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Abstract
This doctoral thesis binds together four included papers in a thematical whole
and is simultaneously an independent work proposing a platform facilitating
epidemiological research.

Population-based prospective cohort studies typically recruit a relatively large
group of participants representative of a studied population and follow them
over years or decades. This group of participants is called a cohort. As part of
the study, the participants may be asked to answer extensive questionnaires,
undergo medical examinations, donate blood samples, and participate in sev-
eral rounds of follow-ups. The collected data can also include information
from other sources, such as health registers. In prospective cohort studies, the
participants initially do not have the investigated diagnoses, but statistically, a
certain percentage will be diagnosed with a disease yearly. The studies enable
the researchers to investigate how those who got a disease differ from those
who did not. Often, many new studies can be nested within a cohort study.
Data for a subgroup of the cohort is then selected and analyzed. A new study
combined with an existing cohort is said to have a hybrid design.

When a research group uses the same cohort as a basis for multiple new studies,
these studies often have similarities regarding the workflow for designing the
study and analysis. The thesis shows the potential for developing a platform
encouraging the reuse of work from previous studies and systematizing the
study design workflows to enhance time efficiency and reduce the risk of
errors.

However, the study data are subject to strict acts and regulations pertaining to
privacy and research ethics. Therefore, the data must be stored and accessed
within a secured IT environment where researchers log in to conduct analyses,
with minimal possibilities to install analytics software not already provided by
default. Further, transferring the data from the secured IT environment to a
local computer or a public cloud is prohibited. Nevertheless, researchers can
usually upload and run script files, e.g., written in R and run in R-studio. A
consequence is that researchers—often having limited software engineering
skills—may rely mainly on self-written code for their analyses, possibly un-
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systematically developed with a high risk of errors and reinventing solutions
solved in preceding studies within the group.

The thesis makes a case for a platform providing a collaboration software as a
service (SaaS) addressing the challenges of the described research context and
proposes its architecture and design. Its main characteristic, and contribution,
is the separation of concerns between the SaaS, which operates independently
of the data, and a secured IT environment where data can be accessed and
analyzed. The platform lets the researchers define the data analysis for the
study using the cloud-based software, which is then automatically transformed
into an executable version represented as source code in a scripting language
already supported by the secure environment where the data resides.

The author has not found systems solving the same problem similarly. However,
the work is informed by cloud computing, workflowmanagement systems, data
analysis pipelines, low-code, no-code, and model-driven development.
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Glossary
Analysis Pipeline An analysis pipeline comprises a series of automated steps

applied in conjunction with a data analysis process, where each step
transforms input data, and the output of one step becomes the input of
the next until finished.

Concept Map A concept map shows a network of nodes representing concepts
connected with links (lines) representing associations. The links can be
directional, illustrated by arrowheads at the end of the lines. The links
can also have verbs or words expressing the nature of the association.
An example and explanation is provided in Lanzing (1998, p. 5).

Data Analysis Data analysis includes tasks such as modeling, regression, corre-
lation, classification, clustering, forecasting, and visualization. However,
it excludes the data wrangling and other steps preparing data for the
analysis and post-analysis interpretation, documentation, and evaluation.
(Runkler 2020, p. 2)

Data Analytics Data analytics is the application of computer systems to ana-
lyze large data sets to support decisions. (Runkler 2020, p. 2)

Data Object In this thesis, a data object is a region of storage containing values
for an entity or concept in the problem domain, such as the registered
data on a particular employee, shipped item, shopping list, or—more
relevant to this thesis—the definition of a particular analysis pipeline.
The data object is an instance of a datatype or structure comprised of
attributes (variables) holding values. However, it has no behavior, that is,
no functions/methods.

Data Provisioning Data provisioning is the process of making data available
in an orderly and secure manner.

Data Steward A data steward is responsible for reviewing data access requests
and managing how the data are used, ensuring that the data are handled
responsibly and in accordance with ethical and legal guidelines.

xiii
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Data Wrangling Data wrangling is the preprocessing of raw data per fur-
ther processing needs, e.g., cleaning, filtering, completing, correcting,
standardizing, transforming, and structuring raw data.

Epidemiology A widely accepted definition is "the study of the distributions
and determinants of health-related states and events in specified popu-
lations and the application of this study to control of health problems."
(Gordis 2014, p. 2)

Health Outcome A health outcome may be a disease, condition, death, event
or a change in health status or behavior. (Alexander et al. 2015c)

Hybrid Design "Hybrid designs combine the elements of at least two basic
designs, or extend the strategy of one basic design through repetition.
Two popular hybrid designs are the case-cohort study and the nested
case-control study. Both these designs combine elements of a cohort and
case-control study. Another more recently developed hybrid design is
called the case-crossover design." (Kleinbaum, Sullivan, and N. D. Barker
2007, p. 39)

Low-Code Low-code development enable rapid application development through
techniques that reduce the amount of code written, often includingmodel-
driven engineering, domain-specific languages, and drag-and-drop mech-
anisms. (Pinho, Aguiar, and Amaral 2023)

Model-Driven Development Model-driven development (MDD) is based on
defining models in software (semi)automatically transformable into ex-
ecutable models usually interpretable by a model-execution engine or
represented as source code (Brambilla, Cabot, and Wimmer 2012, pp. 26–
33).

Multi-Tenant Multi-tenant means that several tenants, or consumers, share
the same resources while being isolated in separate environments and
precluded from knowing about or accessing the other tenants’ environ-
ments.

No-Code No-code development is closely related to low-code but aims to
remove the need to write code completely, e.g., using visual design tools.

Observational Studies In observational studies, the researchers make obser-
vations about exposures or treatments and health outcomes under investi-
gation while avoiding affecting any variables, measured and unmeasured,
or altering the environment of the subjects in the study. This contrasts
experimental studies, where researchers manipulate certain variables,
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such as the treatment given, in a controlled environment.

Pipeline Definition A pipeline definition is a data structure specifying and con-
figuring a set of analysis pipeline steps and associated tasks. The pipeline
definitions in the proposed platform do not include runnable code or
commands. Instead, the platform builds separate runnable pipelines
from pipeline definitions. The term is equivalent to process definition in
Hollingsworth (1995). From a model-driven development perspective, a
pipeline definition is a model that can be transformed into an executable
model.

Runnable Pipeline The proposed platform produces runnable pipelines from
pipeline definitions, which can be executed in a secured IT environment
where restricted data are accessible. From a model-driven development
perspective, a runnable pipeline is an executable model.

Schema "A description of the structure of some data, including its fields and
datatypes. Whether some data conforms to a schema can be checked
at various points in the data’s lifetime, and a schema can change over
time." (Kleppman 2017, p. 557).

Scripting Language A scripting language does not require up-front source
code compilation before being run. Instead, a script engine interprets
the source code or compiles it on the fly at run time. The latter is often
called just-in-time (JIT) compilation (Aycock 2003). Many programming
languages originally designed for either compilation or scripting can now
be used for both.

Secured IT Environment An IT environment that incorporates and adheres
to Information Security Management System (ISMS) principles. In the
context of the epidemiological research data discussed in the thesis, it is
additionally an IT environment ensuring that the data are protected by
security and privacy controls and enabling the research to comply with
acts, regulations, and ethical guidelines.

Study Design In analytical epidemiology, researchers use standard study de-
signs as a foundation for designing studies and avoiding typical systematic
errors when assessing relationships between treatments or exposures
and health outcomes. Each design has its well-known strengths and
weaknesses. Deciding on an appropriate study design is essential be-
cause many serious problems and mistakes at the design stage of a study
cannot easily be rectified in subsequent stages (Kleinbaum, Sullivan, and
N. D. Barker 2007, p. 21).
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Workflow A workflow is a repeatable series of steps in a work process, orga-
nized in a specified order from start to end, possibly including conditional
branches, where each step includes one or more activities to execute be-
fore proceeding to the next. The steps can involve a combination of
human and machine-based activities.
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1
Introduction
This doctoral thesis proposes a system to facilitate collaboration within research
groups in epidemiology and help systematize the study design process. Further,
the thesis provides the thematical whole at the intersection of computer science,
statistics, and epidemiology in which the four included papers partake, each
individually having novel contributions. Figure 1.1 is a concept map showing
how the thesis and papers fit in the complete picture.

1.1 Motivation

Epidemiologists increasingly use population-based prospective cohorts as a
basis for additional analytical observational studies, which has considerable
benefits (Chapters 2–4). For example, case-control studies are prone to selection
and recall bias, but nesting the studies in a prospective cohort can significantly
reduce these biases. Prospective cohort studies can span over years or decades
and include more than a hundred thousand participants. Data for each partic-
ipant are collected systematically from surveys, registers, biological samples,
and other sources. One way of producing invitation lists for population-based
prospective cohort studies is by sampling from a national population registry.
The studies recruit and follow participants who initially are without any in-
vestigated diagnosis, but statistically, some percent of the cohort will receive
a diagnosis per year. For these diagnosed participants, follow-up may also
continue afterward. The Norwegian Women and Cancer (nowac) study is

1



2 chapter 1 introduction

Figure 1.1: The figure is a concept map illustrating the related topics in the thesis.
It also maps the included works to topic areas, showing how each cov-
ers an area, illustrated by a gray background bounded by a darker line.
The concept nodes have background color gradients indicating the three
fields; computer science (pink), epidemiology (blue), and statistics (green).
Where the fields blend, so do the respective background colors.

one such population-based prospective cohort that includes 172,472 Norwegian
women born between 1926–1965 (Gram et al. 2013; Variabler 2023). nowac
is managed by the Systems Epidemiology group of the Department of Com-
munity Medicine (ism) at UiT The Arctic University of Norway, which actively
uses the cohort as a basis for hybrid designs in the research. Throughout the
thesis, nowac is the primary example of a cohort suitable for hybrid designs.
A background on epidemiology is found in Part I, whereas the first included
paper, The Beauty of Complex Designs, provides a more thorough account of
nowac and systems epidemiology.
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It is not unusual for modern epidemiological studies to include data generated
from biological material, and much focus is on high-throughput sequencing
(hts) data and omics, for example, genomics, epigenomics, and transcriptomics
(Chapter 5). Consequently, hundreds of software packages and systems exist
to explore and analyze these (Fjukstad 2019). However, this doctoral thesis
focuses not on analysis pipelines for biomedical datasets. Instead, it focuses
on workflows for designing studies and analysis pipelines using the same
parent cohort as a basis and a platform providing a software as a service
(saas) supporting these work processes. The platform’s three central features
are:

• Support for analysis pipelines adapted to the restrictions applying to
epidemiological data

• Sharing of custom, reusable analysis pipeline tasks within a group

• User-friendly design workflows for novel studies and analysis pipelines

Although many systems and frameworks exist for workflow management and
data analysis, a set of attributes particular to the discussed context poses
challenges not addressed by existing systems. Table 1.1 lists the defining at-
tributes.

Table 1.1: Defining attributes of the data analysis context.

1. The data are sensitive, and acts, regulations, and ethical guidelines restrict
the access and allowed storage environment. Researchers apply for access to
specific subsets of the data.

2. The same cohort is a basis for numerous studies.

3. The studies use relatively small subsets of the cohort data.

4. The researchers usually process and analyze the data using a scripting language.
There is potential for reusing script functions developed in preceding studies,
but no systematic approach exists to sharing, managing, or applying the scripts.

5. Each study is unique but has commonalities with other studies in the same
group. Despite differences, the studies are similar regarding the overall study
design workflow.

6. Many of the researchers have limited experience with complex programming
tasks.
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1.2 Key scenario

This section illustrates how the attributes listed in Table 1.1 are typically
observed in practice. It is based on an actual study and is the key scenario for
understanding the context and current situation the proposed system aims to
improve.

Smoking exposure and differentially expressed genes in blood

A first-year Ph.D. student in systems epidemiology is researching differen-
tially expressed genes associated with smoking in the blood of cancer-free
women. The results can help control for confounder bias in subsequent
research on lung cancer. A comprehensive smoking index (CSI) (Leffondré
et al. 2006) must be computed per participant as part of the research. The
participants are the controls from a nested case-control study. The data
are a small subset of a large population-based prospective cohort with
extensive questionnaires and blood samples provided by a data steward
after the approval of a data access application. The data steward is also a
member of the research group, but a formal application is still required.

The data for the subset are small enough to be loaded in working memory
and analyzed in an instance of R-studio running in a virtual machine (vm)
(Barham et al. 2003; Sugerman, Venkitachalam, and Lim 2001) in the
secured IT environment by using a selection of custom scripts.

A complicating factor is that the cohort participants have answered sev-
eral follow-up questionnaires in various versions, all including a range of
smoking-related questions. In total, there are 77 different smoking-related
variables. Thus, the dataset’s many smoking-related variables require a
complicated data wrangling script, which does not exist. A Ph.D. student
from the Department of Computer Science is asked to participate in de-
veloping the smoking-variable data wrangling script. There are also other
scripts unrelated to smoking needed in the study. For example, a version of
an existing script written by the epidemiology Ph.D. student’s supervisor
in conjunction with another study is sent via email.

The described scenario is based on a real-world study, and the research was
published in the paper Gene expression in blood reflects smoking exposure
among cancer-free women in the Norwegian Women and Cancer (NOWAC)
postgenome cohort (Baiju et al. 2021). The author of this thesis wrote the
data wrangling scripts for the study and is credited as J.I. in the paper’s
Acknowledgements. A repository with the scripts and a 60 page report is
available (https://github.com/jo-inge-arnes/smoking-variables).

https://github.com/jo-inge-arnes/smoking-variables
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1.3 Need for systematization of the work
process

The scenario described in Section 1.2 is not unique. Although the study was suc-
cessful, a more systematic approach can make the work process more efficient
and lower the risks of unnecessary errors, discussed in this section.

Before being granted access to the data needed for a study, the researchers
must apply for access to a specific subselection of variables and data. If the
application is approved, a data steward provides the data. For nowac, the
application instructions are found on the research group’s official website
(https://uit.no/research/nowac/project?pid=797468). It is mandatory to in-
clude a list of the variables needed for the study, a project description, and a
publication plan. There are 12,105 available nowac variables (Variabler 2023)
from questionnaires and registers, but access is granted solely to the variables
listed in the application. Additionally, preserved blood and tissue samples exist
for parts of the cohort. An opportunity for improvement is to develop a sys-
tem facilitating and streamlining the application process for use within the
group.

For processing data, the studies regularly need scripts tailored to the underlying
cohort dataset, study designs, and analyses used by the group. Unfortunately,
the development process can be time-consuming and difficult. For example,
the data wrangling of smoking-variables described in Section 1.2 took weeks to
develop. It required manually decoding the meaning of the different variables
by comparing them to the fields in the original set of different questionnaires,
available only on paper,anddiscussing how to combine the 77 variables correctly.
Further, many participants answered inconsistently between follow-ups or
changed their smoking status during the study. Because smoking is highly
relevant to cancer studies, the same operation may be helpful in other studies
within the research group. Thus, reusable scripts could save time and resources
in research projects.

However, a reusable script is only helpful to the group if its existence is known
to its members. Unfortunately, making reusable scripts known is often done in
a word-of-mouth fashion. The danger in this unsystematic approach is that a
script’s existence may become known only to a few groupmembers or forgotten.
Thus, the group would benefit from a system acting as a hub for sharing and
improving the discoverability of reusable scripts.

A system for sharing reusable scripts and other resources has several advantages
besides discoverability. For example, a supervisor of the epidemiology doctoral
student emailed a self-developed script. This approach is problematic because

https://uit.no/research/nowac/project?pid=797468
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changes to the script by the receiver, and further unsystematic distribution of
these changes,will result in diverging branches of source code and likely defects
not seen in the original or other branches of the script. Furthermore, testing,
upgrading, and applying fixes to all script versions becomes difficult without
a central overview of the existing versions. If someone makes corrections to
the script without applying it to all other alternative versions, or the script is
only partially reusable and requires customization on a source code level per
study, the various script versions will have differences that make it challenging
to maintain quality and correct defects across all versions. Thus, without a
systematic and centralized approach to version control, it is likely that defects
will get introduced or continue to exist uncorrected. A system acting as a hub
for distributing reusable scripts can alleviate this problem. Additionally, the
system could encourage documentation and testing of the scripts, which would
further improve the quality.

By arranging reusable scripts in a logical sequence, an analysis pipeline can be
constructed where each script represents a task and tasks follow each other
in order. To effectively combine reusable scripts into an analysis pipeline, it is
essential to establish data structures and interfaces for defining the pipeline,
its steps, and its tasks. This ensures that the scripts are compatible and interact
effectively. By creating a data structure representing a pipeline definition and
framing the reusable scripts as tasks, it is possible to have a clear separation
of concerns, ensuring that each script performs a distinct function within the
well-defined steps of the analysis pipeline. While data analysis shares common
elements across different fields, designing a study and an analysis pipeline
in epidemiological research involve specialized steps. However, within the
same research group, the typical study design workflow and the rough division
of analysis-related tasks are relatively similar, making it possible to create a
consistent workflow for designing analysis pipelines.

In the key scenario in Section 1.2, a research group member acting as data
steward evaluated data access applications and was responsible for data pro-
visioning. The group’s existing manual workflow thus involves more than one
human actor. The ability to distribute workflow steps between several hu-
man and automated actors with different roles is a common wfms feature
(Hollingsworth 1995), which can be employed to simplify the data application
process. For example, a researcher can design a study in the first part of the
workflow and then apply for data access. Next, the group member responsi-
ble for processing the application and providing the data could continue the
workflow, possibly using applicant-specified scripts to select the requested data,
before returning the workflow control to the researcher.



1.4 the need for multi-tenancy 7

1.4 The need for multi-tenancy

The system described up to this point has concentrated on a single research
group. However, other research groups likely have equivalent needs for defining
common workflows, designing studies, sharing reusable scripts, and creating
analysis pipeline. Rather than developing a system specifically for a single
research group (tenant), which must allocate time and resources toward in-
stalling and managing an on-premise system, the system should instead be
designed as a multi-tenant saas platform (Chapter 6). By designing the sys-
tem as a cloud-based platform, many research groups can establish separate
memberships, and the platform can offer the flexibility to tailor workflow tem-
plates and share reusable scripts per group. Employing such a saas service can
reduce the management overhead, and the research groups can focus more on
their core objectives.

1.5 Computer system design challenges

Section 1.3 described the problems of an unsystematic approach to managing
scripts for studies and the benefits of introducing a system acting as a hub
for reusable scripts. It also suggested that workflows and features informed
by wfms could improve the study design and management process. Further,
the epidemiological studies discussed in this doctoral thesis are analytical
observational studies; thus, data analysis is a central topic. A plethora of
advanced frameworks, architectures, platforms, and cloud services exist for
data analysis. However, the attributes listed in Table 1.1 give rise to challenges
not fully covered by the existing solutions.

First and foremost, it is essential to be aware of the differences in how datasets
must be handled in epidemiology andmedical research compared tomany other
fields. These differences constitute significant challenges when designing the
system. National and international acts, regulations, and research ethics restrict
the collection, storage, access, transfer, and sharing of data containing sensitive
personal and health-related information. Data analytics services in the public
cloud naturally require data to be accessible in the cloud in one way or another.
However, this is far from straightforward for the research data discussed here.
In general, the General Data Protection Regulation (gdpr) (https://gdpr.
eu/) imposes restrictions concerning the privacy and data protection for all
individuals within the European Union (eu) and the European Economic Area
(eea), including Norway (Regulations 2018)—further, transferring personal
data to countries outside the eu and the eea is strictly regulated. The Safe
Harbor Principles was a set of standards to govern personal data transfer
between the eu and the United States (us), but the framework was invalidated

https://gdpr.eu/
https://gdpr.eu/
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in 2015 by the European Court of Justice (ecj) (Federal Trade Commission
Enforcement of the U.S.-EU and U.S.-Swiss Safe Harbor Frameworks 2016). The
EU-US Privacy Shield was established in 2016, but the ecj also invalidated
this agreement in 2020 (Update on the Privacy Shield Framework 2020). This
affects cloud services that cannot guarantee where data are transferred through
or stored. On a national level, in Norway, there are additional legislation
pertaining to patient and health-related data, such as the Health Records
Act (Pasientjournalloven 2022) and the Health Register Act (Helseregisterloven
2022). There are also the Norwegian Health Research Act (The Health Research
Act 2020) and other regulations for health-related research. The Regional
Committees for Medical and Health Research Ethics (rek) is the authority
when applying for approval of research projects in Norway.

As an example, all of the following acts and regulations are relevant for nowac
(Variabler 2023):

• The Public Health Act

• The Health Research Act

• Personal Health Data Filing System Act (The Health Register Act)

• The Personal Data Act

• The General Data Protection Regulation

• The Research Ethics Act

• The Patient Injury Act

• The Public Administration Act

• The Freedom of Information Act

• The Patient and Consumer Rights Act

• The Regulation Relating to Population-Based Health Surveys

The HUNT Cloud (https://www.ntnu.edu/mh/huntcloud) is an example of a
cloud authorized for storing and accessing epidemiological research data, in-
cluding data generated from human biological material, whereas data not from
human biological material can alternatively be stored at TSD (https://www.uio.
no/english/services/it/research/sensitive-data/), and someMicrosoft Of-
fice 365 (https://office.com) subscriptions, but the range of available services

https://www.ntnu.edu/mh/huntcloud
https://www.uio.no/english/services/it/research/sensitive-data/
https://www.uio.no/english/services/it/research/sensitive-data/
https://office.com
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is limited and far from comparable to the common public clouds. These restric-
tions and limitations make it challenging to use cloud services in the context
discussed in the thesis. The system must be designed to work with data stored
in an appropriate, secured IT environment, such as the HUNT Cloud or TSD,
without requiring data to be transferred to another cloud or on-premise system
for processing.

The population-based cohort data used by the research groups, such as the
nowac data, change relatively slowly and have a static structure. Also, the
researchers commonly only use a smaller subset of the cohort data for each
study. For example, in the context of the thesis, the vast majority of studies
using hts data are conducted in a setting of small data, including fewer
than 100 participants (Holsbø 2019, p. 3). In contrast, modern data analytics
platforms predominantly focus on big data and are architected to handle
petabytes or more data. These big data platforms are for high-speed, real-time
data processing and emphasize scalability, distributed processing, and fault
tolerance. For example, Apache Kafka1, Flink2, Spark3, and Beam⁴ excel at
voluminous, dynamic, and fast-paced flows of data. However, the complexities
of these big data and streaming analytics platforms outweigh their advantages
for small, slowly changing data. While big data analytics is transformative in
the right context, it is not an optimal choice here.

In practice, the researchers mostly use a scripting language with good support
for statistics, like R⁵, to work with the data. They are usually competent in
statistics and know how to use the chosen scripting language for this purpose.
Another reason is that data are accessed and analyzed by logging in to a
secured IT environment where the possibilities for installing custom analytics
platforms and software are limited or nonexistent, whereas using statistics
software such as R-studio is usually unproblematic.

The researchers employ a combination of custom and reusable scripts to trans-
form data in a series of steps, i.e., they create analysis pipelines. Further,
each study is unique, but the overall workflows for the typical hybrid designs
used within the research groups are relatively similar. There are numerous
existing standards for defining workflows and analysis pipelines. Two popular
languages for defining workflows, most notably used in bioinformatics, are
Common Workflow Language (cwl)⁶ and Workflow Description Language

1. https://kafka.apache.org/
2. https://flink.apache.org/
3. https://spark.apache.org/
4. https://beam.apache.org/
5. https://www.r-project.org/
6. https://www.commonwl.org/

https://kafka.apache.org/
https://flink.apache.org/
https://spark.apache.org/
https://beam.apache.org/
https://www.r-project.org/
https://www.commonwl.org/
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(wdl)⁷. wdl was developed by Broad Institute⁸ to define workflows utilizing
the tools in their Genome Analysis Toolkit 4 (gatk4)⁹,which is a toolkit for vari-
ant discovery in high-throughput sequencing (hts) data. Broad Institute has
also developed Cromwell (Caetano-Anolles 2023b), an open-source workflow
execution engine that supports both wdl and cwl. gatk4 includes several
pre-defined Best Practicesworkflows (Caetano-Anolles 2023a), which can be run
using the Cromwell + wdl pipelining solution. Best Practices workflows exist
for whole genomes, exomes, gene panels, and RNAseq experimental designs.
gatk4 is supported on a wide range of platforms and by major cloud providers,
e.g., Amazon AWS, Microsoft Azure, Google Cloud, Alibaba Cloud, and IBM
Cloud, and can be used in high-performance computing (hpc) environments1⁰.
For several tools in the toolkit, versions have been developed for Apache Spark.
Further, DRAGEN-GATK11 is a hardware-accelerated Field Programmable Gate
Array (fpga) (Koch, Ziener, and Hannig 2016, pp. 10–11) version based on
Illumina’s Dynamic Read Analysis for GENomics (dragen) Bio-IT platform12.
However, the workflows and analysis pipelines discussed in this thesis are on
an altogether different abstraction level than the hts workflows. The reason
for describing gatk4, cwl,wdl, Best Practices workflows, and the Cromwell
execution engine is to illustrate properties common to most of the popular
workflow and analysis pipelines solutions in the field:

• The analysis pipelines represent recommended or standard workflows
general to a field.

• The analysis pipelines are meticulously developed by experts and treated
as fixed by the researchers running them.

• They need an execution engine to run, which can require complex in-
stallations, configurations, and management. Alternatively, public cloud
services can be used, but this requires transferring data to the cloud.

• They are fully automated and do not include human-based wfms activ-
ities.

An example of a more lightweight and lesser-known framework is the nf-core

7. https://openwdl.org/
8. https://www.broadinstitute.org/
9. https://gatk.broadinstitute.org/
10. https://gatk.broadinstitute.org/hc/en-us/sections/360007134212-

Computing-Platforms
11. https://gatk.broadinstitute.org/hc/en-us/articles/360045944831-

DRAGEN-GATK
12. https://www.illumina.com/products/by-type/informatics-products/

dragen-secondary-analysis.html

https://openwdl.org/
https://www.broadinstitute.org/
https://gatk.broadinstitute.org/
https://gatk.broadinstitute.org/hc/en-us/sections/360007134212-Computing-Platforms
https://gatk.broadinstitute.org/hc/en-us/sections/360007134212-Computing-Platforms
https://gatk.broadinstitute.org/hc/en-us/articles/360045944831-DRAGEN-GATK
https://gatk.broadinstitute.org/hc/en-us/articles/360045944831-DRAGEN-GATK
https://www.illumina.com/products/by-type/informatics-products/dragen-secondary-analysis.html
https://www.illumina.com/products/by-type/informatics-products/dragen-secondary-analysis.html
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project (https://nf-co.re/), which at the time of writing, has 81 available
analysis pipelines. Nevertheless, the same properties apply.

The system proposed in this thesis has requirements not targeted by these
solutions. Because the composition of tasks and their parameters are unique
for each study, the researchers need a convenient way of defining new analysis
pipelines, which differs from applying premade, fixed, best practices pipelines.
Also, the possibilities for installing custom workflow and pipeline solutions in
a secured IT environment are limited. Therefore, the thesis proposes a system
allowing the researcher to define a custom analysis pipeline by selecting from a
library of configurable tasks. The tasks can be implemented as reusable scripts
and woven into a complete analysis pipeline bundled with dependencies. The
researcher can download the bundle, transfer it to a secured IT environment
having access to the data, and run the analysis pipeline without installing
a specialized execution engine. Running the scripts can be combined with
the researcher’s additional code, e.g., in an R-notebook (Y. Xie, Allaire, and
Grolemund 2019). If allowed by the secured IT environment, creating tasks that
trigger the execution of other types of pipelines that depend on underlying
execution engines is still possible. The tasks then employ such pipelines, e.g.,
hts pipelines, as internal components at a lower abstraction level than the
overall workflows and analysis pipelines.

Because researchers must formally apply for access to data, the overall study
workflow is divided into stages delegated to different roles and requiring
human activities to proceed. An example workflow is described in Chapter 9.
There are three main stages:

1. Study design

2. Data access application

3. Data processing and analysis

First, the researcher designs the study by following workflow steps such as
choosing the type of study, selecting variables and subjects, and composing
tasks into a pipeline definition. After the researcher has designed the study,
the system can simplify the data access application process by generating
lists of needed variables, providing descriptions of the planned data analysis,
and providing helpful resources and tools to the researcher. If the person
evaluating the application and provisioning data is also a registered user of the
system with a data steward role, this stage could potentially include scripts for
selecting relevant subjects and other data from the cohort, such as cases and
controls, given the criteria specified by the researcher. The system could also
coordinate the workflow control between the researcher and the user with the

https://nf-co.re/


12 chapter 1 introduction

data steward role. After the data has been made available, the last stage is to
generate a runnable pipeline for the remaining data processing and analysis,
which the researcher can execute in a secured IT environment.

The three described stages can be mapped to the three functional areas char-
acteristic of a wfms at the highest level, as identified by Hollingsworth (1995,
p. 7). In the terminology of the paper, designing the study and defining the
pipeline corresponds to the build-time process design and definition and are
referred to as design-time activities in this thesis. The distribution of work
between human actors, seen in conjunction with applying for data access, is
the responsibility of the run-time process control of the platform. Communica-
tion between the platform and human actors and the generation of runnable
pipelines are part of the run-time interactions with users and tools. For example,
the platform builds runnable pipelines by employing external tools and services.
However, in this thesis, the actual execution of runnable pipelines is outside the
proposed cloud platform’s control, because the platform communicates with
the user, which subsequently uses the secured IT environment to execute the
runnable pipeline.

Lastly, despite being competent in statistics and some scripting, the epidemi-
ology researchers are not system developers. As a result, they rarely have
the competence to develop complex software systems that require software
engineering practices and an understanding of computer science to achieve
acceptable quality. Instead, the researcher should be allowed to focus on the
unique parts of their research when defining a workflow. The platform should
therefore support a low-code or no-code approach to the study design pro-
cess. The thesis argues that a natural-language user interface could ease the
researcher’s work. Paper IV, Schema-Based Priming of Large Language Model
for Data Object Validation Compliance, proposes a method enabling a natural-
language user interface for configuring pipeline definitions and other data
object structures.

1.6 Thesis statement
A cloud-based collaboration software as a service (saas) can arguably
streamline research by enabling groups to design studies and data analysis
pipelines more swiftly; however, the analysis pipelines should be generated
as source code in a scripting language already supported by the available
secured IT environment to support data processing that complies with the
applicable acts, regulations, and ethical guidelines.
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1.7 Reading guide

The rest of the thesis is structured into the following parts:

I) Background

II) Methods

III) Toward a Platform for Hybrid Designs and Analysis Pipelines

IV) Summary of Research

V) Included Papers

Part I, Background, consists of chapters 2–5 and gives the reader an insight
into the cross-disciplinary context of the thesis. Chapter 2 is a brief overview
of epidemiology. Chapter 3 underscores the importance of bias, associations,
and causality in epidemiology. Chapter 4 gives an introduction to four common
study designs relevant to the thesis. Chapter 5 briefly covers DNA, genomics,
and omics in conjunction with epidemiological studies.

Part II, Methods, comprises chapters 6–8 and describes topics crucial to under-
standing the foundations of the platform proposed in Part III. Chapter 6 gives a
general overview of cloud computing. In Chapter 7, a brief overview of wfms
is provided. Chapter 8 explains the concepts of low-code and no-code relevant
to the thesis.

Part III, Toward a Platform for Hybrid Designs and Analysis Pipelines, proposes
a cloud-based solution facilitating the collaboration within research groups
using hybrid designs based on existing data from larger cohort studies. First,
Chapter 9 introduces a common workflow used to design studies. Next, the
overall architecture and design are presented in Chapter 10, followed by a
more thorough explanation guiding the reader through the components in
Chapter 11. Last, Chapter 12 explains the principles of generating the runnable
pipelines.

Part IV, Summary of Research, provides a summary of the four papers included
in the thesis, their scientific contributions, and the contributions made by the
author. An overview is given in chapter 13, followed by a short summary of
each paper (chapters 14–17). Chapter 18 gives concluding remarks regarding
the work.

Finally, the four thesis papers are included in Part V.
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2
Epidemiology
Epidemiology is a field that concerns health and diseases in populations. It
includes studying diseases and other health-related states, investigating who is
affected and in whichway, assessing risk factors and causalities, and advising on
practices and policies. A widely acknowledged definition of epidemiology is "the
study of the distributions and determinants of health-related states and events
in specified populations and the application of this study to control of health
problems" (Gordis 2014, p. 2). It has also been described as the basic science
of community medicine (Strasser 1985). During the COVID-19 pandemic, epi-
demiology definitively reached the general population’s attention. The branch
of epidemiology concerned with infectious diseases, including viruses, is known
as infectious disease epidemiology (Du et al. 2023; Straif-Bourgeois, Ratard, and
Kretzschmar 2014). However, epidemiological investigations into non-infectious
diseases, such as cancers and cardiovascular diseases, also play a central role,
where chemical and environmental exposures, genetics, lifestyle, and socio-
economical factors can affect the risk.

Epidemiological studies can broadly be categorized as being experimental
or observational (Kleinbaum, Sullivan, and N. D. Barker 2007, p. 21). In an
experimental study, the researcher manipulates one or more variables in an
experiment conducted in a controlled environment. A variable can be the
treatment given to the study’s subjects. For example, the subjects can be
randomly assigned to two groups: one receives a treatment, and the other
receives a placebo. The researcher can then assess the difference in effect
between the groups to establish causality. This is a typical randomized control
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trial (RCT) type of experimental study (Alexander et al. 2015d). RCTs are often
regarded as the ideal design for studies on treatment effects, but there are
limitations (Frieden 2017). For example,RCTs usually do not have sufficient long
study periods or population sizes to assess treatment effect durations or identify
rare adverse effects (Frieden 2017). Further, many potential experiments would
be unethical to conduct. Deliberately exposing individuals to factors increasing
the disease risk in an experimental setting is unethical. Instead, observational
studies are an alternative. In observational studies, the researchers make
observations about outcomes and exposures under investigation while avoiding
affecting any variables,measured and unmeasured, or altering the environment
of the individuals in the study. Observational studies are either descriptive or
analytical (Kleinbaum, Sullivan, and N. D. Barker 2007, p. 21). Descriptive
studies report the distribution and characteristics of health-related events in
populations, often focusing on the "Who, What, Where, and When" questions,
describing the patterns of health outcomes in terms of people, places, and time.
On the other hand, analytical epidemiology seeks to assess risks and causality,
usually by comparing groups regarding differences in exposure to potential
risk factors or interventions.

The various types of studies can be placed in a hierarchy according to the
strength of the evidence, called an evidence ladder or pyramid (Cooper 2016).
There are several versions of the ladder, with some variations. Study types
far up the ladder are presumed to have a higher strength of evidence than
those far down. However, here it is important to remember that the quality
of the studies can vary regardless of where in the hierarchy they are located
(Cooper 2016). Investigations usually start at the bottom and then move step
by step up the ladder (Gordis 2014, pp. 244–245). Case studies are close to
the bottom, often consisting of only one or a few cases. This type of study
can consist of a medical doctor making clinical observations at the bedside
and describing a condition or disease picture. This, in turn, can lead to new
studies, often observational. As the knowledge and hypotheses become more
extensive because of the studies, promising treatments can be developed and
assessed using experimental studies such as RCTs. Even further up the ladder
are meta-studies and systematic reviews, which summarize research in the
field from several sources.



3
Bias, Associations, and
Causality

Bias requires special attention in epidemiology. It is easy to introduce system-
atic errors in the design, execution, or analysis of a study, which in turn leads
to skewed and invalid results. Two main categories of bias are selection bias
and information bias. Selection bias applies to systematic errors in how par-
ticipants are selected and grouped, whereas information bias applies to errors
in information gathering. One type of information bias is misclassification
bias, which occurs, for example, if participants with a disease mistakenly are
classified as healthy. Recall bias is another form of information bias, which can
happen if the participants misremember the past. By using established study
designs (Chapter 4) epidemiologists can better understand and reduce the risk
of particular kinds of bias.

An early catalog of biases was published in the 1979 paper Bias in Ana-
lytic Research (Sackett 1979). The paper discusses the importance of bias
in research and recommends the continued development of an annotated
catalog. Today, a bias catalog supported by the Centre for Evidence-Based
Medicine (CEBM) and the University of Oxford is available online (https:
//catalogofbias.org/).

It is essential to understand the difference between observed associations be-
tween factors and causes (etiology) of a health outcome. Factors statistically
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associated (correlated) with one another do not necessarily imply causal re-
lationships. Modifying one of the factors may not even affect the other, for
example, if the association is due to an underlying confounding factor affecting
both (Alexander et al. 2015a,b). In epidemiology, various methods are used to
control for possible confounding factors. Another example is reverse causation
(Porta 2014, p. 249), which is mistaking cause for effect and vice versa. The
Bradford Hill criteria are commonly used to assess causality (Hill 1965), but
some variations exist (Gordis 2014, pp. 250–260).



4
Study Designs
In analytical epidemiology, researchers use standard study designs as a founda-
tion for designing studies and avoiding typical systematic errors when assessing
relationships between treatments or exposures and health outcomes. Each de-
sign has its well-known strengths and weaknesses. Deciding on an appropriate
study design is essential because many serious problems and mistakes at the
design stage of a study cannot easily be rectified in subsequent stages (Klein-
baum, Sullivan, and N. D. Barker 2007, p. 21). This chapter describes a selection
of relevant study designs.

4.1 Case-Control Studies

Case-control is a much-used study design in which participants are grouped by
having experienced the studied health outcome or not. A participant with the
health outcome is called a case, and a participant without is called a control.
The researchers will pair one or more controls with a case. The controls should
be similar enough to their case to be comparable. The next step is to investigate
suspected risk factors or exposures. The participants will ordinarily answer
questionnaires about the degree of exposure to risk factors. Because the ques-
tions are retrospective, case-control studies are prone to recall bias. Selecting
cases and controls without introducing selection bias can be challenging (Wa-
cholder et al. 1992a,b,c). For example, the two groups can be systematically
different from each other without it being obvious. However, case-control stud-
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ies also have appealing advantages, e.g., case-control studies require relatively
few participants and little time before results can be analyzed.

4.2 Longitudinal Studies and Prospective
Cohorts

Longitudinal studies follow subjects over time with continuous or repeated
monitoring of risk factors or health outcomes, or both (Coggon, D. Barker, and
Rose 2009). The studies are additionally population-based if they aim to be
generalizable to the whole population addressed in the study hypothesis, not
only to the individuals included in the study (Lieb 2013).

A prospective cohort study is a longitudinal study that only recruits individuals
who do not have the investigated health outcome. The participants answer ques-
tionnaires regarding exposure to suspected risk factors, and they can undergo
relevant medical examinations, donate blood, and so on. The participants are
then followed up over a specified period. For diseases such as cancer, a certain
percentage of the participants will develop cancer annually. As time passes, if
the cohort is sufficiently large and the period long enough, more participants
will probably be diagnosed with cancer. At the end of the study, the researchers
examine the difference in cancer incidences for exposed and non-exposed
groups—or groups with different degrees of exposure to a suspected risk factor.
One advantage of prospective cohort studies is that this study design reduces
the problem of recall bias, which is a challenge in case-control studies. The
reason is that questionnaires, surveys, and sample acquisitions occur in advance
before knowing who will develop the health outcome in the future. However,
there are downsides. The studies usually required far more participants than
case-control studies, especially for rare health outcomes. The recruitment and
follow-up process becomes complicated, and the number of samples that need
to be analyzed makes the projects costly. Also, the studies may have to run for
several years before researchers can analyze the results.

4.3 Hybrid Designs

Some of the problems with case-control and cohort designs can be reduced
by combining the two types in a hybrid design. Two popular types of hybrid
designs are nested case-control and case-cohort (Kleinbaum, Sullivan, and
N. D. Barker 2007, p. 39). Both are case-control studies inside of cohort studies.
Hybrid designs are well suited for large population-based prospective cohort
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studies. In this type of cohort study, a wide range of exposures is surveyed
for each participant. The intent is to collect a broad range of information that
can be interesting later without this being known in advance. Blood and other
biological samples can be stored unanalyzed in biobanks. The cohort can then
be used as a starting point for selecting cases and controls in other, smaller
studies. Such hybrid designs have several advantages. It is more cost-effective to
analyze samples only when needed in a smaller case-control study. You can also
perform types of analyzes that were unforeseen when the study started. The
risk of recall bias is reduced for the same reasons as in an ordinary cohort study.
The risk of selection bias is also reduced because cases and controls are selected
from the same population. This is in contrast to simple case-control studies,
where the cases and controls often are selected from hospital departments or
other places where the groups are already systematically different from each
other. Hybrid study designs can thus provide the best of both worlds.

4.4 Cross-Sectional Design

The last type of study design covered in this chapter is cross-sectional, also
known as prevalence studies. A cross-sectional study is a snapshot of the
population at a particular time. It does not include information about when the
health outcome occured. Information about exposure is included. A problem
with this type of study design is that temporal relationships are missing, i.e., no
information about the timeline of events. Therefore, it could be that exposure
to a suspected risk factor happened after the diagnosis. The risk factor could
then instead be a result of the health outcome. And if the health outcome is a
potentially lethal condition or disease, then what appears to be a risk factormay,
in reality, be a survival factor found in people who live longer with a disease or
condition—a type of bias called survival bias. Still, there are situations where
cross-sectional designs are justified.





5
DNA, Genomics, and Omics
DNA is a double-stranded molecule in human cells that carries our genetic
information in sequences of four nucleotides (adenine, cytosine, guanine, and
thymine) (Miller 2022a). This genetic information is inherited from our parents
and guides the production of proteins from amino acids, among other functions.
A gene is a segment of DNA that codes for a specific function, such as a
protein, and there are about 20,000 genes in the human genome (Miller 2022b).
Occasionally, mutations can alter the DNA sequence. Inherited mutations are
called constitutional or germline and affect all cells, whereas somatic mutations
are non-inheritable and affect some cells. Somatic mutations are often a result
of environmental factors or diseases (Frost 2022).

TheHumanGenome Project (https://www.genome.gov/human-genome-project)
completed history’s first sequence of the human genome in April 2003. Today,
high-throughput sequencing (hts), also called Next-generation sequencing
(NGS), are technologies that allow for the rapid sequencing of large amounts
of DNA or RNA at a significantly reduced cost. The hts technologies perform
sequencing of millions of small fragments of DNA in parallel, and it is now
possible to sequence the entire human genome in as little as a day (Behjati
and Tarpey 2013).

Genomics is relevant to epidemiology as inherited genetic variations can influ-
ence health risks. Genome-wide association studies (GWAS) analyze genomes
for genetic variations, aided by software such as the Broad Institute’s Genome
Analysis Toolkit (GATK). Three main types of genetic variations are analyzed
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in GWAS: Single-nucleotide polymorphisms (SNPs), which are changes in a
single base-pair; Inserts and deletions (INDELS), which are variations of 1 to
10,000 base pairs in a DNA sequence; and copy-number variations (CNVs),
which are changes in the number of repeated sequences of base pairs.

Omics refers to fields in molecular biology that study the genome and its
products, including genomics, epigenomics, transcriptomics, proteomics, and
metabolomics (Vailati-Riboni, Palombo, and Loor 2017). Genomics focuses on
DNA and genes, while epigenomics studies gene accessibility and regulation
through DNA packaging. Transcriptomics involves the study of RNA, which
carries information from genes for protein synthesis. Proteomics examines an
organism’s set of proteins, which have various roles, such as enzymes, structural
components, and messengers. Metabolomics deals with the body’s chemical
processes and the molecules involved in metabolism, including proteins, lipids,
carbohydrates, and nucleotides. Lastly, multi-omics combines data from various
omics fields.

Omics are relevant to modern epidemiology. For example, epigenomics and
transcriptomics can, in some cases, reveal biological markers for diseases in
blood or tissue.



Part II

Methods
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6
Cloud Computing
Cloud computing is a type of utility computing. It provides computing resources
analogously to how utility companies provide electricity,water, and gas services.
Instead of users and organizations owning and managing all needed physical
computer resources on their premises, a shared pool of resources in data centers
elsewhere provides the computational power, storage, network, applications,
and services. A third party typically owns the cloud, and the services are
accessible over a standard network and consumed on a pay-per-use basis.

The National Institute of Standards and Technology (nist) has formulated a
widely used definition of cloud computing,which starts with: "Cloud computing
is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction. This cloud
model is composed of five essential characteristics, three service models, and
four deploymentmodels" (Mell and Grance 2011). Next, the definition continues
with listing and describing each of the characteristics, service models, and
deployment models.

The four cloud deployment models are public, private, community, or hybrid.
Public clouds are for open use by the general public but exist on the premises
of the cloud providers. In terms of market share, the four largest public cloud
providers in 2023 are Amazon Web Services (aws), Microsoft Azure (azure),
Google Cloud Platform (gcp), and Alibaba Cloud (alibaba) (Richter 2023).
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On the other hand, community clouds are for specific consumer communities
with shared concerns, such as special compliance considerations and security
requirements. HUNT Cloud is an example of a community cloud offered by
the Norwegian University of Science and Technology (NTNU). It specializes
in solutions for scientific cloud computing and has an extensive compliance
framework to protect data privacy.

The three service models listed in the nist definition are:

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS).

For this thesis, SaaS is the most relevant of the three. This service model
lets consumers use a provider’s applications on a cloud infrastructure. The
consumers access the applications using thin clients (e.g., web browsers) or
application programming interfaces (APIs), but the SaaS consumers do not
manage or control the underlying cloud-based platform or infrastructure. In the
thesis, the consumers are the research groups, whereas the application provider
is the part offering the proposed collaboration software to the research groups
as a service running in a public cloud. The public cloud itself is owned and
managed by a third-party cloud provider.

The termmulti-tenant means that several tenants, or consumers, share the same
resources while being isolated in separate environments and precluded from
knowing about or accessing the other tenants’ environments. The cloud is, per
(NIST’s) definition, inherently multi-tenant through its use of resource pooling,
serving a plethora of consumers sharing the same physical resources in a man-
ner giving a sense of location independence. The term is also relevant to saas.
A saas can follow a single, mixed, or multi-tenant model (https://learn.
microsoft.com/en-us/azure/architecture/isv/application-tenancy). In a
single-tenant model, a separate software installation, or instance of the soft-
ware, is deployed for each consumer. For a multi-tenant solution, a single
instance of the application is shared by multiple consumers, but each has an
isolated environment where its data and configurations are inaccessible to the
others. In a mixed model, specific layers or tiers of the application are deployed
per consumer, and the rest is shared. For example, each consumer can have
a separate database (db) instance but share the same instance for the rest of
the application. From a saas provider’s perspective, a multi-tenant solution is
cost-effective due to resource utilization. Also, the management of the saas
platform may become more straightforward due to centralization. Often, single
and mixed-tenant solutions are used to ensure better performance through
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provisioning resources separately per consumer or because security require-
ments demand separate dbs. For the saas proposed in the thesis, neither
the computational intensities nor user traffic are expected to be particularly
demanding. The computations for the data analysis pipelines are separate from
the public clouds. Further, none of the regulated data are stored or processed
in the public cloud. Consequently, a multi-tenant solution is possible.





7
Workflow Management
Systems

This thesis defines a workflow as a repeatable series of steps in a work process,
organized in a specified order from start to end, possibly including conditional
branches, where each step includes one or more activities to execute before
proceeding to the next. The steps can involve a combination of human and
machine-based activities.

A workflow management system (wfms) is a software system that facili-
tates the execution of workflows by enabling the computerized definition
and management of workflows and automating the coordination of human
and machine-based activities. A closely related term is business process man-
agement system (bpms) and is sometimes used synonymously with wfms
in literature, which is the case for the relevant systematic review on bpms
architectures by Pourmirza et al. (2017).

A classicalwfms architecture referencemodel is found in Hollingsworth (1995).
It describes that, at the highest level, all wfms solutions have functionality
for:

1. Defining workflows at build-time

2. Managing the progress of the workflows at run-time
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3. Interacting with human users and IT application tools for processing the
various activity steps at run-time

In the reference architecture, the user defines workflows using a build-time
definition tool. The definition tool produces a process definition that a work-
flow management (WFM) engine manages and interprets at run-time. The
WFM engine then orchestrates or choreographs the activities of users and IT
application tools, often by using a combination of internal and external third-
party system components or services. In contemporary literature, the terms
orchestration execution engine and choreography execution engine can be seen
used for WMF engines (Pourmirza et al. 2017). Generally, there is a distinction
between orchestration and choreography when describing architectures involv-
ing services—e.g., microservices (IBM Cloud Team 2021). Orchestration implies
that a centralized authority coordinates service interactions, whereas choreog-
raphy usually implies an event-based architecture with a more distributed and
autonomous interaction model. A case for using a workflow engine to orches-
trate microservices instead of relying on choreography is made in Nadeem and
Malik (2022).

All the large cloud providers offer wfms as part of their standard portfolio.
Table 7.1 lists examples of wfms services offered by the four largest cloud
providers.

Table 7.1: Cloud providers and wfms service

aws Simple Workflow (SWF) https://aws.amazon.com/swf/

gcp Workflows https://cloud.google.com/
workflows/

azure Logic Apps https://learn.microsoft.com/azure/
logic-apps/

alibaba Serverless Workflow https://alibabacloud.com/product/
serverless-workflow/

https://aws.amazon.com/swf/
https://cloud.google.com/workflows/
https://cloud.google.com/workflows/
https://learn.microsoft.com/azure/logic-apps/
https://learn.microsoft.com/azure/logic-apps/
https://alibabacloud.com/product/serverless-workflow/
https://alibabacloud.com/product/serverless-workflow/
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Low-Code and No-Code
Development

Richardson et al. (2014) coined the term low-code in a Forrester trend re-
port about the emergence of new development platforms for customer-facing
applications, dramatically reducing the need for hand-coding. However, no
uniformly accepted definition of low-code exists. The systematic review of
low-code and usability by Pinho, Aguiar, and Amaral (2023) addresses this and
defines low-code as:

Low-code development is a set of approaches, technologies, and
tools that enable rapid application development through techniques
that reduce the amount of code written.

These approaches can make it possible for end-user developers
to program software and use techniques and tools, often includ-
ing but not limited to model-driven engineering, domain-specific
languages, and drag-and-drop mechanisms.

A closely related term is no-code, which aims to remove the hand-coding al-
together. Tracing the term’s origin is difficult, but an early usage example is
the website NoCode (https://nocode.tech), which has provided a curated
directory of tools for non-technical entrepreneurs since November 2016. A
May 2017 snapshot of the website by the Internet Archive Wayback Machine
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(https://web.archive.org/) shows that the directory included categories such
as website builders, app-builders, customer support tools, forms and survey
creators, and more (https://web.archive.org/web/20170503174122/https://
www.nocode.tech/). The site’s category descriptions align with what we to-
day consider to be the aims of no-code, such as making tedious and time-
consuming development tasks quick and easy without requiring code or design
knowledge.

A search for published papers with "no-code" or "no code" in the title or
abstract was conducted using Web of Science, ACM Digital Library, and IEEE
Xplore, and the earliest found published academic work using no-code in its
current meaning was Fryling (2019). The work was a brief conference workshop
description, and from the text, it is clear that the termwas already in established
use. It also ties no-code to model-driven development, described further down
in this chapter.

Development tools fitting into the categories of low-code and no-code have
existed far longer than the terms themselves. For example, the 1992 paper by
Baldassari-Mather (1992) presents a visual design tool, Hewlett Packard’s HP
VEE-Test, using a flow-chart style of design for creating automated test pro-
grams without the need for traditional programming languages. Thus, low-code
and no-code are categories that emerged after a decades-long evolution of soft-
ware tools aiming to make development more time-saving, cost-efficient, and
easily accessible to non-programmer users. Typically, the tool’s target users—
frequently referred to as line-of-business users—are assumed to be relatively
inexperienced in programming but proficient in their respective fields.

The vendors considered to be the first movers in modern low-code development
tools originated from three partly overlapping neighborhoods of the software
industry (Richardson et al. 2014):

• Business process (BPM) and case management

• Web content platforms

• App platforms

The vendors listed under BPM and case management in Richardson et al. (2014)
were all reported to share strengths in the areas of BPM, case management,
and workflow, which shows that workflows have played an important role in
low-code and no-code since the early years.

Under the hood, many of the methods used to enable low-code and no-code are
related to model-driven development (Fryling 2019; Pinho, Aguiar, and Amaral

https://web.archive.org/
https://web.archive.org/web/20170503174122/https://www.nocode.tech/
https://web.archive.org/web/20170503174122/https://www.nocode.tech/
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2023). Following (Pinho, Aguiar, and Amaral 2023), model-driven development
(MDD) is a software development methodology based on software-defined
models that represent simplifications or abstractions of a problem domain. The
models can be designed and generated using tools and transformed into soft-
ware using model transformations. Also,metamodels can be employed to define
a modeling language and ensure that models comply with the language defini-
tion. MDD can be used as a foundation for automated software development,
such as low-code and no-code.

Brambilla, Cabot, and Wimmer (2012, pp. 26–33) identifies source code genera-
tion andmodel interpretation as two central approaches in automated software
development. In the typical case, multiple model-to-model transformations are
applied before a final step produces an executable model either in source
code form or interpretable by an execution engine. This thesis takes a source
code generation approach and generates scripts for runnable pipelines from a
pipeline definition model, which the user designs using a low-code or no-code
approach. In turn, the pipeline definitions follows the rules of a metamodel
defining an overall structure applying to analysis pipelines for the chosen type
of study design. The runnable pipelines described throughout this thesis corre-
sponds to the executable models described in Brambilla, Cabot, and Wimmer
(2012, pp. 28–31) that are generated by utilizing a rule-based template engine,
i.e., the code generator consists of a set of templates with placeholders that
once applied (instantiated) on the elements in the model, produce the code.
A systematic review of template-based code generation is found in Syriani,
Luhunu, and Sahraoui (2018).





Part III

Toward a Platform for Hybrid
Designs and Analysis
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9
A Workflow for Designing
Hybrid Studies and Data
Analysis Pipelines
At the heart of the proposed platform is the research group’s workflow for
designing studies and analysis pipelines using subsets of the same regulated
data as a basis for numerous studies. This chapter presents the overall struc-
ture of a study design workflow for hybrid designs, for example, case-control
studies nested in the same population-based prospective or longitudinal cohort
study.

Figure 9.1 illustrates that the overall workflow has three basic steps. The first
step comprises design-time activities for defining the study design, variables,
selection of subjects (participants), and data processing and analysis-related
tasks for the study. The next step is to apply for data,which requires information
from the first step. After data provisioning, the final step is to generate a
runnable representation of the data processing and analysis tasks—a runnable
pipeline—that can be transferred and executed in the secured IT environment
where the provisioned data are available.

In Figure 9.2, the overall workflow has been expanded into finer-grained steps.
The expanded version is to be understood as an example because the system
should enable different research groups to define and evolve overall workflow
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Figure 9.1: The figure illustrates the three basic steps of the overall workflow.

structures in alignment with their internally used methods. The example is
based on a combination of the already described needs, hybrid designs in
general, and the design used for the nested case-control study in Agerbo,
Nordentoft, and Mortensen (2002).

Figure 9.2: The figure illustrates an expanded version of the overall workflow.

9.1 Designing the study and pipeline

The first row of the expanded workflow is a sequence of design-time activities
for defining the study design, variables, subject selection, and data processing
and analysis-related tasks for the study, described in this section.

The researcher first selects one of the predefined study designs, e.g., a nested
case-control or case-cohort study.

The next step is to select the variables needed for the study, including the
exposure, outcome, and control variables. Because there can be thousands
of available variables, the system should provide a search tool utilizing a
data dictionary of variable meta-data. A searchable database of variables and
categories for Norwegian data sources is already present at Helsedata (https:
//helsedata.no/). For example, fornowac, Helsedata has meta-data on 12,105
variables from questionnaires and registers (Variabler 2023) grouped in 31
categories. Additionally, the researcher may need variables derived from other
variables, e.g., index variables. Here, the system could utilize meta-data about

https://helsedata.no/
https://helsedata.no/
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registered wrangling functions’ input variables to generate a list of the needed
source variables for computing the derived variable, if available.

After choosing the variables, the researcher can specify the criteria for select-
ing cases, exposed, or treated subjects, depending on the type of study—and
afterward, the selection criteria for the study’s controls and possibly matching
method. For some studies, data linkages may also be needed.

Also included in the design-time activities is the design of the analysis pipeline
part of the workflow that can be converted to a runnable pipeline and run in a
secured IT environment after data provisioning, described in Section 9.3.

9.2 Applying for data

The second row of workflow steps illustrated in Figure 9.2 represents activities
related to applying for access to data.

Usually, the application must include a list of all needed variables, possibly
selection criteria, and a description of the study’s objective and methods. The
system can help the researcher in the application process by generating in-
formation needed for the application from the pipeline definition. It could
additionally provide other resources, such as relevant documents and applica-
tion forms.

The subsequent steps depend on whether the person processing the application
is a registered user of the system with a data steward role. Often, a research
groupmember is responsible for evaluating the application, as well as extracting
and provisioning the requested cohort data subset. In that case, the system
could alert and give control of the data access application steps to this person.
The applicant could then follow the progress through status messages.

If the evaluation results in approval, the system could help the data steward
extract the data requested by the applicant by providing scripts for selecting
data based on the pipeline definition.

After providing the data, the applicant can be alerted.



44
chapter 9 a workflow for designing hybrid studies and data

analysis pipel ines

9.3 Executing the analysis pipeline

The third row of Figure 9.2 illustrates workflow steps for data processing
and analysis tasks, i.e., the data analysis pipeline. At this stage of the overall
workflow, the researcher can access data. The system can generate a runnable
pipeline from the pipeline definition,which the researcher transfers to a secured
IT environment and runs.

In the wrangling step, data can be prepared for further processing, for ex-
ample, by applying scripts for computing index variables from a selection of
source variables. After wrangling comes a pre-analysis step for processing
data. Examples of pre-analysis tasks are automatic stratification or balancing
of the sample by pruning to reduce bias. The method presented in Paper II,
Autostrata: Improved Automatic Stratification for Coarsened Exact Matching,
is an example of a method applied in a pre-analysis step. The next step is
composed of data analysis tasks, such as regression modeling and estimat-
ing risk. Paper III, Greedy Knot Selection Algorithm for Restricted Cubic Spline
Regression, is an example of a method belonging to the analysis step. Lastly,
an optional post-processing step can facilitate evaluation, interpretation, and
documentation-related activities.
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Architecture and Design
This chapter presents the core system architecture of the proposed platform,
which can be embedded in a more comprehensive saas solution offering a
myriad of helpful collaboration features. Further, many existing cloud-based
solutions can easily integrate as components of this platform. However, the
chapter focuses on the architecture related to the contributions of the thesis
instead of standard features provided by existing integrable solutions.

The system architecture spans three distinct computing environments, as il-
lustrated by Figure 10.1—the public cloud, the user’s local computer, and the
secured IT environment. In the architecture, the user’s local environment sits
between the public cloud and the secured IT environment and communicates
directly with these, but there is no direct communication between the public
cloud and the secured IT environment.

The data provisioned for analysis are accessible only within the secured IT
environment. To analyze the data, the user typically logs in to a virtual machine
(vm) (Barham et al. 2003; Sugerman, Venkitachalam, and Lim 2001) in the
secured environment, where a remote directory containing the data files has
been mounted into the filesystem. A selection of preinstalled software can be
used to analyze data, and a scripting language and integrated development
environment (ide) for statistical analysis can be assumed to be available,
such as R-studio. For security reasons, the user can generally upload but not
download files, and the vm deliberately does not have internet access. Despite
the strict limitations, the user can still upload scripts and run in the vm, a
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Figure 10.1: The figure illustrates the system’s three primary environments: The cloud,
the researcher’s local computer, and the secured IT environment with a
vm having access to the provisioned data for the study.

central reason for the proposed system’s architecture.

Another aim of the system is to save time and resources within a group by
encouraging collaboration and enabling sharing of custom functions developed
for a particular study in a form reusable in subsequent studies. However, a
secured IT environment is inappropriate for hosting the platform because of its
numerous restrictions due to security policies. Consequently, the architecture
is split into one part for the functionality requiring access to regulated data
and another independent of this data. An on-premise or cloud-based system is
possible for the latter because no sensitive data is involved. Here, a cloud-based
saas platform is advantageous over an on-premise system, as explained in
Chapter 6 on cloud computing.

For the rest of the thesis, it is understood that the system is available to
research groups as a multi-tenant saas solution where different groups share
the same physical installation of the platform hosted on a cloud infrastructure.
Each group shares the same underlying installation. However, each group
has its own separate and isolated environment, which includes configurations,
data, and user management, and one group cannot access another’s data or
configurations. The groups’ environments are customizable to their specific
preferences. Employing a multi-tenant approach allows for efficient use of
resources and simplified maintenance and updates, allowing changes to be
made to the core system without affecting each group’s customized settings
and data.

The system has several user roles, of which Figure 10.2 shows the five most
relevant to the described part of the architecture. A user can have more than
one role. The platform administrators have responsibilities that involve the
management of user and group accounts, access rights, system maintenance,
updates, and monitoring system status. The Platform Admin role is indepen-
dent of any research group memberships and likely should not be given to
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group members to avoid conflicts of interest between groups using the plat-
form. On the other hand, the Group Admin role is held by group members.
Users having this role manage the group’s saas account, its users, and their
roles. The group administrator also has access rights allowing management of
preferences, customizations, and configurations according to the group’s needs
and preferences and other intragroup administration activities. The Function
Contributor role is for users who write and share functions that the group’s
researchers can choose when designing a data pipeline for a study. The Data
Steward role is for users who can evaluate applications for access to regulated
data and who can provision the data. If such group members exist, handling
applications can be supported by being integrated into the workflow. Lastly,
the Researcher role is for users who use the system to design and conduct
studies.

Figure 10.2: Five different user roles in the presented architecture

Figure 10.3 is a uml component diagram (Larman 2002, p. 605) illustrating a
high-level view of the components of the system’s architecture involved when
a user with a researcher role designs a study by following the workflow. The
diagram organizes the components into two subsystems, Study Workflow
Client and Study Workflow Services. The former is the researcher’s client
for designing the study; it can, for example, be a single-page application (spa)
(Fink and Flatow 2014) running in a browser on the researcher’s local computer.
The latter is composed of services (Kleppman 2017, pp. 131–133) running in the
public cloud.
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Figure 10.3: The figure is a uml component diagram giving a high-level view of the
components in the architecture relevant to the study design workflow as
used by a researcher role.
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Study Workflow Use Case
The components of the architecture illustrated in Figure 10.3 are now ex-
plained in a writing style informed by casual use cases (Cockburn 2000) with
additional explanations of components. In this use case, the researcher has
opened the client in order to design a new study. The Client Main Module
creates a new empty project for the workflow and stores it using the Project
Store. Next, the main module calls the wfms to register a new workflow in
its initial state. The main module both exposes and requires interfaces from
the other client modules, the Study Designer, the Pipeline Designer, and
Data Application Manager, enabling the main module to control the others,
as well as allowing these to make requests back to the main module in an
orderly manner. Interfaces also make the separation of concerns clear, making
different implementations of the components interchangeable. After initializing
the new project, the main module opens the study designer. The study design
module includes the user interface (ui) for designing the study, up to the
analysis pipeline design process. The main client module publishes an event
via an Event Bus (Tanenbaum and Van Steen 2014, pp. 35–36) informing that
the workflow has entered the study design phase. The wfms picks up and
processes the event.
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11.1 Study Designer

The Study Designer lets the researcher choose a predefined type of study
design from the Study Design Catalog, where typical examples are nested
case-control or case-cohort. A group administrator can add study designs to
the catalog so that the exact content can vary from group to group. When the
researcher chooses a study design, a data structure representing the study is
created. The structure contains the steps and values for a workflow correspond-
ing to the first row of the expandedworkflow illustrated in Figure 9.2, except for
the analysis pipeline design step. The designer module manages this structure
and provides the ui for guiding the researcher through the steps. To persist
and retrieve the structure, the designer calls functions on the main module’s
exposed interface, and the main module calls the Project Store service. As
part of designing the study, the researcher must specify which variables are
needed from the potentially large number of available variables. The study
designer lets the user search for information about variables by employing the
Variable Catalog service. After the researcher has finished the study design
workflow, the study designer asks the client’s main module to persist the data
in the project storage and update the state of the overall workflow. The main
module updates the workflow state by publishing an event that the wfms
processes.

11.2 Pipeline Designer

Next, the Client Main Module switches from the Study Designer to the
Pipeline Designer module. The pipeline designer gets the data structure
created by the study designer via themainmodule. This structure contains infor-
mation on the researcher’s chosen variables and other parameters the pipeline
designer can use. The pipeline designer also creates a pipeline definition struc-
ture, which will hold the information needed to build a runnable pipeline
later. As with the study design structure, the Project Data service provides
persistent storage, which the pipeline designer uses via the main module’s
provided interface. The researcher defines the pipeline by using a no-code or
low-code ui, possibly with a natural-language user interface (nlui), assisting
the researcher in choosing from functions from the Function Catalog. The
Function Catalog provides meta-data about available functions, including
required and optional parameters, datatypes, permitted values, and documen-
tation. Paper IV in the thesis, Schema-Based Priming of Large Language Model
for Data Object Validation Compliance, presents an approach letting a Large
Language Model (llm) be used to assist a researcher. Features similar to GPT-
4 function calling (https://platform.openai.com/docs/guides/gpt/function-
calling) could be employed as well. However, these implementation details

https://platform.openai.com/docs/guides/gpt/function-calling
https://platform.openai.com/docs/guides/gpt/function-calling
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are mentioned to highlight possible solutions and are not essential to the
architecture.

When the researcherhas completeddefining the analysis pipeline, the Pipeline
Designer can pass the pipeline definition to the Pipeline Builder service.
This service interprets the pipeline definition and generates files (e.g., script
files) with the actual implementation of the analysis pipeline. The function im-
plementations are retrieved from the Function Implementation Provider
service, which is the service involved when a Function Contributer adds
new reusable functions for sharing with the group. It also provides the depen-
dencies needed by the functions. The functions, e.g., scripts, are weaved into a
pipeline by correctly connecting the functions in order and ensuring that func-
tion arguments are passed as specified by the pipeline definition. The pipeline
builder bundles the files and the dependencies needed to run the pipeline in
the secured IT environment into an archive. Chapter 12 explains how runnable
pipelines based on scripts can be built using a template engine.

Finally, the researcher can download the runnable pipeline bundle from the
cloud to the local environment and transfer it to the vm in the secured IT
environment. In the vm, the bundle can, for example,be unpacked and imported
into the ide, where the researcher can run it. Researchers often use a notebook
environment allowing the combination of text and interactive execution of code
chunks.

11.3 Data Application Manager

Data must be available before the researcher can run the data analysis pipeline.
The researcher must send an application to the data steward who evaluates the
application and provides the requested data. In the system’s architecture, the
Data Application Manager module provides tools and resources to help the
researcher to apply. If the data steward is a group user with the Data Steward
role, the system can contain workflow steps for more efficient communication
between the researcher and data steward during the application process. The
status of the application can be tracked, and changes can be signaled between
running instances of the client. When the status of the application is updated,
the application manager module calls the main client module, which triggers
the wfms. After the wfms updates the application status in the workflow,
it publishes an event on the event bus. The running clients will then pick up
and process the event and can immediately update the ui accordingly. It is
also possible for wfms to automatically send messages to researchers and
data stewards by mail or other channels as part of the application process.
If the data steward provisions data, the data will be made available within
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the secured IT environment, and the researcher will be notified by the wfms.
However, the data will never be transferred through the public cloud or the
researcher’s local environment.
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Building Runnable
Pipelines

In the key scenario described in Section 1.2, the researcher uses scripts to
analyze the study data in an instance of R-studio running on the vm in the
secured IT environment. This chapter explains how the proposed system can
build scripts from pipeline definitions. Script files are plain text files with
source code typically interpreted by a scripting engine at runtime. Because
the source code is text, it is possible to use a template engine for assembling
a runnable pipeline in source code format from a pipeline definition data
object. This approach is informed by model-driven development (MDD) and
template-based code generation (Chapter 8).

Paper IV shows how schemas can document and define the rules for a pipeline’s
possible steps and functions. The schema defines where a function is valid in
the pipeline, its required and optional parameters, the parameter datatypes,
and value restrictions. When a researcher defines a pipeline, it is represented
internally in the system as a data object that complies with the schema. This
pipeline definition data object is serializable to a suitable text-based representa-
tion. Examples of standard text-based data formats are XML, JSON, and YAML
(Edelman, Lowe, and Oswalt 2018, pp. 151–176). Such serialized pipeline defi-
nitions are passed to the Pipeline Builder, which is responsible for creating
executable scripts bundled with dependencies and resource files.
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The templates contain a combination of source code written in the scripting
language and placeholder expressions written in the templating language.
There is a main template representing the general structure of the pipeline, and
subtemplates for calling the functions chosen by the researcher are inserted
dynamically into this template as specified by the placeholder expressions.
Further, the main template implements a way of calling functions in the correct
order and gluing the function calls and responses together into a pipeline. The
Pipeline Builder parses the serialized pipeline definition and passes the
resulting data object and the templates to the template engine to assemble
and generate the final script.

More detailed, the pipeline definition data object holds the values for the
researcher’s chosen pipeline functions and parameters. The actual function im-
plementations are included in partial templates that the template engine injects
into the pipeline structure defined in the main template. These partial tem-
plates also include expressions for injecting values from the pipeline definition
data object, such as function arguments originally decided by the researcher
during the design phase. The Pipeline Builder retrieves the needed func-
tion implementation partial templates from the Function Impl. Service.
The Function Impl. Service is also responsible for providing the Pipeline
Builder with any additional files and resources that a function needs.

An example of a simple yet flexible templating language is Handlebars (https:
//handlebarsjs.com/). It is compatible with the Mustache (http://mustache.
github.io/) templating language but includes extra features valuable when
dynamically assembling scripts from multiple partial templates. Implementa-
tions exist for a wide range of programming languages, such as JavaScript1,
Java2, .NET3, and Python⁴.

1. https://handlebarsjs.com/
2. https://github.com/jknack/handlebars.java
3. https://github.com/Handlebars-Net/Handlebars.Net
4. https://github.com/wbond/pybars3

https://handlebarsjs.com/
https://handlebarsjs.com/
http://mustache.github.io/
http://mustache.github.io/
https://handlebarsjs.com/
https://github.com/jknack/handlebars.java
https://github.com/Handlebars-Net/Handlebars.Net
https://github.com/wbond/pybars3
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Overview
The proposed cloud-based platform has now been described. The following
part of the thesis gives an overview of the included papers and how they fit
into the overall thesis context. In this connection, it may be worthwhile to
refresh Figure 1.1. The figure is a concept map showing topics in the thesis and
included papers. Furthermore, it illustrates four partially overlapping areas
with gray tones as a background, representing topics related to Paper I, Paper
II & III, Paper IV, and the proposed platform in the thesis.

Paper I covers a relatively broad area that includes topics in epidemiology,
study designs, workflow, analysis pipelines, and analytics platforms. Papers
II and III are related to statistical methods that fit into different steps of the
analysis pipelines; Paper II involves balancing samples or matching cases with
controls to adjust for confounding factors as a pre-analysis step, whereas Paper
III is about curve regressions commonly used in epidemiology and fits into the
analysis step.

The figure illustrates that no papers cover the wrangling step. However, this
is covered instead by a report on wrangling smoking variables in nowac
and the associated R-scripts (https://github.com/jo-inge-arnes/smoking-
variables).

Paper IV shows that a ui supporting natural language may be used to design
analysis pipelines in low- or no-code settings.
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Finally, the figure illustrates that excluding the papers, the thesis has topics
distinct from the papers, focusing on a cloud platform for collaboration, chal-
lenges around regulated data, the required use of a secured IT environment,
and code generation as a solution.
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Paper I
The Beauty of Complex Designs

The Beauty of Complex Designs is the first paper in the thesis and establishes
the Ph.D. project’s initial context. As an independent work, it is a position
paper having a threefold objective:

1. To provide an overview of systems epidemiology in the setting of the
nowac study

2. To describe how novel systems epidemiological studies can be designed
by using data from population-based prospective cohorts

3. To identify computer science research opportunities, discuss require-
ments, and suggest a systems architecture for swiftly designing and
exploring nested studies

The paper starts with a historical account of the developments in analytical
observational epidemiology leading up to the introduction of systems epidemi-
ology in 2008 (Lund and Dumeaux 2008) and the processual approach in
2015 (Lund, Plancade, et al. 2015). After the introduction, the paper gives an
overview of the nowac study and data, which is usable for hybrid systems
epidemiological study designs. Next follows a description of how studies can be
designed using data from nowac, including an example of the design process.
Finally, after showing that combining data in numerous ways to design novel
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studies is possible, the paper argues that a computer system enabling a swift
and uniform process for this purpose would be beneficial. From this position, an
architecture is proposed based on the requirements of such a system. However,
the architecture presented in the thesis differs considerably from the earlier
work found in The Beauty of Complex Designs.

As a small note, the paper states that the number of women included in the
nowac study is 172,556. This number is obtained from a figure published at
the official nowac website by summing the number of recruited participants
per first-time questionnaire, shown in the figure as red boxes. The website has
since been replaced, but an archived version is available via the Internet Archive
Wayback Machine at (Timeline 2018). However, according to the website for
health data in Norway (Variabler 2023), the current number of participants is
172,472. A possible explanation is that the current dataset excludes some of the
initially recruited participants. Nevertheless, the difference is insignificant for
the paper’s content and conclusions.

Contributions by the author of this thesis

• The purpose and scope of the research were formulated collaboratively
with the paper’s co-author.

• Reviewed literature and gathered information on systems epidemiology
and nowac through meetings with researchers in the field

• Developed and conceptualized the suggested systems architecture

• Wrote the original draft of the manuscript and made the figures
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Paper II
Autostrata: Improved Automatic Stratification for
Coarsened Exact Matching

The second paper presents a novel stratification algorithm for use with Coars-
ened Exact Matching (cem) and is relevant to observational studies in epidemi-
ology, such as studies using hybrid designs. For example, case-control studies
nested within prospective cohorts involve selecting cases and controls that will
be part of the analysis. The purpose is to match comparable cases and controls
or balance a sample to control for confounder bias, which is part of the study
design as a step before data analysis. The method is a contribution to the
pre-analysis step of the data analysis pipeline described in Section 9.3.

It should be noted that the stratification algorithm can be used independently
for other purposes and is generalizable.

Contributions by the author of this thesis

• Identified the research gap and developed the methodology

• Made the implementations and conducted the experiments

• Wrote the original draft of the manuscript and made the figures
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Paper III
Greedy Knot Selection Algorithm for Restricted
Cubic Spline Regression

The contribution of the third paper fits into the statistical analysis andmodeling
step of the data analysis pipeline described in described in Section 9.3. It
presents a knot selection process for restricted cubic spline (rcs) regression.
rcs regression is frequently used in epidemiology, and other fields, to model
non-linear relationships between predictor and response variables.

Contributions by the author of this thesis

• Suggested and developed the novel method for knot selection

• Made the implementations and conducted the experiments

• Wrote the original draft of the manuscript and made the figures

63





17
Paper IV
Schema-Based Priming of Large Language Model
for Data Object Validation Compliance

The paper provides an empirical basis for using natural language for defining
analysis pipelines, which can be used as part of the proposed platform’s no-
code or low-code ui. The paper includes a user scenario example where a
scientist designs an analysis pipeline for air pollution data. Using an example
relating to a field different than epidemiology was a deliberate choice to
indicate the potential generalizability of the thesis’ proposed platform outside
epidemiology.

The developments around llms and the features offered by OpenAI’s GPT-
4 models are racing at the time of writing. The paper was submitted 21st
of April, 2023. Almost two months later, 14th of June, OpenAI announced
the function calling feature for GPT-4 (https://platform.openai.com/docs/
guides/gpt/function-calling), which uses a systemmessage prompt to prime
the model to learn the signature of functions by a schema-like definition. This
enables the model to automatically output a JSON structure representing the
function call in the response text as a response to user prompts. GPT-4 does
not call the function, but an application integrating it can extract the JSON
representation of the function call and use it. The novel approach presented
in Schema-Based Priming of Large Language Model for Data Object Validation
Compliance has many similarities. However, the preprint was publicly available
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before OpenAI announced their function calling API. Further, the intended use
and proposed solution presented in the paper are more advanced and extensive
than the function calling feature in GPT-4, for example, building a validated
structured data object over multiple prompts and responses.

The paper is under revision, but the original manuscript is included due to its
relevance to the thesis and the similarities with the method used later by the
mentioned OpenAI API.

Contributions by the author of this thesis

• Found the research gap, and the aim and scope of the research were
decided collaboratively with the co-author

• Suggested and developed the method

• Made the implementations and conducted the experiments

• Wrote the original draft of the manuscript and made the figures
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Concluding Remarks
A case has now been made for a platform providing a collaboration saas tar-
geting groups of researchers using data from a common cohort for a multitude
of studies having hybrid designs. It has also proposed an architecture and
design for the unique part of the system. The main lesson learned is that code
generation can open a door otherwise shut when providing a public cloud
solution to facilitate users working with regulated data available exclusively in
a secured, non-public environment, especially when users cannot freely install
software not provided by default. Another lesson learned is that the great
utility of systems for designing studies and data analyses may sometimes be
found in the collaborative aspects and what the users as a group contribute to
the solution.

The theme of the thesis also serves as the overall context within which the
four included papers belong. All the papers are on topics related to analytical
observational studies and analysis pipelines for studies utilizing a common
data source as a basis for hybrid designs. Paper I establishes the original
setting from which the thesis has evolved. Papers II and III and the report
on smoking-variable wrangling contribute to the analysis pipeline’s wrangling,
pre-analysis, and analysis steps. Paper IV is related to no-code and model-
driven development but employs a large language model (LLM) as part of
a natural-language user interface (NLUI) for designing pipelines. In future
work, the NLUI could be combined with a visual design environment for no-
code development. Further, instead of requiring the researcher to type the text
manually, a modern automatic speech recognition (ASR) technology could be
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used to transcribe speech to text. OpenAI’s Whisper is an example of a recent
ASR system (Radford, J. W. Kim, et al. 2023).

The cross-disciplinary focus has been at the intersection of computer science,
statistical methods, and epidemiology, and particularly on analytical observa-
tional studies and hybrid designs. Here, it is important to realize that other
research fields also conduct observational studies. For example, Paper IV de-
liberately uses an example related to air pollution instead of epidemiology. At
the same time, the principles are equivalent to the pipeline definitions and
runnable pipelines described in the thesis. From the thesis perspective, the
reason was to illustrate that the proposed principles for designing studies and
data pipelines are generalizable beyond epidemiology—however, this is partic-
ularly true if the data must be kept in an secured IT environment with little
room for installing extra software.

18.1 Limitations

Through the Ph.D. project, the author has explored the field of analytical
observational studies within epidemiology from a cross-disciplinary point of
view, examining limiting factors and uncovering opportunities. In the process,
it has been important to see the overall picture, as well as to dive deep into the
matter to understand the issues better.

However, a Ph.D. project has limited scope due to limited time and resources.
Implementing and deploying a complete solution is left to future work and
requires a project withmore resources and people involved. The author strongly
believes that a platform providing a collaborative saas, as described in the
thesis, can be of great value when it comes to the design of new studies and
helping to foster a collaborative culture within research groups. At the same
time, there are many opportunities for computer science student projects to
develop various parts of the platform and introduce new features. The author
also envisages possible other studies regarding the platform, such as user
studies.

Further developing the proposed platform can be interesting and fruitful for
epidemiology and computer science researchers. Therefore, the author hopes
the thesis can be used as the starting point of a larger project than a single
Ph.D. project can cover.
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2. The Beauty of Complex
Designs
Jo Inge Arnes and Lars Ailo Bongo

Abstract  The increasing use of omics data in epidemiology enables many novel
study designs, but also introduces challenges for data analysis. We describe the pos-
sibilities for systems epidemiological designs in the Norwegian Women and Cancer
(NOWAC) study and show how the complexity of NOWAC enables many beautiful
new study designs. We discuss the challenges of implementing designs and analyz-
ing data. Finally, we propose a systems architecture for swift design and exploration
of epidemiological studies.

Keywords  Systems epidemiology | Norwegian Women and Cancer | study 
designs | hypothesis exploration | computer systems

INTRODUCTION
Analytical observational epidemiology was, and primarily still is, about disease
risk estimation. In the past, most studies used simple case-control designs with
data from questionnaires, registers, and health records. The analyses relied on Cox
and classical survival analysis methods. Because case-control designs are prone to
selection and recall bias, prospective cohorts with nested designs are increasingly
used, but typically still focus on risk estimation. However, there is a shift in epide-
miology towards more basic research in which we study how diseases affect bio-
logical systems at a biomolecular level over time – for example, to understand the
dynamics of human carcinogenesis.

This shift was motivated by the sequencing of the human genome, officially
completed in April 2003 (The Human Genome Project), which led to the incorpo-
ration of genetic variants into epidemiological studies, primarily single nucleotide
polymorphisms (SNPs). SNPs are ideal as exposures because they do not change
over a lifetime. Hence, risks can be estimated using classical statistical methods.
There are also many hospital and research biobanks with samples usable for SNP
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analyses, such as biobanks incorporated in the European Prospective Investigation
into Cancer and Nutrition (EPIC) (Bingham and Riboli 2004). In the ensuing dec-
ade, considerable resources were spent on genome-wide association studies
(GWAS), but the studies repeatedly failed to find robust, replicable associations
between SNPs and common diseases (Lund and Dumeaux 2008). The focus, there-
fore, shifted to functional genomics to find biological markers associated with
environmental exposures, lifestyle, age, or disease.

In 2008, Lund and Dumeaux (Lund and Dumeaux 2008) introduced systems
epidemiology and proposed the globolomic design. Systems epidemiology incor-
porates functional genomics and observes how diseases affect human biological
systems over time. The globolomic design extends the existing prospective design
by integrating functional genomics analyses from blood and tissue. In 2015, Lund,
with collaborators, introduced a processual approach to systems epidemiology
(Lund et al. 2015). The processual approach differs from traditional risk-related
research in that we view disease as a multi-stage process and use functional
genomics to observe disease-associated changes over time. In connection with the
new direction in epidemiology, there was a need for new statistical methods. An
example is a statistical method for longitudinal gene expression analysis using the
concept of curve groups (Lund et al. 2016, Chapter 8), developed in cooperation
with the Norwegian Computing Center.

Omics (Vailati-Riboni et al. 2017) plays an essential part in systems epidemiol-
ogy. The different omics are, unlike genes, affected by exposures and diseases. By
integrating omics in nested case-control studies, we can find altered levels of gene
expressions or methylation that are biological markers of the disease. For example,
studies have discovered changes in pre-diagnostic DNA methylation associated
with breast and lung cancer risk (Baglietto et al. 2017, Fasanelli et al. 2015, van
Veldhoven et al. 2015). Other studies have found changes in the inflammatory
transcriptome in adults related to early-life socioeconomic status (Castagne et al.
2016). We can also use other types of biological data that contain changes associ-
ated with a disease, including epigenetics, gene expressions, proteins, and metab-
olites. Finally, we can combine different types of omics and observe them together
in a multi-omics approach (Hasin et al. 2017).

In systems epidemiology, we observe how diseases affect human biological sys-
tems at the molecular level over time in order to gain more knowledge about the
mechanisms involved throughout the natural history of a disease. The develop-
ment of cancer, for example, is a multi-stage process (Foulds L 1958, Grizzi and
Chiriva-Internati 2006). The omics may be affected differently at different stages
of the process. Thus, the temporal aspects are essential – for example, the time to
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diagnosis. Systems epidemiology can help to bridge the gap between epidemiology
and research in biological sciences. The study findings can provide input into
research on molecular level biological systems, which can enhance our under-
standing of diseases, e.g. through pathway analysis (Garca-Campos et al. 2015).
We can, therefore, see systems epidemiology as a shift in epidemiology from
applied research towards basic research. The emphasis on the dynamic nature of
biological systems and processes in systems epidemiology can be seen as a coun-
terpart to systems biology, which is a discipline that seeks to determine how com-
plex biological systems function by integrating experimentally derived informa-
tion through mathematical and computing solutions (Institute of Systems and
Synthetic Biology).

We can integrate systems epidemiological designs into existing prospective
studies if the studies include omics and relevant questionnaire data. The Norwe-
gian Women and Cancer study is an example of a complex prospective study with
extensive data from questionnaires and registers, nested studies, different types of
preserved biological samples, and omics data.

However, many opportunities remain unexplored due to the time-consuming
and expensive steps required to conduct a full systems epidemiological project. We
could reduce the problem by making it possible to quickly design studies and
explore potential hypotheses at an early stage, before starting thorough research
projects.

In this paper, we show that many novel systems epidemiological studies are pos-
sible by utilizing existing data from population-based prospective cohort studies.
We also propose a computer systems architecture enabling the swift design of stud-
ies and exploration of hypotheses.

COMPLEX DESIGNS
Systems epidemiological study designs can be nested within existing cohort stud-
ies, such as the Norwegian Women and Cancer (NOWAC) study. The novel studies
thus become part of a larger, complex design. Here, we describe the NOWAC study
and data types, and we show that the existing cohort enables many novel study
design possibilities. We give a stepwise example of a systems epidemiological
design process. We also provide examples of two other variations of study designs
to show that there are several ways to design studies. Lastly, in this section we dis-
cuss the potential for realizing more of the potential for designing studies and
exploring hypotheses.
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NORWEGIAN WOMEN AND CANCER STUDY
In this paper, we use the Norwegian Women and Cancer (NOWAC) Study (Lund
et al. 2008) to describe the systems epidemiological design process. NOWAC is a
population-based prospective cohort study approved by the Regional Committee
for Medical Research Ethics and the Norwegian Data Inspectorate (P REK NORD
141/2008 Biobanken KVINNER OG KREFT). It was initially designed for breast
cancer research and has later been used to research other types of cancer. The
cohort includes 172 556 Norwegian women born between 1926–1965 (Gram et al.
2013). Invitations to the study were sent by mail in different batches for different
time periods (The Norwegian Women and Cancer Study, NOWAC). Most of the
women were recruited between 1991–1997 (179 387 invited, 102 540 recruited)
and 2003–2006 (130 577 invited, 63 232 recruited) (Lund et al. 2008). All of the
invited women had been randomly drawn from the Norwegian Central Person
Register. Each woman in the study has participated in surveys with questionnaires
covering a wide range of topics, from smoking, alcohol, diet, and physical activity
to the use of oral contraceptives and hormonal replacement therapy, reproductive
history, and diseases in the family.

The women have answered follow-up surveys with intervals of between four to
six years, resulting in a total of one to four answered questionnaires per woman.
The latest follow-up was in 2017. NOWAC periodically updates data with infor-
mation from the Norwegian Cancer Registry and the Cause of Death Registry.

There are also blood and tissue samples. The number of women in NOWAC
born 1943–1957 is about one-third of all Norwegian women born in those years,
and between 2003–2006, the NOWAC postgenome cohort study (Dumeaux et al.
2008) collected blood samples from about 50 000 of these participants. At the time
of blood sampling, the participants filled out an accompanying two-page question-
naire. The samples were collected using the PAXgene™ Blood RNA System (PreA-
nalytiX GmbH, CH–8634 Hombrechtikon, Switzerland) with buffers specially
designed for the conservation of RNA (Barnung et al. 2018).

Other types of samples also exist for a smaller portion of the women, such as
biopsies from both malignant tumors (Dumeaux V 2017) and healthy tissue
(Chapter 4). NOWAC produced its first microarray-based gene expression dataset
in 2009 and later miRNA, DNA methylation, metabolomics, and RNA-Seq data-
sets (Fjukstad 2019).

The samples have been preserved with the future in mind. Assessment of the
mRNA quality in whole blood samples after 15 years has been reassuring (data not
shown). We are still early in the post-genomic era, and the omics field is rapidly
evolving. In the future, new or improved types of assays will be developed. We can
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then use the preserved samples together with these assays. Also, tissue and blood
samples can be analyzed in new ways as new areas of interest emerge in cancer
research. For example, the immune system’s role in cancer is promising (de Visser
et al. 2006). In the future, other areas may attract attention.

Systems epidemiology’s use of biological samples from human participants has
a number of advantages compared to the alternatives. In biomedical research, for
example, it is common to conduct experiments either on live laboratory animals
(in vivo) or in Petri dishes and test tubes (in vitro). It is reasonable to assume that
there are relevant differences between humans and laboratory mice that must be
taken into account when studying human diseases (Breschi et al. 2017, Mestas and
Hughes 2004). In their daily lives, humans experience very different exposures
compared to laboratory mice. Systems epidemiological designs make it possible to
investigate gene expression profiles resulting from the complex real-life situations
of the participants, with hundreds of different exposures that interact with genetic
predispositions to cancer (Lund and Dumeaux 2008).

A prospective study, such as NOWAC, will often start as a cross-sectional study
in which data collection is done at a defined time. The study will usually involve
surveys about the past and data originally collected for other purposes. Cross-sec-
tions of the cohort can be made, but the temporality desired in a prospective study
is still missing. For each following year, some percentage of the participants will be
affected by cancer or another disease, which forms the basis for the prospective
aspect of the study. Additionally, the cohort needs to be followed up. Follow-ups of
a cohort can involve mailing follow-up questionnaires, updating data from disease
and cause-of-death registers, and possibly blood and tissue sampling.

The NOWAC study was designed as a prospective cohort study from the begin-
ning. The aim of the study was initially to research hormonal contraceptives and
breast cancer risk, but the surveys included questions covering a far broader scope.
This is the reason why NOWAC can be used to research many other cancers and
risk factors. In addition to the original study, there are different nested studies
within NOWAC. These are mostly case-control studies. An advantage of nesting
case-control studies in prospective cohorts is the reduction of recall and selection
bias. Other study designs can be nested, as well. Some studies exist that only use
the controls from a nested case-control study.

We can use the data in NOWAC for many novel epidemiological studies (Figure
2.1). Before any diagnosis, most participants have answered multiple surveys and
donated blood samples. Data from the surveys give an insight into the participants’
prior exposures and risk factors related to lifestyle, family history, socioeconomic
status, and health status. This information is supplemented with data from passive
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follow-up based on cancer and death register data, and active follow-up based on
collaboration with 11 major Norwegian hospitals and the Norwegian Breast Can-
cer Group (NBCG). Blood samples were collected and stored in a way that makes
new functional genomics analyses possible. Because the blood was collected before
diagnosis, the time between blood sampling and diagnosis varies for different
cases. In addition to the pre-diagnostic blood samples, some post-diagnostic sam-
ples were collected as well. NOWAC also includes tissue samples from hospital
biobanks for many of the participants that developed cancer. The study even has
four hundred biopsies from healthy women; see Chapter 4. The blood and tissue
samples are analyzed using several omics technologies. All this data can be com-
bined in many different ways, enabling many system epidemiology studies, which
we will show in the following section.

Figure 2.1. NOWAC cohort overview; biological samples and data types.

DESIGNING SYSTEMS EPIDEMIOLOGICAL STUDIES
Here, we describe how novel systems epidemiological studies can be designed
using data from NOWAC. We first describe limitations of the data material before
moving on to the many possible combinations of data that exist. We then provide
an example of the design process.

Limitations
Before we describe the many possibilities in a prospective cohort, we first discuss
the limitations. One type of limitation is when the data material does not contain



2. The Beauty of Complex Designs 29

the necessary information. A trivial example is that a cohort without male partic-
ipants probably does not have the data needed for prostate cancer research.

When it comes to questionnaire data, it is important to be aware that not all
groups respond to surveys to the same extent. The validity of studies concerning
high alcohol consumption can be problematic because people who suffer from
alcoholism answer questionnaires to a lesser extent than others. Consequently,
data on this group may be insufficient. However, studies involving other groups
can still be valid. The validity of the questionnaire items can also be of concern—
have the participants understood the questions? Furthermore, the types of data
obtainable from samples are limited by the technology used for collection and cold
storage. To conserve RNA in blood, we must use technologies such as PAXgene or
similar.

The size of the cohort is another limiting factor. In studies involving subgroups,
statistical power can often become a problem due to too few participants. One way
of counteracting the problem is through international collaborations. The Euro-
pean Prospective Investigation into Cancer and Nutrition (EPIC) (Bingham and
Riboli 2004) is one such international collaboration. EPIC is one of the largest pro-
spective cohort studies in the world. It has 521 000 participants and has been fol-
lowed for almost fifteen years. The cohort is composed of other cohorts from ten
European countries, including NOWAC.

A significant problem internationally is the follow-up of mortality and disease.
In Norway and the other Nordic countries, follow-up is easier thanks to public reg-
ister data. All Nordic countries have a central person register, cause-of-death reg-
ister, disease registers, and other public registers. Although not perfect in every
respect, the Nordic registers have long been celebrated as a ‘gold mine’ for research
(van der Wel et al. 2019).

The many possible studies
When we design a study, there are many types of choices that we can make depend-
ing on the research hypothesis. The different types of choices comprise a high
number of possible studies when combined.

Figure 2.2 shows the intersection of seven different types of choices as separate
dimensions. There are many options for each dimension, and the intersection of
the dimensions results in an ample decision space where each combination is a
potential study design. In the following, we describe the different choice dimen-
sions.
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The first dimension (1) concerns choices related to the study design’s time
aspect, which is an integral part of most epidemiological study designs. In system
epidemiological designs, we define a timeline dimension explicitly. We can divide
the timeline into the time before diagnosis, time of diagnosis, or time after diag-
nosis. For some samples, such as biopsies taken at diagnosis, the time will coincide
with the time of diagnosis, but we can combine this with other samples taken
before or after diagnosis. We can also further divide the timeline into intervals, e.g.
0–1 years before diagnosis, 2–3 years before diagnosis, and 3–5 years before diagno-
sis, which is useful for statistical analyses.

The second dimension (2) is the exposures and risks dimension. Many different
types of exposures can increase the risk of a condition. In NOWAC’s prospective
questionnaires, we find information about each participant’s risk factors, such as
lifestyle, use of medication, conditions in the family, number of births, and much
more. Additionally, genetic variants can be viewed as risk factors that can be iden-
tified by analyzing blood samples.

The third dimension (3) is the different types of measurements and assays that
we can choose. In the NOWAC context, each assay is an omics or multi-omics
assay – for example methylation, gene expressions, and metabolomics.

However, there are more than three dimensions. Instead of adding more axes,
we label the remaining dimensions with lower case letters a–d on a cube (see label
4 in the figure). Each cube in the figure will have these four additional choice
dimensions, which differentiate the many possible studies.

The fourth dimension (4a) represents the possible diagnoses that can be studied.
In NOWAC, we have information about various diagnoses from the Norwegian
Cancer Registry and the Cause of Death Registry.

The fifth dimension (4b) is the participant selection dimension. This dimension
concerns the criteria for choosing and grouping participants for the study. A typi-
cal example is a case-control study in which we select cases from the cohort based
on criteria that we choose. We then choose controls nested in the cohort matched
on the cases. The criteria that we use to match controls to cases can vary from
study to study, while selecting controls with the same sex and similar age since the
case is quite common. There will usually be far more possible controls than cases
available for selection in a study. A ratio of about a thousand to one is not uncom-
mon. The statistical power is dependent on the number of available cases and the
number of controls drawn for each case.

The sixth dimension (4c) is the sample type dimension. Usually, it matters where
the analyzed sample was acquired from; it can be a blood sample, a tissue sample,
or a sample of specific types of immune cells. We can compare results from differ-
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ent sample types from each participant, such as comparing methylation levels in
peripheral blood and tumor tissue.

The seventh dimension (4d) applies to stratification and de-confounding. The
purpose is to adjust for underlying factors that skew the results, and we usually use
exposure and risk factor data for this. An example of how we can adjust for smok-
ing exposure when analyzing biomarkers for lung cancer is given in a later descrip-
tion of a three-level study design.

We have now described the many available choices that exist when designing
studies. Each dimension consists of many options, and the number of possible
studies becomes very large when we combine different dimensions. The reason for
the high number of combinations is that the number of options for each dimension
must be multiplied together. The total number of combinations then becomes:
(The number of ways to arrange the timeline) * (The number of exposures) * (The
number of available measurements and assays, e.g. for single or multi-omics) * (The
number of available diagnoses) * (The number of ways to select participants) * (All
sample types and relevant combinations) * (The de-confounding and stratification
factors)

After we have chosen the study parameters from the described dimensions, we
will have a clearer understanding of the selection of data we need for a study. The
next step is to apply the data selection to systems epidemiological designs.

Figure 2.2. The different dimensions that can be combined for each study design.
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Applying data to systems epidemiological designs
After deciding on the parameters and data for our study, we apply the data within
a systems epidemiological design. We now give a stepwise example of a systems
epidemiological design process using existing data from a prospective cohort
study with omics data, such as NOWAC.

In systems epidemiology, imagine that we organize our sample data points along
several axes, where one is the timeline (Figure 2.3). We usually split the timeline
into the time before diagnosis, of diagnosis, and after diagnosis. It is also possible
to split the timeline by an event other than the diagnosis. The decision on how to
split the timeline was described earlier as one of the dimensions from which we
choose our study parameters.

Figure 2.3. Time to diagnosis, time of diagnosis, and time after diagnosis.

Each sample in our data has a temporal distance to the time of diagnosis (Figure
2.4). We therefore place the data points on the timeline relative to how long before
or after diagnosis the sample was collected. The second axis is a value axis. The val-
ues of the data points can be the raw measured values, such as the expression levels
for a gene, but they are often the results of a function that takes one or more meas-
ured values as parameters. For example, the vertical position of the data point may
represent the difference between cases and controls (Formula 2.1).

Formula 2.1. In the formula, x is a case-control pair’s expression levels for a gene or
other omics value.
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Figure 2.4. Sample data points positioned by distance from diagnosis. The value
axis does not have to be linear; it can be logarithmic or other.

Next, we can group data points into strata that we are interested in comparing (Fig-
ure 2.5). By observing data points at a group level, we can envision a curve or tra-
jectory for each stratum (Figure 2.6). If we compare the trajectories and find sig-
nificant differences between the strata, this could potentially be of importance not
only for future research on differential diagnosis or prognosis, but also for under-
standing which biological systems are involved.

It is not mandatory to stratify by grouping data points as described. If the data
point values come from a function that represents a comparison of different sam-
ples, then this too is a type of stratification. When using Formula 1 for data point
values, the height of the curve is a case-control comparison. Consequently, multi-
ple levels of stratification can be achieved through a combination of grouping and
use of functions.

Figure 2.5. Stratification of data points. In this example, the white-filled circles rep-
resent women with metastasis, and the grey-filled circles represent women without.
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Figure 2.6. An illustration of estimated curves or trajectories for each stratum. The
curves for the two strata are different.

Because the measured values are from biological processes that interact as part of
a system, it is interesting to compare the curves of many types of values simultane-
ously (Figure 2.7). The figure shows three curves per stratum, one for each type of
gene expression.

Figure 2.7. For each biological sample, we can measure the levels of many different
expressed genes. For each, we can imagine a separate curve per strata. In the illus-
tration, only the expression levels for “Gene 1” differ between the two strata. Note
that we are not restricted to gene expressions. Other omics can be used.

However, the reality is more challenging than illustrated in Figure 2.7. For exam-
ple, we can measure the expression levels for 19 950 protein-coding genes from
each blood sample and present each expressed gene as a separate curve along the
timeline. Curves for other omics can be included as well, such as methylation. The
results can thus consist of thousands of intersecting curves per stratum, which is
too much information to be presented as an overview of the data. Therefore, we
must use other techniques for analyzing the data. Many methods exist for analyz-
ing high-dimensional omics data. Usually we use methods related to clustering or
dimensionality reduction techniques for high-dimensional data (Breschi et al.
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2017). Examples of dimensionality reduction techniques include principal compo-
nent analysis (PCA), multidimensional scaling (MDS), and t-distributed stochas-
tic neighbor embedding (tSNE). An alternative approach is to map the omics data
to a biological context, e.g. we can map gene expressions to where they occur in
biological pathways. We are also interested in including the temporal aspect as part
of the data analysis, which is a hallmark of systems epidemiology.

We have now described how studies can be designed by applying existing cohort
data, for example, a combination of questionnaire data and high-dimensional
molecular data from NOWAC. The steps in the design process described in this
section can be summarized as:

• Establish an axis for the time to diagnosis (or another event) and an axis for
values

• Define strata
– For example, cases with spread or without spread

• Calculate data point values and position them in the coordinate system
– The basis for the values is analyzed samples, taken from different participants

at different times. Pre-diagnostic samples acquired from the cases will usually
have different distances to the time of diagnosis

– The data point values can be the raw measured values from samples, but more
often we use derived values from computations and statistical methods that
include values from case-control pairs

• Imagine curves for each similar type of data point belonging to the same stratum
– For example, all data points for a specific mRNA that involve cases with

spread belong to the same curve
• For high-dimensional data, there will be too many curves to comprehend, and

advanced clustering or dimensionality reduction techniques are thus needed
• Compare the strata to find differences

– Statistical methods, data explorations, and visualizations

TWO ALTERNATIVE TYPES OF STUDY DESIGN
In the previous section we based the studies on comparing cases and controls, but
there are other possibilities. Here we describe two design variations.

The NOWAC study has tissue samples that we can analyze and compare to
peripheral blood. That is, we compare samples from different locations in the same
person instead of between cases and controls. NOWAC includes case-control pairs
for which diagnostic blood and tissue samples exist both for cases and matching
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controls, which means that women allowed health-care professionals to take biop-
sies of healthy tissue for research purposes. For these participants, we can design
studies that compare tissue and blood samples and also include the case-control
aspect (Dumeaux et al. 2017).

Figure 2.8 It is also possible to define study designs with more than one level of
nesting. For example, we can create a three-level design comprised of the cohort, a
nested case-control study, and a cross-sectional study that only includes the con-
trols (Figure 2.8). The following case exemplifies this type of design: For some dis-
eases, such as lung cancer, a large percent of the cases has a history of smoking
exposure. As a result, it can be hard to separate the early biological effects of cancer
from the effects of smoking. We can solve this problem by first finding biomarkers
for smoking exposure in the controls. In the cross-sectional study, the controls are
stratified based on exposure data from the cohort’s prospective questionnaires.
The gene expressions are then analyzed to find the biological markers of smoking.
In the parent case-control study, the findings can be used for de-confounding pur-
poses to prevent smoking markers from being misinterpreted as cancer markers.
A study similar to this has been conducted by (Baiju et al. 2020) as part of the Id-
Lung project. The same type of design was used by to demonstrate altered gene
expression levels in the NOWAC cohort associated with coffee consumption (Bar-
nung et al. 2018).

Figure 2.8. An illustration of a three-level design. Case-control pairs are selected
from the prospective cohort. The cross-sectional study selects controls from the
case-control study. The controls are stratified by exposure, which in this case is
smoking status. The smoking statuses are calculated from the cohort study’s ques-
tionnaires, and the biological samples are also from the cohort. The gene expres-
sion data is part of the case-control study. The cross-sectional study analyzes the
gene expressions to find exposure markers.
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TOWARDS REALIZING THE POTENTIAL
We have shown that it is possible to combine data in numerous ways to design
many different studies. Unfortunately, a lot of time and resources are needed to
carry out full epidemiological studies. Consequently, many opportunities that lie
in the prospective cohorts may be left unrealized.

If, instead, we had carried out lightweight studies in a simple way in advance
wherein we could quickly explore potential hypotheses, then we could have had a
better starting point when deciding whether it would be worth going ahead with
larger projects.

To realize more of the potential that lies in the NOWAC data and similar studies,
we suggest that a computer system should be created that supports the rapid design
of studies, analysis of data, and exploration of hypotheses. In the following sec-
tions, we propose a computer systems architecture for this purpose.

COMPUTER SYSTEMS ARCHITECTURE
In systems epidemiology, we design complex studies with many types of data,
including high-dimensional molecular data. Computer systems are essential for
managing data and performing computations. In the previous section we dis-
cussed the possibility of a computer system helping to realize more of the potential
in cohort data by enabling the users to explore different hypotheses quickly. How-
ever, no such unified system presently exists for systems epidemiology.

Here, we propose a systems architecture that enables the swift design of studies,
analysis of data, and exploration of hypotheses. The aim is to explore different
hypotheses quickly at a preliminary stage of research, or explained with a meta-
phor: “We wish to explore the data by swimming and delving into it.” (Lund 2019,
personal communication)

There exists a range of software tools and systems that are used in systems epi-
demiology. Examples are tools that are concerned with processing omics data in
pipelines, data management, or reproducibility in science. Fjukstad et al. 2018
(Chapter 3) used a combination of such tools to organize data storage and docu-
mentation and to standardize the analysis of gene expression data in NOWAC.
Various unrelated tools and scripts for statistical analyses of omics also exist. None
of these tools and systems constitute a unified system for the swift design of stud-
ies, epidemiological analysis, and exploration of hypotheses. We present a high-
level, conceptual architecture for this missing system.
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Figure 2.9 shows a conceptual view of the proposed system’s architecture. The
system is illustrated as having a pipelined architecture in which one part’s output
becomes the next part’s input. The arrows between the parts represent the flow of
data. Each part may be composed of loosely coupled subsystems.

Figure 2.9. A high-level conceptual view of a computer system for systems epide-
miology.

In addition to designing each part of the system, we must design good abstractions
for the interfaces between them. We can view most of the system’s parts as separate
black boxes; the outside does not know the details of how the part functions on the
inside. The outside can only interact with it through limited interfaces and is not
permitted to manipulate its inner state and workings directly. An abstraction is a
well-defined view or model that only includes what is relevant and excludes all that
is irrelevant. The art is to define abstractions that are correct for use, flexible and
general enough to include relevant variations, yet simple and coherent. We com-
monly prefer interfaces and data structures with these properties. We implement
them by using the available features for declaring data types, functions, and sche-
mas in our programming languages, software frameworks, and environments. The
conscious use of abstractions when designing systems is an important tool for
avoiding accidental complexity, and it provides the system with clean and simple-
to-understand façades (Kleppman 2017). Abstractions also help to clearly separate
the system’s different concerns and make it more flexible to changes.

First, we provide an example use case describing the system from the
researcher’s point of view. Next, we discuss the five main parts of the system. We
additionally touch upon the importance of reproducibility in science.
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Example use case: Design a study in an interactive notebook
In this section, we describe how the researcher can use the system through an
interactive notebook. Interactive notebooks are increasingly popular in data sci-
ence and scientific computing. The notebooks enable researchers to create
dynamic documents containing a mix of text and runnable code fragments. We
use the notebooks as interactive development environments and share them with
others. Two examples of notebook environments are R Notebook (Chapter 3.2 in
Xie et al. 2019) and (The Jupyter Notebook). We provide a casual use case (Cock-
burn 2000) describing a notebook approach to designing studies.

A researcher wants to design a study in order to explore a hypothesis. The
researcher has already opened a notebook and loaded the required packages
belonging to the system. The researcher types in and runs a simple command (or
function-call) telling the system to create a workspace for the study. The system
creates a data structure representing an empty workspace, which becomes availa-
ble in the researcher’s notebook. Included in the workspace is a default study
design specification. The researcher specifies the study’s overall design by adding
groups and stratifications to the design specification. The system keeps a data
structure representing this design within the study design specification. The
researcher specifies the data sets that will be used, including the target versions.
The system keeps this information in the workspace. The researcher then defines
queries for the different groups and strata. The system keeps the queries but does
not yet run them to fetch data. At this point, the researcher wants to inspect the
data, which is an optional step. The system runs the queries on demand and makes
the data available. After inspecting the data, the researcher defines how data will
be analyzed by composing statistical methods and computations from standard or
custom packages. These can be associated with specific groups or strata, and
sequences of computations can be defined. The system keeps this in the work-
space. The researcher instructs the system to execute the entire study, and the sys-
tem executes the study by fetching necessary data and running computations as
specified. It does this by delegating work to the storage and computational systems,
such as data lakes and Apache Spark. It makes the resulting data available in the
researcher’s notebook environment. The researcher can then further explore and
visualize the results with other tools.

The researcher can save the workspace at any point. Previously saved work-
spaces can be loaded and run. The researcher can modify individual parts of the
workspace and execute the updated study.
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Design study
To easily specify new study designs, we must provide a user interface (UI) to the
system that is user-friendly and practical. Several options exist:

• A graphical UI for specifying study designs
• A human-readable text-based format for defining studies (XML, JSON, YAML)
• A software package integrated into a development environment commonly used

in the researcher’s field (R-studio)
• A domain-specific language (DSL) for defining study designs

Regardless of how we present the study design specification UI to the researcher,
the specified designs must internally be represented in a machine interpretable
manner that is useable later for the automatic execution of the study. The study
design specifications describe what the researcher wishes to do, but not the details
of how. The exact decision on how data retrieval and execution is performed is left
to other parts of the system. This type of abstraction ensures that changes in imple-
mentation details, or even the replacement of whole subsystems, can be contained
to the parts that retrieve data and execute the study without requiring changes to
other parts. Equally important, the abstraction makes it possible automatically to
optimize how the study is performed.

Data storage
Data is central in epidemiological research, but managing all the technical aspects
of data is complicated and bears little relevance to the researcher’s aims. For exam-
ple, a considerable amount of time is spent on data wrangling due to impractical
data structures or lack of consistent structures. Each project typically operates on
smaller, custom data sets that have been extracted manually from the primary data
sets. The data sets are stored in simple text-based formats on shared disks. The
included fields and names are inconsistent across data sets. Sometimes the
researchers will make personal copies of the data set file, with various changes that
they have made. With the advent of multi-omics, the amount of data can poten-
tially become very large, which will require a more professional approach to data
management. The system should hide the technical details surrounding data and
instead provide the researchers with simple, uniform data access.

Today, a variety of production-quality data storage solutions are available. It is
crucial to investigate which type of solution best suits the system because there are
significant differences between them. Examples of storage types are:
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• Relational database management systems (RDBMS), including data ware-
houses: PostgreSQL, MS-SQL

• Key-value stores: Redis, Memcached
• Column stores or column formats: Cassandra, Parquet
• Graph databases: Neo4j, OrientDB
• Files in distributed file systems: Hadoop Distributed File System (HDFS), Tachyon
• A combination of the above, termed polyglot persistence (Sadalage and Fowler

2013)
• Data lakes (Miloslavskaya and Tolstoy 2016): Azure Data Lake, AWS Data Lake

A layer of abstraction should be created for easy and uniform access to the data,
hiding the underlying data structures and storage systems. By abstracting the
underlying storage mechanisms away from the rest of the system, it is easier to
evolve or replace the storage solution as we discover opportunities for improve-
ments. ADAM (Massie et al. 2013) is a set of formats, APIs, and processing stage
implementations for genomic data. It has a layered design with a “narrow waist” in
the middle, also termed an hourglass model (Beck 2019). The narrow-waist layer
consists of a data schema, implemented with Apache Avro (The Apache Avro Pro-
ject) that separates the details of the storage layers from the overlying layers. A
similar approach may prove useful in our system.

Fill study design with data
After specifying a study design, the researcher must be able to query and retrieve
the data for the study. First, one or more data sources are chosen. We should enable
access to the data in a uniform manner and structure the data according to stand-
ard schemas. Next, the researcher defines queries that select and transform data for
the study’s different groups and strata, such as cases, controls, with spread, without
spread. The queries are attached to the study design specification.

From the technical side, the queries should be attached to the study design but not
immediately executed. The system should be allowed to run queries in the same con-
text as the computations. This can prevent inefficient spilling of data to disk between
the steps. It can also enable automatic query optimizations. There are several options
for query languages, e.g., the query syntax could be SQL-like or fluent (Fowler 2005).
LINQ (Torgersen 2007) or Resilient Distributed Datasets (RDD) (Zaharia et al.
2012) are examples that support deferred execution and both types of syntaxes.

The resulting data must have a structure recognizable by the computational and
statistical methods in the next step of the workflow. Again, we need good abstractions.
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Computations and statistical methods
The researcher should be able to choose from ready-made calculations and statis-
tical methods and possibly define custom ones. Functions for common computa-
tions and statistical methods can be packaged in a reusable manner that is inde-
pendent of a particular study. The statistical methods for curve groups (Lund E
2016) and classify strata (Holden 2015) are candidates for such packages. Novel
statistical methods for systems epidemiology will likely be developed in the future.
The system must support both ready-made packages, as well as custom packages.
A statistician can implement functions, possibly in collaboration with scientific
programmers, and epidemiologists can then apply the functions in various studies.
A challenge is to define standards for functions and packaging that covers the
needs of existing and future statistical methods.

The computations involved in omics analysis are often time-consuming and
resource-heavy. Care should be taken to choose an underlying platform that per-
forms well for the computations encountered in systems epidemiology. Apache
Spark (Zaharia et al. 2010) is a unified analytics engine for large-scale data process-
ing that could be used as an integral part of the system. Recent versions of Spark
support R (The R Project for Statistical Computing), which is a programming lan-
guage and environment for statistical computing often used in epidemiology.

Structure results for further exploration and visualization
After applying computations and statistical methods, it should be easy for the
researcher to explore and visualize the data further. Because many general-pur-
pose tools and software packages already exist that are excellent for data explora-
tion and visualization, the results generated by the system should be usable within
the context of such software packages and tools. We can achieve this by structuring
data in a standard format so that the researcher can either use the result datasets
directly or import them into their software tool of choice, such as an R environ-
ment.

Reproducibility
It has been claimed that there is a reproducibility crisis in science. Nature (Baker
2016) asked 1576 researchers questions about reproducibility. They found that
90% answered that there was either a slight or significant crisis. More than 70%
had tried and failed to reproduce other scientists’ experiments. More than half of
the scientists had experienced that they were unable to reproduce their own exper-
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iments. There are several reasons for the crisis – for example, selective reporting or
low statistical significance. At other times it can be challenging to know how to
repeat the experiment correctly. In the latter case, we can benefit from having a
system that can automatically rerun previous experiments using the same steps
and data.

The system’s study design specifications, dataset selections, queries, and statisti-
cal methods can be saved together as a complete workflow. As long as the under-
lying data stay unchanged, the experiments can be reloaded and automatically
repeated. The system must track changes to data and support data versioning. By
specifying target data versions for the workflows, we can ensure that the experi-
ment’s data stays the same between runs.

CONCLUSION
We have described the complex NOWAC study, the many different types of data,
and that the data can be combined in a large number of ways. The many combina-
tions allow us to create many new system epidemiological study designs. We have
also given a step-by-step example of a system epidemiological design.

The beauty of complex studies such as NOWAC is the opportunities for new
studies that arise. However, opportunities can be lost because extensive studies are
time-consuming and costly. By finding a quick way to create designs using existing
data, we can perform initial explorations to investigate if a hypothesis is worth
researching more extensively.

As a solution, we have proposed a computer systems architecture to support the
swift design of system epidemiological studies and exploration of hypotheses.
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Abstract 

We commonly adjust for confounding factors in analytical observational epidemiology to reduce biases that 

distort the results. Stratification and matching are standard methods for reducing confounder bias. Coarsened 

exact matching (CEM) is a recent method using stratification to coarsen variables into categorical variables to 

enable exact matching of exposed and nonexposed subjects. CEM’s standard approach to stratifying variables is 

histogram binning. However, histogram binning creates strata of uniform widths and does not distinguish 

between exposed and nonexposed. We present Autostrata, a novel algorithmic approach to stratification 

producing improved results in CEM and providing more control to the researcher. 
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1 INTRODUCTION 

Epidemiologists conduct analytical observational studies 

[1] to investigate associations between exposures and

outcomes. Instead of assigning a treatment or exposure to

the participants of a randomized experiment [2], we rely on

observations of the subjects in their usual environment with

minimal interference. There are many established ways of

designing observational studies, from cross-sectional,

cohort, and case-control studies to more complex

prospective cohorts with several nested case-control and

cross-sectional designs [3, 4, 5]. A common theme for

these is awareness of biases. Confounding factors [6, 7, 8]

are a common source of bias that can, if measured, be

adjusted for in the analysis [9, p. 1020]. Stratification [10],

for example, can control for confounding by dividing study

subjects into groups based on observed confounders. Iacus

et al. [11] present the coarsened exact matching (CEM)

method that adjusts for bias by turning confounder

covariates into categorical variables through stratification,

which we can then use to match comparable subjects

exactly. Blackwell et al. [12] introduce a Stata

(https://www.stata.com) implementation of CEM, and

Iacus et al. [13] provide an implementation for R

(https://www.r-project.org). In addition, a web page with

an overview of implementations for other programming

languages and platforms is available

(https://gking.harvard.edu/cem). The same webpage also

informs that CEM is officially qualified for scientific use

by the U.S. Food and Drug Administration. The CEM

implementations let users create strata manually or use

automatic stratification. The built-in automatic

stratification creates uniform width bins by applying

general rules of thumb for constructing histograms. The

three binning algorithms included in both Stata and R are

Sturges’ rule [14], Scott’s rule [15], and Freedman-

Diaconis’ rule [16]. Additionally, Stata includes an

implementation of Shimazaki-Shinomoto’s rule [17].

Blackwell et al. [12, p. 534] demonstrate that manually 

defining strata based on domain knowledge can sometimes 

give better results than the current automatic approach. In 

their example, the manually defined strata are less 

imbalanced while giving a higher number of matched units. 

However, according to King et al. [18, p. 439], researcher 

biases are highly likely to affect qualitative choices even 

when researchers attempt to avoid them. ‘The literature 

makes clear that the way to avoid these biases is to remove 

researcher discretion as much as possible,’ following King. 

On the other hand, the general histogram binning rules do 

not support the specific challenges of stratifying 

confounders: 

 The histogram binning algorithms do not

distinguish between different groups of units and

include no concept of matching.

 They do not take into account multivariate

imbalance between groups.

 The strata have uniform widths, i.e., all strata for

a covariate have the same width.

 The researcher cannot in advance give parameters

to influence the stratification process.

Against this background, we researched and developed a 

novel algorithmic approach to the stratification problem 

that addresses the shortcomings above. We implemented 

the algorithm and experimentally compared it to CEM’s 

built-in histogram binning with good results. 

We conclude the introduction with a brief example of 

Autostrata’s applicability to health-related studies. For 

instance, say we want to study if coffee consumption is 

associated with a beneficial effect on the risk of liver 

cancer. In the respective observational study, we must be 

cautious of possible systematic differences between the 

compared groups, such as smoking habits. Failing to adjust 

for these differences can challenge the validity of the 

results. Autostrata improves such adjustments when using 
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CEM. The method creates more precise results and keeps 

more study participants included in the analysis. 

After the introduction, the structure of the paper is as 

follows: First, we provide essential background for 

understanding the problem. Next, we describe our 

approach and algorithm. We then present the experiments 

and results, followed by a discussion. Last, we briefly 

touch upon related work before concluding. 

1.1 A note on terminology 

The paper primarily uses the terms treated and 

controls instead of exposed and nonexposed due to their 

use in CEM and the general causal inference literature. In 

addition, although case-control studies are different from 

cohort studies that focus on exposed and unexposed, they 

are interchangeable in this paper because we concentrate 

on the stratification of confounder covariates in isolation 

from these differences. Further, we use the general 

statistical term units instead of subjects, individuals, or 

study participants often seen in epidemiology. 

2 BACKGROUND 

Before presenting our approach, we provide the 

background necessary to understand the challenges of the 

stratification problem. 

2.1 Confounding 

We often assess whether the risk of a health event 

(outcome) is increased or decreased among an exposed or 

treated group compared to a control group. To quantify the 

relationship between an exposure or treatment and the 

outcome, we calculate risk ratios, odds ratios, or other 

measures. However, other factors not directly under 

investigation can skew the results or even lead us to the 

opposite conclusion of what is correct. Figure 1 illustrates 

how confounding factors influence both the exposure and 

the outcome. Note that the confounder is not in the direct 

causal pathway between the two. Also, a relevant property 

of confounders is that the compared groups have 

differently distributed values for the confounder covariate. 

If the confounders are measured and included in the 

dataset, we can adjust for confounders during analysis, 

which is the purpose of the stratification discussed in this 

paper. It is worth noting that according to Wacholder et al. 

[9, p. 1020], the use of stratification or matching can, in 

effect, adjust for unknown or unmeasured confounders 

through reduced variability because this variability is 

measured conditionally on the levels of other studied 

variables. 

Figure 1 shows an exposure that is associated with a risk 

of an outcome. The confounding factor is associated with 

both the exposure and the outcome without being in the 

direct causal pathway of the two. 

2.2 Counterfactuals and imbalance 

The Neyman-Rubin causal model (RCM) [19] is one of the 

notable influences on the understanding of causal inference 

in observational studies. According to the model, to 

estimate the effect of a treatment on an outcome, we should 

ideally compare the treated subjects with the same subjects 

without treatment. Except for the treatment, all other 

conditions must be the same, including the time. The latter 

is a counterfactual and is impossible to observe. We instead 

compare to relatively similar, untreated controls. However, 

the treated and controls in our sample are often 

systematically different or imbalanced for the confounding 

factors, which leads to bias. Lowering this imbalance 

between treated and controls to make them more similar is 

thus a strategy to reduce the bias. 

2.3 Coarsened exact matching 

As earlier explained, the confounder covariates are 

distributed differently for the compared groups. Thus, we 

can view the bias as stemming from an imbalance in the 

data. Coarsened exact matching (CEM) [11] is a method 

for adjusting confounder bias as a preprocessing step 

before analysis. It belongs to a class of monotonic 

imbalance bounding (MIB) methods, enabling the 

researcher to set a maximum imbalance between treated 

and controls for the confounder covariates or reduce the 

maximum imbalance for a covariate independently of 

others. The theoretical foundation of CEM is outside the 

scope of this paper, but its use is relatively straightforward. 

We partition the confounder covariates into subintervals. 

Each subinterval then represents a single value of a 

categorical variable. For example, a covariate for years of 

education can be partitioned into subintervals representing 

the highest level of education instead. In CEM, this is 

called coarsening and opens for simple, exact matching of 

similar treated and control units. It additionally helps 

balance the sample by pruning treated and control units 

without suitable matches. The coarsening is temporary and 

not passed to subsequent analysis steps. 

The described coarsening corresponds to stratification. We 

stratify each covariate, and each treated and control unit 

will then belong to a multi-dimensional stratum. Although 

the current CEM software packages use uniform width 

histogram binning for automatic stratification, CEM as a 

method is not restricted to strata of uniform widths. For 

example, manual stratification and non-uniform widths are 

supported. Autostrata is an alternative approach to 

automatically stratifying covariates, which constructs 

strata of non-uniform widths. 

2.4 Imbalance and unmatched trade-off 

The most commonly described imbalance measure for 

CEM involves the relative difference between the number 

of treated and control units per stratum. However, the 

software packages use an imbalance measure based on a 

per stratum difference in means between the covariate 

values for the two groups as default. This is similar to what 

Appendix B of [11, p. 34] describes. We thus base our 

approach on the latter. 

As shown in Figure 2, two strata with the same number of 

treated and control units can have a different internal 

imbalance because the covariate means are different for the 

groups. Nevertheless, the maximum imbalance is bounded 

by the stratum widths because the differences cannot be 

greater than the widths. Therefore, the narrower the stratum 

is, the lower its maximum imbalance. The lowest 

maximum imbalance is when each stratum only has a 

single unit or equal-valued units. A stratum with only one 

type of unit contributes zero to the imbalance, while 

multiple equal-valued units have an imbalance of zero. The 

challenge is that there is a trade-off.  
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CEM prunes unmatched units from the sample. If all units 

in a stratum are from the same group, these units are 

unmatched and discarded. Recall that the confounder 

covariates for treated and control units have different 

distributions. Hence, various degrees of overlap and 

densities will be found along the covariate axes, restricting 

how narrow a stratum containing both types of units can 

be. As we decrease the maximum imbalance, the number 

of unmatched units generally increases, and vice versa. 

Autostrata aims to lower this trade-off. 

Figure 2 illustrates two strata for covariates x1 and x2. 

Both strata have two treated and two controls, but the left 

stratum has a higher mean difference. Also, the maximum 

difference is bounded by the width between the stratum 

edges. 

2.5 Stratification problem properties 

Before concluding the background section, we describe a 

few properties of the stratification problem relevant to 

solving it algorithmically. 

First, the number of relevant stratum edges is finite. The 

reason is that a stratum edge for a covariate can be placed 

anywhere between two adjacent observations without 

changing stratum memberships. If an observation 

coincides with an edge, it belongs to the higher stratum. 

The exact position of an edge does not matter, only that it 

separates two adjacent observations for the given covariate. 

Neither do multiple stratum edges between two 

neighboring observations change any memberships. 

Further, if two or more observations have equal values for 

a covariate, they cannot be separated by adding stratum 

edges for the given covariate. Conclusively, the maximum 

number of relevant stratum edges equals the number of 

distinct values per covariate. 

Second, the number of possible combinations of the 

stratum edges, from including no edge to including all 

edges, grows exponentially with the number of distinct 

covariate values, i.e., the problem space is non-polynomial. 

Figure 3 shows all possible combinations of stratum edges 

for four distinct values, organized as a tree of nodes. The 

number of new stratifications that can be made by adding 

one stratum edge to a given stratification is illustrated in 

Figure 4. 

We can deduce the number of different stratifications 

possible for a covariate. Let 𝑆 be the set of possible 

stratifications for a covariate with 𝑛 distinct values. Then 

the cardinality, |𝑆|, is: 

|𝑆| = 1 + (𝑛 − 1) + ∑ 2𝑖−2(𝑛 − 𝑖) = 2𝑛−1

𝑛−1

𝑖=2

Given 𝑚 covariates, the total number of combinations, 

|𝑆𝑡𝑜𝑡|,  becomes:

|𝑆𝑡𝑜𝑡| =  ∏|𝑆𝑖| = ∏ 2𝑛𝑖−1

𝑚

𝑖=1

𝑚

𝑖=1

For cases where all 𝑛𝑖 = 𝑛 are equal:

|𝑆𝑡𝑜𝑡| =  |𝑆|𝑚 = 2𝑚(𝑛−1)

Thus, the state space of the problem grows exponentially 

with increasing numbers of distinct values and covariates. 

Furthermore, considering that each stratification can 

contain relatively many multi-dimensional strata and that 

we must compute imbalance measures and the number of 

unmatched units for each stratification, it quickly becomes 

computationally infeasible to perform a brute-force search 

through all combinations to find an optimal solution with 

the resources typically available to researchers. 

Figure 3. All possible stratifications of a covariate with 

four distinct observed values. The four values are 

illustrated as black dots within the tree nodes, and the 

stratum edges as vertical lines between the dots. 

Figure 4. This tree illustrates a pattern in the number of 

different stratifications that can be made as we move from 

a given parent to a child node by adding a new stratum 

edge, as in Figure 3. In this case, the number of distinct 

values is n=6. 

3 AUTOSTRATA 

We now present Autostrata, a novel algorithmic approach 

for improved stratification of confounder covariates for 

CEM. Improving CEM’s standard stratification method–

histogram binning–is not trivial. However, analysis results 

need to be as free of bias as possible to avoid them from 

being invalid. Often, the imbalance is higher than we 

wanted, the number of unmatched units is high, or both. 

Autostrata aims to lower the trade-off between the 

imbalance and the number of unmatched units. Figure 5 

shows a comparison of histogram binning and Autostrata. 
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Figure 5 shows two stratifications for the same two-

covariate dataset. The left plot is from histogram binning, 

and the right is from Autostrata. Each grid cell is a two-

dimensional stratum. On the left, the strata have uniform 

widths. On the right, the strata widths are non-uniform. 

3.1 Overall approach 

This section gives an overall description of the Autostrata 

approach and explains its reasoning. 

The generic histogram binning rules used in CEM work 

surprisingly well for stratification in our context. 

Therefore, understanding the underlying reasons is 

invaluable to improving the results: Any stratum 

containing both treated and controls is valid. Also, the 

sample’s total maximum imbalance will be lower if the 

strata are narrower. To construct strata spanning over a 

mixture of treated and control units, regions of common 

support must be present for the sample, i.e., there must be 

some overlap in the distributions for treated and controls. 

The treated and controls in regions with sparse or no 

overlap are further apart and more dissimilar than units in 

denser and more overlapping regions. Because we usually 

have a reasonable common support level, the uniform 

width strata will readily contain both treated and control 

units. Further, units in the sparser and less overlapping 

regions are more likely to be pruned, as they should. These 

factors contribute to why histogram binning works well. 

Conclusively, knowing these factors makes it reasonable to 

assume that much of the potential for improvement is in the 

regions where the distributions for treated and controls 

overlap most.  

Autostrata’s strategy is to construct narrow strata while 

keeping the number of unmatched units low. The strata can 

be of varying widths. Having narrower strata on average is 

equivalent to more strata. We thus start with an initial 

stratification state where all possible stratum edges for all 

covariates are included (see section 2.5). This state 

represents the narrowest stratification that is relevant. All 

units will be in a stratum containing only a single unit or 

same-valued units. From there, we iteratively remove one 

edge at a time. This edge can belong to any of the covariate 

dimensions. 

In its simplest form, the algorithm does not consider widths 

but removes edges one by one until the number of 

unmatched units is as low as requested by an input 

parameter. The main selection criterion for removing an 

edge, per iteration step, is the edge that gives the most 

significant reduction in unmatched units when removed. 

Removing a stratum edge for one dimension (covariate) 

merges one or more strata divided by stratum edges for 

other dimensions. Merging strata for a given covariate 

results in strata that are wider, so the increase in the average 

width of the strata for a covariate is strictly monotonic. 

The crux of the algorithm is: For each stratum edge that we 

remove from the initial state, the average maximum 

imbalance increases. If the algorithm reaches the requested 

maximum number of unmatched in fewer steps, i.e., by 

removing fewer edges, the average maximum imbalance 

will be lower than if more steps are spent. Thus, to reduce 

the number of iterations needed to reach the goal number 

of unmatched, for each it|eration, we remove the edge that 

gives the greatest reduction in the number of unmatched, 

after assessing all currently remaining edges in any 

dimension. If several equally good options are found, the 

one giving the narrowest width is chosen. In Section 3.2, 

we describe how the widths for different covariates are 

scaled to be comparable. 

Autostrata also provides the researcher with input 

parameters for more control over the resulting 

stratification: 

 The maximum wanted numbers of unmatched

treated and controls

 The maximum allowed widths between stratum

edges per covariate

The researcher can specify maximum numbers of 

unmatched treated and controls as two separate input 

parameters. The stratification process will continue until 

reaching both numbers or until the point when there is no 

closer solution. For example, suppose the stratification 

algorithm reaches one of the requested maximum numbers 

of unmatched for either treated or controls. It will then 

continue until reaching the requested number of unmatched 

for the other group. It continues iterating, and the numbers 

can continue to improve for both treated and controls. 

Section 3.2 describes how Autostrata incorporates weights 

to account for the difference in the requested maximum 

numbers of unmatched treated and controls while iterating. 

Further, Autostrata has a parameter for the maximum 

allowed stratum width per covariate, and it will not create 

strata wider than the given widths. If widths are not of 

importance, a large or infinite value can be given as input 

instead. The background for the maximum width parameter 

is that researchers may want to set a maximum difference, 

caliper, between treated and controls for the covariates—

for example, max five years age difference or five points 

difference for a given performance score. In addition, 

setting a maximum width restricts the maximum 

imbalance. Another reason to set widths, which concerns 

the algorithm, is to prevent a single or a few strata from 

expanding too much while leaving others unchanged. 

Broader strata have a higher potential imbalance. It is 

possible to imagine that, on average, a large stratum 

combined with many narrow ones may somewhat cancel 

each other out imbalance-wise, but it is probably not what 

we want. A large stratum will still have a greater risk of 

being imbalanced. Lastly, we can use the widths produced 

by CEM’s histogram binning as input to Autostrata. 

Histogram binning only supports uniform width strata, but 

Autostrata can use these widths as the maximum allowed 

when defining strata of non-uniform widths. 

3.2 Heuristics 

In section 3.1, we gave an introduction to the overall 

approach. Autostrata is an algorithmic approach to 

stratifying covariates that starts with an initial state where 

all stratum edges are present and iteratively removes one 

edge at a time until the end criterion is met or no further 

improvements are found. Here, we describe the heuristics 

in more detail. 

When we remove a stratum edge along the direction of one 

dimension (covariate), two and two strata become merged 
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to form new, wider strata. Removal of an edge usually 

results in more than two strata being merged because there 

are also edges along the other dimensions separating the 

covariate values into distinct strata. If two neighboring 

strata contain only treated and only controls, respectively, 

merging the two strata results in a stratum with a mix of 

both types. These units are no longer unmatched and, thus, 

not pruned from the sample. 

Autostrata has two criteria for choosing which stratum 

edge to remove for each iteration. The first criterion has the 

highest priority, and the second criterion applies only to 

alternatives with equally good values for the first. The two 

criteria are: 

1. Choose the greatest relative increase in matched

treated and controls if the stratum edge is removed

2. Choose the stratum with the narrowest width

Instead of using the increase in matched units directly, 

Autostrata uses a weighted measure for increase. Let ∆𝑡

and ∆𝑐 be the increase in the number of matched treated

and control units, respectively, when we remove a given 

stratum edge. The relative increase, ∆𝑟𝑒𝑙, is then:

∆𝑟𝑒𝑙= 𝑤𝑡 ∆𝑡 + 𝑤𝑐∆𝑐

, where 𝑤𝑡 and 𝑤𝑐 are weights. The weight for the treated

group, 𝑤𝑡 = 𝑤(𝑡), and control group, 𝑤𝑐 = 𝑤(𝑐), is

found as follows: 

𝑤(𝑔) = {

𝑚𝑔
𝑐𝑢𝑟 −  𝑚𝑔

𝑚𝑎𝑥

𝑛𝑔  −  𝑚𝑔
𝑚𝑎𝑥

, 𝑚𝑔
𝑐𝑢𝑟 − 𝑚𝑔

𝑚𝑎𝑥 ≥ 0

0, 𝑚𝑔
𝑐𝑢𝑟 − 𝑚𝑔

𝑚𝑎𝑥 < 0

, where 𝑔 is the group, 𝑚𝑔
𝑐𝑢𝑟  is the number of currently

unmatched units for the group, 𝑚𝑔
𝑚𝑎𝑥  is the requested

maximum number of unmatched for the group, and 𝑛𝑔 is

the total number of units from the group in the sample. 

Here, we also assume that 𝑛𝑔 > 𝑚𝑔
𝑚𝑎𝑥 .

The purpose of the weights is threefold: 

1. If one group is represented less than the other,

each new matched unit from the group should

weigh more.

2. The researcher can set parameters for how many

unmatched (pruned) treated and controls are

acceptable. The difference 𝑛𝑔 − 𝑚𝑔
𝑚𝑎𝑥 takes into

account that the gap between available and

discardable units can differ between groups.

3. If Autostrata has reached the goal for the number

of unmatched units for one group, an increase in

the other groups should weigh more when

choosing an edge to remove. As one group comes

closer to the goal, reducing the number of

unmatched for the other group is prioritized

higher. The difference 𝑚𝑔
𝑐𝑢𝑟 − 𝑚𝑔

𝑚𝑎𝑥 is the

remaining units to match for the given group.

Width is the second selection criterion for edge removal. 

The widths must be scaled because Autostrata compares 

stratum edges from all covariates per iteration. We 

compute a scale factor by removing outliers and taking the 

min-max difference. Observations having a standard score, 

|𝑧| ≥ 3, are outliers. The data can be scaled once as an 

initial step. In that case, the maximum widths must be 

scaled as well. Also, we must restore the resulting stratum 

edges to the original scale. For clarity, the pseudocode in 

Listing 1 does not scale the data until needed. 

3.3 Algorithm 

Here we present the algorithm in pseudocode form. The 

pseudocode is at an abstraction level sufficient to 

implement the algorithm. However, we omit 

implementation details and performance enhancements 

that do not contribute to the understanding. Listing 1 

presents the algorithm in pseudocode form, and Table 1 

describes the variables used in the listing. 

Variable Meaning 

tr and ct The covariate values for the treated 

and the control units 

∆𝑏𝑒𝑠𝑡 The best relative increase in matched 

units for the current iteration 

∆𝑐𝑢𝑟 The relative increase in matched units 

for currently assessed edge 

∆𝑡 and ∆𝑐 The increase in the number of 

matched treated and controls for 

assessed edge 

𝑚𝑡
𝑐𝑢𝑟and

𝑚𝑐
𝑐𝑢𝑟

The current number of unmatched 

treated and controls  

𝑚𝑡
𝑚𝑎𝑥  and

𝑚𝑐
𝑚𝑎𝑥

The requested maximum number of 

unmatched treated and controls 

covariates The covariates (dimensions) 

cov The current covariate 

edges The current set of edges, including the 

outer left- and rightmost edge per 

covariate 

nedg The number of edges in the current set 

of edges 

edgescov The current set of edges for the current 

covariate, excluding the outer left and 

right edges 

ecur The currently assessed edge 

esel The currently best edge for the 

iteration and candidate for selection 

el and eh ecur’s lower and higher adjacent edges 

widthcur The scaled widths of merged strata if 

we remove the currently assessed edge 

widthsel The scaled widths of strata if 

removing the iteration’s current 

candidate for best edge 

widthsmax and 

widthmax

The set of maximum allowed stratum 

widths, and the maximum width for 

the current covariate 

Table 1. The pseudocode variables and their meaning 

Autostrata Algorithm 

1 Input: tr, ct, widthsmax, 𝑚𝑡
𝑚𝑎𝑥, 𝑚𝑐

𝑚𝑎𝑥

2 Output: edges 

3 Initialization of variables: 

4 edgescov ← one edge per distinct covariate value 

5 𝑚𝑡
𝑐𝑢𝑟 , 𝑚𝑐

𝑐𝑢𝑟← calculate the initial number of

unmatched treated and controls 

6 Stratification: 
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7 while (𝑚𝑡
𝑐𝑢𝑟 > 𝑚𝑡

𝑚𝑎𝑥  or 𝑚𝑐
𝑐𝑢𝑟 > 𝑚𝑐

𝑚𝑎𝑥)

and (nedg > 0) do 

8 ∆𝑏𝑒𝑠𝑡 ← -1

9 widthsel ← ∞ 

10 esel ← nil 

11 for cov in covariates do 

12 for ecur in edgescov do 

13 get el and eh 

14 widthunscaled ← | eh - el | 

15 if widthunscaled > widthmax then 

16 continue // stratum too wide 

17 widthcur ← scaled_width(el, eh) 

18 ∆𝑡, ∆𝑐← the difference in numbers of

unmatched (for the multi-dimensional 

strata) between el and eh before and 

after removing ecur 

19 ∆𝑐𝑢𝑟← relative_increase(∆𝑡, ∆𝑐)

20 if (∆𝑐𝑢𝑟 > ∆𝑏𝑒𝑠𝑡) or (∆𝑐𝑢𝑟== ∆𝑏𝑒𝑠𝑡

and widthcur < widthsel) then 

21 ∆𝑏𝑒𝑠𝑡 ← ∆𝑐𝑢𝑟

22 widthsel ← widthcur 

23 esel ← ecur 

24  end // if 

25 end // for ecur 

26  end // for cov 

27 if esel == nil then 

28  break // no more improvements found 

29 else 

30 remove esel from edges 

31 update 𝑚𝑡
𝑐𝑢𝑟and 𝑚𝑐

𝑐𝑢𝑟

32 end 

33 if  𝑚𝑡
𝑐𝑢𝑟  ≤ 𝑚𝑡

𝑚𝑎𝑥  and 𝑚𝑐
𝑐𝑢𝑟≤ 𝑚𝑐

𝑚𝑎𝑥then

34 break // goal reached 

35 end // while 

36 return edges 

Listing 1. Pseudocode for the algorithm 

3.4 Implementation 

A version of the algorithm corresponding to Listing 1 was 

implemented in Python 3.9 (https://python.org), with some 

added performance enhancements. For example, we utilize 

Numba (https://numba.pydata.org) for counting 

unmatched units in strata, yielding a speedup [20, p. 125] 

of 2.25 for the algorithm as a whole when stratifying for 

Dataset 3 in Table 2 on an Intel i7-8850H CPU with 12 

logical cores. A far more significant performance 

enhancement is achieved by caching already computed 

results for each stratum. The same strata are visited 

repeatedly during the iterations, and the algorithm finishes 

17.67 times faster for Dataset 1 in Table 2 when reusing 

already computed results. Further, strata not affected by 

removing a given edge are not visited unnecessarily. 

Lastly, only relevant units are included in computations 

regarding subsets of strata. 

Still, there is plenty of room to enhance performance. 

Many of the algorithm’s computational tasks can be 

performed independently, e.g., the difference in unmatched 

units if a given edge is removed. Such independent 

computations that are well suited for parallelization are 

often termed embarrassingly parallel [21, p. 79-98]. A 

systematic approach to parallelizing algorithms is found in 

Foster’s methodology [22]. In addition to parallelization, 

we can enhance the performance by designing data 

structures for efficient access to frequently used data and 

extensively reusing previously computed results in the 

algorithm’s iterations. For clarity, we concentrate on the 

basic algorithm in this paper, leaving the suggested 

performance enhancements to future work. 

The accompanying source code for the paper is available 

on GitHub (https://github.com/jo-inge-arnes/autostrata). 

4 EXPERIMENTS AND RESULTS 

4.1 Datasets 

A generator for synthetic data was implemented that lets us 

draw random samples from a composition of distributions 

for treated and controls. Figure 6–Figure 8 show the 

datasets as violin and swarm plots, and Table 2 shows the 

number of units and the mixed distributions for the 

datasets. 

Figure 6 shows the swarm and violin plots of Dataset 1 

with two uniformly distributed covariates. 

Figure 7 shows the swarm and violin plots of Dataset 2 

with a mixture of Gaussians. 

Figure 8. Dataset 3 has a mixture of Gaussians for 

Covariate 1 and uniform distribution for Covariate 2. 
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Treated Controls 

Dataset 1 50 units 150 units 

Cov. 1 U(0, 10) U(0, 10) 

Cov. 2 U(1, 2) U(1, 2) 

Dataset 2 100 units 200 units 

Cov. 1 N(1, 
1

3.5
) N(2.5, 

2.5

3.5
) 

N(2, 
1

3.5
) N(6, 

1

3.5
) 

N(5.5, 
1.5

3.5
) – 

Cov. 2 N(0.95, 
1

3.5
) N(1.0, 

1

3.5
) 

Dataset 3 250 units 250 units 

Cov. 1 N(1, 
1

3.5
) N(1.5, 

1

3.5
) 

N(2, 
1

3.5
) N(2.5, 

1

3.5
) 

N(3, 
1

3.5
) N(3.5, 

1

3.5
) 

Cov. 2 U(0,1) U(0, 1) 

Table 2 shows the number of units and the mixed 

distributions for the datasets. U(min, max) stands for 

uniform and N(µ, σ) for normal distribution. 

4.2 Experiments 

To automate the experiments, we wrote Python and R 

scripts. The role of the R scripts is to call the CEM library. 

A reference manual for the CEM library is available online 

(https://CRAN.R-project.org/package=cem). In the code 

for the experiments, rpy2 (https://rpy2.github.io) is used to 

bridge between Python and R. 

The experiments are as follows: 

1. We call CEM to get pre-stratification scores and

statistics for the given dataset.

2. Next, CEM is used to stratify the covariates by

applying Scott’s rule for histogram binning. It

also computes the number of unmatched units,

imbalance scores, and other statistics.

3. We then pass CEM’s outputted number of

unmatched units and stratum widths to Autostrata.

4. Autostrata stratifies the covariates.

5. Autostrata’s outputted stratum edges are given as

input to CEM, which uses them to stratify and

compute statistics equivalent to step 2.

Two experiments are conducted per dataset. They differ 

only in how the results are passed to Autostrata in Step 3: 

Input type Input parameters 

P1 The numbers of unmatched treated and 

controls from histogram binning are 

passed as 𝑚𝑡
𝑚𝑎𝑥 and 𝑚𝑐

𝑚𝑎𝑥  and the bin

widths are passed as widthsmax. 

P2 The 𝑚𝑡
𝑚𝑎𝑥 and 𝑚𝑐

𝑚𝑎𝑥  values are as in P1,

but widthsmax values are set to infinity. 

Table 3. Input parameters. See Table 1 for variables 

4.3 Results 

Table 4 shows the experiment results. 

DS1, DS2, and DS3 are headers for the results of the three 

datasets. The top column headers stand for ‘results before 

stratification’ (Before), ‘stratification with histogram 

binning’ (Hist.), and the input types P1 and P2 from Table 

3. ‘Res.’ is an abbreviation for results, and ‘Imp.’ is the

percent improvement compared to histogram binning.

The row labels denote multivariate imbalance measure 

(MIM), total unmatched (UMTOT), unmatched treated 

(UMTR), and unmatched controls (UMCT).  

TOI is the percent improvement in the trade-off, which is 

the sum of the improvements for UMTOT and MIM. 

Before Hist. P1 P2 

Res. Res. Res. Imp. Res. Imp. 

DS1 

MIM 0.240 0.199 0.167 16% 0.187 6% 

UMTOT 0 65 80 -23% 54 17% 

UMTR 0 4 5 -25% 3 25% 

UMCT 0 61 75 -23% 51 16% 

TOI – – – -7% – 23% 

DS2 

MIM 0.465 0.273 0.266 3% 0.335 -

23% 

UMTOT 0 88 84 5% 72 18% 

UMTR 0 16 24 -50% 16 0% 

UMCT 0 72 60 17% 56 22% 

TOI – – – 7% – -5%

DS3 

MIM 0.348 0.290 0.174 40% 0.280 3% 

UMTOT 0 53 92 -74% 39 26% 

UMTR 0 21 53 -

152% 

21 0% 

UMCT 0 32 39 -22% 18 44% 

TOI – – – -34% – 30% 

Table 4. Results from experiments. Best TOI results per 

dataset are in bold and thicker cell borders. 

5 DISCUSSION 

Table 4 shows that both imbalance and the total number of 

unmatched units are lower for Autostrata for all three 

datasets. The input parameter type P2 gave the best results 

for DS1 and DS3, while P1 gave the best for DS2. The 

difference is that P2 sets the maximum allowed stratum 

widths to infinity, which effectively disables the parameter. 

By visually comparing the swarm plots in Figure 6–Figure 

8, we see the difference between DS2 and the other two: 

DS2 has several regions with minimal overlap between 

treated and controls. As Section 3.1 explains, finding 

narrow strata with mixed types of units is easier in regions 

with high overlap. Therefore, restricting the widths is 

usually not necessary in such regions. Autostrata also 

works well for sparser overlap, but as illustrated by the 

experiment for DS2, setting maximum widths is more 

important. 

Autostrata competed with CEM’s best effort in the 

experiments, and we passed parameters not necessarily 

ideal for non-uniform widths. It is possible to adjust these 

parameters manually or programmatically, but for 

objectivity, we use the unchanged output from CEM as 

input to Autostrata. 

Lastly, Autostrata can be used stand-alone. A researcher 

can decide the acceptable differences between treated and 

controls based on domain knowledge. The researcher can 

also request a maximum number of unmatched units. 

Autostrata thus provides researchers with more up-front 

control. After stratification, the researcher can input the 

stratum edges to the CEM software as manual cutpoints. A 
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combination is even possible, where Autostrata stratifies a 

subset of the covariates given to CEM. 

6 RELATED WORK 

Aikens, R.C. et al. [23] present Stratamatch, a method for 

stratification of covariates for CEM. Only datasets from a 

minimum of 5 000 up to millions of observations are 

recommended. The method divides the dataset into training 

(pilot) and analysis sets, and the resulting strata are close 

to equal-sized. The size must be manually decided. 

Jackson, B. et al. [24] present an algorithm for optimal data 

partitioning on an interval that Scargle, J.D. et al. [25] 

apply for astronomical time series. The algorithm supports 

custom fitness functions, and we tried defining a function. 

However, a common issue is the unwanted case of one 

subinterval per value; thus, the researcher must choose an 

expected number of subintervals. Also, while theoretically 

possible to extend for multivariate data, the algorithm is 

primarily univariate. 

7 CONCLUSION 

We have presented Autostrata, an algorithmic approach to 

stratifying confounder covariates. Autostrata shows 

improved results compared to the standard CEM 

stratification. In addition, it provides the researcher with 

parameters for controlling the stratification. Autostrata can 

be used stand-alone. 
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Abstract

Non-linear regression modeling is common in many fields for prediction purposes or estimat-
ing relationships between predictor and response variables. For example, restricted cubic spline
regression can model non-linear relationships as third-order polynomials joined at knot points.
The standard approach is to place knots by a regular sequence of quantiles between the outer
boundaries. A regression curve can easily be fitted to the sample using a relatively high num-
ber of knots. The problem is then overfitting, where a regression model has a good fit to the
given sample but does not generalize well to other samples. A low knot count is therefore pre-
ferred. However, the standard knot selection process can lead to underperformance in the sparser
regions of the predictor variable, especially when using a low number of knots. It can also
lead to overfitting in the denser regions. We present a simple greedy search algorithm using
a backward method for knot selection that shows reduced prediction error and Bayesian infor-
mation criterion (BIC) scores compared to the standard knot selection process in simulation
experiments. We have implemented the algorithm as part of an open-source R-package, knutar.

Keywords: model selection, non-linear regression, prediction, restricted cubic splines

1 Introduction

Regression modeling is used in many fields for
prediction purposes or for estimating relation-
ships between predictor and response variables.
For example, we may be interested in studying the
relationship between explanatory variables and
outcomes in fields such as epidemiology, biostatis-
tics, clinical research, economics, and psychology.

As a starting point, such relationships can be
assumed to be linear, but when the assump-
tion does not hold, non-linear methods can be
employed. It has often been questioned if a sin-
gle correct model even exists for a non-linear
prediction problem (Chatfield, 1995; Steyerberg,
2019). Instead, multiple alternatives may be useful
(Gauthier et al, 2020).

1



Springer Nature 2021 LATEX template

2 Article Title

One alternative is to use restricted cubic spline
(RCS) regression (Harrell, 2015, pp. 23-26), which
involves partitioning the observations of a predic-
tor variable into subintervals and piecewise fitting
a third-order polynomial to each subinterval. The
splines connect at join points called knots, and the
RCS regression method ensures the overall func-
tion’s smoothness by forcing the first and second
derivatives of the connected polynomials to agree
at the knots. It additionally restricts splines to be
linear in the tails of the boundary knots because
unrestricted splines tend to behave poorly at the
boundaries of the data (Perperoglou et al, 2019,
p. 6). RCS regression models comprise simple
polynomial functions that are well-suited for inter-
pretation by the researcher and can be combined
with widely used analysis models. As Buis (2009)
states, ”restricted cubic splines are an easy way
of including an explanatory variable in a smooth
non-linear way in a wide variety of models.”

The standard process for placing knots for
RCS regression is by a regular sequence of quan-
tiles for the observed values of the predictor vari-
able between two boundary knots. These bound-
ary knots are often placed at the 0.05 and 0.95
percentiles. Recommendations for knot counts,
quantiles, and boundaries are found in (Harrell,
2015, pp. 27-28). In this paper, we use 0.05 and
0.95 percentiles as the outer boundaries for the
predictor variable observations. Fig. 1 shows the
curve approximated by an RCS regression model
fitted to a sample where the relationship between
the predictor and response variable is non-linear.

Placing knots based on quantiles is an accepted
convention, but there are, for example, rarely any
biological or other reasons dictating that the rela-
tionship between predictor and response variables
must align with equal-sized quantiles between the
boundary knots. Nevertheless, there are several
reasons for using a regular sequence of quan-
tiles. For example, such quantiles are separated
by the same number of observations, ensuring
that observations exist between each pair of knots.
In contrast, the same is not true for equidistant
knots, which can lead to empty subintervals or
non-convergence of the model’s fitting procedure.
Further, if certain subintervals have too few obser-
vations, it can result in instability of estimates
where the estimates become very sensitive to the
specific values in these regions.

Using many quantiles results in knots being
close to each other, especially in the denser regions
of the predictor variable’s distribution. If the knots
are sufficiently close, spline regressions can read-
ily fit a model to the sample data. As the number
of knots increases, the degrees of freedom and the
complexity of the model increase. The problem is
then the risk of overfitting, which means that with
increasing model complexity, the models will often
match the given sample better but not the other
samples from the data-generating process or pop-
ulation in general. Therefore, keeping the number
of knots and the respective model complexity low
is desirable, yielding models that fit a given sample
less exactly but generalize better. A knot count of
five or less is usually considered sufficient in prac-
tice (Harrell, 2015; Gauthier et al, 2020; Stone,
1986). Using five knots is a good choice when
the sample size is large, n ≥ 100, for continu-
ous uncensored response variables, according to
(Harrell, 2015, p. 28).

Several measures for estimating the good-
ness of fit of a model exist that penalize higher
knot counts, such as Akaike’s information crite-
rion (AIC) and the Bayesian information criterion
(BIC) (Schwarz, 1978; Zucchini, 2000). Unfortu-
nately, when we are limited to placing knots by a
regular sequence of quantiles, having a low num-
ber of knots may miss locations essential for a
good model fit. Furthermore, we risk placing knots
in locations that do not substantially improve
the fit or can contribute to overfitting in denser
subintervals.

For spline regression models, in general, the
number of knots and locations are hyperparame-
ters that must be chosen. Perperoglou et al (2019)
describe the role of spline regression models in
modern biostatistics and review software pack-
ages for spline functions in R (R Core Team,
2022). The paper was written on behalf of the
STRengthening Analytical Thinking for Observa-
tional Studies (STRATOS) initiative (Sauerbrei
et al, 2014). The authors conclude that an expe-
rienced analyst can achieve reasonable outcomes,
regardless of the spline type or tool. Most differ-
ences can be attributed to the choice of hyper-
parameters. However, analysts may not possess
sufficient knowledge, and the availability of user-
friendly, well-documented software packages for
spline modeling is identified as important.
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Against this background, we present a knot
selection process for RCS regression models of
low complexity. The process empirically shows
improved results compared to placing knots sepa-
rated by equal-sized quantiles for comparable knot
counts. The algorithm is implemented as part of
a software package for R, knutar. In addition to
RCS, the function choose model uses fractional
polynomial (FP) regression (Royston and Alt-
man, 1994). It selects a model based on the best
goodness of fit from either FP regression, RCS
with equal-sized quantiles, or RCS using the knot
selection process presented in this paper.

The rest of the paper is organized as fol-
lows: Section 2 presents the novel knot selection
process and algorithm. Section 3 describes the
data generator designed for generating artificial
datasets for simulation experiments. The software
package with the implementation of the knot selec-
tion process and the source code repository for
experiments are covered in Section 4. Section 5
describes the method for the experiments, followed
by experiments and results in Section 6. The dis-
cussion is found in Section 7. Notable related work
is briefly described in Section 8 before concluding
in Section 9. Lastly, Section 11 declares that the
authors have no competing interests related to the
work.

2 Knot selection process

This section presents a process for placing knots
for RCS regression. The process is an algorithm
that finds a model with a good fit but an inflated
number of knots and uses its knot locations to
search for a less complex model. We first provide
a justification of the process before describing the
algorithm in more detail in sections 2.1 and 2.2.

For the rest of the paper, we distinguish
between inner and boundary knots. The inner
knots are all knots except the two boundary knots.

The standard process for placing inner knots
is by a regular sequence of quantiles between the
boundaries, which leaves only a single way of plac-
ing k inner knots for a given sample. Alternatively,
we could allow the inner knots to be placed freely.
For freely placed knots, the number of possible
ways to place k inner knots for a sample theoreti-
cally becomes infinite for a real predictor variable,
x ∈ R. In practice, it is unnecessary to place knots

indefinitely close. Beyond a certain level of preci-
sion in identifying knot locations, the differences
in model fit become so small that they are no
longer practically meaningful or valuable, i.e., a
limited accuracy in closeness is sufficient. Conse-
quently, there is a finite set of q locations where
inner knots can be placed in the interval for the
predictor variable observations. The total num-
ber of combinations that r = k inner knots can
be placed for q locations is equal to the binomial
coefficient:

C(q, r) =

(
q

r

)
=

q!

r!(q − r)!
. (1)

The model found by the standard knot selec-
tion process is only one in a more extensive set of
possible models in the same model family. There-
fore, it seems likely that other models in the same
family having a better fit exist.

By reducing the accuracy for the closeness of
the candidate knot locations, the q number of loca-
tions available for knot placement becomes lower.
Simultaneously, the number of possible ways to
arrange the r inner knots drops substantially, as
understood from the binomial coefficient. The set
of locations available for knot placement can also
be interpreted as a partitioning of the predictor
variable interval. The knot selection process in this
paper finds a reasonable partitioning of the inter-
val where r inner knots are to be placed. It defines
a manageable number of locations, q ≥ r, where
inner knots may freely be placed and places knots
so that the resulting model yields a low BIC score.
In this paper, the partitioning is taken from the
knot locations of a model with q ≥ r inner knots,
often having tens of knots, fitted to the sample by
applying the standard knot selection process.

The following subsections present the process
as an algorithm with two main steps. The first step
of the algorithm, described in Section 2.1, is to find
a suitable start model. The start model’s inner
knots define all the q locations where the r inner
knots of a final model may possibly be placed. The
second step of the algorithm starts from the full
set of knot locations in the starting model and
removes knot locations one by one iteratively. The
aim is to find a model with r inner knots that is
better than the model obtained from the standard
process directly.

The strategy behind the algorithm is com-
parable to backward methods that start with
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Fig. 1 The figure shows the curve approximated by a five-knot RCS regression model fitted to a sample of 250 observations.
The predictor, X, and response, Y , variables have a non-linear relationship. The inner knot locations are marked with
dashed vertical lines along the horizontal axis, and the 0.05 and 0.95 percentile boundary knots are marked with solid
vertical lines. The knots have been placed using the standard knot selection process, where the inner knots are placed by a
regular sequence of quantiles between the boundary knots. The observations are shown as gray circles. The knots partition
the observations into subintervals having 56 observations each, and there are 13 observations outside each boundary knot.
The predictor variable is uniformly distributed, X ∼ U(0, 3.5), and the response variable values are the sum of a fifth-
degree polynomial function, X(X − 1)(X − 2)(X − 3)(X − 4), representing the true curve, and a stochastic error term,
E ∼ N (0, 0.5), representing the (homoscedastic) variance.

complicated models, such as a high-degree poly-
nomial, and successively simplifies them (Klein-
baum, 2014, p. 48). It is distinct from backward
elimination strategies that remove variables from
a set of study variables (Kleinbaum, 2014, p. 172).

2.1 Finding a start model

The first step of the algorithm searches for a suit-
able start model by comparing the fits of a series
of models up to a relatively high knot count, for
example, k = 0, ..., 50, where k is the number
of inner knots. The knot count does not include
the outer boundaries. A quantitative criterion for
estimating the model’s goodness of fit, which addi-
tionally considers the knot count, i.e., penalizes for
model complexity, is used to compare the models.
AIC is one such criterion that can be used. BIC is
another (Schwarz, 1978; Zucchini, 2000). We have
chosen to use BIC because it more strongly penal-
izes higher knot counts than AIC. Furthermore,
the BIC is an asymptotically consistent model
selection criterion, meaning that it almost surely,
with a probability approaching one with n → ∞,

selects the correct model from a family containing
this model (Hastie et al, 2009, p. 235), where n
is the sample size. For both AIC and BIC, lower
scores indicate better goodness of fit, adjusted for
model complexity. We select the model yielding
the lowest BIC score of the assessed models as our
start model.

Figure 2 shows the BIC scores for a set of
models with different numbers of inner knots,
k = 0, .., 50. Each model is fitted to the same
sample by RCS regression and the standard pro-
cedure for knot selection. In the figure, the inner
knot counts are shown along the horizontal axis,
and the BIC scores along the vertical axis. The
figure illustrates that increasing the number of
knots typically leads to progressively lower BICs,
possibly having local minima, before reaching a
global minimum. Beyond this number of knots,
the BIC scores increase. The curve shows how
BIC reflects that overly simple or complex models
have the propensity to underperform. Well-known
reasons are that they may not be able to cover
relations well enough or may fit to the noise,
respectively. Zucchini (2000) describes the former
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as discrepancy due to approximation, the latter
as discrepancy due to estimation, and the com-
bination as the expected (overall) discrepancy.
The discrepancy due to estimation increases as
the number of knots increases. This may be less
severe for larger samples, e.g., having thousands of
observations. In that case, the increase in overall
discrepancy becomes less steep. In this paper, the
focus is on hundreds of observations per sample
rather than thousands.

Given the low BIC, the start model has a rel-
atively low expected (overall) discrepancy. How-
ever, it has far more knots than the maximum
we want for the final model. It seems probable
that the start model is overfitted but that a sub-
set of the knot locations can be a good choice for
building a less complex model.

2.2 Lowering the model complexity

The start model has the lowest BIC score of all
assessed models found by applying the standard
knot selection process for a range of knot counts
and, presumably, a low expected (overall) dis-
crepancy. Next, the second step of the algorithm
uses this model as a starting point for iteratively
searching for a less complex model while keeping
the BIC low.

Let q be the number of inner knots in the start
model, and r be the target knot count of the less
complex model. The value of q depends on the first
step of the algorithm, and r is decided up front by
the analyst and fixed. Let S be the set of locations
of the inner knots in the start model.

A possible approach to finding a less complex
model is to compare all possible models having
inner knots at r locations selected from S. We
can then perform an exhaustive, brute-force search
and be guaranteed to find the best model in this
candidate set, B. Unfortunately, the size of B
rapidly grows as q increases. We observe that the
number of models in the set equals the binomial
coefficient, |B|= C(q, r) (Equation 1), meaning
that an exhaustive search does not scale well from
a computational standpoint. In Θ-notation (Cor-
men et al, 2022, pp. 48-49), it has a factorial time
complexity, Θ(q!), holding r fixed.

Here, we present a greedy algorithm (Cormen
et al, 2022) that starts with the complete set of
knot locations from the start model,S, selected. It

then removes knot locations one by one. The algo-
rithm is a state space search (Russell and Norvig,
2010, p. 67) using a simple heuristic: Identify and
remove the knot location with the least undesir-
able impact on the BIC score when removed. This
knot location is deemed the most redundant in
the current set, which implies an assumption that
the individual knot locations in a model can be
ordered by their relative contribution to a good fit,
from being crucial to redundant. Note that it only
matters which knot location is themost redundant
for each iteration step. Only the most redundant
knot location is removed. As long as none of the
r knot locations for the globally best model in B
have been ranked as the most redundant in an
iteration step, the found model will be identical
to the globally best model in B. When r = q − 1,
the state space search algorithm is equivalent to
assessing all models in B. Otherwise, the result-
ing final model may differ from the best model in
B. Thus, the algorithm does not guarantee finding
the best model in B. However, it is relatively com-
mon for state space search, or machine learning
algorithms in general, not to guarantee a globally
optimal solution.

In the first iteration step, the algorithm
assesses which one of the start model’s q inner
knot locations to remove first. For this, it assesses
q candidate models. In the next step, the algo-
rithm assesses which one of the q − 1 inner knot
locations of the model found in the previous step
to remove next, which requires the assessment of
q − 1 candidates. The iteration continues until r
inner knot locations are left. For the last step,
r+1 models are assessed. Thus, the total number
of models assessed by the algorithm is the sum of
natural numbers from r + 1 to q inclusive. Here,
we assume that r < q. By applying Equation 2
for a = r + 1 and b = q and expanding, we get
Equation 3.

b∑

j=a

j ≡ (a+ b)(b− a+ 1)

2
(2)

q∑

j=r+1

j ≡ q + (r + 1)

2
(q − r) ≡ 1

2
(q2 + q − r2 − r)

(3)
From the right-hand side of Equation 3, we

see that the time complexity is quadradic, Θ(q2),
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Fig. 2 BIC scores for increasing number of knots. The lowest BIC score is at 18 inner knots in this example. The sample
consists of n = 250 observations with Lognormal(0.5, 0.35) distribution and the true function is cos(πX). The models have
0.05 and 0.95 percentile boundary knots for the predictor variable.

holding r fixed. From equations 1 and 3, we see
that for r ≤ 2, the exhaustive search requires
fewer models to be assessed than the state space
search algorithm. The two approaches are equiv-
alent when r = q − 1. Otherwise, the number of
models assessed by the exhaustive search grows far
more rapidly with increasing q. For example, if the
start model has q = 30 inner knots and the final
model has r = 4 inner knots, the exhaustive search
assesses 27,405 models. The version that removes
one knot at a time only assesses 455 models. This
difference is monotonically and steeply increasing
as q increases. Further, instead of allowing only a
specific number of knots for the final model, we
can accept a final model having a knot count in a
given range. When assessing a sequence of allowed
number of inner knots, k = 0, ..., kmax, remov-
ing one knot at a time is computationally cheaper
because the exhaustive search requires the com-
plete set of possible models per target knot count,
Bk, k = 0, ..., kmax, for each step. In conclusion,
the state space search scales better computation-
ally. A combination of the exhaustive and the state
space search can be used. For example, the exhaus-
tive search can find the best model with regard to
BIC in B when r ≤ 2. However, the experiments
described in sections 5–6 only use the state space
search because it is the paper’s primary focus.

We may be tempted to remove all but the
r most crucial inner knots in one step, but this
approach can be suboptimal. When a single knot
is removed, the order of the remaining inner knots
by relative importance can change. A hypothet-
ical example is when two or more inner knots
are clustered around a location crucial to a good
fit, e.g., an essential critical point. Individually
removing any of these inner knots may have a
low negative impact because the other inner knots
still support the shape of the curve. On the other
hand, if we remove all these inner knots, no knots
would contribute to the shape of the curve around
the crucial location. The consequence would be
a significant negative impact on the goodness of
fit. When we remove knots one by one, we allow
the order of the knots by relative importance to
change per iteration step. For example, if only
one of the knots around a crucial location is still
present in the set, its importance will be ranked
as high, preventing it from being removed.

Finally, we could also imagine a different
greedy algorithm that starts with no inner knots
and iteratively adds knots at locations selected
from S. Each iteration step adds a new knot by
selecting from S the knot location that yields the
best model of the alternatives. When the algo-
rithm selects the first knot location and fits a
model with a single inner knot, the discrepancy



Springer Nature 2021 LATEX template

Article Title 7

due to approximation can be expected to be high
in many cases. Thus, the selected knot location
may not be essential to recreate the start model’s
basic regression curve shape. Unfortunately, the
algorithm will not replace knot locations in sub-
sequent iterations steps, meaning new knots can
be placed based on misselected locations from the
early steps.

2.3 Accepting a range of knot counts

In the previous section (Section 2.2), we described
the algorithm as targeting one specific number of
knots for the final model. However, we do not
target only one specific number of knots in the
software package (Section 4), experiment methods
(Section 5), and experiments (Section 6). Instead,
the final knot count is allowed to be within a
range, and the model yielding the best BIC score
in that range is selected as the final model. We
also do the same for the standard knot selection
process and select the model having the best BIC
score within the given range of inner knot counts,
k = 0, ..., kmax.

To find a final model having an inner knot
count within a target range k = 0, ..., kmax using
the algorithm presented in this paper, the itera-
tion described in Section 2.2 continues until all
inner knots have been removed. The two boundary
knots are never removed. The algorithm selects
as the final model the best of the models found
during the last iteration steps, where k ≤ kmax.

2.4 Knot removal example

Figure 3 shows the effect of the algorithm iter-
atively removing knot locations from the start
model in the search for a final model of lower
complexity. The resulting regression curves at
four different steps are plotted. The predic-
tor variable is lognormally distributed, X ∼
Lognormal(0.5, 0.35), and the true curve is a
cosine function, cos(πX). The algorithm finds a
start model by applying the standard knot selec-
tion process for a range of inner knot counts,
k = 0, ..., 50. The model at 18 inner knots yields
the best BIC for this sample. The algorithm then
systematically removes knot locations from this
start model. At each iteration step, the algorithm
assesses all models with j of j+1 inner knot loca-
tions from the previous step, i.e., j+1 models, and
selects the model yielding the lowest BIC score.

The figure shows the best models for 18, 13, 8,
and 3 inner knots, having BIC scores of -200, -227,
-247, and -186, respectively. Each step does not
necessarily have a lower BIC score than the previ-
ous step because the BIC score can increase as the
number of knots decreases because of discrepancy
due to approximation (underfitting).

Notice that the start model with 18 inner
knots in Fig. 3 has many redundant knots. As
the algorithm removes such knots, the basic shape
of the regression curve stays relatively stable for
this example. Also, the start model’s curve has
some wiggliness around the top turning point. It
is an example of overfitting in a region where the
distribution of the observations for X is denser
and illustrates one problem of placing knots by a
regular sequence of quantiles.

Fig. 4 shows the predicted curve for the final
model in Fig. 3 and the corresponding model
obtained by applying the standard knot selection
process for three inner knots directly, yielding a
BIC of 67. Notice that the observations are more
sparsely distributed for greater values of X, mak-
ing the upper quantile before the boundary in
the right-side plot of Fig. 4 wider and the model
underfitted. This underfitting illustrates another
problem concerning the standard knot selection
process.

3 Data generator

A data generator was designed and implemented
for generating the artificial datasets used in the
experiments. It produces pseudo-random samples
by applying three user-defined functions repre-
senting:

1. The distribution X of the predictor variable
X = {x1, ..., xn} ∼ Xn, where n is the sam-
ple size. For example, the predictor variable
distribution can be X = Lognormal(µ, σ).

2. The ground truth function, ϕ, for generating
the population means, F , for the response vari-
able Y given X. The term true curve is used in
the paper for these population means:

F = µY |X = ϕ(X). (4)

3. The distribution for the error component, E ,
around µY |X . For example, it can be a normal
distribution:
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Fig. 3 The figure shows the effect of iteratively removing knot locations one by one from the start model. In each of the
four plots, the thin, black line is the model’s fitted curve, whereas the thicker, light gray line is the true curve. The smaller
circles are the observations. The inner knot locations are shown as dashed vertical lines, whereas the 0.05 and 0.95 percentile
boundary knot locations are shown as solid, black vertical lines.

Fig. 4 The plot to the left shows the curve for the final model in Fig. 3. The plot to the right shows the curve for the
model obtained by using the standard knot selection process for three inner knots directly.

E ∼ N (µE , σE). (5)

First, the data generator draws a sample of n
predictor variable observations, X ∼ Xn. For
repeatability, the user can optionally set the seed
used internally by the pseudo-random number
generator. Next, the generator computes the true
curve values, F = ϕ(X). The generator then com-
putes the response variable values, Y = F + (E ∼
En). The error component distribution E is user-
defined and can alternatively be heteroscedastic.
For example, we can scale the error distribution’s
variance by a factor of the given value of x ∈
X, which can be relevant for ratio-valued vari-
ables. Finally, the sample values can be rounded
to a chosen accuracy, simulating the limits of

the measurement method. The resulting dataset
includes both the rounded and unrounded values.
The simulation experiments in this paper only use
homoscedasticity and unrounded values to avoid
unnecessary complexity.

X and Y are the input predictor and response
variable values used for fitting the model, whereas
F are the ground truth values used to assess
the performance of the models’ predictions in the
experiments. Together, they form the variable Z
having the distribution Zn:

Z = (F,X, Y ) ∼ Zn (6)
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4 Software package
implementation

The implementation of the knot selection algo-
rithm presented in this paper is included as part
of our package, knutar, for use with R (R Core
Team, 2022). The package is publicly available
at https://github.com/jo-inge-arnes/knutar and
contains functions for suggesting models and util-
ity and plotting functions. It also includes the
function generate data for generating artificial
datasets.

The function choose model in the package
assesses different regression models from a set of
regression methods, returning the one yielding the
best results according to an information criterion,
where the default information criterion is BIC.

The function’s strategy for choosing the appro-
priate regression model follows a forward method
going from simple to more complicated methods.
The knutar package uses the standard general-
ized linear regression models (GLM) function in R,
stats::glm, for building models. It first applies
regressions with multivariable fractional polyno-
mials, mfp (Ambler and Benner, 2022), which
internally uses a forward selection process for frac-
tional polynomials (Royston and Altman, 1994)
that includes simple linear regression. Next, the
function uses RCS regression, splines::ns, and
finds the number of knots, k ≤ kmax, yielding
the best score for equal-sized quantiles. Lastly, the
function applies the knot selection process pre-
sented in the paper. The model with the best infor-
mation criterion score is returned along with extra
information. If models from different methods give
the same best score, the function chooses the
model stemming from the earliest of the applied
methods. The function additionally returns a list
with the best candidate model from each of the
three regression methods and information about
the chosen hyperparameters.

The main parameters of choose model are
the dataset for the sample, the response vari-
able, and the predictor variable(s). The function
uses the response and predictor variables as the
left- and right-hand sides of a formula so that
the predictor variable can be a formula com-
posed of one or more of the variables available in
the dataset. Additionally, choose model provides
optional input parameters to replace the default

information criterion, maximum number of knots,
and more.

The R-scripts for running the paper’s
accompanying experiments are in a separate
repository at https://github.com/jo-inge-arnes/
knutar-experiments.

5 Methods

We conduct four simulation experiments as appli-
cation examples of different functions, ϕ, for
the true curve. The design of the simulation
experiments follows the theoretical framework for
inference problems in benchmark experiments pre-
sented in (Hothorn et al, 2005).

5.1 Simulation experiment

Using the data generator described in Section 3,
artificial observations are generated by drawing
from known distributions. The ground truth is
known. Each z ∈ Z ∼ Zn consists of the value
for the predictor variable, x, the response variable,
y, and the ground truth that is to be predicted,
f = µy|x:

z = (f, x, y) (7)

For each simulation experiment, we gener-
ate artificial data with a defined distribution, Z,
and draw a set of M = 1, 000 learning samples
consisting of n = 250 observations:

L1, ..,LM ∼ Zn (8)

Two algorithms, a1 and a2, are compared
in the experiments, each yielding a single fitted
model per learning sample with a maximum of
three inner knots, kmax = 3:

• a1 fits 2, ..., kmax models to the given learning
sample by using the standard equal-sized quan-
tiles approach and selects the model yielding the
lowest BIC score.

• a2 uses the knot selection process presented in
this paper and selects the model with an inner
knot count in the range k = 0, ..., kmax that
yields the lowest BIC score.

By pairwise applying a1 and a2 to each of the
m learning samples, we get the fitted models:

aim = ai(·|Lm), i = 1, 2 (9)
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The fitting procedures for the algorithms are
deterministic, meaning they do not depend on ran-
dom starting values or hyperparameters outside
the learning samples. Also, the finished mod-
els, aim, no longer depend on hyperparameters.
Further, the models are themselves random vari-
ables depending on Lm and have a distribution
dependent on the data-generating process:

aim ∼ Ai(Zn) (10)

The model performances are measured with a
scalar function, p, which also can be interpreted as
a random variable with a distribution dependent
on the data-generating process:

pim = p(ai,Lm) = p(aim) ∼ Pi = P(Zn) (11)

For each model-pair, a1m and a2m, fitted per
learning sample, Lm, we draw t = 2, 000 obser-
vations from the same data-generating process as
the learning samples, z = (f, x, y) ∈ T, where
T ∼ Zt. However, because predictions for RCS
models are most reliable between the boundary
knots, we ensure that the x-values are within this
range.

The performance per model, p̂im, is computed
by approximating the expected loss between the
ground truth, f = ϕ(x), and the predicted value,
ŷ = aim(x):

p̂im = p̂(ai,Lm) =
1

t

∑

z=(f,x,y)∈T

L(f, ŷ) (12)

, where L is the quadratic loss function:

L(f, ŷ) = (f − ŷ)2. (13)

This gives us two random samples consisting
of M approximated performance measure values
from the distributions P1(Zn) and P2(Zn), one
set for each algorithm. We now formulate the null
hypothesis, where P̂i is the approximation of Pi.
The null hypothesis is rejected at a significance
level of α = 0.05.

H0 : E(P̂1(Zn)) = E(P̂2(Zn)) (14)

Because the models for a1 and a2 are fitted to
the same learning sets, the natural experimental
design is a paired K samples design, as described

in section 4 of Hothorn, T. et al. (Hothorn et al,
2005). The paired difference test t-statistic is
used under the null hypothesis of equality of the
performance measure distributions.

5.2 Comparing BIC scores

In addition to hypothesis testing the distributions
of the estimated performance measure, we also
report the differences in BIC scores between a1
and a2, as well as the sample mean difference
in knot counts. These are meant as descriptive,
whereas the main hypothesis is on the perfor-
mance measure as described in the previous sub-
section.

6 Experiments and results

For the application example experiments, we fol-
lowed the method described in Section 5. Four
different non-linear functions for true curve were
defined, F = ϕ(X). A lognormal distribution was
used as X (Eq. 15) for the experiments in Section
6.2, 6.3, and 6.4. For the experiment in Section 6.5,
the distribution was uniform (Eq. 16). The error
component distribution, E , was homoscedastic and
normal (Eq. 17) for all experiments. The values for
the true curve, F , and error component, E, were
added to obtain the values for Y (Eq. 18). 0.05
and 0.95 percentiles were used as lower and upper
boundaries for theX observations for the samples.
For the t = 2, 000 observations, z = (f, x, y) ∈ T,
used to estimate the performance measure, p̂im,
all values were between these boundaries. The rea-
son is that RCS models are not reliable outside
the interval of the predictor variable observations
used to fit a model.

X ∼ Lognormal(0.5, 0.35) (15)

X ∼ U(0, 3.5). (16)

E ∼ N(0, 0.1) (17)

Y = F + E (18)

6.1 Result report structure

The results from the two-tailed paired sample t-
tests for the differences in estimated performance
measures and BIC scores for the four experiments
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are reported together in Table 1 in Section 6.6.
The functions representing the true curves and
figures illustrating the results are described in
four subsections following the same structure (See
Section 6.2 6.3, 6.4, and 6.5):

1. The experiment’s ground truth curve function,
ϕi, is briefly described and the formula defined.
See Equation 19, 20, 21, 22.

2. The function description is followed by a plot
showing an example of the resulting true and
fitted curves for a single sample. The BIC score
for the fitted curves are included in the plot’s
legend. See Fig. 5, 8, 11, and 14.

3. A figure showing the distributions of the esti-
mated performance measure, p̂im, for a1 and a2
as boxplots within violin plots. See Fig. 6, 9,
12, and 15.

4. A figure showing the distributions of the BIC
scores for a1 and a2 as boxplots within violin
plots. See Fig. 7, 10, 13, and 16.

6.2 Logistic

The first curve function, Equation 19, is a logistic
function. Such functions are seen in many fields,
including sigmoid activation functions for artifi-
cial neural networks (Hastie et al, 2009, p. 392)
and logistic regression (Kleinbaum, 2014, p. 682).
However, logistic functions are also encountered
in the context of non-linear relationships between
predictor and response variables, where popula-
tion growth (Campbell et al, 2007, p. 390) is one
example.

Fig. 5 shows the function’s curve and the
curves approximated by a1 and a2 for an example
sample of 250 observations. Fig. 6 shows the dis-
tributions of the estimated performance measure
for a1 and a2 as box plots within violin plots. Fig.
7 shows a similar plot but for BIC scores.

ϕ1(X) = (1 + e−12X+27)−1 (19)

Fig. 5 The figure shows the logistic function’s curve
together with the curves approximated by a1 and a2 for
an example sample of 250 observations. The vertical lines
are the outer 0.05 and 0.95 percentile boundaries. The
downwards-pointing triangles along the top horizontal axis
mark the inner knot locations for a1, and the upwards-
pointing triangles along the bottom axis are the knot
locations for a2.

Fig. 6 The figure shows the distributions for p̂(a1,Lm)
and p̂(a2,Lm) for the logistic function as box plots within
violin plots.
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Fig. 7 The figure shows BIC distributions for the logistic
function as box plots in violin plots.

6.3 Runge

The second function, Equation 20, is a Runge
function. Such functions are commonly used to
demonstrate Runge’s phenomenon where fitting
high-order polynomials by equidistant interpola-
tion points results in oscillation at the endpoints
and failure to converge (Dahlquist and Björck,
1974, p. 101). Here, the curve is translated so that
the central peak is at X = 8

3 . We do not use
high-order polynomials, but lower-order fractional
polynomials also perform worse than splines for
this function.

Fig. 8 shows the function’s curve and the
curves approximated by a1 and a2 for an example
sample of 250 observations. Fig. 9 shows the dis-
tributions of the estimated performance measure
for a1 and a2 as box plots within violin plots. Fig.
10 shows a similar plot but for BIC scores.

ϕ2(X) =
1

1 + ( 32X − 4)2
(20)

Fig. 8 The figure shows the Runge function’s curve
together with the curves approximated by a1 and a2 for
an example sample of 250 observations. The vertical lines
are the outer 0.05 and 0.95 percentile boundaries. The
downwards-pointing triangles along the top horizontal axis
mark the inner knot locations for a1, and the upwards-
pointing triangles along the bottom axis are the knot
locations for a2.

Fig. 9 The figure shows the distributions for p̂(a1,Lm)
and p̂(a2,Lm) for the Runge function as box plots within
violin plots.
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Fig. 10 The figure shows BIC distributions for the Runge
function as box plots in violin plots.

6.4 Trigonometric

The third function, Equation 21, is a cosine func-
tion. The functions turning points require an
economic placement of the three available inner
knots.

Fig. 11 shows the function’s curve and the
curves approximated by a1 and a2 for an example
sample of 250 observations. Fig. 12 shows the dis-
tributions of the estimated performance measure
for a1 and a2 as box plots within violin plots. Fig.
13 shows a similar plot but for BIC scores.

ϕ3(X) = cos( 3π2 X) (21)

Fig. 11 The figure shows the trigonometric function’s
curve together with the curves approximated by a1 and
a2 for an example sample of 250 observations. The verti-
cal lines are the outer 0.05 and 0.95 percentile boundaries.
The downwards-pointing triangles along the top horizon-
tal axis mark the inner knot locations for a1, and the
upwards-pointing triangles along the bottom axis are the
knot locations for a2.

Fig. 12 The figure shows the distributions for p̂(a1,Lm)
and p̂(a2,Lm) for the trigonometric function as box plots
within violin plots.



Springer Nature 2021 LATEX template

14 Article Title

Fig. 13 The figure shows BIC distributions for the
trigonometric function as box plots in violin plots.

6.5 Gaussians

The last curve function, Equation 22, is the
sum of two Gaussian functions reminiscent of a
bimodal distribution with two normal distribu-
tions, 3

2N (1, 0.5) and N (2.75, 0.5). As the only
experiment, X has a uniform distribution, X ∼
U(0, 3.5), in contrast to the other three experi-
ments that use a lognormal distribution.

Fig. 14 shows the function’s curve and the
curves approximated by a1 and a2 for an example
sample of 250 observations. Fig. 15 shows the dis-
tributions of the estimated performance measure
for a1 and a2 as box plots within violin plots. Fig.
16 shows a similar plot but for BIC scores.

ϕ4(X) = 3
2γ(X, 1, 1

2 ) + γ(X, 11
4 , 1

2 ) (22)

, where γ(X, a, b) is the Gaussian function,

γ(X,µ, σ) =
1

σ
√
2π

exp

(
−1

2

(X − µ)2

σ2

)
. (23)

Fig. 14 The figure shows the Gaussians function’s curve
together with the curves approximated by a1 and a2 for
an example sample of 250 observations. The vertical lines
are the outer 0.05 and 0.95 percentile boundaries. The
downwards-pointing triangles along the top horizontal axis
mark the inner knot locations for a1, and the upwards-
pointing triangles along the bottom axis are the knot
locations for a2.

Fig. 15 The figure shows the distributions for p̂(a1,Lm)
and p̂(a2,Lm) for the Gaussians function as box plots
within violin plots.
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Fig. 16 The figure shows BIC distributions for the Gaus-
sians function as box plots in violin plots.

6.6 Results table

Table 1 shows the results for the four experiments
described in Section 6.2, 6.3, 6.4, and 6.5. The
columns are:

1. The function representing the true curve in the
experiment

2. The 95% confidence interval for the expected
difference in estimated performance measure
for a1 and a2

3. The performance measure sample mean for a1
4. The performance measure sample mean for a2
5. The 95% confidence interval for the expected

difference in BIC scores for a1 and a2
6. The sample mean for the number of knots for

a1 minus the number of knots for a2

7 Discussion

The implementation of the knot selection algo-
rithm presented in this paper is part of
an R-package, knutar. The package-function
choose model uses the algorithm but only selects
the model produced if it scores better than the
models from fractional polynomial regression and
the standard knot selection process for RCS. Thus,
we do not intend the presented process to replace
the standard knot selection process but as an
option in addition to it. The results can often be
similar, so the processes agree. However, as the
experiments show, there are cases where the mod-
els produced by our knot selection process perform
significantly better.

For all four experiments, Section 6.2–6.5, the
null hypothesis, Equation 14, was rejected. We do
not report the exact p values in the results table.
The reason is that we can, in principle, gener-
ate infinitely many artificial test observations, and
the p value will reach zero in the limiting case
when the two distributions are different. We can
detect performance differences with high power.
However, as discussed by Hothorn et al. (Hothorn
et al, 2005, p. 697), ”one should always keep in
mind that statistical significance does not imply
a practically relevant discrepancy and therefore
the amount of the difference should be inspected
by confidence intervals and judged in the light
of analytic expertise.” Instead, we can turn to
the presented confidence intervals to inspect the
amount of difference. Especially the expected dif-
ference in BIC scores for a1 and a2 reported in
Table 1 suggests that our knot selection process
achieves a clear improvement compared to the
standard process for the example experiments.

Predictor variables usually have non-uniform
distribution for real data. When equal-sized quan-
tiles separate knots, more knots are located in
dense regions than in sparser regions of the pre-
dictor variable. Suppose the number of knots is
relatively low compared to the non-linear curve
shape for the relationship between the predictor
and response variables. Placing inner knots by
a regular sequence of quantiles may lead to too
few knots and underperformance in the sparser
regions, i.e., discrepancy due to approximation,
which is the case for the right-side regions of
Figures 5, 8, and 11. In these regions, our knot
selection process shows a better adaptation to the
true curve. In Fig. 11, we see that there are more
critical points than in Fig. 5 and 8. In such cases,
the selected locations for the few available knots
become more crucial to the resulting goodness of
fit.

Conversely, the standard knot selection process
can lead to overfitting in denser regions. For exam-
ple, in Figure 5 and 8, we see that the curve for a1
is wiggly compared to the true curve, indicating
an overfitted a1 curve.

The experiment in section 6.5 uses a uniform
distribution for X. Therefore, the density of the
predictor variable observations does not systemat-
ically differ in any particular region of the sample
for the M = 1, 000 learning samples. However,
the ground truth curve for the experiment has a



Springer Nature 2021 LATEX template

16 Article Title

Table 1 Experiment results

Curve E(P̂1)− E(P̂2) CI P̄1 P̄2 E(BIC(a1m)−BIC(a2m)) CI d̄k

Logistic [ 1.295e-02, 1.326e-02 ] 1.401e-02 9.086e-04 [ 198, 203 ] 0.0
Runge [ 3.721e-03, 3.848e-03 ] 4.724e-03 9.391e-04 [ 78, 81 ] 0.2
Trigonometric [ 1.144e-01, 1.186e-01 ] 1.401e-01 2.354e-02 [ 244, 258 ] 0.0
Gaussians [ 5.187e-03, 6.105e-03 ] 1.175e-02 6.102e-03 [ 59, 69 ] 0.0

bimodal shape with turning points that do not
necessarily align well with a few knots distanced
by equal-sized quantiles. Here, the presented selec-
tion process has greater flexibility in placing knots
and can better fit a regression spline using the
same number of knots.

RCS models are often unreliable in the tails,
i.e., before the first boundary knot and after the
last. For this reason, we have only assessed the
performance of predictions given predictor vari-
able values between the boundary knots of the
fitted models, as described in Section 5.1, which
prevents outliers in the tails from causing extreme
squared prediction error values that distort the
performance measure. The same is not the case for
BIC scores. In our context, BIC scores are used for
model selection, including models not stemming
from RCS regression. Thus, we choose to com-
pute BIC scores without customizing specifically
for RCS regression models.

Lastly, we briefly discuss model selection bias
(Zucchini, 2000, pp. 58-60). The knot selection
process presented in this paper uses a backward
method that assesses many models. Neverthe-
less, in the end, only the best final models from
the knot selection processes are compared in the
experiments. It could be that the BIC score sys-
tematically is more favorable for one selection
process than another for unknown reasons. How-
ever, in the simulation experiments, the primary
performance measure and hypothesis testing are
not based on BIC but on the ground truth and
predictions for t = 2, 000 previously unseen obser-
vations for each m = 1, 000 finished models per
knot selection process. Therefore, the estimated
performance measures should not be affected by
selection bias.

8 Related work

Several advanced methods exist for spline regres-
sion. A prominent example is penalized B-splines
(P-spline) (Eilers and Marx, 2021; Eilers et al,
2015), where smoothing splines (Hastie et al, 2009,
pp. 151-153) is a specialized case. It is a flexible
framework where splines are built from the sum of
basis curves scaled by coefficients, most commonly
a high number of equally distanced B-splines. The
P-spline method prefers an abundance of knots
and control overfitting by a roughness penalty
(regularization) that smoothes or dampens the
wiggliness of the curve instead of reducing the
complexity of the model by removing knots. By
setting coefficients to zero, certain B-splines in
the mixture can, in effect, be removed. Although
superficially similar to RCS regression, B-splines
and P-splines are different methods from RCS
regression. The knot selection presented in this
paper concerns the latter.

Other techniques adaptively place knots or
choose spline basis functions. Typically, these
advanced methods produce relatively complex
models or target slightly different problems, such
as hybrid adaptive splines (Luo and Wahba, 1997)
for when there is an underlying function that is
spatially inhomogeneous in its degree of complex-
ity. In comparison, restricted cubic splines can
easily be used to include non-linear relationships
in a wide variety of models (Buis, 2009).

9 Conclusion

We have presented a knot selection process and
greedy state space search algorithm for RCS
regression and implemented it as part of an open-
source R-package, knutar. The example simula-
tion experiments show lower prediction errors and
improved goodness of fit compared to placing an
equivalent number of inner knots by a regular
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sequence of quantiles. The presented knot selec-
tion process can be used as an alternative to the
standard process when the curve approximation is
challenging due to several critical points, regions
where the predictor variable’s observations are
sparse, or both. It can also reduce overfitting in the
more densely distributed regions of the predictor
variable observations.

10 Data Availability

The datasets generated and analyzed dur-
ing the current study are available in the
knutar-experiments repository, https://github.
com/jo-inge-arnes/knutar-experiments
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Abstract

General-purpose large language models (LLMs), such as OpenAI’s GPT models,
can be integrated into applications to enable natural-language user interfaces.
However, making a general LLM comply with validation rules for complex data
structures used by in-house systems can be challenging. Two common ways
to customize LLMs are fine-tuning and prompt engineering. We propose a
prompt-based approach enabling general LLMs to stepwise and correctly mu-
tate structured data objects complying with validation rules without specific
training data. Our approach utilizes well-known schema standards to define
the rule set and dynamically generates system messages or initial prompts to
instruct the LLM. We implement a prototype with a client application handling
communication between the LLM, a user, and a domain-specific backend sys-
tem. The proposed approach has broad applications for scenarios where LLMs
must manage data objects having rules for valid structure and values. This is,
for instance, the case when interacting with external systems or assisting users
in executing tasks with predefined steps or configuration options.

Keywords: natural-language user interface, prompt engineering, schema
validation

1. Introduction

Large language models (LLMs) have undoubtedly caught the general pub-
lic’s attention with OpenAI’s release of GPT-4 [1, 2], easily accessible through
a chat-like service on the web, ChatGPT [3]. LLMs commonly utilize deep-
learning [4] architectures, such as the Transformer [5] architecture and gen-
erative pre-training [6], designed to understand and generate human-like text
by being trained on colossal general datasets. The models can perform vari-
ous tasks, including text summarization, translation, question-answering, and
conversational AI. LLMs achieve a broad perceived understanding of human
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language by learning patterns and structures from the training data. This en-
ables them to generate contextually appropriate responses and to accurately
complete various language-related tasks.

However, the most popular LLMs are general-purpose and usually do not
know the specifics of in-house systems or work processes that may require com-
plex but clearly defined rules, structures, and configurations, for example, re-
garding workflows, processes, or system states. Consequently, making the LLM
comply with the strict requirements can be challenging, mainly because such lan-
guage models often generate convincing but fictitious and erroneous responses
when the answer is basically unknown. In [2, pp. 1-2], OpenAI states the limita-
tions of GPT-4 and earlier models and warns that the models can be unreliable
and suffer from "hallucinations." They also have a limited context window and
do not learn from experience. Therefore, particular care should be taken when
using the outputs where reliability is essential. Further, they identify the careful
study of these challenges as an important area of research.

Thus, using general LLMs to enable natural-language user-interfaces in con-
junction with in-house systems can be difficult. This is unfortunate because the
models otherwise have plenty of desirable properties. Here we propose an ap-
proach to instructing the LLM to comprehend and enforce a strict set of rules by
utilizing machine-interpretable, text-based standards for defining and validating
results.

One common way of customizing a general LLM is fine-tuning [7]. Fine-
tuning involves training a general model on a specific task or domain by pro-
viding a training dataset with relevant examples of prompts and completions
specific to the task or domain. The resulting fine-tuned model can be seen
as an adjusted version of the original model, which can be stored separately.
Some commercial companies offering the most capable LLMs as an online ser-
vice, such as OpenAI, allow fine-tuning of their models for a fee based on the
chosen base model and the data size measured in the number of tokens. One
thousand tokens equal approximately 750 words [8], but that number may vary.
An alternative is to download and fine-tune models on-premise, utilizing either
central processing units (CPUs) or graphical processing units (GPUs). There
are many open and free-to-use LLMs available, for example, on Huggingface
(https://huggingface.co).

Many open models are fine-tuned versions of Meta AI’s GPL-licenced
LLaMA [9] models, for example, Vicuna-13B [10]. The LLaMA models have
from 7 to 65 billion parameters. GPT-J [11] is another open model. It is Apache
licensed and has 6 billion parameters. GPT-J has been used as a base model
for, e.g., Databricks’ Dolly 1.0 [12], and NomicAI’s GPT4All-J [13]. GPT4All-J
can be downloaded and run locally on a PC. Databricks’ Dolly 2.0 [14] is based
on another EleutherAI model, Pythia [15], having 12 billion parameters. In
comparison, GPT-3 has 175 billion parameters. The number of parameters for
GPT-4 has not been officially disclosed, but news media has reported around
a trillion parameters [16]. Because deploying independent instances of fine-
tuned models can become prohibitively expensive due to the high number of
parameters, techniques exist that can reduce the number of trained parameters.
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For example, Low-Rank Adaptation (LoRA) reduces the number of parameters
trained by 10,000 times and the GPU memory requirement by three times [17].

Another common way of customization is prompt engineering [18], which in-
volves designing input prompts that can guide the model to produce responses
more aligned with the given needs without modifying the underlying model.
Priming the model with prompts can be more flexible and less time-consuming
than fine-tuning because prompts are given as input on-the-fly to the model
and may vary from session to session. Fine-tuning, in contrast, requires a train-
ing dataset of examples having sufficient quality and variation, and the model’s
knowledge does not change dynamically after the training. A drawback of prim-
ing the model using prompting is that it may be less exact. Another drawback is
that the models have a limited context window, meaning they can only handle a
limited number of word tokens as input for producing a text completion. Also,
the underlying model does not change due to prompts and completions. Each
completion request includes a log of previous prompts and completions must fit
within the model’s token limit. Fig. 1 shows how text can be split into tokens
by the LLM, where the tokens are the units processed by the LLM rather than
words.

Figure 1: The figure shows tokenization as performed by OpenAI’s GPT-3 (https://
platform.openai.com/tokenizer). The characters have been given different background colors
to indicate their grouping into tokens. The text is 404 characters long, split into 163 tokens.

We propose a prompt-based procedure to enable a general LLM to stepwise
mutate a given structured data object into a valid data object according to strict
rules governing the structure, possible and required fields, and allowed values
without this being represented in the LLM’s training data. Our approach de-
fines the rule set for the structured data object by utilizing well-known schema
standards, which can also contain meta-data with human-readable descriptions.
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Such a schema can, for example, be dynamically generated as part of a REST
API [19, pp. 31-32] for a system used by an organization. Our proposed solution
will then be able to generate a system message or initial prompt as a first in-
struction to the LLM that also includes the schema defining the validation rules
for the object structure. The structured data object, which is to be mutated
step by step by the LLM, can more concretely describe a job, configuration, or
state object that the external system can receive and execute. Such objects can
even be used for defining a program in a domain-specific language (DSL) [20].
Currently, plugins [21] and built-in solutions for communicating with external
systems are non-public for the most relevant LLM services, such as OpenAI’s
ChatGPT. Instead, our implemented prototype has a client application that
handles the communication between the LLM, a user, and a domain-specific
backend system.

The approach proposed in this paper can have many areas of application
when LLMs must handle a valid state object on a specific structure, communi-
cate with external systems, or assist a user in the execution of tasks with fixed
steps or configuration options.

The rest of the paper is organized as follows: First, we describe an exam-
ple scenario to clarify the background of our approach in Section 2. Section 3
presents our approach’s overall architecture and design. In Section 4, we de-
scribe the implementation of the prototype. Section 7 presents experiments and
results. The discussion is in Section 8 before concluding in 9.

2. User scenario

Before presenting our approach, we describe an example scenario used as a
common thread throughout the rest of the paper. We do this so the reader can
more readily understand the motivation behind the proposed approach. Still, it
is essential to appreciate that this is merely one of many possible applications.

In the user scenario, a scientist wants to analyze air quality data to identify
patterns and trends in air pollution and visualize the data. The scientist uses
a system custom to an organization specializing in environmental conservation.
The system has a library of available modules with functions usable as part
of an analysis pipeline. A team of scientific programmers is responsible for
the development, regularly publishing updates and new modules. The scientist
must choose functions and parameter values to define an analysis pipeline that
will be submitted to a backend scheduler and executed on a compute cluster.
The scientist uses a client application with an integrated natural-language user
interface to configure and submit the job. The job configuration is represented
in a text-based format for structured data and must comply with specific rules
to be valid. The job consists of three main steps:

1. Data preprocessing

2. Data analysis

3. Data visualization
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For the first step, the scientist chooses a function to filter the data on a
pollutant and a date range. For the second step, the scientist chooses trend
analysis and sets parameters. Finally, for the third stage, the scientist selects a
line chart to visualize the trends in pollutant concentration over time. Once fin-
ished configuring the job, the scientist submits the job via the backend’s REST
API for scheduling and execution on a cluster. The cluster then preprocesses,
analyzes, and generates the desired visualizations.

The payload submitted to the backend via its API is a text-based represen-
tation of a structured data object, which must comply with specific rules. For
example, the job consists of three defined steps, each comprising a selection of
module functions to be applied sequentially. The functions are tied to specific
steps, so a function belonging to one step is not usable in another. The differ-
ent functions can have unique required and optional parameters. All parameter
values have a specified data type, and there can be restrictions on valid values.
For user-friendliness, the developers have provided meta-data documenting the
different functions and parameters in human-readable form.

The natural-language UI must understand and enforce these requirements,
explain the rules, and help the user build a valid job object stepwise through a
chat-like interaction. This is a suitable scenario to illustrate our approach.

3. Architecture and design

The component diagram in Fig. 2 shows the overall architecture of the pro-
posed approach. Returning to the scenario described in Section 2, the scientist
uses a client-side application to configure the analysis job, primarily through
a chat-like interaction within the client’s user interface (UI). The UI corre-
sponds to the architecture’s view component. The client application has a
conversation state component to keep track of the chat log. The natural-
language functionality is enabled by the LLM component. In the scenario, the
scientist configures the job in a stepwise manner, and the object state com-
ponent is responsible for managing the current job configuration object. A
schema defines the job object’s structure and valid values and is retrieved from
the schemas component, which is part of a backend service in our scenario.
Lastly, when the scientist has finished configuring, the job object can be sub-
mitted to an executor component for execution. However, these components do
not communicate directly with each other. Instead, a controller coordinates
the communication. Note that the organization of the processes into client,
backend, and LLM is a guideline, not a mandatory part of the architecture.

3.1. Process interaction
The sequence diagram in Fig. 3 shows how the processes interact. We have

chosen a higher level of abstraction and do not show the individual components
of the processes in the diagram.

In our scenario, the client application prepares the natural-language interface
for its task before being used by the scientist. Therefore, the client’s controller
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Figure 2: The component diagram illustrates the overall architecture. The components are
shown as boxes, and the arrows indicate direct communication. The component at the origin
of an arrow can call the component at the end. An arrow with a solid line means the calls are
within the same process, whereas a dashed line indicates that the calls are inter-process. The
different background colors group the components into processes. For example, in the scenario
described in Section 2, the controller, view, conversation state, and object state are part of
the client process, whereas the schemas and executor components are part of the backend,
and an external service hosts the large language model (LLM).

component first obtains the schema by calling the backend’s schemas component
API, which additionally returns an empty object. Then, internally to the client,
the controller passes the empty object and the schema to the client’s object
state component.

The client then prepares an initial prompt for priming the LLM, which in-
cludes a text representation of the schema and initial object. This prompt is
a system message that will be hidden from the UI. The message also includes
an instruction to greet the user, and the client’s controller makes an API call
on the LLM service with the message as input and receives a completion. The
controller passes the prompt and completion to the conversation state com-
ponent and triggers the view to update the UI’s chat interface.

Here, the sequence diagram shows additional details. The system message
also has a part instructing the LLM to include a text representation of the
current or updated version of the object as part of the returned completion.
The client extracts the text representation of the object from the completion,
validates it according to the schema, deserialize it if necessary, and stores it in
the object state. If the LLM has returned an invalid object, the client can
optionally ask the LLM for a corrected version. Further, the client will hide
the text representation of the object from the user by removing it from the
completion. It may also do additional formatting. Thus, the converstion log
keeps both a user-friendly and raw chat log.

The natural-language interface is now ready, and the scientist can start chat-
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ting to configure the job. The technical staff, which develops the modules, has
provided human-readable descriptions of the modules and parameters. This
meta-data is included in the schema. In addition to the formal definitions of
the object structure, the meta-data enables the natural-language interface to
describe and help the scientist understand the options.

The sequence diagram illustrates that the chat interaction continues as a
loop with prompts and completions, stepwise mutating the object state until
the scientist is finished configuring and ready to submit to the job.

Recall that the LLM does not automatically remember previous prompts and
completions in the conversation. Thus, the client passes the complete conver-
sation and the system message for each completion request. However, the LLM
accepts only a limited number of tokens. In our approach, the client excludes
older messages from the request to prevent exceeding the token limit. As part
of this truncation of the conversation, the system message is updated to contain
the current object state instead of the empty default object. Optionally, the
LLM can be asked to create a brief summary of the conversation so far, which
can be included in the system message to provide the LLM with some memory
of the excluded parts of the conversation.

Finally, when the scientist finishes the configuration, the completed job ob-
ject, kept by the object state component, can be submitted to the backend
system for job scheduling and execution on a cluster.

3.2. System message and completion request text
We now describe the system message and text sent to the LLM for completion

in more detail. The system message is the prompt that primes the LLM for its
custom task and is sent as the first text of all completion requests to the LLM.
Because LLMs have a context window, i.e., a limited number of tokens in the
text for which it will generate a completion, the system message must be short
enough also to fit at least a user prompt and its completion because the token
limit includes the completion.

However, it is desirable that at least some of the latest prompt-completion
pairs are provided because operations may be split over several steps. For
example, suppose the scientist in our scenario tells the natural-language interface
to include and preprocess air quality data for a region. In that case, the natural-
language interface may request a date range before creating an updated version
of the job configuration object. If the scientist provides a date range in the chat,
but the completion request to the LLM does not contain the preceding context, it
will not understand what to do with the date range in isolation. Nevertheless,
prompts and completions far back in the conversation history are not likely
needed because they concern no longer relevant operations. If it is relevant to
include more of the previous context from the chat history, we propose a method
where the LLM is asked to summarize the conversation and have this as part of
the system message. A previous summary can also be included when making a
new one to replace it.

In our approach, the system message has sections with different purposes, as
illustrated in Fig. 4. The first section is a short description setting the context
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Figure 3: The sequence diagram illustrates a sequence of calls performed by the client in our
architecture.

and the role of the natural-language interface. Next, the text explains that the
task is to build an object structure and that the object must be valid according to
a schema, followed by the text representation of the schema. The schema section
will typically be the longest of the sections in the system message, depending
on the complexity of the object structure, its validation rules, and meta-data.
A text representation of the object itself follows it. After the schema and object
sections, there are instructions restricting how the natural-language interface
is allowed to help the user, and it also specifies details of how to respond. A
crucial part of this section is that the text instructs the LLM to include the
current object structure in the completion. This feature makes it possible for
the client to extract the updated object structure and store it in the object
state.
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Figure 4: The figure illustrates the sections of the system message. The different box sizes do
not represent exact ratios, but a larger box does indicate a generally larger section.

Finally, the text asks the LLM to respond with a welcome message. Al-
ternatively, it may include a conversation summary thus far or other auxiliary
information due to the truncation of the chat log. In the latter case, the object
section will contain an updated version of the object structure.

4. Implementation

This section describes the relevant parts of the implemented proto-
type, which will be available at https://github.com/jo-inge-arnes/schema-
priming on publication of the paper. We provide details and examples tied
to topics described in Section 3. The prototype consists of a client applica-
tion implemented as a single-page application (SPA) using VUE 3 (https:
//vuejs.org/), which runs in a browser. We have also implemented a backend
using Python and Flask (https://flask.palletsprojects.com). However, the
paper focuses on LLMs and schemas, making the backend implementation less
critical. Fig. 5 shows a screenshot of the client. On the right-hand side is a
chat-like interface. On the left-hand side, the current object state is shown. For
the GPT models, the client calls the LLM service programmatically by making
asynchronous HTTP requests to OpenAI’s API [22]. For local LLMs, we instead
use a library for the given programming language providing functions for calling
the LLM locally.

4.1. Object and schema representation
LLMs are text-based, and the object structure is serialized to a text format.

Three major text-based standards for object representation are XML, JSON,
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Figure 5: The figure shows a screenshot of the client application for the prototype. The chat
interface is on the right side of the client window, whereas the YAML representation of the
current object state is displayed on the left.

and YAML. XML is the oldest and most verbose of the three, whereas YAML is
the youngest and least verbose. All are well-suited for data exchange and stor-
age, configuration files, web-based APIs and services, and document metadata.
Further, schema standards for object validation exist for all of them. Coverage
of the topic is found in [19, pp. 151-176].

Because of token limits, we want to use a succinct standard for the text-
representation objects and schemas. YAML is the less verbose of the three
standards mentioned above and is used for representing the object struc-
ture. For the choice of schema standard, both XML schema and JSON
schema need relatively many tokens. Further, YAML Schema is also rela-
tively verbose because it has a JSON format. Instead of inventing a cus-
tom schema, we prefer a standard already implemented by programming lan-
guage tools and libraries. It is also crucial that the standard includes more
advanced control of what is allowed and what is not. The prototype in
this paper uses the Kwalify (https://metacpan.org/pod/Kwalify) schema
standard and, more specifically, the Python-based implementation Pykwalify
(https://pykwalify.readthedocs.io).

5. Example object and schema

In this section, we first list the YAML representation of an object represent-
ing an initial empty job in our analysis pipeline configuration scenario in Listing
1. Next, the Kwalify-schema is listed in Listing 2, which is in YAML format.

Listing 1: The initial default object represented as YAML. It is 34 tokens long using the
GPT-3 tokenizer.

wrangling:
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-
name: nop

analysis:
-
name: nop

visualization:
-
name: nop

Listing 2: The schema on Kwalify format. It is 1,101 tokens long using the GPT-3 tokenizer.

map:
wrangling:
desc: "Data Wrangling"
required: True
seq:
- map:

name:
type: str
pattern: filter-data
required: True
desc: "Function for filterings data, e.g., pollutant = ’PM2.5’ and

months-back = 12 to filter the dataset to only include PM2.5
data from the last year."

pollutant:
type: str
required: True
desc: "The air pollutant, e.g., fine particulate matter

concentration"
example: "PM2.5"
months-back:
type: int
required: False
desc: "Number of months back to include"
example: "12"

- map:
name:
type: str
pattern: aggregate-data
required: True
aggregation-level:
type: str
required: True
example: "city"
aggregation-function:
type: str
required: False
example: "mean"

- map:
name:
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type: str
pattern: nop
required: True
desc: "Empty placeholder function not doing anything"

analysis:
desc: "Data Analysis"
required: True
seq:
- map:

name:
type: str
pattern: trend-analysis
required: True
time-unit:
type: str
required: True
example: "month"
smoothing:
type: str
required: False
example: "moving-average"

- map:
name:
type: str
pattern: seasonal-decomposition
required: True
frequency:
type: int
required: True
desc: "e.g., 12 for monthly seasonality"
example: "12"
decomposition-method:
type: str
required: False
example: "additive"

- map:
name:
type: str
pattern: nop
required: True
desc: "Empty placeholder function not doing anything"

visualization:
desc: "Data Visualization"
required: True
seq:
- map:

name:
type: str
pattern: line-chart
required: True
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x-axis:
type: str
required: True
example: "time"
y-axis-label:
type: str
required: False
example: "PM2.5 Concentration"

- map:
name:
type: str
pattern: heatmap
required: True
color-scale:
type: str
required: True
example: "Reds"
annotation:
type: bool
required: False
desc: "A boolean value, e.g., True for displaying values"
example: "True"

- map:
name:
type: str
pattern: nop
required: True
desc: "Empty placeholder function not doing anything"

required: True

6. Example system message

Listing 3 shows the system message used in the prototype imple-
mentation. The schema and object YAML strings are dynamically in-
terpolated with ${jsYaml.dump(objectSchema.value, {indent: 1})} and
${jsYaml.dump(objectState.value, {indent: 1})}. The backticks in the
string are escaped with preceding backslashes, but the LLM does not see these
backslashes. Note that the listing wraps text at linebreaks not present in the
original text.

Listing 3: Example system message text. The full system message, including object and
schema, has 1,557 tokens using GPT-3 tokenizer.

You are the assistant for the SchemaPrompt application. SchemaPrompt is a
service that lets the users pick from a library of predefined

functions and compose them into an analysis pipeline job that will
later be submitted to a backend for scheduling and processing on a
cluster, possibly returning a downloadable file archive.
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You will assist the user by stepwise building the YAML structure that
tells SchemaPrompt which functions to include in the analysis job.

Make sure to only use a YAML structure that is valid for the Kwalify
schema. Never include elements to the YAML that violate the Kwalify
schema’s additional conditional logic or constraints.

This is the Kwalify schema:

\‘\‘\‘
${jsYaml.dump(objectSchema.value, {indent: 1})}\‘\‘\‘

This initial YAML structure is available:

\‘\‘\‘
${jsYaml.dump(objectState.value, {indent: 1})}\‘\‘\‘

You must output the complete current YAML structure this far for each
response.

Further, never list the schema in response to the user. Instead of having
the complete Kwalify schema in response to the user, provide the

user with a human-readable description. Finally, do avoid the word
schema in your answers.

You will only assist the user with building a correct and valid YAML
structure and providing supporting information related to this
process. You cannot assist or help the user with unrelated requests.
When explaining to the user or making suggestions, only include

valid options.

Only show the current YAML once per answer from the assistant. Always
enclose the YAML string in \‘\‘\‘. Never show other YAML examples,
and never add elements to the YAML unless the user has requested it.
If in doubt, ask the user instead of assuming what to add. Don’t

add the schema’s title, description, or examples meta-data fields to
the YAML.

Instead of "YAML structure" or "YAML", you shall just use "specification
".

Please answer this system message by welcoming the user and explaining
the steps.

6.1. Extracting object updates
A fundamental element of our approach is that the LLM completions must

contain an updated version of the object structure after modifications. The
client application will then use a regular expression [23] to extract the text
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representation of the object structure. The extracted text for the object can
then be validated according to the schema. If the validation is successful, the
client can update the current object it manages, possibly deserializing first. In
our prototype, the client application instructs the LLM to always enclose the
text for the object structure with triple back-ticks. For example, GPT-3.5 Turbo
and GPT-4 usually do this by default because the web interface for ChatGPT
supports Markdown [24] and a common extension to the syntax where triple
back-ticks are used for fenced code blocks (https://www.markdownguide.org/
cheat-sheet/#extended-syntax). Unfortunately, there are cases where GPT
omits the backticks or uses backticks for other parts of the text completion.
Thus, we must consider this when designing the regular expression used to
match and extract the object structure text, which may require a portion of
trial and error.

7. Experiment and results

This section reports the design and result of an experiment using a set of
six prompts for assessing three different LLMs, GPT-4, GPT-3.5 Turbo, and
GPT4All-J. The first two were accessed online programmatically via the OpenAI
API, whereas GPT4All-J ran on a PC utilizing the graphical processing unit
(GPU). The PC had an AMD Ryzen 9 7900X CPU, 64 GB RAM main memory,
and an NVIDIA GeForce RTX 4080 graphics card with 16 GB memory.

For all the models, the temperature parameter value was set to
0.05, yielding more stable and less creative outputs. For GPT4All-
J, we also set max_length to 2,000, min_new_tokens to 20, and
repetition_penalty to 2.0. Details on the parameters are available at
https://platform.openai.com/docs/api-reference/completions/create
for the OpenAI API and at https://huggingface.co/docs/transformers/
main_classes/text_generation#transformers.GenerationConfig for
GPT4All-J.

7.1. Experiment design
To assess if the LLMs could fulfill the essential needs of our approach, we

designed six prompts, each assessing different requirements. Further, in addition
to responding correctly to the user, the YAML representing an updated object
returned by the LLM was required to be correct. Table 1 lists what the six
prompts assess, how it is assessed, and the success criteria. The actual prompt
texts can be found in Table 2, and an example of an unsuccessful completion
can be seen in Table 3.

Table 1: The table shows what the experiment’s six prompts assess
and how.

# What to assess How to assess Success criterion
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1 Does the LLM com-
prehend the overall
task?

The last line of the
initial system requests
a welcome message
(Listing 3).

The LLM provides an
appropriate greeting
and summary.

2 Has the LLM un-
derstood the schema
rules?

The user asks for a
user-friendly explana-
tion of the schema.

The LLM provides
an accurate, detailed
description of the
requirements of the
Kwalify schema in
natural, user-friendly
language.

3 Does the LLM enforce
the schema rules, such
as mandatory param-
eters?

The user requests
the assistant to add
a function to the
pipeline but does not
provide the value for
a required parameter.

The LLM should ask
the user for the miss-
ing parameter value
and not add the func-
tion until given.

4 Can the LLM inter-
pret a prompt in the
context of the previ-
ous prompt and com-
pletion, i.e., can the
configuration process
span over more than
one step?

The user provides the
missing parameter
value.

The LLM correctly
adds the function to
the pipeline, including
the required parame-
ter value.

5 Does the LLM under-
stand the schema rule
dictating that some
elements only can be
added to a specific
parent element?

The user asks to add
an existing function
to a step for which it
is not valid.

The LLM should not
add the function.

6 Does the LLM refrain
from engaging in top-
ics irrelevant to its
task?

The user asks an off-
topic question.

The LLM does not
provide an answer to
the question.

7.2. Results
Table 2 shows the user prompts and the visible part of the completions

returned by GPT-4, where the client application has removed any YAML rep-
resentations of objects. Table 4 summarizes the results for the different models,
which shows if the competitions for GPT-4, GPT-3.5 Turbo, and GPT4All-J
were acceptable given the prompt’s purpose.
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Table 2: The table shows experiments with prompts and comple-
tion using GPT-4 as the system’s LLM

1: Welcome message

System: Please answer this system message by welcoming the
user and explaining the steps.

Assistant: Welcome to SchemaPrompt! I’m here to help you
build a specification for your analysis pipeline job. We will
go through the following steps:

1. Data Wrangling:

• filter-data: Filters the dataset based on a specific
pollutant and an optional number of months back.

• pollutant: The air pollutant to filter by (e.g.,
PM2.5).

• months-back: (Optional) Number of months back to
include in the filtered data.

• aggregate-data: Aggregates the dataset based on a
specified level and an optional aggregation function.

• aggregation-level: The level to aggregate the data by
(e.g., city).

• aggregation-function: (Optional) The function to use
for aggregation (e.g., mean).

• nop: An empty placeholder function that does nothing.
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1. Data Analysis:

• trend-analysis: Analyzes trends in the dataset based
on a specified time unit and an optional smoothing
method.

– time-unit: The time unit for trend analysis
(e.g., month).

– smoothing: (Optional) The smoothing method to
apply (e.g., moving-average).

• seasonal-decomposition: Decomposes the dataset into
seasonal components based on a specified frequency and
an optional decomposition method.

– frequency: The frequency for seasonal
decomposition (e.g., 12 for monthly seasonality).

– decomposition-method: (Optional) The method for
seasonal decomposition (e.g., additive).

• nop: An empty placeholder function that does nothing.

1. Data Visualization:

• line-chart: Creates a line chart with specified
x-axis and an optional y-axis label.

– x-axis: The variable for the x-axis (e.g., time).
– y-axis-label: (Optional) The label for the y-axis

(e.g., PM2.5 Concentration).

• heatmap: Generates a heatmap with a specified color
scale and an optional annotation.

– color-scale: The color scale for the heatmap
(e.g., Reds).

– annotation: (Optional) A boolean value indicating
whether to display values on the heatmap (e.g.,
True).

• nop: An empty placeholder function that does nothing.

Please let me know which functions you’d like to include in
each section, and I’ll help you build the specification.

3: The request is missing a required parameter

User: filter data
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Assistant: To filter data, we need to specify the pollutant
you want to filter. Please provide the pollutant (e.g., PM2.5)
and optionally, the number of months back you want to include
in the analysis. Once you provide this information, I will
update the specification for you.

4: A continuation of the previous request

User: PM2.5 last 12 months

Assistant: Great! I have added the filter-data function with
the specified pollutant (PM2.5) and months-back (12) to the
specification.

Next, we can move on to data aggregation or proceed to the
analysis and visualization steps. Let me know how you’d like
to proceed.

5: Request to add a function to the wrong step

User: Add heatmap to analysis

Assistant: Heatmap is a visualization function, not an
analysis function. I can add it to the visualization section
for you. Please provide the color scale you’d like to use for
the heatmap (e.g., Reds) and optionally, if you want to display
values as annotations (True or False). Once you provide this
information, I will update the specification for you.

6: An off-topic request is made by the user

User: What is the population of the EU?

assistant : I’m sorry, but I can only assist you with
building a specification for your analysis pipeline job using
SchemaPrompt. If you have any questions or need help with the
specification, please let me know, and I’ll be happy to help.

For GPT4All-J, we slightly modified the initial system message due to the
API not providing a data structure for separating prompts and completions.
We tried different ways of sectioning the message to exemplify the prompt
and completion structure to the LLM, including separators and instructions
to the LLM. Further, we experimented with parameters such as temperature,
repeat_penalty, top_k, and top_p. Setting the repeat penalty higher than
one was important to avoid GPT4All-J repeating a sentence in a loop. Unfor-
tunately, the completions did not satisfy our requirements. The LLM also used
around 54 to 56 seconds to respond with a completion. The answer closest to
fulfilling the first requirements of the welcome message is shown in Table 3.
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Table 3: The table shows the welcome message produced by
GPT4All-J.

1: Welcome message

Assistant: Welcome User! Please follow these steps carefully
while configuring Pipeline : 1) Selecting Data Source 2 )
Choosing Functions 3a.) Adding Filters 4b.). Aggregation
5c).Visualizations 6d)). Analyser 7finally 8 ). The
final result should look like below image (with no errors):
https://i1s4z0qwjnx9lk7v8h6m3pfg@bigasscluster/images?max_id=
1568894567&amp;autoPlay=-1038993600"

Table 4: The table shows whether or not the completions for
prompts 1–6 were acceptable (Y or N) for GPT-4, GPT-3.5 Turbo,
and GPT4All-J.

Prompt # GPT-4 GPT-3.5 Turbo GPT4All-J

1 Y Y N

2 Y Y N

3 Y Y N

4 Y Y N

5 Y Y N

6 Y Y N

8. Discussion

Because testing all responses to all possible ways for a user to prompt an
LLM is infeasible, we accept that our experiment prompts cannot prove that our
priming always works. Instead, we used minimal prompts designed to demon-
strate that an LLM, such as GPT-4, provided our approach’s fundamental re-
quirements. However, another mechanism for ensuring the correctness of the
updated objects returned by the LLM is to employ schema validation after ex-
tracting the YAML (or other representation) from the complete text. Validation
is the primary purpose of schemas. In addition, experiments have shown that
results can be improved by asking LLMs to reflect on and correct wrong an-
swers, termed the Reflexion technique [25]. Thus, if validation fails, the LLM
may be able to correct itself if asked. However, we have not conducted such
experiments here.

GPT-4 and GPT-3.5 Turbo met all requirements assessed by the prompts,
but GPT4All-J did not, which may seem discouraging regarding democratizing
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artificial intelligence in terms of open and free-to-use alternatives having a com-
parable quality to the closed commercial services. However, there is currently
much voluntary effort to develop improved open LLM models that run locally.
Hopefully, open models that can run locally and compete with GPT-3.5 and
GPT-4 will eventually emerge.

9. Conclusion

We have presented an approach utilizing schemas included in prompts, en-
abling LLMs to comprehend and enforce a complex set of rules defining data
objects’ valid structure and content. The approach shows promising results in
experiments for two of the three LLMs assessed. It can be applied when creating
natural-language user interfaces for configuring jobs for backend systems or per-
forming other tasks. However, the proposed approach may have the potential
for a broader range of use cases.
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