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ABSTRACT

Multifrequency atomic force microscopy (AFM) enhances resolving power, provides extra contrast channels, and is equipped with a
formalism to quantify material properties pixel by pixel. On the other hand, multifrequency AFM lacks the ability to extract and examine the
profile to validate a given force model while scanning. We propose exploiting data-driven algorithms, i.e., machine learning packages, to pre-
dict the optimum force model from the observables of multifrequency AFM pixel by pixel. This approach allows distinguishing between dif-
ferent phenomena and selecting a suitable force model directly from observables. We generate predictive models using simulation data.
Finally, the formalism of multifrequency AFM can be employed to analytically recover material properties by inputting the right force model.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0176688

A large body of physics is dedicated to understanding the behav-
ior of forces.1–3 The atomic force microscope (AFM) is employed to
understand and quantify force in the nanoscale4,5 with nanometric,6

atomic,7–9 and sub-atomic10 resolution. Forces provide information
about samples and are employed to quantify and characterize proper-
ties, structure and functions of cells,5,11–13 biomolecular processes,14

thin and ultrathin films,15 and a range of other interesting phenom-
ena16 including magnetic17 and hydration forces.18 Nanoscale forces
might vary in terms of the shape of their profile and/or their magni-
tude or strength.2 The particular phenomena involved in the interac-
tion is responsible for the specific shape of the force profile, whereas
the magnitude is a characteristic of the strength of the interaction.2 In
dynamic AFM, the force profile can be reconstructed by acquiring
curves where observable parameters, such as phase, amplitude,19,20 or
frequency shift,21,22 are obtained in terms of cantilever–sample dis-
tance. Experimentally monitored data are then transformed into force
distance curves.19,21,23 In order to quantify material properties, a sec-
ond step is required. This involves considering a force model that rea-
sonably fits the experimental force profile and simultaneously
expresses the phenomena in terms of physically meaningful

parameters or properties.24–26 Conversely, force models are also
exploited to understand the dynamics of the cantilever.2,24,27 A method
consists of numerically integrating the equation of motion so the
dynamics of the system can be interpreted in terms of the sample’s
properties, i.e., the Young’s modulus or the coefficient of viscosity,28–30

rather than the observables of the microscope, i.e., amplitude, fre-
quency, or phase, that are relatively meaningless or complex to inter-
pret for the broader community. Different levels of complexity for the
models might be assumed,12,31 and experimentally, errors might follow
where a priori assumptions do not meet the requirements to fit the
experimental data.32

Here, we focus on the extraction of material properties in multi-
frequency AFM,9,33,34 an advanced method that allows simultaneously
scanning surfaces and quantifying material properties.9,22,25,26,35 With
this method, the full force profile is not directly recoverable, rather a
force model must be first inputted into the formalism.25,36 The current
upgrade37 to 26 force models of a simulator aiming to assist data inter-
pretation in monomodal and bimodal AFM illustrates the complexity
and diversity of forces that might be encountered while scanning. We
propose to employ machine learning methods to first predict a suitable
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force profile for each pixel and then exploit the analytic expressions
from the multifrequency formalism to extract material properties. This
approach effectively combines a data-driven machine learning
approach38 with the physical modeling developed over the past deca-
des in AFM.9,26,28,39 For simplicity and to showcase the method, we
focus on amplitude modulation (AM) multifrequency only and pro-
vide simulation data only. We illustrate the problem theoretically by
focusing on inverse power laws in the long range of interaction where
there is no mechanical contact between the tip and the sample.

The standard multifrequency formalism is equipped with two
independent expressions, one for the fundamental mode, i.e., lower
frequencies, and other one for the higher modes, i.e., higher frequen-
cies.39,40 Material properties can be quantified by exploiting these two
expressions.25,36 Material properties can be recovered with the multi-
frequency formalism from conservative force models.39–41 In short,
once a force model is selected, it is possible to recover material proper-
ties by exploiting the spectroscopy formalism that multifrequency is
equipped with.9,25,36 Figure 1 schematically illustrates the process. We
first discuss the suitability of machine learning to predict a suitable
force model and then illustrate the process with an example based on
inverse power laws. Machine learning approaches are suited to extract
patterns from observable data and are increasingly being exploited in
this direction.42 The shape of the force profile is a suitable candidate
for such classification problem43 in multifrequency AFM since a dis-
crete number of force models can be taken as the “labels.” For every
pixel, the observable data consist of the full set of observables. In prin-
ciple, it would be possible to employ experimental data44 to generate a
suitably labeled dataset (see Fig. 1). On the other hand, some42 have
recently recommended testing the performance of machine learning
algorithms by exploiting simulations and physical models when deal-
ing with complex systems. In our case, the physical model is well
known in the AFM community,8,26,45,46 i.e., a set of differential equa-
tions that are standard in multifrequency AFM. We present results
employing this second approach. Some have further emphasized42 that
data-driven machine learning will not replace physical modeling but
strongly complement and enrich it. In our approach, the machine
learning results are the first step toward material properties quantifica-
tion since they are employed to predict the force model or shape of the
force profile. Once the force profile is known, the standard analytical
spectroscopy formalism in multifrequency AFM can be exploited to
recover material properties (see schematic in Fig. 1).

The problem to be solved via machine learning can be stated as
follows. Since a set of observables are obtained at every pixel in multi-
frequency AFM while scanning, i.e., amplitudes and phases, and sev-
eral other parameters can be arbitrary set in the experiment, i.e., drive
amplitudes and drive frequencies, the objective is to use these “known”
parameters as input features in a machine learning algorithm to pre-
dict the shape of the force profile. The force profiles are the outputs or
labels and form a discrete set. Finally, since cantilever parameters, i.e.,
the spring constants ki, quality factors Qi, and natural angular frequen-
cies x0i of each mode i, can also vary from experiment to experiment,
these parameters could be added to the set, i.e., these are potential
input features. Nevertheless, we simplify the problem here by selecting
relatively standard cantilever values in multifrequency AFM as dis-
cussed in the example below.

First, a set of possible force models must be considered. In order
to illustrate the problem with an example, we focus on a general
expression for inverse power laws, where the force Fts can be written as
follows:

Fts ¼ � a
dn

; where d > a0; (1)

where d is the tip–sample distance,47 a dictates the magnitude, or the
strength, of the force,29,40 and a0 is an intermolecular distance intro-
duced to avoid the divergence and indicates that matter interpretability
is forbiden.47 The power n controls the shape or “profile” of the force
and therefore determines the behavior of the phenomena being
probed. For this reason, n is the parameter to be predicted, where
n¼ 2 the force can be identified with the ubiquitous van der Waals
(vdW) force provided the tip can be assumed to be a sphere of radius
R and the surface can be assumed to be an infinite plane at a distance
d.48 The expression was first derived by Hamaker48 and assumes atoms
on the tip and sample interact via a pair potential inversely propor-
tional to the sixth power of the distance. It follows that the tip–sample
force can be written in terms of an inverse power law with power
n¼ 2,

Fts ¼ � a
d2

� RH
6d2

; vdW force for a sphere-plane interaction; (2)

where H is the so-called Hamaker constant. H provides chemical36

information about atoms and atomic packing on the sample’s sur-
face.2,40 The situation in (2) is compatible with experiments, where the

FIG. 1. Schematic of the full process that combines machine learning to predict the shape or profile of the force directly from observable data and physical modeling to extract
material properties analytically once the force profile is known and a force model selected.

Applied Physics Letters ARTICLE pubs.aip.org/aip/apl

Appl. Phys. Lett. 123, 231603 (2023); doi: 10.1063/5.0176688 123, 231603-2

VC Author(s) 2023

 04 January 2024 09:07:54

pubs.aip.org/aip/apl


tip is sufficiently sharp that the tip interacts as if it were a sphere of
radius R and the surface were a plane. Here, the range in tip–sample
distance d lies in the order of �1–10nm, as in standard multifre-
quency AFM, a tip of radius R �1–10nm reasonably satisfies the con-
dition in (2). For larger tip radii, i.e., R� 1–10 nm, and similar
distances, i.e., d� 1–10nm, the geometry better approximates that of
two planes.2,48 Hamaker worked out that for these conditions, the
vdW force is inversely proportional to the third power of the distance,

Fts ¼ � a
d3

� H
6pd3

; vdW force for a plane-plane interaction: (3)

Equations (2) and (3) demonstrate the relevance of the geometry
in the interaction’s force profile and magnitude. Equations (2) and (3)
also demonstrate that while the tip’s radius R can be assumed to be
approximately constant when scanning, by varying R from experiment
to experiment, and for a given sample and force, the interaction can be
made to display different inverse power laws, i.e., n¼ 2 and n¼ 3 for
the above-mentioned cases. The interaction profile can also vary
because of the type of force emerging from a given phenomenon.2 For
example,41 where the surface of the sample has a zero net charge, but
where it can be assumed to be a matrix of polarizable electric dipoles,
every pixel can be assumed to be an effective polarizable dipole with
moment~p interacting with a polarized tip with effective moment~p0.
Standard silicon oxide tips meet this requirement since they are polar-
ized under the influence of an electric field. Then, the force can be
modeled as a power law inversely proportional to the fourth power,
i.e., n¼ 4, as follows:

Fts ¼ B
d4
~p~p0; dipolar electric interaction for

randomly oriented dipoles; (4)

where B is a coefficient. When the effective dipole on the tip and the
effective dipole of the pixel are oriented in the same direction, the mag-
nitude of the force in the vertical axis is

Fts ¼ 6
a
d4

� 6
3

2pe0d4
~p~p 0
�� ��;

dipolar electric interaction same orientationð Þ; (5)

where e0 is the permittivity, and the sign of the force depends on
the relative orientation of the dipoles. The magnetic interaction has
the same form as that in (5) when the tip sample distance d�R.
For completeness, we write the expression of the magnitude of the
magnetic force in the vertical axis for sufficiently large distances,
i.e., d� R, as

Fts ¼ a
d4

� 3l0
2pd4

~l~l0�� ��;
dipolar electric interaction dipoles in the same directionð Þ;

(6)

where ~l and ~l0 are the effective magnetic moments of the pixel
and tip, respectively, and l0 is the permeability in vacuum. While
not exhaustive, the above-mentioned discussion shows that models
for inverse power laws [Eq. (1)] are experimentally relevant. Next, we
discuss the problem of predicting the force model for inverse
power laws with powers n¼ 2 to 4 by exploiting machine learning
algorithms.

The input data, i.e., features, for training the machine learning
models have been produced by numerical integration of the equations
of motion. We reduce the dynamics of the cantilever–tip–sample sys-
tem to three modes, i.e., trimodal AFM,39,49 as follows:

m€zi ¼ �kizi �mx0i

Qi
_zi þ

Xi¼M

i¼1

F0icosxit þ Fts zð Þ; (7)

where m is the effective mass, z is the tip’s displacement from its rest
position, M is the number of modes employed to model the system, F0i
and xi are the driving force and the driving angular frequency at or
near the resonance of each mode, and Fts(z) is the tip–sample force act-
ing at z. The position z can be expressed in terms of the frequency
components coinciding with the drive frequenciesxi,

z tð Þ ¼
Xi¼M

i¼1

zi þ O eð Þ �
Xi¼M

i¼1

Aicos xit � /ið Þ: (8)

OðeÞ carries the contributions of higher harmonics and higher modes.
The driving forces F0i near resonance can be written in terms of the
experimental value of the free or unperturbed amplitude A0i. Then,

F0i � A0iki
Qi

: (9)

As input features, we employed the perturbed amplitudes Ai, phases
/i, free amplitudes A0i, and virials of interaction Vi (Fig. 2). We added
the terms Vi to the set of input features because these are known

22,45,50

to control conservative forces and therefore act as additional informa-
tion by enforcing the physical laws43 for training purposes. The virials
can be expressed in terms of known parameters as follows:

Vi ¼ hFtszii ¼ 1
T

ðT
0
Ftszidt � � 1

2
F0iAicos/i: (10)

We investigated the predictive power according to the setup in Fig. 2
in monomodal, bimodal, and trimodal AFM. Exploiting machine
learning to predict n from observables in monomodal, bimodal, and
trimodal AFM allowed us to understand the predictive power available
in each mode of operation. In monomodal, only the first mode is
excited. In bimodal, we excited either modes 1 and 2 or modes 1 and 3,
and in trimodal, we simultaneously excited modes 1, 2, and 3. For the
simulations, the constant parameters were k1¼ 2N/m, k2¼ 80N/m,
k3¼ 600N/m, Q1¼ 100, Q2¼ 600, Q3¼ 1800, f1¼ 70 kHz,
f2¼ 420 kHz, f3¼ 1190 kHz, R¼ 20nm, and a0¼ 0.165 nm. These are

FIG. 2. Schematic showing how the input features are fed into machine learning
algorithms to generate models to predict the power n. The full MATLAB toolbox was
employed to test the several machine learning models offered in the machine learn-
ing package. A schematic of the workings of support vector machine (SVM) algo-
rithms is shown in the figure.
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relatively standard cantilever parameters in multifrequency AM AFM.
The coefficient a in Eq. (1), together with its units, depends on the
power n. Nevertheless, it is possible2 to relate minima in force at d¼ a0
to the surface energy c by considering the force of adhesion FAD and
relating it to c,

FAD ¼ �4pRc � � a
an0

: (11)

Combining Eqs. (1) and (11),

a ¼ 4pRcan0 : (12)

Equation (12) allows writing a in terms of c for any power law n in Eq.
(1). This is useful because it allows establishing the magnitude of the
force in terms of the common parameter c for any power n. In the sim-
ulations, the magnitude of the force was varied by varying the values of
c and data were produced for power laws with n¼ 2, 3, and 4 accord-
ing to Eq. (1). The variations in c were discrete, and sets of data were
produced for c¼ 20, 40, 60, and 80 mJ. Note that since R and c are
inversely proportional [Eq. (12)], variations in R are equivalent to var-
iations in c so only one or the other has to be modified to account for
variations in a. The free amplitudes of the first mode A01 were 0.8, 1.8,
and 2.8 nm, and for A02 and A03, they were 80, 180, and 280pm. The
above are standard values in multifrequency AFM33 where higher
mode amplitudes are approximately 10% that of the fundamental.
This choice of free amplitudes limits the use of the ML models since
the ML models and our predictions will be valid provided users stay
within this range of values.

Approximately 650 points of simulation data were recorded in
monomodal, bimodal modes 1 and 2, bimodal modes 1 and 3, and tri-
modal with modes 1, 2, and 3. The data were fed into the MATLAB
Statistics and Machine Learning Toolbox51 (refer to the supplementary
material for raw data, codes, and video explanation on the use and
application of the MATLAB Classification Learner Toolbox). We
exploited the classification and regression learner apps to programmat-
ically build the set of predictive models available in the toolbox
(Classification Learner App52). This includes support vector machine
(SVM), deep neural network (DNN), and shallow neural network
(SNN) classifiers among other (see supplementary material Sec. 2.2.2).
The results of Table I were produced by employing the amplitudes Ai,
phases /i, and virials Vi as input features to predict the parameter n in
Eq. (1) (all the raw data are available as the supplementary material).
In Table I, we provide the best performing algorithm and the perfor-
mance of the algorithms, or classification errors, in terms of accuracy,
i.e., the number of positively identified examples divided by the total

number of examples. These results are those resulting after cross-
validating with training data to minimize overfitting and submitting
the models to a test (see supplementary material Sec. 2.2.4). The confu-
sion matrices for all results in the tables can be found in supplementary
material Sec. 2.2.5. The MATLAB toolbox is further equipped with fea-
ture selection methods to identify variables with the best predictive
power. These results are also presented in Table I. The higher the num-
ber, the better the predictive power. The results of Table I provide sev-
eral insights.

First, the two main observables in monomodal AFM, amplitude
A1, and phase /1, together with the virial of interaction V1 that
includes [Eqs. (8) and (9)] information about the spring constant k1,
the free amplitude A01, and the quality factor Q1, are sufficient to pre-
dict the power law n in Eq. (1) with an accuracy of �80% with this
setup, i.e., classifications for n¼ 2 to 4 with Ai, /i, and Vi as input fea-
tures. The predictive power is lowest for A1 and highest for /1, i.e.,
phase is the best predictor. This behavior is reproduced for the first
mode in bimodal and trimodal AFM throughout. In bimodal AFM,
both when driving with the first and second modes and with the first
and third modes, the accuracy increases to 98.4% and 98.5%, respec-
tively. The implication is that by driving with two modes, the system
already provides most of the information required to predict the force
profile, i.e., close to 100% with the input features of choice A1, V1, and
/1. With the higher modes, however, the predictive power of the fea-
tures changes. In bimodal AFM, the best predictor from the higher
modes is still the phase, but the worst predictor is the virial. In trimo-
dal AFM (m1, m2, and m3), the accuracy slightly increases in relation
to bimodal AFM� 99%. The predictive power of the features reverses
with A1 performing worst and /1 performing best as in monomodal.
The virial Vi is a parameter that includes information about the phase,
the amplitude, and the free amplitude [Eq. (10)]. The virial is, thus,
compounded, while the free amplitude is both arbitrary set by the user
and not compounded. In Table II, we present the results of including
the free amplitudes A0i as input features.

The results of Table II show the important result that, when also
employing the free amplitudes as input features, monomodal AFM is
sufficient to obtain accuracies>98%. Furthermore, the free amplitudes
provide the best predictive power for mode 1 in all cases. The virials Vi

become relatively irrelevant in comparison (see that their predictive
power is 0 or 1 throughout). The phases are no longer the best features
to predict n for the higher modes. Overall, these results show that the
performance of the algorithms is very sensitive to the choice of input
features, i.e., standard observables in multifrequency AFM like ampli-
tudes Ai, phase /i, or free amplitudes A0i. As a final step to extract
material properties, the algorithms generated and employed to

TABLE I. Prediction of n (n¼ 2 to 4) in monomodal, bimodal, and trimodal AFM in terms of accuracy and best performing algorithm in each case. The predictive power of fea-
tures in each case is also presented, where amplitudes Ai, phases /i, and virials Vi are employed as input features.

Accuracy (%) Best algorithm

Feature predictive power

A1 /1 V1 A2 /2 V2 A3 /3 V3

Monomodal m1 79 Trilayered neural network 70 80 76 x x x x x x
Bimodal, m1, m2 98.4 Narrow neural network 24 57 42 32 52 30 x x x
Bimodal, m1, m3 98.5 Medium neural network 30 69 47 x x x 46 62 29
Trimodal, m1, m2, m3 99.2 Narrow neural network 46 93 70 34 77 47 25 83 50
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produce the data in Tables I and II should be used while scanning to
predict the force profile for every pixel. This is relatively straightfor-
ward since the generated model takes an input vector, i.e., amplitudes,
phases, and free amplitudes, for each pixel and directly predicts the
output as a standard function (see supplementary material Sec. 3.2 for
an example on using our models experimentally). From here, material
properties can be recovered while scanning by exploiting the analytic
formalism in multifrequency AFM. This second step (see schematic in
Fig. 1) has been developed during the last decade, as reported else-
where,4,25,26,33,49,53 and requires solving a set of integrals and driving
with at least two modes.25,36,39,54

In summary, we have shown that the spectroscopy formalism of
multifrequency AFM can benefit from data-driven predictions obtained
by exploiting machine learning algorithms. While one dimensional force
curves provide the full force profile and allow inspecting the full curve to
assess the validity of a given force mode, multifrequency AFM requires
assuming a force model without accessing the full force profile.
Exploiting machine learning and the set of available observables in mul-
tifrequency AFM allows distinguishing between different phenomena
for each pixel and selecting a suitable force model. We have illustrated
this method theoretically by employing simulation data to generate the
models and restricted the data to a set of cantilever parameters, i.e., k,
x0, and Q, a set of drive amplitudes, i.e., A01 � 1–3nm, and a set of
models involving inverse power laws in the long range with powers
n¼ 2, 3, and 4. Clearly, this presentation is limited to the choice of mod-
els in Eq. (1) with n¼ 2, 3, and 4 and cantilever/user parameters. The
approach, however, can be easily expanded to account for other force
models and cantilever parameters in the future if required.

See the supplementary material for the following: MATLAB
codes, raw data from simulations (training/testing datasets), models
imported fromMATLAB, and video explaining the use of the raw data
to produce the models and Tables I and II with the MATLAB
Classification Learner App.
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