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We present a novel family of schemes as the merging between a one-dimensional advection scheme with 
the flux coordinate independent approach. The scheme can be used to discretize the field-aligned Navier-
Stokes equations in three dimensions. Our approach consists of three major steps: (i) the formulation of 
the one-dimensional scheme in a locally field-aligned coordinate system, (ii) a numerical evaluation of 
the surface integrals over the field-aligned finite volumes and (iii) the introduction of smoothing into the 
numerical transformation operators to ensure stability of the resulting scheme.
We study this approach at the example of a staggered finite volume scheme with a field-aligned 
cylinder as initial condition. We show superior stability and conservative properties over previous direct 
discretizations. In particular, the relative mass conservation is improved by several orders of magnitude. 
Without smoothing in the transformation operators the scheme is prone to oscillations in both parallel 
and perpendicular directions. In the presence of strong perpendicular gradients, additional parallel 
diffusion is needed to control spurious oscillations in the perpendicular planes.
We provide parallel implementations for various platforms including GPUs freely in the C++ library
Feltor
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1. Introduction

The purpose of this paper is to find a discretization of the Navier-Stokes equation along the streamlines of a given unit vector field 
b̂(x) in three dimensions:

∂

∂t
n + ∇ ·

(
nub̂

)
= 0 (1a)

∂

∂t
(nu) + ∇ ·

(
nu2b̂

)
= −∇‖n + νu�‖u (1b)

with

∇‖ f := b̂ · ∇ f (2)

�‖u := ∇ · (b̂b̂ · ∇u) (3)

where n is density, u is velocity and νu is the viscosity coefficient. Here, we use an isothermal setting with pressure p = nT with constant 
temperature T = 1. We consider schemes for both the case with shocks (νu = 0) as well as without (νu �= 0). The direction along b̂ is in 
this work called the “parallel” direction, while “perpendicular” refers to planes ⊥ b̂.

Our motivation to study such a system stems from three-dimensional plasma turbulence simulations, where b̂ is the magnetic field unit 
vector [1–6]. In a magnetized plasma, the dynamics parallel to b̂ fundamentally differs from the dynamics perpendicular to b̂. Typically, 
the length scale of density and velocity fluctuations perpendicular to b̂, L⊥ , is much smaller than the scale of fluctuations parallel to 
b̂, L‖: L⊥ � L‖ . The resolution in a numerical simulation of such a system thus is fundamentally lower in the parallel direction than 
perpendicular to it. In order to develop schemes just for the parallel direction, we neglect perpendicular dynamics, resistivity and the 
electric potential, which leaves Eqs. (1) as a subset of the density and velocity equations.

The straightforward idea of discretizing Eqs. (1) is to construct a field-aligned coordinate system where one coordinate is given by the 
streamlines of b̂, i.e. solution to the equation ẋ = b̂. This effectively reduces Eqs. (1) to a one-dimensional problem highlighting that the 
dynamics on different field lines is entirely decoupled. Do note the appearance of the volume element 

√
g in the divergences of Eqs. (1)

in curvilinear coordinate systems, e.g. ∇ · (nub̂) = ∂s
(√

gnubs
)
/
√

g , where s is the field-line following coordinate. This approach was and 
is used in so-called flux-tube coordinates [7–9]. Aligning one coordinate to b̂ allows to use few grid points in this parallel coordinate 
while using a high resolution in the remaining two. The downside of a flux-tube is that (i) for strong magnetic shear the grid cells 
strongly distort and (ii) the field-lines do in general not close on themselves making boundary conditions hard to treat correctly [10,9]. 
However, the major issue is the inability to treat X-points or O-points (points with vanishing gradient) in the magnetic flux function. This 
is because field-lines cannot cross stationary points. In fact, it can be shown that even the less stringent flux-aligned coordinate systems 
are unable to treat X-points correctly [11]. The solutions to elliptic equations discretized on flux-aligned coordinates with X-point do not 
converge in general and only with first order if the flux function meets certain criteria at the X-point. A correct modelling of magnetic 
field equilibria that include one or even several X-points is however crucial for the development and study of current and future magnetic 
fusion devices [12–14].

Under the constraint to discretize Eq. (1) on a grid that is not aligned to and independent of b̂ the most straightforward idea would 
be to simply use a direct discretization on a standard Cartesian or Cylindrical grid. For example the term ∇‖n = bR∂Rn + bZ ∂Z n + bϕ∂ϕn
can be simply discretized using standard finite difference methods. Such an approach is used for example in [15] with the immediate 
advantage to model arbitrary magnetic field equilibria. However, the main downside of such an approach is its inability to take advantage 
of the reduced numerical resolution requirement along the magnetic field. This comes with an overly stringent CFL condition and strong 
numerical diffusion due to the fast parallel dynamics. As [16,17] point out the result is a significantly higher computational cost for a 
non-aligned scheme (several orders of magnitude for larger machines in fact) than for an aligned scheme.

The motivation to combine the flexibility of non-aligned grids with the optimized computational cost of aligned discretizations leads to 
the development of the so-called flux-coordinate independent approach (FCI) [18,19,16]. The main idea of the FCI scheme is to construct 
a field-line map that maps each point in the numerical grid to its nearest toroidal plane along the streamlines of b̂ . At the next toroidal 
plane, the resulting value can be interpolated from its surrounding grid points. In such a way, simple finite difference formulas for ∇‖ f , 
∇ · (b̂ f ) and �‖ f can be constructed that do not require an aligned underlying grid and at the same time make use of the field-aligned 
character of plasma turbulence. This approach was successfully applied to fluid plasma turbulence [1–6].
2
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Past work on the FCI scheme has mainly focused on the discretization of the parallel operators ∇‖ f , ∇ · (b̂ f ) and �‖ f individually, 
without relation to the nature of Eqs. (1) as hyperbolic conservation laws. Unfortunately, such an approach fails to incorporate the success 
of specialized shock-capturing and conservative schemes that are available in the literature. In fact, methods for the discretization of the 
one-dimensional form of Eqs. (1) (taking straight field-lines b̂ ≡ ex) are plentiful and the foundations can be found in textbooks, for exam-
ple [20]. Shocks, or discontinuities in the density and momentum density, may appear in the case νu = 0, or numerically, if steep gradients 
appear that the numerical scheme cannot distinguish from an actual shock. Here, Godunov type schemes combined with an (approximate) 
Riemann solver are notable. Others include staggered finite volume schemes [21–23] and discontinuous Galerkin schemes [24,25]. These 
schemes have excellent conservative properties and are generally more stable than simple finite difference discretizations.

The goal of this work is to bridge the gap between the FCI approach on the one side and the literature on one-dimensional conservation 
laws on the other side. We first provide a formalism that re-interprets the FCI approach as a discretization in a locally field-aligned 
coordinate system. We are then able to elevate one-dimensional approaches to the three-dimensional case via their formulation in the 
field-aligned coordinate system. A crucial ingredient in this approach is to allow smoothing within the transformation from non-aligned to 
aligned coordinates and back. Numerically, this is realized by interpolation and projection matrices on constant or linear finite elements. 
We provide parallel implementations of the resulting finite volume FCI approach (FV-FCI) for various platforms including GPUs freely in 
the C++ library Feltor [26,27]. We then show and compare various discretizations at the example of a field-aligned structure in a non-
aligned grid. We remark that we do not include the temperature equation in Eqs. (1) to keep the derivation simple but that the extension 
is immediate. Finally, by replacing the pressure gradient ∇‖n in Eq. (1b) with g∇‖n2/2 we have the shallow-water equations, which may 
be equally interesting.

The paper is organized as follows: in Section 2 we introduce and compare various finite difference and finite volume schemes on 
staggered grids. We discuss their behaviour for a shock problem and one with finite viscosity. In Section 3 we introduce the FCI approach 
and present our formulation in a locally field-aligned coordinate system. We present convergence tables for the discretization of ∇‖ f , ∇ ·
(b̂ f ) and �‖ f with a particular focus on the conservative properties of the latter two. In Section 4 we then elevate the schemes introduced 
in Section 2 and show their behaviour with example simulations of a field-aligned structure in Section 5. Finally, we present conclusive 
remarks in Section 6. The topics of curvilinear coordinates and the complete Jacobian of the coordinate transformation are discussed 
separately in Appendix A and Appendix B. All figures and data presented in this paper are reproducible as outlined in Appendix C.

2. Finite volume schemes in one-dimension

2.1. Staggered grids in 1d

When b̂ = êx the system (1) reduces to the one-dimensional Navier-Stokes equations for which there is a large amount of literature on 
numerical schemes available (see for example [20] and references therein).

∂

∂t
n = − ∂

∂x
(nu) (4)

∂

∂t
nu = − ∂

∂x

(
nu2 + n

)
+ νu

∂2

∂x2
u (5)

We here choose a class of schemes known as staggered grid discretization. The main goal is to discretize the variables n and nu on two 
grids that are adjoint to each other. On a domain [a, b] we choose N + 1 grid points with grid distance �x = (b − a)/N and let x0 := a, 
xk := xk−1 + �x for k = 1, ..., N . We denote the points of the adjoint grid as xk+1/2 := xk + �x/2. If n is discretized on xk , then nu is 
discretized on xk+1/2. We will indicate this by writing nk := n(xk) and (nu)k+1/2 := (nu)(xk+1/2). We base our discretization on the finite 
volume scheme presented by [21–23]:

d

dt
nk = − 1

�x
(q̂k+1/2 − q̂k−1/2) (6a)

d

dt
(nu)k+1/2 = − 1

�x

(
f̂k+1 − f̂k

)
− 1

�x
[nk+1 − nk] + νu

(�x)2

[
uk+3/2 − 2uk+1/2 + uk−1/2

]
(6b)

where

q̂k+1/2 :=uk+1/2

{
nk + 1

2 �(�nk+1/2,�nk−1/2) if uk+1/2 ≥ 0

nk+1 − 1
2 �(�nk+3/2,�nk+1/2) if uk+1/2 < 0

(7a)

f̂k :=qk

{
uk−1/2 + 1

2 �(�uk,�uk−1) if qk ≥ 0

uk+1/2 − 1
2 �(�uk+1,�uk) if qk < 0

(7b)

with �nk+1/2 := nk+1 −nk , �uk := uk+1/2 − uk−1/2, nk+1/2 = (nk+1 + nk
)
/2, uk+1/2 = (nu)k+1/2/nk+1/2 and uk = (uk+1/2 + uk−1/2

)
/2 (local 

shock speed in Burger’s equation) and analogously qk := (qk+1/2 + qk−1/2
)
/2. We here choose a minmod slope-limiter

�minmod(x, y) :=

⎧⎪⎨⎪⎩
min(x, y) if x, y ≥ 0

max(x, y) if x, y ≤ 0

0 else

(8)

noting that there exists a host of other possible choices (see [20]).
3



M. Wiesenberger and M. Held Computer Physics Communications 291 (2023) 108838
Fig. 1. Plot of the one dimensional Riemann initial condition (12) at T = 0.1 and Nx = 1000 with the semi-implicit staggered finite volume scheme “staggered semi-implicit” 
and its completely explicit variant “staggered explicit” (6). Both solutions coincide with the analytical solution. The “velocity-staggered” variant (10) converges to the wrong 
shock speed and slightly overshoots at the jump.

Furthermore, we look into discretizing the velocity equation over the momentum formulation, which may be interesting for conve-
nience of implementation, but is physically allowed only for νu �= 0 (no shocks) [20].

∂

∂t
u = − ∂

∂x

(
u2

2
+ lnn

)
+ νu

n

∂2

∂x2
u (9)

This formulation is close to Burger’s equation. The best scheme that we found in this formulation is

d

dt
nk = − 1

�x
(q̂k+1/2 − q̂k−1/2) (10a)

d

dt
uk+1/2 = − 1

�x

(
f̂k+1 − f̂k

)
− 1

�x

[(
nk+1 − nk

) 1

2

(
1

nk+1
+ 1

nk

)]
+ νu

nk+1/2(�x)2

(
uk+3/2 − 2uk+1/2 + uk−1/2

)
(10b)

with

q̂k+1/2 :=uk+1/2

{
nk + 1

2 �(�nk+1/2,�nk−1/2) if uk+1/2 ≥ 0

nk+1 − 1
2 �(�nk+3/2,�nk+1/2) if uk+1/2 < 0

(11a)

f̂k :=1

2
uk

{
uk−1/2 + 1

2 �(�uk,�uk−1) if uk ≥ 0

uk+1/2 − 1
2 �(�uk+1,�uk) if uk < 0

(11b)

We divide by the harmonic mean in the pressure gradient term, which from empirical tests yields better convergence than other types 
like the arithmetic or geometric mean.

In the remainder of this section we will call discretization Eqs. (6) the “staggered” scheme and Eqs. (10) the “velocity-staggered” 
scheme.

2.2. A shock and a wave test problem

Since we use the above schemes as a basis on which we build our three-dimensional scheme it is judicious to further investigate the 
scheme and to reproduce previous numerical results.

There are various methods to discretize the time in Eqs. (6) and Eqs. (10) as both schemes are represented in the method of lines. 
The original staggered scheme [22,23,21] was presented with a semi-implicit Euler step, where the pressure gradient in equation (6b)
− [nk+1 − nk]n+1 /�x was treated implicitly. The resulting implicit equation trivially decouples and can be solved analytically. The proce-
dure can be straightforwardly elevated to higher order semi-implicit timesteppers.

We show a Riemann test problem in Fig. 1. The initial state is given by

n0(x) =
{

1 if x < 0.5

0.2 else
u0(x) = 0 (12)

We use Nx = 1000 points and simulate until T = 0.1. We use an adaptive additive Runge-Kutte scheme of third order [28] for the semi-
implicit version and a Bogacki-Shampine explicit adaptive Runge-Kutta of third order [29] for the explicit version. Both versions show the 
same results. The “velocity-staggered” discretization of Eq. (10) does not correctly capture the shock, which is not curable by increasing 
the resolution further. The authors of the scheme warn that if the pressure term is treated explicitly the staggered scheme loses its shock 
conserving properties (see Figures 10, 11 of [23]) and is prone to spurious oscillations. Our own extensive investigations and private 
correspondence with the authors reveal that this in fact only happens if an explicit Euler step is used and the timestep is very close to 
4
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Fig. 2. Plot of the one dimensional Navier-Stokes equation with viscosity νu = 0.001 and the sine wave initial condition (13) at T = 1.5. The solid black line is a reference 
solution with Nx = 1000 points while the other solutions are computed with Nx = 100. The solution with slope-limiter slightly overshoots. The solutions without slope-limiter 
show numerical diffusion.

the CFL condition. If the timestep is small enough or if any higher order timestepper is used the explicit schemes behave the same as 
the semi-implicit ones in all our tests. We will therefore only consider the third order in time, explicit Bogacki-Shampine scheme for the 
remainder of the paper.

In a second test we investigate the performance of the schemes for a non-vanishing viscosity νu = 0.001. We initialize a plane wave 
and impose periodic boundary conditions.

n0(x) = 1 + 0.2 sin(4πx) (13a)

u0(x) = 0.5 + 0.1 sin(4πx) (13b)

The result is shown in Fig. 2 at T = 1.5. We compute a reference solution with Nx = 1000 points while the remaining schemes use 
Nx = 100 points to highlight differences. We find that the “staggered” schemes have slightly more numerical diffusion than the “velocity-
staggered” schemes. The variant with minmod slope-limiter is closest to the reference solution but shows a slight overshoot in the density 
profile. For higher resolution all curves coincide with the reference solution.

Finally, we note that in the above numerical tests the total mass M :=∑k nk�x is conserved in time up to machine precision. This 
is a main feature of the finite-volume discretization. The total momentum and energy are not conserved in the first example due to 
boundary conditions. In the second example momentum is conserved up to machine precision in the staggered schemes but not in the 
velocity-staggered schemes due to the non-conservative formulation. Energy is not conserved in any scheme in the second example due 
to the viscosity.

3. The flux coordinate independent approach

We here develop the major ideas of the flux coordinate independent approach, interpreted as a finite difference scheme in a locally 
field-aligned coordinate system.

3.1. Constructing the coordinate map and the volume form

Given is a vector field b̂(R, Z , ϕ) in cylindrical coordinates (R, Z , ϕ). The vector field b̂ might be the magnetic unit vector field but 
the algorithm works for any vector field b̂ with bϕ �= 0, in particular b̂ does not necessarily need to have unit length. Notice here that 
cylindrical coordinates are no prerequisite to the method. In Appendix A we show how to start from curvilinear coordinates.

As a first step, our idea is to construct a field-aligned coordinate system ρ , ζ , 
 that originates at the plane given by ϕ = ϕk for 
some value ϕk . With originate we mean that for 
 = ϕk we have ρ(R, Z , ϕk) = R , ζ(R, Z , ϕk) = Z . The central motivation for the field-
aligned coordinate system is that b̂ only has one non-vanishing contravariant component: b
(ρ, ζ, 
) = bϕ(R(ρ, ζ, 
), Z(ρ, ζ, 
), ϕ(
)). 
The field-aligned gradient, divergence and Laplacian in the field-aligned coordinate system thus read

∇‖ F (ρ, ζ,
) = b
∂
 F (14)

∇ · (b̂F )(ρ, ζ,
) = 1√
G

∂


(√
Gb
 F

)
(15)

�‖ F (ρ, ζ,
) = 1√
G

∂


(√
Gb
b
∂
 F

)
(16)

with F (ρ, ζ, 
) = f (R(ρ, ζ, 
), Z(ρ, ζ, 
), ϕ(
)). In order to compute the above derivatives (14), (15) and (16) we thus need the coordi-
nate map (R(ρ, ζ, 
), Z(ρ, ζ, 
), ϕ(
)) as well as the volume form in the field-aligned system 

√
G(ρ, ζ, 
).

The construction is straightforward. First, we choose 
 = ϕ . All we then have to do is to integrate the field-line equation parameterized 
by ϕ (see Reference [30] for details on streamline integration) together with the volume form
5
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Fig. 3. Plot of the streamlines of the example magnetic field b̂ used in this paper (defined by Eq. (53)).

dR

dϕ
= bR

bϕ
(17a)

dZ

dϕ
= bZ

bϕ
(17b)

d
√

G

dϕ
= ∇ ·

(
b̂

bϕ

)√
G (17c)

As initial conditions at ϕk we choose (R(ϕk), Z(ϕk)) = (ρ, ζ ) and integrate from ϕ = ϕk to ϕ = 
. The resulting (R(ρ, ζ, 
), Z(ρ, ζ, 
), 
ϕ(
)) completely define the coordinate transformation. Note that we choose 
 = ϕ because then equidistant planes in 
 coincide with 
equidistant planes in ϕ . Another choice would for example be the field-line length s as proposed by [19,16], where bs = 1 simplifies. We 
note that Eq. (15) with F = 1/b
 yields Eq. (17c). In Appendix B we will show how to construct the full Jacobian and metric tensors for 
(ρ, ζ, 
) and rederive Eq. (17c) with the full metric tensor. As initial condition we take 

√
G = √

g , where 
√

g = R is the volume form in 
the cylindrical coordinate system.

In Fig. 3 we plot an example field-aligned coordinate system for a magnetic field that we precisely define only later in the text in 
Eq. (53). The domain is periodic in ϕ but we show only three quarters to enable a view on the inside. The field-lines, if followed in ϕ
clearly change their R and Z position and if followed for one turn appear at the almost opposite side of the square domain in R-Z .

Finally, the coordinate map defines a pullback operator Pk . Any function f (R, Z , ϕ) defined on cylindrical coordinates can be trans-
formed to the field-aligned system originating at ϕk via

F (ρ, ζ,
) := f (R(ρ, ζ,
), Z(ρ, ζ,
),
) ≡ (Pk f ) (ρ, ζ,
) (18)

3.2. Discrete operators in the field-aligned coordinate system

Next, we assume that the ϕ direction is discretized into Nϕ equidistant points ϕk with k = 0, ..., Nϕ − 1. We leave the R , Z coordinates 
undiscretized for now. We further assume that for each of the ϕk values we can construct a field-aligned coordinate system as defined in 
Section 3.1 separately.

Assume then that we have a function f (R, Z , ϕ) given on the discrete planes ϕ = ϕk and set fk(R, Z) ≡ f (R, Z , ϕk). We define

Fk(ρ, ζ ) :=F (ρ, ζ,
k) = f (R(ρ, ζ,
k), Z(ρ, ζ,
k),ϕk) = fk(ρ, ζ )

=:(Pk,0 fk)(ρ, ζ ) (19)

Fk±1(ρ, ζ ) :=F (ρ, ζ,
k±1) = f (R(ρ, ζ,
k±1), Z(ρ, ζ,
k±1),ϕk±1) = fk±1(R(ρ, ζ,
k±1), Z(ρ, ζ,
k±1))

=:(Pk,±�ϕ fk±1)(ρ, ζ ) (20)

which means the transformation from the cylindrical to the transformed coordinate system at neighbouring planes is a two-dimensional 
operation. This is a result of our choice 
 = ϕ . In section 3.3 we will look more closely at how to represent the operations Pk,0 and 
Pk,±�ϕ numerically, given some discrete form of fk(R, Z). Note here that even though Pk,0 = 1 is the identity we formally introduce it 
here to unify the notation in the next section 3.3.

In fact, the transformation operators Pk,±�ϕ and Pk,0 represent the flow generated by b̂/bϕ at various distances from ϕk , the plane 
where the coordinate system originates. In other words they are separate instances of the same underlying pullback operator Pk defined 
in Eq. (18).

In Fig. 4 we plot the effects of Pk,0 and Pk,+�ϕ for the example vector field (53). The initial rectangular grid is transported by the 
field-lines onto the next plane, which clearly deforms and distorts the grid.

Once transformed, it is straightforward to discretize field-aligned derivatives of f . We simply find expressions for the forward (FW), 
backward (BW) and centred (CC) finite differences from Eq. (14)
6
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Fig. 4. Plot of the non-aligned coordinate system Pk,0(R, Z) on the left and the transformed coordinate system Pk,+�ϕ(R, Z) on the right. We use the field defined by 
Eq. (53).

∇ F W‖ Fk := b

k

Fk+1 − Fk

�

(21a)

∇BW‖ Fk := b

k

Fk − Fk−1

�

(21b)

∇CC‖ Fk := b

k

Fk+1 − Fk−1

2�

(21c)

For the divergences we find from Eq. (15)

∇ · (b̂F )F W
k := �k,1b


k+1 Fk+1 − �k,0b

k Fk

�

(22a)

∇ · (b̂F )BW
k := �k,0b


k fk − �k,−1b

k−1 fk−1

�

(22b)

∇ · (b̂F )CC
k := �k,1b


k+1 Fk+1 − �k,−1b

k−1 Fk−1

2�

(22c)

Finally, for the parallel Laplacian defined by Eq. (16) we find

�CC‖ Fk := 1

�
2

[
�k,1/2b


k+1/2b

k+1/2(Fk+1 − Fk) − �k,−1/2b


k−1/2b

k−1/2(Fk − Fk−1)

]
(23)

where we define

�k,l :=
√

Gk+l
√

Gk
(24)√

Gk±1/2 :=0.5
(√

Gk±1 +
√

Gk
)

(25)

b

k±1/2 :=0.5

(
b


k±1 + b

k

)
(26)

Notice that only the relative volume ratios �k,+1 and �k,−1 need to be stored (�k,0 = 1) in favour of the three elements 
√

Gk , 
√

Gk+1 and √
Gk−1. The results are given in the transformed coordinate system (ρ, ζ ), however, with Pk,0 = 1 it is trivial to transform back to the 

original (R, Z). We remark that the suggested expressions for the parallel gradient Eq. (21) were suggested before [31], while the specific 
expressions for the parallel divergence Eq. (15) and the parallel Laplacian Eq. (16) are here presented for the first time. The discretization 
of the Laplacian in Eq. (23) is self-adjoint with respect to the scalar product given by 

√
G , while the divergences (22) are the negative 

adjoints to their respective parallel derivative (21). This is true if we can assume periodicity in 
. For example we have

〈H,∇ · (b̂F )F W 〉 = �

∑

k

Hk∇ · (b̂F )F W
k

√
Gk = −�


∑
k

∇BW‖ Hk

√
Gk = −〈∇BW‖ H, F 〉 (27)

However, this property does not automatically translate to the adjoint with respect to the cylindrical volume element in cylindrical 
coordinates. This is due to the numerical coordinate transformations that we discuss in the next Section 3.3.
7
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3.3. Coordinate transformations

It now remains to devise a suitable discretization of the (R, Z), respectively (ρ, ζ ) planes and in particular find discrete expressions 
for the pullback operators Pk,0 and Pk,±�ϕ . In order to simplify the notation of this section we present our ideas in a one-dimensional 
setting (i.e. for x and transformed coordinate systems X− , X0, X+ corresponding to the three operators Pk,0 and Pk,±�ϕ ) noting that the 
generalization to two dimensions is immediate and directly applicable. The important realization is that there is more than one way to 
discretize these operators. Here, we will present two methods in two variations each to discretize Pk,0 and Pk,±�ϕ that were suggested in 
the literature and that we here present in a generalized setting. The two methods are the “interpolation-method” in Section 3.3.2 and the 
“projection-method” in Section 3.3.3. The variations consist in starting with either a discontinuous Galerkin (dG) or a finite element (FE) 
expansion. To familiarize the reader with these expansions we begin to introduce notation and some preliminary results in Section 3.3.1.

3.3.1. Discontinuous Galerkin and finite element methods
In a discontinuous Galerkin (dG) scheme functions f (x) are represented by [25]

fh(x) =
N∑

n=1

P−1∑
k=0

f̄ nk pnk(x) =
N∑

n=1

P−1∑
k=0

fnklnk(x), (28)

where the polynomials pnk form an orthogonal basis of the space of polynomials of degree P − 1 in cell n, while lnk is the k-th Lagrange 
interpolation polynomial in cell n. The modal values f̄ nk are uniquely related to the nodal values fnq := f (xnq) via the P × P invertible 
Vandermonde matrix V [25] fnq = Vqk f̄ nk with elements Vqk = pk(xnq). We here choose pnk as the Legendre polynomials and xnq as 
the corresponding Legendre-Gauss-Lobatto quadrature points. We have N cells in total with P polynomial coefficients in each cell. The 
Legendre and Lagrange polynomials are related by

lnk(x) =
P−1∑
q=0

pnq(x)
(

V −1)qk
(29)

from where we directly have lnk(xmq) = δn
mδk

q , with the Kronecker δ.
Legendre polynomials are orthogonal in cell Cn: 

∫
Cn

pnq(x)pnk(x)dx = δkqh/(2k + 1). We denote two P × P matrices W and S by

W ij := w jδi j, Sij := h

2i + 1
δi j (30)

With W and S we can write the scalar product between two dG approximated functions∫
fh(x)gh(x)dx = f T(1 ⊗ W )g = f̄

T
(1 ⊗ S) ḡ (31)

where 1 is an N × N identity matrix and we integrate over the entire volume. Thus, S and W are expressions of the metric in modal 
respectively nodal space. It can be shown that

V −1 = S−1 V TW = V † (32)

which shows that the Vandermonde matrix is unitary with the adjoint defined with respect to the metric in nodal and modal space.
Suppose we have a dG discretization as defined in Eq. (28), i.e. a function given on N cells with P polynomial coefficients. We now 

want to divide each cell Cn of the original grid into K equidistant subcells. We use the letter c to denote the original grid as a coarse 
grid with N cells and the letter f to denote the fine grid with K N cells. We denote qml(x) the polynomials on the fine grid and xF

mj
the corresponding Gaussian abscissas. For a discretization fh(x) represented by the vector f c given on the coarse grid, we can simply 
interpolate onto the fine grid via

f F
mj := fh(xF

mj) =
N∑

n=1

P−1∑
k,i=0

pnk(xF
mj)
(

V −1)ki
C f C

ni =:
N∑

n=1

P−1∑
i=0

(Q DG)mj
ni f C

ni (33)

where we implicitly define the special interpolation matrix Q DG , which has K N P lines and N P columns. It transforms vectors given on 
the coarse grid to the fine grid. No information is lost if the number of cells in the fine grid is an integer multiple K of the coarse grid 
and the number of polynomial coefficients in the fine grid is the same or higher: f F and f C represent exactly the same expansion fh(x).

f C (x) =
N∑

n=1

P−1∑
k=0

f̄ nk
C pnk(x) = f F (x) =

K N∑
m=1

P−1∑
l=0

f̄ ml
F qml(x) (34)

This can be seen since the polynomial in each cell is unique.
Vice versa, given an expansion f F (x) on the fine grid, we can compute the projection integrals from the fine grid to the coarse grid.

f̄ nk
C :=

P−1∑
s=0

(
S−1

C

)ks
∫
Cn

f F (x)pns(x)dx (35)

We can show that
8
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f C
nt =

P−1∑
k=0

(V C )tk f̄ nk
C =

K∑
m=1

P−1∑
ksi j=0

(V C )tk

(
S−1

C

)ks
(W F )i j pns

(
xF

mj

)
f F
mi =

K∑
m=1

P−1∑
ksi j=0

(
W −1

C

)
tk

(
V −1

C

)sk
(W F )i j pns

(
xF

mj

)
f F
mi

=
K∑

m=1

P−1∑
ki j=0

(
W −1

C

)
tk

(Q DG)mj
nk (W F ) ji f F

mi =
K∑

m=1

P−1∑
ki j=0

(
W −1

C

)
tk

(
Q T

DG

)nk

mj
(W F ) ji f F

mi

=:
K∑

m=1

P−1∑
i=0

(P DG)nt
mi f F

mi

The first identity is simply evaluating the projection integral on the fine grid using Gauss-Legendre integration and the fact that we have 
the fine expansion f F

mi given. Note here that the polynomial order on the coarse grid may not exceed that of the fine grid as otherwise the 
integration is no longer exact. The second identity uses Eqs. (32) and (33). Note that these relations hold even if the number of polynomial 
coefficients is lower in the coarse and the fine grid. From here we directly conclude that

P DG = Q †
DG = W −1

C Q T
DG W F (36)

i.e. the projection matrix is the adjoint of the interpolation matrix. We can also prove that

P DG ◦ Q DG = 1C (37)

which is a reformulation of Eq. (34), however, Q DG ◦ P DG �= 1. The projection is not loss-free but it conserves the integral value of the 
function on the fine grid.

Instead of a discontinuous Galerkin approach another natural approach is a continuous finite element (FE) discretization, where

fh(x) =
N∑

n=1

fn vn(x) (38)

where vn(x) is the finite element in cell n. For example we can choose triangular elements

vi(x) =

⎧⎪⎨⎪⎩
x−xi−1
xi−xi−1

if xi−1 ≤ x < xi
xi+1−x
xi+1−xi

if xi ≤ x < xi+1

0 else

(39)

A similar result to Eq. (37) can be derived for the finite element expansion. First we note that (W F E )i j := δi j
∫

dxvi(x) = hδi j and (S F E )i j :=
1

w j

∫
dxvi(x)v j(x) = 1

6 [1, 4, 1]i j where the notation [1, 4, 1] denotes a tridiagonal matrix with 4 on the main diagonal. Note that we do 
not show boundary entries or non-equidistant grids for ease of notation here but the definitions hold in general. With similar arguments 
as before we can show that on a “fine” grid resulting from subdividing each cell in a given coarse grid into K equidistant subcells we can 
define

(Q F E) n
m :=vm

(
xF

n

)
(40)

P F E :=W −1
F E,C (Q F E)T W F E,F (41)

and show that

P F E · Q F E = S F E (42)

Notice here the appearance of S F E in contrast to 1C in Eq. (37), which fundamentally is a result of the fact that the finite elements are 
not orthogonal to each other while Legendre polynomials are.

3.3.2. A simple interpolation scheme
A first method to discretize Pk,0 and Pk,±�ϕ is to directly use the dG expansion in Eq. (28). We have

Fh(X±) =Fnklnk (X±)= N∑
n=1

P−1∑
k=0

fh
(
x
(

X±
nk

))
lnk (X±)= N∑

m,n=1

P−1∑
q,k=0

fmqlmq (x (X±
nk

))
lnk (X±)

We now define the interpolation matrix(
I±DG

) mq
nk := lmq (x (X±

nk

))
(43)

which reflects that the transformation from x to X± coordinates is a linear operation as expected. I± is the matrix that corresponds to 
Pk,±�ϕ . Furthermore, we have that Fh(X0) = fh(x(X0)) = fh(X0), i.e. I0 = 1 is the identity corresponding to Pk,0. Note that the order of 
the interpolation is given by the order P of the polynomials in use.

In the case of a finite element expansion Eq. (38) the transformation operator reads(
I±F E

) m
n := vm (x (X±

n

))
(44)
9
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If we choose triangular elements Eq. (39) we have a linear interpolation while for constant elements we have a first order nearest 
neighbour interpolation. The piecewise constant elements are identical to a dG approximation with P = 1. We also implemented a cubic 
interpolation scheme for comparison. In all above cases we have

F ± = I± f (45a)

F 0 = f (45b)

The dG interpolation matrix (43) coincides with the one proposed in [16] while the finite element interpolation in Eq. (44) reproduces the 
results in [18,19].

3.3.3. A projection scheme
There is a second method of numerical coordinate transformation that comes naturally in a finite element setting, which is to compute 

the projection integrals over the finite elements in the transformed coordinate system. We can write in the transformed coordinate system

F̄ nk :=
P−1∑
s=0

(
S−1)ks

∫
Cn

Fh
(

X±) pns
(

X±)dX± =
P−1∑
s=0

(
S−1)ks

∫
Cn

fh
(
x
(

X±)) pns
(

X±)dX± (46)

Since we are only able to compute the coordinate transformation numerically we have to resort to a numerical integration scheme. First, 
we realize that the above expression is completely analogous to Eq. (35) if Fh(X±) was an expansion on a fine grid. To obtain such an 
expansion we again divide each cell Cn into K equidistant subcells and approximate

Fh(X±) =
K N∑

n=1

P−1∑
k=0

F F
nklnk

F

(
X±)= K N∑

n=1

P−1∑
k=0

fh

(
X±

F ,nk

)
lnk
F

(
X±)= K N∑

n=1

N∑
m=1

P−1∑
qk=0

fmqlmq
(

x
(

X±
F ,nk

))
lnl
F

(
X±) (47)

We can define(
I±DG,F

) mq

nk
:= lmq

(
x
(

X±
F ,nk

))
(48)

as the interpolation matrix that interpolates a vector given on a coarse grid in x to a fine grid on X± . X±
F ,nk are the Legendre-Gauss-

Lobatto quadrature points in the fine grid. The fine interpolation matrix I±DG,F has P N K rows and P N columns whereas I±DG has P N rows 
and columns.

Inserting Eq. (47) back into Eq. (46) we thus arrive at the transformation

F ± = P DG I±DG,F f (49a)

F 0 = P DG Q DG f = f (49b)

For the finite element discretization we have a similar result

F ± = S−1
F E P F E I±F E,F f (50a)

F 0 = S−1
F E P F E Q F E f = f (50b)

The necessary inversion S−1
F E is the main downside of the FE method compared to the dG method as it requires the implementation of an 

efficient and dedicated inversion algorithm.
However, a major realization in the development of the three-dimensional advection schemes is to approximate S−1

F E ≈ 1 and use

F ± := P F E I±F E,F f (51a)

F 0 := P F E Q F E f = S F E f (51b)

Here, we realize that S F E effectively is a smoothing operator (it computes the convolution of fh(x) with the “window functions” vi(x)). 
It turns out that this smoothing leads to a slight perpendicular diffusion that helps to improve stability in the resulting scheme that we 
present in Section 4. Eq. (51) is thus preferrable to use over Eq. (50).

3.4. Discussion

In summary we have derived discretizations for Pk,0 and Pk,±�ϕ in Eqs. (43) and (49) for the dG expansion as well as Eqs. (44) and 
(51) for the FE expansion. Each of those expansions can yield various order methods, for example by varying P in the dG expansion we 
arrive at a P -th order discretization or by changing linear finite elements to cubic finite elements we arrive at a third order method for 
the FE expansion.

Still, it is possible to construct further discretizations. We could, for example, mix various interpolation and projection schemes in 
Eq. (51) and use a linear interpolation to the fine grid and project the result on dG polynomials on the coarse grid. We explored those 
options but found no fundamental changes in the behaviour of the results compared to the original suggestions. The only option we use 
in practice is to project on piecewise constant elements when we use linear interpolation, which we denote by (cFE). The effect this has 
is (ScF E )i j ≡ (PcF E Q F E )i j = [1/8, 6/8, 1/8], which is slightly less diffusive than S F E . Replacing the linear FE projection P F E with constant 
projection PcF E and S F E with ScF E in the transformation (51) we recover the projection method proposed in [32]. Eqs. (49) and Eqs. (50)
are newly derived here.

In the remaining text we will first convince the reader that the various discretization schemes discussed so far do converge in Sec-
tion 3.5, while we will study which discretization is optimal in a parallel advection scheme in Section 5.
10
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Table 1
Convergence Table for K = 1 and NR = N Z = N with testfunction (54) and error definition (55), using the dG interpolation 
Eq. (43).

∇CC‖ Eq. (21c) ∇ · (b̂ f )CC Eq. (22c) �CC‖ Eq. (23)
∫

dV ∇ · (b̂ f )CC
∫

dV �CC‖ f

error order error order error order error order error order
N Nϕ

10 5 8.01e-01 n/a 8.07e-01 n/a 4.95e-01 n/a -7.01e-07 n/a 9.93e-07 n/a
16 10 2.74e-01 1.55 2.79e-01 1.53 1.56e-01 1.67 6.03e-08 3.54 2.06e-08 5.59
26 20 7.45e-02 1.88 7.59e-02 1.88 4.15e-02 1.91 -1.70e-07 -1.49 -2.13e-07 -3.37
40 40 1.90e-02 1.97 1.94e-02 1.97 1.05e-02 1.98 7.85e-08 1.11 -2.79e-07 -0.39
64 80 4.78e-03 1.99 4.88e-03 1.99 2.64e-03 1.99 -1.56e-08 2.33 3.74e-08 2.90

Table 2
Convergence Table for K = 12 and NR = N Z = N with testfunction (54) and error definition (55), using the dG projection 
Eq. (49).

∇CC‖ Eq. (21c) ∇ · (b̂ f )CC Eq. (22c) �CC‖ Eq. (23)
∫

dV ∇ · (b̂ f )CC
∫

dV �CC‖ f

error order error order error order error order error order
N Nϕ

10 5 8.01e-01 n/a 8.07e-01 n/a 4.95e-01 n/a 3.03e-07 n/a 8.86e-08 n/a
16 10 2.74e-01 1.55 2.79e-01 1.53 1.56e-01 1.67 5.10e-09 5.89 -4.57e-09 4.28
26 20 7.45e-02 1.88 7.59e-02 1.88 4.15e-02 1.91 -5.00e-10 3.35 1.48e-09 1.62
40 40 1.90e-02 1.97 1.94e-02 1.97 1.05e-02 1.98 -3.26e-10 0.62 -7.57e-10 0.97
64 80 4.78e-03 1.99 4.88e-03 1.99 2.64e-03 1.99 2.49e-09 -2.94 8.40e-10 -0.15

3.5. Numerical verification of convergence in an example magnetic field

Having developed all ingredients of the FCI scheme we can now proceed to a first numerical test. We choose an axisymmetric magnetic 
field given by

B = R0

R
(I(ψp)êϕ + ∇ψp × êϕ) (52)

which gives rise to a unit vector field b̂ = B/B with B = R0
R

√
I2 + (∇ψp

)2
. Note that the symmetry makes the transformation operators 

Pk,0 and Pk,±�ϕ independent of k but is no necessity for the scheme to work.
A simple choice for the flux function that makes field-lines stay inside a square box (which allows us to avoid boundary conditions for 

now) is [33]

ψp = cos(π(R − R0)/2) cos(π Z/2) I = I0 (53)

with I0 = 10 and R0 = 3. We set up a domain [R0 − 1, R0 + 1] × [−1, 1] × [0, 2π ] and construct a testfunction

f (R, Z ,ϕ) = exp(R − R0)exp(Z) cos2(ϕ) (54)

With the given identities we can analytically compute ∇‖ f , �‖ f and ∇ · (b̂ f ) and thus test the proposed discretizations. We compute 
relative errors using

ε := ||gana − gnum||
||gana|| (55)

for any analytical result function gana and numerical result gnum. The norm is given by the L2-norm ||g||2 := ∫ dV g2

In Tables 1, 2 and 3 we show resulting errors ε for increasing numbers of Nϕ = N
 . From two consecutive errors we can compute an 
order of the method via

O := − ln
(
ε(Nϕ,1)/ε(Nϕ,2)

)
ln
(
Nϕ,1/Nϕ,2

) (56)

The first Table 1 is based on the simple interpolation matrix using the discontinuous Galerkin scheme presented in Eq. (43) inserted 
in centered differences. The order of the discretizations for ∇‖ f , �‖ f and ∇ · (b̂ f ) is almost exactly 2 for all resolutions. In the last two 
columns we show the volume integrals for ∇ · (b̂ f ) and �‖ f . Analytically the volume integrals should be zero as the boundary is aligned 
with the vector field. We thus normalize the error ε with || f || instead of ||gana|| to avoid division by zero. As can be seen, the volume 
error is between 10−7 and 10−8 for all resolutions and there is no convergence order discernible.

The next Table 2 shows the same tests for the projection method given in Eq. (49). Comparing Table 1 with 2 shows no difference 
between the interpolation and the projection method regarding the errors and orders of ∇‖ f , �‖ f and ∇ · (b̂ f ). However, the volume 
conservation is almost two orders of magnitude better for the projection method than for the interpolation method.

In the last Table 3 we show results for the finite element projection method given by Eq. (51) again with K = 12. Convergence of order 
two is again almost perfectly reached for ∇‖ f and ∇ · (b̂ f ) and �‖ f . In fact, the errors and orders are almost entirely equal to the dG 
test, which may be because our test function (54) does not vary quickly across the R and Z coordinates such that both the dG and the 
linear interpolation errors are negligible. The volume conservation is generally worse than for the dG scheme especially for �‖ .
11
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Table 3
Convergence Table for K = 12, NR = N Z = N with testfunction (54) and error definition (55) using the finite element projection 
method Eq. (51).

∇CC‖ Eq. (21c) ∇ · (b̂ f )CC Eq. (22c) �CC‖ Eq. (23)
∫

dV ∇ · (b̂ f )CC
∫

dV �CC‖ f

error order error order error order error order error order
N Nϕ

8 5 8.01e-01 n/a 8.07e-01 n/a 4.96e-01 n/a 2.03e-05 n/a -1.16e-05 n/a
15 10 2.74e-01 1.55 2.79e-01 1.53 1.56e-01 1.67 1.15e-06 4.14 -5.74e-07 4.34
30 20 7.45e-02 1.88 7.60e-02 1.88 4.15e-02 1.91 -3.99e-08 4.85 1.55e-06 -1.43
60 40 1.90e-02 1.97 1.94e-02 1.97 1.05e-02 1.98 1.99e-08 1.00 -1.76e-06 -0.19
120 80 4.78e-03 1.99 4.88e-03 1.99 2.65e-03 1.99 -3.57e-09 2.48 1.24e-06 0.50

Further tests reveal that care must be taken for sufficient resolution in N . Compared to the dG results we use an increased number 
of cells N . This is because linear interpolation is only order two while the dG interpolation converges with third order. Note that a linear 
interpolation (44) (table shown in accompanying dataset) shows similar order 2 convergence but worse volume conservation than the 
projection scheme as expected.

4. Parallel advection schemes

We have now derived all ingredients necessary to elevate our one-dimensional finite-volume discretization to three dimensions. There 
are two ways of achieving this: the “value-centred” approach and the “flux-centred” approach. We will in this section only show the 
formulation of the “velocity-staggered” scheme (10). The formulation for the “staggered” scheme (6) is analogous.

4.1. Field-aligned finite volumes

Before we begin to show the two approaches we first explicitly make the connection between the three-dimensional finite volumes and 
the projection scheme we derived in Section 3.3. We begin by constructing a locally aligned finite element Plk(ρ, ζ, 
) := pl(ρ, ζ )�k(
)

as the finite element (either dG or linear finite element) in the k-th field-aligned coordinate system. pl(ρ, ζ ) is constant along the field-
line, while �k(
) = 1 for ϕk − �ϕ/2 ≤ 
 ≤ ϕk + �ϕ/2 and zero elsewhere. We denote Slkmq = ∫Ck

Plk Pmqdρdζd
 = �ϕδkq
∫

pl pmdρdζ . 
We start with the continuity equation ∂tn = −∇ · (b̂un), multiply by Plk and integrate over the volume to get∫

∂n

∂t
(ρ, ζ,
, t)PlkdV = −

∫
Plk∇ · (b̂un)dV = −

∫
∇ · (b̂Plkun)dV =

[∫
Plkq̂b̂ · dA

]
=ϕk+�ϕ/2


=ϕk−�ϕ/2

=
[∫ √

Gb
plq̂dρdζ

]
=ϕk+�ϕ/2


=ϕk−�ϕ/2

where [ f ]b
a := f (b) − f (a). We use that Plk is field-aligned and its parallel derivative vanishes inside the cell. Further, q̂ is the chosen 

flux on the cell boundary. Now, we assume that n =∑Nϕ

k=1

∑
l n̄mq Pmq and further assume that the volume form 

√
G and b
 do not vary 

strongly inside the chosen volume such that we have

Nϕ∑
k=1

∑
l

Slkmq

√
G(
k)n̄

mq =
[√

Gb


∫
plq̂dρdζ

]
=ϕk+�ϕ/2


=ϕk−�ϕ/2
(57)

Now, there are two possibilities on how q̂ is given. Either, q̂ is computed inside the field-aligned system, which yields q̂ = q̂kl pkl and 
thus Eq. (57) simplifies to the expression of the divergence in Eq. (22c). This will be the case for the “value-centred” approach discussed 
in Section 4.2. The other possibility is that q̂ is given in cylindrical coordinates (R, Z) and thus has to be transformed to field-aligned 
coordinates. Then Eq. (57) is also an expression for Eq. (22c) but this time we have to compute the projection integral numerically with 
the help of the methods described in Section 3.3.3. We call this method the “flux-centred” approach in Section 4.3.

Note that moving the volume and magnetic field out of the integral in Eq. (57) simplifies our approach since the projection integrals 
can be easily computed. However, this introduces an error in the exact (mass) conservation of the scheme that we consider small from 
the Tables 2 and 3 but prevents us from reaching machine precision.

4.2. Value-centred approach

The main idea of the “value-centred” approach is to first transform all quantities to the locally field-aligned coordinate system and then 
compute the entire one-dimensional scheme in the transformed coordinates. We have to do this twice, once for the coordinate system 
centred on k associated with the density equation (10a) and once for the coordinate system centred on the plane k + 1/2 associated with 
the velocity equation (10b). We call this approach “value-centred” because the values nk(R, Z) and uk+1/2(R, Z) are associated with these 
planes.

Care must be taken as we need to integrate the field-lines not only to construct Pk,+�ϕ and Pk,−�ϕ , but also to transform between 
the half planes halfway between the original planes ϕk+1/2 with Pk,+�ϕ/2 and Pk,−�ϕ/2. We denote quantities transformed into the 
coordinate system centred on k as
12
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n̄k−2 = Pk,−2�ϕnk−2, n̄k−1 = Pk,−�ϕnk−1, n̄k = Pk,0nk, n̄k+1 = Pk,+�ϕnk+1, n̄k+2 = Pk,+2�ϕnk+2

ūk−1/2 = Pk,−�ϕ/2uk−1/2, ūk+1/2 = Pk,+�ϕ/2uk+1/2 (58)

With these definitions we can discretize the continuity equation by

d

dt
nk = − �̄k,1/2b̄ϕ

k+1/2q̄k+1/2 − �̄k,−1/2b̄ϕ
k−1/2q̄k−1/2

�ϕ
(59)

where the right hand side is a discretization of the divergence similar to Eq. (22c). We have �̄k,±1/2 and b̄ϕ
k±1/2 as the volume form ratio 

and the contravariant ϕ component of b̂ on the half planes and

q̄k+1/2 := ūk+1/2

{
n̄k + 1

2 �(�n̄k+1,�n̄k) if ūk+1/2 ≥ 0

n̄k+1 − 1
2 �(�n̄k+2,�n̄k+1) if ūk+1/2 < 0

(60)

Next, we denote quantities transformed into the coordinate system centred on the half plane k + 1/2 as

ũk−3/2 = Pk+1/2,−2�ϕuk−3/2, ũk−1/2 = Pk+1/2,−�ϕuk−1/2,

ũk+1/2 = Pk+1/2,0uk+1/2, ũk+3/2 = Pk+1/2,+�ϕuk+3/2, ũk+5/2 = Pk+1/2,+2�ϕuk+5/2

ñk = Pk+1/2,−�ϕ/2nk, ñk+1 = Pk+1/2,+�ϕ/2nk+1 (61)

Note that the pullback Pk+1/2 is different from Pk in general. Only in the special case of an axisymmetric b̂ = b̂(R, Z) we have Pk+1/2 ≡
Pk . We arrive at the velocity equation

d

dt
uk+1/2 = − bϕ

k+1/2

�ϕ

(
f̃k+1 − f̃k

)− bϕ
k+1/2

�ϕ

[(̃
nk+1 − ñk

) 1

2

(
1

ñk+1
+ 1

ñk

)]
+νu

2

ñk+1 + ñk

�̃k+1/2,1/2̃bϕ
k+1̃bϕ

k+1(̃uk+3/2 − ũk+1/2) − �̃k+1/2,−1/2̃bϕ
k b̃ϕ

k (̃uk+1/2 − ũk−1/2)

�ϕ2
(62)

Note that the first term on the right hand side is a centred discretization of the parallel gradient similar to Eq. (21c). Similarly, the second 
term on the right hand side is a centred discretization for (∇‖n)/n, while the last term represents νu�‖u/n according to (23). With 
ũk := 0.5(̃uk+1/2 + ũk−1/2) the flux is discretized according to

f̃k := 1

2
ũk

{
ũk−1/2 + 1

2 �
(
�ũk+1/2,�ũk−1/2

)
if ũk ≥ 0

ũk+1/2 − 1
2 �
(
�ũk+3/2,�ũk+1/2

)
if ũk < 0

(63)

4.3. Flux-centred approach

A second possibility is to first centre the coordinate system on the fluxes and then in a second step centre on the value for the 
time-derivative. First, with the definitions (61) we compute the fluxes on the flux-centred grids:

q̃k+1/2 := ũk+1/2

{̃
nk + 1

2 �
(
�ñk+1,�ñk

)
if ũk+1/2 ≥ 0

ñk+1 − 1
2 �
(
�ñk+2,�ñk+1

)
if ũk+1/2 < 0

(64)

f̄k := 1

2
ūk

{
ūk−1/2 + 1

2 �
(
�ūk+1/2,�ūk−1/2

)
if ūk ≥ 0

ūk+1/2 − 1
2 �
(
�ūk+3/2,�ūk+1/2

)
if ūk < 0

(65)

with

ūk =1

2

(
ūk−1/2 + ūk+1/2

)
(66)

Then, in a second step we transform to the “value-centred” grids via

q̄k+1/2 := Pk,+�ϕ/2̃qk+1/2, q̄k−1/2 := Pk,−�ϕ/2̃qk−1/2, f̃k+1 := Pk+1/2,+�ϕ/2 f̄k+1, f̃k := Pk+1/2,−�ϕ/2 f̄k (67)

We can then insert these fluxes back into Eqs. (59) and (62).

5. Numerical solutions of the three-dimensional Navier-Stokes equations

In this section we present an extensive numerical study of the novel finite volume flux coordinate independent approach (FV-FCI) 
proposed in this work. Our parallel implementation of the FV-FCI approach resides in the Feltor library as outlined in Appendix C. The 
study is somewhat complicated by the fact that there are many combinations that we could use to construct a final scheme. In Fig. 5
we graphically represent the decision flow. We here restrict ourselves to (i) using either the “staggered” (6) or “velocity-staggered” (10)
scheme in 1d that we elevate to 3d using (ii) either the “value-centred” 4.2 or “flux-centred” 4.3 approach combined with (iii) either 
the dG (49) or linear finite element (51) projection operators for instances of Pk and Pk+1/2. We already here discard the interpolation 
methods (43) and (44) as they are generally unstable in the tests that we performed. In the projection method we use K = 12 cells 
generally. We tested K = 6 as well and found no significant differences. As time integrator we use a Bogacki-Shampine explicit adaptive 
Runge-Kutta of third order [29].
13
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Start staggered (6)

velocity-staggered (10)

staggered direct (82)

1d advection scheme

value-centred 4.2

flux-centred 4.3

3d elevation

dG projection (49)

linear FE projection (51)

dG interpolation (43) (unstable)

FE interpolation (44) (unstable)

Transformation Pk , Pk+1/2

Finish

Fig. 5. Flow chart of the schemes constructed in this paper. Each path through the graph represents a scheme. The “staggered-direct” scheme is discussed later in the text.

5.1. Mass, momentum and energy conservation

Before we start to test our scheme we derive the invariants of the original equations (1) that we can use as a quality measure for our 
implementation. We define mass M , momentum P and energy E:

M(t) :=
∫

ndV (68a)

P (t) :=
∫

nudV (68b)

E(t) :=
∫ [

n ln n + 1

2
nu2
]

dV (68c)

where dV = RdRdZdϕ and we integrate the entire simulation domain. We can then derive

d

dt
M = 0 (69a)

d

dt
P = −

∫
dV∇‖n =

∫
dVn∇ · b̂ (69b)

d

dt
E = −

∫
dVν(∇‖u)2 (69c)

The mass is invariant, as is energy for vanishing viscosity ν = 0. The total momentum is not conserved unless the divergence of b̂ vanishes. 
If the equations are related to plasma physics, the term n∇ · b̂ signifies the mirror force. We here disregard surface terms, which is possible 
if the field-lines do not intersect the domain boundary as is the case for our example field (53).

We can thus use M , P and E to define a measure of quality for our schemes

εM := M(t0) − M(t1)

M(t0)
(70)

aP :=P (t0) − P (t1) −
t1∫

t0

dt

∫
dV ∇‖n (71)

εE := 1

|E(t0)|

⎡⎣E(t0) − E(t1) −
t1∫

t0

dt

∫
dVν(∇‖u)2

⎤⎦ (72)

In Eq. (72) we divide by the absolute of the initial energy density as E(t0) may be negative. Note that positive εM signify a decrease in 
total mass whereas negative εM signify an increase and analogous aP and εE for momentum and energy.

5.2. Field aligned initialization

An important aspect of our simulations is a judicious initialization of the fields. We want structures to be field-aligned in the beginning 
of the simulation with a possible modulation along the direction of the field line. This means that in a field-aligned coordinate system our 
initial function reads
14



Fig. 6. Gaussian initial condition modulated with a double step function Eq. (75). Density n in the R-Z plane at ϕ = 0 (left) and along a single field-line starting at 
(R, Z , ϕ) = (3.5, 0, 0) (right). The initial velocity u is zero.

F0(ρ, ζ,
) = F inv(ρ, ζ )S(
), (73)

where F inv(ρ, ζ ) is a function that is invariant under the field line transformations. We call S(
) the modulation function along a field-
line. The initial function in cylindrical coordinates can then be obtained using the push-forward

f0(R, Z ,ϕ) = F0(ρ(R, Z ,ϕ), ζ(R, Z ,ϕ),
(ϕ)) (74)

5.3. Purely advection scheme

We now test our proposed schemes on a Gaussian initial profile modulated with a double step function according to Eq. (73) with zero 
initial velocity u:

n(ρ, ζ,
,0) = nGauss(ρ, ζ )Sstep(
) u(ρ, ζ,
,0) = 0 (75)

with

nGauss(R, Z) :=n0 + A exp

(
− (R − R0)

2 + Z 2

2σ 2

)
(76)

Sstep(
) :=

⎧⎪⎨⎪⎩
0.5 if − π < 
 < 0

1 if 0 ≤ 
 < π

0 else

(77)

using n0 = 0.2, (R0, Z0) = (3.5, 0), A = 1 and σ = 0.15. This initial condition is shown in Fig. 6. On the left side we show the density 
in the R-Z plane at ϕ = 0 and on the right we show the density along a single field-line that passes through (R, Z) = (3.5, 0) at ϕ = 0. 
There are slight fluctuations in the density along the field-line. These originate in interpolation errors as the field-line passes in between 
grid points on the various planes. The grid resolution is 96 × 96 × 50 in (R, Z , ϕ).

In Fig. 7 we show the result of the “staggered” scheme (6) elevated with the “value-centred” approach 4.2 using the linear FE projection 
method Eq. (51) for the transformation operators. We do not use a slope-limiter. The result is shown at T = 20. In the top row we show 
the density, again in the R-Z plane on the left and along the field-line starting at (R, Z , ϕ) = (3.5, 0, 0) on the right side. The bottom row 
shows the velocity in the same manner. As can be seen in the density on the top left plot and the velocity in the bottom left plot the 
initial condition traveled in the periodic ϕ direction and re-appears in the ϕ = 0 plane three times: two times in the positive 
 direction 
and one time in the negative direction. Since the magnetic field b̂ is sheared (see Fig. 3), the original round shape is lost in favour of 
“half-moon” shapes. These were also observed in studies of the heat conduction equation [16]. In the field-line plot of the density we see 
slight oscillations appear that may again be attributed to interpolation errors. Finally, in the bottom right plot we also show the relative 
mass, momentum and energy errors (70) and (72).

These same errors can be compared to Fig. 8, where we show the same plots as in Fig. 7 but for the “flux-centred” approach 4.3. The 
density and velocity plots are visually indistinguishable but the mass conservation is more than three orders of magnitudes better and 
the momentum conservation by a factor 10. This shows that the “flux-centred” approach is superior to the “value-centred” approach from 
the point of view of mass- and momentum-conservation. The energy error does not improve. In order to rule out errors from the time 
discretization we repeated our simulations with more timesteps but found no differences to the results presented here. This shows that 
energy is not as well conserved by the scheme as the mass and momentum are.

Finally, in Fig. 9 we show the same plots again; this time for the dG projection method (49), the “staggered” scheme (6) and the “flux-
centred” approach 4.3. The 96 grid points in R and Z are now split into 32 cells with 3 polynomial coefficients each in each direction. 
The polynomial projection method is plagued by spurious oscillations in both the R-Z plane as well as along the magnetic field-line, 
especially in the density. Furthermore, the mass conservation is inferior to the linear FE projection method in Fig. 8. In addition, it is 
negative showing that there is a slight increase in mass compared to the initial mass.

This shows in fact the major issue of using the dG projection as proposed in Eq. (49). Oscillations pollute and destabilize the sim-
ulations. For example, the present simulation crashed at around T = 23 for the dG scheme, while it continues smoothly for the finite 
M. Wiesenberger and M. Held Computer Physics Communications 291 (2023) 108838
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Fig. 7. Density n (top) and velocity u (bottom) in the R-Z plane at ϕ = 0 (left column) and along a single field-line starting at (R, Z , ϕ) = (3.5, 0, 0) (right column). 
Gaussian initial condition (75), “staggered” scheme (6) elevated with the “value-centred” approach 4.2 using the linear FE projection method Eq. (51) with K = 12. Resolution 
96 × 96 × 50 grid points. T = 20, νu = 0. The box in the bottom right plot shows the relative mass error εM (70), the absolute momentum error aP (71) and the relative 
energy error εE (72).

Fig. 8. Same as Fig. 7 but for “flux-centred” approach 4.3 instead of “value-centred”.
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Fig. 9. Density n (top) and velocity u (bottom) in the R-Z plane at ϕ = 0 (left column) and along a single field-line starting at (R, Z , ϕ) = (3.5, 0, 0) (right column). Gaussian 
initial condition (75), “staggered” scheme (6) elevated with the “flux-centred” approach 4.3 using the dG projection method Eq. (49) with K = 12. Resolution 96 × 96 × 50
grid points (split into 32 cells with P = 3 in each cell in R and Z ). T = 20, νu = 0. The box in the bottom right plot shows the relative mass error εM (70), the absolute 
momentum error aP (71) and the relative energy error εE (72). Oscillations appear.

element method (51). It should also be pointed out that the interpolation scheme (43) violently crashes at around T = 3. Oscillations were 
previously observed for the heat conduction equation using the dG interpolation in the parallel Laplacian [16].

However, it is too naive to conclude that the dG projection method is inferior in general to the linear FE projection method. In fact, 
the reason why the linear method performs better lies in neglecting the back-transformation S−1

F E in Eq. (51). If we use the “correct” 
transformation in Eq. (50), the simulations crash just as the dG method does. The reason Eq. (51) is more stable is most easily seen in the 
operator S F E itself, which can be interpreted as a convolution operator and thus a smoothing operator. It is crucial to realize that it is the 
smoothing introduced by S F E that makes the linear finite element scheme stable.

We have investigated smoothers that integrate well with the dG projection method but found no method superior to directly using the 
linear FE projection method. We point out here that even if a dG discretization is given the linear projection method can still be used with 
a simple intermediate step. The dG polynomials can be interpolated to an equidistant grid after which the linear method can be applied. 
In the end the result can be inversely transformed back to a dG discretization.

We have further studied slope-limiters [24] and adaptive median filter techniques for removing impulse noise from corrupted im-
ages [34] but found that these methods either do not integrate well with an adaptive timestepper or overdampen the solution too much. 
For the rest of this numerical study we will thus always use the linear FE projection method with K = 12.

5.4. A shock in the perpendicular plane

The smoothing operator S F E stabilizes the scheme against spurious oscillations but in some situations this can be insufficient as well. 
Consider now the “circle” initial condition modulated again with a double step function according to Eq. (73)

n(ρ, ζ,
,0) = ncircle(ρ, ζ )Sstep(
) u(ρ, ζ,
,0) = 0 (78)

with Sstep given by Eq. (77) and

ncircle(R, Z) := n0 + A

{
1 if (R − R0)

2 − (Z − Z0)
2 < σ 2

0 else
(79)

using n0 = 0.2, (R0, Z0) = (3.5, 0), A = 1 and σ = 0.1. This initial condition is shown in Fig. 10 and introduces a step in the R-Z plane. 
We use the staggered scheme (6) in the “value-centred” approach 4.2 with the linear FE projection method (51). The result at T = 30 is 
shown in Fig. 11. As is visible the intitial step function travels twice in the periodic ϕ direction (i.e. 4π in both positive and negative ϕ
direction). The initial circle is visible as four half moons in the density and velocity plots. Strong oscillations appear, in particular in the 
density. The oscillations do not disappear even for higher resolution.
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Fig. 10. Circle initial condition modulated with a double step function Eq. (78). Density n in the R-Z plane at ϕ = 0 (left) and along a single field-line starting at (R, Z , ϕ) =
(3.5, 0, 0) (right). The initial velocity u is zero.

Fig. 11. Density n (top) and velocity u (bottom) in the R-Z plane at ϕ = 0 (left column) and along a single field-line starting at (R, Z , ϕ) = (3.5, 0, 0) (right column). 
Circle initial condition (78), “staggered” scheme (6) elevated with the “value-centred” approach 4.2 using the linear FE projection method Eq. (51) with K = 12. Resolution 
96 × 96 × 50 grid points. T = 30, νu = 0. The box in the bottom right plot shows the relative mass error εM (70), the absolute momentum error aP (71) and the relative 
energy error εE (72). Oscillations appear especially along the field-lines in the density.

5.5. A problem in the parallel derivative

In order to elucidate the origin of these oscillations we now consider the parallel derivative |∇‖n|/n of the circle initial condition (78). 
Analytically, the parallel derivative of an exactly field-aligned function should be zero. However, numerically the interpolation at or very 
close to the step in the R-Z plane (i.e. (R − R0)

2 + (Z − Z0)
2 ≈ σ 2) is necessarily incorrect, as the step cannot be resolved by either linear 

or dG polynomials. This can be seen for example for the dG projection method in Fig. 12 (left). Strong oscillations around the step appear 
likely due to the oscillatory nature of polynomials. However, these oscillations never vanish even for higher resolution or simple linear 
interpolation as seen in Fig. 12 (right). Since the density gradient directly appears in the momentum equation (1b) the oscillations will 
always be present in the simulations and the smoothing operator S F E is not strong enough to dampen them.
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Fig. 12. The toroidally averaged parallel derivative of the circle initial condition (78) using the dG projection method Eq. (49) with NR = N Z = 96, Nϕ = 20 with P = 3
polynomial coefficients and K = 12 (left) and a linear interpolation Eq. (44) with NR = N Z = 180, Nϕ = 20 (right). Analytically, the result should be zero except at the two 
black ovals. Strong oscillations originating from the interpolation scheme are visible.

5.6. Advection-diffusion system

Any sharp enough gradient in the simulation domain may lead to oscillations and/or a crash of the simulation. A possible remedy 
is to introduce a perpendicular diffusion term of the form ν⊥,n�R Z n into the density equation (1a) and analogously ν⊥,u�R Z u into the 
momentum equation (1b). Here we denote �R Z n := ∂R(R∂Rn)/R + ∂2

Z n. Our tests show that this form of stabilization does indeed dampen 
oscillations. The issue is however that typically the R-Z plane is much higher resolved than the ϕ direction. This after all was one of the 
motivations to use the FCI scheme in the first place. The amount of diffusion needed is typically so high that the CFL condition severely 
suffers from adding the term at least in an explicit timestepper. Even in an implicit timestepper, the high resolution in R and Z together 
with a large diffusion coefficient can lead to an unnecessarily high condition number of the implicit equation.

This is why we here prefer the second method, which is to use parallel diffusion to stabilize the scheme. We already have the viscosity 
νu�‖u as part of Eq. (1b). It turns out, however, that density diffusion is equally needed to ensure stability. We therefore add a parallel 
diffusion operator νn�‖n to the density Eq. (1a). It is important for energetic consistency that diffusion in the density equation entails a 
corresponding term in the momentum equation in order to avoid unphysical generation of energy. We follow Reference [35] and propose

∂

∂t
n + ∇ ·

(
nub̂

)
= νn�‖n (80a)

∂

∂t
(nu) + ∇ ·

(
nu2b̂

)
= −∇‖n + νu�‖u + νn∇ · (ub̂∇‖n) (80b)

The additional term proportional to νn in the momentum equation (80b) is simply the advection of velocity by the density diffusion 
current jn = −νn∇‖nb̂. Numerically, we therefore propose an upwind scheme with jn as the “velocity” as a discretization. The velocity 
formulation then reads

∂

∂t
u + u∇‖u = −∇‖n + νu

�‖u

n
+ νn

∇‖n

n
∇‖u

Eqs. (80) do not change the mass and momentum conservation from Eqs. (69a) and (69b) but change the energy conservation (69c) to

d

dt
E = −

∫
νu(∇‖u)2 + νn

(∇‖n)2

n
dV (81)

Both viscosity and density diffusion terms are quadratic and therefore dissipate energy.
Since we now have parallel diffusion we can use the “velocity-staggered” scheme (10) to discretize Eqs. (80) in velocity formulation. 

We use νn = νu = 0.2. In Fig. 13 we show the result for the circle initial condition (78), the “flux-centred” approach 4.3 and the linear FE 
projection method (51). We find that the oscillations are absent from the density and velocity plots and that the mass conservation is still 
at a high level.

In order to compare the conservation properties of the various scheme combinations presented in this paper we now plot the mass, 
momentum and energy conservation as a function of time. To compare to existing literature we implemented the finite difference approach 
proposed in Reference [4]. Here, the logarithm of the density is integrated. In 1d the scheme reads

qk+1/2 := 1

�x
uk+1/2((ln n)k+1 − (ln n)k), uk := 1

2
(uk+1/2 + uk−1/2)

d
(ln n)k = − 1

(uk+1/2 − uk−1/2) − 1 (
qk+1/2 + qk−1/2

)+ νn
1

2

(
nk+1 − 2nk + nk−1

)
(82a)
dt �x 2 nk�x
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Fig. 13. Simulation of Eqs. (80) in velocity formulation with diffusion coefficients νu = νn = 0.2. Density n (top) and velocity u (bottom) in the R-Z plane at ϕ = 0 (left 
column) and along a single field-line starting at (R, Z , ϕ) = (3.5, 0, 0) (right column). Circle initial condition (78), “velocity-staggered” scheme (10) elevated with the “flux-
centred” approach 4.3 using the linear FE projection method Eq. (51) with K = 12. Resolution 150 × 150 × 20 grid points. T = 40. The box in the bottom right plot shows 
the relative mass error εM (70), the absolute momentum error aP (71) and the relative energy error εE (72).

d

dt
uk+1/2 = − 1

�x
uk+1/2(uk+1 − uk) − 1

�x
((ln n)k+1 − (ln n)k) + νu

1

�x2

(
uk+3/2 − 2uk+1/2 + uk−1/2

)
(82b)

We call this scheme the “staggered-direct” scheme. The elevation to 3d uses the “flux-centred” approach in the sense that we directly use 
Eqs. (59) (applied to ln n) and (61) to compute the “fluxes” qk+1/2 and uk and in a second step transform to the value-centred grids as in 
Eq. (67). As this is not a finite volume scheme qk+1/2 and uk are not technically fluxes, however. The scheme is unstable without diffusion.

We plot the mass (left), momentum (middle) and energy (right) conservation as a function of time for the “velocity-staggered” scheme 
in both “value-centred” and “flux-centred” variants and compare the “staggered-direct” scheme in Fig. 14. In the left panel we can confirm 
again that the “flux-centred” transformation has the best mass conservative properties and is four to five orders of magnitude better than 
the “staggered-direct” scheme. The “value-centred” approach is about a factor 10 better than the “staggered-direct” scheme. It should 
also be noted that values for εM for the “staggered-direct” scheme are negative. This means that the scheme gains mass, while all other 
schemes dissipate mass. The non-conservative and mass-generating properties of the “staggered-direct” scheme can also be reproduced in 
one-dimensional tests analogous to Fig. 1 and 2 (shown in the accompanying dataset). Finally, we also used the discontinuous Galerkin 
projection method in combination with the staggered and “flux-centred” approaches. It turns out that the parallel diffusion is sufficient 
to dampen oscillations in the resulting density and velocity fields (not shown). Judging from Fig. 14 (left) the mass conservation of the 
dG projection is approximately a factor 10 worse than using a linear finite element projection. This is somewhat surprising since Table 2
would suggest best volume conservation for the dG method.

In the middle panel of Fig. 14 we show the corresponding absolute momentum errors aP (71) and in the right panel the relative 
energy errors εE (72). The staggered flux-centred dG scheme has the lowest momentum errors by about 2 orders of magnitude towards 
the staggered-direct scheme with the highest errors. The velocity-staggered schemes as they are not formulated in momentum form have 
about a factor 10 higher error than the staggered scheme. For the energy conservation on the right panel all FV-FCI schemes have about 
the same error while again the staggered-direct scheme yields the highest errors with a negative sign.

6. Conclusions

In conclusion, we show in this paper how the FCI scheme can be combined with finite volume advection schemes in 1d to form 
a new class of schemes we call finite-volume FCI (FV-FCI). This new family of schemes is visualized in Fig. 5. Our method bases on an 
interpretation of FCI as a finite difference discretization within a locally field-aligned coordinate system. We re-derive previously suggested 
expressions for the parallel derivative and suggest new expressions for the divergence and the parallel Laplacian in Eqs. (22) and (23). This 
requires the additional integration of the volume element as demonstrated in Eq. (17c).
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Fig. 14. The relative mass error εM (left), absolute momentum error aP (middle) and relative energy error εE (right) of four schemes simulating Eqs. (80) with νn = νu = 0.2
dependent on time. Resolution 150 × 150 × 20 grid points. All schemes except the staggered flux-centred scheme use the linear FE projection. The staggered-direct scheme 
is given in Eqs. (82). The staggered scheme is combined with a dG projection method.

The core of the FCI method is in our interpretation the transformation from locally non-field-aligned to field-aligned coordinates. We 
study various methods starting with simple polynomial interpolation to a projection on dG polynomials or finite elements. We explicitly 
show convergence of second order for all of the suggested methods.

The FV-FCI method is a result of elevating a one-dimensional advection scheme to three dimensions using either a “value-centred” or 
“flux-centred” approach and formulating the transformation operators using either interpolation or projection (cf. Fig. 5). We show this 
approach explicitly at the example of a staggered finite volume scheme in two variations. Our tests using a field-aligned Navier-Stokes 
equation along a given magnetic field show that the “flux-centred” approach presented in Section 4.3 has better mass- and momentum-
conservation than the “value-centred” approach 4.2. The projection method for the coordinate transformation in Section 3.3.3 is found 
superior to the interpolation method 3.3.2. Projection onto triangular finite elements entails a smoothing kernel that stabilizes simulations 
against spurious oscillations. However, if perpendicular gradients become too large, these spurious oscillations, caused by the coordinate 
transformations, destabilize and crash simulations. In this case parallel diffusion must be added for stability.

In conclusion, the best performing scheme is the “staggered” finite volume scheme (6) elevated using the “flux-centred” method 4.3 in 
combination with projection onto linear finite elements (51). If strong perpendicular gradients are an issue in the simulation domain, it 
is preferable to start from the “velocity-staggered” (10) scheme instead, adding parallel numerical diffusion to both density and velocity 
equation.

An open question remains whether our finite volume FCI scheme can be made resilient to shocks in the perpendicular planes without 
resorting to artificial diffusion. Possible candidates could include an appropriately constructed perpendicular flux-limiter, however, this 
may be difficult since oscillations near sharp gradients do not vanish even for low order discretizations. Another avenue for future work 
is the extension to a discontinuous Galerkin method in the parallel direction, resulting in a dG-FCI scheme. With the methods presented 
in this paper such an endeavour should be feasible in the near future.

In all discussions of the scheme in this paper we avoid boundary conditions by aligning the simulation boundary box with the magnetic 
field. The question remains what to do in a situation where a field-line intersects with the boundary of the simulation domain. Various 
suggestions exist [16,32,4]. However, the main trouble with existing approaches is that they may introduce numerical instability in the 
scheme and/or introduce boundary layers that are hard to resolve. A dedicated investigation on this topic is postponed to the future.

Finally, we mention an idea that stems from the observation that the parallel derivative ∇‖ is the adjoint of the divergence ∇ · b̂· in 
the L2 norm (at least if surface terms vanish). The hypothesis is that this relation can be realized also numerically, i.e. by adjoining the 
discretization for ∇‖ we may arrive at a discretization for ∇ · b̂· analogous to [36] (where it is called the “support operator method”). 
There is empirical evidence that the numerically adjoint discretization may or may not converge with grid refinement [16,32]. This calls 
for a more formal theoretical analysis with a possible proof of convergence in the future.
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Fig. A.15. A curvilinear grid ξ , η with resolution 8 × 40 between ψp = 0.2 and 0.8. Compare to Fig. 4.

Appendix A. Curvilinear base coordinates

In the main text we start to develop our scheme from cylindrical coordinates R , Z , ϕ . There is nothing special about these coordinates, 
in fact the entire procedure holds for any coordinate system η, ξ, ϕ as long as one coordinate called ϕ exists such that bϕ �= 0. The only 
issue that may arise is if b̂ is given analytically in a specific coordinate system (for example cylindrical). Then the question is how to 
integrate the field lines in the η, ξ, ϕ system. There are two possibilities. First, interpolate R(ξi, ηi), Z(ξi, ηi) for all i, then integrate b̂ in 
(R, Z) space and finally use Newton iteration to find ξ(R±

i , Z±
i ), η(R±

i , Z±
i ).

The second possibility (the one we implemented) is to integrate entirely in the transformed coordinate system ξ, η, ϕ . The magnetic 
field can be easily transformed with the Jacobian of the coordinate transformation (and assuming in this example we do not transform 
the ϕ coordinate)

bξ (ξ,η) =
(

∂ξ

∂ R
bR + ∂ξ

∂ Z
bZ
)

R(ξ,η),Z(ξ,η)

(A.1a)

bη(ξ,η) =
(

∂η

∂ R
bR + ∂η

∂ Z
bZ
)

R(ξ,η),Z(ξ,η)

(A.1b)

bϕ(ξ,η) = bϕ(R(ξ,η), Z(ξ,η)) (A.1c)

The field-line equations (17) are still

dξ

dϕ
= bξ

bϕ
(A.2a)

dη

dϕ
= bη

bϕ
(A.2b)

d
√

G

dϕ
= ∇ ·

(
b̂

bϕ

)√
G (A.2c)

i.e. the original R and Z are simply replaced by ξ and η and the initial value for 
√

G is now the volume form of the ξ , η, ϕ coordinate 
system instead of the cylindrical coordinate system.

The issue here is that when integrating field-lines in a numerically given coordinate system we have to interpolate the vector field 
b̂ at arbitrary points instead of simply evaluating the exact values analytically. As a remark this could of course also be the case if b̂
is only available at discrete points in the first place. When using a dG discretization, the interpolation error vanishes with order P in 
the perpendicular plane. Apart from the issue of how to integrate the transformed vector field the remaining algorithms remain entirely 
unchanged. In Fig. A.15 we plot an example curvilinear grid using Eq. (53) between ψ0 = 0.2 and ψ1 = 0.8.

The advantage of the particular grid in Fig. A.15 is that it is flux aligned, i.e. the magnetic field in ξ , η, ϕ coordinates has no component 
in ξ . This means that the interpolation and projection operators are truly one dimensional operations in η, which may reduce the error. 
This can be seen in the convergence Table A.4, where we use the same test-functions as in Section 3.5.

Appendix B. The complete metric tensor in the field-aligned coordinate system

In this section we derive all Jacobian elements for the coordinate transformation from R , Z , ϕ to the locally field-aligned ρ , ζ , 
. 
These can be used to transform any tensor (including the metric tensor) into the locally field-aligned coordinate system. We have the 
contravariant basis vectors
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Table A.4
Convergence Table for K = 100 and Nξ = 24, using the linear FE projection method (51).

∇CC‖ Eq. (21c) ∇ · (b̂ f )CC Eq. (22c) �CC‖ Eq. (23)
∫

dV ∇ · (b̂ f )CC
∫

dV �CC‖ f

error order error order error order error order error order
Nη Nϕ

10 5 8.05e-01 n/a 8.10e-01 n/a 5.03e-01 n/a -4.65e-03 n/a 8.65e-05 n/a
20 10 2.79e-01 1.53 2.84e-01 1.51 1.61e-01 1.64 -6.53e-04 2.83 9.41e-08 9.84
40 20 7.63e-02 1.87 7.79e-02 1.86 4.32e-02 1.90 -8.41e-05 2.96 1.39e-08 2.76
80 40 1.96e-02 1.96 2.01e-02 1.96 1.11e-02 1.96 -1.06e-05 2.99 1.43e-07 -3.36
160 80 5.15e-03 1.93 5.27e-03 1.93 3.12e-03 1.84 -1.29e-06 3.03 1.76e-07 -0.30

∂ρ = Rρ∂R + Zρ∂Z (B.1a)

∂ζ = Rζ ∂R + Zζ ∂Z (B.1b)

∂
 = R
∂R + Z
∂Z + ϕ
∂ϕ (B.1c)

By definition (of ∂
) we have

R
 = bR

bϕ
, Z
 = bZ

bϕ
, ϕ
 = 1 (B.2)

We have the covariant base vectors

dρ = ρR dR + ρZ dZ + ρϕdϕ (B.3a)

dζ = ζR dR + ζZ dZ + ζϕdϕ (B.3b)

d
 = dϕ (B.3c)

The last identity expresses that equidistant planes in ϕ and 
 are the same. Note that the elements of the forward and backward 
transformation are related through the Jacobian⎛⎝ Rρ Rζ R


Zρ Zζ Z


ϕρ ϕζ ϕ


⎞⎠=
⎛⎝ρR ρZ ρϕ

ζR ζZ ζϕ
0 0 1

⎞⎠−1

=
⎛⎝ ζZ −ρZ (ρZ ζϕ − ζZρϕ)

−ζR ρR (ρϕζR − ζϕρR)

0 0 (ρRζZ − ζRρZ )

⎞⎠ 1

(ρRζZ − ζRρZ )
(B.4)

We immediately see that the determinant of the Jacobian (relevant for the volume form) is given by det J = (Rρ Zζ − Zρ Rζ ) = 1/(ρRζZ −
ζRρZ ). In order to integrate the elements of the Jacobian we employ Nemov’s algorithm [37]. Notice first that dρ/d
 = dζ/d
 = 0. In 
words, if we go along a streamline of ∂
 (a field-line) we stay on the same value of ρ (this is basically the definition of a coordinate line). 
We can write d/d
 = (b̂/bϕ) · ∇ and thus b̂ · ∇ρ = 0. From this we immediately obtain

ρϕ = −bR

bϕ
ρR − bZ

bϕ
ρZ , ζϕ = −bR

bϕ
ζR − bZ

bϕ
ζZ (B.5)

If we derive dρ/d
 = 0 with respect to R , we get

∂R((b̂/bϕ) · ∇ρ) = ∂R(b̂/bϕ) · ∇ρ/bϕ + (b̂/bϕ) · ∇ρR = 0

from which we get dρR/d
 = −∂R(b̂/bϕ) · ∇ρ and analogous for the other elements, ρZ , ζR and ζZ . In total we find

dR

d

= bR

bϕ
,

dZ

d

= bZ

bϕ
, (B.6a)

dρR

d

= −

(
bR

bϕ

)
R
ρR −

(
bZ

bϕ

)
R
ρZ ,

dρZ

d

= −

(
bR

bϕ

)
Z
ρR −

(
bZ

bϕ

)
Z
ρZ , (B.6b)

dζR

d

= −

(
bR

bϕ

)
R
ζR −

(
bZ

bϕ

)
R
ζZ ,

dζZ

d

= −

(
bR

bϕ

)
Z
ζR −

(
bZ

bϕ

)
Z
ζZ (B.6c)

As initial conditions we use that the coordinate system is supposed to coincide with R , Z at the origin, that is ρR = 1, ρZ = 0, ζR = 0, 
ζZ = 1. Together with Eq. (B.5) this completely determines all elements in the Jacobian. We can derive further

d(ρRζZ − ζRρZ )

d

= −

((
bR

bϕ

)
R

+
(

bZ

bϕ

)
Z

)
(ρRζZ − ρZ ζR)

d(Rρ Zζ − Rζ Zρ)

d

=
((

bR

bϕ

)
R

+
(

bZ

bϕ

)
Z

)
(Rρ Zζ − Zρ Rζ )

The last identity is particularly interesting if we are only interested in the volume element in the new coordinate system 
√

G = det J
√

g . 
In order to obtain the volume element directly (without integrating all the elements of the Jacobian separately) we compute
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d
√

G

d

= d

(√
g det J

)
d


=
[

bR

bϕ

√
gR + bZ

bϕ

√
g Z +

(
bR

bϕ

)
R

+
(

bZ

bϕ

)
Z

]
det J

=
[
∂R

(√
g

bR

bϕ

)
+ ∂Z

(√
g

bZ

bϕ

)]
det J = ∇ ·

(
b̂

bϕ

)
√

g det J = ∇ ·
(

b̂

bϕ

)√
G (B.7)

which confirms Eq. (17c). The metric in the transformed coordinates is given by Gij = J k
i J l

j gkl . With this, all metric dependent operations 
like general divergences, gradients and cross-products are completely determined in the transformed coordinates.

Appendix C. Data access

The implementation of the FV-FCI approach as well as the one-dimensional schemes is available freely inside the Feltor library [26,27], 
a C++ code project developed on GitHub. Ample documentation is available on https://feltor-dev.github .io. As Feltor is a GPU native library 
there is naturally a GPU implementation of the FV-FCI scheme available. In addition, a CPU-only as well as OpenMP shared memory 
version is implemented. Finally, through an MPI+X (with X ∈ [CPU,GPU,OpenMP]) approach separating communication from computation 
we manage to run the FV-FCI scheme on high performance compute clusters with MPI parallelization possible in all three dimensions.

Feltor interoperates with our simple Python simulation database manager simplesimdb a Python package available at https://pypi .
org /project /simplesimdb/. This enables the data analysis in Jupyter Notebooks in https://github .com /mwiesenberger /advection and https://
github .com /mwiesenberger /convergence _ds. With these Notebooks, the Feltor library and simplesimdb the results in the entire paper can 
be reproduced.
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