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A B S T R A C T

A major barrier to applying deep segmentation models in the medical domain is their typical data-hungry
nature, requiring experts to collect and label large amounts of data for training. As a reaction, prototypical
few-shot segmentation (FSS) models have recently gained traction as data-efficient alternatives. Nevertheless,
despite the recent progress of these models, they still have some essential shortcomings that must be addressed.
In this work, we focus on three of these shortcomings: (i) the lack of uncertainty estimation, (ii) the lack of
a guiding mechanism to help locate edges and encourage spatial consistency in the segmentation maps, and
(iii) the models’ inability to do one-step multi-class segmentation. Without modifying or requiring a specific
backbone architecture, we propose a modified prototype extraction module that facilitates the computation of
uncertainty maps in prototypical FSS models, and show that the resulting maps are useful indicators of the
model uncertainty. To improve the segmentation around boundaries and to encourage spatial consistency, we
propose a novel feature refinement module that leverages structural information in the input space to help
guide the segmentation in the feature space. Furthermore, we demonstrate how uncertainty maps can be used
to automatically guide this feature refinement. Finally, to avoid ambiguous voxel predictions that occur when
images are segmented class-by-class, we propose a procedure to perform one-step multi-class FSS. The efficiency
of our proposed methodology is evaluated on two representative datasets for abdominal organ segmentation
(CHAOS dataset and BTCV dataset) and one dataset for cardiac segmentation (MS-CMRSeg dataset). The results
show that our proposed methodology significantly (one-sided Wilcoxon signed rank test, 𝑝 < 0.05) improves
the baseline, increasing the overall dice score with +5.2, +5.1, and +2.8 percentage points for the CHAOS
dataset, the BTCV dataset, and the MS-CMRSeg dataset, respectively.
1. Introduction

Accurate image segmentation is an essential prerequisite for various
clinical applications, such as radiotherapy treatment planning (Gon-
zalez et al., 2021), tissue quantification (Militello et al., 2019), and
diagnostics (Tsochatzidis et al., 2021). Prototypical few-shot segmen-
tation (FSS) models have recently shown promise as data efficient
alternatives to solving this task by using a small set of labeled examples
to extract class-wise prototypes that can be leveraged to segment
objects in new images (Tang et al., 2021; Yu et al., 2021; Ouyang et al.,
2022; Hansen et al., 2022). These models thus eliminate the need to col-
lect and annotate large amounts of images, which is a key challenge for
the application of deep learning models in the medical domain (Shen
et al., 2020). In particular, Hansen et al. (2022) propose ADNet, an
anomaly detection-inspired approach to FSS that simplifies the problem
by refraining from explicitly modeling the difficult background class.
This results in a model that is robust to the large and inhomogeneous
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background class, thus for the first time enabling one-step volume-wise
prototypical FSS, yielding state-of-the-art performance.

When trained, the FSS models mentioned above can generalize from
a few labeled samples to solve new segmentation tasks during inference.
Specifically, a few labeled examples are exploited to extract class-wise
prototypes that are used to make predictions on the unlabeled test
data. However, despite their recent advances, current FSS models have
some fundamental shortcomings that need to be addressed to approach
clinical application.

Firstly, existing medical FSS models do not provide any measure
of uncertainty for their predictions, which limits their trustworthi-
ness. Knowing when the model is uncertain and therefore more likely
to make mistakes is important information that should accompany
the prediction in a safety-critical application such as medical image
segmentation (Kompa et al., 2021).

Secondly, in current methods, the segmentation is performed di-
rectly on the spatially compressed feature representation, without any
vailable online 26 June 2023
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mechanism to guide the precise location of edges and structures in the
image. The final segmentation map is simply obtained by re-sampling
the output via bi-/tri-linear up-sampling, resulting in segmentation
masks that typically struggle to accurately locate edges.

Finally, in medical image segmentation, there are often multiple
oreground classes of relevance, e.g. a number of different organs.
owever, current medical FSS methods only focus on binary fore-
round/background segmentation and are forced to segment the images
lass-by-class. In addition to unnecessary forward passes, this can lead
o regions with ambiguous predictions as voxels might get classified as
‘foreground’’ for multiple classes.

In this work, we focus on the inference phase to address the above-
entioned shortcomings. Without requiring modification or re-training

f the network parameters, we develop methods to better exploit
he available information in order to provide more trustworthy and
ore accurate predictions. Specifically, to facilitate the computation of
ncertainty maps in prototypical FSS models we propose a modified
rototype extraction module that introduces a Bernoulli distributed
ariable for each voxel location in the feature representation. Uncer-
ainty maps are then based on the predictive distribution estimated
rom a set of prototypes extracted by this proposed module. Further,
o alleviate the loss of spatial details and encourage spatial consistency
n the predictions, we propose a novel feature refinement module
hat leverages supervoxels in the inference phase. Supervoxels are
ollections of voxels that represent compact regions of coherent voxel
ntensities and/or textures in the image volume. By utilizing supervox-
ls, we are able to encourage spatial consistency in the prediction, and
elp locate edges accurately in the segmentation map. Additionally, we
how how uncertainty maps can be used to automatically guide this
eature refinement. Finally, to avoid the problem of ambiguous voxel
redictions, we propose a procedure to perform one-step multi-class
SS.

Exploiting its ability to perform volume-wise one-step FSS, we
llustrate the benefit of the proposed methodology in the context of the
urrent state-of-the-art 3D medical FSS model, ADNet (Hansen et al.,
022), and refer to the modified model as ADNet++.

To summarize, our contributions are as follows:

1. We propose a novel prototype extraction module that, with neg-
ligible computational overhead, can produce uncertainty maps
for prototypical FSS models.

2. We propose a novel feature refinement module that leverages
supervoxels to encourage spatial consistency and to locate edges
in the segmentation masks. We also show how uncertainty maps
can be used to guide the feature refinement.

3. We propose a one-step multi-class segmentation procedure to
avoid ambiguous voxel predictions.

. Related work

.1. Medical few-shot segmentation

Lately, few-shot learning models have demonstrated promising seg-
entation performance on medical images (Roy et al., 2020; Tang

t al., 2021; Yu et al., 2021; Ouyang et al., 2022; Hansen et al., 2022).
revious works can be categorized into methods that require labeled
ata during the training phase (Roy et al., 2020; Tang et al., 2021; Yu
t al., 2021) and methods that are trained in a self-supervised fashion
n unlabeled data (Ouyang et al., 2022; Hansen et al., 2022). In the
ormer category, as the first medical FSS model, Roy et al. (2020)
roposed a two-branched architecture, where the support features are
sed to implicitly guide the query segmentation through multiple inter-
ction blocks. The succeeding works build on prototypical ideas (Snell
t al., 2017), with a direct comparison between the query features and
omputed support prototypes. In Yu et al. (2021), the authors proposed
2

prototype network that leverages strong spatial priors by dividing the b
nput images into grids and solving the segmentation problem for each
rid-element separately via multiple local prototypes. Tang et al. (2021)
roposed a prototype network with a recurrent mask refinement, where
he previous query prediction is used to refine the query features in an
terative manner.

The few-shot learning models discussed above are only few-shot
n the sense that a trained few-shot model only needs a few labeled
nstances to segment a new class. During the training phase, the mod-
ls still require abundant labeled data in order to avoid over-fitting.
owever, the availability of labeled data is often limited in the med-

cal setting, and to overcome this challenge, Ouyang et al. (2022)
roposed a self-supervised few-shot segmentation model. The network
tself, ALPNet, is a prototype based network that introduce adaptive
ocal prototype pooling where local prototypes are computed on a
egular grid to preserve local information. As opposed to Yu et al.
2021), Ouyang et al. (2022) do not divide the input images into
rids, but segment the images as one segmentation problem. To train
he network, Ouyang et al. (2022) proposed a new self-supervision
ask for segmentation by utilizing superpixels. The authors construct

pseudo-labeled support/query pair based on one unlabeled image
lice and its unsupervised superpixel segmentation. The support label
s then generated by randomly selecting a superpixel from the support
mage’s superpixel segmentation and binarizing it to obtain a binary
ask. Then the query image and label are created by applying ran-
om spatial and intensity transformations to the support image-label
air. Hansen et al. (2022) built further on this work and extend the
elf-supervision task to supervoxels, utilizing the 3D information in the
mage volumes. Further, they proposed an anomaly detection-inspired
rototypical segmentation network, ADNet, where they avoid modeling
he large and inhomogeneous background class with prototypes. While
revious methods are limited to slice-by-slice segmentation of the im-
ge volumes, Hansen et al. (2022) were the first to extend prototypical
SS to one-step volume-wise 3D segmentation.

A drawback of all the methods discussed above is that they only
erform binary image segmentation and are forced to segment multi-
lass segmentation problems in a class-by-class manner. Further, due
o the loss of spatial detail during the encoding of the images, the
odels have difficulty with accurately locating edges. Finally, these
odels do not provide any measure of uncertainty of their predictions,
hich is important to build trustworthy models. In this work, we
uild further on the branch of self-supervised models and propose a
ramework for one-step multi-class medical image segmentation that
rovides uncertainty maps to accompany the model predictions and
hat involves a feature refinement that addresses the loss of spatial
etail during encoding.

.2. Uncertainty estimation

In critical decision-making processes, such as medical image seg-
entation, there is a need to quantify model uncertainty. That is, in ad-
ition to the model prediction, a measure of model uncertainty should
e conveyed to the user to improve both safety and the reliability of
he model (Kompa et al., 2021).

In medical image segmentation, Bayesian approximation (Gal and
hahramani, 2016) and ensemble learning techniques

Lakshminarayanan et al., 2017) are often used for uncertainty quan-
ification. While ensemble approaches (Karimi et al., 2019; Mehrtash
t al., 2020) are conceptually simpler than Bayesian methods (Wick-
trøm et al., 2020; Harper and Southern, 2020; van Hespen et al.,
021), they typically require training of multiple models, making them
omputationally expensive.

In few-shot segmentation outside the medical domain, Johnander
t al. (2021) proposed a few-shot learner formulated as a deep Gaussian
rocess. The Gaussian process works as a layer in the network that
redicts the mean and covariance of the conditional probability distri-

ution of the query mask given the query image and support set. This
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information is then fed to a decoder that produces the final output. The
model is thus able to model the uncertainty and uses the information
to improve the segmentation performance. Concurrently, Kim et al.
(2021) proposed another Gaussian process inspired technique to few-
shot segmentation by using a network to estimate the uncertainty. They
then use the uncertainty maps to exclude samples with high predic-
tion uncertainty for pseudo label construction in a semi-supervised
setting. While these approaches provide uncertainty maps in the FSS
setting, they are model-specific and thus not directly applicable to
the current state-of-the-art medical FSS models, raising the need for
architecture-agnostic approaches.

3. Methods

We start by briefly describing the FSS problem setting in Section 3.1
before introducing the details of the proposed ADNet++ in Section 3.2.
Specifically, we present the multi-class extension in Section 3.2.1,
the proposed uncertainty estimation in Section 3.2.2, and the feature
refinement in Section 3.2.3. Finally, in Section 3.3 we describe the
supervoxel generation.

3.1. Problem definition

The goal of FSS is to obtain a model that, based on only a few
labeled samples can generalize to new object classes. More specifically,
given a training dataset with base classes 𝑡𝑟𝑎𝑖𝑛, we learn a model that
can segment novel target classes 𝑡𝑒𝑠𝑡 from few annotated examples. The
model is trained and tested in episodes, where a support set consisting
of 𝑘 labeled support images is used to predict the segmentation of 𝑁
lasses in the unlabeled query image. The support set is defined as
=

{

(𝐗𝑠
1,𝐘

𝑠
1),… , (𝐗𝑠

𝑘,𝐘
𝑠
𝑘)
}

and the query set as  = {𝐗𝑞}, where
𝐗∗ ∈ R𝐶×𝐻×𝑊 represents an image volume and 𝐘∗ ∈ R𝐶×𝐻×𝑊 the
corresponding voxel-wise annotation.1

3.2. ADNet++

3.2.1. Multi-class anomaly detection-inspired segmentation
As demonstrated in Hansen et al. (2022), an anomaly detection-

inspired approach to few-shot medical image segmentation results in a
model that is less sensitive to variations in the background class, thus
enabling one-step volume-wise 3D segmentation (as opposed to slice-
by-slice 2D segmentation). As a consequence, this framework facilitates
the extraction of all class-prototypes simultaneously, thereby making it
suitable for multi-class segmentation.

Similar to the original ADNet, ADNet++ uses a backbone network
𝑓𝜃 ∶ R𝐶×𝐻×𝑊 → R𝐶×𝐻×𝑊 ×𝑑 to encode the support images

{

𝐗𝑠
𝑖
}𝑘
𝑖=1

and query images
{

𝐗𝑞
𝑖
}𝑘
𝑖=1 into deep feature maps, 𝐅𝑠

𝑖 = 𝑓𝜃(𝐗𝑠
𝑖 ) and

𝑞
𝑖 = 𝑓𝜃(𝐗

𝑞
𝑖 ), respectively. Note that due to max-pooling operations and

trided convolutions in the backbone network, the spatial resolution
f these feature maps is compressed, compared to the input, and the
eature maps are therefore up-sampled to original size (𝐶,𝐻,𝑊 ). Let
=

{

𝐫𝑗
}𝐶⋅𝐻 ⋅𝑊
𝑗=1 denote the set of all voxel positions 𝐫 = (𝑥, 𝑦, 𝑧) in the

mage. Prototype 𝐩𝑐 ∈ R𝑑 , representing class 𝑐, is defined as:

𝑐 =
∑𝑘

𝑖=1
∑

𝐫∈𝛺 𝐅𝑠
𝑖 (𝐫) ⋅ 𝐘

𝑠
𝑐 (𝐫)

∑𝑘
𝑖=1

∑

𝐫∈𝛺 𝐘𝑠
𝑐 (𝐫)

, (1)

here 𝐘𝑠
𝑐 = 1(𝐘𝑠

𝑖 = 𝑐) is the ground-truth mask of class 𝑐. Unlike ADNet,
hich only performs binary segmentation and thus only extracts one

lass-prototype at a time, we propose a procedure to perform one-
tep multi-class segmentation. In a 𝑁-class segmentation problem, this

1 Superscript ∗ denotes support (𝑠) or query (𝑞).
3

t

results in a set of 𝑁 prototypes  =
{

𝐩𝑐
}𝑁
𝑐=1, for which we compute a

set of 𝑁 anomaly score maps  =
{

𝐒𝑐
}𝑁
𝑐=1, computed as:

𝐒𝑐 (𝐫) = −𝛼 cos
(

𝐅𝑞(𝐫),𝐩𝑐
)

, (2)

where 𝛼 = 20 is a commonly used scaling factor (Wang et al., 2019;
Ouyang et al., 2022; Hansen et al., 2022). The resulting anomaly
score maps represent the dissimilarity between each voxel feature
vector 𝐅𝑞(𝐫) and each of the class-prototypes in  . The soft foreground
predictions for each foreground class 𝑐 = 1,… , 𝑁 are then found by
thresholding the anomaly score maps with a learned threshold 𝑇 :

�̂�𝑞
𝑐 (𝐫)

′ = 1 − 𝜎(𝐒𝑐 (𝐫) − 𝑇 ), (3)

where 𝜎 is the Sigmoid function. For a general number of 𝑁 foreground
classes, the soft background mask is then computed as:

�̂�𝑞
𝑐=0(𝐫)

′ = 1 − max
{

�̂�𝑞
𝑐 (𝐫)

′ ∶ 𝑐 = 1,… , 𝑁
}

. (4)

Finally, the class probabilities are obtained by scaling the scores with
a softmax function:

�̂�𝑞
𝑖 (𝐫) =

exp
(

�̂�𝑞
𝑖 (𝐫)

′
)

∑𝑁
𝑗=0 exp

(

�̂�𝑞
𝑗 (𝐫)′

) . (5)

This assures that no voxel can be assigned to more than one class,
thereby preventing the ambiguous voxel predictions in binary class-by-
class segmentation, occurring when a voxel lies within the threshold of
multiple class-prototypes.

The network is then trained as in Hansen et al. (2022), in an end-
to-end manner to optimize a loss function consisting of three terms:

 = 𝐶𝐸 + 𝑇 + 𝑃𝐴𝑅, (6)

where 𝐶𝐸 is the cross-entropy loss between the query prediction and
the query label:

𝐶𝐸 = − 1
|𝛺|

∑

𝐫∈𝛺

𝑁
∑

𝑐=0
�̂�𝑞
𝑐 (𝐫) log𝐘

𝑞
𝑐 (𝐫), (7)

here | ⋅ | indicates the cardinality of the set, 𝑇 = 𝑇 ∕𝛼 is a loss on
he threshold to encourage a compact embedding of the foreground
lasses via a smaller learned threshold, and 𝑃𝐴𝑅 is the prototype
lignment regularization loss from Wang et al. (2019), obtained by
eversing the roles of the support and query.2 The predicted query mask
s used to segment the support image, and the loss is computed as the
ross-entropy loss between the predicted support mask and the support
round-truth mask:

𝑃𝐴𝑅 = − 1
|𝛺𝑠|

∑

𝐫∈𝛺𝑠

𝑁
∑

𝑐=0
�̂�𝑠
𝑐 (𝐫) log𝐘

𝑠
𝑐 (𝐫), (8)

where 𝛺𝑠 is the set of voxel positions in the support image.
After the model is trained, the weights (𝜃, 𝑇 ) are frozen and the

inference episodes are sampled from 𝑡𝑒𝑠𝑡.

3.2.2. Uncertainty estimation
To obtain a measure of uncertainty for the model’s predictions, we

take inspiration from Gal and Ghahramani (2016), who exploit dropout
layers in the network architecture to be able to represent the model
uncertainty. As illustrated in Fig. 1, we suggest an architecture-agnostic
approach to generate uncertainty maps by randomizing the masked
average pooling during prototype generation in Eq. (1). Instead of
applying deterministic masked average pooling to obtain one prototype
per class, we propose to perform masked randomized average pooling

2 The influence of the sub-losses was evaluated in Hansen et al. (2022), and
he results were reported in the ablation study.
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Fig. 1. We facilitate the estimation of uncertainty maps in prototypical FSS models by replacing the deterministic masked average pooling module with a randomized alternative,
the masked randomized average pooling (MRAP), denoted in red. This allows us to generate a set of prototypes, and thereby a set of query predictions that can be used to estimate
the model uncertainty.
Fig. 2. Conceptual illustration of the feature refinement process. (a) In the encoding process, the input image is transformed into a set of feature vectors (gray dots). (b) Supervoxels
are generated in the input space and can thus be used to locate feature vectors that ‘‘belong’’ together in the input space. (c) The refinement process consists in moving the feature
vectors within the supervoxel towards its center (indicated with blue star), leading to a more compact embedding where the edges defined in the input space are respected.
(MRAP) to obtain a set of 𝑃 prototypes per class 𝑐 𝑐 =
{

𝒑𝑗
}𝑃
𝑗=1 from

the support set as:

𝐩𝑗 =
∑𝑘

𝑖=1
∑

𝐫∈𝛺 𝐅𝑠
𝑖 (𝐫) ⋅ 𝐘

𝑠
𝑐 (𝐫) ⋅𝐌𝑖(𝐫)

∑𝑘
𝑖=1

∑

𝐫∈𝛺 𝐘𝑠
𝑐 (𝐫) ⋅𝐌𝑖(𝐫)

, (9)

where 𝐌𝑖(𝐫) is sampled from a Bernoulli(𝜌) distribution. 𝜌 is the prob-
ability of 𝐌𝑖(𝐫) taking the value one and is set to 0.5. From this set
of prototypes, we can obtain a set of anomaly scores

{

𝐒𝑗
}𝑃
𝑗=1, and

thereby predictions
{

�̂�𝑞
𝑗

}𝑃

𝑗=1
for the query image. These predictions

can be considered samples from an approximate predictive distribution,
and the model uncertainty map can be estimated as the predictive
entropy (Gal, 2016). Therefore, by computing the voxel-wise predictive
entropy of the 𝑃 predictions, we obtain the uncertainty map as:

𝐔(𝐫) = −
∑

𝑐
�̄�𝑐 (𝐫) log �̄�𝑐 (𝐫), (10)

where �̄�𝑐 = 1
𝑃
∑𝑃

𝑗=1 �̂�
𝑞
𝑗 is the average (soft) prediction map of class 𝑐.

To ensure an accurate uncertainty assessment, the number of sampled
prototypes 𝑃 (and thereby predictions) must be efficiently large. In our
experiments we set 𝑃 = 10 as a trade-off between uncertainty quality
and computational complexity. Overall, the computational overhead
due to this uncertainty estimation can be considered negligible as the
costly feature extraction only needs to be performed once per volume.

The obtained uncertainty maps can be used to visualize and assess
the voxel-wise uncertainty of the model’s predictions. Further, in the
next section, we show how these uncertainty maps can be leveraged to
guide the proposed feature refinement.

3.2.3. Supervoxel-informed feature refinement module
Assuming that supervoxels capture voxels that belong together in

the input space, it follows that a segmentation model should assign
4

consistent class labels for all voxels within the same supervoxel. To
encourage this spatial consistency, we propose a supervoxel-informed
feature refinement module that refines the embedded image represen-
tations to respect edges as defined by the supervoxels. If a supervoxel
defines a set of voxels that belong together in the input space, it
consequently also defines a set of feature vectors that should belong
together in the feature space, and as the encoding of images involves a
spatial compression with loss of spatial details, the supervoxel-informed
refinement can thus act as a mechanism to guide the precise location
of edges and structures in the output. The concept of the proposed
supervoxel-informed feature refinement (SFR) module is illustrated in
Fig. 2.

To refine the query features during inference, the up-sampled fea-
ture maps are refined as follows. Each query image 𝐱𝑞 is clustered into
a set of 𝑀 non-overlapping supervoxels 𝜋 =

{

𝜋1,… , 𝜋𝑀
}

, representing
homogeneous regions in the input image. Overlaying this supervoxel
segmentation on top of the up-sampled query feature map, each su-
pervoxel 𝜋𝑖 defines a set of voxel feature vectors, corresponding to a
homogeneous region in the input image. For a feature vector 𝐅𝑞(𝐫) ∈ 𝜋𝑖,
we propose a refined voxel feature vector 𝐅𝑞(𝐫)′, computed as:

𝐅𝑞(𝐫)′ = 𝛽𝐅𝑞(𝐫) + (1 − 𝛽)𝝁𝑖, (11)

where 𝝁𝑖 is the center of 𝜋𝑖, given by:

𝝁𝑖 =
1
|𝜋𝑖|

∑

𝐅𝑞 (𝐫)∈𝜋𝑖

𝐅𝑞(𝐫), (12)

and 𝛽 is a refinement parameter controlling the size of the feature
vectors’ movement, ranging from 𝛽 = 1 with no movement to 𝛽 = 0
where the feature vector moves all the way to its supervoxel center.
However, choosing 𝛽 in this way, as a fixed constant for all voxels, is
quite restrictive. A dynamic 𝛽(𝐫), on the other hand, would increase the
module’s flexibility by allowing different regions in the feature map to
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Fig. 3. Workflow of the proposed feature refinement module. The module acts to refine the features before entering the classifier. The original features, the input image and a
choice of 𝛽 is input to the module. The refined features then follow the ordinary pipeline to produce the end segmentation result.
experience different degrees of refinement. One possible approach to
obtain a dynamic refinement is to utilize the uncertainty map3:

𝛽(𝐫) = 1 − 𝐔(𝐫). (13)

In this way, uncertain voxels, typically on the boundaries between
classes, get a lower 𝛽 and rely more on the sharp edge information
in the supervoxels, and vice versa.4 Exploiting the uncertainty map has
the additional advantage that no labeled data is required to determine
𝛽.5 Fig. 3 illustrates the module in the FSS framework.

Ultimately, the feature refinement module is determined by two
parameters: (i) the number of supervoxels 𝑀 (or effectively the super-
voxel size) and (ii) the feature refinement parameter, 𝛽. The choice of
these parameters is explored in Section 4.4.2.

3.3. Supervoxel generation

Supervoxels are computed offline for all the query images using a
3D extension6 of the Felzenszwalb’s efficient graph-based segmentation
algorithm (Felzenszwalb and Huttenlocher, 2004). This is the same
algorithm that is used to generate pseudo-labels for the self-supervised
training in Ouyang et al. (2022) and Hansen et al. (2022), and is known
to produce superpixels with irregular shapes and sizes that adhere well
to image boundaries (Achanta et al., 2012).

Similarly to prior supervoxel- and superpixel-based approaches
(Ouyang et al., 2022; Hansen et al., 2022), the final segmentation
results depend on the size of the generated supervoxels and their
adherence to class boundaries in the image: Choosing supervoxels that
are too small can lead to loss of representativeness, and thereby noisy
results, while choosing supervoxels that are too large can result in over-
lapping anatomical areas and inaccurate segmentation. Felzenszwalb’s
algorithm has a parameter controlling the minimum supervoxel size,
and effect of this parameter on the final segmentation result is explored
in Section 4.4.2.

4. Experiments

In this Section we evaluate the proposed methodology in the context
of the state-of-the-art self-supervised 3D FSS model, ADNet (Hansen

3 In this case, the prediction step is done twice: The uncertainty map is
generated using the output of the segmentation network before the feature
refinement module is applied. The beta values are then derived from these
uncertainty maps and used to guide the feature refinement, leading to the
final prediction. Note, only one feature extraction step needs to be performed
as the randomization lies in the prototype generation.

4 The use of more complex functions, such as the Sigmoid function, for this
scaling was considered. However, preliminary results did not show significant
improvements over linear scaling. Nonetheless, this possibility remains an
interesting avenue for future exploration.

5 Determination of the ‘‘ideal’’ fixed 𝛽 requires a line-search on an
annotated validation set.

6 https://github.com/sha168/Felzenszwalb-supervoxel-segmentation.
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et al., 2022),7 and illustrate the benefit of the proposed multi-class
procedure, the uncertainty maps, and the uncertainty guided feature
refinement. The modified ADNet is referred to as ADNet++.

4.1. Experiment setup

Datasets. We demonstrate the properties and performance of the pro-
posed ADNet++ by conducting experiments on three publicly available
benchmark datasets8 in medical image segmentation: (i) the bSSFP
fold from the Multi-sequence Cardiac MRI Segmentation (MS-CMRSeg)
challenge from MICCAI 2019 (Zhuang, 2016, 2018), (ii) task 5 from
the Combined Healthy Abdominal Organ Segmentation (CHAOS) Chal-
lenge from ISBI 2019 (Kavur et al., 2019, 2020, 2021), and (iii) the
abdomen dataset from the Beyond the Cranial Vault (BTCV) Challenge
from MICCAI 2015 (Landman et al., 2015). Both the MS-CMRSeg and
the CHAOS dataset consist of volumetric magnetic resonance imaging
(MRI) scans, whereas the BTCV dataset consists of volumetric computed
tomography (CT) scans. The MS-CMRSeg dataset contains 20 cardiac
MRIs with ground-truth segmentations for left-ventricle blood pool (LV-
BP), left-ventricle myocardium (LV-MYO), and right ventricle (RV).
The CHAOS dataset and the BTCV dataset contain 20 abdominal T2-
SPIR MRIs and 30 abdominal CT scans, respectively, with ground-truth
segmentations for left kidney (L. kid.), right kidney (R. kid.), spleen,
and liver.

Prior to training, the data is pre-processed following common prac-
tice (Ouyang et al., 2022; Hansen et al., 2022): First, we cut the top
0.5% intensities. Then, we re-sample and crop the image volumes
such that the short-axis slices in the MS-CMRSeg dataset and the axial
slices in the CHAOS dataset and the BTCV dataset have the same size
(256 × 256).

Evaluation metric. To compare model predictions to ground-truth seg-
mentation masks, we employ two widely used evaluation metrics in
medical image segmentation: The dice similarity coefficient (DSC),
which is a overlap measure, and the Hausdorff distance (HD), which
is a surface distance measure.

The DSC between a model prediction 𝑌 and the ground-truth 𝑌 is
computed as:

DSC(𝑌 , 𝑌 ) = 2
|𝑌 ∩ 𝑌 |
|𝑌 | + |𝑌 |

⋅ 100%. (14)

Thus, the DSC varies from 100%, indicating perfect overlap between
the segmentations, to 0%, when the segmentations have no overlap.

7 Note, the benefit of one-step 3D segmentation, compared to the 2D
slice-by-slice approach commonly found in previous work, was demonstrated
in Hansen et al. (2022). However, to illustrate the general applicability of the
proposed modules, experiments in the context of a 2D state-of-the-art approach
are provided in Section 4.5.

8 Links to the MS-CMRSeg dataset https://zmiclab.github.io/zxh/0/
mscmrseg19/, the CHAOS dataset https://chaos.grand-challenge.org, and the
BTCV dataset https://doi.org/10.7303/syn3193805.

https://github.com/sha168/Felzenszwalb-supervoxel-segmentation
https://zmiclab.github.io/zxh/0/mscmrseg19/
https://zmiclab.github.io/zxh/0/mscmrseg19/
https://chaos.grand-challenge.org
https://doi.org/10.7303/syn3193805
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Table 1
Quantitative evaluation of the proposed method in the context of ADNet. Mean 95 HD and mean DSC with standard deviations are reported for three runs per fold. ∗ indicates
that the increase in mean DSC, compared to the ADNet baseline, is statistically significant (𝑝 < 0.05).

Method
Abdominal MRI

95 HD (↓) DSC (↑)
L. kid. R. kid. Spleen Liver Mean L. kid. R. kid. Spleen Liver Mean

ADNet 10.56 6.63 27.08 16.60 15.22 79.57 81.41 68.03 74.29 75.82
(±4.22) (±3.34) (±12.14) (±7.38) (±10.83) (±7.55) (±10.17) (±24.05) (±23.39) (±5.20)

ADNet++ 𝟔.𝟖𝟓 𝟓.𝟏𝟒 𝟐𝟐.𝟎𝟖 𝟏𝟓.𝟗𝟑 𝟏𝟐.𝟓𝟎∗ 𝟖𝟔.𝟖𝟎 𝟖𝟔.𝟔𝟐 𝟕𝟓.𝟔𝟗 𝟕𝟒.𝟖𝟓 𝟖𝟎.𝟗𝟗∗
(±𝟑.𝟑𝟓) (±𝟑.𝟎𝟑) (±𝟏𝟑.𝟗𝟒) (±𝟓.𝟒𝟐) (±𝟏𝟎.𝟒𝟏) (±𝟔.𝟎𝟏) (±𝟏𝟎.𝟑𝟕) (±𝟐𝟔.𝟐𝟏) (±𝟐𝟑.𝟖𝟐) (±𝟓.𝟕𝟑)

Method
Abdominal CT

95 HD (↓) DSC (↑)
L. kid. R. kid. Spleen Liver Mean L. kid. R. kid. Spleen Liver Mean

ADNet 20.96 30.65 𝟐𝟐.𝟔𝟑 23.22 24.36 47.89 40.30 59.25 𝟕𝟓.𝟖𝟖 55.83
(±5.82) (±10.16) (±𝟒.𝟐𝟔) (±7.09) (±8.08) (±11.94) (±14.71) (±10.11) (±𝟏𝟎.𝟎) (±11.69)

ADNet++ 𝟐𝟎.𝟒𝟎 𝟐𝟔.𝟔𝟔 24.15 𝟐𝟑.𝟐𝟏 𝟐𝟑.𝟔𝟎∗ 𝟓𝟑.𝟒𝟕 𝟓𝟎.𝟐𝟗 𝟔𝟓.𝟕𝟔 74.24 𝟔𝟎.𝟗𝟒∗
(±𝟖.𝟎𝟐) (±𝟗.𝟑𝟓) (±6.94) (±𝟒.𝟔𝟕) (±𝟕.𝟕𝟖) (±𝟏𝟒.𝟎𝟑) (±𝟏𝟓.𝟔𝟖) (±𝟏𝟐.𝟐𝟔) (±4.67) (±𝟏𝟔.𝟏𝟔)

Method
Cardiac MRI

95 HD (↓) DSC (↑)
LV-BP LV-MYO RV Mean LV-BP LV-MYO RV Mean

ADNet 3.96 6.57 8.46 6.33 80.95 53.68 66.12 66.92
(±0.53) (±0.41) (±1.58) (±2.09) (±1.42) (±2.13) (±1.34) (±11.27)

ADNet++ 𝟑.𝟔𝟗 𝟔.𝟐𝟒 𝟖.𝟑𝟏 𝟔.𝟎𝟖∗ 𝟖𝟐.𝟕𝟗 𝟓𝟖.𝟔𝟕 𝟔𝟕.𝟓𝟕 𝟔𝟗.𝟔𝟖∗
(±𝟎.𝟕𝟐) (±𝟎.𝟓𝟓) (±𝟏.𝟑𝟐) (±𝟐.𝟏𝟏) (±𝟎.𝟖𝟗) (±𝟏.𝟖𝟔) (±𝟏.𝟖𝟐) (±𝟏𝟎.𝟎𝟖)
The maximum HD defines the maximum distance of a set to the
earest point in the other set, and is computed as:

D(𝑌 , 𝑌 ) = max

{

sup
𝑎∈𝑌

inf
𝑏∈𝑌

𝑑(𝑎, 𝑏), sup
𝑏∈𝑌

inf
𝑎∈𝑌

𝑑(𝑎, 𝑏)

}

, (15)

where sup denotes the supremum, inf denotes the infimum, and 𝑑(⋅, ⋅)
is the Euclidean distance between two points. The maximum HD thus
quantifies the largest segmentation error between the model prediction
and the ground-truth. To reduce the effect of outliers, the 95th per-
centile HD (95 HD) is employed, where the measure is based on the
95th percentile of the distances between points in 𝑌 and 𝑌 .

Evaluation protocol. The trained models are evaluated in a five-fold
cross-validation scheme where the test fold is held out during training.
During inference, we sample all possible support/query combinations
for the volumes in the fold to make the evaluation unbiased towards
specific choices of support and query. In the tables, we report mean dice
(with standard deviations) over all folds, where each fold is repeated
thrice to account for the stochasticity in the optimization. To indicate
statistically significant improvements, one-sided Wilcoxon signed rank
tests (Wilcoxon, 1992) are performed to compare the mean scores
across all runs.

Implementation details. The implementation of ADNet++ is based on
the PyTorch (v1.7.1) implementation of 3D ADNet,9 and the training
phase is identical to Hansen et al. (2022): We optimize the weights us-
ing stochastic gradient descent over 25k iterations with momentum 0.9,
learning rate 1e-3, decay rate 0.98 per 1k iterations, and a weight decay
of 5e-4. To account for the class imbalance, a weighted cross-entropy
loss is employed, where the foreground and background weights are set
to 1.0 and 0.1, respectively. We adopt the data augmentation scheme
in Ouyang et al. (2022) and Hansen et al. (2022), which applies the
following random transformations to the support and query images dur-
ing training: image rotation, translation, shearing, scaling, and gamma
transformations.

9 https://github.com/sha168/ADNet.
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4.2. Quantitative results in the context of state-of-the-art model ADNet

Table 1 presents the quantitative results of the proposed method in
the context of ADNet, which is the state-of-the-art model for one-step
volume-wise medical FSS.

ADNet++ significantly (𝑝 < 0.05) improves the overall mean DSC
of ADNet by +5.2, +5.1, and +2.8 percentage points for the CHAOS,
BTCV and MS-CMRSeg datasets, respectively. Similarly, ADNet++ sig-
nificantly (𝑝 < 0.05) reduces the overall mean 95 HD across all
datasets. These results thus indicate that the proposed method improves
both the overall overlap between the predicted masks and the ground
truth masks, as well as reduces the largest segmentation mistakes. In
Section 4.4 we further demonstrate the contribution of the individual
proposed modules of our method.

4.3. Uncertainty maps

Fig. 4 visualizes three example slices from the CHAOS dataset
with corresponding ground-truths, predictions, and uncertainty maps
obtained by sampling 𝑃 = 10 prototypes per class in the proposed
prototype extraction module. From these examples, we can see that
the model uncertainty typically is higher for voxels close to and on
the boundaries between classes. Furthermore, when the model makes
mistakes (e.g. where it over-segments the liver), we can see how the
uncertainty map highlights these areas as uncertain.

Following Kampffmeyer et al. (2016), to quantify the fidelity of the
estimated uncertainty maps, we start by removing all voxels in the
predictions and successively add voxels according to their estimated
uncertainty, starting with the least uncertain voxels. Fig. 5 shows how
the segmentation performance decreases for all classes as more uncer-
tain voxels are included.10 This illustrates that voxels that are indicated
by the uncertainty maps to be certain in fact are more probable of being
correctly classified, whereas uncertain voxels have a higher probability
of being falsely segmented. This means that the uncertainty maps can
be used to quantify how much a prediction can be trusted.

10 Note that the measure of the segmentation performance is accuracy (and
not DSC) in this experiment. This because the denominator in Eq. (14) varies
as we include more and more voxels, making comparisons difficult.

https://github.com/sha168/ADNet
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Fig. 4. Illustration of example slices from the CHAOS dataset with corresponding ground-truths, predictions and uncertainty maps. The uncertainty maps typically highlight the
boundary regions between classes. (red = liver, green = right kidney, dark blue = left kidney, and light blue = spleen).
Fig. 5. Relationship between accuracy and estimated uncertainty. By successively
including more uncertain voxels, the segmentation accuracy decreases.

Interestingly, the accuracy of the liver class decreases faster than for
the other classes. This is related to the tendency of the model to over-
segment this class. As seen in Fig. 4, the relatively large over-segmented
regions are uncertain, and when they are included in the computation
of the accuracy (from a uncertainty threshold around 0.4), the accuracy
drops.

4.4. Ablation study

In the following, we analyze the contribution of the different pro-
posed components to the improved DSC and 95 HD, compared to the
ADNet baseline. Table 2 summarizes the quantitative ablation results
for the three datasets.

4.4.1. Binary vs. multi-class segmentation
In the first two rows for each dataset in of Table 2, we analyze

the effect of moving from binary to multi-class segmentation. Any
differences in segmentation results here are caused by the resolving of
ambiguous voxel predictions, i.e. voxels previously assigned to multiple
classes are now forced to choose one. In the CHAOS dataset, the
7

issue of ambiguous voxels are most prominent between left kidney
and spleen. This is because these organs share a boundary that often
appears weak in the MRI scans. While the overall performance is
only slightly improved when moving to the multi-class segmentation
setting, the performance gains for left kidney and spleen are more
visible (on average +0.99 and +0.82 percentage points, respectively).
In the BTCV dataset, the performance on the individual classes changes
considerably when introducing the multi-class segmentation. While
large improvements are obtained for the left and right kidney classes,
the performance for the liver class decreases. This can be explained by
the interaction between the liver and right kidney prototypes. While the
model generally over-segments the right kidney in the binary setting,
this over-segmentation is reduced when introducing the liver-prototype
in the multi-class setting. On the other hand, the liver segmentation is
impacted negatively as some of the previously correctly segmented liver
voxels now are incorrectly being assigned to the right kidney class. In
the MS-CMRSeg dataset, all three classes share boundaries with one
or both other organs. In the binary setting, the model typically over-
segment all three classes, particularly hurting the performance of the
LV-MYO because of its high surface-to-volume ratio. When the model
is forced to choose, the performance increases for all classes, especially
for LV-MYO with +3.8 percentage points, yielding an average overall
improvement of +1.7 percentage points. Fig. 6 illustrates how the over-
segmentation in the binary setting is improved in the multi-class setting
for one example slice in the MS-CMRSeg dataset.

4.4.2. Feature refinement vs. no feature refinement
In rows three and four for each dataset in Table 2, we investigate

the effectiveness of the proposed feature refinement module. With a
fixed 𝛽 (dynamic 𝛽(𝒓)), the module is able to improve the overall
performance for all three datasets, with +4.7 (+4.7), +3.7 (+3.8), and
+1.3 (+1.4) percentage points for the CHAOS dataset, BTCV dataset,
and the MS-CMRSeg dataset, respectively. Note that the fixed 𝛽 is set
to the optimal choice for the respective datasets, requiring a grid-
search for parameter-tuning. Thus, while the improvement in overall
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Table 2
Quantitative evaluation of the proposed components’ contribution on the three datasets. Mean DSC with standard deviations are reported for three runs per fold. ∗ indicates that
the increase in mean DSC, compared to the ADNet baseline, is statistically significant (𝑝 < 0.05)..

Method Multi-class 𝛽
Abdominal MRI

L. kid. R. kid. Spleen Liver Mean

ADNet ✗ - 79.57 ± 7.55 81.41 ± 10.17 68.03 ± 24.05 74.29 ± 23.39 75.82 ± 5.20

✓ 1.0 80.56 ± 5.89 81.42 ± 10.03 68.85 ± 24.24 74.49 ± 23.35 76.33 ± 5.08∗

ADNet++ ✓ 0.3 𝟖𝟔.𝟗𝟒 ± 𝟔.𝟏𝟗 𝟖𝟔.𝟗𝟓 ± 𝟏𝟎.𝟔𝟎 75.69 ± 26.35 74.40 ± 24.08 80.99 ± 5.97∗

✓ 1 − 𝐔(𝐫) 86.80 ± 6.01 86.62 ± 10.37 𝟕𝟓.𝟔𝟗 ± 𝟐𝟔.𝟐𝟏 𝟕𝟒.𝟖𝟓 ± 𝟐𝟑.𝟖𝟐 𝟖𝟎.𝟗𝟗 ± 𝟓.𝟕𝟑∗

Method Multi-class 𝛽
Abdominal CT

L. kid. R. kid. Spleen Liver Mean

ADNet ✗ - 47.89 ± 11.94 40.30 ± 14.71 59.25 ± 10.11 𝟕𝟓.𝟖𝟖 ± 𝟏𝟎.𝟎 55.83 ± 11.69

✓ 1.0 60.09 ± 13.47 48.46 ± 21.10 59.63 ± 21.69 58.31 ± 31.71 57.18 ± 24.28∗

ADNet++ ✓ 0.0 𝟔𝟓.𝟏𝟓 ± 𝟐𝟏.𝟗𝟗 𝟓𝟖.𝟗𝟔 ± 𝟐𝟕.𝟑𝟕 63.09 ± 28.64 60.79 ± 32.84 60.84 ± 28.41∗

✓ 1 − 𝐔(𝐫) 53.47 ± 14.03 50.29 ± 15.68 𝟔𝟓.𝟕𝟔 ± 𝟏𝟐.𝟐𝟔 74.24 ± 9.03 𝟔𝟎.𝟗𝟒 ± 𝟏𝟔.𝟏𝟔∗

Method Multi-class 𝛽
Cardiac MRI

LV-BP LV-MYO RV Mean

ADNet ✗ - 80.95 ± 5.50 53.68 ± 5.52 66.12 ± 10.14 66.92 ± 11.15

✓ 1.0 81.29 ± 6.43 57.44 ± 6.47 67.18 ± 10.71 68.64 ± 9.79∗

ADNet++ ✓ 0.7 𝟖𝟐.𝟔𝟏 ± 𝟔.𝟓𝟓 59.66 ± 5.64 𝟔𝟕.𝟒𝟔 ± 𝟏𝟏.𝟏𝟕 69.91 ± 9.53∗

✓ 1 − 𝐔(𝐫) 82.57 ± 6.55 𝟔𝟎.𝟎𝟐 ± 𝟓.𝟔𝟔 67.44 ± 11.37 𝟕𝟎.𝟎𝟏 ± 𝟗.𝟑𝟖∗
Fig. 6. Qualitative evaluation of resolving ambiguous voxel predictions in a cropped example slice from the MS-CMR dataset. Where the model in the binary segmentation setting
over-segments all three classes (red = LV-MYO, green = LV-BP, and blue = RV), it is in the multi-class setting forced to choose one class per voxel, resulting in less over-segmentation
and higher DSC.
Fig. 7. Distribution of 𝛥 DSC for the segmentation results on the CHAOS dataset with and without feature refinement.
segmentation performance is similar, the dynamic 𝛽(𝒓) = 1 − 𝐔(𝒓) has
the important advantage that it is computed automatically and does not
need further fine-tuning.

Fig. 7 shows the distribution of the difference in DSC (𝛥 DSC)
for predictions with and without feature refinement (with a dynamic
𝛽(𝒓)), for each class in the CHAOS dataset. For most cases, the feature
refinement improves the DSC (green regions). However, the effect is
split for the liver class, resulting in no overall improvement. This is
related to the difficulty in capturing the liver (especially its left lobe)
with supervoxels.

In the following section, we investigate the choice of 𝛽 and how it
effects the final segmentation results for different supervoxel settings.

Choice of 𝛽. The choice of 𝛽 controls the extent of the feature re-
finement, from no refinement at 𝛽 = 1.0 to moving the features all
the way to their corresponding supervoxel center at 𝛽 = 0.0. Fig. 8
shows the prediction results for one example slice in the CHAOS dataset
as we adjust the value of a fixed 𝛽 from 0.0 to 1.0. For 𝛽 = 1.0,
8

we see that the model has difficulty with locating the exact class
boundaries, even when the edges in the input image are strong (e.g. the
boundaries between right kidney and the background). As we reduce
𝛽, we see that the segmentation boundaries become gradually sharper.
However, as 𝛽 approaches 0.0, the prediction relies completely on the
supervoxel segmentation, which might be faulty, especially in regions
where boundaries in the input image are weak.

As discussed in Section 3.2.3, a dynamic 𝛽(𝐫) = 1 − 𝐔(𝐫) has
the potential to increase the flexibility of the feature refinement by
allowing different voxels to move with different step lengths, depending
on the model’s uncertainty: For voxels in regions where the model is
unsure about its initial prediction, we will pay more attention to the
region information in the input space.

To systematically examine the effect of the choice 𝛽 (fixed and
dynamic) for different supervoxel sizes, we perform a grid search.
Figs. 9, 10, and 11 show the results for the CHAOS dataset, BTCV
dataset and MS-CMRSeg dataset, respectively. The top row in both
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Fig. 8. Qualitative evaluation of the feature refinement with 𝛽 as a fixed constant for all voxels. The example slice is taken from the CHAOS dataset and is overlaid by the
corresponding supervoxel boundaries (yellow) and the resulting segmentation masks (red = liver, green = right kidney, purple = left kidney, and blue = spleen).

Fig. 9. Parameter sensitivity of feature-refinement module on the CHAOS dataset. Top: Grid-search over supervoxel sizes and a range of fixed betas. Bottom: Line-search over
supervoxel sizes with a dynamic beta automatically computed from uncertainty maps.

Fig. 10. Parameter sensitivity of feature-refinement module on the BTCV dataset. Top: Grid-search over supervoxel sizes and a range of fixed betas. Bottom: Line-search over
supervoxel sizes with a dynamic beta automatically computed from uncertainty maps.

Fig. 11. Parameter sensitivity of feature-refinement module on the MS-CMRSeg dataset. Top: Grid-search over supervoxel sizes and a range of fixed betas. Bottom: Line-search over
supervoxel sizes with a dynamic beta automatically computed from uncertainty maps.
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Table 3
Quantitative evaluation of the proposed method in the 2D setting in the context of ALPNet. Mean 95 HD and mean DSC with standard deviations are reported for three runs per
fold. ∗ indicates that the increase in mean DSC (decrease in 95 HD), compared to the ALPNet baseline, is statistically significant (𝑝 < 0.05)..

Method
Abdominal MRI

95 HD (↓) DSC (↑)
L. kid. R. kid. Spleen Liver Mean L. kid. R. kid. Spleen Liver Mean

ALPNet 42.59 50.21 40.67 𝟐𝟓.𝟒𝟕 39.74 51.30 47.66 42.02 56.12 49.29
(±13.77) (±14.96) (±10.43) (±𝟓.𝟕𝟏) (±14.81) (±11.61) (±10.31) (±16.71) (±7.00) (±5.17)

ALPNet++ 𝟑𝟑.𝟒𝟔 𝟒𝟒.𝟐𝟖 𝟑𝟔.𝟔𝟑 26.08 𝟑𝟓.𝟏𝟏∗ 𝟓𝟑.𝟎𝟒 𝟓𝟎.𝟎𝟗 𝟒𝟑.𝟗𝟗 𝟓𝟕.𝟐𝟎 𝟓𝟏.𝟎𝟖∗
(±𝟗.𝟒𝟏) (±𝟏𝟒.𝟔𝟐) (±𝟖.𝟒𝟕) (±7.08) (±𝟏𝟐.𝟐𝟎) (±𝟔.𝟕𝟐) (±𝟔.𝟑𝟑) (±𝟏𝟎.𝟔𝟏) (±𝟐.𝟑𝟎) (±𝟖.𝟔𝟎)

Method
Abdominal CT

95 HD (↓) DSC (↑)
L. kid. R. kid. Spleen Liver Mean L. kid. R. kid. Spleen Liver Mean

ALPNet 58.24 53.54 46.98 𝟒𝟎.𝟒𝟗 49.81 24.93 24.20 25.52 47.63 30.57
(±14.10) (±7.83) (±4.70) (±𝟐.𝟖𝟎) (±10.84) (±9.16) (±10.04) (±13.20) (±8.74) (±9.86)

ALPNet++ 𝟓𝟏.𝟎𝟑 𝟓𝟎.𝟕𝟖 𝟒𝟓.𝟓𝟏 40.54 𝟒𝟔.𝟗𝟕∗ 𝟐𝟖.𝟗𝟗 𝟐𝟗.𝟕𝟑 𝟐𝟗.𝟓𝟗 𝟓𝟎.𝟖𝟓 𝟑𝟒.𝟕𝟗∗
(±𝟔.𝟔𝟒) (±𝟖.𝟒𝟐) (±𝟑.𝟗𝟓) (±2.58) (±𝟕.𝟐𝟕) (±𝟒.𝟗𝟔) (±𝟖.𝟓𝟗) (±𝟑.𝟖𝟖) (±𝟒.𝟐𝟓) (±𝟏𝟎.𝟗𝟏)

Method
Cardiac MRI

95 HD (↓) DSC (↑)
LV-BP LV-MYO RV Mean LV-BP LV-MYO RV Mean

ALPNet 29.74 16.64 13.55 19.98 81.30 54.87 68.38 68.18
(±12.01) (±4.26) (±3.84) (±10.41) (±1.42) (±1.90) (±2.47) (±10.97)

ALPNet++ 𝟐𝟔.𝟕𝟐 𝟏𝟓.𝟔𝟗 𝟏𝟐.𝟗𝟒 𝟏𝟖.𝟒𝟓 𝟖𝟏.𝟒𝟐 𝟓𝟓.𝟒𝟒 𝟔𝟖.𝟔𝟐 𝟔𝟖.𝟒𝟗∗
(±𝟏𝟏.𝟒𝟒) (±𝟒.𝟏𝟐) (±𝟑.𝟖𝟓) (±𝟗.𝟒𝟕) (±𝟏.𝟑𝟔) (±𝟏.𝟖𝟑) (±𝟐.𝟓𝟑) (±𝟏𝟎.𝟕𝟗)
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igures display the grid-search over supervoxel size and a range of fixed
etas, 𝛽 ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], while the bottom
ows display a line-search over supervoxel size with a dynamic beta
omputed via Eq. (13).

For the CHAOS dataset, in particular, we see that the optimal
ombination of supervoxel size and fixed beta varies a lot between the
lasses (top row, Fig. 9). For instance, the liver class prefers smaller
upervoxels and a high 𝛽, whereas the spleen class prefers somewhat
arger supervoxels and a lower 𝛽. This can be connected to the typical
upervoxel quality for these organs: Weak edges in the liver result in
nreliable supervoxels, making it ‘‘safer’’ to go with small supervoxels
nd rely more on the original representation. The spleen, on the other
and, is easier captured by the supervoxels and the confusion between
eft kidney and spleen in the feature space can be resolved by relying
ore on the supervoxels.

The line-searches over supervoxel size with a dynamic 𝛽 (bottom
ows in Figs. 9, 10, and 11) show that with a dynamic 𝛽, the results
cross different supervoxel sizes are more stable for both datasets. They
urther illustrate that exploiting the uncertainty map is an efficient
pproach to automatically decide 𝛽(𝒓).

Fig. 12 shows the distribution of 𝛽(𝐫) for each class 𝑐 in the CHAOS
ataset, illustrating how the features of the different organs are refined
ith a greater or lesser influence of the supervoxel information. For

nstance, most of the voxels belonging to right kidney get a high value
f beta, meaning that they are experiencing a lower degree of feature
efinement. This is because the prediction of the right kidney class
ypically is quite certain, with the exception of the edge voxels, which
ontribute to the long tail of the distribution in Fig. 12.

.5. Quantitative results in the context of ALPNet

To verify the architecture-agnostic nature of the proposed method,
e extend ALPNet (Ouyang et al., 2022) (which is the closest com-
eting model to ADNet in Hansen et al. (2022)) with our proposed
ncertainty-guided feature refinement. The extended ALPNet is referred
o as ALPNet++. Note that due to the 2D slice-wise segmentation
pproach employed by ALPNet (as opposed to one-step 3D segmenta-
ion in 3D ADNet), the presence of all classes in the support slice is
ot guaranteed, making multi-class segmentation infeasible. Therefore,
or the experiments in this section, our focus is on the effect of the
ncertainty-guided feature refinement in the binary setting only.
10

i

ig. 12. Distribution of 𝛽 for the different classes in the CHAOS dataset, when decided
utomatically from the uncertainty maps: 𝛽(𝐫) = 1 − 𝐔(𝐫).

The 2D slice-wise segmentation approach requires a scheme for
upport-query matching during the inference episodes. In the orig-
nal paper, this was solved by assuming availability of weak label
nformation on the query volumes during inference. In this work we
o not assume the availability of such weak labels and follow the
ore realistic evaluation protocol 2 in Hansen et al. (2022) where

he middle slice in the support target volume is used to segment the
ntire query volume slice-by-slice. Table 3 presents the quantitative
esults for ALPNet and ALPNet++.11 Similarly to the ADNet++ results
n Section 4.2, we observe that ALPNet++ consistently outperforms
he ALPNet baseline, obtaining significant (𝑝 < 0.05) performance
mprovements. This further illustrates that the proposed modules in this
ork can be leveraged in an architecture-agnostic setting to improve
edical few-shot segmentation performance.

11 Note: ALPNet is designed for 2D slice-wise segmentation, and relies on
eak label information to locate the query target volumes in order to achieve

tate-of-the-art performance (Hansen et al., 2022). Without the weak labels,
his model performs poorly on the CHAOS dataset and the BTCV dataset,
ompared to ADNet (and ADNet++), which are designed to handle a large,
nhomogeneous background class and performs well in this setting.
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5. Conclusion and outlook

Prototypical few-shot learning is an emerging research direction
within medical image segmentation that offers promising results with-
out requiring large labeled datasets. In this work, we identify three
weaknesses of current prototypical FSS models for medical image seg-
mentation and propose new methodology to overcome these. Specifi-
cally, we propose the ADNet++, the first model that performs one-step
multi-class segmentation and that provides uncertainty maps to accom-
pany its predictions. In addition to indicate the model’s confidence
in the predictions, thereby increasing the models trustworthiness, the
uncertainty maps are further exploited to guide the proposed feature
refinement that leverages structural information in the input space
to provide more accurate segmentation results. The proposed model
significantly improves the current state-of-the-art 3D FSS model for
the tasks of MRI-based abdominal organ segmentation and cardiac
segmentation, as well as CT-based abdominal organ segmentation.

In future work, it would be interesting to explore methods that
can make the feature-refinement module more robust to supervoxel
quality, as its success largely depends on it. Instead of relying on one
set of supervoxels, a potential approach could be to explore multi-scale
supervoxels, e.g. supervoxels of different sizes. Furthermore, while we
do demonstrate the benefit of our proposed modules also for the ALP-
Net framework, given their model-agnostic nature, future work should
implement and evaluate their fidelity in even more FSS frameworks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The experiments have been conduced on publicly available datasets.
The links to these datasets are provided in the paper.

Acknowledgments

This work was supported by The Research Council of Norway
(RCN), through its Centre for Research-based Innovation funding
scheme [grant number 309439] and Consortium Partners; RCN FRIPRO
[grant number 315029]; RCN IKTPLUSS [grant number 303514]; and
the UiT Thematic Initiative.

References

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S., 2012. SLIC
superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern
Anal. Mach. Intell. 34 (11), 2274–2282.

Felzenszwalb, P.F., Huttenlocher, D.P., 2004. Efficient graph-based image segmentation.
Int. J. Comput. Vis. 59 (2), 167–181.

Gal, Y., 2016. Uncertainty in deep learning (Ph.D. thesis). University of Cambridge.
Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In: International Conference on Machine
Learning. PMLR, pp. 1050–1059.

Gonzalez, Y., Shen, C., Jung, H., Nguyen, D., Jiang, S.B., Albuquerque, K., Jia, X., 2021.
Semi-automatic sigmoid colon segmentation in CT for radiation therapy treatment
planning via an iterative 2.5-D deep learning approach. Med. Image Anal. 68,
101896.

Hansen, S., Gautam, S., Jenssen, R., Kampffmeyer, M., 2022. Anomaly detection-
inspired few-shot medical image segmentation through self-supervision with
supervoxels. Med. Image Anal. 78, 102385.

Harper, R., Southern, J., 2020. A bayesian deep learning framework for end-to-end
prediction of emotion from heartbeat. IEEE Trans. Affect. Comput.
11
Johnander, J., Edstedt, J., Danelljan, M., Felsberg, M., Khan, F.S., 2021. Deep Gaussian
processes for few-shot segmentation. arXiv preprint arXiv:2103.16549.

Kampffmeyer, M., Salberg, A.B., Jenssen, R., 2016. Semantic segmentation of small
objects and modeling of uncertainty in urban remote sensing images using deep
convolutional neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. pp. 1–9.

Karimi, D., Zeng, Q., Mathur, P., Avinash, A., Mahdavi, S., Spadinger, I., Abol-
maesumi, P., Salcudean, S.E., 2019. Accurate and robust deep learning-based
segmentation of the prostate clinical target volume in ultrasound images. Med.
Image Anal. 57, 186–196.

Kavur, A.E., Gezer, N.S., Barış, M., Aslan, S., Conze, P.-H., Groza, V., Pham, D.D.,
Chatterjee, S., Ernst, P., Özkan, S., Baydar, B., Lachinov, D., Han, S., Pauli, J.,
Isensee, F., Perkonigg, M., Sathish, R., Rajan, R., Sheet, D., Dovletov, G.,
Speck, O., Nürnberger, A., Maier-Hein, K.H., Bozdağı Akar, G., Ünal, G., Di-
cle, O., Selver, M.A., 2021. CHAOS Challenge - combined (CT-MR) healthy
abdominal organ segmentation. Med. Image Anal. 69, 101950. http://dx.doi.org/
10.1016/j.media.2020.101950, URL http://www.sciencedirect.com/science/article/
pii/S1361841520303145.

Kavur, A.E., Gezer, N.S., Barış, M., Şahin, Y., Özkan, S., Baydar, B., Yüksel, U.,
Kılıkçıer, Ç., Olut, Ş., Bozdağı Akar, G., Ünal, G., Dicle, O., Selver, M.A., 2020.
Comparison of semi-automatic and deep learning based automatic methods for
liver segmentation in living liver transplant donors. Diagn. Int. Radiol. 26, 11–21.
http://dx.doi.org/10.5152/dir.2019.19.

Kavur, A.E., Selver, M.A., Dicle, O., Barış, M., Gezer, N.S., 2019. CHAOS - Combined
(CT-MR) Healthy Abdominal Organ Segmentation Challenge Data. Zenodo, http:
//dx.doi.org/10.5281/zenodo.3362844.

Kim, S., Chikontwe, P., Park, S.H., 2021. Uncertainty-aware semi-supervised few shot
segmentation. arXiv preprint arXiv:2110.08954.

Kompa, B., Snoek, J., Beam, A.L., 2021. Second opinion needed: communicating
uncertainty in medical machine learning. npj Digit. Med. 4 (1), 1–6.

Lakshminarayanan, B., Pritzel, A., Blundell, C., 2017. Simple and scalable predictive
uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 30.

Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A., 2015. Miccai multi-
atlas labeling beyond the cranial vault–workshop and challenge. In: Proc. MICCAI
Multi-Atlas Labeling beyond Cranial Vault—Workshop Challenge, Vol. 5. p. 12.

Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T., 2020. Con-
fidence calibration and predictive uncertainty estimation for deep medical image
segmentation. IEEE Trans. Med. Imaging 39 (12), 3868–3878.

Militello, C., Rundo, L., Toia, P., Conti, V., Russo, G., Filorizzo, C., Maffei, E.,
Cademartiri, F., La Grutta, L., Midiri, M., et al., 2019. A semi-automatic approach
for epicardial adipose tissue segmentation and quantification on cardiac CT scans.
Comput. Biol. Med. 114, 103424.

Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D., 2022. Self-supervised
learning for few-shot medical image segmentation. IEEE Trans. Med. Imaging.

Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C., 2020. ‘‘Squeeze & excite’’
guided few-shot segmentation of volumetric images. Med. Image Anal. 59, 101587.

Shen, C., Nguyen, D., Zhou, Z., Jiang, S.B., Dong, B., Jia, X., 2020. An introduction
to deep learning in medical physics: advantages, potential, and challenges. Phys.
Med. Biol. 65 (5), 05TR01.

Snell, J., Swersky, K., Zemel, R., 2017. Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems. pp. 4077–4087.

Tang, H., Liu, X., Sun, S., Yan, X., Xie, X., 2021. Recurrent mask refinement for few-
shot medical image segmentation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 3918–3928.

Tsochatzidis, L., Koutla, P., Costaridou, L., Pratikakis, I., 2021. Integrating segmentation
information into CNN for breast cancer diagnosis of mammographic masses.
Comput. Methods Programs Biomed. 200, 105913.

van Hespen, K.M., Zwanenburg, J.J., Hendrikse, J., Kuijf, H.J., 2021. Subvoxel vessel
wall thickness measurements of the intracranial arteries using a convolutional
neural network. Med. Image Anal. 67, 101818.

Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J., 2019. Panet: Few-shot image
semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 9197–9206.

Wickstrøm, K., Kampffmeyer, M., Jenssen, R., 2020. Uncertainty and interpretability
in convolutional neural networks for semantic segmentation of colorectal polyps.
Med. Image Anal. 60, 101619.

Wilcoxon, F., 1992. Individual comparisons by ranking methods. In: Breakthroughs in
Statistics. Springer, pp. 196–202.

Yu, Q., Dang, K., Tajbakhsh, N., Terzopoulos, D., Ding, X., 2021. A location-sensitive
local prototype network for few-shot medical image segmentation. In: 2021 IEEE
18th International Symposium on Biomedical Imaging. ISBI, IEEE, pp. 262–266.

Zhuang, X., 2016. Multivariate mixture model for cardiac segmentation from multi-
sequence MRI. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, pp. 581–588.

Zhuang, X., 2018. Multivariate mixture model for myocardial segmentation combining
multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41 (12), 2933–2946.

http://refhub.elsevier.com/S1361-8415(23)00130-5/sb1
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb1
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb1
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb1
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb1
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb2
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb2
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb2
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb3
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb4
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb4
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb4
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb4
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb4
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb5
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb5
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb5
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb5
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb5
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb5
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb5
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb6
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb6
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb6
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb6
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb6
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb7
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb7
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb7
http://arxiv.org/abs/2103.16549
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb9
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb9
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb9
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb9
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb9
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb9
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb9
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb10
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb10
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb10
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb10
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb10
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb10
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb10
http://dx.doi.org/10.1016/j.media.2020.101950
http://dx.doi.org/10.1016/j.media.2020.101950
http://dx.doi.org/10.1016/j.media.2020.101950
http://www.sciencedirect.com/science/article/pii/S1361841520303145
http://www.sciencedirect.com/science/article/pii/S1361841520303145
http://www.sciencedirect.com/science/article/pii/S1361841520303145
http://dx.doi.org/10.5152/dir.2019.19
http://dx.doi.org/10.5281/zenodo.3362844
http://dx.doi.org/10.5281/zenodo.3362844
http://dx.doi.org/10.5281/zenodo.3362844
http://arxiv.org/abs/2110.08954
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb15
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb15
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb15
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb16
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb16
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb16
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb17
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb17
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb17
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb17
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb17
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb18
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb18
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb18
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb18
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb18
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb19
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb19
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb19
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb19
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb19
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb19
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb19
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb20
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb20
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb20
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb21
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb21
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb21
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb22
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb22
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb22
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb22
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb22
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb23
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb23
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb23
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb24
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb24
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb24
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb24
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb24
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb25
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb25
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb25
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb25
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb25
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb26
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb26
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb26
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb26
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb26
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb27
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb27
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb27
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb27
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb27
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb28
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb28
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb28
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb28
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb28
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb29
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb29
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb29
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb30
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb30
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb30
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb30
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb30
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb31
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb31
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb31
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb31
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb31
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb32
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb32
http://refhub.elsevier.com/S1361-8415(23)00130-5/sb32

	ADNet++: A few-shot learning framework for multi-class medical image volume segmentation with uncertainty-guided feature refinement
	Introduction
	Related work
	Medical few-shot segmentation
	Uncertainty estimation

	Methods
	Problem definition
	ADNet++
	Multi-class anomaly detection-inspired segmentation
	Uncertainty estimation
	Supervoxel-informed feature refinement module

	Supervoxel generation

	Experiments
	Experiment setup
	Quantitative results in the context of state-of-the-art model ADNet
	Uncertainty maps
	Ablation study
	Binary vs. multi-class segmentation
	Feature refinement vs. no feature refinement

	Quantitative results in the context of ALPNet

	Conclusion and outlook
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


