ′0(|ζ(t, x)|)
|ζ(t, x)|

ζ(t, x)

+ c2
∫ t

0

∂

∂x

W ′0(|ζ(τ, x+ c(t− τ))|)
|ζ(τ, x+ c(t− τ))|

ζ(τ, x+ c(t− τ))

− ∂

∂x

W ′0(|ζ(τ, x− c(t− τ))|)
|ζ(τ, x− c(t− τ))|

ζ(τ, x− c(t− τ)) dτ,

∂2

∂t∂x
I(t, x) = c

∫ t

0

∂

∂x

W ′0(|ζ(τ, x+ c(t− τ))|)
|ζ(τ, x+ c(t− τ))|

ζ(τ, x+ c(t− τ))

+
∂

∂x

W ′0(|ζ(τ, x− c(t− τ))|)
|ζ(τ, x− c(t− τ))|

ζ(τ, x− c(t− τ)) dτ,

∂2

∂x2
I(t, x) =

∫ t

0

∂

∂x

W ′0(|ζ(τ, x+ c(t− τ))|)
|ζ(τ, x+ c(t− τ))|

ζ(τ, x+ c(t− τ))

− ∂

∂x

W ′0(|ζ(τ, x− c(t− τ))|)
|ζ(τ, x− c(t− τ))|

ζ(τ, x− c(t− τ)) dτ,
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which are continuous by Proposition 3.4 since ζ is continuously differentiable. Thus
ζ given by

ζ(t, x) =
1

2
(ζ0(t, x+ ct) + ζ0(t, x− ct)) +

1

2c

∫ x+ct

x−ct
ζt0(y) dy − 1

2c
I(t, x),

is a sum of C2([0,∞)× R) functions and is thus C2([0,∞)× R). We get

∂2

∂t2
ζ(t, x)− c2 ∂

2

∂t2
ζ(t, x) = − ∂2

∂t2
1

2c
I(t, x) + c2

∂2

∂x2

1

2c
I(t, x)

= −W
′
0(|ζ(t, x)|)
|ζ(t, x)|

ζ(t, x)

pointwise.
Since ζ is a classical solution direct computation yields (3.2) pointwise, and hence

we get a conservation law for energy. The iteration scheme in Proposition 3.8 can
now be repeated with initial data (ζ(nT ), ζt(nT )) ∈ XE,ζ∗ ∩ (C2(R) × C1(R)) to
get a unique classical solution for t ∈ [0, (n + 1)T ] for any n ∈ N. Uniqueness and
continuity follow from Lemma 3.7. �

Theorem 3.10. Let (ζ0, ζt0) ∈ XE,ζ∗ , and assume that W0 satisfies the condi-
tions in Definition 3.3. Then there exists a unique global strong energy conserv-
ing solution (ζ, ζt) ⊆ D∞,E of (3.1) depending continuously on the initial data
(ζ0, ζt0) ∈ XE,ζ∗ .

Proof. Let (ζ0, ζt0) ∈ XE,ζ∗ be given, and construct (ζε0 , ζ
ε
t0) ∈ C2(R) × C1(R) by

convolution with a Friedrich’s mollifier. We want to show that for ε small enough
there exists Ē ≥ E such that (ζε0 , ζ

ε
t0) ∈ XĒ,ζ∗ and (ζε0 , ζ

ε
t0) → (ζ0, ζt0) in XĒ,ζ∗ .

It remains to show that ‖W0(|ζε0 |)‖1 < +∞ and ‖W0(|ζε0 |) −W0(|ζ0|)‖1 → 0. We
have that ‖ζε0 − ζ0‖∞ ≤ ‖ζ0x‖2

√
ε, and ‖ζε0‖∞ ≤ ‖ζ0‖∞ ≤ cE . Thus from Remark

3.5 the estimates

‖W0(|ζε0 |)‖1 ≤
1

2
L′′E‖ζε0 − ζ∗‖22 < +∞,

and

‖W0(|ζε0 |)−W0(|ζ0|)‖1 ≤
1

2
L′E‖ζε0 − ζ0‖22 → 0,

hold. Since ‖ζε0x‖2 ≤ ‖ζ0x‖2 and ‖ζεt0‖2 ≤ ‖ζt0‖2 it follows that the energy

Eε =
1

2
‖ζεt0‖22 +

1

2
c2‖ζε0x‖22 + ‖W0(|ζε0 |)‖1 ≤ E +

1

2
L′E‖ζε0 − ζ0‖22.

Thus given 0 < δ we get for all ε < δ the energy is bounded by E+ 1
2L
′
E‖ζδ0 − ζ0‖22,

and hence (ζε0 , ζ
ε
t0) ∈ XĒ,ζ∗ and (ζε0 , ζ

ε
t0)→ (ζ0, ζt0) in XĒ,ζ∗ for Ē = E+ 1

2L
′
E‖ζδ0−

ζ0‖22. Let ζε ∈ D∞,Ē be the classical solution given by Theorem 3.9. Then by
Lemma 3.7 ζε converges in DT,Ē for all T > 0, and hence also in D∞,Ē . Let
ζ ∈ D∞,Ē be the limit. Since for each ε the energy is conserved, and the energies
converge, the energy in the limit is also conserved.

We need to show that the limit is a strong solution. Note that for any T the
smooth solutions ζε converges to ζ uniformly in [0, T ]× R, which implies

ζ(t, x) = lim
ε→0

ζε(t, x)

= lim
ε→0

(
1

2
(ζε0(x+ ct) + ζε0(x− ct)) +

1

2c

∫ x+ct

x−ct
ζεt0(y) dy
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− 1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

W ′0(|ζε(s, y)|)
|ζε(s, y)|

ζε(s, y) dyds

)
,

=
1

2
(ζ0(x+ ct) + ζ0(x− ct)) +

1

2c

∫ x+ct

x−ct
ζt0(y) dy

− 1

2c
lim
ε→0

∫ t

0

∫ x+c(t−s)

x−c(t−s)

W ′0(|ζε(s, y)|)
|ζε(s, y)|

ζε(s, y) dyds.

Since ∣∣∣∣W ′0(|ζε(s, y)|)
|ζε(s, y)|

ζε(s, y)

∣∣∣∣ ≤ LĒ ,
the dominated convergence theorem implies that

lim
ε→0

∫ t

0

∫ x+c(t−s)

x−c(t−s)

W ′0(|ζε(s, y)|)
|ζε(s, y)|

ζε(s, y) dyds

=

∫ t

0

∫ x+c(t−s)

x−c(t−s)

W ′0(|ζ(s, y)|)
|ζ(s, y)|

ζ(s, y) dyds.

Similarily, we have that ζεt (t) → ζt(t) uniformly in L2(R) for all t ≤ T . Then,
keeping in mind that for each t the limit and equality is in the sense of L2(R),

ζt(t, x) = lim
ε→0

ζεt (t, x)

= lim
ε→0

(
c

2
(ζεx0(x+ ct)− ζεx0(x− ct)) +

1

2
(ζεt0(x+ ct) + ζεt0(x− ct))

− 1

2

∫ t

0

[
W ′0(|ζε(s, x− c(t− s))|)
|ζε(s, x− c(t− s))|

ζε(s, x− c(t− s))

+
W ′0(|ζε(s, x+ c(t− s))|)
|ζε(s, x+ c(t− s))|

ζε(s, x+ c(t− s))
]

ds

)
,

=
c

2
(ζx0(x+ ct)− ζx0(x− ct)) +

1

2
(ζt0(x+ ct) + ζt0(x− ct))

− 1

2
lim
ε→0

∫ t

0

[
W ′0(|ζε(s, x− c(t− s))|)
|ζε(s, x− c(t− s))|

ζε(s, x− c(t− s))

+
W ′0(|ζε(s, x+ c(t− s))|)
|ζε(s, x+ c(t− s))|

ζε(s, x+ c(t− s))
]

ds.

From (3.7) we get that∥∥∥∥∫ t

0

W ′0(|ζε(s)|)
|ζε(s)|

ζε(s)− W ′0(|ζ(s)|)
|ζ(s)|

ζ(s) ds

∥∥∥∥
2

≤ (L′Ē + L′′Ē)

∫ t

0

‖ζε(s)− ζ(s)‖2 ds

→ 0,

and hence ζ is a strong solution. Uniqueness and continuous dependence on initial
data is proven in Lemma 3.7. �

Remark 3.11. Note that if ζ is a solution of (3.1) in D∞,E, then so is its complex
conjugate ζ̄ and ζ modulated by a constant phase eiθζ, θ ∈ R. Uniqueness of
solutions then implies that if ψ initially is constant, ψ0(x) = ψ∗ with ψt0 = 0, then
the solution is of the form ζ(t, x) = s(t, x)eiψ

∗
.
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3.2. The quasilinear case. We will now consider the case K1 6= K3, that is c is a
smooth function of ψ instead of a constant. The main difficulty for (2.3) compared
to (3.1) is that (2.3) is quasilinear since the terms c(ψ)2ψxx and c(ψ)2sxx are
nonlinear. The method used in the proof of Theorem 3.10 relied heavily on (3.1)
being semilinear.

Remark 3.12. Let ψ∗ ∈ R be such that c′(ψ∗) = 0, and let (s0e
iψ∗ , st0e

iψ∗) ∈
XE,ζ∗ for some E, and s0 ∈ C2(R), st0 ∈ C1(R). Then by Theorem 3.9 and Remark

3.11 there is a unique global classical solution to ζtt − c(ψ∗)2ζxx +
W ′0(|ζ|)
|ζ| ζ = 0 on

the form ζ(t, x) = s(t, x)eiψ
∗
. The pair (ψ∗, s) is then also a global classical solution

to (2.3).

Remark 3.13. Note that a similar generic construction as in Remark 3.12 with
constant s = s∗ is not possible due to the presence of the term −s(ψ2

t − c(ψ)2ψ2
x)

in the second equation of (2.3). A reduction of (2.3) to to the scalar nonlinear
variational wave equation ψtt−c(ψ) (c(ψ)ψx)x = 0 thus has to involve changing the
potential W0. One could for example try to choose initial data such that s0(x) =
s∗, st0 = 0 where s∗ 6= 0 is a zero of W0 and look for a limit as ε tends to 0 of
solutions (ψε, sε) to (2.3) with the scaled potential W ε

0 = 1
εW0.

We will only give a local existence theorem for (2.3). The two-component non-
linear wave equation (2.3) is degenerate in the sense that the first equation vanishes
whenever s = 0. We will thus assume that s is bounded away from zero. Continuity
then implies that s is of definite sign, and to avoid having to impose new conditions
on W0 we will restrict s to be positive. It is possible to accomodate negative s as
well by imposing conditions on W0 for s < 0 similar to the conditions in 3.3.

Theorem 3.14. Assume that W0|[0,1) is admissible in the sense of 3.3. Then given
initial data (ψ0, ψt0, s0, st0) satisfying

(ψ0, ψt0, s0, st0) ∈W 3,∞(R)×W 2,∞(R)×W 3,∞(R)×W 2,∞(R),

1

s0
∈ L∞(R),

s0 > 0,∫
R

1

2
s2

0(ψ2
t0 + c(ψ0)2ψ2

0x) +
1

2
(s2
t0 + c(ψ0)2s2

0x) +W0(s0) dx < +∞,

there exists a unique short time classical solution of (2.3).

Proof. Local existence follows from the standard approach taken to semigroups of
nonlinear evolution equations. Here we will diverge from the standard semigroup
approach by considering linear operators on Banach spaces, and instead solve the
linear equations by characteristics.

In particular, inspired by [23], the system (2.3) can be rewritten as a quasilinear
symmetric hyperbolic system and the results in [22] applied. Indeed, introduce the
variables

R = ψt + c(ψ)ψx, L = ψt − c(ψ)ψx

U = st + c(ψ)sx, V = st − c(ψ)sx,

the system (2.3) can be written as a quasilinear symmetric hyperbolic system

ψt =
1

2
(R+ L) ,(3.18a)
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st =
1

2
(U + V ) ,(3.18b)

Lt + c(ψ)Lx =
c′(ψ)

4c(ψ)

(
L2 −R2 −

(
U − V
s

)2
)
− 1

s
(V R+ UL) ,(3.18c)

Vt + c(ψ)Vx =
c′(ψ)

2c(ψ)
L (V − U) + sRL−W ′0(s),(3.18d)

Rt − c(ψ)Rx =
c′(ψ)

4c(ψ)

(
R2 − L2 −

(
U − V
s

)2
)
− 1

s
(V R+ UL) ,(3.18e)

Ut − c(ψ)Ux =
c′(ψ)

2c(ψ)
R (U − V ) + sRL−W ′0(s).(3.18f)

We introduce the space for the solutions

XE,Q =

{
Z = (ψ, s, L, V,R,U) ∈W 1,∞(R,R6) |

‖Z‖W 1,∞(R) ≤ Q,
∥∥∥∥1

s

∥∥∥∥
L∞(R)

≤ Q,∫
R

1

4
s2
(
R2 + L2

)
+

1

4

(
U2 + V 2

)
+W0(s) dx ≤ E

}
.

Note that for elements of XE,Q the variable s is of definite sign since s is continuous
and 1

s is bounded. Similarly to Proposition 3.4, we are able to bound ‖s‖∞ in
terms of E and Q. We have for Z ∈ XE,Q that ‖s‖∞ ≤ min{1, Q}, and since s
is continuous there exists x∗ such that s(x∗) = ‖s‖∞. From the definition we also
get ‖sx‖∞ ≤ Q. By A1 and A4 of Definition 3.3 we then have that W0(s(x)) ≥
W0(‖s‖∞−Q|x−x∗|) for |x−x∗| ≤ ‖s‖∞−s̃Q where s̃ is the largest s̃ with W0(s̃) = 0.

We then get that

E ≥ ‖W0(s)‖1 ≥ 2Q

∫ ‖s‖∞
s̃

W0(u) du,

and A3 of Definition 3.3 then implies that there must be a positive constant cE,Q <
1 such that ‖s‖∞ ≤ cE,Q. Note that this in turn implies that W0, W ′0, W ′′0 , and
W ′′′0 are bounded in terms of E and Q.

We define our solution space DT,E,Q as follows

DT,E,Q = C([0, T ], XE,Q) ∩ C1([0, T ], L∞(R,R6)).

We equip DT,E,Q with the metric

dDT,E,Q(Z1, Z2) = sup
0≤t≤T

‖Z1(t)− Z2(t)‖W 1,∞(R,R6)

+ sup
0≤t≤T

‖Z1,t(t)− Z2,t(t)‖L∞(R,R6),

which renders DT,E,Q a complete metric space. Formally, we can formulate (3.18)
as

Zt − c(ψ)AZx = F (Z),

where A is a constant symmetric hyperbolic matrix with eigenvalues −1, 0, 1 and
F : [−Q,Q]× [ 1

Q , cE,Q]× [−Q,Q]4 → R6 is smooth. We want to show existence of
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short time solutions from a fix point argument. To be able to make a contraction
we will further restrict our space for approximate solutions to

Dlin
T,E,Q =

{
Z ∈ DT,E,Q | Z(t) ∈W 2,∞(R,R6), ‖Zxx(t)‖L∞(R,R6) ≤ Q

}
.

Let 0 < E < E′, 0 < Q < Q′ and Z0 ∈ XE,Q with ‖Z0xx‖∞ ≤ Q be the initial

data, then for any Ẑ ∈ Dlin
T,E′,Q′ with Ẑ(0) = Z0, the linear system of transport

equations

(3.19) Zt − c(ψ̂)AZx = F (Ẑ)

can be solved by characteristics. Define the backward characteristics x± at time τ
from point (t, x) by

d

dτ
x±(τ ; t, x) = ∓c

(
ψ̂(τ, x±(τ ; t, x))

)
,

and note that x±(τ ; t, x) = x±(τ ; s, x±(s; t, x)) and x±(t; t, x)) = x. Then, by
taking the derivative with respect to s, we get the following

∂

∂t
x±(τ ; t, x)∓ c(ψ̂(τ, x±(τ ; t, x)))

∂

∂x
x±(τ ; t, x) = 0.

Thus

|x±(τ1; t, x)− x±(τ2; t, x)| ≤ ‖c‖∞|τ2 − τ1|,

|x±(τ ; t, x1)− x±(τ ; t, x2)| ≤ exp

{∥∥∥∥1

c

∥∥∥∥
∞
Q′|t− τ |

}
|x1 − x2|,

|x+(τ ; t, x)− x−(τ ; t, x)| ≤ 2‖c‖∞|t− τ |.

With Tτ the solution operator of Zt(t)−c(ψ(t+τ))AZx(t) = 0 we can use Duhamel’s

principle to write the solution of (3.19) as T0(t)Z0 +
∫ t

0
Tτ (t − τ)F (Ẑ(τ)) dτ . We

need to show that ‖T0(t)Z0‖W 2,∞(R) is bounded and that the Duhamel operator

DF (Ẑ)(t) =
∫ t

0
Tτ (t − τ)F (Ẑ(τ)) dτ satisfies DF (Ẑ) ∈ C([0,∞),W 2,∞(R,R6)),

and ‖DF (Ẑ1)(t)−DF (Ẑ2)(t)‖W 1,∞(R) ≤ C(t, E′, Q′)‖Ẑ1− Ẑ2‖W 1,∞(R) for Ẑ1, Ẑ2 ∈
Dlin
T,E′,Q′ . We get directly from characteristics that ‖T0(t)Z0‖∞ = ‖Z0‖∞ ≤ Q.

Taking successive derivatives of Zt− c(ψ̂)AZx = 0 with respect to x and employing
Gronwall’s inequality yields

‖T0(t)Z0‖∞ ≤ Q,
‖(T0(t)Z0)x‖∞ ≤ Qexp{‖c′‖∞Q′t} ,
‖(T0(t)Z0)xx‖∞ ≤

(
Q+ t(‖c′′‖∞Q′2 + ‖c′‖∞Q′)

)
exp{‖c′‖∞Q′t} .

Since F is a smooth function, we have that for Ẑ ∈ Dlin
T,E′,Q′ there is

‖F (Ẑ(t))‖W 2,∞(R) ≤ CE′,Q′ ,

for some constant CE′,Q′ depending on E′ and Q′ only. The Duhamel operator

then satisfies ‖DF (Ẑ)(t)‖W 2,∞(R) ≤ CE′,Q′t, and thus Z(t) = T0(t)Z0 +DF (Ẑ)(t)

belongs to Dlin
T,E,Q as long as

(3.21)
(
Q+ t(‖c′′‖∞Q′2 + ‖c′‖∞Q′)

)
exp{‖c′‖∞Q′t}+ CE′,Q′t ≤ Q′.

We need that the energy of the solution is bounded by E′. The energy density
and energy density flux defined by(2.4) and (2.5), take here the form E = 1

4s
2(R2 +
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L2) + 1
4 (U2 + V 2) +W0(s) and c(ψ)F = 1

4s
2
(
R2 − L2

)
+ 1

4

(
U2 − V 2

)
. Instead of

(2.6) we get the balance law

∂

∂t
E − ∂

∂x
c(ψ̂)c(ψ)F = −s2

(
Û − V̂
ŝ

)2

− s2

ŝ

(
V̂ R̂+ Û L̂

)
+
Û + V̂

2
ŝR̂L̂

+
c′(ψ̂)

4c(ψ)

(
UÛR̂+ V V̂ L̂− UR̂V̂ − V L̂Û

)
+
Û + V̂

4
s
(
R2 + L2

)
+
Û + V̂

2
W ′0(s)

− U + V

2
W ′0(ŝ)− c(ψ̂)

ssx
2

(
R2 − L2

)
− c′(ψ̂)

ψ̂x
4

(
s2(R2 − L2) + (U2 − V 2)

)
.

By Definition 3.3 we have that∥∥∥∥∥W ′0(s)
Û + V̂

2

∥∥∥∥∥
1

= ‖W ′0(s)‖2

∥∥∥∥∥ Û + V̂

2

∥∥∥∥∥
2

≤
√
kE(t)‖W0(s)‖1

√
E′

≤
√
kE′E(t)

√
E′,

and hence as long as E(t) ≤ E′, integration E(t) =
∫
R E(t, x) dx yields

d

dt
E(t) ≤ 4Q′E′ +Q′E′ +Q′6E′ +Q′4E′ + 4KQ′2E′ +

1

2
Q′2E(t)

+ ‖c‖∞Q′E(t) +
1

4
‖c′‖∞Q′E(t) + 2

√
kE′E

′.

Hence E(t) ≤ E′ for t such that

(3.22) (E + tKQ′,E′) exp

{
t

(
1

2
Q′2 + ‖c‖∞Q′ +

1

4
‖c′‖∞

)}
≤ E′,

with KQ′,E′ = 5Q′E′ +Q′4E′ +Q′6E′ + 4KQ′2E′ + 2
√
kE′E

′.
We need to show that the solution Z of (3.19) depends Lipschitz continuously

on the function Ẑ ∈ DT,E′,Q′ . Let Ẑ1, Ẑ2 ∈ DT,E′,Q′ and note that

∂

∂τ

(
x1
±(τ ; t, x1)− x2

±(τ ; t, x2)
)

= ∓
(
c(ψ̂1(τ, x1

±(τ ; t, x1)))− c(ψ̂2(τ, x2
±(τ ; t, x2)))

)
,(3.23)

and thus

|x1
±(τ ; t, x1)− x2

±(τ ; t, x2)| ≤ |x1 − x2|e‖c
′‖∞Q′(t−τ)

+
1

Q′

(
e‖c
′‖∞Q′(t−τ) − 1

)
‖ψ̂1 − ψ̂2‖L∞([0,t],L∞(R)).

Differentiation of (3.23), for x1 = x2 = x, with respect to x and then an application
of Gronwall’s inequality gives∣∣∣∣ ∂∂xx1

±(τ ; t, x)− ∂

∂x
x2
±(τ ; t, x)

∣∣∣∣ ≤ ‖c′′‖∞Q′ + ‖c′‖∞‖c′‖∞Q′
(exp{‖c′‖∞Q′(t− τ)} − 1)
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× exp{‖c′‖∞Q′(t− τ)}

× sup
s∈[0,T ]

‖ψ̂1(s)− ψ̂2(s)‖W 1,∞(R),

where we have used that ‖ψ̂1,xx‖∞ ≤ Q′. We get for the T0(t)Z0 part the estimate

‖T 1
0 (t)Z0 − T 2

0 (t)Z0‖W 1,∞(R) ≤ Q
‖c′′‖∞Q′ + ‖c′‖∞

‖c′‖∞Q′
(exp{‖c′‖∞Q′t} − 1)

× exp{‖c′‖∞Q′t} sup
s∈[0,T ]

‖ψ̂1(s)− ψ̂2(s)‖W 1,∞(R)

+Q (exp{‖c′‖∞Q′t} − 1)

× exp

{∥∥∥∥1

c

∥∥∥∥
∞
Q′t

}
sup

s∈[0,T ]

‖ψ̂1(s)− ψ̂2(s)‖∞.

Since F is a smooth function and ‖Ẑ1‖W 2,∞(R), ‖Ẑ2‖W 2,∞(R) ≤ Q′,∣∣∣∣∫ t

0

Fj(Ẑ1)(τ, x1
±(τ ; t, x))− Fj(Ẑ2)(τ, x2

±(τ ; t, x)) dτ

∣∣∣∣
≤
∣∣∣∣∫ t

0

Fj(Ẑ1)(τ, x1
±(τ ; t, x))− Fj(Ẑ2)(τ, x1

±(τ ; t, x)) dτ

∣∣∣∣
+

∣∣∣∣∫ t

0

Fj(Ẑ2)(τ, x1
±(τ ; t, x))− Fj(Ẑ2)(τ, x2

±(τ ; t, x)) dτ

∣∣∣∣
≤ t‖F‖LipXE′,Q′ exp {‖c′‖∞Q′t} sup

s∈[0,T ]

‖Ẑ1(s)− Ẑ2(s)‖∞.

For ∂
∂x

(
DF (Ẑ1)(t)−DF (Ẑ2)(t)

)
we estimate∣∣∣∣ ∂∂x

∫ t

0

Fj(Ẑ1)(τ, x1
±(τ ; t, x))− Fj(Ẑ2)(τ, x2

±(τ ; t, x)) dτ

∣∣∣∣
≤ 6

∫ t

0

(
‖F‖LipXE′,Q′‖Ẑ1,x(τ)‖∞|∂xx1

±(τ ; t, x)− ∂xx2
±(τ ; t, x)|

+ ‖F‖LipXE′,Q′ |∂xx
2
±(τ ; t, x)|‖Ẑ1(τ)− Ẑ2(τ)‖∞

+ ‖F‖LipXE′,Q′‖Ẑ2,xx(τ)‖∞|∂xx2
±(τ ; t, x)||x1

±(τ ; t, x)− x2
±(τ ; t, x)|

+ ‖∇ZF‖LipXE′,Q′‖Ẑ1,x(τ)‖∞‖Ẑ2,x(τ)‖∞
× |∂xx2

±(τ ; t, x)||x1
±(τ ; t, x)− x2

±(τ ; t, x)|

+ ‖∇ZF‖LipXE′,Q′‖Ẑ2,x(τ)‖∞|∂xx2
±(τ ; t, x)|‖Ẑ1(τ)− Ẑ2(τ)|

)
dτ

≤ 6

(
‖F‖LipXE′,Q′

‖c′′‖∞Q′ + ‖c′‖∞
‖c′‖∞

+ ‖∇F‖LipXE′,Q′Q
′
)

× t exp{kQ′t} dDT,E′,Q′ (Ẑ1, Ẑ2),

where k = max
{
‖c′‖∞,

∥∥ 1
c

∥∥}. That is, we have that

(3.24) ‖Z1(t)− Z2(t)‖W 1,∞(R) ≤ CE′,Q′t exp{kQ′t} dDT,E′,Q′ (Ẑ1, Ẑ2).
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Since Z is continuously differentiable in t, we can do similar estimates for ‖Z1,t(t)−
Z2,t(t)‖L∞(R) directly from the linear system and get

‖Z1,t(t)− Z2,t(t)‖∞ ≤ ‖c′‖∞Qexp{‖c′‖∞Q′t} ‖ψ̂1(t)− ψ̂2(t)‖∞

+ ‖c‖∞‖Z1,x(t)− Z2,x(t)‖∞ +
∥∥∥F (Ẑ1(t))− F (Ẑ2(t))

∥∥∥
∞

≤ ‖c′‖∞Qexp{‖c′‖∞Q′t} ‖ψ̂1(t)− ψ̂2(t)‖∞
+ CE′,Q′t exp{kQ′t} ‖Ẑ1(t)− Ẑ2(t)‖W 1,∞(R)

+ ‖F‖LipXE′,Q′
‖Ẑ1(t)− Ẑ2(t)‖∞.

Direct computation of the local Lipschitz constant ‖F‖LipXE′,Q′
gives a bound de-

pending on Q′ and E′ only. Moreover, ‖Ẑ1(t) − Ẑ2(t)‖∞ ≤ t sups∈[0,T ] ‖Ẑ1,t(s) −
Ẑ2,t(s)‖∞, and hence

(3.25) ‖Z1,t(t)− Z2,t(t)‖∞ ≤ Kt,E′,Q′dT,E′,Q′
(
Ẑ1, Ẑ2

)
,

where

Kt,E′,Q′ = ‖c‖∞CE′,Q′t exp{kQ′t}+ t ‖F‖LipXE′,Q′

+ t‖c′‖∞Qexp{‖c′‖∞Q′t} .

A combination of (3.24) and (3.25) yields

dDT,E′,Q′ (Z1, Z2) ≤ (CE′,Q′T exp{kQ′T}+KT,E′,Q′) dDT,E′,Q′ (Ẑ1, Ẑ2),

and hence, as long as T satisfies

(3.26) CE′,Q′T exp{kQ′T}+KT,E′,Q′ < 1,

the map Ẑ 7→ Z is a contraction.
Given initial data Z0 ∈ XE,Q with ‖Z0,xx‖∞ ≤ Q, Q′ > Q, and E′ > E one can

find T > 0 that satisfies satisfies (3.21), (3.22), and (3.26). We can then construct
a Cauchy sequence in DT,E′,Q′ as follows by letting Zn+1 be the solution of (3.19)
with right hand side Zn and wave speed c(ψn). Moreover, the limit will satisfy
Et − (c(ψ)2F)x = 0, and thus conserves energy.

We show that the solution is unique in DT,E,Q. Let Z1, Z2 ∈ DT,E,Q be solutions
of (3.18), then

(Z1 − Z2)t − c(ψ2)A (Z1 − Z2)x = (c(ψ1)− c(ψ2))AZ1,x + F (Z1)− F (Z2),

and Duhamel’s principle implies that

‖Z1(t)− Z2(t)‖∞ ≤ ‖Z1(0)− Z2(0)‖∞

+
(
Q‖c′‖∞ + ‖F‖Lip(XE,Q)

) ∫ t

0

‖Z1(s)− Z2(s)‖∞ ds,

and then by Gronwall’s inequality

‖Z1(t)− Z2(t)‖∞ ≤ ‖Z1(0)− Z2(0)‖∞exp
{

(Q‖c′‖∞ + ‖F‖Lip(XE,Q))t
}
,

and hence we get uniqueness. �
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