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Abstract
We investigate biomass–herbivore–carnivore (top predator) interactions in terms of
a tritrophic dynamical systems model. The harvesting rates of the herbivores and
the top predators are described by means of a sigmoidal function of the herbivores
density and the top predator density, respectively. The main focus in this study is
on the dynamics as a function of the natural mortality and the maximal harvest-
ing rate of the top predators. We identify parameter regimes for which we have
non-existence of equilibrium points as well as necessary conditions for the exis-
tence of such states of the modelling framework. The system does not possess any
finite equilibrium states in the regime of high herbivore mortality. In the regime of a
high consumption rate of the herbivores and low mortality rates of the top predator,
an asymptotically stable finite equilibrium state exists. For this positive equilibrium
to exist the mortality of the top predator should not exceed a certain threshold level.
We also detect regimes producing coexistence of equilibrium states and their respec-
tive stability properties. In the regime of negligible harvesting of the top predator
level, we observe a finite window of the natural top predator mortality rates for which
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oscillations in the top predator-, the herbivore- and the biomass level take place. The
lower and upper bound of this window correspond to two Hopf bifurcation points. We
also identify a bifurcation diagram using the top predator harvesting rate as a con-
trol variable. Using this diagram we detect several saddle node- and Hopf bifurcation
points as well as regimes for which we have coexistence of interior equilibrium states,
bistability and relaxation type of oscillations.

Keywords Predator–prey models · Nonlinear dynamical systems theory · Existence
and stability of equilibrium states · Saddle node bifurcations · Hopf bifurcations ·
Relaxation oscillations

Mathematics Subject Classification 37N25 · 92D25 · 92D40

1 Introduction

The recovery of carnivores in terrestrial ecosystems causes conflicts with humans
and livestock, see Kaczensky et al. (2013), Ripple et al. (2014), Boitani and Lin-
nell (2015), Van Eeden et al. (2018) and Åhman et al. (2022) and the references
therein. In Fennoscandia (Scandinavia, Finland, Kola Peninsula and Russian Karelia),
such conflicts concern the depredation of livestock, especially sheep and the loss of
semidomesticated reindeer (Rangifer tarandus).

The Sámi reindeer herders in Scandinavia and Finland share their ranges with
wildlife, and livestock losses from predation are mainly attributed to lynx (Lynx lynx),
wolverine (Gulo gulo) and golden eagle (Aquila chrysaetos). According to Tveraa
et al. (2014), approximately 70 percent of the documented loss of semidomesticated
reindeers in Norway is caused by lynx and wolverine. Mattisson et al. (2011) have
concluded that semidomestic reindeers are themain prey for lynx in northernScandina-
vian.Moreover, the return of thewolf (Canis lupus) causes a decimation of the reindeer
population in some regions. Kojola et al. (2009) show that the annual recruitment rate
of reindeer is strongly correlatedwith thewolf population density. Fluctuations in large
carnivore and reindeer populations seem also to be well documented. See Åhman et al.
(2022) and St John (2022) and the references therein. Public agencies often imple-
ment compensation programs to reduce conflicts and alleviate losses. See Tveraa et al.
(2014), Bautista et al. (2019) and NEA (2022). Skonhoft et al. (2017) and Johannesen
et al. (2019) study impact of predation in a reindeer population and state that preda-
tion mortality may compensate for natural mortality in situations of food scarcity, and
thereby predation may improve the economic lot of livestock holders.

In western Europe, wolverines are only found in Finland, Sweden and Norway,
and this is the only region containing all four large carnivore species in Europe. See
Chapron et al. (2014). Wolverines became protected in Sweden in 1969, in southern
Norway in 1973, and in the remaining parts of Norway in 1982. The Scandinavian
wolverine population increased slowly both in Sweden and Norway during the first
decades after protection (Sæther et al. 2005). Management decisions, like issuing
hunting licences and harvest quotas are mainly done by public environmental agen-
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cies.1 However, according to Persson et al. (2009), poaching forms a substantial part
of extraction of the wolverine population in northern Scandinavia, and causing up to
60 percent of adult mortality.

Euroasian lynx populations in Norway and Sweden are stable (Kaczensky et al.
2013), and most of the lynx populations are protected allowing a limited cull of lynx
by hunters and with annual harvesting quotas depending on the regional animal popu-
lation (NEA 2022; Kaczensky et al. 2013). For the study area in Scandinavia, Andrén
et al. (2006) report that poaching accounts for 46 percent of the mortality in the adult
lynx populations. Furthermore, both poaching and legal harvest appear to be primar-
ily motivated by conflicts caused by lynx depredation on semidomestic reindeers in
northern Scandinavia.

These observations serve as a background and motivation for the present investi-
gation. We consider a 3D predator–prey model where the carnivore population and
herbivore population play the roles, respectively, of predators and preys, and the her-
bivores feed on the vegetation. The model incorporate harvesting of herbivore and
hunting for carnivores. We follow the modeling approach which is common in the-
oretical ecology (Murray 2002; de Roos 2014; Legović et al. 2010; Li et al. 2016),
and bioeconomics (Clark 2010; Brekke et al. 2007; Johannesen and Skonhoft 2009;
Johannesen 2014). Legović et al. (2010) andGhosh et al. (2014b) apply similar models
when discussing maximum sustainable yields in fisheries.2

Humans harvest the herbivores for the purpose of private consumption and/or com-
mercial reasons. The twomost common harvesting assumptions are a nonzero constant
harvesting rate, and a piecewise linear harvesting rate (see, for example Brekke et al.
2007 and Li et al. 2016 and the references therein). In Bergland et al. (2019) a 2D
predator–prey model for the biomass—herbivore interaction is investigated. In that
model the harvesting rate is given as a sigmoidal function in the herbivore population
density.

In our tritrophic model we assume that the harvesting effects for both the herbivores
and the carnivores are described by means of sigmoidal functions of the same type as
used in Bergland et al. (2019). The arguments for this assumption proceed as follows:

For small and moderate population levels we assume that the harvesting rates to
grow approximately linearly with the population level. Moreover, we have a slow
growth of the harvesting rate functions for small population levels. A saturation of
the harvesting rates sets in for larger population levels. Finally, but not least we have
a smooth transition between the low and high level of the population densities. The
saturation property indeed signifies a limitation in the human intervention capacity
when it comes to harvesting. We believe that the sigmoidal representation of the
harvesting rates mimics a more realistic scenario as compared with the constant non-

1 For more details on management institutions and legislation see Kaczensky et al. (2013), Åhman et al.
(2022) and NEA (2022).
2 This kind of modeling has also examined interactions between different marine tropical levels
(e.g.krill/fish/whales) and the consequences for fishery management. See May et al. (1979), Beddington
and May (1980), Flaaten (1988), Hogarth et al. (1992), Flaaten (1991), Brown et al. (2005), Ghosh and Kar
(2013), Huang et al. (2013), Ghosh et al. (2014a), Paul et al. (2016), Tromeur and Loeuille (2017), Barman
and Ghosh (2019). Models of the Lotka–Volterra type are also applied in other settings, e.g. Vázquez and
Watt (2011).
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zero harvesting rate assumption, the proportional harvesting term or a harvesting
rate decomposing in proportional harvesting term for small and moderate population
regime connected to non-zero constant level when the population level exceeds a
certain threshold. By using this modelling approach we are able to study how the
harvesting practice at two tropical levels influence the coexistence of carnivore and
herbivore populations. The model analyses expose how the natural mortality rate of
the top predators in combination with the harvesting rate of the top predator is crucial
for the existence of equilibrium states and the stability of these states.

The present paper is organized as follows: In Sect. 2 we present our modeling
framework, while Sect. 3 deals with the general mathematical properties of the model
(scaling, wellposedness, positive persistence, global boundedness of the solutions,
and existence and stability of equilibrium states). In Sect. 4 we detail numerically
the evolution of the population levels with particular emphasis on the role of the
equilibrium states. The Sects. 5–7 deal with the existence of different bifurcation
phenomena (Hopf- and saddle node bifurcations), bistability and the excitation of the
relaxation type of oscillations in the present modelling framework. Section8 contains
concluding remarks (Sect. 8.1) and an outlook (Sect. 8.2). In the appendices A–D we
detail the mathematical properties of our modelling framework.

2 Model

We consider a 3D predator–prey model in which the food resources (preys) dynamics
is coupled to the change of the herbivore population density. The herbivores act as food
resources for the top predators. We also account for harvesting of both the herbivore
population and the top predators. Let z, y and x denote the top predator population
density, the herbivore population density and the biomass density. The actual predator–
prey model reads

dz

dt
=

growth
︷︸︸︷

rcyz −
death
︷︸︸︷

lz −
harvesting

︷ ︸︸ ︷

H(z; z0, Lmax, k),

dy

dt
=

growth
︷ ︸︸ ︷

qbxy −
consumption
︷︸︸︷

cyz −
death
︷︸︸︷

my −
harvesting

︷ ︸︸ ︷

H(y; y0, Hmax, p),

dx

dt
=

growth
︷ ︸︸ ︷

σ x(1 − x

K
) −

consumption
︷︸︸︷

bxy,

⎫
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⎪
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(1)

where we have specified the role of each term in this model. The biological interpre-
tation of the variables and parameters in (1) is summarized in Table 1.

The first term on the right hand side of the third equation in (1) models the food
resources for the herbivores, adjusted with the logistic growth which describes the
natural saturation of the biomass growth due to some kind of resource limitation. The
second term measures the reduction in the biomass caused by the herbivores. The
second equation in (1) is the herbivore predator equation, where the first term on the
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Table 1 The fundamental units are T for time (e.g., year ,month) and M for mass (e.g., tons, kg)

Variables/parameters Biological interpretation Measurement units

t Time T

z Top predator population density M

y Herbivore population density (predators) M

x Biomass density (preys) M

K Carrying capacity of the prey biomass M

σ Intrinsic growth rate for the biomass density T−1

b Consumption rate per herbivore animal M−1T−1

q Conversion efficiency coefficient for the
herbivores (with 0 < q < 1)

Dimensionless

m Intrinsic mortality rate of the herbivores T−1

c Consumption rate per predator animal M−1T−1

r Conversion efficiency coefficient for the top
predators (with 0 < r < 1)

Dimensionless

l Intrinsic mortality rate of the top predators T−1

� Relative harvesting rate per animal MT−1

Hmax Saturated harvesting rate of the herbivores MT−1

y0 Herbivore density for which the harvesting
rate is 1

2 H0

M

p Steepness parameter of the herbivore
harvesting rate function (with p > 1)

Dimensionless

Lmax Saturated harvesting rate of the top predators MT−1

z0 Top predator density for which the
harvesting rate is 1

2 L0

M

k Steepness parameter of the top predator
harvesting rate function (with k > 1)

Dimensionless

right hand side models the increase of the herbivore density per unit time. The second
term on the right hand side in this equation accounts for the depletion of herbivores per
unit time due to the fact that these animals act as food resources for the top predators.
The third term accounts for the natural mortality of the herbivores, whereas the last
term models the effect of harvesting by humans. Finally, the first equation is the top
predator equation. The first term on the right hand side of this equation represents the
increase per unit time of the top predators caused by the access of the food resources.
The second term takes care of the natural mortality of the top predators and the third
term accounts for harvesting of the top predators caused by humans. We specify the
harvesting rate H in the followingway: It constitutes a 3-parameter family of functions
given as

H(u; u0, H̃max, g) = H̃maxu�(u; u0, g),

�(u; u0, g) = ug−1

ug + ug0
,

⎫

⎪
⎬

⎪
⎭

(2)
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where u, H̃max ≥ 0, u0 > 0, g > 1. The parameter g is referred to as the steepness
parameter, whereas the parameter H̃max plays the role as the saturation level of the
harvesting rate, i.e.,

lim
u→∞ H(u; u0, H̃max, g) = H̃ (−)

max.

The parameter u0 which has the same dimension as u is a typical predator density
defined in the following way: It yields a harvesting rate which is half the saturation
level Hmax i.e.

H(u0; u0, H̃max, g) = 1

2
H̃max.

We refer to u0 as the characteristic density. The parameter g measures the steepness
of the harvesting rate for u ∼ u0 i.e.

H ′(u; u0, H̃max, g) ∼ g when u ∼ u0. (3)

The function � has a unique maximum point um with corresponding maximal value
�(um) given as

um = (g − 1)1/gu0, �(um) = 1

u0
· ϕ(g), ϕ(g) ≡ (g − 1)1−1/g

g
. (4)

Notice that the analytical structure of the harvesting rate functions is the same for the
carnivores and the herbivores. The replacement (u; u0, H̃max, g) = (z; z0, Lmax, k) in
(2) yields the harvesting rate function for the top predators, whereas the replacement
(u; u0, H̃max, g) = (y; y0, Hmax, p) in (2) produces the harvesting rate function for
the herbivores. The graph of the harvesting rate H is sketched in Fig. 1a for two
different values of the characteristic density u0 and the steepness parameter g. Greater
emphasis on carnivore protection is interpreted in thismodel as lowering the harvesting
saturation level of the top predators. Furthermore, we notice that a high value of the
steepness parameter k could be interpreted as a hunting practice where the animals are
more strictly protected if the population is below a certain threshold, but are subject
to a relatively extensive harvesting for z ∼ z0, see expression (3). This threshold or
characteristic density could be interpreted as a public population target for the top
predator species described in NEA (2022). In the forthcoming numerical studies we
have accounted for this by letting k = 8, z0 = 0.2 and p = 4, y0 = 0.4. In Fig. 1 we
show the graph of the harvesting rate function in these two cases. The blue coloured
graph in this figure signifies the harvesting rate for the top predators, whereas the red
coloured graph shows the harvesting rate for the herbivores. Furthermore, we will
examine impacts of varying the harvesting saturation level Lmax of the top predators
on the dynamical output from the model. To complete this we also show the graph
of the scaling function � for different values of the steepness parameter g and the
characteristic density u0 in Fig. 1b.
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Fig. 1 a The graph of the harvesting rate function H defined by (2) for H̃max = 1. b The graph of the
scaling function � defined by means of (2). Input parameters are given in Table 3

3 General Properties of theModel: Existence and Stability of
Equilibrium Points

In the Sects. 3.1–3.4 we explore in depth the properties of the model (1). We carry out
the analysis by making use of standard methods for dynamical systems as presented
in (Guckenheimer and Holmes 1983; Logan 1987) and numerical simulations.

3.1 Scaling and General Properties of theModel

We start by scaling the system (1) (Logan 1987) by introducing the non-dimensional
variables and parameters θ , η, ξ , τ , β, μ, ν, η0, γ and θ0 defined by

x(t) = K ξ(τ ), y(t) = Kη(τ), z(t) = K θ(τ ), τ = σ t,

β = bK

σ
, ν = Hmax

qbK 2 , μ = m

qbK
, y0 = Kη0,

ζ = cK

σ
,  = c

qb
, γ = l

rcK
, ε = Lmax

rcK 2 , z0 = K θ0.

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

(5)

We then get

dθ

dτ
= rζθH(θ, η, ξ ; γ, ε, θ0, k),

dη

dτ
= qβηG(θ, η, ξ ; ,μ, ν, η0, p),

dξ

dτ
= ξF(θ, η, ξ ;β),

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

(6)
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Table 2 The normalized predator–prey model (6)–(7)

Non-dimensional variables/parameters Biological interpretation

τ = σ t Dimensionless time

ξ = x
K Normalized biomass density (preys)

η = y
K Normalized herbivore predator biomass

θ = z
K Normalized top predator biomass

β = bK
σ Normalized consumption rate per herbivore animal

μ = m
qbK Normalized mortality rate of the herbivores

ν = Hmax
qbK 2 Normalized saturation level of the harvesting rate of

herbivores

η0 = y0
K Normalized typical herbivore density

p Steepness parameter of the herbivore harvesting rate
function (with p > 1)

q Conversion efficiency coefficient for the herbivores
(with 0 < q < 1)

ζ = cK
σ Normalized consumption rate per top predator

animal

γ = l
rcK Normalized mortality rate of top predators

ε = Lmax
rcK 2 Normalized saturation level of the harvesting rate of

top predators

θ0 = z0
K Normalized typical top predator density

k Steepness parameter of the top predator harvesting
rate function (with k > 1)

r Conversion efficiency coefficient for the top
predators (with 0 < r < 1)

 = c
qb Consumption rate of top predators versus the

effective consumption rate of the herbivores

from (1) where the functions H, G and F are defined as

H(θ, η, ξ ; γ, ε, θ0, k) ≡ η − γ − ε�(θ; θ0, k),

G(θ, ξ, η; ,μ, ν, η0, p) ≡ ξ − θ − μ − ν�(η; η0, p),

F(θ, η, ξ ;β) ≡ 1 − ξ − βη.

⎫

⎪
⎬

⎪
⎭

(7)

The interpretation of the non-dimensional quantities in the system (6)–(7) is summa-
rized in Table 2. We notice that the non-dimensional parameters β, μ, , ν and η0
are direct proportional to the consumption rate per herbivore animal (b), the intrinsic
mortality rate of the herbivores (m), the consumption rate per top predator animal (c),
the saturation level of the harvesting rate (Hmax) and the typical herbivore density y0,
respectively. The parameters γ , ε and θ0 in the top predator equation are as follows:
γ and ε measure the strengths of the mortality rate l and the saturated harvesting rate
Lmax of the top predators. θ0 represents the typical top predator density.We also notice
that  can be expressed as the ratio q−1 · ζ

β
where ζ = cK

σ
and β = bK

σ
model the nor-
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malized consumption rate per top predator animal and herbivore animal, respectively.
Finally, we have normalized the time t against the intrinsic logistic timescale σ−1

of the biomass, the biomass density x , the herbivore density y and the top predator
density z against the carrying capacity K of the biomass to get the non-dimensional
variables τ , ξ , η and θ .

Notice the following structural similarity of non-dimensional quantities in the sys-
tem (6)–(7):

• The normalized mortality rate μ (= m
qbK ) of the herbivores and the normalized

mortality rate γ (= l
rcK ) of the top predators.

• The normalized saturation level of the harvesting rate ν (= Hmax
qbK 2 ) of the herbivores

and the normalized saturation level of the harvesting rate ε (= Lmax
rcK 2 ) of the top

predators.
• The effective normalized consumption rate per herbivore animal qβ (= qbK

σ
)

in the herbivore equation and the effective normalized consumption rate per top
predator animal rζ (= rcK

σ
) in the top predator equation.

We expect that the magnitude of the ratio Lmax/Hmax is important when dealing with
management and harvesting regulation. By making use of Table 2 we observe that this
ratio can be expressed as

Lmax

Hmax
= ε

ν
r = ε

ν
· rc
qb

, (8)

which shows that this ratio is directly proportional to the ratio ε/ν. The proportionality
constant rc/qb is interpreted as the effective consumption rate per top predator animal
divided by the effective consumption rate per herbivore animal. Thus, the study of the
regime Lmax � Hmax translates into the regime ε � ν. It is less likely that one can
control the ratio rc/qb through human intervention, while the ratio ε/ν is interpreted
as a regulatory tool in our modelling framework. The upcoming analysis will also
show the significance of both the natural mortality (γ ) and the harvesting mortality
(ε) of the top predators. We will refer to the parameters γ and ε as the decimation
parameters of the top predators.

To summarize, due to the definition of the parameters listed in Table 2, we conve-
niently divide them into the following three groups:

• Group 1 which consists of q, β, μ, ν, η0 and p is termed the herbivore parameter
set.

• Group 2 which consists of r , ζ , γ , ε, θ0 and k is termed the top predator parameter
set.

• Group 3 consists of the parameter . The normalized consumption rate per top
predator is directly proportional to , i.e.,

ζ = qβ, (9)

with the effective consumption rate per herbivore qβ as a proportionality constant.
This means that  represents the degree of coupling between the herbivore popu-
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lation level and the top predator level. We therefore refer to this parameter as the
herbivore-top predator coupling parameter.

In Appendix D we prove that the solution of the initial value problem of the system
(6)–(7) exists, is unique and is bounded for all τ ≥ 0 (Theorem 3). Secondly, by
proceeding in a way analogous to Appendix A in Bergland et al. (2019), we conclude
that the system (6)–(7) satisfies the the positive invariance property or the positive
persistence property. This means that any orbit of the system (6)–(7) starting in the
first orthant of the θ, η, ξ -space remains in that part of the phase space (and will not
cross the coordinate planes in R

3). Thus the model under consideration possesses
the biologically sensible property that the biomass density, the herbivore population
density and the top predator population density will remain positive and bounded for
all t > 0.

In the forthcoming numerical simulations we will make use of the input parameters
listed in Set A, Set B and Set C in Table 3. These parameter values have been chosen
with the intention of highlighting the rich dynamical properties of the model, and as
confirmation of the general results. From the forthcoming analyse it follows that these
sets produce different numbers of equilibrium states and different dynamical features.

Remark 1 We observe the following notable features for the input parameters sets
listed in Table 3:

• For Set A we will show that we have coexistence of three equilibrium points
characterized by no top predators and three finite equilibrium points, see Table 5.

• Set B is characterized by an increased natural mortality rate of the top predators as
comparedwith Set A: The normalizedmortality rate γ of the top predator (Group 1
parameter) is increased from γ = 0.15 in set A to γ = 0.45 in set B. The outcome
here is three boundary equilibrium points characterized by no top predators and
two finite equilibrium points, see Table 5.

• Set C describes a scenario with more vigorous and healthy herbivores and at the
same time lower taxation of top predators, as compared to the situation modelled
by means of Set A. Set C appears by changing four of the parameters in Set A:
The normalized consumption rate β of the herbivores is increased from β = 0.1
to β = 0.15, and the normalized mortality rate μ of the herbivores is reduced
from μ = 0.45 to μ = 0.25. In addition, the consumption rate of top predators
versus the effective consumption rate of the herbivores (the coupling parameter
) is increased from  = 0.2 to  = 0.6. This increase may be caused by an
increase in the consumption rate per top predator animal c as compared with the
situation described by means of Set A. Finally, the normalized saturation level of
the top predator harvesting rate function, i.e., the Group 2 parameter ε is reduced
from ε = 0.5 to ε = 0.2. Here we will show that we get only one boundary
equilibrium point characterized by no top predators and three finite equilibrium
points, see Table 5. Notice also that the chosen changes in β and  also imply that
the normalized consumption rate per top predator animal ζ increases from 0.014
in Set A to 0.063 in set C .

Finally, we compute the ratio Lmax/Hmax given by the formula (8) for the three input
parameter sets in Table 3: Lmax/Hmax = 0.225 (Set A and Set B), Lmax/Hmax = 0.27
(Set C).
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3.2 Dynamics in the Boundary of the First Orthant

Considering the motion in the positive coordinate planes, i.e., when θ = 0, η = 0 and
ξ = 0, we notice that the model (6)–(7) restricted to each of these coordinate planes
possesses the positive invariance property in each of these planes.

Now we assume θ = 0. As expected our model in this case simplifies to the
herbivore—biomass model investigated in Bergland et al. (2019).

Then we consider the case η = 0. In that case the dynamical evolution is governed
by means of subsystem of decoupled ordinary differential equations

dθ

dτ
= −rζθ(γ + ε�(θ; θ0, k)),

dξ

dτ
= ξ(1 − ξ).

⎫

⎪
⎬

⎪
⎭

(10)

Now, since

0 ≤ �(θ; θ0, k) ≤ �(θm; θ0, k)

(

= (k − 1)1−1/k

kθ0

)

,

for all θ ≥ 0, we find the bounding inequality

−rζθ
[

γ + ε�(θm; θ0, k)
] ≤ dθ

dτ
≤ −rζγ θ,

for the derivative dθ
dτ

from (10). Hence it follows that the solution of the θ -equation is
bounded by exponentially decaying functions from both above and below, i.e.,

θ(0) exp
[− rζ

(

γ + ε�(θm; θ0, p)
)

τ
] ≤ θ(τ ) ≤ θ(0) exp

[− rζγ τ
]

,

in this case. Here θm ≡ zm/K denotes the maximum point of the function �(·; θ0, k),
see (4). We also observe that rζγ = l/σ . By restoring to the dimensional setting
we therefore find that the top predator mortality time scale 1/l is the typical time
scale for the decay of the top predator population. We conclude that θ(τ ) → 0+ as
τ → +∞. This indicates that with no herbivore population present, the top predator
population will finally go extinct. The biomass will evolve according to the standard
logistic equation, and hence the biomass will stabilize on the carrying capacity K .

Then we investigate the scenario with negligible biomass, i.e., with ξ ≈ 0. In that
case our governing system is approximated with the simplified 2D-system

d�

ds
= r�(� − γ − ε�(�; θ0, k)),

d�

ds
= −�(� + μ + ν�(�; η0, p))

,

⎫

⎪
⎬

⎪
⎭

(11)
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Fig. 2 The phase portrait of the non-biomass system (11). Blue curves are the orbits of this system. The red
dashed curve is the graph of the nullcline (13). The input parameters are given by Set A in Table 3 (Color
figure online)

by making use of the rescaling

s = qβτ, θ(τ ) = �(s), η(τ ) = �(s), (12)

and the fact that r = rζ
qβ

. From the second equation we notice that � is a mono-
tonically decreasing function of s. The behavior of the dynamical system can thus be
summarized by means of the phase portrait of the autonomous dynamical system. The
nullcline

� = γ + ε�(�; θ0, k), (13)

of this system plays an essential role in the behavior of this system: Let A denote the
subset

A = {(�,�) ∈ R
2+; � > γ + ε�(�; θ0, k)},

of the first quadrant in the �,�-plane. If we choose the initial value condition
(�(0),�(0)) such that (�(0),�(0)) ∈ A, the dynamical system (11) predicts an
increase in top predator level and a decrease in the the herbivore population in the
initial phase of the temporal evolution. The top predator population attains its maxi-
mum in finite time corresponding to a vertical crossing of the orbits with the nullcline
(13) before a decline in the top predator population sets in. In the final stage of the
evolution (i.e., when τ → +∞) we find that both θ and η approach zero. The phase
plane analysis of the system (11) is summarized in Fig. 2.
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3.3 Equilibrium Points of theModel

3.3.1 Boundary Equilibrium Points

On the boundary of the positive orthant in the θ, η, ξ -space the points P0 = (0, 0, 0)
and P1 = (0, 0, 1) are equilibrium states. In addition, we have at least one equilibrium
point of the type P∗ = (0, η∗, ξ∗) provided 0 ≤ μ ≤ 1 where the coordinates η∗ and
ξ∗ are determined by the procedure outlined in Bergland et al. (2019). For the sake of
completeness we recall this procedure here: η = η∗ is a zero of the function� defined
by

�(η;β,μ, ν, η0, p) ≡ P(η;β) − Q(η;μ, ν, η0, p), (14)

where

P(η;β) ≡ 1 − βη, (15)

Q(η;μ, ν, η0, p) ≡ μ + ν�(η; η0, p). (16)

Note that the function � has no zeros if μ > 1, whereas � has at least one zero in
the interval (0, 1/β) when 0 ≤ μ ≤ 1. The maximal number of zeros of � in this
interval is three. The equilibrium point P∗ merges together with P1 when μ → 1−.
We summarize the existence theory for the equilibrium states P∗ = (0, η∗, ξ∗) in
Table 4. Here

Qm ≡ Q(ηm;μ, ν, η0, p) = μ + ν

η0
· ϕ(p), ϕ(p) ≡ (p − 1)1−1/p

p
, (17)

where ηm ≡ (p − 1)1/pη0 is the maximum point of Q, see (4). We have detailed the
properties of the function � in Appendix A. Table 4 outlines the main results of this
investigation. When selecting the herbivore parameters β, μ, ν, η0 and p as in Table 3
we readily find that

η∗
1 = 0.3462, η∗

2 = 1.1955, η∗
3 = 3.2812, 1/β = 10 (Sets A, B), (18)

η∗ = 4.3930, 1/β = 6.67 (Set C), (19)

by using the procedure detailed in Appendix A3

3.3.2 Positive Equilibrium Points

We investigate the possibility of having equilibrium points in the interior of the first
orthant in the θ, η, ξ -space, i.e., points Pe = (θe, ηe, ξe) for which θe, ηe, ξe > 0. We

3 Note that (η∗, ξ∗) denote the interior equilibrium points of the first quadrant as detected in Bergland et al.
(2019).
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Table 4 The number of boundary equilibrium points P∗ = (0, η∗, ξ∗) as a function of the normalized
consumption rate β in the regime 0 ≤ μ < 1 for the normalized mortality rate of the herbivores

Maximal value ofQ Range of β Number of boundary equilibrium points P∗

Qm > 1 β > βcr 1

β = βcr 2

0 < β < βcr 3

Qm ≤ 1 β > βcr ,2 1

β = βcr ,2 2

βcr ,1 < β < βcr ,2 3

β = βcr ,1 2

0 < β < βcr ,1 1

See Appendix 1 for details

refer to such equilibrium points as positive equilibrium points. If positive equilibrium
points Pe exist, they must satisfy the system of equations

H(θe, ηe, ξe; γ, ε, θ0, k) = 0, (20)

G(θe, ηe, ξe; ,μ, ν, η0, p) = 0, (21)

F(θe, ηe, ξe;β) = 0. (22)

We readily find that this system is equivalent with the set of equations

θe = V (ηe) ≡ 1


�(ηe;β,μ, ν, η0, p) = 1



[

1 − βηe − μ − ν�(ηe; η0, p)
]

, (23)

ηe = U (θe) ≡ Q(θe; γ, ε, θ0, k) ≡ γ + ε�(θe; θ0, k), (24)

ξe = P(ηe;β) ≡ 1 − βηe. (25)

Here the function� is defined bymeans of (14). The functionU has a globalmaximum
point θe = θm = (k−1)1/kθ0 and a global minimum point at θe = 0. HenceU satisfies
the bounding inequality

γ ≤ U (θe) ≤ ηmax for all θe ≥ 0,

where

ηmax ≡ U (θm) = γ + ε�(θm; θ0, k) = γ + ε

θ0
· ϕ(k), ϕ(k) ≡ (k − 1)1−1/k

k
,

(26)

which by appealing to (24) means that a necessary condition for the existence of a
positive equilibrium point Pe is that the ηe-coordinate of Pe satisfies the localization
requirement

γ ≤ ηe ≤ ηmax. (27)
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Mark the role of the parameter ηmax: This parameter is a linear function of ε, i.e., the
normalized saturation level of the harvesting rate of top predators ε. This means that
this parameter takes care of the impact of both the mortality (γ ) and harvesting of the
top predators (ε).

According to (26), the width of the interval VU defined by

VU ≡ [γ, ηmax], (28)

can be expressed in terms of the top predator maximal and normalized harvesting ratio
ε/θ0 and the steepness parameter k of the top predator harvesting rate function, i.e.,

m(VU ) ≡ ηmax − γ = ε

θ0
· ϕ(k). (29)

Interestingly, we find that ϕ(k) → 1− when k → 1+ and k → +∞, whereas ϕ

possesses a global minimum point at k = 2 with a corresponding global minimum
value given as ϕ(2) = 1/2, from which it follows that the width of the interval VU

obeys the bounding inequality

1

2
· ε

θ0
≤ m(VU ) ≤ ε

θ0
, (30)

for all k > 1. Thus we conclude that the maximal value of the scaling function � of
the top predator harvesting rate determines the width of the interval VU . This means
that the impact of the top predators on the positive equilibrium problem is taken care
of by means of this interval.

Next, we explore the role of VU : In order to have θe > 0 we must require that
the condition �(ηe;β,μ, ν, η0, p) > 0(⇔ P(ηe;β) > Q(ηe;μ, ν, η0, p)). We first
notice that �(ηe;β,μ, ν, η0, p) ≤ 0 for ηe ≥ 1/β. Next, let us introduce the set D�

defined as

D� = {ηe; �(ηe;β,μ, ν, η0, p) > 0, 0 ≤ ηe < 1/β}. (31)

We readily observe that the η-coordinates of the positive equilibrium points Pe belong
to the subset I defined as

I ≡ VU ∩ D�. (32)

Now, by making use of (23) and (24) we end up with the equation

W (ηe) = 0, (33)

in ηe where the function W : I → R is the composite function defined by

W (ηe) ≡ [I −U ◦ V
]

(ηe) = ηe −U (V (ηe)). (34)
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Here I is the identity mapping, i.e., I (ηe) = ηe. We conclude that if a positive equilib-
rium point Pe exists, then the ηe-coordinate of Pe satisfies (33)–(34) and is confined
to the interval I, where it is tacitly assumed that I is non-empty.

We start by using these constraints to derive the following non-existence results for
equilibrium states:

• Forμ ≥ 1,we find that the function V defined bymeans of (24) satisfies V (ηe) ≤ 0
for all ηe ≥ 0. This means that D� = ∅ from which it follows that I = ∅. Hence
we have no interior equilibrium states in this case. Notice that this conclusion is
exactly the same result as we got for the herbivore—biomass model investigated
in Bergland et al. (2019).

• Let us consider the regime 0 ≤ μ < 1. We fixate the Group 1 parameters (the
herbivore parameters) to be given as for example in Table 3 and explore the issue of
existence and non-existence of positive interior equilibrium points as a function of
the normalized mortality rate of the top predators γ and the decimation parameter
ηmax. The function � has at least one positive zero and maximum three positive
zeros. These zeros are always strictly less than 1/β. See also Appendix A In
the phase plots in Fig. 3 we have identified regimes in the γ, ηmax-parameter
plane for which we will not get positive equilibrium states: Red (green) coloured
regions in the γ, ηmax-parameter plane correspond to � < 0 (� > 0). For a given
γ ∈ (0, 1/β), the interval VU is represented by a line segment which is parallel
to the ηmax-axis and which starts at the line ηmax = γ . Note that the condition
ηmax = γ models the situation with no harvesting of the top predators (ε = 0). In
that situation the decimation of this type of predators is only caused by the natural
mortality. For line segments which are totally located in the red regions, we will
get θe ≤ 0 by appealing to (24). Hence the interval I defined by means of (32) is
empty. In this case we will have no positive equilibrium states. We also conclude
that a necessary condition for the existence of positive equilibrium states is that
parts of the vertical line segment corresponding to the interval VU = [γ, ηmax]
are located in the green sketched regions (which means that the interval I is non-
empty). In this investigation we have chosen to use the Group 1 parameters in
Table 3. Notice that Set A and Set B in Table 3 will give rise to line segments of
the type labeled by A and B in Fig. 3b. For Set C , we get a vertical line segment
of the type labeled with C in Fig. 3c. Finally, notice that the outcomes of Fig. 3
yield bounds on the coordinates of the possible positive equilibrium points.

In order to pursue the problem of detecting positive equilibrium points we must
take into account the properties of the function � defined by means of (14), together
with the results summarized in phase plots of the types demonstrated in Fig. 3.

Let us look at a scenario corresponding to the parameter regimes (β > βcr , Qm > 1)
or (β > βcr ,2, Qm ≤ 1), which means that the function� has unique zero η∗. Assume
that γ < η∗. In this case the subinterval I defined by means of (32) is non-empty. We
readily find that

W (γ ) = γ −U (V (γ )),

W (ηmax) = ηmax −U (V (ηmax)),
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Fig. 3 Existence/non-existence of positive equilibrium states Pe as a function of (γ, ηmax) ∈ BA,B where
BA,B ≡ {(γ, ηmax) ∈ R

2+, 0 ≤ γ ≤ 1/β, γ ≤ ηmax ≤ 1/β}. The input parameters are the herbivore
(Group 1) parameters andQm in Set A and Set B in Table 3 for which η∗

1, η
∗
2 and η∗

3 are given by (18). The
set BA,B is shown in (a). The phase plot in (b) is a magnified version of the subset of BA,B with a yellow
boundary curve. The interval VU = [γ, ηmax] for Set A and Set B is represented by means of vertical line
segments (blue color) of the type labeled with A and B in (b). The η-coordinates of the positive equilibrium
points listed in Table 5 are marked with dots. c Existence/non-existence of positive equilibrium states Pe
as a function of (γ, ηmax) ∈ BC where BC ≡ {(γ, ηmax) ∈ R

2+, 0 ≤ γ ≤ 1/β, γ ≤ ηmax ≤ 1/β}. The
input parameters are the herbivore (Group 1) parameters andQm in Set C in Table 3 for which η∗ is given
by (19). The interval VU = [γ, ηmax] for Set C is represented by means of vertical line segments (blue
colour) of the type labeled with C . The η-coordinates of the positive equilibrium points listed in Table 5
are marked with dots. For further explanation, see the main text (Color figure online)

and that

W (η∗) = η∗ −U (0) = η∗ − γ > 0, W (0) = −U (−1(1 − μ)) < 0. (35)

Since W is continuous, we will have W (ηe) < 0 for ηe in some interval about ηe = 0
and W (ηe) > 0 for ηe in some interval about ηe = η∗. The intermediate value
theorem for continuous functions implies in this case that there is at least one η∗

e ∈
I = (γ, ηmax) for γ close to zero and ηmax close to η∗ such thatW (η∗

e ) = 0. Next, let
us address the uniqueness issue for the positive equilibrium states. Simple computation
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reveals by using the chain rule that

W ′(ηe) = 1 −U ′(V (ηe))V
′(ηe)

= 1 − −1ε�′(V (ηe); θ0, k)�
′(ηe;β,μ, ν, η0, p). (36)

We have made use of the fact that �′(ηe;β,μ, ν, η0, p) = −β − ν�′(ηe; η0, p).
Hence, since �′(ηe; η0, p) > 0 on the interval [0, η∗], �′(ηe;β,μ, ν, η0, p) < 0
on this interval. We also observe that the function V maps the interval [0, η∗] onto
the interval [0, 1


(1 − μ)]. Thus, if U ′(θe) ≥ 0 for all 0 ≤ θe ≤ 1


(1 − μ), we get

that W ′(ηe) > 0 on the interval [0, η∗], which means that W is strictly increasing on
this interval. We conclude that the equation (33) has a unique solution in the interval
(0, η∗).

Notice that this existence and uniqueness result for interior equilibrium states also
holds true for the regimes Qm > 1, 0 < β < βcr and Qm < 1, βcr ,1 < β < βcr ,2
on the interval [0, η∗

1] for which we have �′(ηe; η0, p) > 0 and U ′(θe) ≥ 0 for all
0 ≤ θe ≤ 1


(1 − μ) and with γ close to zero and ηmax close to η∗

1.
Let us next investigate a scenario for which we are in the regime 0 < β < βcr ,

Qm > 1 or in the regime βcr ,1 < β < βcr ,2, Qm ≤ 1. Assume that η∗
2 < γ < η∗

3. In
this case the interval I is non-empty, and we get

W (η∗
2) = η∗

2 −U (0) = η∗
2 − γ < 0,

W (η∗
3) = η∗

3 −U (0) = η∗
3 − γ > 0.

The usage of the intermediate value theorem of continuous functions again shows that
the function W has at least one zero in the open interval (η∗

2, η
∗
3). For the limiting

cases γ → η∗
2 and ηmax → η∗

3, we thus conclude that there is at least one positive
equilibrium point Pe for which the η-coordinate is confined to the interval (η∗

2, η
∗
3).

This serves as the starting point for detecting positive equilibrium states Pe for which
the ηe-coordinates belong to this interval.

In order to detect positive equilibrium states Pe in parameter regimes for which we
theoretically cannot predict the existence of such states we resort solely on numerical
simulations.

3.4 Stability of the Equilibrium Points

The vector field F defining the dynamical system (6) is given as

F(x) =
⎡

⎣

rζθH(θ, η, ξ ; γ, ε, θ0, k)
qβηG(θ, η, ξ ; ,μ, ν, η0, p)

ξF(θ, η, ξ ;β)

⎤

⎦ , x =
⎡

⎣

θ

η

ξ

⎤

⎦ . (37)
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The Jacobian DxF of this vector field is given as

DxF =
⎡

⎣

rζ(H + θHθ ) rζθHη rζθHξ

qβηGθ qβ(G + ηGη) qβηGξ

ξFθ ξFη F + ξFξ

⎤

⎦ , (38)

where we for the sake of convenience use the abbreviations

H ≡ H(x; γ, ε, θ0, k), G ≡ G(x; ,μ, ν, η0, p), F ≡ F(x;β)

and the short form notation

Hθ ≡ ∂H
∂θ

, Hη ≡ ∂H
∂η

Hξ ≡ ∂H
∂ξ

, Gθ ≡ ∂G
∂θ

, Gη ≡ ∂G
∂η

,

Gξ ≡ ∂G
∂ξ

, Fθ ≡ ∂F
∂θ

, Fη ≡ ∂F
∂η

, Fξ ≡ ∂F
∂ξ

,

for the partial derivatives. For the purpose of assessing the stability of the equilibrium
points, we evaluate DxF at these points.

3.4.1 Stability of the Boundary Equilibrium Points

The Jacobian evaluated at the equilibrium point P0 = (0, 0, 0) is given as the diagonal
matrix

DxF(P0) =
⎡

⎣

−rζγ 0 0
0 −qβμ 0
0 0 1

⎤

⎦ . (39)

The eigenvalues are λ1 = −rζγ < 0, λ2 = −qβμ < 0 and λ3 = 1 > 0.We conclude
that P0 is always unstable.

For the equilibrium point P1 = (0, 0, 1) we get the Jacobian

DxF(P1) =
⎡

⎣

−rζγ 0 0
0 qβ(1 − μ) 0
0 −β −1

⎤

⎦ , (40)

with the eigenvalues λ1 = −rζγ < 0, λ2 = qβ(1 − μ) and λ3 = −1 < 0. Hence P1
is asymptotically stable when μ > 1 and unstable when 0 ≤ μ < 1. The transition
point μ = 1 is static codimension 1 bifurcation point. The stability assessment based
on linearization is inconclusive in this case.

Finally, we investigate the stability of the boundary equilibrium point P∗. Recall
that equilibrium points of this type exist provided 0 ≤ μ ≤ 1. We readily find that the
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Jacobian evaluated at this equilibrium point reads

DxF(P∗) =
⎡

⎣

rζ(η∗ − γ ) 0 0
−qβη∗ −qβη∗ν�′(η∗; η0, p) qβη∗

0 −βξ∗ −ξ∗

⎤

⎦ , (41)

where γ is defined by (26). The eigenvalues of DxF(P∗) are given by

λ1 = rζ(η∗ − γ ),

λ± = 1

2

[

tr(J2) ±
√

(tr(J2))2 − 4det(J2))
]

,

⎫

⎬

⎭

(42)

where J2 is the 2 × 2-matrix

J2 =
[−qβη∗ν�′(η∗; η0, p) qβη∗

−βξ∗ −ξ∗
]

. (43)

Note that J2 is the stability matrix derived in Bergland et al. (2019) for the purpose
of assessing the linear stability of the equilibrium states (η∗, ξ∗). Based on (3.4.1) we
arrive at the following conclusions regarding the stability of the boundary point P∗:

• If γ < η∗, we find that λ1 > 0 from which it follows that P∗ is unstable.
• If γ > η∗, we will have λ1 < 0. In this case the stability properties of P∗ can be
inferred directly from the stability analysis of the equilibrium states (η∗, ξ∗).

• The transition state γ = η∗ corresponds to a non-hyperbolic equilibrium point
P∗ = (0, γ, 1− βγ ) for which the stability assessment based on the linearization
procedure is not applicable. We do not pursue a detailed analysis of this state.

We have summarized the stability properties of the three equilibrium points P∗
1 , P

∗
2

and P∗
3 as a function of the normalized mortality parameter γ in Fig. 4a for the cases

Qm > 1, 0 < β < βcr and Qm ≤ 1, βcr ,1 < β < βcr ,2.

3.4.2 Stability Assessment of the Positive Interior Equilibrium Points

The stability assessment of a positive interior equilibrium point Pe = (θe, ηe, ξe)

proceeds in the following way:

• Compute W ′(ηe) given by (36). If W ′(ηe) < 0, Pe is unstable, see Theorem 1 in
Appendix C.

• AssumeW ′(ηe) > 0. Then the stability assessment is based on the Routh–Hurwitz
criterion (or equivalently direct exploration of the spectral properties of the corre-
sponding Jacobian DxF(Pe)). According to Theorem 2 inAppendix C, the positive
equilibrium state Pe = (θe, ηe, ξe) is asymptotically stable if θe, ηe satisfies the
bounding inequalities

0 < θe ≤ (k − 1)1/kθ0, 0 < ηe ≤ (p − 1)1/pη0. (44)
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Fig. 4 a Summary of the stability properties of the three boundary equilibrium states P∗
1 , P

∗
2 and P∗

3 as a
function of the normalized mortality parameter γ . Dotted lines correspond to unstable equilibrium points,
whereas bold line means asymptotically stable equilibrium points. The parameter regimes are 0 < β < βcr ,
Qm > 1 and βcr ,1 < β < βcr ,2, Qm ≤ 1. Here η∗

1, η∗
2 and η∗

3 are the three zeros of the function �. b
Summary of the properties of the existence and stability of the equilibrium states P∗ and Pe as a function
of the normalized mortality parameter γ in the regimes β > βcr , Qm > 1 and β > βcr ,2, Qm ≤ 1. Here
η∗ is the unique zero of the function �. Blue bold lines represent asymptotically stable equilibrium points,
blue dashed line represents unstable equilibrium points, whereas red bold line represents non-existence of
equilibrium points (Color figure online)

Notice that the bounding inequalities in (44) are a sufficient condition for the
asymptotic stability of the corresponding interior equilibrium point Pe. However,
it does not a provide a necessary condition for asymptotic stability. Thus an interior
equilibrium point Pe can be asymptotically stable even if the condition (44) is
violated.

Notice that we will have Pe → P∗ = (0, η∗, 1 − βη∗) and DxF(Pe) → DxF(P∗)
when γ → η∗. This limit represents a non-hyperbolic equilibrium point for which
one of the eigenvalues of the Jacobian DxF(P∗) is 0. A stability assessment based on
spectral properties of this Jacobian is not applicable. For the caseβ+ν�′(η∗; η0, p) <

0 (corresponding to �′(η∗;β,μ, ν, η0, p) > 0), one of the eigenvalues is strictly
positive. According to Shoshitaishvilis theorem, the actual non-hyperbolic point P∗
is unstable in this case.4 We do not pursue any further analysis of the stability problem
for the non-hyperbolic case corresponding to β + ν�′(η∗; η0, p) > 0.

The generic picture which emerges in the parameter regimes 0 ≤ μ < 1, γ < η∗
when Qm > 1, β > βcr and Qm ≤ 1, β > βcr ,2 is the existence of a unique
boundary equilibrium point P∗. The situation can be described as follows: For γ < η∗,
the boundary equilibrium points P0, P1 and P∗ are all unstable. Moreover, let us
assume that we have an interior positive equilibrium point Pe for which the θe-and
the ηe-coordinates satisfy the bounding inequalities (44). This equilibrium state is
asymptotically stable. When γ → η∗, Pe merges together with P∗, where the limiting
equilibrium point becomes non-hyperbolic. For the case γ ≥ η∗, P0 and P1 remain
unstable, whereas P∗ is converted to an asymptotically stable equilibrium point. In this
regime no positive interior equilibrium points Pe ceases to exist. Figure 4b summarizes

4 See for example Chapter 6 in Arnold (1988)
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Table 5 Coexistence and stability of boundary and positive equilibrium points as a function of the input
parameter sets in Table 3

Parameters Equilibrium point θe ηe ξe Stability

Set A P∗
1 0 0.3462 0.9654 Unstable

P∗
2 0 1.1955 0.8805 Unstable

P∗
3 0 3.2812 0.6719 Unstable

Pe,1 0.1386 0.3326 0.9667 Asymptotically stable

Pe,2 0.2151 1.6413 0.8359 Unstable

Pe,3 0.2469 1.8584 0.8142 Asymptotically stable

Set B P∗
1 0 0.3462 0.9654 Asymptotically stable

P∗
2 0 1.1955 0.8805 Unstable

P∗
3 0 3.2812 0.6719 Unstable

Pe,2 0.1928 1.5578 0.8442 Unstable

Pe,3 0.2455 2.1557 0.7844 Asymptotically stable

Set C P∗
1 0 4.3930 0.3411 Unstable

Pe,1 0.1814 0.4961 0.9256 Asymptotically stable

Pe,2 0.2040 0.6792 0.8981 Unstable

Pe,3 0.2768 0.8226 0.8766 Unstable

Notice that we here use the notation ηe and ξe for the coordinates of the boundary equilibrium points (instead
of η∗ and ξ∗). For the boundary equilibrium points the stability assessment is based on the eigenvalues (42)
of the Jacobian (41), and the subsequent stability discussion

the stability properties of P∗ and the existence and stability properties of Pe as a
function of the normalized mortality rate γ .

The modelling framework also permits more complex scenarios such as coex-
istence of boundary equilibrium points and positive interior equilibrium points. In
the remaining part of the present paper we will give examples of such scenarios.
Table 5 contains numerical examples of this coexistence problem together with the
stability properties of the detected equilibrium states. The input parameters under-
lying the computations leading to these results are given as Set A, Set B and
Set C in Table 3. For the Set A, the ordering of the boundary equilibrium points
P∗
i = (0, η∗

i , ξ
∗
i ) and the positive interior equilibrium points Pe,i = (θe,i , ηe,i , ξe,i )

satisfies γ < ηe,1 < η∗
1 < ηm < η∗

2 < ηe,2 < ηe,3 < ηmax < η∗
3. For Set B we get

the ordering η∗
1 < γ < ηm < η∗

2 < ηe,2 < ηe,3 < ηmax < η∗
3, whereas for Set C we

have γ < ηe,1 < ηm < ηe,2 < ηe,3 < ηmax < η∗
1 ≡ η∗, see the phase plots in Fig. 3.

The outcome regarding the stability analysis is also given in Table 5.

Remark 2 Noticing that ηm ≡ (p − 1)1/pη0 = 0.526 and θm ≡ (k − 1)1/kθ0 = 0.255
for the input parameters in Table 3, we have made use of the bounding inequalities
(44) (see Theorem 2 in Appendix C) to prove that the positive interior equilibrium
point Pe,1 (for Set A and Set C) is asymptotically stable. The asymptotic stability of
Pe,3 for Set A and Set B follows from direct numerical computation of the eigenvalues
of the corresponding Jacobian (C6): The real part of all these eigenvalues is strictly
negative. The negativity of the constant term a3 in the characteristic polynomial (C8)
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(see Theorem 1 in Appendix C ) implies instability of the positive interior equilibrium
points Pe,2 (for Set A and Set C), whereas the instability of Pe,2 (for Set B) and
Pe,3 (for Set C) is shown by direct numerical exploration of the spectral properties
of the corresponding Jacobian (C6). Here we notice that we do not cover all possible
equilibrium and stability scenarios for the present modelling framework.

Remark 3 The global stability issue can be resolved provided onemanages to construct
a Liapunov function of a special form, which serves as a sufficient condition for the
global stability problem. To extend the local asymptotically stability results of interior
equilibrium points in our model to global results is a challenging problem, however.
Several factors have to be taken into account: First of all, the number of interior
equilibrium points and their respective stability properties turn out to be complicated
functions of the input parameters. Each stable equilibrium state of this type divides the
phase space into different attractor basins, which means that the existence of globally
stable equilibrium state is precluded. Even in the case of a unique stable interior
equilibrium point a necessary condition for this equilibrium state to be globally stable
is the absence of asymptotically stable boundary equilibrium points. The analytical
results and the numerical simulation reveal that the existence and the stability of
equilibrium points as a function of the input parameters is a rather complicated issue.
We do not pursue this stability issue here, however.

4 Equilibrium States and Dynamical Evolution

In this section we detail the dynamical evolution of the system (6) in the first orthant
of the phase space numerically. We use Set A and Set B in Table 3 as input parameters
in these simulations except that we vary the normalized mortality rate μ. The focus
here is on the role of the detected equilibrium points and their respective stability
properties in the dynamical evolution. As we have no interior equilibrium points for
μ ≥ 1, whereas we for the complementary case 0 ≤ μ < 1 have detected such
equilibrium states, we treat these two cases separately (Sects. 4.1 and 4.2).

4.1 The High Herbivore Mortality Regime:� ≥ 1

We first detail numerically the temporal evolution of the state variables θ , η and ξ

when the normalized mortality rate μ of the herbivores is greater than 1. According to
Sect. 3.3.1 thismeans that we are investigating a regime for which the only equilibrium
points are given as P0 = (0, 0, 0) and P1 = (0, 0, 1). We restrict ourselves to Set A in
Table 3 as input parameters in these simulations except that we increase μ to be given
as μ = 1.1. The outcome of the numerical run which is summarized in Fig. 5, show
that the integral curve of the governing system settles down on the asymptotically
stable equilibrium state P1, after an initial transient phase. We have also carried out
numerical runs using Set B and Set C in Table 3 as input parameters. These runs all
show the same feature as in Fig. 5. We therefore conjecture that any integral curve
starting in the first orthant of the phase space will finally be attracted towards the
asymptotically stable equilibrium point P1. By restoring to the dimensional variables
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Fig. 5 Integral curves of the system (6)–(7) in the case of high mortality rate for the herbivores. Parameter
set A in Table 3, except for μ = 1.1

and parameters we conclude that the herbivores and the top predators go extinct in
this case whereas the biomass approaches the carrying capacity K .

4.2 The Low andModerate Herbivore Mortality Regime: 0 ≤ � < 1

We next examine the regime 0 ≤ μ < 1. The analysis of the existence of equilibrium
states and their respective stability properties in the previous subsection shows that the
modelling framework possesses a rich and complex variety of dynamical phenomena.
In this subsection we will detail numerically the dynamical evolution of the state
variables when the input parameters in our computations are given as Set A and
Set B in Table 3. Set A generates two stable interior equilibrium states, whereas all
boundary equilibrium states without top predators are unstable. Set B generates one
stable interior equilibrium states, and one stable boundary equilibrium state.

We consider a sequence of time dependent outcomeswhen using the Set A in Table 3
as input parameters. The results of this investigation are summarized in Fig. 6. This
figure shows the evolution of the population densities for different initial condition.
For Fig. 6a we have selected as initial condition a perturbation in the θ -direction of the
unstable boundary equilibrium point P∗

2 , whereas for Fig. 6bwe have chosen the initial
condition as a perturbation in the θ -direction of the unstable boundary equilibrium
point P∗

3 . In both cases we observe that in the final stage we get a saturation of all
the population levels at a level given by the asymptotically stable equilibrium state
Pe,1. The first phase of the development in Fig. 6a consists of plateaus in all the
population densities. In the next phase we observe an increase in the top predator level
accompanied by a significant decimation of the herbivore population. The biomass
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Fig. 6 Integral curves of the system (6)–(7), for Set A in Table 3 as input parameters, are attracted towards the
interior equilibrium point Pe,1 = (0.1386, 0.3326, 0.9667). aThe initial condition is given as a perturbation
of the unstable equilibrium point P∗

2 in the θ -direction. b The initial condition is given as a perturbation of
the unstable equilibrium point P∗

3 in the θ -direction

level experiences a slight increase in this phase. In the final stage we get a saturation
of all the population levels at a level given by the asymptotically stable equilibrium
state Pe,1. In Fig. 6b we again observe a plateau formation in the initial stage of the
development of all the population levels. The intermediate phase starts with a slow
growth in top predator level together with a decrease in the herbivore level. Moreover,
in this phase we observe a significant growth and formation of a peak in the top
predator population level together with a rapid decrease in the herbivore population.
When the top predators density decreases, the herbivore population will experience
a modest increase before it saturates on a constant level. The decrease in herbivore
level is accompanied by a slow growth in the biomass which finally settles down on
a constant level. The final stage thus consists of a stabilization at population levels
which are determined by the asymptotically stable equilibrium Pe,1. We conclude that
the unstable equilibrium points P∗

2 and P∗
3 both belongs to the attraction basin of Pe,1.

Next, we investigate some numerical outcomes when using Set B in Table 3 as
input parameters. In Fig. 7a we have chosen an initial condition in the vicinity of of
the unstable boundary equilibrium point P∗

2 characterized by a small perturbation in
the θ -coordinate. We observe a plateau formation in the initial phase of the herbivore-
and the biomass level, before the stabilization sets in in the next phase. The latter phase
is characterized by a lower herbivore level and a slightly higher level in the biomass
density. A notable feature in the initial phase is that the top predator level grows and
attains a maximum before it slowly decays to the zero level, which means that the
top predators go extinct. We observe that the top predator level will be very small as
compared to the herbivore-biomass level in this process. The final stabilizing level is
determined by the asymptotically stable boundary equilibrium point P∗

1 .
In Fig. 7b we demonstrate the numerical outcome when selecting the initial condi-

tion as a perturbation of the equilibrium point P∗
3 in the θ -direction. Initially we get

a short plateau formation phase in all the population densities, followed by a phase
wherewe get a sharp drop in the herbivore level to a lower saturating level. The biomass
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Fig. 7 Integral curves of the system (6)–(7), for Set B in Table 3 as input parameters, are attracted towards
the asymptotically stable boundary equilibrium point P∗

1 = (0, 0.3462, 0.9654), see Table 5. a The initial
condition is given as a perturbation of the unstable equilibrium point P∗

2 in the θ -direction. b The initial
condition is given as a perturbation of the unstable equilibrium point P∗

3 in the θ -direction

exhibits a moderate increase before it saturates at a higher level. Interestingly, the top
predator level increases and attains a maximum in this second intermediate phase and
then decreases slowly to zero. The final saturating levels of the population densities
are determined by the asymptotically stable boundary equilibrium point P∗

1 .
From Fig. 7 we conclude that the unstable equilibrium points P∗

2 and P∗
3 both

belongs to the attraction basin of P∗
1 . Moreover, we compare the evolution shown in

Fig. 6 with the evolution shown in Fig. 7, where the only difference consists of a higher
natural mortality of top predators for Set B compared to Set A. The initial conditions
used in the numerical runs are the same for both figures, i.e., as a perturbation of the
equilibrium points P∗

2 and P∗
3 in the θ -direction. For the outcome of Set A (depicted in

Fig. 6) we get a saturation level given by the asymptotically stable interior equilibrium
state Pe,1 which means that the top predators survive. Assuming increased mortality
of the top predators as given in Set B (with the outcome depicted in Fig. 7), we get
a saturation given by the asymptotically stable boundary equilibrium state P∗

1 which
means an extinction of the top predators.

5 Local Structural Stability in the Limit � → 0, Hopf- and Saddle Node
Bifurcations

Anotable feature of the herbivore part of the input parameters listed in SetC in Table 3
is a lower normalized herbivore mortality rate μ as compared with Set A and Set B in
Table 3. We have shown that this leads to a scenario with one boundary equilibrium
point and three interior equilibrium point, see Table 5. In this section we also use Set
C as input parameters, except that we will vary the decimation parameters γ and ε

for the top predators. We will focus on the dynamical output as a function of these
two parameters. We study the local structural stability of our modelling framework
in the limit ε → 0 (Sect. 5.1) as well the occurrence of Hopf bifurcations using
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the normalized mortality rate γ as a control parameter (Sect. 5.2). In the numerical
exploration of these phenomena we vary γ and permit ε to be small.

5.1 The Asymptotic Limit� → 0:Weak Top Predator Taxation

The condition 0 ≤ ε � 1 translates into the parameter regime Lmax � rcK 2 when
restoring to the dimensional parameters, see Table 2. This means that the saturated
maximal harvesting rate of the top predators, Lmax, is much smaller than the reference
harvesting rate rcK 2. The regime 0 ≤ ε � 1 is in accordance with (8) also of
particular interest when implementing a wildlife management strategy for protection
of carnivore populations where Lmax � Hmax.

This serves as a motivation for a study of the dynamical features in the regime
0 ≤ ε � 1. The modelling framework (6)–(7) can be decomposed to the vector form
as

dx
dτ

= F0(x) + εF1(x), x =
⎡

⎣

θ

η

ξ

⎤

⎦ , (45)

where the vector fields F0 and F1 are given as

F0(x) =
⎡

⎣

rζθH0(θ, η, ξ ; γ )

qβηG0(θ, η, ξ ; ,μ, ν, η0, p)
ξF0(θ, η, ξ ;β)

⎤

⎦ ,

F1(x) =
⎡

⎣

rζθH1(θ, η, ξ ; θ0, k)
0
0

⎤

⎦ . (46)

Here the component functions H0,H1, G0 and F0 are given as

H0(θ, η, ξ ; γ ) ≡ η − γ, H1(θ, η, ξ ; θ0, k) ≡ −�(θ; θ0, k),

G0(θ, ξ, η; ,μ, ν, η0, p) ≡ ξ − θ − μ − ν�(η; η0, p),

F0(θ, η, ξ ;β) ≡ 1 − ξ − βη.

⎫

⎪
⎬

⎪
⎭

(47)

We aim at studying the asymptotic approximation of the solutions to (45) as ε →
0. This problem can be dealt with by means of the theory for regularly perturbed
dynamical systems, see for example Vasil’eva et al. (1995). This means that we can
approximate these solutions with the solutions of the simplified system

dx
dτ

= F0(x), (48)

in this asymptotic limit for some τ -interval about τ = 0. As the perturbation term
F1(x) is uniformly bounded from below and above, we will get a uniform asymptotic
approximation for all τ > 0.
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The system (48) possesses the same boundary equilibrium points as (45). The
corresponding stability properties are also the same. Notice that the interior positive
equilibrium points are given as the 1-parameter family of points

Pe(ε = 0) = (θe(γ ), ηe(γ ), ξe(γ )),

θe(γ ) ≡ −1�(γ ;β,μ, ν, η0, p), ηe(γ ) ≡ γ, ξe(γ ) ≡ 1 − βγ,

}

(49)

parameterized by γ . Here the function � is defined by means of (14). The limiting
result (49) is obtained by observing that ηmax → γ as ε → 0. This means that the
interval VU defined by means of (28) collapses to the single point γ in this limit. The
positivity requirement imposed on θe and ξe implies that γ ∈ D� = I, where D�

is defined as (31). The problem of determining the set D� is resolved by using the
methodology elaborated in Appendix A The key problem here is to determine the
number of zeros of � as a function of β. We also observe that the limiting system
(48) has a unique interior equilibrium point of the type (49) in the limit ε → 0. This
means that we will not have coexistence of several positive interior equilibrium points
such as demonstrated for Set A—Set C in Table 3 (finite ε cases), see Table 5. This is
consistent with the phase plots in Fig. 3. 5 Assume that γ > 0. The stability analysis of
the interior equilibrium points of the type (49) proceeds by using the Routh–Hurwitz
criterion in Appendix C with B = 0. We first observe that the coefficient a3 in the
characteristic polynomial P3 defined by (C8) is strictly positive when ε = 0. This
means that we always have a negative real eigenvalue of the Jacobian (C6). Theorem 2
implies that the interior equilibrium point is asymptotically stable if �′(γ ; η0, p) ≥ 0
(⇔ 0 < γ ≤ (p−1)1/pη0). For the complementary regime, i.e., when�′(γ ; η0, p) <

0, the stability assessment is based on a direct exploration of the spectral properties of
the Jacobian (C6). Notice that the interior equilibrium points merge together with the
boundary equilibrium points when γ is set equal to one of the zeros of the function �

and that they become non-hyperbolic equilibrium points in this case.
Let us consider an equilibrium point of the type (49) which is assumed to be

hyperbolic. In that case the perturbed system (45) possesses an equilibriumpointwhich
appears as a smooth ε-deformation of the equilibrium point Pe (ε = 0) and which
also is hyperbolic. Then Hartman–Grobmans theorem implies that the unperturbed
system (48) is locally structural stable in the vicinity of that point. The same holds
true for the perturbed system (45). The phase portrait of the perturbed system (45)
in the vicinity of the perturbed equilibrium point is mapped one- to -one and onto
the phase portrait of the unperturbed system (48) in the vicinity of Pe (ε = 0). See
Guckenheimer and Holmes (1983) for details concerning the general exposition of the
theory for hyperbolic equilibrium points and local structural stability.

5 Notice also that we get an additional boundary equilibrium

P∗(ε = 0) = (−1(1 − μ), 0, 1) (50)

when ε = γ = 0. Here we tacitly assume that 0 ≤ μ ≤ 1.We readily find that the characteristic polynomial
P3 given by (C8) simplifies to λ3 + λ in this case, from which it follows that P∗(ε = 0) is subject to a
degenerate bifurcation. We do not pursue any further theoretical analysis of this bifurcation here, however.
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Fig. 8 Integral curves of the system (6)–(7) for different values of ε. a The top predator density θ (blue), b
the herbivore density η (red) and c the biomass density ξ (green) in the regime 0 ≤ ε � 1 (ε1 = 0, ε2 =
0.05, ε3 = 0.2). Input data: Set C in in Table 3 except for ε which is varied. Initial condition is close to
the unstable boundary equilibrium point P∗

1 : θ(0) = 10−8, η(0) = 4.3930 and ξ(0) = 0.3411, see Table 5
(Color figure online)

The numerical simulations confirming this prediction are summarized in Fig. 8.
The input parameters underlying the numerical computations leading to this figure are
given by all the parameters in Set C in Table 3 except for ε which is varied. In the
present simulations we have chosen ε = 0, ε = 0.05 and ε = 0.2. The initial condition
selected is a perturbation in the θ -direction of the unstable boundary equilibrium
point P∗

1 for all the numerical runs. We readily observe that the (ε = 0.05)-integral
curve is closer to the (ε = 0)-integral curve than the (ε = 0.2)-curve. Moreover, the
(ε = 0)-integral curve stagnates at the asymptotically stable interior equilibrium point
characterized by a lower herbivore density, a higher top predator density and a higher
level of biomass as compared with the levels given by P∗

1 . In the initial stage we see
that both the top predators and the herbivores attainmaximum levels accompanied by a
depletion of the biomass. In this stage the increased herbivore density is subsequently
followed by a top predator growth. The next phase is characterized by the herbivore
population reaching a maximum before a significant decimation takes place, and a
subsequent similar top predator depletion and a biomass growth. We observe that in
all these regimes of top predator harvesting rate, the herbivore population almost goes
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extinct, followed by a depletion of the top predator population. Furthermore, in the
regime of no top predator harvesting rate (ε = 0), the duration of an almost extinct
herbivore population approximately doubles in time compared to what takes place in
the regime ε = 0.2. After this depletion phase we reach a final stage where all the
three integral curves eventually settle down on the final stabilizing level. A notable
feature is that the final stabilizing level of the top predators and biomass (herbivores)
decreases (increases) with ε.

5.2 Hopf BifurcationsWhen� = 0

We finally investigate the possibility of having Hopf bifurcations in the simplified
system (48). We assume that we are working in the parameter regime 0 ≤ μ < 1,
Qm < 1 and 0 < β < βcr ,1 which means that we have a unique boundary equilibrium
point of the type P∗ = (0, η∗, 1 − βη∗) for which −β < ν�′(η∗; η0, p) < 0 (⇔
�′(η∗;β,μ, ν, η0, p) < 0). In this case the set of admissible values of γ producing
positive interior equilibrium points is given by the intervalD� = (0, η∗). The stability
analysis summarized in (42) shows that the boundary equilibrium point P∗ is unstable.
We pursue the bifurcation problem in the following way: According to Shen and Jing
(1995) and Appendix B in Nordbø et al. (2007) we translate the Hopf bifurcation
problem into a study of the violation of the Routh - Hurwitz criterion. Viewing γ as a
control parameter, we observe that the Routh–Hurwitz determinants defined by means
of (C7)–(C12) (with B = 0 (⇔ ε = 0)) are smooth functions of γ . For 0 < γ ≤ ηm ,
Theorem 2 implies that Pe(ε = 0) is asymptotically stable. Let us next investigate the
complementary regime ηm ≤ γ < η∗. We proceed by evaluating the Routh - Hurwitz
determinant |D1| at the points γ = ηm and γ = η∗ and find that

|D1|(ηm) = 1 − βηm > 0, (51)

|D1|(η∗) = qνβη∗�′(η∗; η0, p) + 1 − βη∗. (52)

By taking into account the fact that 0 < q < 1, we readily find that

qνβη∗|�′(η∗; η0, p)| ≤ ν|�′(η∗; η0, p)| ≤ ν

(η∗)2
= O(β2).

Thus, we conclude that qνβη∗|�′(η∗; η0, p) � 1− βη∗ for large η∗ (or equivalently
small β). This means that |D1|(η∗) > 0 in the shallow β-regime we consider. As
η∗ > ηm , we will have |D1|(η∗) < |D1|(ηm) in this regime.

Next, let us compute the Routh–Hurwitz determinant |D2| at the points γ = ηm
and γ = η∗. This computation yields

|D2|(ηm) = qβ2ηm(1 − βηm)2 > 0, (53)

|D2|(η∗) = −qβη∗(1 − βη∗)�′(η∗;β,μ, ν, η0, p)|D1|(η∗) (54)

when also taking into account the expression (52) for |D1|(η∗) and the expression for
�′(η∗;β,μ, ν, η0, p) where � is defined as (14). Since |D1|(η∗) > 0 in the shallow
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β-regime and �′(η∗;β,μ, ν, η0, p) < 0, we conclude that |D2|(η∗) > 0 in that
β-regime. We conclude that the graph of the Routh–Hurwitz determinant |D2| as a
function of γ in the generic case has either no intersection points with the γ -axis or
an even number of transversal intersection point with this axis for γ ∈ (ηm, η∗). We
will demonstrate this feature numerically in what follows.

We finally observe that the constant term a3 of the characteristic polynomial (C8)
is given by

a3 = rζqβγ�(γ ;β,μ, ν, η0, p)(1 − βγ ), (55)

for the equilibrium (49), from which it follows that a3 > 0 when ε = 0. Hence we
have |D2| > 0 if and only if |D3| > 0 for the Routh - Hurwitz determinants |D2| and
|D3| in this case.

We use the Set C in Table 3 as input parameters but change ε so that ε = 0. In
this case we find that |D1|(η∗) > 0 in line with the theoretical considerations above.
Hence,we have |D2|(η∗) > 0. In fact, the numerical example displayed in Fig. 9 shows
that |D1| is a strictly positive function of γ for all γ ∈ [0, η∗]. We have also been able
to detect numerically two zeros, denoted by h(1) and h(2), of the function |D2| in the
interval (ηm, η∗) for which d

dγ
|D2|(h(1)) < 0 < d

dγ
|D2|(h(2)) is satisfied, see Fig. 9.

According to Shen and Jing (1995) and Nordbø et al. (2007), these zeros correspond to
generic Hopf bifurcations in our modelling framework. By making use of the Routh–
Hurwitz criterion, we conclude that the positive interior equilibrium point Pe (ε = 0)
given by (49) is asymptotically stable for γ ∈ [ηm, h(1))∪ (h(2), η∗). Notice that this
stability result can be extended to the interval (0, h(1)) ∪ (h(2), η∗) by Theorem 2 in
Appendix C (with ε = 0). See the discussion above. In the regime γ ∈ (h(1), h(2))
the corresponding equilibrium point is unstable.

The frequency ωh(i) (i=1,2) of the oscillations which are excited at the Hopf-point
can be estimated by means of the formula

ω2
h(i) = a3

a1
= qrβζh(i)(1 − βh(i))�(h(i);β,μ, ν, η0, p)

qνβh(i)�′(h(i); η0, p) + 1 − βh(i)
, i = 1, 2. (56)

Here a1 and a3 are coefficients of the characteristic polynomial (C8). We have made
use of (C7)–(C11) (with B = 0) and (49) in the derivation of the frequency expression
(56).

In Figs. 10 and 11 we demonstrate the excitation of the oscillations at the Hopf
bifurcation points γ = h(1) and γ = h(2), for which the frequencies of these oscil-
lations is approximately given by (56). We will not pursue any theoretical analysis of
this problem, i.e., the derivation of the normal form associated with this bifurcation in
order to determine the stability of the excited limit cycles. The numerical simulations
also indicate that the oscillatory structure extends into the regime of finite ε. A notable
feature here is that the amplitude of the oscillations increases when the harvesting rate
parameter ε increases.

Then we consider the situation with ε = 0. For γ ∈ (h(1), h(2)) we will get
instability of the interior equilibrium point Pe(ε = 0). Moreover, for 0 < γ < η∗,
γ �= h(i) (i = 1, 2), Pe (ε = 0) is a hyperbolic equilibrium point, from which it
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Fig. 9 The graphs of the Routh–Hurwitz determinants |D1| (a) and |D2| (b) as functions of the normalized
mortality rate γ on the interval [ηm , η∗]. Here ηm = 0.5264 and η∗ = 4.393. Input parameters: Set C in
Table 3 except for ε and γ : ε = 0 and γ is varied. The zeros γ = h(1) = 0.5442 and γ = h(2) = 1.6216
of |D2| are Hopf bifurcation points

follows that our dynamical system with 0 ≤ ε � 1 is locally structurally stable in the
vicinity of Pe in this parameter regime. Figure 12 confirms numerically the asymptotic
stability of Pe when γ is in the interval (0, h(1)) or in the interval (h(2), η∗), in
accordance with Routh–Hurwitz criterion, see Appendix C. A notable feature which
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Fig. 10 Perturbations of the system (6)–(7) at the Hopf bifurcation point γ = h(1) = 0.5442, see Fig. 9.
a The top predator density θ (blue), b the herbivore density η (red) and c the biomass density ξ (green)
in the regimes: ε1 = 0 (solid lines), ε2 = 0.05 (dashed lines), ε3 = 0.2 (dotted lines). The insets show
the oscillations generated at the Hopf bifurcation point γ = h(1) = 0.5442, ε1 = 0. Input data: Set C
in Table 3 except for γ that is set equal to h(1) and ε which is varied. The frequency ωh(1) of the small
amplitude oscillations for γ = h(1), ε1 = 0 is computed by means of (56): ωh(1) ≈ 0.0053 (Color figure
online)

can be observed here is that the nonlinear stage of the instability detected for a γ ∈
(h(1), h(2)) evolves into a state consisting of stable oscillations. We expect that this
oscillatory structure extends to the regime 0 < ε � 1, due to the local structural
stability property in this parameter regime.

Finally, we would like to stress that the 2D herbivore—biomass model investigated
in Bergland et al. (2019) does not allow for Hopf bifurcations, contrary to what we
find for the present tritrophic model.

6 Saddle Node- and Hopf Bifurcations in the Case of Finite �

We next study the variation and the number of interior equilibrium points as a function
of ε (together with their respective stability characteristics) as well as saddle node
bifurcations in our system. This means that we use ε as a control variable.
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Fig. 11 Perturbations of the system (6)–(7) at the Hopf bifurcation point γ = h(2) = 1.6216, see Fig. 9.
a The top predator density θ (blue), b the herbivore density η (red) and c the biomass density ξ (green)
in the regimes: ε1 = 0 (solid lines), ε2 = 0.05 (dashed lines), ε3 = 0.2 (dotted lines). The insets show
the oscillations generated at the Hopf bifurcation point γ = h(2) = 1.6216, ε1 = 0. Input data: Set C
in Table 3 except for γ that is set equal to h(2) and ε which is varied. The frequency ωh(2) of the small
amplitude oscillations for γ = h(2), ε1 = 0 is computed by means of (56): ωh(2) ≈ 0.041 (Color figure
online)

In order to detect a saddle node bifurcation with ε as a control variable, we start out
by noticing that the constant coefficient a3 in the characteristic polynomialP3 defined
by (C8) is equal to zero if and only if W ′(ηe; ε) = 0. Observing that W (ηe; ε) = 0
for any interior equilibrium point Pe = (θe, ηe, ξe), we end up with the system of
equations

G(ηe, ε) = 0, G(ηe, ε) ≡
[

W (ηe; ε)

W ′(ηe; ε)

]

, (57)

for the bifurcation problem, see (33) and (34). We then observe that the mapping
G : R

2+ → R
2 is continuously differentiable. Assume that (ηe, ε) = (ηs, S) is

solution to this problem where ηs belongs to the interior of I, where I is defined by
means of (32). We compute the Jacobian D(ηe,ε)G evaluated at this point and find that
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Fig. 12 The dynamical evolution in the vicinity of hyperbolic points of the system (6)–(7) for Set C except
for ε which is set to 0 and γ which is varied as follows: γ1 = 0.25 (solid lines), γ2 = 1.25 (dashed
lines), γ3 = 2.25 (dotted lines). Notice that γ1 < h(1) < γ2 < h(2) < γ3 where h(1) = 0.5442 and
h(2) = 1.6216 (Hopf bifurcation values, see Figs. 9, 10 and 11) a The top predator density θ (blue), b the
herbivore density η (red) and c the biomass density ξ (green) (Color figure online)

D(ηe,ε)G(ηs, S) =
[

W ′(ηs; S) ∂εW (ηs; S)

W ′′(ηs; S) ∂εW ′(ηs; S)

]

=
[

0 ∂εW (ηs; S)

W ′′(ηs; S) ∂εW ′(ηs; S)

]

.

Here the symbol ∂ε denotes partial derivative with respect to ε. Hence Dηe,εG(ηs, S)

is invertible if and only if

det
[

D(ηe,ε)G(ηs, S)
] = −W ′′(ηs; S) · ∂εW (ηs; S) �= 0. (58)

The inverse function theorem now implies that there is an open set A containing
(ηs, S) and an open set B containing 0 such that G : A → B has a smooth inverse
H : B → A if the condition (58) is fulfilled. Therefore we conclude that (ηs, S) is not
an accumulation points of zeros of G, but an isolated zero provided (58) is satisfied.
For ε close to S we generically get two solutions of the equation W (ηe; ε) = 0 for
which W ′(ηe; ε) �= 0 signifying the existence of two equilibrium points that merge
together at ηe = ηs , ε = S.
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Next, let us consider the equilibrium condition

F(x, ε) = 0, (59)

where the vector field F is defined as

F(x, ε) ≡
⎡

⎣

rζθH(x; γ, ε, θ0, k)
qβηG(x; ,μ, ν, η0, p)

ξF(x;β)

⎤

⎦ ,

x =
⎡

⎣

θe
ηe
ξe

⎤

⎦ . (60)

Here the component functions H, G and F are defined by means of (7). Implicit
differentiation with respect to ε now yields

DxF · ∂εx + DεF = 0. (61)

Here DxF is the Jacobian of the vector field F, whereas DεF is the derivative with
respect to ε of the same vector field. We readily find that the augmented Jacobian

matrix
[

DxF
...DεF

]

evaluated at the bifurcation point (θs, ηs, ξs, S) has maximal rank,
i.e.,

rank

{

[

DxF
...DεF

]

(θs, ηs, ξs, S)

}

= 3,

which is a characteristic feature of a saddle node bifurcation point, see Nayfeh and
Balachandran (2008).

We finally study the variation of the equilibrium coordinates θe, ηe and ξe with ε.
From (61) we get the component equations

∂εθe = V ′(ηe)[W ′(ηe; ε)]−1�(θe; θ0, k),

∂εηe = [W ′(ηe; ε)]−1�(θe; θ0, k),

∂εξe = −β[W ′(ηe; ε)]−1�(θe; θ0, k).

⎫

⎪
⎬

⎪
⎭

(62)

In the process of deriving these equations we have made use of (24) and (36). For
the transversal crossing case W ′(ηe; ε) �= 0, the rates ∂εθe, ∂εηe and ∂εξe are finite.
Noticing that we have the non-transversality condition W (ηs; S) = W ′(ηs; S) = 0 at
saddle node bifurcation points (θs, ηs, ξs, S), we conclude by appealing to (62) that
these rates become as expected infinite at this point. For W ′(ηs; S) < 0, we observe
that ηe decreases with ε. Hence, by making use of Theorem 1, we conclude that if ηe
is a decreasing function of ε, then the corresponding equilibrium point Pe is unstable.
Notice, however, a branch of an equilibrium point may remain unstable even though
W ′ changes sign from negative to positive when passing a bifurcation point (ηs; S).
For asymptotically stable equilibrium points satisfying the bounding inequalities (32)
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Table 6 Initial conditions used
in the simulations of (6)–(7)
leading to Figs. 15, 16, and 17

i θi ηi ξi

1 0.432 0.35 0.96

2 0.23102 0.7324 0.89014

3 0.234548 0.739204 0.889119

4 0.2373 0.7446 0.8883

5 0.2676 3.0575 0.5414

6 0.257 3.1165 0.5325

H(1) 0.23487031 0.73982553 0.88902617

H(2) 0.26453806 3.0748432 0.53877352

(see Theorem 2), we find that V ′(ηe) < 0 and W ′(ηe; ε) > 0 for ηe ∈ [0, ηm] from
which it follows that ηe increases with ε, whereas θe and ξe decrease with ε.

Figures 13 and 14 display the variation and the number of equilibrium points as a
function of ε on the interval 0 ≤ ε ≤ 0.43 (Fig. 13a) and on the interval 0.72 ≤ ε ≤
0.98 (Fig. 13b). These figures are constructed by using the MATCONT package in
MATLAB. For the complementary interval 0.45 < ε < 0.72 there is a unique unstable
equilibrium point for each ε, which we have chosen not to display graphically. The
input parameter set for the computations leading to these figures is Set C in Table 3,
except for ε which is varied. A notable feature in these two figures is the occurence of
four saddle node bifurcation points for which one stable branch of equilibrium points
merges together with an unstable branch of equilibrium points and then cease to exist
when passing one of these values. The actual saddle node bifurcation values of ε are
denoted by S1, S2, S4 and S5, For ε = S3 and ε = S6, we have the situation depicted in
Figs. 13 and 14 where two unstable branches of equilibrium points merge together and
cease to exist when passing one of these two values. Interestingly, we have detected
two Hopf bifurcation points in the vicinity of S3 and S6 denoted by H(1) and H(2),
respectively.

Remark 4 The Hopf bifurcation values ε = H(1) and ε = H(2) can be detected by
exploiting the Routh–Hurwitz determinants inAppendixCwith ε as a control variable,
whereas the remaining parameters are as given in Set C in Table 3. The bifurcation
values ε = H(1) and ε = H(2) satisfy the conditions |D1| > 0, a3 > 0, |D2| = 0
and d

dε
|D2| �= 0 for ε = H(1) and ε = H(2) by using the methodology presented in

Shen and Jing (1995) and Nordbø et al. (2007). We do not pursue any details here.

In the remaining part of this subsection we will restrict ourselves to the ε-regime
which produces bistability and the dynamical evolution as a function of ε in the vicinity
of each of the two Hopf bifurcation points ε = H(1) and ε = H(2).

We observe the occurrence of a bistability for a narrow range of ε-values, i.e.,
S1 < ε < S2. We clearly see the impact of the bistability on the dynamical evolution
in Fig. 15, characterized by the division of the phase space into different attractor
basins.

In Figs. 16 and 17 we display the dynamical evolution as a function of ε when ε is
in the vicinity of the Hopf bifurcation points ε = H(1) and ε = H(2), respectively.
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Fig. 13 Bifurcation diagram with ε as a control variable. a 0 ≤ ε ≤ 0.45. b 0.807 ≤ ε ≤ 0.9. Input data:
Set C in Table 3 except for ε (or equivalently ηmax) which is varied. Blue curves (θ ), red curves (η) and
green curves (ξ ); solid lines (stable branches), dashed and dotted lines (unstable branches). The saddle node
points are marked with ∗, Hopf bifurcation points are marked with ◦. Zoomed versions of the rectangular
regions I–VI are shown in Fig. 14 (Color figure online)
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Fig. 14 Zoomed versions of the regions I–VI in Fig. 13. Blue curves (θ ), red curves (η) and green curves
ξ ; solid lines (stable branches), dashed and dotted lines (unstable branches). The saddle node bifurcation
values are given as S1 = 0.0796, S2 = 0.0964, S3 = 0.1769, S4 = 0.3785, S5 = 0.8470 and S6 = 0.8535.
The Hopf bifurcation values are given as H(1) = 0.17692968 and H(2) = 0.8563. The saddle node-
and the Hopf bifurcation points are marked with ∗ and ◦, respectively. The numerical values of the points
(θi , ηi , ξi ) (i=1,2,3,4,5,6) and the Hopf bifurcation points (θH(i), ηH(i), ξH(i)) (i=1,2) are listed in Table 6
(Color figure online)

The results can be summarized as follows: For ε = H(1) and ε = H(2) with initial
conditions chosen as the corresponding equilibrium points (θH(1), ηH(1), ξH(1)) and
(θH(2), ηH(2), ξH(2)), respectively, we get in agreement with the Hopf bifurcation
theory small amplitude oscillations.

In order to produce Fig. 16 we have selected three values of ε denoted by ε2, ε3 and
ε4, in addition to the Hopf-point H(1), so that ε2 < S3 < H(1) < ε3 = ε4. For ε = ε2
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Fig. 15 The dynamical evolution and bistability. The parameter regime is S1 < ε < S2 where S1 = 0.0796
and S2 = 0.0964 (bifurcation values, see Fig. 14). Input data: Set C in Table 3 except for ε which is chosen
as ε = 0.085. The initial condition (θ1, η1, ξ1) coordinates are given in Table 6 and visualized in Fig. 14

we get a unique stable equilibrium point. In the corresponding numerical simulations
we have chosen this equilibrium point as an initial condition. These simulations con-
firm the stability of this point. For the case ε = ε3 = ε4 we have coexistence of three
equilibrium states of which one is asymptotically stable and two are unstable. In the
corresponding simulations we have selected two initial conditions in the vicinity of
the unstable branches. The evolution in this case will settle down on the stable branch
after the initial stage.

For Fig. 17we extract the following conclusions: In addition to theHopf bifurcation
value ε = H(2) (which produces small amplitude oscillations), we select two ε-
values denoted by ε5 and ε6 in the numerical runs. The ordering of these parameters
are given as S6 < ε5 < H(2) < ε6. For ε = ε6, the stability of the corresponding
unique equilibrium point is confirmed by choosing the equilibrium point as an initial
condition. For ε = ε5 we have unique equilibrium point which is a saddle point. After
an initial phase the evolution settles down on stable relaxation type of oscillations.
Each oscillation consists of a slow phase and a rapid phase. The slow phase consists of
a motion on the associated stable manifold of the equilibrium point, whereas the rapid
phase occurs as repelling behavior along the associated unstable manifold. The orbit
rapidly twists back to the stable manifold and the outcome of this process is a closed
orbit in the phase space. In Fig. 17d we have collected the integral curves produced for
ε = ε5 for the purpose of revealing more details regarding the interaction between the
three population levels: In the rapid phase of each oscillation we first get an increase
in the herbivore level until it reaches a maximum level and a dip in the biomass level.
This is followed by an increase in the top predator level which also attains a maximum
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Fig. 16 The dynamical evolution of the system (6)–(7) for SetsC except for ε which is varied in the vicinity
of S3 and H(1) (Hopf bifurcation value, see Fig. 14). Input data is Set C in Table 3 except for ε which is
varied as follows in (a)–(c): ε = H1 (solid lines), ε = ε3 = 0.176822 (dashed lines), ε = ε2 = ε4 = 0.177
(dotted lines for the initial condition (θ2, η2, ξ2) and dash-dotted line for the initial condition (θ4, η4, ξ4)).
The ordering is ε3 < S3 < H(1) < ε2 = ε4. The initial conditions are given in Table 6 and visualized
in Fig. 14. The frequency ωH(1) of the small amplitude oscillations for ε = H(1) is computed by means

of the formula ω2
H(1) = a3/a1 where a1 and a3 are coefficients of the characteristic polynomial (C8):

ωH(1) ≈ 0.0053

level. The rapid increase in the top predator population level is followed by a rapid
decline in the herbivore level which in turn leads to an increase in the biomass level
and a rapid fall in the top predator level, before entering the slow phase of evolution.

7 The Dynamical Evolution as a Function of the Decimation
Parameters: A Summary

Wefinally present an overviewof the findings in Sects. 5 and 6.We express these results
as a function of the decimation parameters ε and γ . We proceed as follows: For each
fixed γ , we vary ε and construct the corresponding saddle node bifurcation diagram
just in the same way as for γ = 0.15 (which is demonstrated in Figs. 13 and 14). We
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Fig. 17 The dynamical evolution of the system (6)–(7) for Set C except for ε which is varied in the vicinity
of H(2) (Hopf bifurcation value, see Fig. 14). Input data is Set C in Table 3 except for ε which is varied
as follows in (a)–(c): ε6 = 0.864948 (solid lines), ε = H(2) (dashed lines), ε5 = 0.85384 (dotted lines).
The ordering is S6 < ε5 < H(2) < ε6. In (d) the interaction between the three population levels is
demonstrated for ε = ε5. The initial conditions coordinates are given in Table 6 and visualized in Fig. 14.
The frequencyωH(2) of the small amplitude oscillations for ε = H(2) is computed bymeans of the formula

ω2
H(2) = a3/a1 where a1 and a3 are coefficients of the characteristic polynomial (C8): ωH(2) ≈ 0.041

have also included the outcomes of the investigations resulting in Figs. 9,10,11,12 in
this summary. The phase plot in Fig. 18 thus shows the correspondence between the
γ, ε-plane and the final stage of the dynamical evolution of our modelling framework.
The following features should be noted:

• For the red coloured, bounded region in the γ, ε-plane, the final stage consists
of relaxation type of oscillations independently of the initial conditions which
we select. This behavior is caused by the existence of a unique unstable interior
equilibrium point of the saddle point type. Each oscillation consists of a slow phase
and a rapid phase, as illustrated in Fig. 17d. The slow phase consists of a motion on
the associated stable manifold of the equilibrium point, whereas the rapid phase
occurs as repelling behavior along the associated unstable manifold. The orbit
rapidly twists back to the stable manifold and the outcome of this process is a

123



  104 Page 44 of 58 H. Bergland et al.

Fig. 18 The final stage of the dynamical evolution as a function of the top predator decimation parameters
γ and ε. Points in the red coloured regions represent relaxation type of oscillations, whereas points in the
green and blue coloured regions yield stabilization on equilibrium states. The saddle node- and the Hopf
bifurcation points are marked with ∗ and ◦, respectively. Input data: Set C in Table 3, except for γ and ε (or
equivalently ηmax) which are varied. γ = h(1) = 0.5442 and γ = h(2) = 1.6216 are the Hopf bifurcation
values for ε = 0 (see Fig. 9), whereas ε = H(1) = 0.17692968 and ε = H(2) = 0.8563 are the Hopf
bifurcation values for γ = 0.15 (see Fig. 14) (Color figure online)

closed orbit in the phase space. For the complementary green coloured regions in
this plane, the maximal number of equilibrium points is equal to three, of which at
least one is an asymptotically stable equilibrium point. For this parameter regime,
the integral curves end up on a stable state. Interestingly, the green coloured region
in the γ, ε-plane appears as a union of two disjoint sets, which we will refer to
as the lower- and the upper green region. The lower green region is the bounded
region for which the origin in the γ, ε-plane belongs to its boundary. The points
in this region are characterized by low natural mortality γ and low harvesting rate
ε, whereas the upper region is the remaining green set. A comparison between
the outcomes in the two regions goes as follows: The asymptotically stable states
corresponding to points in the upper green region are typically characterized by a
higher herbivore population level and lower biomass level as compared with the
stable states originating from points in the lower region.

• We identify regimes which produce bistability (blue coloured region). In these
regimes the dynamical evolution settles down on one of the asymptotically stable
branches. In this case the stable branches divide the phase space intowell separated
attractor basins.

• The separatrix curves between the regions in the γ, ε-plane that definitely produce
stable relaxation oscillations and asymptotically stable final states are determined
by generic saddle node bifurcations for which one stable branch merge together
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with an unstable branch. The branches of these equilibrium points cease to exist
when passing the actual bifurcation values.

Remark 5 It will definitely be important if we can find observational data correspond-
ing to the outcomes of saddle-node and Hopf-bifurcations which have been detected
in the present model. As a starting point for this type of investigation we will point
out that onset of temporal oscillations in the animal populations has been observed in
Alaska (caribou–wolf interaction). See St John (2022). It is an open question whether
Hopf–bifurcations in our model can serve as an explanatory framework for the driving
mechanism behind these cycles. We do not pursue this problem here, however.

8 Concluding Remarks

8.1 Main Results

In this work we have investigated the dynamics of carnivore– herbivore–vegetation
interactions, as a supplement to comparative static approaches, with particular empha-
sis on the dynamical evolution as a function of the natural morality and the harvesting
rate of the carnivores. The model assumes the form of a Lotka–Volterra type of
predator–preymodel,where the carnivores and the herbivores play the role of predators
and the vegetation biomass is the prey, and includes a density dependent harvesting
rate and a linearmortality rate of the herbivores and the carnivores. This harvesting rate
is modelled by means of sigmoidal functions in both the herbivore and the carnivore
density. Moreover, the prey equation is an extended version of the logistic equation.
The carrying capacity of the vegetation biomass and the conversion efficiency in the
equations for the herbivores and the carnivores are assumed to be constant. Notice that
the model under consideration simplifies to the herbivore—biomass system investi-
gated in Bergland et al. (2019) when the top predator population is negligible. The
modelling framework defines a globally wellposed system which satisfies the positive
persistence property.

We have investigated the existence and stability of the equilibrium states of themod-
eling framework (6)–(7) as a function of the normalized mortality rate μ = m/qbK ,
the normalized consumption rate β = bk/σ , the normalized saturated harvesting
rate ν = H0/qbK 2 for the herbivores, the normalized mortality rate γ = l/rcK of
the top predators and the normalized saturated harvesting rate of the top predators
ε = Lmax/rcK 2.

Our findings can be summarized as follow:
In the regime of strong mortality, i.e., when μ > 1 no positive equilibrium states

exist. The dynamical evolution will in this case settle down on a state characterized
by constant carrying capacity of the vegetation biomass and the extinction of both the
herbivore and the top predator populations, i.e., the model permits the two boundary
equilibrium points P0 and P1 of which P0 is unstable, whereas P1 is asymptotically
stable. The transition caseμ = 1 corresponds to a non-hyperbolic equilibrium state for
which the stability assessment based on the linearization procedure is not applicable.
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For low and moderate degree of the herbivore mortality, i.e., when 0 ≤ μ < 1 we
have identified both existence and non-existence regimes of positive equilibrium states.
One notable feature in this regime is thus the non-existence of such equilibrium points,
contrary to what is found for the 2D herbivore—biomass model studied in Bergland
et al. (2019). The existence issue of positive equilibrium states is resolved by means
of the location of the interval [γ, ηmax] relative the zeros of the function �. It turns
out that the inequality γ < η∗ where η∗ is the maximal zero of � is the necessary
condition for existence of a positive equilibrium state. By noticing that y∗ ≡ Kη∗
plays the role of maximal herbivore equilibrium density in the aforementioned 2D
herbivore—biomass model and by restoring to the dimensional variables, we find
that y∗ must exceed the threshold l/rcK in order to get positive equilibrium states
of the tritrophic modelling framework (1). We also observe that the finite herbivore
equilibrium density in this modelling framework will be reduced in comparison with
the finite herbivore equilibrium density in the 2D model.

We have also explored the stability of the equilibrium states as a function of the
normalized consumption rate β of the herbivores and illuminated the results with
outcomes of numerical runs. The results of this investigation can be summarized as
follows:

• In the high consumption rate regimes of the herbivores, i.e., when Qm > 1,
β > βcr and Qm ≤ 1, β > βcr ,2, we have a unique finite positive equilibrium
which is asymptotically stable when γ < η∗. The boundary equilibrium states P0,
P1 and P∗ are all unstable in this regime. In the complementary regime γ > η∗
with no existence of positive interior equilibrium points, the boundary equilibrium
states P0 and P1 remain unstable, whereas the boundary equilibrium point P∗ is
converted to an asymptotically stable equilibrium point.

• For the transition limit γ → η∗, wewill have that Pe → P∗ = (0, γ, 1−βγ ). This
equilibrium state becomes a non-hyperbolic equilibrium for which the stability
assessment based on linearization about the equilibrium state is not applicable.

• In the low and moderate consumption rate regimes of the herbivores i.e., when
Qm > 1, 0 < β < βcr and Qm ≤ 1, βcr ,1 < β < β > βcr ,2, we have
coexistence of three boundary equilibrium points P∗

1 , P
∗
2 and P∗

3 together with
the equilibrium states P0 and P1. The stability properties of P∗

1 , P
∗
2 and P∗

3 as
a function of the mortality rate γ of the top-predators are summarized in Fig. 4,
thus showing that P∗

2 is always unstable saddle point, whereas P∗
1 and P∗

3 become
asymptotically stable when γ exceeds η∗

1 and η∗
3, respectively. We have identified

parameter regimes for which there are no positive equilibrium states and necessary
conditions for existence of such equilibrium states. The stability properties of the
detected equilibrium points are investigated numerically together with numerical
simulations which detail the temporal evolution of the state variables.

• The regime of low top predator harvesting regime (0 < ε � 1).We have compared
the outcome of the numerical simulations on this regime with the theoretical pre-
dictions deduced from regularly perturbed system. The number of positive interior
equilibrium points collapses to one, whereas the number of boundary equilibrium
points remains unaltered in this asymptotic limit.
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• We have detected two generic Hopf bifurcations for positive interior equilibrium
points numerically by means of the Routh Hurwitz determinants in the case of
no harvesting of the top predators, i.e., when ε = 0. We use the normalized
mortality rate γ as a control variable and we operate in the parameter regime
0 ≤ μ < 1, Qm < 1 and 0 < β < βcr ,1. We apply the methodology outlined
in Nordbø et al. (2007) where the existence of such bifurcations is related to the
breakdown of the Routh–Hurwitz criterion. We have demonstrated the excitation
of apparently stable oscillations in a whole window of γ -values in the vicinity of
the Hopf bifurcation values of the this parameter. Interestingly, the excitation of
these oscillations extends far beyond the theoretical predictions, thus supporting
the conjecture that these oscillations are stable entities. The onset time of the
oscillations, however, decreases with γ in this interval.

• We have constructed a saddle node diagram of the equilibrium states by means of
the MATCONT package in MATLAB. Here we used the top predator harvesting
rate parameter ε as a control variable.Wehave identified six saddle nodebifurcation
points and two Hopf bifurcation points for the chosen set of input parameters (i.e.,
Set C in Table 3). We have identified regimes for which we have coexistence of
three equilibrium branches and their respective stability properties in some of the
ε-regimes. We have found an interval of bistability which divides the phase space
into a disjoint union of attractor basins for asymptotically stable states. In addition
we have detected regimes for which we have a unique equilibrium state, which is
either asymptotically stable or a saddle point. In case of a unique stable equilibrium
state all integral curves approach this state, whereas in the unique saddle point case
the final phase of any evolution consists of a relaxation type of robust and stable
oscillations. The rapid phase within each period consists of an explosive growth in
the herbivore population accompanied by a similar fast growth in the top predator
population followed by subsequent rapid relaxation towards the slow phase. The
biomass experiences a dip in the level during the rapid phase.

8.2 Possible Extensions

The present framework which is meant as a conceptualization, demonstrates possible
evolutions and trade offs. In considering management policy, several complex ele-
ments and relevant topics should be included as extensions of the present modeling
framework. Here we will list some possible extensions.

First of all, it will be of interest to extend the present modelling framework (1)
with terms that describe depletion of the biomass. For the case of carnivore-rangifer-
lichen model human harvesting of lichen biomass is less relevant. However, it seems
like pasture deterioration may result from territorial conflicts, and that the animals’
accessibility to the plant resources is subject to fluctuations. Such variations may be
linked to more unstable weather conditions as a result of climate changes. Variations
in temperature and precipitation affect the animals’ ability to utilize grazing resources.
Biomass degradation and accessibility is included in a 2Dmodel analyzed in Bergland
et al. (2019). We consider this as an important problem for future research.
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In the present work we have omitted geographical distributions of range land,
livestock and carnivores. An attempt to introduce more biological realism into this
modeling framework is to include spatial effects, such as advection–diffusion effects,
in a way analogous to Heilmann et al. (2018). Furthermore, we expect the carrying
capacity K , the conversion efficiencies q and r aswell as other parameters in ourmodel
to be subject to uncertainties, and one could model these parameters as stochastic
processes, following the line of thought as for example in Evans (2012) and Øksendal
(2003). In addition to human harvest, wildlife species populations are also threatened
by habitat loss and other consequences of human activity, such as agriculture, mining,
urban development, etc. (see Maxwell et al. 2016, Watson et al. 2019 and Horstkotte
et al. 2022 for more details). Such phenomenon could be incorporated in the present
modelling framework by assuming a temporal decay in the carrying capacity K , or by
adding other temporal mechanism which causes biomass degradation and increasing
animal mortality. We list these problems as a topic for future research.

Another reasonable extension could consist of includingmore detailedmanagement
policy discussions. Our analysis presumes that the harvesting rate is described as a
given function of the animal populations. With this modelling assumption, we have
seen that management policy is illustrated by means of variations in the parameters
describing the harvesting rate functions. In future investigations the focus should also
be on environmental and resource policies using a time discounting policy to handle the
question of long-term benefits. Such policies could be based on maximizing the social
welfare from a dynamic perspective, i.e., identifying preferred allocations of possible
stable equilibrium states of the top predator population, the herbivore population and
the biomass. Here several public regulatory mechanisms can play a role. This includes
specific stock targets, harvest quotas, protected areas etc. and also indirect means such
as taxes and subsidies, introduced in order to bring about a desirable development.

Appendix A: The Properties of the Function 1: Boundary Equilibrium
Points

For the sake of completeness we summarize here the properties of the function �

defined by means of (14). This summary is based on Bergland et al. (2019).
For μ ≥ 1, �(η;β,μ, ν, η0, p) < 0 for all 0 ≤ ηe ≤ 1/β. Let us consider the

complementary regime 0 ≤ μ < 1.
Since

�(0;β,μ, ν, η0, p) = 1 − μ > 0,

�(1/β;β,μ, ν, η0, p) = −Q(1/β;μ, ν, η0, p) < 0

in this case, the intermediate value theorem for continuous functions implies that
there is at least one positive zero in the interval (0, 1/β). The next step consists of
determining the exact number of zeros of � as a function of the parameters β, μ, ν,
η0 and p. The analysis relies on the following observations:
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• The function Q has a unique maximum point for η ≡ ηm . Moreover,
Q(0;μ, ν, η0, p) = μ and lim

η→∞ Q(η;μ, ν, η0, p) = μ(+). The maximum point

ηm = (p−1)1/pη0 is determined bymeans of the conditionQ′(ηm;μ, ν, η0, p) =
�′(ηm; η0, p) = 0. The corresponding maximal value Qm is given by (17).

• Non-transversal intersection points between the graphs of the functions P and Q
are determined by the tangency condition

�(η;β,μ, ν, η0, p) = �′(η;β,μ, ν, η0, p) = 0 (A1)

if they exist. Let (η, β) = (ηcr , βcr ) satisfy this system. We readily find that
(ηcr , βcr ) that

βcr = −ν�′(ηcr ; η0, p) (A2)

from �′ = 0. By inserting this result into � = 0 it is shown that η = ηcr satisfies
the equation

�(η; η0, p) = 1 − μ

ν
, η ∈ (ηm,∞) (A3)

where the function � is a smooth function of η on the interval [ηm,∞) defined
by

�(η; η0, p) ≡ �(η; η0, p) − η�′(η; η0, p). (A4)

In Bergland et al. (2019) it is shown that the system (A2)–(A4) possesses at least
one solution.Moreover, the maximal number of solutions is 2. This is the consequence
of the following classification:

• The regime Qm > 1: In this case we find that the function � has a unique zero
for β > βcr where βcr satisfies the non-transversality condition (A1). In the
complementary regime 0 ≤ β < βcr , we will get three equilibrium points. The
tangency condition (A1) at η = ηcr for β = βcr thus represents a transition state
between the existence of single zero and the coexistence of three zeros.

• The regime Qm < 1: In this case the solution of the system (A1) consists of two
points denoted by (ηcr ,1, βcr ,1) and (ηcr ,2, βcr ,2). The corresponding inclination
parameters are called βcr ,1 and βc,2, respectively, with βcr ,1 < βcr ,2. We then get
the following results: For the intervals 0 < β < βcr ,1 and β > βcr ,2, the equation
� = 0 permits one and only one zero, whereas we have coexistence of three
equilibrium points for the open interval βcr ,1 < β < βcr ,2. The cases β = βcr ,1
and β = βcr ,2 represent transition states for which we get two zeros of the system
(A1).

• The transition state Qm = 1: This transition state is equivalent with the non-
transversality condition

�(ηm; 0, μ, ν, η0, p) = �′(ηm; 0, μ, ν, η0, p) = 0. (A5)
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This means that the graph of the function P is a parallel with the η-axis
and tangent to the graph of the function Q at the point (ηm,Qm). We notice
that (ηcr ,1, βcr ,1) → (ηm, 0) and (ηcr ,2, βcr ,2) → (ηcr , βcr ) continuously as
Qm → 1(−). Here (ηcr , βcr ) is the unique solution of �(η;β,μ, ν, η0, p) =
�′(η;β,μ, ν, η0, p) = 0 for the case Qm → 1(+).

In Fig. 19 we have depicted the graph of the function � in the regime Qm > 1 for
different values of β in the vicinity of βcr . Here we use the values of the herbivore
parametersμ, ν, η0 and p in Set A and Set B in Table 3 as input parameters. Figure 19
shows that the number of zeros of� changes from 1 to 3 when β is passing the critical
value βcr . In Fig. 20 we get a similar type of visualization in the regime Qm < 1 for
β in the vicinity of the critical values βcr ,1 and βcr ,2, with a change in the number of
zeros of� from 1 to 3 as we pass through βcr ,1 and βcr ,2 as characteristic feature. The
plots in Figs. 19 and 20 are indeed consistent with the results summarized in Table 4.

Appendix B: Procedure for Determination of Positive Equilibrium
Points

Here we outline the procedure for determination of the positive equilibrium points
Pe = (θe, ηe, ξe). It is based on the results obtained in Sect. 3.3 and consists of the
following steps:

1. Select the parameters 0 ≤ μ < 1, ν, p, η0 and compute the maximum point ηm
of the function Q and the corresponding maximal value Qm defined by means
of (17). According to Table 4, we have one non-transversal crossing point when
Qm > 1 and two such points when Qm ≤ 1. Determine ηcr by solving the system
(A3)–(A4). Then compute the critical value βcr by means of the formula (A2).

2. Table 4 gives the number of positive equilibrium points of the biomass—herbivore
model studied in Bergland et al. (2019) as function of β. These equilibrium states
are the intersection points between the graphs of the function P(ηe;β) ≡ 1− βηe
andQ(ηe;μ, ν, η0, p) ≡ μ+ν�(ηe; η0, p). Determine theηe-coordinates of these
intersection points for one β-value in each of the β-intervals listed in Table 4. Iden-
tify the subintervals of the positiveηe-axis forwhichP(ηe;β) > Q(ηe;μ, ν, η0, p)
(or equivalently �(ηe;β,μ, ν, η0, p) ≡ P(ηe;β) − Q(ηe;μ, ν, η0, p) > 0, see
definition (14)–(16). This means that we detect the set D� defined by means of
(31).

3. Select the parameter γ such that γ is strictly less than the maximal zero of�. Then
choose ε, θ0 and k and compute ηmax defined by means of (12) and (26).

4. Find the ηe-subinterval(s) of the interval [γ, ηmax] for which �(ηe;β,μ, ν, η0, p)
> 0. Thismeans that we determine the subsetI defined bymeans of (32). If positive
equilibrium states exist, they will have ηe-coordinates in I. These coordinates
satisfy the system (33)–(34) on I. By moving the interval [γ, ηmax] along the ηe-
axis, we can identify I in the different parameter regimes. Notice that we may
for certain choices of γ and ηmax find that I = ∅ which means that we have no
positive equilibrium points in spite of the fact that the biomass—herbivoremodel in
Bergland et al. (2019) always possesses at least one positive equilibrium point when
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Fig. 19 a The graph of the
function � as a function of η in
the case Qm > 1 for different
values of β. Here Qm is defined
by means of (17). b and c
Magnified regions containing
the zeros of the function �

located in the purple and the
turquoise rectangular domains in
(a), respectively. The zeros of �

are labeled by means of the
corresponding β-value, whereas
the subscript i is the counting
index for the zero: η∗

i (β). The
input parameters are the
herbivore parameters μ, ν, η0
and p in Set A and Set B in
Table 3. βcr is computed by
means of (A2)–(A4) in
Appendix A Notice that the
zeros of β = 0.1-curve in this
plot produces the boundary
equilibrium points P∗

1 , P
∗
2 and

P∗
3 listed for Set A and Set B in

Table 5
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Fig. 20 a The graph of the
function � as a function of ηe in
the case Qm ≤ 1 for different
values of β. Here Qm is defined
by means of (17). b and c
Magnified regions containing
the zeros of the function �

located in the purple and the
turquoise rectangular domains in
(a), respectively. The zeros of �

are labeled by means of the
corresponding β-value, whereas
the subscript i is the counting
index for the zero: η∗

i (β). The
input parameters are the
herbivore parameters μ, ν, η0
and p in Set C in Table 3. βcr ,1
and βcr ,2 are computed by
means of (A2)–(A4) in
Appendix A Notice that the
zeros of β = 0.15-curve in this
plot produces the boundary
equilibrium point P∗

1 listed for
Set C in Table 5 (Color figure
online)
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0 ≤ μ < 1. We notice here that the information about top-predator parameters is
stored in the decimation parameters γ and ηmax.

Appendix C: The Stability Assessment Methodology of the Positive
Equilibrium Points Based on Routh–Hurwitz Determinants

For the positive interior equilibrium points Pe = (θe, ηe, ξe), the Jacobian is given as

DxF(Pe) =
⎡

⎣

rζθeHθ (Pe) rζθeHη(Pe) 0
qβηeGθ (Pe) qβηeGη(Pe) qβηeGξ (Pe)

0 ξeFη(Pe) ξeFξ (Pe)

⎤

⎦

=
⎡

⎣

−AB A 0
−CD −CE C
0 −FG −F

⎤

⎦ (C6)

where the entries A, B, C , D, E , F and G are given as

A = rζθe, B = ε�′(θe; θ0, k), C = qβηe, D = ,

E = ν�′(ηe; η0, p), F = ξe, G = β.

}

(C7)

The characteristic polynomial P3 corresponding to DxF(Pe) is the cubic polynomial

P3(λ) ≡ det
[

λI − DxF
] = λ3 + a1λ

2 + a2λ + a3 (C8)

where

a1 = AB + CE + F,

a2 = ABCE + ABF + ACD + CEF + CFG,

a3 = ACF(BG + BE + D).

We get the following sufficient condition for instability:

Theorem 1 Let Pe = (θe, ηe, ξe) denote a positive interior equilibrium point for which
the function W defined by (34) satisfies the negative slope condition W ′(ηe) < 0. Then
Pe is unstable.

Proof By making use of the expression (36) for W ′ and (C7), we readily find that the
coefficient a3 of the characteristic polynomial (C8) can be expressed as

a3 = qβrζθeηeξe
−1W ′(ηe).

Hence a3 < 0 if and only if W ′(ηe) < 0. We conclude that the characteristic poly-
nomial P3 has at least one positive zero if W ′(ηe) < 0, and the proof is completed.

��
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We now prove the following stability result:

Theorem 2 Let Pe = (θe, ηe, ξe) denote a positive interior equilibrium point. If
(θe, ηe) satisfies the bounding inequalities

0 < θe ≤ (k − 1)1/kθ0, 0 < ηe ≤ (p − 1)1/pη0, (C9)

then Pe is asymptotically stable.

Proof The proof proceeds by using the Routh–Hurwitz criterion (Hurwitz et al. 1964).
The Routh–Hurwitz determinants |D1|, |D2| and |D3| of the characteristic polynomial
(C8) are given as

|D1| = a1 = AB + CE + F, (C10)

|D2| = a1a2 − a3 = A2B2CE + A2B2F + A2BCD

+ABC2E2 + 2ABCEF + ABF2

+AC2DE + C2E2F + C2EFG + CEF2 + CF2G,

⎫

⎪
⎬

⎪
⎭

(C11)

|D3| = a3|D2| = ACF(BG + BE + D)|D2.| (C12)

According to (C7), the parameters A, C , D, F and G are strictly positive. We notice
that the parameters B and E are proportional to the derivatives �′(θe; θ0, k) and
�′(ηe; η0, p), respectively, with positive proportionality constants. Hence |Di | > 0
for i = 1, 2, 3 if the positive slope conditions�′(θe; θ0, k) ≥ 0 and�′(ηe; η0, p) ≥ 0
are satisfied. We notice that the coefficients ai , (i = 1, 2, 3) of the characteristic
polynomial (C8) are strictly positive if �′(θe; θ0, k) ≥ 0 and �′(ηe; η0, p) ≥ 0.
Hence, by appealing to the Routh - Hurwitz criterion, we conclude that all the zeros of
P3 are located in the left λ-halfplane, i.e., Re{λi } < 0 for i=1,2,3 whereP3(λi ) = 0 if
these positive slope conditions are fulfilled. This means that the positive equilibrium
point Pe is asymptotically stable. Simple computation shows that �′(θe; θ0, k) ≥
0 ⇔ 0 < θe ≤ (k − 1)1/kθ0 and �′(ηe; η0, p) ≥ 0 ⇔ 0 < ηe ≤ (p − 1)1/pθ0. This
completes the proof. ��

Appendix D: Global Wellposedness of theModelling Framework

Here we prove the following result:

Theorem 3 The initial value problem of the system (1) [or equivalently (6)–(7)] is
globally wellposed in the first orthant of the phase space.

Proof We start out by expressing the system (6) on the compact vector form

dx
dτ

= F(x) (D13)

with the right-hand side defined by (37).
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We then notice that the right-hand side F (which is a continuously differentiable
vector field with respect to x) can be viewed as an operator on the space of continuous
functions that satisfies the following so-called locally Lipschitz condition: For any
r > 0, there exists a strictly positive constant L(r) such that for any x, y ∈ R

3, |x| ≤ r,
|y| ≤ r, it holds true that

|F(x) − F(y)| ≤ L(r)|x − y|. (D14)

Here we have made use of the distance |a−b| = max
i=1,2,3

|ai −bi | in the spaceR3 (here

z = (z1, z2, z3)T ).
The Lipschitz constant L(r) is given as

L(r) = ar + b

where

a = max{2rζ, 2qβ(1 + ), 2(1 + β)},

b = max

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

rζ

⎛

⎜

⎜

⎜

⎜

⎝

γ + ε

pηp
0

(

η
p
0 (p−1)
p+1

) p−1
p

(

η
p
0 (p−1)
p+1 + η

p
0

)2

⎞

⎟

⎟

⎟

⎟

⎠

, qβ

⎛

⎜

⎜

⎜

⎜

⎝

μ + ν

kθk0

(

θk0 (k−1)
k+1

) k−1
k

(

θk0 (k−1)
k+1 + θk0

)2

⎞

⎟

⎟

⎟

⎟

⎠

, 1

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

.

Let us equip (6) with an arbitrary initial condition x(0) = x0 located in the first orthant
of R3. The initial value problem obtained is equivalent to the fixed-point problem

x(τ ) = (Fx)(τ ), (D15)

where the operator F is defined as

(Fx)(τ ) ≡ x0 +
τ
∫

0

F(x(s))ds.

Let us now construct a solution to (D15), which is also a solution to the initial value
problem for (6).

We first take r1 = 2|x0| and find T1 = 1
2(ar1+b)

. Then the operatorF is a contraction
in the space of continuous functions defined on the segment [0,T1]with the norms that
do not exceed r1 (the constant of contraction is 1/2). Applying Banachs fixed-point
theorem, we prove unique solvability of (D15) with the initial condition x(0) = x0 on
[0,T1]. Moreover, the maximal deviation of the solution obtained, denoted by xT1 , is
less or equal to r1, i.e., its norm on the space of continuous functions defined on the
segment [0,T1] is less or equal to r1.

The next step consists of using xT1(T1) as the new initial condition. Assume that
r2 = 2r1 and solve the system (D15) on the time interval [T1,T1 + T2] where T2 =
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1
2(ar2+b)

by applying Banachs fixed-point theorem. Thus we have extended xT1 to the
interval [0,T1 +T2], obtaining a unique solution, say xT2 , of the initial value problem
on [0,T1+T2].We also notice that the normof xT2 in the space of continuous functions
defined on [0,T1 + T2] is less than r2 = 2r1.

In the next step, we take the new initial condition as xT2(T1 + T2). Assuming the
boundedness of the norms by letting r3 = r2 + r1, we find a unique extension of xT2
to the interval [0,T1 + T2 + T3] where T3 = 1

2(ar3+b)
= 1

2(3ar1+b)
, which solves the

initial value problem on [0,T1 +T2 +T3]. We thus extend the τ -interval for existence
and uniqueness of solution to (D15) and, hence, to the initial value problem for (D13).
Noticing that on the n-th step of the procedure described above, the extension of
the domain of the solution has the length 1

2(ar1n+b)
, we conclude that the solution

we construct does not develop a singularity in finite time. This means that it can be
extended to the whole interval [0,∞). Thus we have constructed a unique solution
x∞ = (θ, η, ξ)T , where the component functions θ , η and ξ are continuous functions,
which due to the form of the right hand side of (6), implies that smoothness of the
solution with respect to τ is obtained. ��
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Ghosh B, Kar TK, Legović T (2014b) Sustainability of exploited ecologically interdependent species. Popul

Ecol 56(3):527–537
Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector

fields. Springer, New York
Heilmann IT, Thygesen UH, Sørensen MP (2018) Spatio-temporal pattern formation in predator-prey sys-

tems with fitness taxis. Ecol Complex 34:44–57
Hogarth W, Norbury J, Cunning I et al (1992) Stability of a predator–prey model with harvesting. Ecol

Model 62(1):83–106
Horstkotte T, Kumpula J, Sandström P et al (2022) Pastures under pressure: effects of other land users and

the environment. In: Reindeer husbandry and global environmental change. Routledge, pp 76–98
Huang J, Gong Y, Ruan S (2013) Bifurcation analysis in a predator–preymodel with constant-yield predator

harvesting. Discrete Contin Dyn Syst Ser B 18:2101–2121
Hurwitz A et al (1964) On the conditions under which an equation has only roots with negative real parts.

Sel Pap Math Trends Control Theory 65:273–284
JohannesenAB (2014) Sámi reindeer herding (samisk reindrift). In: Flåten, Skonhoft (eds) The economics of

natural resources (Naturressursenes Økonomi). Gyldendal Akademisk, Oslo, Norway (In Norwegian)
Johannesen AB, Skonhoft A (2009) Local common property exploitation with rewards. Land Econ

85(4):637–654
Johannesen AB, Olaussen JO, Skonhoft A (2019) Livestock and carnivores: economic and ecological

interactions. Environ Resour Econ 74(1):295–317
Kaczensky P, Chapron G, Von Arx M et al (2013) Status, management and distribution of

large carnivores-bear, lynx, wolf & wolverine-in Europe. Tech. rep., (Report to the EU
Commission, Part 1 and Part 2, 2013) http://ec.europa.eu/environment/nature/conservation/
species/carnivores/pdf/task1part1statusofineurope.pdf and http://ec.europa.eu/environment/nature/
conservation/species/carnivores/pdf/task1part2speciescountryreports.pdf

Kojola I, Tuomivaara J, Heikkinen S et al (2009) European wild forest reindeer and wolves: endangered
prey and predators. In: Annales Zoologici Fennici, BioOne, pp 416–422

123

http://ec.europa.eu/environment/nature/conservation/species/carnivores/pdf/task1part1statusofineurope.pdf
http://ec.europa.eu/environment/nature/conservation/species/carnivores/pdf/task1part1statusofineurope.pdf
http://ec.europa.eu/environment/ nature/conservation/species/carnivores/pdf/task1part2speciescountryreports.pdf
http://ec.europa.eu/environment/ nature/conservation/species/carnivores/pdf/task1part2speciescountryreports.pdf


  104 Page 58 of 58 H. Bergland et al.
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