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Abstract
Reconstructing 3D refractive index profile of scatterers using optical micro-
scopy measurements presents several challenges over the conventional
microwave and RF domain measurement scenario. These include phaseless
and polarization-insensitive measurements, small numerical aperture, as well
as a Green’s function where spatial frequencies are integrated in a weighted
manner such that far-field angular spectrum cannot be probed and high spa-
tial frequencies that permit better resolution are weighed down. As a result of
these factors, the non-linearity and the ill-posedness of the inverse problem are
quite severe. These limitations have imposed that inverse scattering problems
in the microscopy domain largely consider scalar wave approximations and
neglect multiple scattering. Here, we present first inverse scattering results for
optical microscopy setup where full-wave vectorial formulation and multiple
scattering is incorporated. We present (a) how three popular inverse scattering
solvers from microwave domain can be adapted for the present inverse prob-
lem, (b) the opportunities and challenges presented by each of these solvers,
(c) a comparative insight into these solvers and contrast with the simpler Born
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approximation approach, and (d) potential routes to improve the performance
of these solvers for the hard inverse problem of optical microscopy.

Keywords: optical microscopy, 3D refractive index reconstruction,
full-wave inversion, multiple scattering, inverse scattering

1. Introduction

Reconstruction of 3D refractive index (RI) or relative permittivity profile of scatterers given
far-field measurements is a standard inverse scattering problem [1]. It has been of interest for
radio frequency wave, microwave, and millimeter wave range applications involving urban
[2, 3], geological [4, 5] and biological [6–8] applications. However, interest in this inverse
problem in the optical domain is relatively less explored [9–11]. The primary reasons are (a)
limited numerical aperture (NA) available for illumination of the sample and the collection of
scattered light, and (b) optical range detectors being intensity-only measurement devices. Both
these problems make optical domain 3D RI reconstruction highly ill-posed and non-linear.

The two popular optical systemswhere 3DRI reconstruction has been performed are optical
holography and optical tomography systems [12, 13]. The inversion process in tomography
generally involves two steps: 2D phase retrieval for each angle and 3D RI reconstruction by
tomography, such as projection algorithm [14, 15] which models the light as a ray and diffrac-
tion tomography [16, 17] where weak scattering is assumed. Such methods require interfero-
metric systems [18–20] to obtain phase information.

Tomographic reconstruction methods based on intensity-only data have also been proposed
[21, 22] which allow direct reconstruction of RI without phase retrieval. Beyond Born [23] and
Rytov [24] approximation, forward models considering multiple scattering along the propaga-
tion direction for thick samples have been proposed and used for inversion. In such methods,
the sample is decomposed of thin slices along optical axis and the field is calculated layer by
layer with some linear approximation, such as multi-slice beam propagation methods [25–27]
and multi-layer Born methods [28]. These forward models have been used with tomography
for 3D sample reconstruction.

An important aspect of all of these methods is that they use scalar approximations of far
field in order to simplify the inverse problem and make it tractable. Full-wave vectorial prob-
lem and one that incorporates high orders of multiple scattering have not been addressed in
optical tomography and holography, nor in high NA coherent microscopy systems with mul-
tiple angles of illumination.

Coherent wide-field optical microscopes image the intensity of electric far-field pattern
on the camera which maps the light scattered by sample after it passes through a two-lens
system. For such systems, the positions of the detectors or camera pixels have a one-to-one
correspondence with a conjugate plane in the sample region, i.e. such a system is an imaging
system and the measurements represent a qualitative image of the conjugate sample plane. In
addition to the conventional challenges for optical regime discussed before, a big impediment
is that the dyadic Green’s function of such optical system is significantly more complex than
usually used in non-optical inverse scattering problems and scalar tomography problems.

Now, appropriate formulation of Green’s functions have been derived [29, 30] incorporating
the imaging system as well as reflections from substrate. An accurate forward model based
on Lippmann–Schwinger equation has also been developed and experimentally verified [31].
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Figure 1. Configuration (a) and illumination for case Ninc = 8 (b) of the microscope
under investigation. DoI is on the substrate which encloses all the objects. The illumin-
ation propagates parallel with the substrate from various angles. For each illumination,
the intensity of the scattered field at different camera pixels is measured which forms a
2D image.

Therefore, it is opportune to consider contemporary full-wavemultiple scattering based inverse
solvers for 3D RI reconstruction.

1.1. The problem statement

Themicroscope setup under investigation is sketched in figure 1(a). The biological samples are
placed on a substrate, characterized by RI nsub and immersed in a homogeneous background
with nobj. The values of nsub and nobj are known a priori. The sample has an inhomogeneous
RI distribution n(r).

The sample is illuminated by transverse electric (TE) polarized plane waves from different
angles which propagate parallel to the immersion-substrate interface successively, as shown in
figure 1(b). The entire sample is illuminated, and the light scattered by the sample is collected
by the objective lens with a specified NA and further focused by the tube lens onto the camera
placed at the focal plane of the tube lens. Since the illumination direction is perpendicular to the
optics axis and the NA of the objective lens does not overlap the illumination, the illumination
components do not reach the camera. In the microscopy parlance, this implies a dark-field
configuration and in the inverse scattering parlance, the measurements are the intensity of the
scattered far field mapped to the camera pixels through the optical systems. Notably, neither
the sample nor the camera is moved, which means that only one lateral image is taken per
illumination. The problem is to reconstruct n(r) given these measurements and corresponding
illumination conditions.
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1.2. The differentiating features of this phaseless inverse scattering problem

Unlike the measurement system considered in traditional microwave imaging, in a microscope
setup, the scattered wave propagates through the objective lens and tube lens before collec-
ted by the camera. Thus, this problem presents some important and interesting features that
differentiates it from the conventional phaseless inverse scattering setup.

An obvious difference is that not only the phase information but also the polarization
information is lost in such a set-up. This means that the entire electric far field of the light
scattered by the sample, containing complex valued azimuthal and elevation components, is
reduced to a single intensity measurement, i.e. the loss of information is four-fold.

Due to the existence of the objective lens with a limited size, only part of the propagating
plane-wave components of the scattered wave can reach camera, i.e. there is an upper limit
to the transverse spatial frequency that gets measured by the system that is determined by
the NA of the microscope. Therefore, the far-field Green’s function works as low-pass filter.
Moreover, it is easy to see in the derivations of Green’s functions for such two-lens systems
[29, 31, 32] that the lowest transverse spatial frequencies are assigned the highest weights in
the integrand, implying suppression of high spatial frequency content vital for resolution of
3D RI distribution.

In a conventional lens-less setup, the electric field due to a point source (such as used for
Green’s function formalism) at an arbitrary measurement point in the far-field comprises of
a single wave-vector. This is not the case in a two-lens system such as considered here. The
first lens, i.e. the objective lens, preserves the wave vectors of the wave coming from a point
source in the sample region, effectively functioning as band-limited Fourier transform of the
field incident on it. However, the second lens, i.e. the tube lens, integrates over all the wave-
vectors originating from a point source in the sample region and passing the objective lens,
effectively functioning as a band-limited inverse Fourier transform. This implies that the spec-
tral separation of the information in the scattered light is lost.

Lastly, even though it appears in the first glance that the presence of several pixels in a
camera presents an opportunity, there is a subtle but important detail. Since this system is an
imaging system, the light scattered from one point is mapped to the camera as a diffraction-
limited blob whose main lobe spans only a small region in the camera plane. The side lobes
are usually small enough to be negligible in practical scenario. With sufficiently large magni-
fication, the size of this blob implies that only a few pixels span the main lobe, restricting the
number of measurements per point scatterer to be in the range 5–50.

1.3. Inverse scattering solver candidates

Inspired by the success of full-wave inversion method in microwave imaging, here we formu-
late the problem 3DRI reconstruction using coherent optical microscope as a full-wave inverse
scattering problem and test the performance of the existing inverse algorithms that have been
widely used.

Various full-wave nonlinear inverse scattering algorithms that incorporate multiple scatter-
ing have been proposed. These include distorted Born iterative method [33], contrast source
inversion (CSI) method [34, 35], subspace-based optimization method (SOM) [36] and its
variants [37, 38], contraction integral equation (CIE) based inversion [39], which have been
widely applied to both 2D [40] and 3D [41, 42] imaging problems. Their adaptions to the
phaseless measurement have also been presented [32, 43, 44]. However, all of these adapta-
tions assume that polarization-separated measurements are available. On the other hand, our
problem pertains absence of both phase and polarization-separated measurements.
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We choose three algorithms that have been widely used or proposed for highly-nonlinear
problem, namely, CSI, CIE based inversion and SOM to solve this specific problem. These
have also been adapted for phaseless inversion, therefore they provide a good case study for
investigation of their suitability for phaseless, polarization-suppressed measurements using a
microscopy system.

1.4. Outline

The rest of the paper is organized as follows. A brief description of the imaging system and
forward formulation is given in section 2. The chosen inverse algorithms and their adaptations
to the concerned problem are shown in section 3 with their performance on the numerical
examples is given in section 4. We discussed on the present algorithms in section 5 and con-
clusion is drawn in section 6.

2. Forward model

The microscope setup has already been presented in figure 1(a) and discussed briefly in
section 1.1. We continue our discussion of forward model from thereon. We define D as the
domain of interest (DoI) with all samples enclosed which has an inhomogeneous RI distribu-
tion n(r). They are illuminated by TE-polarized plane waves. Time dependence exp(−iωt) is
discarded for simplicity in the following formulation. The scattered wave due to the presence
of the samples will propagate through the objective lens and tube lens, and is collected by the
camera (S). With Ninc illumination, Ninc camera images are recorded.

Two local Cartesian coordinate systems are built with the origins being the focal points of
the objective lens and tube lens. z-axis is chosen as the optical axis. For pth illumination, it
generates vectorial incident field Einc

p (r) which is decomposed into x, y and z components (z
component Einc

p,z(r) = 0 with TE wave for all p). The relation between the total field and the
sample contrast can be described by Lippmann–Schwinger integral equation

Etot
p (r) = Einc

p (r)+
ˆ
D
Gd (r,r ′)χ(r ′)Etot

p (r ′)d3r ′, r ∈ D (1)

where contrast is defined as χ(r) = (n(r)/nobj)2 − 1 for nonmagnetic objects. Here we assume
that the substrate is thick enough and Gd(r,r ′) is dyadic half-space Green’s function [45].

The scattered wave reaching camera pixel rcam can be calculated as

Esca
p (rcam) =

ˆ
D
Gs (rcam,r ′)χ(r ′)Etot

p (r ′)d3r ′, rcam ∈ S (2)

where Gs(rcam,r ′) is the far-field Green’s function giving the field on the camera generated by
a dipole source under certain microscope configuration. The expression of far-field Green’s
function for our configuration has been derived in [29] and used in [31] for demonstrating the
forward solver.

Since the incident wave propagates perpendicular to the optical axis, only scattered field is
captured by the camera and the camera measures the total intensity of the field as

Ip (rcam) =
∣∣Esca

p,x (r
cam)

∣∣2 + ∣∣Esca
p,y (r

cam)
∣∣2 + ∣∣Esca

p,z (r
cam)

∣∣2 . (3)

To solve the problem numerically, the method of moments [46] with pulse basis function
and point matching is used to discretize the equations. The DoI is discretized into N= Nx×
Ny×Nz cells with the center of each cell located at rn, n= 1, . . . ,N. The image plane consists
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of M=Mx×My square pixels, centered at rcamm , m= 1, . . . ,M. The above equations can be
written in matrix vector form

E
tot
p = E

inc
p +G

d
X3E

tot
p (4)

E
sca
p = G

s
X3E

tot
p (5)

where E
inc
p =

[
Einc
p,x(r1), . . . ,E

inc
p,x(rN),E

inc
p,y(r1), . . . ,E

inc
p,y(rN),E

inc
p,z(r1), . . . ,E

inc
p,z(rN)

]T
, similar

notation for E
tot
p and E

sca
p and superscript ‘T’ means transpose. Xn is a block diagonal matrix

with n identical diagonal blocks with entries of each block X being χ= [χ(r1), . . . ,χ(rN)]
T.

G
s
is organized as G

s
=
[
G

s

x;G
s

y;G
s

z

]
=
[
G

s

xx,G
s

xy,G
s

xz;G
s

yx,G
s

yy,G
s

yz;G
s

zx,G
s

zy,G
s

zz

]
and similar

with G
d
.

3. Inversion with intensity-only images

With the forwardmodel, we can retrieve the 3DRI profile of the samplewith inverse algorithms
givenmultiple 2D camera images, each corresponding to a different illumination direction. The
image recorded by the microscope camera contains no phase and polarization information of
the scattered field, which increases the ill-posedness and nonlinearity of the inverse problem.

Due to the fact that the z-axis is the optical axis, the z-component of the scattered field arriv-
ing at the camera is much smaller than transverse counterparts. Besides, since TE illumination
is used, the z-components of all the illuminations are zero. As a consequence, the z-component
in the contrast source distribution is induced only by the multiple-scattering effect, so that it is
also smaller than Jx and Jy. Therefore, to ease the computational burden, we discard E

sca
z and Jz

in the following inversion process, except for one situation which we discuss later. Thus, in the

description below G
s
is expressed as G

s
= [G

s

x;G
s

y] = [G
s

xx,G
s

xy;G
s

yx,G
s

yy] with G
d
organized in

a similar way. Contrast source is expressed as J= [Jx;Jy] and similarly for all field quantities.
In the inverse scattering solver design, the design of cost function, optimization variables,

and optimization strategy are the core differentiating features among the different methods.
The cost function typically contains at least a term called the data equation error, which cor-
responds to themisfit between the actual measurements and the equivalent quantities computed
using an estimate of the contrast. In addition, methods that incorporate multiple scattering typ-
ically include an additional state equation error term in their cost function. The state equation
error term usually computes a misfit between two estimates of a physical quantity in the DoI in
which one estimate directly uses the current estimate of the contrast. The state equation error
is largely responsible for incorporating the multiple scattering information in near field, which
may not propagate to the far field where measurements are conducted. The total electric field
in the DoI or the contrast source distribution in the DoI are examples of physical quantities
which may be used for defining the state equation error. The specific expressions of the data
and state equation errors and their relative contribution to the cost function may vary across
methods and their adaptations.

Next, we briefly present our adaptions of the inverse scattering algorithms which we use to
solve this specific problem and conduct our comparative study. These include Born approxim-
ation (BA) as it is the most accepted and used approach for 3D RI reconstruction in the optical
domain, and three popular multiple scattering based inverse scattering solvers namely CSI,
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CIE, and SOM. For all of them, we use the simplification discussed in the previous paragraph
relating to neglecting the z-components of the electric field and the contrast source. However,
for CIE which presented relative computational simplicity, we considered also the case where
the z-components of the electric field and the contrast source are included in the inversion.

3.1. BA

In BA, the size and the contrast of the object is assumed to be small enough such that multiple
scattering can be ignored and the total field Etot(r) can be replaced by the incident field Einc(r)
in the DoI. BA uses only the data equation error as the cost function. We define the data
equation error for BA in a very conventional manner as follows:

FS =
Ninc∑
p=1

ηS
p

∥∥∥∥Ip− ∣∣∣Gs

xX2E
inc
p

∣∣∣2 − ∣∣∣Gs

yX2E
inc
p

∣∣∣2∥∥∥∥2

(6)

with ηS
p being the inverse of the normalization factor and expressed as ηS

p = 1/∥Ip∥2.
Even though BA is used, the problem is still nonlinear due to the lack of phase and polariz-

ation information. We use gradient-based optimization to find a solution. The gradient of the
cost function with respect to the contrast is

gχ =−
Ninc∑
p=1

ηS
p

Gs

diag{Einc
p,x

}
diag

{
E
inc
p,y

}†diag{Esca
p,x

}
diag

{
E
sca
p,y

}(
Ip−

∣∣∣Esca
p,x

∣∣∣2 − ∣∣∣Esca
p,y

∣∣∣2) (7)

with scattered field E
sca
p = G

s
X2E

inc
p . Here superscript ‘†’ means conjugate transpose and

diag{a} generates a diagonal matrix with the diagonal vector being a.

3.2. CSI

In CSI, contrast source J(r) = χ(r)Etot(r) is regarded as an intermediate optimization variable
for the data equation error and as the physical quantity on which the state equation error is
defined. The data and state equation errors being used in our adaptation of CSI are as follows:

FS =
Ninc∑
p=1

ηS
p

∥∥∥∥Ip− ∣∣∣Gs

xJp
∣∣∣2 − ∣∣∣Gs

yJp
∣∣∣2∥∥∥∥2

(8a)

FD =
Ninc∑
p=1

ηD
p

∥∥∥∥Jp−X2E
inc
p −X2G

d
Jp

∥∥∥∥2

(8b)

with ηD
p being the inverse of the normalization factor for state equation and we choose ηD

p =

1/∥X2E
inc
p ∥2 for CSI. The expression of ηS

p is the same as used in BA.
Note that in comparison to the data equation error for BA, here the contrast source is used

which incorporates multiple scattering through Etot(r). Further, the term X2G
d
Jp incorporates

multiple scattering in the state equation error. The cost function is (FS +FD).
Alternate update of J and χ is performed to minimize the cost function. The gradient of the

cost function with respect to the contrast source is
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gJp =−2ηS
p

(
G

s)†
diag{Esca

p,x

}
diag

{
E
sca
p,y

}ρp+ ηD
p

[
lp−

(
G

d
X2

)†

lp

]
(9)

with E
sca
p = G

s
Jp and ρp = Ip−

∣∣∣Esca
p,x

∣∣∣2 − ∣∣∣Esca
p,y

∣∣∣2 , lp = Jp−X2E
inc
p −X2G

d
Jp.

After the contrast source J is updated, the contrast at nth voxel element in DoI can be
obtained explicitly written as

[χ]n =

∑Ninc

p=1 η
D
p

(([
E
tot
p,x

]
n

)∗ [
Jp,x

]
n
+
([
E
tot
p,y

]
n

)∗ [
Jp,y

]
n

)
∑Ninc

p=1 η
D
p

∣∣∣[Etot
p

]
n

∣∣∣2 (10)

with superscript ∗ represents conjugate and E
tot
p = E

inc
p +G

d
Jp.

3.3. CIE

CIE based inversion was proposed to solve highly nonlinear inverse scattering problem.
Modified contrast R(r) is defined as R(r) = βχ(r)/(βχ(r)+ 1) with regularization para-
meter β to control the ratio between local and global contribution to multiple scattering.
Regularization technique proposed in [38] is employed to constrain the contrast source in a
stable subspace, where a parameter MF is used to determine the size of Fourier basis utilized
to represent contrast source Jp. Accordingly, Jp is represented using αp which are the band-
limited Fourier coefficients of Jp where the band-limit is determined byMF. Therefore, the size
of αp is determined by MF. With increasing MF, the bandwidth for representing Jp increases,
higher spatial frequency components are included and the number of entries in Fourier coeffi-
cients αp increases. As the optimization proceeds, β becomes smaller andMF becomes larger.

Combining work related to CIE for 3D problem assuming both phase and intensity
measurements [47] and for phaseless 2D problem [44], we define the data and state equation
errors for given values of β and MF as

FS =
Ninc∑
p=1

ηS
p

∥∥∥∥Ip− ∣∣∣Gs

xF−1 {αp}
∣∣∣2 − ∣∣∣Gs

yF−1 {αp}
∣∣∣2∥∥∥∥2

(11a)

FD =
Ninc∑
p=1

ηD
p

∥∥∥∥βF−1 {αp}−R2E
inc
p −βR2F−1 {αp}−R2G

d
F−1 {αp}

∥∥∥∥2

(11b)

with ηD
p chosen to be ηD

p = 1/∥R2E
inc
p ∥2 for CIE. ηS

p is the same as used in BA. F−1{·} rep-
resents the inverse Fourier transform. Note that here we operate such transform to x, y and
z components respectively and then concatenate the results as a vector. The cost function is
(FS + 100FD), where the multiplicative coefficient is empirically chosen.

Similar with CSI, alternate minimization is used to find a solution. However, in CIE the
Fourier coefficient vector αp and the modified contrast R are used as the optimization variables
instead of Jp and χ, respectively. The gradient with respect to αp is expressed as

gαp
= F

−2ηS
p

(
G

s)†
diag{Esca

p,x

}
diag

{
E
sca
p,y

}ρp+ ηD
p

[
βlp−

(
βR2 +G

d
R2

)†

lp

] (12)

8



Inverse Problems 40 (2024) 015003 Y Qin et al

with ρp = Ip−
∣∣∣Esca

p,x

∣∣∣2 − ∣∣∣Esca
p,y

∣∣∣2 , lp = βJp−R2E
inc
p −βR2Jp−R2G

d
Jp and E

sca
p = G

s

xJp, Jp =

F−1{αp}. The modified contrast R at the nth voxel in the DoI is updated as

[
R
]
n
=

∑Ninc

p=1βη
S
p

(([
Γp,x

]
n

)∗ [
Jp,x

]
n
+
([
Γp,y

]
n

)∗ [
Jp,y

]
n

)
∑Ninc

p=1 η
D
p

∣∣∣[Etot
p

]
n

∣∣∣2 (13)

with Γp = E
inc
p +βJp+G

d
Jp.

3.4. SOM

Before discussing SOM, we bring to the notice of the readers that while we adapted each
method above for our problem through custom definitions of cost functions, our adaptation of
SOM is significantly different from the original SOM, not just in the cost function definition,
but also in other aspects that will be appropriately emphasized in the text below.

SOM utilizes the spectral features of the mapping from the contrast source to the scattered

field given by singular value decomposition (SVD). With G
s
= U Σ V

†
, where U and V rep-

resent the basis set of left and right singular vectors, the contrast source can be represented
by right singular vectors as J= Vα. Please note that α here is different from the vector α in
CIE. In CIE α represents the coefficients of Fourier basis vectors and in SOM α represents
the coefficients of right singular basis set V. SOM splits the contrast source J into a determin-
istic components J

+
and an ambiguous component J

−
, i.e. J= J

+
+ J

−
. This is accomplished

by splitting V into two sets V
+

and V
−

using a user-specified parameter L which defines the

number of basis vectors used to represent the deterministic part. Accordingly, V= [V
+
,V

−
],

and the deterministic and ambiguous parts of the contrast source are given as J
+
= V

+
α+ and

J
−
= V

−
α−, respectively. Further, as obvious, α+ represents the coefficients of deterministic

part and α− represent the coefficients of ambiguous part of the contrast source, such that α is
a concatenation of α+ and α−.

For phaseless data, similar with [43], the deterministic part of the contrast source J
+

in
signal space is obtained with optimization method by considering data misfit, unlike original
method where it is determined directly from known complex scattered field. We follow the
same strategy as [43] for reconstructing the deterministic part.

The reconstruction of the ambiguous part of the contrast source is extremely computation-

intensive for 3D RI reconstruction problem due to the large dimensionality of V
−
. Therefore,

instead of following the conventional practice in SOMof using the entire V
−
for reconstruction

from the beginning, we gradually increase the number of vectors in V
−

used in reconstruction
over the progression of optimization.

The whole optimization therefore consists of two steps. In the first step, the coefficients α+

are solved by optimizing

FS =
Ninc∑
p=1

ηS
p

∥∥∥∥Ip− ∣∣∣Gs

xV
+
α+
p

∣∣∣2 − ∣∣∣Gs

yV
+
α+
p

∣∣∣2∥∥∥∥2

. (14)
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The gradient with respect to the coefficients α+ is

gα+
p
=−2ηS

p

(
G

s
V
+)†

diag{Esca
p,x

}
diag

{
E
sca
p,y

}ρp (15)

with E
sca
p = G

s
V
+
α+
p and ρp = Ip−

∣∣∣Esca
p,x

∣∣∣2 − ∣∣∣Esca
p,y

∣∣∣2.
In the second step, we use the first Lδ vectors of V

−
, referred to as V

δ−
, to approximate the

ambiguous part of the current. For this, we define V
δ
= [V

+
,V

δ−
], and the corresponding coef-

ficient vector αδ which also includes coefficients α+. We optimize αδ directly by considering
both data and state equation errors expressed as

FS =
Ninc∑
p=1

ηS
p

∥∥∥∥∥Ip−
∣∣∣∣Gs

xV
δ
αδ
p

∣∣∣∣2 − ∣∣∣∣Gs

yV
δ
αδ
p

∣∣∣∣2
∥∥∥∥∥
2

(16a)

FD =
Ninc∑
p=1

ηD
p

∥∥∥∥Vδ
αδ
p −X2E

inc
p −X2G

d
V
δ
αδ
p

∥∥∥∥2

(16b)

with ηD
p = 1/∥X2E

inc
p ∥2. ηS

p is the same as used in BA. The cost function in this step (FS +

0.01FD. The factor 0.01 is chosen empirically, but the choice is motivated by the fact that the
data error FS has already been reduced due to step 1, and a small coefficient for FD helps in
balancing the contribution of data and state error equations in the optimization. The gradient
with respect to the coefficients αδ is

gαδ
p
=−2ηS

p

(
G

s
V
δ
)†

diag{Esca
p,x

}
diag

{
E
sca
p,y

}ρp+ ηD
p

(
V
δ
)†

[
lp−

(
G

d
X2

)†

lp

]
(17)

with ρp = Ip−
∣∣∣Esca

p,x

∣∣∣2 − ∣∣∣Esca
p,y

∣∣∣2 , lp = V
δ
αδ
p −X2E

inc
p −X2G

d
V
δ
αδ
p and E

sca
p = G

s
V
δ
αδ
p . The

expression for the contrast is the same as (10) with Jp = V
δ
αδ
p .

We use the same optimization strategy as CIE where multiple rounds are run and increas-
ingly more Lδ singular vectors are used to form the basis in each round.

3.5. Summary of the methods and their adaptations

BAuses only data equation and reconstructs the contrast directly. Our problem being phaseless,
our BA formulation is still non-linear and we use gradient based optimization for the contrast.

CSI uses both data and state error equations, and it employs the contrast source as an inter-
mediate optimization variable. A two step update scheme is used in which first the contrast
source is optimized, and the contrast is updated using it. Our adaptation of CSI features one
main difference from the CSI formulation for phaseless problem, which is the absence of
polarization-separated measurements. This difference also applies to CIE and SOM.

CIE uses a modified contrast function whose parameter β can be varied through the pro-
gression of optimization. Further, CIE uses Fourier coefficients of the contrast source as an
intermediate optimization variable, and allows the number of Fourier coefficients of the con-
trast source to changewith the progression of optimization. Beside these important differences,
our adaptation of CIE generally follows a CSI-like scheme for the cost function and the optim-
ization process.

10



Inverse Problems 40 (2024) 015003 Y Qin et al

SOM uses SVD of G
s
to obtain its right singular vectors. These right singular vectors are

used as a basis set for the contrast source. The coefficients of these right singular vectors
are considered as intermediate optimization variable. Furthermore, instead of optimizing all
the coefficients at the same time, SOM optimizes a subset of coefficients representing the
deterministic part of the contrast source separately using the data equation error alone, and the
complementary subset of coefficients representing the ambiguous part of the contrast source
is optimized separately using both data and state equation errors.

Beside these characteristics, some adaptations of SOM including ours may follow a scheme
similar to CIE for the cost function and optimization process. In our adaptation of SOM, there
are two key differences. The first difference is that in the first step we optimize the coefficients
of the deterministic part alone and using the data equation error only, and in the second step we
optimize the coefficients of both the deterministic and ambiguous parts of the contrast source
and using both the data and state error equations. The contrast is optimized using the contrast
source in each iteration of the second step. The second difference is that we optimize only a
subset of the ambiguous part of contrast source in the second step. The size of this subset is
allowed to vary as the optimization progress.

Further, for all of the above, we have neglected the z-components of electric fields and
contrast source, which presents computational simplification without any loss of generality.
Lastly, we have included experiments on CIE where we consider also the z-components. We
refer to these results using CIE(z).

4. Results

We test the above inverse algorithms with several numerical examples under the same micro-
scope setup and simulation configuration. Here we will mainly focus on the reconstruction
of the contrast χ. Once the contrast is obtained, the 3D RI profile of the object can be easily
calculated with known RI of the immersion medium.

Microscope setup. The glass substrate with nsub = 1.515 is located at zsub = 0. The samples are
immersed in air nobj = 1.0 and illuminated by plane waves with wavelength λ= 638 nm from
Ninc = 8 angles which are evenly distributed in [0,2π). The image of the sample is obtained
by a 40× 0.65 NA microscope. The size of a single camera pixel is 6.5µm and each image
consists of 18× 18 pixels.

Simulation Configuration. Different grid sizes are used for forward and inverse problems to
avoid inverse crime. The DoI has a size of 1.5µm× 1.5µm× 0.6µm and is divided into cubic
cells with side length of 20 nm to compute synthetic images on the camera. The camera images
are obtained by solving the forward problem with Bi-CGSTAB method [48]. Here we test the
algorithms with clean data such that no noise is added to the generated data. For inversion, the
cell size is set as 30 nm, leading to 50× 50× 20 cells. With such cell side length (∼λ/21), the
reconstructed object resolutions are in the deep subwavelength regime.

Initial guess. Since the problem is highly nonlinear, it is important to find a good initial guess.
Fortunately microscope can provide images which give blurred structures of the sample. A

simple practice is to combine the normalized camera images as IC =
∑Ninc

p=1 Ip/max(Ip)with Ip

being the 2D camera image of the pth illumination and max(Ip) being the maximum intensity

in the image Ip. Projection of this image into sample region cylindrically based on the magni-
fication of the microscope can be used as the initial guess of the contrast. The contrast at each
cell is proportional to the projected value and a maximum contrast is set manually according to

11
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Table 1. Implementation details of the inverse algorithms with total intensity data and
difference with their origins with full-wave data.

Methods Our implementation Origin with full-wave data

BA data equation (6) FS =
∑Ninc

p=1 η
S
p

∥∥∥Gs
X3E

inc
p −E

sca
p

∥∥∥2

CSI data equation (8a) FS =
∑Ninc

p=1 η
S
p

∥∥∥Gs
Jp−E

sca
p

∥∥∥2

CIE (11a) and FCIE = (FS + 100FD)FTV FS =
∑Ninc

p=1 η
S
p

∥∥∥Gs
F−1{αp}−E

sca
p

∥∥∥2

SOM J
+

obtained by optimizing (14) J
+

obtained directly in first step
J
−

optimized with an gradually
increasing number of vectors J

+

also optimized

J
−

optimized with all remaining vectors

FSOM = (FS +FD/100)FTV J
+

fixed when optimizing J
−

(α−)

the prior information about the sample. In this way we can get the initial contrast distribution
χ(0) in DoI. Our choice of initial guess for the contrast source or its coefficients is zero in CSI
and CIE. For the coefficients used in SOM, the initial guess of the coefficients for the determ-

inistic part of the contrast source cannot be zero, and we set them as α+(0)
p = (V

+
)†(X

(0)
E
inc
p ).

For the new coefficients added in the following rounds, their values start from 0.

Regularization and optimization. We impose weighted L2 total variation (TV) regularization
FTV defined in [49] on all the algorithms. It is incorporated as an additive term for BA and as a
multiplicative term for the other algorithms. Thus, we have the cost function FBA = FS + γFTV

and FCSI/CIE/SOM = (FS +FD)FTV. Update of the contrast source is not affected except for BA
where the gradient should consider the contribution from the regularization term. Conjugate
gradient method [50] with Polak-Ribière search direction v is used to update the contrast in
BA, contrast source in CSI, and the coefficients of the contrast source in CIE and SOM. Step
size d is obtained by solving d=minF(a+ dv) where F is the cost function and a is the cur-
rent variable to be updated. With multiplicative regularization, we employ the update method
described in chapter 4.6 of [51]. The contrast is calculated analytically first as given above
and then updated with two Jacobi iterations to impose the regularization effect. The imple-
mentation details are summarized in table 1 and the difference between the adaptions of these
algorithms from their origins are also displayed.

Hyperparameters, termination criterion, and other notes. For BA, the regularization coeffi-
cient γ= 0.001 and δ2 in the expression of TV is chosen as δ2 = FS. This parameter is set δ2 =
FD in CSI, CIE and SOM. In CIE, three rounds are run with β = [6,3,1] and MF = [5,8,13].
In SOM, for the first step, L= 36 right singular vectors are used to form the basis for optim-
ization of the deterministic part of the contrast source. In the second step, number of vectors

in V
−

involved in optimization starts from 100 with an increment of 100 in each round. The
number of rounds for the second step is not set explicitly. Instead it is determined by either the
termination condition being achieved or Lδ reaching a value equal or more than 2000.

The optimization for all algorithms stops at nth iteration if the relative change in the cost
function

∣∣F(n) −F(n−5)∼(n−1)
∣∣/F(n) is smaller than a threshold. Here, F(n−5)∼(n−1) is the

mean of the cost function errors for (n− 5)th to (n− 1)th iterations. The threshold is chosen
as 0.0005 for BA and CSI. In CIE, such thresholds for its three rounds are chosen as 0.002,
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0.001 and 0.0005. For SOM, the threshold is 0.01 in the first step to get an estimate of J
+

and
0.001 in the second step for each round.

While performing reconstruction using SOM, we found that there is artefact with much
higher contrast on the four corners of the top surface compared with low estimated contrast
of the object. To suppress such artefacts, we constrained that the contrast on all the boundary
surfaces of the DoI to be zero except the bottom surface. The bottom surface corresponds to
the interface between the substrate and the sample, and since the sample is not free floating
and rests on the bottom surface, not all the voxels on this surface can have zero contrast. We
incorporated this condition for all the solvers, including SOM.We do note that such constraint
led to a degradation in the reconstruction of the sample for all the solvers and especially for
SOM. In the future, it may be desirable to design more suitable strategy to deal with this
artefact.

Assessment criteria. To assess the result quantitatively, the relative reconstruction error is
defined as

e(χ) =
∥χ−χgt∥2
∥χgt∥2

(18)

where χgt is the groundtruth contrast and χ is the reconstruction result. We also test the errors
for contrast source if it is reconstructed in the algorithms as

e(J) =

√√√√ 1
Ninc

Ninc∑
p=1

∥Jp− J
gt
p ∥2

∥Jgtp ∥2
. (19)

Such error is defined for Jx, Jy and Jz respectively.
Lastly, where relevant, we have included the structural similarity index (SSIM) [52] and

multiscale structural similarity index (MS-SSIM) metrics [53] to measure the structure sim-
ilarity between the 3D reconstruction result of the contrast and the ground truth. Here both
the result and ground truth are normalized by their maximum value such that both the value
ranges are [0,1]. The dynamic range in the parameter of SSIM is set 1 and default values are
used for other parameters.

4.1. Test example 1

In the first example, two beads with radius of a= 0.2µm are placed along the y-axis and
touching each other, as shown in figure 2(a). The RI of the beads is n= 1.05, corresponding to
a contrast of χ= 0.1. The simulated camera images with illumination k1–k8 are displayed in
figure 2(c). We can distinguish these two beads from almost all the camera images except the
ones obtained with illumination k1 and k5 where the scattering of the two beads are in phase
and that constructive interference occurs. The normalized intensity image IC (figure 2(b)) also
shows clear separation of these two beads when all the normalized camera images are summed
up, and it is used to generate the initial guess of the contrast.

As mentioned before, the maximum initial contrast is set manually based on prior inform-
ation about the samples. Here we test two values, 0.2 and 0.05, to see the influence of the
initial guess on the reconstruction results in view that prior knowledge may be not accurate.
The reconstruction results of all the algorithms are shown in figures 3 and 4 respectively. The
SSIM, MS-SSIM and the reconstruction errors are summarized in table 2.
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Figure 2. Configuration (a) and camera images (c) of the first test example. IC is
obtained by combining all 8 images and is used to get the initial guess of the contrast.
(a) Axis units: µm. (b), (c) Scale bar: 1µm.

Effect of the value of initial contrast on the solvers. In the qualitative sense as observed in
figures 3 and 4, the initial value of the contrast does not affect the results of any solver sig-
nificantly. Visually, one can distinguish the two beads in the results of each solver irrespect-
ive of the initial contrast value. The invariance along z-axis in the initial guess has also been
well amended by each solver. Each presents a decent estimate of the shape of the two beads,
although some subtle differences are interesting to note. CSI reconstructs shapes and sizes of
the beads closer to the ground truth when higher initial value of contrast is employed. CIE(z)
and CIE present better visual separability and better indication of shape of the beads when
lower initial value is used, but better estimate of size of the beads is obtained when higher
initial value is used. BA and SOM present reconstructions which seem robust and unaffected
by the initial value.
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Figure 3. Reconstruction results of the test example 1 with maximum contrast of the ini-
tial guess set as 0.2. Three cross sections are shown from top to bottom: z= 195 nm,y=
−15 nm and x=−15 nm. Axis units: µm.

Figure 4. Reconstruction results of the test example 1 with maximum contrast of the
initial guess set as 0.05. Same layout as above. Axis units: µm.

Quantitatively as noted in table 2, BA shows quite similar results for both initial contrast
values, in the sense of both relative error and structural similarity. SOM also presents quantit-
ative metrics not significantly affected by the initial contrast values. This is consistent with the
qualitative observations of their robustness against the initial contrast value. In contrast, there
is an obvious improvement in the performance of CSI and CIE when the optimization starts
with a smaller contrast. This effect is more prominent for CIE, irrespective of the inclusion or
exclusion of the z-components of the scattered field and contrast source.

Comparison across algorithms. Most algorithms give a reconstruction result with a higher
contrast than the actual contrast of the beads. An exception is SOMwhich gives a significantly
low contrast, about one tenth of the ground truth. In terms of size, all algorithms present results
that indicate a size smaller than the actual size of the beads.

Qualitatively as noted from figures 3 and 4, the shapes and sizes of the beads are best appre-
ciated in the result of CSI, closely followed by the results of CIE and CIE(z). Interestingly,
quantitatively as noted in table 2, when using low initial contrast value, CIE and CIE(z) present
the best MS-SSIM values and the lowest reconstruction errors. They also present shapes and
sizes relatively comparable to CSI. Incorporating z-components of the scattered field and con-
trast source in CIE does not show evident improvement in this test example for both cases,
which may be due to the increased computational complexity.
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Table 2. Comparison of errors between inversion algorithms for example 1.

Initial contrast Methods SSIM/MS-SSIM e(χ) e(Jx) e(Jx) e(Jz)

0.2

BA 0.4220/0.8521 0.5494 — — —
CSI 0.3163/0.7538 0.7917 0.8330 0.8195 —
CIE(z) 0.2216/0.5711 1.3261 1.4657 1.4841 2.3131
CIE 0.2279/0.5712 1.3354 1.4849 1.4504 —
SOM 0.3984/0.4867 0.9429 1.1399 1.0384 —

0.05

BA 0.4583/0.8573 0.5437 — — —
CSI 0.3448/0.8332 0.6194 0.6341 0.6357 —
CIE(z) 0.5273/0.8774 0.5169 0.5485 0.5434 0.8625
CIE 0.5251/0.8719 0.5158 0.5472 0.5428 —
SOM 0.3969/0.4825 0.9436 1.1399 1.2463 —

Our adaptation of SOM gives the worst result. The relative error is high, which can be
inferred from the reconstructed contrast of the objects being significantly smaller than the
actual value (see in both figures 3 and 4). When we remove the influence of the contrast value
by normalization in SSIM, the result is still unsatisfactory, which may be also observed from
the figure that the beads reconstructed by SOM are most squeezed along z-axis.

Lastly, we note that BA does not perform too poorly in comparison to the other solvers.
Its worst performance is quantitatively better than the best results of SOM and CSI, and only
marginally poorer than the best results of CIE.

Convergence. The evolution of the reconstruction error e(χ) is shown in figure 5. Besides,
the sum of data equation error and state equation error, denoted as F′, for each algorithm
is also displayed. Readers are referred to table 1 for the expressions of the cost function of
these algorithms in terms of the data and state equation errors. BA has the best convergence
speed among all the solvers being compared although some oscillations are observed in the
cost function during the optimization process. This advantage of BA is attributed to less non-
linearity of the inverse problem due to neglecting the multiple scattering effect and the least
number of unknowns. CSI converges very slowly. It is also interesting that although CSI gives a
smaller total cost than BA, the reconstruction error of CSI is higher, which may imply that CSI
has converged to a wrong local minimum. CIE converges faster than CSI, which is potentially
because the regularization parameters β andMF in CIE control the local effect of the contrast
source in a subspace and therefore converge to more accurate reconstruction by changing the
size of the region of local effect. Also, it is notable that when lower initial contrast value is used
in CIE(z), the convergence clearly shows the transition between the first and second rounds
at iteration number 242. This indicates the change of the size of local effect affecting the
convergence directly. For the presented SOM, the reconstruction error almost does not change
after the first update even though the cost function decreases slowly. We attribute this to our
adaptation being sub-optimal. This is discussed in more detail in section 5.

4.2. Test example 2

This example consists of two ellipsoids with different sizes and contrasts. The center of the
outer one is located at (0,0,0.2) µm with semiaxis lengths ax = 0.6µm, ay = 0.6µm and
az = 0.2µm. The inner ellipsoid is located at (0.1,0.05,0.2) µm and the semiaxis lengths are
0.2µm, 0.2µm and 0.06µm. The RI of the outer ellipsoid is n= 1.05 and the inner one has
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Figure 5. Reconstruction Error e(χ) and cost function F′ versus iterations for test
example 1. The effect of the contrast value of initial guess is shown in (a), (b). Maximum
1000 iterations shown.

a higher RI n= 1.10, leading to contrast values about 0.1 and 0.2 respectively. This structure
roughly emulates vesicles engulfing a drug or other payload.

From figure 6, we can see that image IC simply obtained by summing up all the normalized
camera images cannot distinguish the inner ellipsoid. Here we test the reconstruction results
with initial contrast calculated from IC to see if the inner ellipsoid can be well distinguished
from its surroundings and the contrast of both the objects can be estimated with sufficient
accuracy. The maximum initial contrast value is chosen as 0.1. Figure 7 shows the reconstruc-
tion results and the assessment metrics are listed in table 3.

We see that all the algorithms can distinguish the inner ellipsoid from the outer one laterally
even though it is not clear in initial guess. Most algorithms can also identify well that the
inner ellipsoid is enclosed by the outer one axially. An exception to this observation is CSI,
which gives the result such that both ellipsoids are elongated along z-axis. Compared with
other algorithms, SOM gives a quite low contrast (as also noted in test example 1) and an
irregular shape in the xy-plane.We recall that we introduced a constraint that the contrast on the
boundary surfaces is zero so that SOM did not present high contrast artifacts on the boundary.
We noted in results not displayed here that if this constraint is removed, SOM reconstructs the
shape of this example much better than that seen in figure 7, however the boundary artifacts as
significantly so pronounced that the reconstructed sample is almost invisible. Quantitatively,
we see in table 3 that CIE and CIE(z) present the best similarity with the structure as well as
the lowest reconstruction error, performing marginally better than BA.
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Figure 6. Configuration (a) and camera images (c) of the second test example. (b) shows
the intensity maps obtained by combining all 8 camera images described in paragraph
initial guess. (a) Axis units: µm. (b), (c) Scale bar: 1µm.

A practical challenge—inaccurate knowledge about sample-substrate interface.
Experimentally, despite using the best optomechanical components and good calibration
protocols, a situation is often encountered where we cannot precisely estimate the relative
position of the substrate surface to the focal plane of the objective lens. In simple words, we
cannot ensure that zsub is known accurately. This affects the expression of the far-field Green’s

function G
s
, and therefore the entire reconstruction.

Using the test example 2, we test the performance of these inverse algorithms when wrong
estimate of the substrate surface location is used, and as a consequence the wrong far-field

Green’s functionG
s
is used. Apart from the correction location zsub = 0, another two hypothet-

ical incorrect estimates of locations are also tested, namely zsub = 0.5µm and zsub =−0.5µm.
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Figure 7. Reconstruction results of the test example 2 with correct estimation of the
substrate location. Three cross sections are shown from top to bottom: z= 195 nm,
y= 15 nm and x=−15 nm. Axis units: µm.

Figure 8. Illustration of DoIs and reconstruction results of example 2 using G
s
cal-

culated with (top panel) zsub = 0.5µm (0.5µm offset along positive z direction)
and (bottom panel) with zsub =−0.5µm (0.5µm offset along negative z direction).
Axis units: µm.

New far-field Green’s functions are calculated accordingly. Figure 8 shows the reconstructed
results by the algorithms with the same initial guess but using the two incorrect locations. The
defined errors are summarized in table 3.

When the location of the substrate is not correctly estimated with an error of 500 nm and
wrong far-field Green’s function is used for inversion, we can see that the object can be still
reconstructed in general with the main structure identified. However, deformation appears
especially significant for BA and CSI with case estimated zsub = 500 nm. CIE is the one that
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Table 3. Comparison of errors between inverse algorithms for example 2. Here, zsub = 0
corresponds to the correct location.

Methods

SSIM/MS-SSIM with estimated zsub e(χ) with estimated zsub

0 (true) 0.5µm −0.5µm 0 0.5µm −0.5µm

BA 0.3659/0.8519 0.3241/0.7289 0.3250/0.7337 0.4486 0.5897 0.6655
CSI 0.3917/0.8427 0.3100/0.6968 0.3756/0.6056 0.4642 0.8935 0.9793
CIE(z) 0.4023/0.8670 0.3804/0.8381 0.2701/0.7235 0.4232 0.4412 0.5382
CIE 0.4006/0.8649 0.3770/0.8186 0.4089/0.8587 0.4244 0.4584 0.4450
SOM 0.3811/0.3205 0.2977/0.2419 0.3268/0.3292 0.9638 0.9745 0.9632

has the least change when the far-field Green’s function changes and the reconstruction results
look similar.

We also plot the reconstruction error e(χ) and the cost F′ as a function of iterations in
figure 9 to study convergence of the different methods for the challenge scenarios. We see that

the error decreases smoothly for BA, CSI and CIE with correct G
s
, however, when incorrect

G
s
is used, the monotonic decrease may be interrupted and the error may start to rise even

though the total cost is decreasing. We conjecture that this is because the data equation has

low fidelity in the case of incorrect G
s
and so minimizing the data equation error may lead

to a wrong solution. CIE performs well perhaps due to our choice of the cost function where
the state equation error is amplified by 100 times. Consequently, the optimization is mainly
guided by the state error equation instead of the data equation.

From this example, we can see that the inverse algorithms are robust to the chosen substrate
location to some extent. With an error of about 0.8λ, there is a degradation in the performance
but the main structures of the object are reconstructed.

An investigation into the consequence of polarization unavailability. Compared with phase-
less inverse scattering problems that have been widely investigated, the present problem is
more complicated due to the absence of the polarization information in the measurement
data. Here we use test example 2 to check the consequence of the polarization unavailabil-
ity. When the polarization information is available, the data equation error can be rewritten

as FS =
∑Ninc

p=1 η
S
p (∥Ip,x− |Esca

p,x|2∥2 + ∥Ip,y− |Esca
p,y|2∥2). Here, z component is ignored (as also

elsewhere) and the state equation remains unchanged. Figure 10 shows the reconstruction res-
ult with and without polarization sensitive measurements while using the same initial contrast.
The reconstruction error and data equation error are summarized in table 4.

For the ease of comparison, the results reconstructed from data with no polarization
(figure 7) are reshown here in figure 10(b). There is no obvious qualitative difference between
the results when considering whether the intensity data contains polarization information,
except for SOM where the shape of the reconstructed object is evidently improved. Most
algorithms show a smaller reconstruction error if the provided data contains polarization
information, except CIE. We also noted that the convergence rate is not obviously improved,
except for SOM where the number of iterations is decreased from 576 to 109 when polarized
data is employed for reconstruction.

20



Inverse Problems 40 (2024) 015003 Y Qin et al

Figure 9. Reconstruction error e(χ) and cost function F′ versus iterations for test
example 2, where the position of the interface may not be known correctly. Maximum
700 iterations shown.

For the cases where the scatterer is isotropic and not strong scattering, the relation between
the polarization components of the contrast source almost follows the one between the com-
ponents of the incident field which is already known. Therefore, in this case, the lack of polar-
ization information will not affect the inversion results much.

4.3. Test example 3

Here we show an example where all the inverse algorithms fail. This example contains two
spheres with radius a= 0.1µm, located on y-axis with a center-to-center distance of 0.3µm, as
shown in figure 11, also with the RI n= 1.05. The size of the object is smaller than diffraction
spot of the imaging system (spot size of a dipole source). Frommost camera images, we cannot
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Figure 10. Reconstruction results of example 2 with polarized measurements (a) and
without polarized measurements (b). Three cross sections are shown from top to bottom:
z= 255 nm, y= 15 nm and x= 15 nm. Axis units: µm.

Table 4. Comparison of errors between cases with andwithout polarization (abbreviated
polar. in the columns) sensitive measurement system.

Methods

e(χ) FS

With polar. Without polar. With polar. Without polar.

BA 0.4373 0.4486 0.0179 0.0174
CSI 0.4316 0.4642 0.0001 0.0001
CIE(z) 0.4256 0.4232 0.1309 0.1119
CIE 0.4363 0.4244 0.1328 0.1144
SOM 0.9523 0.9638 0.1321 0.1306
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Figure 11. Configuration (a) and camera images (c) of the test example 3. The final
intensity image is obtained by combining all 8 images and is used to get the initial guess
of the contrast. (a) Axis units: µm. (b), (c) Scale bar: 1µm.

identify that there are two objects except the ones obtained with k3 and k7 where destructive
interference occurs.

The maximum initial contrast is set 0.05 and the reconstruction results are shown in
figure 12. We see that all the inverse algorithms fail to identify these two beads and under-
estimate the contrast a lot. Almost all the algorithms show that the objects are on the bottom
of the DoI, except CIE where object with a large height is reconstructed. The performance of
CIE relies on choice of proper regularization parameters and there may exist a better set of
parameters that can give satisfactory result.
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Figure 12. Reconstruction results of two beads with a center-to-center distance of
0.3µm. Three cross sections are shown from top to bottom: z= 105 nm, y= 15 nm
and x= 15 nm. Axis units: µm.

Figure 13. Reconstruction results of plane z= 105 nm by various algorithms with the
center-to-center distance between the two beads equal to 300 nm (top), 350 nm (middle)
and 400 nm (bottom). When the distance is 300 nm, no approach can resolve the two
beads. When the distance increases to 350 nm, all the algorithms can resolve them but
some only barely resolve. In contrast, all the algorithms are able to clearly identify the
two beads when the distance is 400 nm.

We see that the inverse algorithms are not able to identify closely-located small objects,
which may be a problem if we want to investigate small subcellular structures.

An investigation into resolution. In the example 3, we have shown that all the algorithms
are unable to resolve two small beads with a center-to-center distance of 300 nm. Here,
based on this example, we made a further investigation into the resolution performance of
the algorithms. Figure 13 gives the reconstruction results of the two beads placed on y-axis
with an increasing distance from 300 nm to 400 nm with an increment of 50 nm. All the
algorithms are unable to resolve the two beads when the distance is 350 nm, while with more
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50 nm, the two beads are resolvable with all the algorithms, however, CSI and CIE can only
barely resolve the objects. When the center-to-center distance becomes 400 nm, the two beads
are identified by all the algorithms clearly. In all, with the given example, BA and SOM show
superior resolution to CSI and CIE, although the estimated contrast is smaller.

5. Summary and discussion of results

The good performance of BA and the questions it opens. BA gives comparable results with
other solvers which take multiple scattering effect into consideration. It shows best computa-
tional efficiency and convergence rate due to the reduced nonlinearity and the least number of
unknowns to reconstruct. The reconstruction results are not sensitive to the maximum initial
contrast value with the given initial contrast distribution. Due to the fact that the reconstruc-
tion result of BA totally relies on the data equation, a degradation in performance is observed
when the location of the substrate is wrongly estimated, which introduces error into far-field

Green’s function G
s
and further results in additional error in the data equation. Therefore, it

is sensitive to the estimated location of the substrate, as can be seen from the case where the
immersion-substrate interface is estimated 0.5µm above the real location.

For the situations where the Green’s function is not erroneous, the fact that BA competes
well with the other solvers is quite interesting and begs more investigation. One may argue that
the contrast considered in these test examples is quite small, indicating weak scattering case.
However, even though locally the contrast is small at any location, the fact that the sample
objects are comparable to the wavelength implies that the net multiple scattering effect is not
negligible. In this event, BA provides competitive performance. It essentially indicates that
for such a microscopy setup, the reconstruction is largely governed by the far-field measure-
ments, and it is difficult to use the near-field multiple scattering phenomenon for improving
the reconstruction. This is validated further by the fact that CIE is the only solver that outper-
forms BA, but only after we amplified the state equation error by a multiple of 100. While this
may suggest that we could blindly endorse using an amplified contribution of the state error
equation in the cost function, this is a risky endeavor. In SOM, for example, we compared the
result with three different cost functions, i.e. (FS + 0.01FD) (reported here), (FS + 1FD) and
(FS + 100FD), and we found that the latter two cost functions did not perform as well as the
first one. In fact, even with the first cost function, the value of 0.01FD always exceeded FS,
indicating a severe mismatch in the near-field despite a good match in the far-field. This also
indicates that the blind amplification of the state error equation is not necessarily useful.

Based on these observations, it is worthwhile to consider then the following questions in the

future investigations: (a) does the nature of G
s
somehow restrict the reconstruction quality by

limiting the induced current profile that can satisfy the data equation error? (b) can we modify

the measurement system to better endow G
s
with qualities that support better reconstruction?

(c) could we design either the solvers or the relative contribution of the state error equation
to be adaptable in a manner such that state equation error can play a powerful role in the
reconstruction process without introducing instability or misconvergence?

CSI—qualitatively best results and other potential representations. CSI gives a good shape
reconstruction qualitatively in our numerical tests. It is not affected by the initial contrast much
in the qualitative sense, however quantitatively, we see improved performance when lower ini-
tial contrast value is used. Further, the reconstruction performance of CSI is influenced by the
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estimated location of the substrate. With wrong far-field Green’s functions arising from incor-
rect estimate of the location of the substrate, we observed an increase in the reconstruction error
as the optimization proceeds even while the total cost decreases continuously. In general, CSI
seems to provide a result that has overfitted the problem, potentially due to many unknowns

present in the cost function. And this effect is further more severe if the G
s
is incorrect.

In this sense, it is quite motivating to use other representations of the contrast source, such

as Fourier representation in CIE and orthonormal basis set such as right singular vectors of G
s

in SOM. It may be interesting to consider other representations which may in some sense be
better. Potentially considering separate basis sets for the contrast sources along the different
axes may be a good solution to explore in the future. Or perhaps, instead of looking for rep-
resentations of the contrast source, we may consider alternative representations of the shapes,
differing from the cubic sampling of the DOI in such a manner that the number of unknowns
is smaller and the physical coordinates of these unknowns are quite informative. To this end,
it may be interesting to consider differential topology for this problem.

CIEs—the most robust—physically grounded for the application domain. CIE shows the best
potential among the multiple-scattering based inverse solvers which we tested. It is the only
solver that surpassed BA. However, this is possible only when we use a cost function with
amplified contribution of the state equation error.

CIE shows the most robust performance to the various location estimation of the substrate for
the test result, but this may also be due to that the state equation error has been magnified.
When a wrong substrate location is used, additional error is introduced into data equation but
the state equation is still correct.

We also observed that when z-components of scattered field and contrast source are con-
sidered, there is no obvious advantage over the one where the z-components are ignored in the
test examples, which means the balance between the accuracy of the model and computational
complexity needs to be considered. In our test, the hyperparameters in CIE are same for all
the examples. Properly chosen parameters may give a better result but such work is out of the
scope of this paper.

One of the most exciting features of CIE is that it is more intuitive and physically grounded
for the microscopy community. This is because of two reasons. The first reason is the use of
Fourier representation of the contrast source, since Fourier domain analysis is quite conven-
tional and popular in this community. The second reason is that the value of β in the modified
contrast indicates the local region of influence of multiple scattering, which is more intuitive
to understand and incorporate.

Subspace based optimization—our ineffective adaptation—failure analysis and future consid-
erations. We noted in section 3 that our adaptation of SOM is the most drastic divergence
from the original version. Our results indicate that our adaptation has been quite ineffective,
and here we present a breakdown of our investigation into the reasons for this.

We highlighted in section 3 that as opposed to the conventional practice in SOM of using
the entire ambiguous current for reconstruction, we only use a subset of ambiguous current for
reconstruction. We were driven by the fact that singular values corresponding to the singular
vectors indicate the strength of contribution of the associated features in the measurements.
However, our results inspired us to look more closely into this hypothesis. Here we take test 2
as an example.
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Figure 14. Energy in the portion of contrast source considering up to Lδ coefficients
relative to the actual energy in the contrast source, Γ, plotted as a function of Lδ .

We operate full SVD on matrix G
s
and compute the analytical values of the coefficients αp

using αp = V
†
J
gt
p with J

gt
p = [J

gt
p,x;J

gt
p,y] being the ground truth of the contrast source. Then, we

compute J
δ
= V

δ
αδ for different values of Lδ with these analytical coefficients. A parameter Γ

is further calculated asΓ = 1
Ninc

∑Ninc

p=1
∥Jδp∥2

∥Jgtp ∥2 , which is themean energy in the part of the contrast

source used for reconstruction relative to the energy in the ground truth contrast source. If the
value of Γ is close to 1, the chosen part of the contrast source is sufficient to represent the
contrast source. The plot of Γ as a function of Lδ is given in figure 14. It is seen that even when
up to 2000 coefficients are used to represent the contrast source, it represents only ∼33% of
the energy of the actual contrast source. It is also seen that we need to use almost the full basis
set for representing the contrast source.

Despite the unsatisfactory performance of our adaptation of SOM, we still see a potential in
SOM itself. For instance, with α+ obtained from the first step, the first update of contrast actu-
ally gives good structural estimate of the object in spite of low contrast, as shown in figure 15.
Interestingly, we note that the initial guess of the contrast was set to be invariant along the
z-axis. SOM gets rid of this invariance along the axial direction in the first step itself, and
retains the lateral structure with good structural details. On the other hand, the optimization
of the contrast along that direction is very slow in all the other solvers. We have tested hyper-
parameter L in the range (12,60) and the results are similar, but in some cases the results are
blurred laterally if L> 60 is used. Yet we did not investigate further but such result can be at
least used as initial guess for other inverse algorithms.

These factors indicate that a suitable adaptation of SOM in the future can deliver the per-
formance of SOM for microscopy as well. In this regard, we would like to investigate if retain-
ing the concept of deterministic and ambiguous contrast sources, but using another suitable
basis set can be useful. This suggestion is based on the fact that using the entire basis set
is computationally expensive and that Γ does have flat zones where the relative increase in
the energy is small. This indicates that there is a possibility to represent the contrast source
sparsely, however not so in the current basis set. We also think that potentially separating the
basis set for contrast source components along the different directions may be a useful step
since inherently the basis set for each of these components will be smaller than the basis set
for all of them put together.
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Figure 15. Contrast reconstruction after the first step of SOM (using only the determ-
inistic part of contrast source) for the test examples 1, 2 and 3 (from left to right). Axis
units: µm.

6. Conclusion

To solve the problem of 3D RI reconstruction with label-free microscopy by inverse scattering
theory, we have adapted several inverse algorithms that incorporate multiple scattering to work
with measured data without phase and polarization information for the configuration of a dark-
field microscope.

From the numerical tests, we see that it is possible to utilize the inverse algorithms for 3D
sample reconstruction with only a few measurements. The algorithms show promising recon-
struction results for extended objects, however, yet the performance is not good for objects
smaller than the diffraction limit. Our results also show that the inverse algorithms are kind of
robust to the choice of maximum initial guess and far-field Green’s function of the microscope
to some extent, in view that the prior knowledge of the sample and the substrate location may

be not accurate. Still, degradation in the reconstruction performance exists when wrong G
s
is

used.
From the numerical results, we see that BA usually gives a good reconstruction result for

the test samples despite their sizes being comparable to the wavelength. It is seen that the
results of BA are often comparable or better than the inverse scattering solvers that incorporate
multiple scattering. So far the numerical examples under investigation here have a low contrast
and a comparable size with the wavelength (the largest object has a dimension of ∼ 2λ×
2λ× 0.6λ). In real application, biological samples are usually low-contrast but may have a
larger size. In this case, multiple-scattering effect may be further stronger, thus increases the
nonlinearity of the problem. Also the increased dimension will lead to more unknowns and
pose challenge to the computation process. Thus, more investigation is needed for problem
formulation which can decrease the nonlinearity and the improvement of optimization process.
We consider this as an open challenge for the inverse problems community to propose better
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practical microscope designs and/or inverse solvers that can facilitate decoding of the multiple
scattering effect for better quantitative accuracy and qualitative reliability of 3D reconstruction
of RI profiles of samples. Apart from the investigation in the algorithms, we are also in the
process of developing an experimental system such that the algorithms can be validated with
experimental data in the future.
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