

Faculty of Health Sciences

# **Microbial Adaptation** Responses to External Cues

Merete Storflor

A dissertation for the degree of philosophiae doctor

October 2023



A dissertation for the degree of philosophiae doctor

## **Microbial Adaptation** Responses to External Cues

Merete Storflor



Infection Biology Department of Pharmacy Faculty of Health Sciences

UiT- The Arctic University of Norway Tromsø – October 2023

## Acknowledgements

This thesis was carried out at the department of Pharmacy, UiT Arctic University of Tromsø. During my PhD journey I was fortunate enough to attend various insightful conferences, workshops as well as undergo a research stay at Penn State University. This would not have been possible without the financial aid of the PhD schools IBA, and NFIF, as well as UiT travel grants.

I would like to thank my supervisors **Sören** Abel, **Klaus** Harms and **Jacob** Malone. I am grateful for the scientific discussions, and independence. I am also thankful for the enthusiasm, support and lab space provided by **Pål** Johnsen, and **Elizabeth** Fredheim. I would like to thank **Jon Kristian**, **Øystein**, and **Balpreet** for allowing me to work on my PhD in parallel with the excting work at Chip NanoImaging. I am also grateful to my coworkers, **Ine**, **Anders**, and **Daniel** for the support and laughs shared.

I would like to thank my IFA family, in no specific order. Fabrizio, you have greatly impacted my way of thinking not only in terms of scientific approach but also how to evaluate what matters. Christina. We bonded in hell-fire and survived. You are truly incredible and your friendship is everything to me. And, lets be honest your daughter, Oliva, is a complete badass. Mr. Batman, Francios, you are amazing. I have lost count of the amount of plates and cloning projects you have helped me with. Now, where is that board game? Chris, our late-night discussions in the lab, and sippysipples about life, love and careers have been invaluable to me. You are truly an amazing friend. Alex, your compassion is endless and your smile is never far behind. I am amazed by how you pour your soul into everything you do. Xana, you are so beautifully wild, yet constant, and composed. Your sense of humour, and clarity continuously floors me. Nina, you always manage to make me laugh, and you constantly brighten the day with your stories. It's hard work, and you do it well. **Jennifer**, your willpower is incredible, waving to you on the other side of that dark corridor was an enormous energy boost. Joseph what can I say other then you owe me a beer and I look forward to our next heart-to-heart as well as seeing your amazing family. João, you have an incredible compassion and manage to find humour in everything, a true talent. **Beate**, I am so greatful for our hikes, skitrips, and conversations. I have lost count of the amount of times you dragged me out to the wilderness and talked sense in me, and I have appreciated the fun hikes and learning about minecraft from Emil. Silje, your compassionate and playful spirit is simply infectious. I have valued our coffee breaks, hikes, adventures and heart-to-hearts, and I look forward to the many more to come! Miriam og Arne you are both so incredibly thought-full and bursting with creativity. Hanging out with you guys is a pure joy.

I have had the great fortune of knowing incredible individuals whose characteristics and awareness I have been privileged to absorb and process. It is unfortunately too many to thank individually. I thank my entire Tromsø, Oslo, and Bergen family Julia, Jan Håkon, Øyvind, Jingyi, Vidar, Mikkel, Maria, Rune, Hanne, Anup, Ole Morten, Selenia, Margarita, Pietro, Tejas, Dmytro, Hong, Luis, Deanna, Oddmund, Frode, Linda, Edna, Felix, Ingrid, Duarte, Dominik, Ana, Kathinka, and Anine. As well as the friendships made at Penn State. Specifically Amrita and Jon - your friendship was invaluable and made the pandemic somewhat manageable.

**Lena** developing a quicker friendship would be impossible. You are as genuine as you are hilarious. I am also incredibly jealous of your bouldering biceps, and impleccable berry dancing skills. Now, we try our luck with those \*uck off mountains!

**Anne Caroline,** my dear Top-Top. I will never be able to describe how far my love for you extends. You are truly a pure source of love and affection. Truer friendship is hard to find. Thank you for reading through the thesis and correcting my grammar. If that isn't true love I don't know what is. **Leia** is also have the bestest dog in the entie world.

How can I express the love I feel for my parents, **mamma** og **pappa**? Your love is unequivocal, and unconditional. You have supported my every move, and I am beyond lucky to have you as my parents! Jeg er så utrolig glad i dere! **Magnar**, you are the best big brother I could have asked for! Your sense of humour has shaped my personality from birth, making my quirks entirely your fault. Jeg er glad i deg!

I have been fortunate enough to dive into several field separately. In doing so I have witnessed a small fraction of the awe-inducing spectacle bacteria are capable of, and despite human ingenuity, bacteria have, without fail, managed to adapt. That being said, bacteria can only adapt to what they have already encounted. Whereas, this PhD has prepared me for just about anything.

It's been choolera!

Tromsø, October 2023

Menter Stuffer

The thesis is dedicated to my parents, Aud and Harry, two incredible people who offer everything and show nothing but love and laughter.

> "Oh, you pretty things Don't you know [you drive me] insane" – Modified quote by David Bowie –

# **Table of Contents**

| 1 | Abstract               |                    |                                                  |    |  |
|---|------------------------|--------------------|--------------------------------------------------|----|--|
| 2 | Background             |                    |                                                  |    |  |
| 3 | Aims o                 | Aims of the Thesis |                                                  |    |  |
| 4 | Introduction           |                    |                                                  | 5  |  |
| 4 | .1 Population dynamics |                    |                                                  | 5  |  |
|   | 4.1.1                  | 4.1.1 Selection    |                                                  |    |  |
|   | 4.1.2                  | He                 | terogeneity                                      | 7  |  |
|   | 4.1.2                  | 2.1                | Phenotypic diversity                             |    |  |
|   | 4.1.2                  | 2.2                | Metabolic heterogeneity                          |    |  |
|   | 4.1.2                  | 2.3                | Bet hedging strategy – spread out the risk       | 11 |  |
|   | 4.1.3                  | Ho                 | rizontal gene transfer                           | 12 |  |
|   | 4.1.3                  | 3.1                | Conjugation                                      | 12 |  |
|   | 4.1.3                  | 3.2                | Transduction                                     | 12 |  |
|   | 4.1.3                  | 3.3                | Natural transformation                           | 13 |  |
|   | 4.1.3                  | 3.4                | Homologous recombination                         |    |  |
|   | 4.1.4                  | V.                 | cholerae transitions between environments        | 15 |  |
|   | 4.1.5                  | Inf                | ection cycle                                     |    |  |
|   | 4.1.6                  | Vik                | prio cholerae is adept at natural transformation |    |  |
|   | 4.1.6                  | 5.1                | Natural Transformation Machinery                 |    |  |
| 4 | .2 An                  | tibio              | tics                                             |    |  |
|   | 4.2.1                  | Th                 | e pre-antibiotic era                             |    |  |
|   | 4.2.2                  | An                 | tibiotic resistance                              |    |  |
|   | 4.2.3                  | Dru                | ug discovery challenges                          |    |  |
|   | 4.2.3                  | 3.1                | Golden age of antibiotics                        |    |  |
|   | 4.2.4                  | Ме                 | chanisms of resistance                           |    |  |
|   | 4.2.4                  | 4.1                | Genetic mutation – resistance                    |    |  |
|   | 4.2.4.2                |                    | Horizontal gene transfer – antibiotic resistance |    |  |
|   | 4.2.4.3                |                    | Mobile genetic elements                          |    |  |
|   | 4.2.5                  | Ph                 | armacokinetics and pharmacodynamics PK/PD models |    |  |
|   | 4.2.5                  | 5.1                | Drugs in the body – Pharmacokinetics:            |    |  |
|   | 4.2.5                  | 5.2                | Drugs in bacteria – Pharmacodynamics             |    |  |

|                                                                             |                               | 4.2.6            |                          | Selection pressures                                                                                                                             | 32                   |
|-----------------------------------------------------------------------------|-------------------------------|------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                             |                               | 4.2              | .7                       | Dosing strategies                                                                                                                               | 33                   |
| 4                                                                           |                               | 3                | The                      | e cell envelope                                                                                                                                 | 34                   |
|                                                                             |                               | 4.3.1            |                          | Dynamic structure important for protection and adaptation                                                                                       | 34                   |
|                                                                             | 4.3.2 <sup>-</sup><br>4.3.3 M |                  | .2                       | The cell envelope                                                                                                                               | 34                   |
|                                                                             |                               |                  | .3                       | Membranes                                                                                                                                       | 36                   |
|                                                                             |                               | 4.3.3.1 Glycerop |                          | .1 Glycerophospholipids                                                                                                                         | 36                   |
|                                                                             |                               | 4.3              | .4                       | Lipid – protein interaction                                                                                                                     | 37                   |
|                                                                             |                               | 4                | .3.4                     | .1 Membrane proteins                                                                                                                            | 38                   |
|                                                                             |                               | 4.3              | .5                       | Cardiolipin – MgtA interaction                                                                                                                  | 39                   |
| 5                                                                           |                               | Syr              | nops                     | es of publications                                                                                                                              | 43                   |
|                                                                             | Pa<br>tra                     | ape<br>ansf      | r I: T<br>form           | ransposon insertion sequencing reveals dependency of natural ation on amino acid metabolism                                                     | 43                   |
|                                                                             | Pa<br>qu                      | ape<br>uino      | r II: l<br>lone          | Drug-target binding quantitatively predicts optimal antibiotic dose levels                                                                      | s in<br>44           |
| Paper III: The bacterial magnesium transporter MgtA reveals highly selectiv |                               |                  |                          | The bacterial magnesium transporter MgtA reveals highly selective                                                                               |                      |
|                                                                             | in                            | tera             | ctio                     | n with specific cardiolipin species                                                                                                             | 45                   |
| 6                                                                           |                               | Me               | thod                     | lological considerations                                                                                                                        | 47                   |
|                                                                             | 6.                            | 1                | Moo                      | del organisms:                                                                                                                                  | 47                   |
|                                                                             |                               | 6.1              | .1                       | Vibrio cholerae                                                                                                                                 | 47                   |
|                                                                             |                               | 6.1              | .2                       | Escherichia coli                                                                                                                                | 47                   |
|                                                                             | 6.                            | 2                | Tra                      | nsposon insertions sequencing                                                                                                                   | 47                   |
|                                                                             |                               | 6.2              | .1                       | Creating the library, conjugation                                                                                                               | 50                   |
|                                                                             |                               | 6.2              | .2                       | DNA shearing and PCR amplification                                                                                                              | 50                   |
|                                                                             |                               | 6.2              | .3                       | Size exclusion of DNA fragments                                                                                                                 | 51                   |
|                                                                             |                               | 6.2              | .4                       | Sequencing                                                                                                                                      | 52                   |
|                                                                             |                               | 6.2              | .5                       | Assessing library saturation – proper sampling                                                                                                  | 53                   |
|                                                                             | 6.                            | 3                | Nat                      | ural transformation homologous recombination                                                                                                    | 55                   |
|                                                                             |                               | 63               | 1                        |                                                                                                                                                 |                      |
|                                                                             |                               | 0.0              | . I                      | Nongenetic inheritance of tolerance                                                                                                             | 56                   |
|                                                                             | 6.                            | 4                | . I<br>MIC               | Nongenetic inheritance of tolerance<br>C determination and time-kill curves                                                                     | 56<br>57             |
|                                                                             | 6.<br>6.                      | 4<br>5           | . I<br>MIC<br>Sing       | Nongenetic inheritance of tolerance<br>C determination and time-kill curves<br>gle cell microscopy                                              | 56<br>57<br>58       |
|                                                                             | 6.<br>6.                      | 4<br>5<br>6.5    | . I<br>MIC<br>Sing<br>.1 | Nongenetic inheritance of tolerance<br>C determination and time-kill curves<br>gle cell microscopy<br>Fluorescent transcription fusion reporter | 56<br>57<br>58<br>59 |

| -  | 7.1 | Membrane Protein localization: Cardiolipin and MgtA    | 61 |  |
|----|-----|--------------------------------------------------------|----|--|
| -  | 7.2 | Mechanistic models can limit antibiotic resistance     | 66 |  |
| -  | 7.3 | Amino acid metabolism modulates natural transformation | 70 |  |
| 8  | Co  | nclusion                                               | 76 |  |
| 9  | Ou  | Outlook                                                |    |  |
| 10 | F   | References                                             | 79 |  |

# Abbreviations

| ADME  | Absorption, Distribution, Metabolism, and Excretion        |
|-------|------------------------------------------------------------|
| AI    | Autoinducer                                                |
| AMR   | Antimicrobial Resistance                                   |
| BFP   | Blue Fluorescent Protein                                   |
| CCR   | Carbon Catabolite Repression                               |
| CDC   | Center of Disease Control                                  |
| CL    | Cardiolipin                                                |
| DNA   | Deoxyribonucleic Acid                                      |
| DUS   | DNA Uptake Sequence                                        |
| FP    | Fluorescent Protein                                        |
| GFP   | Green Fluorescent Protein                                  |
| HGT   | Horizontal Gene Transfer                                   |
| ICE   | Integrative and Conjugative Elements                       |
| Mg2+  | Magnesium                                                  |
| MGE   | Mobile Genetic Element                                     |
| MIC   | Minimal Inhibitory Concnetraiton                           |
| MPC   | Mutation Prevention Concentration                          |
| MSW   | Mutant Selection Window                                    |
| PD    | Pharmacokinetics                                           |
| PE    | Phosphatidylethanolamine                                   |
| PG    | Phosphatidylglycerol                                       |
| рН    | Potential of Hydrogen                                      |
| PK    | Pharmacokinetics                                           |
| PTS   | Phosphoenolpyruvate:Carbohydrate Phosphotransferase System |
| QS    | Quorum Sensing                                             |
| SOS   | Save Our Ship                                              |
| Ssb   | Single Stranded Binding (proteins)                         |
| ssDNA | Single Stranded DNA                                        |
| T6SS  | Type VI Secretion System                                   |
| UV    | Ultraviolet                                                |
| nm    | Wavelength                                                 |
| WHO   | World Health Organization                                  |

## List of papers

**Paper I:** Transposon insertion sequencing reveals dependency of natural transformation on amino acid metabolism

**M. Storflor**, J. A. Gama, K. Harms, S. Abel *Manuscript* 

**Paper II:** Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones

F. Clarelli, A. Palmer, B. Singh, **M. Storflor**, S. Lauksund, T. Cohen, S. Abel, P. Abel zur Wiesch

*Published* - PLOS Computational Biology, 14.08.2020, https://doi.org/10.1371/journal.pcbi.1008106

**Paper III:** The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species

J. Weikum, J. van Dyck, S. Subramani, D. P. Klebl, **M. Storflor**, S. P. Muench, S. Abel, F. Sobott, J. P. Morth *Manuscript accepted -* BBA - Molecular Cell Research

Pre-print: BioRxiv, 27.09.2021. https://doi.org/10.1101/2021.09.27.462033

During this thesis I supervised a Master's student, Amie Manzi, publication not included in the thesis.

| Author<br>contributions | Experimental<br>design                                 | Experimental execution                           | Data<br>analysis                                          | Original draft<br>preparation | Visualization                                          | Review<br>and<br>editing                                     |
|-------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|-------------------------------|--------------------------------------------------------|--------------------------------------------------------------|
| Paper I                 | <b>MS</b> , KH, SoA                                    | MS                                               | <b>MS</b> , JAG                                           | MS                            | MS                                                     | <b>MS</b> , JAG,<br>KH, SoA                                  |
| Paper II                | F.C, <b>MS</b> , BS,<br>SoA, PAzW                      | <b>MS</b> , BS, SL                               | F.C, A.P, <b>MS</b> ,<br>BS, AS,<br>PAzW                  | F.C, SoA, PAzW                | F.C, SoA,<br>PAzW                                      | F.C, <b>MS</b> , BS,<br>AP, TC, AoS,<br>PAzW                 |
| Paper III               | JW, JvD, SaS,<br>DPK, <b>MS</b> , SPM,<br>SoA, FS, JPM | JW, JvD, SS,<br>DPK, <b>MS</b> , SPM,<br>FS, JPM | JW, JvD, SaS,<br>DPK, <b>MS</b> ,<br>SPM, SoA,<br>FS, JPM | JW, JPM                       | JW, JvD, SaS,<br>DPK, <b>MS</b> , SPM,<br>SoA, FS, JPM | JW, JvD,<br>SaS, DPK,<br><b>MS</b> , SPM,<br>SoA, FS,<br>JPM |

Authors: Adam Palmer (AP), Bhupender Singh (BS), David P. Klebl (DPK), Fabrizio Clarelli (FC), Frank Sobott (FS), Jens Preben Morth (JPM), Jeroen van Dyck(JvD), João Alves Gama (JAG), Julia Weikum(JW), Merete Storflor (MS), Pia Abel zur Wiesch (PAzW), Saranya Subramani (SaS), Silje Lauksund (SL), Sören Abel (SoA), Stephen P. Muench (SPM), Ted Cohen(TC).

# 1 Abstract

Bacteria can adapt to various environments because they efficiently sense and respond to external cues. This is exemplified by antibiotic resistance, a leading cause for death on a global scale. Antibiotics exert a selection pressure on bacteria, where improper use can inadvertently select for antibiotic resistance. Dissemination of antibiotic resistance throughout bacterial populations can occur via horizontal gene transfer. Bacteria can also take up genetic material from the environment and incorporate it into their genome. This is known as natural transformation and is dependent on bacteria entering a state of competence to take up environmental DNA. Induction of competence involves an extensive network of signaling, that involves sensing and responding to external cues such as population density, and nutrient availability. The external cues are then converted into a phenotypic response. The cell surface is critical to regulate this activity and occurs via an intricate tapestry of membrane proteins, lipids and more. The orchestration of these components is vital for appropriate signal processing and proper adaptation.

This thesis explores bacterial adaptation in response to external cues such as antibiotics and environmental DNA. As well as activity and localization of membrane proteins.



Bakterier har en enorm evne til å tilpasse seg ulike miljøer som innebærer å tolke eksterne stressfaktorer. Et eksempel på dette er antibiotikaresistens, som er en ledende dødsårsak på global basis. Antibiotika utsetter bakterier for et seleksjonspress, ved feil bruk vil man kan ubevisst selektere for resistente bakterier. Resistensgener kan så overføres ved horisontal genoverføring. På den måten kan resistens fordeles i populasjonen. Bakterier kan også ta opp fremmed DNA fra miljøet og inkorporere det i sitt genom. Dette kalles naturlig transformering og krever at bakteriene blir kompetente til å kunne ta opp fremmed DNA. Dette innebærer som regel et innviklet nettverk av signalering. Eksterne faktorer som populasjonstetthet og tilgang på næring blir da konvertert til en phenotypisk respons. Celleoverflaten er kritisk for å regulere denne aktiviteten og foregår via ett tettpakket vev av blant annet membranproteiner og lipider. Dette er essensielt for å kunne registrere og videreføre informasjon fra miljøet.

Denne avhandlingen utforsker tilpasningsevnen til bakterier i henhold til stressfaktorer, som antibiotika og DNA fra miljøet, og samspillet mellom aktivering av membranproteiner, som nevnt ovenfor.

Background

## 2 Background

Bacterial infections were in 2019 ranked as the second leading cause of death<sup>5</sup>. There are several factors, both environmental and behavioral, that contribute to the survival and spread of antibiotic-resistant bacteria. Some key drivers include Improper use of antibiotics, poor water quality, inadequate sanitation, and suboptimal infection prevention. Consequently, these factors limit the effectiveness of antibiotics, reducing the success rate of treatment and limits prevention. Antimicrobial resistance leads to serious illness, prolonged hospital stays and increased healthcare cost. Ironically, the use of antibiotics is a significant contributor to antibiotic resistance. The antibiotic expososes bacteria to a selection pressure that can inadvertently select for resistance, which can then propagates. A bacterial population is also genetically and phenotypically divers<sup>6,7</sup>, with the added ability to transfer genetic material both vertically and horizontally. These are all factors that influence the ability to adapt to environmental stressors, making it difficult to control infectious disease and imposing additional burden the global public health.

An attractive target for antibiotics is the cell envelope, which functions as the main defense against the immediate environment. It provides a hydrophobic barrier with size exclusion properties and contains components that are indispensable for bacterial survival and growth. This complex architecture comprise of functional layers that differ between Gram-positive and Gram-negative bacteria. Generally, Grampositive bacteria have two functional layers - a cytoplasmic membrane surrounded by a thick cell wall - while, Gram-negative bacteria have three functional layers - a cytoplasmic or inner membrane, a thin cell wall, and an outer membrane. We will focus on Gram-negatives. There is significant signaling at the bacteria-environment interface, facilitated by transmembrane signaling systems, and membrane proteins<sup>8</sup>. Bacteria have been found to restructure their membrane composition depending on the environment, as observed in *Vibrio cholerae* in the presence of bile<sup>9</sup>. Changes in the bacterial surroundings can be relayed and rapidly converted into cellular signals, allowing the organism to either adapt or relocate. Maintaining the integrity of the envelope is therefore critical for adaptation and survival.

A major route for adaptation is horizontal gene transfer (HGT), and is a recognized evolutionary force that reshapes bacterial genomes. Bacteria can acquire large stretches of genetic material from other organisms that enable them to adapt to their environment. This can result in, for example, increased infectivity as well as improved colonization which can have considerable consequences. An enteric pathogen adept at acquiring new alleles via HGT, is *V. cholerae*. This pathogen holds major socio-economic implications for vulnerable communities, constrianing their development<sup>10</sup>. In has been seen that a non-toxigenic strain can be converted into a toxigenic strain via natural transformation<sup>11</sup>, one of the major modes of HGT. This efficient shuffling

or import of genetic material contributes to the success of this pathogen. HGT provides a route for adaptation as well as facilitating the spread resistance.

Antibiotic resistance is ever increasing and remains a global challenge, especially since novel antibiotic discovery has stalled since the 1960s. Bacteria employ several strategies to evade antibiotic effects, such as acquiring genetic mutations that alter the drug target, rendering the drug ineffective. Bacteria can also survive exposure to antibiotics by having acquired genes that confer resistance. Further, they can survive antibiotic exposure by limiting drug uptake, altering the permeability of the outer membrane or generate biofilms that provide an additional "impenetrable" layer of protection<sup>12</sup>. Effective drug action requires an interaction between the drug and its target, necessitating an ideal concentration to eradicating the entire bacterial population, limiting resistance development, selection, as well as HGT. However, such a concentration is likely to have toxic effects on the patient. HGT plays an important role in bacterial evolution which includes rapid adaptation to environment as well as reducing the genetic burden of clonal reproduction. HGT can occur between across species allowing for macroevolution<sup>13,14</sup>. An important mechanism of HGT is known as transformation. This process involves the detection of extracellular DNA, transportation into the cytoplasm and integration into the genome via homologous recombination. However this is only the first step of gene transfer. Given that the variant provides a selective advantage it needs to spread through the population, and there will likely need to be a fine-tuning of the regulator system. While these selective forces take longer<sup>15</sup>, the initial gene transfer can aid in local and rapid adaption<sup>16</sup>. Which, is why a clear understanding of how bacteria sense and respond to the emmidiate environment is crucial. This thesis focuses on understanding microbial responses to external cues such as antibiotic, ions and genetic material. In an effort to gaining an understanding of how bacteria process environmental cues.

# 3 Aims of the Thesis

This thesis focuses on understanding how bacteria respond to stressors such as extracellular DNA and antibiotics. We were also interested in the role of the cell membrane in modulating the response of protein activity and localization. *Specific parameters we were interested in entail better understanding of how DNA is taken up from the environment, how to avoid resistance to antibiotics, and the interplay of lipids and membrane proteins.* 

### Specific aims:

**Paper I**: Gather a better understanding of the mechanisms that facilitate DNA uptake from the environment. To achieve this, we chose *V. cholerae* as a model organism to explore its response to extracellular DNA. Our interest lies in understanding the fitness effects of genes involved in this process, and aimed to find major pathways that contribute to DNA uptake and recombination.

- 1. Generate a transposon insertion library to assess fitness effects
- 2. Apply the library to a natural transformation assay
- 3. Investigate candidate genes/ pathways involved in natural transformation

**Paper II:** Investigate the bacterial response to antibiotics fousing drug target interactions within the cell. The objective was to understand the impact of antibiotic dosing in connection with target binding, aiming to prevent resistance selection and facilitate the recycling of traditional antibiotics. We opted to use *E. coli* as a model organism, as a great deal of mechanistic information about target binding affinities is available along with intensive studies of specific target binding mutations.

- 1. Investigate if there is a linear correlation between the minimal inhibitory concentration and target binding affinities
- 2. Determine MICs
- 3. Test the effects of altered target sites in terms of drug response

**Paper III:** Understand how lipid interactions mediate membrane protein activity and function to stabilize complexes and localization. Finding cooperative effects between lipids of the same class and a membrane protein with implications for regulation of infection.

- 1. Establish an interaction between membrane protein and phospholipid
- 2. Investigate activity of membrane protein in the context of phospholipid.
- 3. Localization/anchoring of membrane protein mediated by phospholipid

## **4** Introduction

## 4.1 Population dynamics



Bacteria can adapt to a wide range of environments, - *In my opinion, this a direct result of bacteria being 95% free-spirit, and 5% pure spite*<sup>17</sup> - and posess a remarkable capacity to grow. However, they rarely encounter optimal growth conditions outside of the laboratory. Bacteria are often in competition for the limited resources and at the same time must contend with threats from other bacterial species, host defenses, and antibiotics. To navigate these challenges bacteria have developed a wide range of mechanisms that enable them to alter their growth patterns in response to the environment, such as entering a growth arrest or executing population-wide behaviors based on growth density. These complex processes foster bacterial adaptation with mutation rates and inherent heterogeneity contributing to diversity enabling swift responses. Additionally, bacteria utilize horizontal gene transfer (HGT) to acquire genetic material, facilitating rapid adaptation to changing environmental conditions, provided there is a competitive edge. As the fitness-driven effect of natural selection will impact how HGT shapes the microbial community.

#### 4.1.1 Selection

Bacteria can undergo significant change within a relatively short amount of time partly due to the ability to mutate as well as acquire genetic material. This can in turn affect the bacterial generation time e.g. alter the fitness effect. Such fitness effects can be either beneficial, neutral, or detrimental. A beneficial mutation will result in a new allele or gene variant and increases fitness. Eventually the mutation will accumulate within the population and can potentially replace the original allele and reach fixation. Detrimental genes can be outcompeted however there are also interesting effects where a small level of the allele occurrence is retained within the populations, which is often referred to as mutational robustness<sup>18</sup>.

The environment exerts selection pressures on genetic variants or organisms through natural selection. Mutations drive population variation, forming the basis of adaptation. Bacteria with high fitness will exhibit increased replication rate, influencing allele frequencies based on the principle of fitness-driven selection (**Figure 1**). For example, in an infinite population without selection pressures the occurrence of all alleles are theorized to be evenly distributed. In such a case any variation will be defined by the rate of mutation, leading to a stochastic distribution. Regardless, an infinite population without selective pressures will not demonstrate large variation<sup>19</sup>. Whereas, in the same scenario but with a finite population, allele frequencies will differ more significantly, due to naturally occurring mutations.



Figure 1 Selection pressures. A bacterial population is depicted to the left consisting of two alleles green and purple. The correspond distribution of alleles or growth curve is directly below. Assume zero selection pressure at the start. After some time the population encounters a selection pressure such as high temperature. This favors the green allele as it has an thicker outer membrane. The purple allele does poorly in this However the condition. soon population encounters a new environmental condition like lower temperatures, promoting the fitness of the purple allele. The oversimplified genetic variability and selection pressures depicted in this figure allows for the population to survival as a whole.

Populations that cycle between environments or have experienced a severe challenge often display an increased mutation rate and maintain mutator alleles. Such organisms are referred to as mutators, often experiencing a higher load of deleterious mutations<sup>20</sup>. This is because the probability of deleterious mutations occurring is higher than beneficial ones. As a result, the changing environments will apply different selection pressures on the mutator allele. Just as in the presence of a stable environment, mutator alleles will eventually be lost<sup>21</sup>. This demonstrates how genetic variation can aid in transitioning between environment. The allele frequencies in a population will be change over generations simply by chance, this is known as genetic drift. Genetic drift is present in infinite populaitons however will have larger effects in finite populations. The genetic drift can have major effects if the population size experiences a sharp decline, this is referred to as a bottleneck event. It is thus possible for a random event to shape the genetic variability of a population<sup>22</sup>. If a random event isolates a smaller part of the population, there will be a reduction in genetic variability (Figure 2), which can result in "speciation", given that the population can adapt to the selection pressures, this is known as the founder principle.

In 1968, Motoo Kimura evaluated the rate of mutation for a base change in genetic material. Using a combination of numbers based off comparative studies of hemoglobin, cytochrome C, and human sperm. He found that the mutation rate per base was so frequent that the "substitutional load [would become] so large that no

*mammalian species could tolerate it*"<sup>23</sup>. This implying that most mutations are likely neutral, as the substitutional load is lower and would not impede the rate of evolution. This underlines the importance of genetic drift within a finite population, where evolutionary changes arise from genetic drift acting on netural substitutions. This principle is now known as the theory of neutrality, which maintains that most mutations have a neutral effect, and any resulting evolutionary benefit is purely due to stochastic processes. Kimura's witty conclusion adds a touch of scientific sass, emphasizing the importance of random genetic drift in finite populations. "To emphasize the founder principle but deny the importance of random genetic drift due to finite population number is, in my opinion, rather similar to assuming a great flood to explain the formation of deep valleys but rejecting a gradual but long lasting process of erosion by water as insufficient to produce such a result." Consequently, novel mutation or pre-existing variation therefore undergoes constant genetic flux, shaping the evolutionary trajectory of the population.



Genetic Drift. Figure 2 Schematic that demonstrates the principle of genetic drift. A bacterial population is depicted on the left. Each color equals an allele. Assume zero selection pressure between allele frequencies. The horizontal black line indicates a drift event that isolates a subpopulation. Subsequent replication and selection pressures will determine if the populations are viable and could result in speciation. A small population with little genetic variability might not be able to adapt and could perish.

#### 4.1.2 Heterogeneity

"Same same, but different" – David Skylark, The Interview –

Beyond genetic diversity, isogenic populaitons exhibit notable phenotypic variation despite having an identical genetic make-up. Phenotypic heterogeneity arises from internal factors like individual physiological states and stocastic gene expression, strongly influenced by external factors such as nutrient avaibliability, chemical gradients, cell density, and stress factors<sup>24</sup>.

Stochastic processes introduce substantial variation, not necessarily stemming from genetic changes but rather from phenotypic effects. The genotype represents the hereditary underlying genetic make-up of the organism, while the phenotype is the observable trait such as morphology and behavior. Consider a marine bacterium attached to chitin, a biopolymer present in crustacean shells. The bacteria can upregulate genes involved in chitin degrading and metabolism. The genotype consists of genes enabling this, and the phenotype is the ability to metabolize chitin. In this aquatic environment, the bacterium faces several selection pressures due to

nutritional scarcity and limited protection. Being able to metabolize an abundant yet insoluble polymer provides nutrition. Further, as chitin is the main component of exoskeletons the bacterium would be attached to a larger organism, with the added benefit of protection from grazing protozoans. In this case, the bacterium has over time adapted to metabolize an insoluble polymer and developed mechanisms to aid in scavenging this nutrient source. While genetic change requires time to develope, phenotypic change occurs by expressing a different preexisting genetic code, and can therefore be more dynamic.

#### 4.1.2.1 Phenotypic diversity



**Figure 3 Phenotypic variation.** An example of phenotypic variation in gene expression. *V. cholerae* expressing a GFP-fusion protein visualized in grey-scale. Note how some cells are brighter then others. Unpublished. Scalebar 2 μm

Bacteria actively monitor their local environment, switching between phenotypic states in response to environmental cues. The phenotypic state is mainly a representation of expressed genes of translated proteins. **Figure 3** demonstrates phenotypic variation in terms of protein expression. The transition between phenotypic states can be influenced by local environmental shifts, such as concentrations of secreted signaling molecules. This regulatory mechanism operates at both the single-cell and population levels.

Quorum sensing (QS) exemplifies such a phenomenon, where the bacteria regulates expression based on cell density. Autoinducers (AIs)

are secreted by most bacteria, including *V. cholerae*, and the accumulating concentration translates into a phenotypic response. Once a threshold is reached, it triggers a signaling cascade that can result in various effects. Generally, in terms of QS there is an over-all repression of replication, which regulates the population density<sup>25</sup>. However, QS can also affect virulence and, biofilm formation, as well as DNA uptake. In response to an unfavorable environment, bacteria can form biofilms. Biofilms are clusters of bacteria held together by a matrix that can consist of sugars, proteins, and DNA. This state often allows the organism to withstand longer periods in unfavorable environments after for example shifts in temperature, pH, salinity and nutrient availability<sup>26</sup>. *V. cholerae* is a highly adaptable bacterium and utilizes quorum sensing in multiple ways. At low population densities, the concentrations repress biofilm, in favor of dispersal<sup>27</sup>. Virulence factors and DNA uptake are also cell density dependent<sup>28,29</sup>. Intriguingly, *V. cholerae* can also rally other bacteria by using autoinducers to promote virulence in other species, such as *E. coli<sup>28</sup>*.

A major contributor of this is the inherent variability of stocastic gene expression, or noise as it is often referred to<sup>30</sup>. Transcription of a gene is the process of expressing

a part of the genetic material. Expression is initiated at a promoter sequence, and different promoter sequences will have different expression levels. Translation is the process of "translating" the genetic code into a protein. Even in the same environment individual bacteria of a clonal population will exhibit distinct phenotypes. Both transcriptional and translational noise can result in different concentrations between cells within a population<sup>31</sup>. Random fluctuations of mRNA and protein expression are heavily influences by this noise<sup>32</sup>. Variation in intracellular concentrations and binding rates of RNA polymerases, transcription factors, etc., result in fluctuating transcription and translation levels. Additionally, stocastic promoter activity and RNA degradation contribute to variation, even between identical promoters within a cell<sup>33</sup>. Additionally, transcription and translation often occurs in bursts which further promote cell-to-cell variability<sup>34,35</sup>. For example transcriptional bursting, despite its purpose being unknown, contributes to cellular diversity which can aid survival in unpredictable environmental<sup>36</sup>. Population diversity allows for alternative ways to adapt to fluctuating environments, meaning different subsets of the population could be better adapted to different environment<sup>37</sup>

### 4.1.2.2 Metabolic heterogeneity

Population diversification can also arises from stochastic metabolic processes<sup>38-40</sup>. Inherent molecular variation during gene/protein expression will further promote noise. The stocastic nature of biochemical reactions impacting gene expression will influence the fate of the cell. Heterogeneity has been observed in all forms of bacterial metabolism ranging from central carbon metabolism<sup>41</sup> to amino acid pathways<sup>42,43</sup>. Biological processes are concentration dependent; and a variety of molecular processes result in heterogeneity (**Figure 4**). Cell division for instance, involves asymmetric partitioning of randomly distributed intracellular components, resulting in daughter cells with different concentrations. Inheriting a complex protein structure provides a fitness advantage, reducing the energy expenditure on protein synthesis<sup>44</sup>. Further there is particularly high noise for transcriptional promoters driving metabolism and stress responses, such as pH, acid, and temperature to name a few. Whereas, promoters that steer gene expression pertaining to sensitive processes e.g. housekeeping genes and remodeling the structure of DNA (methylation and super-coiling), have less noise<sup>45</sup>.

Bacterial populations can readily switch between metabolic networks. Further, bacteria will deal with nutrient limitation and uptake according to the needs of the individual cell<sup>24</sup>. In the presence of glucose E .coli and other bacteria will inhibit the uptake of others carbon sources, this is known as carbon catabolite repression<sup>46</sup>. Once the glucose is used up, the population will switch to another available carbon source, e.g. lactose. This is a classic case of feast-to-famine during growth with two



**Figure 4 Molecular processes aiding heterogeneity.** Examples of molecular processes that generate heterogeneity. (A) Transcriptional activity and feedback loops may result in different expression levels of genes. Promoters of the gene will also play a role for how strongly a gene is expressed. (B) Asymmetric partition can result in an uneven distribution of proteins. (C) Heterogeneity is the resulting sum of molecular processes and environmental influences.

nutrients. During the switch, there is a delay in overall growth for the population. However, a fraction of the bacteria will not experience this growth lag and can start growth immediately. Another fraction experiences a long lag phase, while other bacteria might enter a growth arrest eventually being outcompeted or simply endure at lower levels in the population. This heterogenous growth response is the result of stochastic biological processes<sup>47</sup>. While bursts of expression can occur, the bacteria need to overcome an expression threshold for the phenotype to remain stable. All genes involved in metabolizing lactose are grouped in an operon called lac (An operon is a cluster of genes that are transcribed together). While most of the population represses the lac operon, a fraction will have a level of *lac* expression enough for a few molecules of *lac* permease. A permease is a pore that allows transport across the membranes. This allows entry of lactose which in the absence of glucose, generates a positive feedback loop that eventually results in maximal lac expression<sup>47</sup>. This low baseline of expression would present itself as a trade-off between fast switching and a corresponding fitness cost while glucose is in abundance. Naturally, stochastic processes are not immune to selection pressures. However, the fitness cost of a biological process can be alleviated by the benefit of the outcome or compensatory mutations. Regardless expressing a system that is not in use is costly and will decrease the overall fitness, especially as fast growth is important when competing for a limited resource. Stochastic processes can therefore have a major impact during this race for resources, as this limits the fitness cost to a fraction of the population. The intricate balance between response and cost within a population then becomes a distribution of risk.

Bacteria are constantly balancing the trade-off between endurance and growth. Planktonic cells exhibit rapid growing but are fragile, while biofilm cells often grow slower yet are robust. As bacteria readily adapt to the environment, environmental factors could impact heterogeneity. Heterogeneity may arise from either responsive or stocastic switching. Responsive switching refers to an environment-dependent response, which would maximize temporal fitness. On the other hand, stoacastic switching referes to a random change in gene expression independent of the environment. The latter would yeild multiple maladapted phenotypes of reduced fitness. However this strategy might be better suited in facing unknown environments<sup>48</sup>. This particular form of heterogeneity is known as "bet-hedging".

#### 4.1.2.3 Bet hedging strategy – spread out the risk

Constant risk factors like scarce nutrition, predation, and hostile conditions make it advantageous to be able to switch between phenotypes. Being too well adapted to one environment may limit survival if conditions change. Bacteria that can modulate their reasons to environmental change guickly, have been found to have a higher fitness than slow responders<sup>31</sup>. Additionally, heterogeneity enables the lineage of a population to survive in fluctuating environments, given that it is cyclic and not irregular. It can therefore be viewed as an evolutionary "strategy" to avoid a worstcase scenario by distributing the risk throughout the population. The isogenic population introduces stochastic diversification within the pool of phenotypes, leading to varying fitness effects. This phenomenon can offer selective advantages, particularly in dynamic habitats. For instance, when the nutrient source is switched, some cells undergo growth arrest as an adaptive response<sup>49</sup>. Subsequently, these dormant cells face competition from an expanding subpopulation that has the ability to metabolize the new nutrient source<sup>41</sup>. This dynamic interplay highlights the evolutionary strategies employed by isogenic populations to adapt and thrive in changing environmental conditions.

Adaptation can either be temporary or permanent. Temporary adaption to an environmental response can occur by regulating the expression of certain genes to achieve a phenotypic response. An example of temporary adaptation is the ability of orally ingested pathogens, such as *V. cholerae*, to survive gastric acid<sup>50</sup>. This adaptive stress is further suggested to aid initial survival within the intestine<sup>51</sup>, promoting positive selection of the adaptive mechanism. Whereas permanent adaption refers to a lasting change, for example, genetic exchange via viral transduction that increases infectivity and virulence aiding in dissemination of the pathogen. A example of this is the emergence of the toxigenic *V. cholerae* strain after phage (CTX $\phi$ ) interaction, where the event led to the cholera toxin gene being incorporated into the genome<sup>52</sup>. Given the impact horizontal gene transfer (HGT) has on environmental adaptation and spread of antibiotic resistance markers, it is important to understand the machinery that enables the constant flux of genetic material.

## 4.1.3 Horizontal gene transfer

"The first million is the hardest to make. So, start with the second million." - Arnold Schwarzenegger -

HGT can lead to permanent adaption and there are clear indications that it is a major driver of evolution, exemplified by *E. coli* and its acquisition of indole production and lactose utilization. Most changes in metabolic networks stem from acquiring genes via horizontal gene transfer. Bacterial populations are more often than not experience environments lacking nutrients. Acquiring new metabolic capabilities allows them to utilize a broader range of nutrients, without affecting their core metabolism<sup>53</sup>, making them stronger contenders. There are three main modes of HGT: conjugation, transduction, and transformation. While the mechanisms differ greatly in transfer strategies, the overall effect is the same i. e. transport the the genetic material across the bacterial envelope and incorporate it into the genome. *While this part of the introduction will focus on transformation, the three modes are discussed further in* **section 2.2.4.2**, within the context of antibiotic resistance.

#### 4.1.3.1 Conjugation

In brief, conjugation is a cell-to-cell transfer of a conjugative circular plasmid. The mechanism occurs via a retractable conjugation pilus. The pilus binds to a recipient cell in close proximity. A pore is formed within the membrane of the recipient anchoring the mating bridge. Before transfer can occur the conjugative plasmid DNA is nicked. A single stranded DNA (ssDNA) is then transferred from the donor to the recipient, the complementary sequence is synthesized, and the DNA re-circularizes. The recipient is now a potential donor<sup>54</sup>.

#### 4.1.3.2 Transduction

Transduction occurs via bacteriophages, and occurs by direct injection of the genetic material into the host cell. Upon packaging the viral DNA some of the host DNA can potentially be included. This will then be transferred to the next host, resulting in transduction. Lytic phages for example result in the release of new infectious virions which would then propagate further transfer of the incorporated host DNA.

#### 4.1.3.3 Natural transformation



"Time may change me, but I can't trace time" – David Bowie –

Transformation differs from conjugation and transduction as it does not require contact with other cells. Competent bacteria can take up exogenous DNA and incorporate it into its genome. While this cuts out the middleman, so to say, there are some potential drawbacks for integrating foreign DNA, such as the uptake of deleterious genes. The likelihood of integrated extracellular DNA having a beneficial effect although present, is low. However, the advantage of recombination in the absence of sexual reproduction could outweigh this drawback, especially if the population is large enough to overcome the fitness interactions of "bad genes"<sup>55,56</sup>. This could suggest an explanation for why bacteria have evolved complex machinery to take up DNA from the environment. This process is known as natural transformation and often requires coordination of several signaling pathways. Competent bacteria can take up free DNA naturally occurring in the environment, allowing access to a vast genetic pool and enabling transfer across species and strains. The core machinery for natural transformation is fairly conserved across Gram-positive and -negative bacteria. The induction of competence, however, is more specific to species and situations. Some bacteria are constitutively competent and often require specific DNA uptake sequence (DUS), as is the case for Neisseria gonorrhoeae<sup>57</sup>. Whereas, other bacteria are transiently competent and requires induction of competence. For instance, competence in V. cholerae depends on chitin metabolism, allowing for spatiotemporal isolation of the DNA uptake event<sup>58</sup>.

There is a wide range of DNA uptake machineries and strategies, which implies that the purpose of transformation could very well be different from species to species. While there is evidence of transformation being a driver for evolution the purpose of transformation is debated. Natural transformation is a costly mechanism and requires orchestration of several pathways. It has therefore been suggested that transformation is maintained as it provides a way to utilize DNA as a nutrient or source of nucleotides, providing a slight increase in fitness. However, this could be species-dependent, appearing to be more relevant for *H. influenzae* and *B. subtilis*. In contrast, adding exogenous DNA to *Acinetobacter baylyi* reduces the growth rates of competent bacteria, removing any apparent advantage. However, this does provide the bacteria more time to integrate the DNA into its genome. Furthermore, the most competent bacteria protect DNA from degradation either by downregulating

the secretion of nucleases or by protecting the DNA strand with binding proteins once shuttled into the cell. It is, however, possible that the transforming DNA could be recycled as a nutritional byproduct. An alternative hypothesis suggests that natural transformation aids DNA repair, rendering the integration of exogenous DNA purely coincidental. Meanwhile, another hypothesis suggests that natural transformation is maintained as a route to sample fitness landscapes in neighboring populations<sup>59</sup>. Another possible selection pressure could be the additive effects of competenceinduced growth arrest and occasional selection, leading to increased fitness that would eventually outcompete rapidly dividing, non-transforming bacteria. Population heterogeneity could support this theory.

Different bacterial species implement natural transformation with slight variation. For instance, some take DNA indiscriminately, whilst others require a specific sequence. Regardless of flavor and spice, there is some commonality in the primary machinery. In the case of Gram-negatives, a type IV pilus recognizes the DNA, be it double or single stranded, and drags it into the periplasm, where specific proteins bind the DNA, passes the outer membrane via a pore complex. From this point on only one strand is shuttled into the cytoplasm, where single-stranded DNA binding proteins stabilize the strand and protect it from degradation. The DNA can then be integrated into the genome. Gram-positives function very similarly, however they do not have an outer membrane and therefore pull the DNA directly into the cytoplasm via a pore complex in the inner membrane<sup>60</sup>. Once inside the cell, the DNA can be incorporated into the genome to persist in successive generations. While there are several mechanisms for this, homologous recombination is the most efficient and straightforward mode of integration.

## 4.1.3.4 Homologous recombination

Natural transformation tends to favor linearized ssDNA, and the key to homologous recombination is sequence similarity, as transformation frequencies drop dramatically with increasing sequence divergence. Upon entry into the cell, the ssDNA is bound to single stranded binding proteins, SsB, which keep the DNA from degrading. Depending on your favorite organism, DprA, a DNA processing A protein, either replaces the SsB or binds directly to the ssDNA ultimately recruiting RecA. RecA is a universally conserved DNA repair and maintenance protein that catalyzes strand exchange and is responsible for welding the transforming DNA to the chromosomal DNA resulting in a heteroduplex. The heteroduplex segregates during replication and cell division, yielding a "wild-type" and a "transformed cell". The heteroduplex is therefore the equivalent of a cellular "save" function.

There are also low frequency recombination events known as illegitimate recombination, where only a short stretch of a few hundred base pairs is enough to serve as an anchor and initiate a RecA-dependent strand exchange. While illegitimate recombination required little sequence similarity it is also possible to

recombine DNA sequences with no sequence similarity as seen in *Acinetobacter baylyi* known as double illegitimate recombination. *This is outside the scope of the thesis*.

### 4.1.4 *V. cholerae* transitions between environments

Natural transformation promotes the spread of antibiotic resistance<sup>61</sup>, but also drives the emergence of new toxigenic strains, as demonstrated in *V. cholerae*<sup>11</sup>. *V. cholerae* is a human pathogen well-adapted to the human body. Ingestion of the bacteria can lead to the debilitating diarrheal disease known as cholera. While it is difficult to ascertain the true scope of the health risk imposed by the pathogen, the current estimate lies between 1 to 4 million infections per year leading to between 21.000 and 143.000 deaths<sup>62-64</sup>. *V. cholerae* is a historic pathogen, without geographical boundaries, and can therefore be found wherever there are people. While there have been outbreaks across the globe, today's outbreaks are concentrated within communities that either lack proper, or experience disrupted sanitation. Outbreaks often follow natural disasters and warfare, further affecting already vulnerable communities.

We are currently experiencing the seventh pandemic, which is the longest lasting so far. There are over 200 serogroups of *V. cholerae* in which there is great genomic diversity within environmental strains however pathogenic strains isolated from patients are relatively clonal. Since the 1800s there have been seven documented pandemics. While the previous pandemics are thought to be caused by O1 strains, the fifth and sixth pandemic were primarily caused by the classical O1 biotype. The current seventh pandemic is caused by El Tor biotype O1 strains. The seventh pandemic began in 1961, making it the longest lasting cholera pandemic to date. The commonality for both toxigenic and pandemic strains are the CTX $\Phi$  prophage and the Vibrio pathogenicity island. It has been suggested that these toxigenic features were acquired while in the presence of chitin, as this promotes the uptake of DNA.

Standard treatment for *V. cholerae* is oral rehydration therapy, and for severe cases the treatment is supplemented with a course of antibiotics. Antibiotics are recommended in acute cases where massive water loss and severe dehydration is ongoing, for pregnant women, and patients with comorbidities such as severe malnutrition or HIV infection. The antibiotic treatment shortens the duration of the disease with the added benefit of releasing fewer infectious bacteria in the stool. However, there is a steady increase in treatment failure due to multidrug resistant and extensively resistant strains, which is further complicated by HGT and highly mobile genetic elements conferring multi-resistance<sup>65,66</sup>. The rise in multi-drug resistant bacteria has been documented since the 1970s and there are cases found that are resistant to tetracycline, ampicillin, kanamycin, streptomycin, and trimethoprim-sulfamethoxazole. There are also recent reports of chloramphenicol, furazolidone, and sulphonamides resistance. There is still little information existing in

regards to antimicrobial resistance profiles of clinical samples, mostly due to lengthy culturing for antibiotic susceptibility testing and limited laboratory space. These profiles are simply too time consuming and labor intensive.

### 4.1.5 Infection cycle

During the infection cycle V. cholerae is exposed to very different environmental conditions (Figure 5). This is most evident during the transitions between host and aquatic habitat. However, conditions within the host vary considerably and the pathogen has evolved mechanisms to sense and react to the broad spectra of these changes. For example, upon uptake from the aquatic environment the bacteria first encounter the acidic environment of the stomach. V. cholerae manages to shield itself from the environment in part due to its ability to form biofilms<sup>67</sup>. Biofilm associated cells have been found to be more resistant to stomach acid and increases survival rates during passage through the gastric environment<sup>68</sup> (Figure 5a). Upon entering the small intestine, host-secreted bicarbonate increases the pH (Figure 5b). At the same time bile is secreted, which is a strong chemotactic repellant for V. cholerae. Under such conditions biofilms are no longer beneficial for the organism. Concomitantly, flagella-dependent motility is favored and chemotaxis assists in penetrating the mucus layer in order to colonize the epithelial cells<sup>69 70</sup>. While biofilms are believed to be a hindrance for initial colonization, they appear to be upregulated during the late stages of the disease. In freshly shed diarrhea from human cholera patients, the majority of the pathogen is found in biofilm-associated forms, which together with the shed mucus - gives the stool its characteristic "rice water like" appearance. It has been speculated that this might prepare the bacteria for its release from the host and exposure to the new, hostile environment, but also for potential uptake into the next host<sup>71</sup>. While it is theorized that the pathogen can undergo transformation in the host intestine, it is established that natural transformation occurs in the aquatic environment.



Figure 5 Infection cycle of V. cholerae. In its natural aquatic ecosystems V. cholerae occurs either as motile planktonic cells or in a sessile form attached to biotic or abiotic surfaces. The facultative pathogen is transmitted to humans via ingestion of contaminated water or food. Once consumed the bacteria transits through the gastrointestinal (GI) tract, past the acidic environment of the stomach (A), to the site of colonization. In humans, the main site of colonization is believed to be the small intestine, where it attaches to the host's epithelial cells and proliferates (B). To reach the epithelium the bacteria has to penetrate the thick mucus layer that lines the GI tract(B.1). It has been proposed that this occurs via a combination of regulated motility, chemotaxis and mucolytic enzyme secretion<sup>1</sup>. Eventually ToxT, the master regulator of virulence in V. cholerae, is activated<sup>2</sup>. ToxT is important for the expression of the toxin co-regulated pilus (TCP) and cholera toxin (CT). The pilus is important for host colonization, while the secreted cholera toxin binds to the host's cells and increases the concentration of cyclic AMP (cAMP) which causes an efflux of chloride ions and a decreased influx of sodium ions (B.2). The electrolyte imbalance leads to massive efflux of water through the intestinal cells, causing the typical diarrhea that is linked to cholera<sup>3</sup>. V. cholerae exits its host with the diarrhea and reenters the aquatic environment. Especially at the late stage of the infection, this exit is aided by a coordinated "mucosal escape response" in which the bacteria actively detach from the epithelial surface and move into the fluid-filled lumen of the gut<sup>4</sup> (B.3). Once expelled the pathogen may then restart the infection cycle.

## 4.1.6 Vibrio cholerae is adept at natural transformation



*"I don't leave anything up to chance, I make my own luck."* – Harvey Dent, The Dark Knight –

V. cholerae is an aquatic strain often associated with chitin since it provides protection from grazing protozoans and functions as a carbon source. The biopolymer can be found on the shell of crustaceans and zooplankton. Additionally, chitin metabolism induces natural competence in V. cholerae<sup>58</sup>. This state is tightly regulated and distinct in both time and space. Association with chitinous material upregulates the expression of the master regulator of competence, TfoX<sup>72</sup>. The chitin-dependent production of TfoX works in unison with carbon catabolite repression (CCR) and is co-regulated by cell density in the form of QS<sup>73,74</sup>. CCR enables bacteria to regulate their metabolism to better adapt to their environment. In the case of V. cholerae this could be transitioning from the nutritious lumen of the intestine to an aquatic chitin containing environment. A major player for CCR is the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). which, mediates sugar uptake across the membrane. This eventually leads to an increase in cAMP which is a secondary messenger or signaling molecule. The elevated cAMP levels are eventually recognized by the cAMP-binding protein, CRP. Along with TfoX, the cAMP-CRP complex induces the expression of natural transformation machinery genes. TfoX is the major regulator of natural transformation<sup>58</sup>. However, there is also a need for input from quorum sensing genes via HapR, a regulator that only accumulates at high cell densities. An important function of HapR is the down regulation of a DNA endonuclease, Dns. The bacteria produce two extracellular nucleases, Dns and Xds, Dns being the most efficient and having the most impact on transformability. Exogenous DNA would be consistently degraded if production and excretion of the exonuclease was not shut down<sup>75</sup>. This coordinated response also leads to a dramatic increase in the type VI secretion system (T6SS). T6SS is equivalent to a poison dagger. The bacteria are constantly stabbing their neighbors, injecting toxins. This can result in killing by either attacking the nucleic acid, membrane, or cell wall. If the compound is not neutralized the prey will likely lyse. The main effectors of V. cholerae Vrg3 and VasX attach the cell membrane and cell wall. These effects can also kill eukaryotic cells by cross-linking actin structures<sup>76,77</sup>. V. cholerae can implement this killing device to access prey DNA. The mobilized attack lyses the cells, releasing the DNA, which can then be taken up by the natural transformation machinery<sup>78</sup>.



#### 4.1.6.1 Natural Transformation Machinery

**Figure 6 The natural transformation machinery of V. cholerae, current model.** Prepilins are processed by the peptidase, PiID, and incorporated into the growing transformation appendage. the major pilin subunit is PiIA. the growing pilus is energetically driven by the ATPase PilB. the pilus extends through the outer membrane pore complex PilQ, which is possibly stabilized by PiIW. PiIT drives the retraction of the pilus. DNA is pulled into the periplasm and binds ComEA. the DNA is then shuttled into the cytoplasm via an inner membrane channel ComEC. once in the cytoplasm Ssb and DprA binds the ssDNA and facilitates RecA-dependent recombination with the chromosomal DNA of the bacteria.

References for the schematic <sup>60,79,80</sup>

Within the aquatic environment, V. cholerae can associate with chitin present on various biotic surfaces such as zooplankton and crustaceans. The transmembrane regulator ChiS senses the presences of chitin and induces the expression of competence genes including the chitin utilization genes, the competence pilus, and the type 6 secretion system. This also induces TfoX expression which regulates the expression of pil genes involved in the uptake of DNA. The natural transformation machinery consists of two main parts: a competence pilus, and an inner membrane transporter (Figure 6). The competence pilus is a type IV pilus. It is anchored in the inner membrane and extends through the outer membrane. This is the appendage that associates preferentially with dsDNA and pulls it into the periplasm. Once inside the periplasm, the DNA is bound by DNA binding proteins ComEA<sup>81</sup>, which shuttle the DNA through the inner membrane transporter ComEC. It is assumed that this occurs as single strand DNA. Once inside the cytoplasm, the DNA is protected from degradation by Ssb, and DprA, which then facilitates RecA loading. RecA is the main recombinase of homologous recombination. Upon finding a homologous region on the chromosome a transformation heteroduplex is initiated. The ssDNA can then be incorporated into one of the strands of the chromosomal DNA and inherited by one of the daughter cells after cell division. Horizontal gene transfer can also result in nongenetic, transient inheritance of resistance to antibiotics<sup>82</sup>. Only one cell will inherit the genetic material. However, expression of the newly integrated DNA can occur immediately. Due to the stochastic nature of cell division (**Figure 4**), the newly expressed protein will be present in both divisional cells. Allowing survival of both. This provides the benefit of transformation without the potential consequence of a genetic fitness cost.

It bares mentioning that isolates from the Haiti outbreak in 2010 contained a conjugative element from the SXT family. This confers resistance to several antibiotics such as: sulfamethoxazole, chloramphenicol, trimethoprim, and streptomycin. Additionally, a gene within this element inhibits natural transformation by expressing an ICE-encoded DNase which localizes in the periplasm<sup>83</sup>. This DNase would remove the evolvability of the bacteria that would not be beneficial in the long term. However, transmission of pandemic strains is likely to occur between households and not necessarily from ingesting chitin particles carrying the pathogen. That being said, an efficient cholera prevention method is filtering drinking water through a piece of cloth<sup>84</sup>. In fact, this method was found to be so effective that it not only reduces transmission within households that implement the filtration, but also shields neighboring households, purely by limiting the number of cases. This indicates a balance within endemic areas and house-hold transmission. Regardless, a situation where inter-household transmission is the main source of infection could reduce the need for adaptation, as the environments human-to-human are more constant than human-nature-human, reducing the need for adaptation. Of course, it is much more likely that the nuclease is a hitchhiker that is inadvertently selected along with the antibiotic resistance conferred by the SXT element, as presented within a range of isolates acquired in Bangladesh collected in the timespan of a decade, from 2001 to 2011. These strains exhibit an initial prevalence of strains containing IdeA, the first five years. Followed by a transition to strains lacking IdeA, which could then be in favor of transformation. The connectivity of HGT modes and antibiotic selection pressures brings a complexity to pathogenesis that requires more investigation.

> "Laughter is the best form of medicine, unless you have diarrhea" – Source unknown –
# 4.2 Antibiotics



#### 4.2.1 The pre-antibiotic era

Historically, infections were thought to be a result of miasma. After serious debate and substantial evidence, germ theory was finally accepted and well-established in the early 1900s. While this led to better prevention of disease, there was still a need for effective treatment. The discovery of antibiotics improved quality of life considerably and has saved countless lives from various diseases. Infections we today view as trivial were in the pre-antibiotic era deadly. Strep throat for instance could result in heart failure. Bacterial meningitis was deadly. Ear infections led to hearing impairments, and if spread to the brain caused severe damage. Not to mention the social stigma of disease in a time where infection was unanimous with "punishment from God". For no other disease, was this truer than for leprosy. The disease caused by Mycobacterium Leprea, affecting the skin, and nerves, among other sensitives organs such as the eyes, causing permanent damage if untreated <sup>85</sup>. Survivors of not only lerosy, but countless other diseases, were almost guaranteed a participation trophy presented as a deformity, which garenteed ostracization. While the development of vaccines play a huge role in safeguarding us from serious disease, as well as provide the possibility for eradication, antibiotics were a genuine game changer. There was finally an efficient weapon against bacterial infections. See Table 1 for an overview of examples of antibiotics and their main targets.

Where would we be today if a fungal contaminant, *Penicillium notatum*, hadn't landed on an agar plate containing the pathogenic bacterium *Staphylococcus aureus*? By implementing simple and effective antibacterial assays Alexander Fleming noticed, in 1928, the production of a potent substance that inhibited growth of the bacteria. He had discovered the first antibiotic known to modern day medicine. Fleming was of course not the only person involved in the modern day penicillin story. In 1870, Sir John Scott Burdon-Sanderson discovered that mold could inhibit bacterial growth. Joseph Lister detected antibiotic effects on human tissue, in 1871. In 1902, a team of scientists lead by Paul Ehrlich discovered the first known antimicrobial compound of modern day medicine, salvarsan. Which in contrast to naturally occurring substances such as antibiotics, was an arsenic-based chemical effective against syphilis<sup>86</sup>. *There are simple too many contributors to list.* Regardless, a decade after Fleming first discovered the inhibitory properties of *Penicillium notatum*, Chain and Florey manufactured the drug from liquid culture, allowing for large-scale treatment of

bacterial infections<sup>87,88</sup>. It should be noted that early applications of treating various ailments using moldy bread and soil dates back centuries<sup>89-91</sup>. Additionally traces of antibiotics have been detected in skeletal remains at several archeological sites in Egypt<sup>92</sup>, Sudan<sup>93,94</sup>, and Jordan<sup>95</sup>. Nevertheless, the discovery of penicillin initiated a hunt for molds and fungi from which one could isolate novel antibiotics. One such story is that of Mattiedna Johnson, who observed just such mold from a jar of soup <sup>96</sup>. She decided to test the spores against a specimen of *Streptococcus haemolyticus*, the causative agent of scarlet fever, a contagious infection primarily affecting children. Upon discovering that the spores were effective at killing the bacteria, she suggested it be mixed with a peppermint syrup to make it more palatable for children infected with the disease. The substance was later patented as terramycin. This is only one of many antibiotics resulting from the hunt for mold, and several more were to come. The serendipitous discovery of antibiotics initiated international collaboration and was the break-through of a century.

| Mode of action      | Antibiotics class                          | Main targets                                                               |
|---------------------|--------------------------------------------|----------------------------------------------------------------------------|
| DNA replication     | Quinolones                                 | Topoisomerases – results in blocking DNA replication                       |
| RNA synthesis       | Rifamycin                                  | RNA polymerase only when DNA-bound and actively-transcribing               |
| Cell wall synthesis | ß-lactams                                  | Blocks the cross-linking of                                                |
|                     | proteine                                   | peptidoglycan (PG),via penicillin-binding proteins                         |
|                     | Glycopeptides                              | Inhibits PG synthesis through binding with PG units                        |
| Protein Synthesis   | Macrolide, lincosamide, oxazolidinone etc. | Ribosome function, blocking either initiation of<br>complex or translation |
|                     | Aminoglycosides                            | Blocks protein biosynthesis                                                |
| Metabolic pathways  | Trimethoprim, Sulfonamides                 | Folic acid synthesis                                                       |
|                     | Isonicotinic acid hydrazide                | Mycolic acid synthesis                                                     |

**Table 1:** Examples of targets of antibiotics<sup>97-99</sup>:

#### 4.2.2 Antibiotic resistance



No sooner had antibiotics become common practice than multi-resistant strains became commonplace. In 1940, Ernst Chain demonstrated that some Gram-negative bacteria could destroy penicillin. He named the substance "penicillase", now known as " $\beta$ -lactamase". The occurrence of treatment failure due to resistant bacteria was increasing. Fleming seeing the fly in the ointment, predicted that these penicillin resistant strains would only become more prevalent in accordance with the theory of natural selection. Stating "there is probably no chemo-therapeutic drug to which in suitable circumstances the bacteria cannot react by in some way acquiring 'fastness' [resistance]"<sup>100</sup>. The prediction came to fruition as soon as penicillin became widely used.

Although antibiotics have considerably improved treatment and health there is a significant increase in antibiotic resistance among common pathogenic bacteria. A recently published systematic analysis evaluated the global burden of antimicrobial resistance (AMR) for 2019<sup>5</sup>. The authors find 1.27 million deaths were a direct result of AMR, additionally estimating that a total of 4.95 million deaths occurred in association with AMR, meaning deaths directly and indirectly associated with AMR. Indirect cases include, but are not limited to, pre-existing morbidities such as AIDS/HIV and malaria. For context, that would remove just about the entire Norwegian population, currently populated at ~5.5 million.

#### 4.2.3 Drug discovery challenges

Aiming to tackle the "silent pandemic", the World Health Organization (WHO) implemented a global action plan, in 2015. The over-all goal is to mediate and ensure global progress in reducing resistance, with commitments from both G-7(political) and G-20 (economic) groups. The global action plan has five main objectives<sup>101</sup>:

- To improve awareness and understanding of antimicrobial resistance.
- To strengthen surveillance and research.
- To reduce the incidence of infection.
- To optimize the use of antimicrobial medicines.
- To ensure sustainable investment in countering antimicrobial resistance.

It should be mentioned that global AMR increased substantially after the COVID-19 pandemic. Rochelle P. Walensky, the director of the center of disease control (CDC) in the U.S., stated: "... as the pandemic pushed healthcare facilities, health departments, and communities near their breaking points in 2020, we saw a significant increase in antimicrobial use, difficulty in following infection prevention and control guidance, and a resulting increase in healthcare-associated, antimicrobial-resistant infections in U.S. hospitals"<sup>102</sup>. Poor surveillance, improper use, and outdated dosing regimens all aid in increased AMR.

#### 4.2.3.1 Golden age of antibiotics

The period of 1940 to 1960 is known as the golden age of antibiotic discovery. Initial rigorous screening of soil-derived bacteria (mostly *Actinomycetes* spp.) against susceptible organisms, resulted in the antibiotic streptomycin as well as a framework for antibiotic discovery. This spurred on the discovery of drugs such as vancomycin, clindamycin, rifampin, tetracycline, and daptomycin(ref). All of which were the product of mining soil-derived compounds. About half of the commonly used drugs today were discovered during this era.

Novel drug discovery stagnated after the 1960s. However, while drug discovery faltered, drug design advanced. The pharmaceutical industry began to tailor preexisting compounds, resulting in greatly improved efficacy. Efficacy refers to the ability of an intervention, in this case a drug, to produce the desired beneficial effect. Unfortunately, the current economic model deems drug discovery and design as simply unsustainable, even with the modern advances in rational drug design and automated high throughput screening. The current estimated cost of developing antibiotics is around US 1.5 billion, with an average revenue of US 46 million per year<sup>103,104</sup>. Essentially, turning a profit takes decades, meaning the high-risk-to-lowreward ratio simply does not justify the investment for pharmaceutical companies. Especially when disease or chronic conditions that require lengthier treatment periods, have projected sales of US 500 million to over 1 billion<sup>105</sup>. Essentially, drug discovery in the looming reality of resistance is costly and inefficient. However, despite drug discovery being bad business, there is substantial evidence of inappropriate use of antibiotics, where about half the prescribed antibiotics are unnecessary, and at times incorrect<sup>106-109</sup>. Further, there is accumulating evidence suggesting that there is substantial room for improvement of antibiotic treatment regimes<sup>110-112</sup>. We are to this day counter-selecting susceptible bacteria while promoting survival of resistant strains. Additionally, overuse of antibiotics further propagate resistance.

#### 4.2.4 Mechanisms of resistance

*"I brought a lemon to a knife fight"* – The Wombats –

Bacteria have long co-evolved with organisms produce antibacterial substances. that Additionally, bacteria have an impressive genome plasticity along with a wide repertoire of defense mechanisms to overcome threats. The combination of mutational resistance and horizontal gene transfer furthers dissemination of antibiotic resistance genes and has resulted in an

| Table 2: Examples of antibiotic resistance         |  |  |
|----------------------------------------------------|--|--|
| mechanisms                                         |  |  |
| Target repair/ target amplification <sup>113</sup> |  |  |
| Target modification/ target bypass                 |  |  |
| Enzymatic inactivation/ sequestration              |  |  |
| Increased/ decreased efflux                        |  |  |
| Biofilm formation <sup>114</sup> / intracellular   |  |  |
| localization <sup>115</sup>                        |  |  |

astounding diversity of resistance functions<sup>116</sup>. There are several kinds of resistance mutations. The target can be altered, resulting in reduced binding of the drug to its target, decreased drug uptake, and increased secretion of drug by upregulating efflux pumps, as well as, changes to regulatory networks such as metabolic pathways. See **Table 2** for an overview.

#### 4.2.4.1 Genetic mutation – resistance

Bacteria can acquire antibiotic resistance via genetic mutations. Mutations can occur spontaneously or from exposure to mutation-inducing agents. Spontaneous mutations occur as the replication of genetic material is prone to error. Occasionally during DNA replication, a nucleotide can be mismatched, added or omitted, resulting in a mutated allele. In such a case this mutated allele can be propagated through the population via lateral or horizontal gene transfer. Thus, enabling the spread of antibiotic resistance. The frequency of spontaneous mutation depends greatly on the bacteria and the drug in question. Resistance mutations can result in a lower "fitness" compared to the wild-type situation. However, such negative effects, can be alleviated by compensatory mutations, resulting in resistant mutants persisting in the population even in the absence of antibiotics.

The effect of spontaneous mutation is a combination of deleterious mutations and metabolic cost (the fitness effect). Any variant with an increased resistance mutation should then have reduced fitness as the probability of generating a deleterious mutation is higher. However, this is not necessarily the case. The occurrence of strains with higher mutation rates (mutators) are widespread in bacterial populations, suggesting a selective advantage. Mutations that lead to either antibiotic resistance or reduce fitness cost of the resistance mechanism is more likely to appear in cells with higher mutation rates. Weak mutators can more easily cycle between environments as they adapt more readily. Further, when a mutation is linked to resistance, the advantage of being a mutator also increases<sup>117</sup>, indicating that the mutation rate within a population is constantly being adjusted to levels that favor

adaptation<sup>118-120</sup>. Mutational change provides a broad range of resistance mechanisms that is further complicated by transferable genetic material.

#### 4.2.4.2 Horizontal gene transfer – antibiotic resistance

The mechanisms of HGT are described previous in **section 2.1.3**, therefore the following will discuss HTG of mobile genetic elements within the context of acquired resistance.

Transferable resistance was first identified by Kunitaro Ochiai<sup>121</sup>, and Tomoichiro Akiba<sup>122</sup>, independently, during an outbreak of dysentery. The 1950s outbreak was caused by *shigella*. While working on clinical isolates from dysentery patients, they found E. coli isolates demonstrating multi-resistance similar to shigella isolates, as well as resistance to drugs that had not yet been used to treat the infection. The researchers found it implausible for so many mutations to have arisen spontaneously, eventually demonstrating the transfer of multi-resistance between E. coli and Shigella strains and additionally showing that it occurred via a nonreproductive rendezvous, otherwise known as conjugation. The bacteria could swap genes between chromosome(s) and plasmids. It was also hypothesized that the site of transfer occurred within human bowels. Since then, it has been shown that the intestine is a hotspot for horizontal gene transfer<sup>123,124</sup>. Commensal organisms, E. *coli* in particular, often function as intermediaries promoting the spread of immunity as well as serving as reservoirs for resistance genes either obtained from, or passed on to, bacteria in transit. There is increasing evidence that antibiotics increase all three modes of HGT<sup>125</sup>. To recapitulate HGT, the three major modes that can rearrange the genetic material via homologous recombination are:

- Transformation of competent bacteria by free DNA
- Transduction by bacteriophages
- Conjugation of plasmids and integrative conjugative elements (ICEs)

#### 4.2.4.3 Mobile genetic elements

Briefly, antimicrobials may affect transduction by promoting prophage excision and host cell lysis. While, in terms of conjugation antimicrobials can also enhance the transfer frequency of various mobile genetic elements (MGEs). Transferable resistance is mediated by MGEs such as transposons. Transposons were discovered in search for understanding the promiscuity of certain resistance genes. Transposons are stretches of DNA that have high mobility. Take for instance an *E. coli* strain carrying a transposon within its chromosome. In this case, the transposon confers resistance against streptomycin. The transposon can then "jump" to a conjugative plasmid within the cytoplasm. During a conjugation attempt the transposon can then integrate into the chromosome. Transposons are repetitive DNA sequences that can move (transpose) from one location to another within a genome. They are elements

that carry transposases and dispensable cargo genes, while insertion sequences only carry a transposase. A key aspect of HTG is that it allows for transfer of virulence factors and antibiotic resistance markers, which raises socio-economic concerns, as the spread of antibiotic resistance renders current drugs inefficient. *This thesis will focus on transformation.* 

Transformation requires that bacteria become competent, a state which can be naturally or artificially induced. It has been seen that certain drugs can induce as well as increase competence, e.g. transformation frequencies increased in Streptococcus pneumoniae under antibiotic stress<sup>126</sup>. The state of competence is transient in S. pneumoniae and is controlled by the com regulon. Fluoroquinolone antibiotics induced the expression of the *com* regulon. The authors of the paper investigating this phenomenon further suggested competence as a general stress response to changes in the environment<sup>126</sup>, drawing a parallel to the SOS response of *E. coli* as a result of the DNA damage induced by the antibiotic. Legionella pneumophila has a similar response to genotoxic stress. DNA-damaging agents, such as fluoroquinolone and UV radiation, increased competence expression, as well as increasing the bacterium's ability to acquire and integrate DNA. Antibiotic stress also induced genetic exchange in Helicobacter pylori. The resulting DNA damage increased the DNA uptake machinery in favor of DNA repair systems. It is fascinating, that H. pylori was also found to increase the secretion of an enzyme that releases DNA from other cells (lys, HPG27 320). The authors hypothesized that this protein lyses neighboring cells in order to free up DNA for uptake<sup>127</sup>, ultimately expanding its genetic pool, which could increase fitness.

HGT provides a platform for fast-pace adaptation appearing to have an overall beneficial outcome to the organism. However, investigation of the totally genetic diversity within a species, otherwise known as the pan-genome, reveals HGT is not always beneficial within the context of evolutionary. Pan-genome analysis indicates HGT could be unfavorable to large genomes<sup>128</sup>. If transferred genes are on average advantageous, they would be retained. The term pan-genome refers to all genes within a species, and includes both the core and dispensable genomes. For instance, bacteria have genes that are vital for survival and function, which will be classified as the core genome. Other genes can be more flexible. The genome of V. cholerae for example makes up ~95% core genomes and ~5% genes belonging to an acquired flexible gene pool<sup>17</sup>. The pan-genome would reflect this by being similar in size to the average genome. However, HGT is only favorable if the acquired gene is different from genes already present in the genome. While larger genomes could maintain HGT, this is only up to a certain point, beyond which duplication events could increase and become problematic. It bares mentioning that duplication event can be beneficial and are under constant selection pressure. For instance, the majority of V. cholerae strains have roughly 150 duplication events. Most of these involve regulatory functions of chemotaxis and solute transport<sup>17</sup>, suggesting a selection pressure for retaining these abilities. This could be related to the many environments the pathogen encounters during its infection cycle. There is evidence to suggest that HGT has occurred in all eukaryotic lineages. However, it appears to be a disadvantage within organisms that have high fidelity genome replication. This would imply that an organism undergoing genomic flux due to HGT has in a sense predetermined its genome size. That being said, HGT could also be positively selected as a defense mechanism against mobile genetic elements that are selfishly more promiscuous. Regardless a small genome ultimately limits the number of plausible combinations for adaption, meaning it should be possible to determine an appropriate tactical countermeasure that efficiently combats resistance.

HGT enables rapid adaptation, with dwindling novel drug discoveries and increasing occurrence of resistance. A better understanding of this mechanism is critical as subpar treatment can promote HGT. We need better treatment strategies. One route that can mediate this is pharmacokinetics, and pharmacodynamic modeling.

#### 4.2.5 Pharmacokinetics and pharmacodynamics PK/PD models

The following section will briefly touch upon pharmacokinetics (PK), how the drug functions inside a person. Move on to describe pharmacodynamic (PD) profiles, how the drug interacts within bacteria. Finally, discuss how PK/PD modeling can inform dosing regimens, and overcome some of the obstacles genetic diversity and bacterial adaption provides. The purpose of this section is to discuss PK and PD in general terms and will therefore not go into any mathematical depth.

While HGT contributes to broad distribution of resistance genes and a rapid evolutionary response to treatment, resistance can also occur as a result of the selection pressure imposed by the antibiotic; this is why finding the optimal dose is vital. The overall goal of the drug discovery is to find the best possible dosing regimen that maximizes treatment. Drug discovery prior to the 1960s was based on blindly screening thousands of compounds. Once a promising drug compound was detected, hundreds of related compounds would be synthesized to find the safest, most effective drug. A central limitation for traditional drug screening was that it struggled to reveal why a drug candidate failed. The 1980s experienced significant advances in molecular biology, crystallography and computational chemistry allowing for structure-based approaches providing both data and direction. The quality of a compound could be determined by molecular properties such as size, shape, lipophilicity, hydrogen bond capability, and polarity. The structure of the target site could be resolved, the active site of the target could be determined, and the drugtarget interaction established. Yet, such structural information is still not fully integrated into PK/PD models. Implementing such information could reduce the cost of drug discovery by predicting whether a novel drug candidate would fail out the gate. Additionally this could help inform the dosing strategies used for clinical trials, minimizing error rates.

Furthermore, drug efficacy will depend on how the body reacts to the dosing and drug itself (PK), as well as how the amount of drug, upon reaching its target, exerts its effect (PD). Simply put drugs only have an effect if they bind their intended target. While target binding is a prerequisite it is not a guarantee. Drug efficacy is also dependent on potency and exposure at the active site of the target, exposure meaning the concentration of the drug that reaches the target and that is present for an appropriate amount of time after administration.



Figure 7 Overview of pharmacokinetics and pharmacodynamics

#### 4.2.5.1 Drugs in the body – Pharmacokinetics:

Table 3: Processes that control the kinetics of the concentration-time profile of a drug in blood, tissue and organs involve:

Absorption: How the drug gets to its target site

- Route of administration, and drug release or liberation
- Additionally, how much of the drug reaches its target (bioavailability).

Distribution: How the drug travels through the bloodstream to various tissues

- Volume of distribution: the amount of drug divided by the amount of drug in the plasma.
- Plasma protein binding: only unbound drug can act on the pharmacological active site. More unbound drugs
  increases the effect of the drug as well as potential toxicity.

Metabolism: How the drug is degraded

Drug inactivation, conversion

Excretion: How the drug is removed from the body

- Elimination rate (clearance)
- The time it takes for the serum drug concentration to drop by half (half-life)

Reference material for the summary<sup>129-131</sup>

The core principles of pharmacokinetics comprise of absorption, distribution, metabolism, and excretion (ADME). ADME describes the mass balance, essentially how the drug maneuvers within the body. The human body is often split into compartments, meaning models can range from a single compartment to several hundred. The number of compartments depends on the scientific question. A visual example of a single compartment model could be pouring gin into a glass. The glass will for this purpose function as the human body, while gin is the drug. Filling the glass with gin would demonstrate absorption while emptying the glass would demonstrate clearance in the form of excretion. The instantaneous change in amount

of gin within the glass would be a combination of "the rate of gin filling the glass" and the "the rate of gin being emptied from the glass".

$$\frac{\Delta A}{\Delta t} = [rate \ of \ gin \ entering] - [rate \ of \ gin \ leaving]$$
(1)

• dA/dt describes the instant rate change for the amount of gin within the glass.

In a clinical sense instantaneous absorption and distribution of a drug is unlikely. Perfusion and permeation will likely need to be considered. These terms deal with drug distribution in a tissue and how the drug moves between compartments. However, intravenous injection (infusion) is one of the fastest drug deliveries, taking a more direct route. In this case, the rate of change between drug and compartment is defined by the elimination rate and the drug concentration. From there the change in amount of drug within the compartment and time can be simplified into a log-linear relationship. This is ideal as the drug amount can then be determined along the slope of the curve<sup>132</sup>. Orally administered drugs are absorbed into the bloodstream via the gastrointestinal tract. The efficacy of the drug can then become encumbered by plasma binding proteins, this is also an issue for intravenous injection. Bacterial infections can occur at any site, however the interstitial fluid of tissue is more common<sup>133</sup>, meaning the drug needs to leave the bloodstream at one point. This is not possible if bound to plasma proteins. Additionally, the drug loses its effect if bound to plasma proteins, however it is unclear if this is a result of inactivation or is simply preoccupied with plasma proteins<sup>134</sup>.

Transport of the antibiotic to its target site is vital and can be a major obstacle<sup>135</sup>. Fortunately, computational modeling can help overcome some of these obstacles by predicting drug activity, investigating dynamic drug interactions, and evaluate how the drug effects act within a bacterial population.

#### 4.2.5.2 Drugs in bacteria – Pharmacodynamics

Eventually, the administered drug reaches the bacterial infection. At this time the drug needs to overcome the resistance mechanism of bacteria to exert its function. Depending on the mode of action, the drug can either act directly on the membrane or will need to cross the permeability barrier. An additional obstacle is the potential for secretion by efflux pumps. *This will not be discussed further.* 

Antibiotics impose a selection pressure by killing susceptible bacteria, while resistant strains remain less affected. A high antibiotic concentration likely leads to effective killing. However, low concentrations give bacteria time to respond. A non-lethal, or sub-inhibitory, concentration of antibiotics promotes several interesting phenomenon, such as high-level target resistance, selection of an intrinsically resistant sub-population and accelerated spread of antibiotic resistance<sup>136</sup>. Evaluation of drug efficacy and dosing is normally described by the minimum inhibitory concentration

(MIC). The minimal inhibitory concentration is defined as the lowest concentration of drug that inhibits growth of bacteria, e.g. the lowest lethal dose. The MIC is a static value and does not consider drug concentrations that fluctuate above or below. This is a typical occurrence for patients prescribed an antibiotic regimen, where one takes an oral dose daily over the course of a defined period. This can be problematic, as clinically relevant high-level resistance emerges from exposure to antibiotic concentrations higher than the minimal inhibitory concentration (MIC). Determining MIC can be as simple as a broth microdilution; however, this does not provide mechanistic information. The outcome of the dose is also dependent on the competition that occurs between the susceptible and resistant populations causing infection.



**Figure 8a Pharmacodynamic curve.** A general pharmacodynamic curve demonstrating net growth (Grey line) of several time kill experiments. The corresponding replication rate and elimination rates are shown in purple, and red respectively.



**Figure 8b Time-kill experiment.** MIC determination for wild-type E.coli and ciprofloxacin. There is partial net growth at 0.081mg/L, while there is slight net death at 0.027mg/L. The true MIC is likely to be somewhere between these values. However, we have decent resolution in this assay and 0.027mg/L is a decent estimate. If you were to plot the net growth of each of these samples, the resulting curve would be similar to the general pharmacodynamic curve.

A more useful MIC determination can be obtained via time-kill experiments. The resulting pharmacodynamic curve will show the net change in the population, including both replication and elimination (Figure 8a). A time-kill experiment looks at how the bacterial population responds to a serial dilution of the drug as a function of time. The resulting curve will demonstrate how an isogenic population is affected by the drug concentrations or dose (Figure 8b). Once the experiment is performed, and the data is plotted in a graph, the slope of the kill curve demonstrates the effect of the drug. The MIC is defined as zero net growth. This is also where the growth and elimination rates intercept. Time-kill experiments are time-consuming and expensive, since they require multiple drug concentrations and several sampling events. Further, the experiments might need to be repeated to ensure proper sampling of all killing events.

Recently, drug-target binding affinities were determined to be a functional proxy for MIC<sup>137,138</sup>. As the goal is to optimize dosing regimens of antibiotics that have been in circulation for a long period, there is a substantial amount of information regarding the biochemical properties of the antibiotics. By substituting time-kill curves with readily available biochemical parameters, an entire pharmacodynamic profile can be assessed, and used to guide proper dosing (**paper II**). The administered dose effect

Introduction

will depend on whether the drug has a bactericidal or bacteriostatic action. Bacteriostatic is defined as inhibiting replication and will not impact the elimination rate, while bactericidal drugs reduce replication rates to zero while increasing elimination rates. Ciprofloxacin used in **Figure 8a** therefore exhibits both a bactericidal and bacteriostatic effect.

#### 4.2.6 Selection pressures

The drug concentration required to ensure that no bacteria recover, is the mutation prevention concentration (MPC). The MIC and MPC values define the boundaries of the mutant selection window (MSW). The main selection for resistance mutants occurs within this range of drug concentrations (**Figure 9**). However selection can also occur at sub-MIC concentrations, which is known as the sub-MIC mutation selection window<sup>139</sup>. Sub-MIC concentrations are not only an issue in active infections, but can also lead to resistance selection within the environment due to various pollutants from the industry and improper disposal of drugs. This is of major concern as even trace amounts of drugs, within the environment, aid resistance<sup>140</sup>.



**Figure 9**: **Depicts a kill curve of a bacterial population, w**here half are susceptible (purple bacteria) and the remaining half is resistant (red bacteria). The bacterial population is depicted above the graph and declines according to the dosing. Where the purple curve intercepts with the horizontal dotted line indicated zero net growth and equals the MIC for the susceptible population. Where the red curve intercepts the horizontal line is the MIC for the resistant bacteria. Notice the susceptible population will start to decline before the dose reaches MIC, indicated by a vertical dotted line. The light shade of red indicates the sub-MIC mutant selection window. The traditional MSW is depicted with dark red shading.

Drug concentrations above the selection window avoid resistance development and selection. Concentrations below the selection window do not kill the susceptible strain however this also avoids favoring the resistant population. Thus, to achieve proper dosing the selection window needs to be properly characterized for the wild-type strain as well as the majority of expected resistance mutants. In other words, this required a complete assessment of how the drug interacts with the target for several drug concentrations within a susceptible strain as well as several resistance mutants, a complete pharmacodynamic profile. It is experimentally not feasible to do this for every drug-target interaction in combination with all potential resistance mutants. Additionally, the drug would need to be administered to the patient, introducing issues such as accumulation which opens a completely different can of worms. Fortunately, such extensive profiles can be achieved by computational modeling.

#### 4.2.7 Dosing strategies



**Figure 10: Dosing strategies.** The effects of dosing on a bacterial population when frequency remains the same while concentration and half-life differ. Low concentrations with a long half-life result in slower killing but does not preferentially select for resistance. High concentrations with a shorter half-life efficiently kills the susceptible strain but is not enough to remove the resistant population.

To stay above the MIC threshold for a longer period, one can increase the dose and/or shorten the dose interval, as well as increase the infusion time, for instance by implementing intravenous infusion. This has been proven to minimize mortality, though it does require hospitalization<sup>141</sup>. As an example, high doses over a short period of time could be enough to kill the susceptible population immediately. However, the drug is removed before eliminating the resistant population, whereas lower concentrations over a longer period would eventually clear the infection (Figure 10). Altering the chemical properties of a drug can aid absorption and activity. Only the amount of drug that reaches its target and remains

active determines the antibacterial effect, meaning it is equally important to optimize the dosing. Dosing can be optimized by frequency and concentration, which are PK parameters. The route of administration will impact these properties. While using PK/PD to inform dosing is not novel, most current dosing regimens are still based on clinical experience<sup>142</sup>. However, computational PK/PD models are gaining traction for dose optimization. PK/PD models can help minimize resistance and hamper HGT. As several drugs need to cross the cell envelope to reach its corresponding target a solid understanding of bacterial membranes could inform such models.

# 4.3 The cell envelope



4.3.1 Dynamic structure important for protection and adaptation

"That's the kind of protection, everyone is shouting about" – David Bowie –

Bacteria have developed a complex permeability barrier that compartmentalizes activity and protects against exposure to various compounds in the environment. The cell envelope is a complex and dynamic structure that protects that bacteria and is important for adaptation. The cell envelope of Gram-positive bacteria consists a cytoplasmic membrane and the cell wall. While, Gram-negative bacteria have an additional outer membrane. This envelope allows for selective uptake of nutrients and other molecules, as well as secretion of signaling compounds, and metabolic waste products. Membranes also play an important role for antibiotic resistance, as they limit molecules from entering the cytoplasm, thus providing intrinsic antibiotic resistance<sup>143</sup>. This is further complicated by the fact that bacteria can also excrete the antibiotics that have bypassed the initial barrier through efflux pumps. Biological membranes consist of a phospholipid bilayer and various membrane proteins. The lipid bilayer consists of two lipid leaflets, both of which often contain an asymmetric distribution of lipid and protein content. Because the cell envelope acts as a barrier between the cell and the environment, bacteria have evolved complex strategies to transduce signals across the membrane to enable cells to sense their environment. Furthermore, the membrane organizes large molecular complexes such as the DNA uptake machinery discussed earlier.

#### 4.3.2 The cell envelope

Gram-positive bacteria, have two functional layers, a cytoplasmic membrane, and a thick cell wall. As, the bacteria lack an outer membrane this makes them more permissible than Gram-negative bacteria. While, Gram-negative bacteria, have an inner membrane and an outer membrane. Between the two membrane layers is the periplasm, which also contains a thin cell wall. The main differences between the architecture of the cell envelopes further allow for characterization of bacteria. Using a simple staining process, known as the Gram stain, one can distinguish between Gram-positive and -negative bacteria. The staining process consists of crystal violet, and a counterstain e.g. safronin. Crystal violet is purple and will bind specific components of the cell wall, while the counterstain is red/pink and stains cell membranes. Gram-positives have a thick cell wall and will retain the purple dye well. During the staining process the outer membrane of Gram-negatives is dissolved.

Additionally, the thin cell of Gram negatives will not retain the purple stain, exposing the pink color of the inner membrane.

The cell wall is composed of peptidoglycans, which are a polymer consisting of polysaccharides and peptide chains. Peptidoglycans are constantly being synthesized, hydrolyzed and modified allowing for growth and cell division. The cell wall has a mesh-like structure, which is robust yet flexible and is to an extent permissible as it contains several large pores, or gaps within the mesh, that allow large molecules entry to the cell. A key structural component of Gram-positive cells are carbohydrate based anionic polymers. They provide stability, permeability, and function as anchor points for extracellular enzymes involved in biosynthesis and degradation of the cell wall, further influencing the integrity of the membrane and interacting with extracellular components. These polymers exist in all Gram-positive bacteria and the most common are teichoic acids<sup>143</sup>. It is also worth mentioning that some bacteria the cell wall is important for regulating osmosis. However, *Mycoplasma* species survive as intracellular pathogens, where the host maintains a controlled osmotic environment.

The biophysical biochemical properties of and membranes enable compartmentalization. Cell membranes are composed of lipids that contain a hydrophilic headgroup and a hydrophobic tail. As a result, the two lipid leaflets are arranged in a tail-to-tail manner. The lipids are arranged as an inner and outer leaflet, not to be confused with the inner and outer membranes. For instance, the outer membrane of Gram-negatives is comprised of an inner and outer leftlet. The inner leaflet is oriented towards the cytoplasm, while the outer leaflet is either facing the periplasm or the environment. The cell envelope of Gram-negative bacteria can be viewed as four compartments; an inner membrane, a periplasm, with thin cell wall, and an outer membrane, see Figure 11 for a schematic overview. The outer membrane is highly selective, with size exclusion properties. It also exposes antigenic determinants such as lipopolysaccharides to the environment. It is an asymmetric bilayer of phospholipids and lipopolysaccharides<sup>144</sup>. In particular, lipopoylsaccharides are only present in the outer leaflet<sup>145</sup>. The composition of phospholipids is similar between the inner leaflet of the outer membrane and the cytoplasmic membrane. The outer membrane also contains porins, which are large channels allowing for passive diffusion of large hydrophilic molecules. The main function of porins is to allow entry of ions and nutrients into the periplasm. Lipoproteins are equally important components of the outer membrane as they are involved in transport of molecules, maintaining the envelope integrity, signal transduction and pathogenesis<sup>143</sup>. The periplasm is a viscous aqueous cellular compartment that isolates potentially harmful enzymes, such as alkaline phosphatases. The periplasm also contains proteins important for environmental sensing as well as the sensing of outer membrane damage<sup>146</sup>. The inner, or cytoplasmic, membrane is the primary permeability barrier of the cell, and contains specific transport proteins and permeases. Additionally, the membrane contains enzymes involved in energy and phospholipid production<sup>147</sup>.



Figure 11 Schematic overview of a Gramnegative cell envelope. On the top is the extracellular space or outside of the bacteria. the first barrier is the outer membrane consisting of an asymmetric lipid bilayer, with lipopolysaccharides on the outer leaflet. Gram-negatives have a thin cell wall in the aqueous periplasmic space, indicated by the mesh of grey lines. The inner membrane is the final layer and surrounds the cytosol. This is a vital compartment, as many of the membrane generate proteins lipid energy, biosynthesis, and mediate protein secretion.

# 4.3.3 Membranes

Cell function is highly dependent on biological membranes, which enables selective permeation, energy production and environmental sensing. Additionally, membranes form the border between the cytoplasm and the environment. The membrane has previously been thought of as a "fluid mosaic", where the composition is sparse and randomly distributed. However, membranes are now thought to be non-randomly organized in functional domains crowded by intercalating membrane proteins, several lipid species and other complex structures<sup>148</sup>. The bilayers of membranes have an asymmetric distribution of both lipid and protein content, which is most prominent for the outer membrane. The main components of cell membranes are glycerophospholipids and membrane proteins.

# 4.3.3.1 Glycerophospholipids

As previously stated, glycerophospholipids can structurally be divided into two functional segments, a hydrophilic headgroup and a hydrophobic tail. The hydrophilic part points to the outside of the leaflet, and the hydrophobic part points to the inside of the leaflet. The tail group consists of hydrocarbon chains of various lengths, known as acyl chains. The headgroup can interact with membrane proteins and regulate protein function, while variations in the acyl chain affect membrane fluidity and crowding. Desaturation of acyl will produce a kink in the carbon chain resulting in looser distribution while saturated chains produce more rigid membrane regions. The major lipid components are phosphatidyl-ethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL). PE is the most abundant phospholipid. See **Figure 12** for a structural overview. *V. cholerae* membranes, for example contains ~84% PE, ~10% PG, ~4.0% CL, and 2% of uncharacterized phospholipids<sup>9</sup>. Meanwhile, the phospholipidome of *E. coli* comprises ~70-80% PE, 10-20% PG, and ~5-10% CL<sup>149</sup>. The composition depends on the growth phase and environmental conditions.



**Figure 12** Structure of common phospholipids in bacterial membranes. The polar head group is depicted as a circle with the acyl chains pointing downwards.

The main difference between PE and PG lies within the polar head, either an ammonium group or hydroxyl group, respectively<sup>150</sup>, while CL is a unique phospholipid dimer. The polar head group of CL consists of two phosphatide moieties instead of one as is for PE, and PG, with a total of four acyl chains. Due to its structure, the lipid is conical in shape. CL is predominately localized in the inner membrane<sup>151</sup> of bacteria and often clusters at the cell poles and cell division septum, where it is thought to relieve curvature stress imposed on the membrane. The synthesis of CL is

regulated by the *clsABC* genes. *clsA* encodes the main synthase during exponential growth, while *clsB*, and *clsC* are more active in the stationary growth phase<sup>152,153</sup>. The synthases condense two PG producing CL and glycerol as a byproduct.

#### 4.3.4 Lipid – protein interaction

Membranes are sensitive to external stimuli and will remodel in response to stress factors, such as temperature. Cold temperatures will lead to rigidification, while higher temperature result in fluidization. As, changing temperatures impose stress on the membrane, bacteria often respond with various strategies. Bacteria may modify the size of the polar head groups in addition to charge. As, protein-lipid interactions are dependent on the polar head group, and proteins-lipid interactions can act to stabilize the membrane, this will impact fluidity. However, the main impact on membrane fluidity is likely by acyl chain modulation. Desaturation will generate kinks in the chain resulting in fluidization<sup>154</sup>, and isomerization of the chain can also affect fluidization. Membrane fluidity is critical to cell function and is constantly being monitored by the cell.



Figure 13 CL stained with NAO. The dye NAO preferentially binds to CL, and accumulates at the cell poles in wild-type E. coli. NAO staining of a clsABC, mutant that cannot produce CL shows diffuse localization throughout the cell perimeter. This is likely due to non-specificy binding between NAO and PG. Scalebar is 2  $\mu$ m.

The concentration of phospholipids can also influence protein localization. ProP is а membrane protein involved in monitoring osmotic stress in *E. coli*. Investigation of the localization of the membrane protein revealed a threshold requirement of CL in order to establish proper polar localization<sup>155</sup>. See Figure 13 for CL membrane distribution. If the cardiolipin content was below the threshold, the protein was spread out through the membrane. The study also correlated the activity of the protein to its CL dependent localization. A recent publication shows that polar localization of cardiolipin is

independent of ProP, and suggests that the localization of ProP diffuses freely through the membrane. However it is retained in the natural CL rich regions of the membrane, which could adhere to a "diffuse - and - capture" model<sup>156</sup>. Further CL concentrations fluctuate depending on the growth phase<sup>157</sup>. While the synthase is more active during the exponential phase<sup>158</sup>, the concentration of CL accumulates throughout the growth cycle and peaks in the stationary phase. It is possible that the accumulation of CL could be a mechanism to regulate ProP activity and restrict it to phases with high CL abundance. While this is conjecture, co-accumulation of ProP and CL has been observed at the cell poles as a result of increasing osmolarity<sup>159</sup>.

#### 4.3.4.1 Membrane proteins

Membrane proteins can be classified by how they are positioned within the lipid bilayer as either integral or peripheral. Integral proteins are embedded in the membrane, while peripheral proteins are attached to the membrane surface. When a protein or protein complex traverses the cell envelope, it is referred to as a transmembrane protein. Whereas, peripheral membrane proteins are not embedded, but instead attached to the membrane surface. There are also a subset of membrane proteins known as, lipoproteins. These proteins are anchored to the membrane by a lipid moiety. Most lipoproteins are located in the inner leaflet of the outer membrane<sup>160</sup>. An example of a lipoprotein is PilW in *Neisseria meningitidis*. PilW is an outer membrane lipoprotein associated with the type IV pilus of DNA uptake. It was found to be involved in stabilizing the pilus formation, as well as the stability of PilQ, the outer membrane pore complex that allows pilus extension and contraction and DNA uptake into the periplasm. In a *N. meningitidis pilW* mutant piliation could still occur<sup>161</sup>.

The membrane localization and construction of the natural transformation machinery has yet to be fully characterized. However, Metzinger et al. found that localization seem to involve the membrane secretins, PilQ, and PilB, as well as an ATPase required for pilus elongation<sup>162</sup>. During imaging experiments, these proteins appeared to have an even distribution throughout the outer membrane. The PilB ATPase appeared to be more mobile than PilW. Once in the presence of PilQ, pilus extension occurs. The authors further noticed several co-occurring foci of PilQ and PilB, yet only one pilus formation<sup>162</sup>. They hypothesized that this results from a lag in the complex assembly. A few of the complexes could be more complete than others, however PilA would not assemble until after PilB had attached<sup>79</sup>. This suggests there are semi-assembled structures moving around in the membrane that fully assemble once signaled to do so.

Proteins embedded in the membrane can carry out a broad range of cellular function, such as, determining membrane curvature. *V. cholerae* is a highly curved microbe. It was recently discovered that this curvature was a result of a periplasmic filament generated by CrvAB, binds to the peptidoglycan cell wall. CrvAB are homologues. However, CrvB has a domain that is not present in CrvA, which is required to promote curvature, while CrvA is needed from CrvB assembly<sup>163</sup>. This synergy indicates that both proteins are specialized and required for efficient assembly of the periskeletal filament. The curvature is generated by asymmetric insertion of PG. PG was found to integrate quicker into the "outer face", e.g. the longer side, compared to the "inner face" of *V. cholerae*<sup>164</sup>. This curvature was found to aid in host colonization and hydrogel penetration, while straightened cells had reduced motility on low concentration agar plates<sup>164</sup>.

#### 4.3.5 Cardiolipin – MgtA interaction

Several membrane proteins localize towards the cell pole<sup>165</sup>, where they are thought to interact with CL<sup>166</sup>. One such protein is MgtA<sup>167</sup>. This is one of two magnesium ion (Mg<sup>2+</sup>) transporters in *E. coli*. The transporter is required for magnesium uptake from the periplasm into the cytosol, and is also important for growth in *E. coli*<sup>168</sup> (Figure 14). The other transporter is CorA. Mg2+ is required for bacterial growth and has several roles within bacteria, such as acting as a cofactor for ATPase dependent reactions and acting as a signaling molecule for virulence<sup>169</sup>. MgtA is in the inner membrane and is a P-type ATPase. P-type ATPases are ubiquitous primary ion pumps. Subramani et al. found the association with the headgroup of CL was important for MgtA function. Further, finding evidence that suggests the activity is regulated by the local concentration of CL<sup>167</sup>. The transporter also demonstrates higher sensitivity to Mg<sup>2+</sup> concentrations than most other ATPase in vitro<sup>167</sup>. The authors suggest a model for MgtA activation at low Mg<sup>2+</sup> concentrations. The expression is upregulated, and the transporter localizes to the cell poles in the inner membrane where it associates with CL and PG. Interaction with CL is critical for MgtA activity, ultimately translocating Mg<sup>2+</sup> from the periplasm into the cytosol. Once the cytosolic concentration of Mg<sup>2+</sup> reaches a threshold, the ATPase will inhibit its own expression and its activity within the membrane. MgtA expression and activity is

tightly regulated by the level of available  $Mg^{2+}$ . While  $Mg^{2+}$  is critical to cell function, MgtA is not the main transporter in *E. coli* and the functional role remains unclear. However, MgtA in *Salmonella enterica* has been linked to host survival during infection<sup>170</sup>.



**Figure 14 Schematic overview of MgtA structure and function: A.** P-type ATPase facilitates ATP-dependent ion transport across the inner membrane. The transported consists of four domains. Transmembrane helices (TM), a nucleotide binding domain (N), a phosphorylation domain (P) and an actuator domain (A). The protein complex cycles between two main intermediary conformational states. Each conformational state has different affinities for Mg<sup>2+</sup>. **B.** The first state has high affinity allowing for binding of ions in the cytosol. **C.** ATP is hydrolyzed and rearranges the domains into an open conformation facing the periplasm. The ion is released in exchange for Mg<sup>2+</sup>. This occurs as the different states have different binding affinities. Mg<sup>2+</sup> is also referred to as a counterion in this case. Binding of Mg<sup>2+</sup> induces ATP hydrolysis and the structural rearrangements open towards the cytosol and releases Mg<sup>2+</sup>.

Adapted, and printed with permission<sup>167</sup>

In summary, the cell envelope is highly variable and adaptive. It is highly regulated, and selectively permeable. The envelope provides protection from the environment while at the same time ensuring that vital components are scavenged. Protein complexes organize within the membrane allowing for uptake of nutrients, such as chitin, in a nutrient poor environment, securing immediate survival. As well as taking up genetic material, such as DNA, which can provide an adaptive advantage. At the same time membranes limit cytoplasmic entrance of substances such as antibiotics. Further, drugs that pass the membrane will also effectively lower the external concentration, which can aid in protecting a fraction of the population. Membranes are more than just lipids, they are the foundation of bacterial adaptation and responsiveness. *I would like to conclude this introduction with an illustration done by Prof. David Goodsell which captures the complexity of the cell compartment and protein interactions with mesmerizing beauty Figure 15.* 



**Figure 15 Cross section of an** *E. coli*. The artwork depicts the complex organization of a cell. The flagellar complex of *E. coli* crosses the outer membrane, cell wall and anchors in the inner membrane. Notice how cluttered the membranes are. These structures are shown in green. Lipopolysaccharide chains extend out from the outer membrane, followed by a matrix of cross-linked peptidoglycans, before reaching the inner membrane. The cytoplasm is depicted in blue. It is easy to assume this space is a simple void, however seeing the cellular clutter within this context gives a broader appreciation for not only the complex nature of regulating the proteins activity in regard to time and space, but also needing a finely tuned binding affinity to avoid erroneous processes. Protein production is depicted in purple, where ribosomes are interacting with tRNA in maroon to produce white strands of amino acid chains that will eventually be folded into proteins. At the heart of the cell lies the loosely packaged nucleoid depicted in orange and yellow. Illustration printed with permission from Prof. David Goodsell<sup>171</sup>.

# **5** Synopses of publications

This thesis aimed to investigate bacterial response to stressors such as extracellular DNA and antibiotics. As well as the complex interplay of lipids and membrane proteins. The following section summariezes the three articles included in the thesis.

# **Paper I:** Transposon insertion sequencing reveals dependency of natural transformation on amino acid metabolism

Natural transformation is a highly orchestrated response to the environment. A multitude of factors influence the diverse process. Extending the known factors of natural transformation generates a more complete picture of the pathogens ability to adapt. To identify additional genes involved in natural transformation we implemented a top-down approach by inducing natural transformation within a high-density transposon insertion population, and find amino acid metabolism genes as important for natural transformation.

In this study we created a high complexity transposon insertion screen within *V*. *cholerae* O1 El Tor isolate A1552. The transposon insertion sequencing screen was applied to a natural transformation assay. A validation set of mutants confirm the screen as appropriate for investigating genes involved in DNA uptake. Genes involved with amino acid transport and metabolism were most prominent. Addition of external amino acids to wild-type demonstrated a time-dependent effect on transformation frequencies. In contrast, supplementing the specific amino acid to its corresponding amino acid knockout recovered the DNA uptake back to wild-type levels. Fluorescence reporter constructs of competence induction within our mutant panel show a drop in [ $P_{comEA}$ ]dsRed expression indicating the gene deletion functions upstream of competence induction.

We find that a large portion of the genome is dedicated towards natural transformation and show that the majority involved amino acid transport and metabolism. We argue that amino acid specific metabolism is a critical baseline for natural transformation and is prioritized in a smaller part of the population resulting in the heterogenous distribution of competence.

**Paper II:** Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones

Antibiotic resistance is one of the biggest threats to public health today. At the same time drug discovery has stalled, meaning we need to optimize the treatment strategies currently available. Strategies for optimization focus on optimizing the concentration and frequency of dosing as well as duration of treatment. The initial guide for these values is the minimal inhibitory concentration (MIC). While finding the MIC is straight forward, this method lacks predictability and is further complicated by fluctuating antibiotic concentrations within a patient. It is therefore suggested to use more complex dose-response measurements to obtain a full pharmacodynamic profile, where the effect of the drug is assessed as a kill rate at several concentrations. This process is extensive and time-consuming. There is currently a need for models that can predict the efficacy of modified antibiotics as well as resistance mutations.

We generated a model by finding a linear correlation between MIC and binding affinities (K<sub>D</sub>). The model was extended to include binding and unbinding to the target and takes bacterial replication into consideration. The model was then calibrated to bacterial time-kill curves using the quinolone ciprofloxacin. In combination with the known binding parameters the ciprofloxacin, the time-kill experiment allowed for estimating the action and the effects of ciprofloxacin on *E. coli*. Further this data was used to estimate how ciprofloxacin alters the growth, and death rate of bacteria. The model was tested on published time-kill curves involving the effects of ampicillin on *E. coli*. Minor adjustments were made to the model but overall gave a good fit. This is a mechanistic modeling, where all parameters can be changes. Meaning we can simulate, bacterial resistance mutations or modifications of the antibiotics themselves, for single drug administration.

In this study, we accurately predicted antibiotic action based on readily available parameters for drug-target interactions. This model can aid in optimized dosing regimens which is critical to combating the rise in antibiotic resistance.

# **Paper III:** The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species

The bacterial membrane is more than a protective barrier. Proteins and lipids undergo dynamic interactions within the membrane, the complexity of which has yet to be defined, especially in terms of regulatory effects. Using a transmembrane magnesium transporter, MgtA, within the context of *E.coli*, we examined the interplay between transporter and lipid species. We aimed to further the knowledge of protein lipid interactions. And found a preference for two specific CL species. Additional, demonstrating that not only was this interaction important for transporter activity, but that the two CL species generated a synergistic activation of the transporter. Additionally impacting its localization within the membrane. CL promotes membrane curvature and is present within the bacterial membrane, clustering at the poles of E. coli. V. cholerae has a similar membrane composition as E. coli, however it does not contain an endogenous MgtA transporter. Upon comparing the localization pattern of MgtA between E. coli and V. cholerae, we found that MgtA localizes to the membrane in both organisms. However, it presents a diffuse distribution within V. cholerae, while clustering as polar focies in E. coli. This result was then corroborated in an *E. coli* strain lacking the ability to syntheize CL. This indicates that CL is not involved in localization. We speculate that it could still have a potential role for anchoring in the membrane. This study contributes insight into the complex interplay between proteins and lipids. A deeper understanding of the biophysical properties of membranes is important to understand bacterial adaptation.

# 6 Methodological considerations

# 6.1 Model organisms:

# 6.1.1 Vibrio cholerae

*V. cholerae* O1 El Tor (Inaba) strain A1552, originally named 92A1552<sup>172</sup>, was isolated in California, USA, and has been linked to the Peruvian pandemic in the 1990s. It is fully sequenced<sup>173</sup> and can undergo natural transformation<sup>174</sup>, and does not contain a MgtA transporter homolog. The pathogen is an excellent adaptor and transitions rapidly between aquatic and host environments. The pathogen shares morphology and physiology with *E. coli, Salmonella enterica*, and *Pseudomonas aeruginosa*. The structural mechanisms share similarities allowing for an extended repertoire of methods as well as an extensive experimental foundation that can be buildt on. While there are similarity, there are small differences that can greatly affect the experimental outcome and tiny tweaks such as codon optimization could be beneficial. Additionally, *V. cholerae* can exert peculiar effects in response to plasmids, sugars, and some antibiotics<sup>175,176</sup>, which might need to be evaluated. The organism is robust, easy to cultivate, and the reliance on natural transformation simplifies cloning.

# 6.1.2 Escherichia coli

*E. coli* is a renowned model organism. Our studies implement a K-12 derivative known as MG1655. The genome is fully sequenced and as it has been used within a laboratory setting for over 100 years, there is a huge repertoire of molecular and biotechnical methods that can be directly applied to the organism. While many species of *E. coli* are symbiotic inhabitants of the human small intestine, pathogenic *E. coli* can cause severe disease in form of diarrhea, sepsis, and meningitis<sup>177,178</sup>.

# 6.2 Transposon insertions sequencing

Transposon insertion sequencing (TIS) is a powerful tool to investigate the genetic response to a specific condition. It allows for high-throughput screening of a large number of mutants, by using transposons. Transposons are genetic elements that are "mobile by nature", relocating from one genetic location to another<sup>179</sup>. There are several types of transposons, however to keep it simple: autonomous transposable elements encode a transposase that will recognize the inverted repeats in the DNA sequence, cut out the transposon, and insert it into another location. Hence the transposon can keep "jumping". While TIS methods use nonautonomous transposons where the transposase is on a non-replicative plasmid<sup>180</sup>. The transposon insertion occurs semi-automatically, via conjugation, allowing for large-scale mutagenesis. The insertion can then be identified by sequencing. In **paper I**, once we had constructed and evaluated the input library, it was applied to both selective and non-selective conditions run in parallel. Afterwhich, we compared the

insertions of the two conditions with eachother using a bioinfomatic pipeline. Ultimately searching for what was lost along the way and comparing differences. There are several variations of TIS methods, yet the main differences lies in the transposon, library construction and sample preparation. Please, refer to the in-depth reviews of the methods that highlight similarities and differences<sup>181,182</sup>.

A major benefit of transposon insertion sequencing is that it allows for a direct link between a genetic input to a phenotypic readout. Additionally, it allowing for large-scale mutagenesis, as well as a rapid and comprehensive assessment of the contribution of genes. The experimental noise will impact the results singificantly, mainly referring to genetic drift and sampling error<sup>183</sup>. The genetic drift and sampling will directly impact the complexity and saturation of the screen with further implications for the analysis. All experimental bottlenecks, such as sample preparation and assay conditions, should be evaluated, and sampled thoroughly. In **paper I**, our study encountered several bottlenecks both during the library construction, as well as the experimental setup. The library is constructs via conjugation, this will directly impact the number of insertions you begin with. Whereas, the major bottleneck for the experimental setup was the low transformation frequencies of natural transformation. This was improved by optimizing the transformation assay conditions as well as increasing the sampling.

The TIS pipeline is depicted in **Figure 16**. In breif, the initial construction of the library occurs via conquation. A non replicative plasmid, carrying a selection maker within the inverted repeats is transferred from donor, E. coli, to recipient, V. cholerae. Recipient cells where the transposase has integrated the transposon into the genome are selected for. The transposase sequence is not integrated. The transformants are harvested and genomic DNA is extracted (Section 6.2.1). The genomic DNA is then fragmented. The fragments are end-repaired to avoid further degradation and adapters are ligated. These become anchor points for PCR primers that bring in sequences important for identification, such as barcodes, and proper sequencer functionality, such as spacer sequences aiding base diversity which is critical for the instrument (Section 6.2.2). Before sequencing the fragments need to be uniform in size with a high purity as the sequencer will preferentially bind shorter fragments (Section 6.2.3). Once the fragments are sequenced they are referred to as reads. The quality of the reads need to be assess and poor quality reads can be filtered out bioinfomatically. The reads are mapped to the genome of interest and the insertion density is evaluated. A high density transposon library consists of multiple insertions in every locus. High saturation refers to a low probability of missed insertions. The term sequencing depth refers to the number of times a "sequence/ nucleotide" was detected. While, the coverage is a broader terms referring to the fraction of potential sites detected. These factors will determine the resolution of your screen. After mapping you can evaluate how many times a gene was disrupted by an insertion as well as detected by sequencing. This is an important distinction because

TIS screens fail to evaluate truly essential genes, as these will disappear from the screen if interrupted. *This is why there is some controversy within the community regarding the terms "essential" and non-essential" to denote important genes involved in your test vs neutral genes.* The insertion distribution will allow you to evaluate the quality of you library, which can then be used to test specific conditions. We aimed to test a selective condition and compare it to a non-selective condition in order to find conditionally essential genes. This means we used the non-selective condition and not directly linked to the selective condition we tested.



Figure 16 Schematic representation of the transpone insertion sequencing pipeline. The panels are orientated in a top-down, left to right manner. The library is constructed by mating E. coli and V. cholerae. The E. coli is pilated and contains an 8-shaped genome and a plasmid with a red transposon. The V. cholerae is depicted with a single pilus and an 8-shaped genome. After amating the E. coli perishes depicted by a perforated membrane while the V. cholerae now has a red transposon within its genome. The genomic DNA (gDNA) is extracted. Inserted transpons are depicted as red arrows at different areas of the genome, as this is a stocastic process. Sample preparation for the sequencer consists of fragmenting the gDNA, end-repairing the fragments and adding adapters. Adapters sequences are added to the fragments during PCR amplification, and finally applied to next generation sequencing. A small part of the red transposon is sequenced along with flanking gDNA from V. cholerae. The reads are depcted as dark gray arrows that overlap with a gene sequence depicted in light gray. Once the reads are mapped to the genome, the insertion density can be assess. This is shown as red lines of different lengths crossing a segment of genome depicted as four white arrows. The height of the arrow demonstrated the number of times that insert was detected. Notice one of the genes has less red lines or insertions. This could mean the gene was not covered or that it is "essential". The probability of it being essential will increase with a high complexity, high saturation library. Regions with frequent insertions will indicate nonessential genes, as the interuption did not significantly impact the survival of the bacteria.

The experimental setup and analysis pipeline can be both cumberstome and expensive which is why the following section on TIS is mainly intended for someone wanting to apply the method. While different problems can occur, hopefully, this section results in some issues being avoided. However, in short, it is necessary to evaluate the potential effects of the test condition. When creating a TIS library it is important to ensure maximum efficiency and minimal growth during mating, by considering growth conditions such as temperature, and timing, to limit affecting the disruption frequencies unnecessarily. All impurities need to be removed from the sample by the end of the sample preparation, and the fragment sizes should be uniform. It is also worth integrating specific barcodes to allow pooling libraries on the same MiSeq chip, as this will dramatically cut down on cost. Finally, the sequencing

reads are a list of probabilities and the screen will need to be experimentally validated.

### 6.2.1 Creating the library, conjugation

The genome of *V. cholerae* consists of two chromosomes with approximately 200.000 regions, where the two nucleosides thymine (T) and adenine (A) are seated together (TA sites). The TA sites are evenly distributed throughout both chromosomes, and the majority of genes have at least seven TA sites. In **paper I**, we used a Himar-based mariner transposon to estimate the fitness effects of genes involved in natural transformation. This transposon will insert itself at TA sites within the genome with low insertional bias<sup>184</sup>. The TnSeq library is generated by the mating of a vector containing the transposon. The vector has a low copy number, and the transposon will be inserted permanently in front of a "TA site". Further, the vector contains a R6K mutant origin of replication requiring the lambda pir gene to maintain the plasmid, making it non-replicative in *V. cholerae*. The density of the library is defined by how many TA sites are interrupted. A high-density library indicates that the majority of dispensable insertion sites are disrupted by a transposon. A high-density library is desirable as transposon insertion data is a list of probabilities where the insert is either lost by chance or as a direct consequence of the test condition.

While constructing the library, careful consideration was given to minimizing competition and random loss of insertions due to the fitness decrease of the transposons and space. We, therefore, optimized the amount of bacteria, duration of conjugation, and incubation conditions to yield high frequency while minimizing growth. During conjugation, the enriched media was also used throughout the experiment to limit the loss of genes important for metabolism and growth. The populations were also plated on large Petri dishes to avoid overcrowding. This was to avoid any limiting the effect of the antibiotic selection for the transposon, but also reduce competition for space and nutrition.

# 6.2.2 DNA shearing and PCR amplification

The genomic DNA was sheared using the Covaris M220 focused-ultrasonicator. This sonication method is acoustic shearing, while other methods can be chemical or enzymatic. The resulting DNA fragments varied in lengths, however within a range close to 600bp. While the supplier promises strict shearing of the DNA there were smaller fragments not visualized by gel electrophoresis that needed to be removed, because the sequencer preferentially binds shorter fragments. Some of these fragments will be lost during the column purification steps however bead exclusion or gel extractions might be necessary. One way to evaluate the fragments quality is by using a bioanalyzer, while this is not critical it can greatly improve the sequencing quality and yield.

After shearing, the fragmented DNA ends were repaired using the NEBNext Ultra II End Repair/dA-Tailing module, and A-tails (NEB/Bionordika) were added to allow the ligation of T-tailed adapters. Transposon-junctions were amplified in two rounds of PCR. The first round used a primer that recognized the transposon end, and a primer that recognizes the adapter which at the same time introduced an index for sequencing. The second round of PCR introduced the requisite sequence for binding to the Illumina sequencing platform: P5, P7 and six different spacers to ensure variability for the sequencer, each read had different nucleotides at any given cycle.

The PCR amplification is a size exclusion step and the first round of PCR removes the majority of un-useable transposon sequences. Additionally, PCRs can result in over-representation of certain sequences either due to insertion bias, due to a growth advantage before harvesting, or early favoritism of amplicons, otherwise known as a PCR jackpot event. Transposon junctions were amplified in two rounds of PCR. The first round used primers that recognize the transposon end and the ligated flanking adapter. At the same time, this step introduced an index for sequencing. The second round of PCR introduces the requisite sequence for binding to the Illumina sequencing platform, and a variety of spacer sequences ensured variability for the sequencer. This was critical for the autofocus of the MiSeq. Illegitimate sequences were removed by stringent mapping criteria of the sequences that were unique reads. This was done by using "cutadapt", and "bowtie2". The reads were also normalized based on the position of the read, due to biased amplification at the origin of replication. Because of the rolling ball replication, reads that flank the ori were more represented than at the terminus. Unrealistically represented amplicons and jackpot events were further addressed by normalizing the mapped reads. This is a part of the ARTIST pipeline.

#### 6.2.3 Size exclusion of DNA fragments

To estimate the true density of the constructed library, we needed to optimize the sample preparation for the sequencer. This consisted of ensuring minimal loss during genomic DNA (gDNA) extraction and downstream sample preparation while also maintaining sample purity. DNA purity is a critical factor for the sequencing quality. Extraction of gDNA was therefore performed using a modified version of the Promega gDNA extraction kit. We found that increasing the number of washes and centrifugation steps was a defining factor for purity. Additionally, the yield was dramatically improved by allowing resuspension of the gDNA pellets overnight at 4°C. While only pico grams of DNA is required for next-generation sequencing, our downstream sample preparation involved acoustic shearing of DNA and gel extraction. While acoustic shearing is both stringent and reproducible fragmentation of gDNA, the fragmentation is random and we lose transposon insertions. After shearing the transposon junctions need to be end-repaired and adapters are ligated by homopolymer nucleotide extension DNA. This is required for PCR amplification.

Initially, we used bead exclusion to select the correct fragment size. Even using the most stringent wash, 0.5x left side exclusion performed twice, we were unable to fully remove short sequences. This became an issue due to truncated reads. This was detected after sequencing in the form of a low sequence yield and low-quality scores. As bead exclusion was not enough to remove the smaller fragments from our sample preparation, we decided to physically remove the majority of short fragments by gel electrophoresis and excising the appropriate size. Gel extraction is not as pure as bead size exclusion and requires an additional column purification, meaning additional loss of DNA. For these reasons larger amounts of initial gDNA were used to ensure that enough DNA was retained between the extraction and purification steps. We excised a band of roughly 300-600pb. Note, this is a consistent smear and not too defined fractions of DNA sizes. This method was, after optimization, stringent enough to remove the shorter sequences that were clogging the sequencer, and we could proceed with our sample and evaluate the quality of the library.

### 6.2.4 Sequencing

The DNA fragments were sequenced using an Illumina MiSeq, which provides some basic statistics that help evaluate the success of the "run", such as cluster density, clusters passing filter, and estimated yield. These values essential tell you how dense the sequences are, a rough estimate of the overall quality of sequences or reads and an estimate of how many fragments were sequenced. A read is simply the sequence of one DNA fragment. The sequences were then assessed based on quality of reads using the FastQC software. This enables visualization of read lengths and some more indepth statistics regarding the quality of the reads. Low quality sequences can be filtered out using cutadapt as well as non-specific sequences that did not contain the index we used for sample identification. Afterwhich the reads were mapped to the fully annotated *V. cholerae* A1552 genome, using the bowtie2 aligner.

After mapping, the transposon insertion sites were tallied and assigned to either genes or intergenomic regions using a combination of python and MATLAB scripts provided by the Waldor lab. The ARTIST pipeline<sup>183-185</sup> was used to assess the fitness effects of the high density mutagenesis. A benefit of the pipeline was that it is annotation independent and considers the variability between two samples due to stochastic biological bottlenecks. It consisted of two analysis arms called: EL-ARTIST (Essential loci analysis) and CON-ARTIST (Conditionally essential loci analysis). EL-ARTIST defined the fitness effects of different loci within the TIS library for a single growth condition. While, CON-ARTIST found which loci were required for survival by comparing two transposon libraries that experienced different growth conditions.

The EI-ARTIST arm started by normalizing the data to compensate for incomplete DNA replication, and a sliding window approach was used to find underrepresented regions in the mapped reads. This output was used to train a Hidden Markov model (HMM) and estimated how dispensible each transposon insertion site was for the

growth condition, for a single library. Moving on to CON-ARTIST, an independent control dataset was generated that represented sample errors that could occur due to chance. The resulting control libraries then underwent simulated genetic drift. The reads for the test sample were then compared to the simulated control dataset by using a Mann-Whitney U (MWU) statistical test. This was to avoid making any assumptions about the distribution of reads in each dataset making it less sensitive to experimental bias such as PCR jackpot events. The output was then used to train an annotation-independent HMM. The HMM predicted which genomic regions were required for the growth condition. Consequently, the pipeline classified genes that were both reproducibly and significantly different from the control dataset, and denoted the genes as either conditionally depleted, enriched or unchanged. A more traditional annotation would be conditionally essential, non essential and neutral, respectively.

#### 6.2.5 Assessing library saturation – proper sampling

In this section I refer to the saturation of the output library and not the initial constructed library. The natural transformation assay was performed in three independent experiments. Where the output libraries for the selective and non-selective conditions were sequenced, evaluated and compared before altering the experimental setup.

The first output library of the transformation population resulted in low complexity. The control sample had 1.9M reads and hit 84% TA sites, while the DNA-receiving sample has 3.1M reads hitting only 32% TA sites. We had sequenced the selective condition deeper that the non-selective and ended up with a large amount of insertions disappearing. To help evaluate if this was due to a bottleneck or sampling we evaluated the disruption frequencies (Figure 17). As the genomic and intergenomic regions within the genome contain a known amount of potential insertion sites, it is possible to look at the distribution of detected insertions gene. After the reads are mapped this distribution was tallied and the disruption ratio for each region of the genome was evaluated and plotted. The fraction of disrupted insertion sites for all regions can then be distributed into bins that increase with 0.5 increments (Figure 17a). Genes sorted into the "0" bin indicate none of the potential insertion sites were detected in the screen, while genes sorted into "1" on the far right side of the graph mean all potential insertion sites were disrupted. This is a rough estimate of essential or under-represented vs neutral insertion effects on genes. In such a scenario one would except a negative skrew of the data, while a positive skew would indicate several insertions are missing form the screen. As the dataset has a positive skew it indicated this was due to an experimental bottleneck, and we increased the sample size.



Figure 17 Evaluate library saturation. The graphs demonstrate the distribution of insertions per gene. The greenscale graphs on the top row indicate the test output library. While the corresponding control outputs library can be found below in black. (a.) nr. 1 resulted in a 5-fold library saturation compared to potential sites. (b.) nr. 2 produced a 10- fold library saturation. (c.) nr. 3 resulted in a 50-fold library saturation.

The first output library resulted in a 5-fold saturation of the available TA sites in the genome. The assay was repeated two more times, resulting in 10- and 50- fold saturation of potential TA sites. After sequencing the new output samples, we saw that increasing the amount of transformants resulted in a higher saturation. This can be seen by the peak of the graph shifting towards the right. Sample nr. 2 resulted in 66% of TA sites detected, meaning 66% of potential insertion sites were both disrupted and detected (Figure 17b). While, sample nr. 3 detected 72% of the available TA sites (Figure 17c). Further sequencing deeper did not result in a major impact. Upon evaluating the distribution of detected insertion sites per genes, we also found a negatively skewed dataset for both output samples nr. 2 and nr. 3. We were confident the output sample was near saturation, and had hit a plateu for insertions detected within our natural transformation assay. Further increasing the sample size would not gain any significant information. We therefore opted to continue the analysis using sample nr. 3, along with the corresponding control sample. Additionally, when evaluating the candidate lists from each sample we could detected important regulatory genes that have been shown to impact natural transformation in other studies. This indicates that our experiemental bottleneck was not baised and the loss of insertions was random.

During this evaluation it also became apparent that the transition from enriched media to chitin and back to enriched media did not cause a significant selection pressure. As we saw no dramatic change in insertion frequencies between the input library and the control output sample so we ended up lowering the number of cells used for the control sample. This was minimize the workload significantly while at the same time being confident there was no loss of insertions. This also highlights an important point. When comparing the input library to the control output sample we maintained a high complexity, meaning our experimental setup such as media changes, and other sample preparation did not impact the distribution of insertions.

This is an important point as we are comparing the difference between two ratios meaning any loss will impact the analysis.

# 6.3 Natural transformation homologous recombination

Natural transformation of V. cholerae was tested by incubating bacteria on chitin in minimal media. As this assay is a major bottleneck for our transposon insertion library we needed to maximize the number of transformants. The transformation assay was based on the optimized protocol by the Blokesch laboratory<sup>186</sup>, with slight modifications made to the media due to solubility issues (Figure 18). The transforming material was a PCR fragment, amplified from the genomic DNA of V. cholerae O1 EI Tor c6706. The strain contains a point mutation within the rpsL gene that confers resistance to streptomycin, this allowed use to select for cells that has taken up and integrated the donor DNA. We avoided using gDNA as donor DNA, since this could lead to the uptake of DNA that would be outside of our detection. We tested different concentrations of our donor DNA, as well as varying stretches of DNA flanking the point mutation (500bp 1000 bp, and 2000 bp). The donor DNA with flanking 2000 bp had the highest recombination frequency. the total size of the fragment was ~ 4000 bp. We also tested serveral concentrations of DNA; 0.5 ug, 1 ug, 2 ug, 4 ug, and 10 ug. 2 ug gave a sufficiently high transformation frequency, while being experimentally efficient. The transformation assay was performed using chitin flakes from shrimp shells. The frequencies were calculated by dividing the number of streptomycin-resistant transformants by the total number of CFUs.



Figure 18 Schematic representation of the natural transformation pipeline. *V. cholerae* is depicted as inflated commas in gray. LB media is depicted in yellow, demonstrating the initial growth phase. Chitin uses to induce competence is depicted by jagged black lines. The donor DNA used the confers antibiotic resistance is depicted in green. Bacteria that have taken up and integrated the donor DNA are shown with a green fill. While bacteria that do not survive the antibiotic selection pressure are shown with light gray fill and a perforated outline.

The donor DNA was PCR amplified from genomic DNA of a *V. cholerae* c6706 strain This is a non-transforming strain due to a frameshift that results in insufficient expression of LuxO and ultimately impairs quorum sensing<sup>174</sup> that carries a single point mutation in the *rpsL* conferring resistance to streptomycin. Point mutations have been seen to be poorly integrated, as mismatch components can block the progression of homologous recombination<sup>186-188</sup>. However, our transformation frequency was optimized close to saturation by increasing the amount of DNA. During homologous recombination, exchange of DNA strands can occur resulting in a heteroduplex. If a mismatched nucleotide occurs within this structure it can be corrected by mismatch repair<sup>189</sup>. Since homologous recombination and mismatch repair are entwined, the fact that we used a single point mutation in the donor DNA could result in a lower transformation frequency<sup>190</sup>.

While spontaneously arising resistance to streptomycin was never detected, the possibility of nongenetic inheritance cannot be overlooked. Upon replication, after exogenous DNA has been integrated, only one of the cells will contain the newly acquired sequence. However, it has been demonstrated that the newly acquired material is transcribed before cell division, allowing for the random distribution of the gene product<sup>187</sup>. It is therefore probable that our screen contains some false positives. The pipeline known as ARTIST was originally optimized to evaluate the fitness landscape of *V. cholerae* genes within a mouse model<sup>183,184</sup>. The creators of the analysis pipeline found that modeling stochastic loss of disruption in the context of genetic drift minimizes false positives. Additionally, only a small subset of cells will have enough newly synthesized protein to survive antibiotic selection. While we did not encounter any false positives out of the list of candidates we tested, we did not test every gene and it cannot be excluded. However, the effects of which should be minimum as our genetic screen was stringently evaluated and validated.

# 6.3.1 Nongenetic inheritance of tolerance

Nongenetic inheritance of tolerance within the natural transformation assay lasted long enough to produce long-lasting and potential genetic resistance. Experimentally, this was a pain as it resulted in false positives which in turn increased costs due to additional testing and repetitions. This was also not resolved by simply increasing the antibiotic concentration or swapping out the antibiotic cassette. I tested the MIC of the V. cholerae on tetracycline finding 0.75mg/mL to be sufficient for killing. However, after two days on chitin, this was no longer adequate. The same issue appeared when switching to a different antibiotic cassette. This indicated that the chitin flakes were the main problem, either by absorbing the antibiotic or inducing a state of tolerance. I tested this by harvesting bacteria from chitin flakes after 24 h, plating a serial dilution on agar plates, and immediately exposing it to UV radiation for 40s before incubating at 30°C overnight. The control assay was a culture grown to an early exponential phase in LB. The amount of bacteria was matched to that grown on chitin, and underwent the same plating and UV radiation as the chitin assay. The chitin assay survived the UV radiation better than the LB assay, with more than a log increase in survival. While the implications for a chitin-induced state of tolerance are unclear, it merits investigation, and I hypothesize it will also impact acid tolerance.
### 6.4 MIC determination and time-kill curves

MIC suffers from poor reproducibility. This is especially problematic within the field. Novel nonMIC approaches can potentially alleviate this. Regardless, a diagnostic setting requires a rapid, robust, and accurate measure to inform proper dosing and minimize resistance selection. The MIC is also an endpoint measurement, meaning the dynamics of the drug-target interactions are lost. Implementing a more robust measure such as binding affinity could potentially mediate novel drug development.

A more dynamic approach to evaluate drug-target interactions involved time-kill curves. However, this is extremely time-consuming. A benefit of generating a mechanistic PD model based on extensive time-kill curves removes the need to repeat the time-kill curves and one gains information regarding how the resistance can impact the drug-target interaction, as well as how resistance development can be avoided, within that setting. While some information can be inferred, a major downside to the PD model is that you will need to recalibrate it every time you change the strain or drug, by performing a time-kill curve. You may also need to have an advanced understanding of the model to do so, as it is not simply inputting new values. However, the amount of additional information and interactive data gained by such a model does justify the experimental and computational effort.

Time-kill curve experiments are extensive and impose time pressure on the experimentalist. It is necessary to complete the sample collection, dilution, and plating, as well as prepare for the next sample, as quickly as possible without exceeding the incubation time. For example, 8 drug concentrations, sampled every 20 min for 3 h and a final time point at 18 h, in triplicates, results in 264 samples. For proper evaluation of the colony forming units (CFU), each sample was diluted further and plated on agar plates for counting. The amount of plates needed for such an experiment was 2112 agar plates. This equales ~70 L of liquid agar that needs to be autoclaved and poured. This does not include preliminary tests. It is also likely that the time-kill curve will need to be repeated if peculiar effects appear, such as tolerance or persistence. Depending on the duration and amount of sampling, as well as sleep schedule, such an experiment can take up to a week including preparation time. This will only provide you with the killing effect for the wild-type. You would need to repeat this experiment for every resistant mutant as well. See Figure 19 for examples of time-kill experiments for a bacteriostatic (erythromycin) drug. The bacteriostatic drug was tested for the wild-type situation as well as within the context of a resistance mutant. However, it was not included in Paper II due to the mutant strain having too high resistance compared to the drug solubility. As a side note, the time-kill curve experiments resulted in my dominant arm becoming exactly 6kg stronger than the other.



**Figure 19** Erythromycin time kill curves, unpublished data. Time kill curves of *E. coli* wild-type and a resistance mutant subjected to erythromycin.

#### 6.5 Single cell microscopy

Microscopy is a valuable tool and provides positional information that can guide interpretations of protein interactions. However, there are some caveats to be mindful of. One of the most critical steps is to consider the imaging modality. This essentially refers to how the light path is manipulated. The different modalities available provide a vast repertoire, however this can be confusing. The light can either excite the entire sample volume, such as with EPI-fluorescence, or the light-path can be manipulated to provide an optical section of the sample such as for confocal imaging or Total Internal Reflective Microscopy (TIRF). Confocal imaging is excellent for imaging complexes within the cell, while TIRF provides a fine optical sectioning, illuminating the membrane surface. I mention this because a basic understanding of the light path aids the biological question. All microscopes are not created equal. However, they work well for the intended applications. There is also a trade-off concerning resolution and the field of view. This should also be considered within the context of the biological question. A localization experiment does not necessarily require superresolution, as this can limit the imaging area. That been said there are novel imaging modalities that will allow you to obtain a high resolution over an extended field-ofview<sup>191,192</sup>. However, this might not be necessary, and a simple setup could be sufficient to investigate the cellular process.

In **Papers I and III** we implemented EPI-fluorescence. This is much cheaper than a confocal and the slight resolution gained by using a confocal would be less critical for single cell bacteria. A confocal might be more useful when looking as 3D structures like biofilms og bacterial infections in tissue sample. That been said acquiring a z-stack of images and processing the images with a deconvolution software could give comparable if not more information. Widefeild microscopes also have faster image acquisition than confocals, making it more suitable for live cell imaging. Additionally

we needed a high contrast method to visualize the cells. We opted for phase contrast as the imaging technique is well suited for distinguishing between transparent structures with different refractive indexes. as this gave a better contrast of the cells while imaging without fluorescence.

#### 6.5.1 Fluorescent transcription fusion reporter

The main biological considerations concerning fluorescent fusion proteins involved functionality. The activity of the fusion protein should be carefully evaluated to avoid artifacts. When picking the fluorescent protein, it should be taken into consideration that protein folding, brightness, protein stability, and filter settings will also impact the study. If the fusion protein is carried by a plasmid under an inducible promoter, the expression profile should be evaluated to avoid overexpression, but should also reach detectable levels. This should be considered within the context of what is biologically relevant as well. An example of this relevant to **paper III** is the presence of CL peaks at the stationary phase. However, we opted to acquire images in the mid-exponential phase. While we did detect lower levels of CL at this stage, we detected proper localization and avoided peculiar effects associated with the stationary phase.

In Paper I, we performed a co-localization or co-occurrence study, where more than one FP is involved. In such a case, one should aim for similar maturation rates. The maturation rates for dsRED.T3 and GFP-mut3\* correspond to 78 min and 4 min respectively, which is not ideal and resulted in an uneven expression ratio. This could explain the low expression of competence genes compared to the housekeeping gene gyrA. Nevertheless, the expression was examined after 24 h when maximal accumulation is expected to have been achieved. Ideally, we would have recloned this construct. However, due to time constraints and previous validation for localization, we opted to include additional controls where the genes were instead swapped, so the P<sub>gyrA</sub> would express dsRed, while promoters of competence genes expressed GFPmut3. No difference in overall trend was detected (unpublished data). Red fluorescent proteins often exhibit complex maturation kinetics. GFP maturation is often referred to as a one-step process, while RFP is a two-step process<sup>193</sup>. Therefore, it may be beneficial to implement CFP, GFP, and YFP variants if one needs to track induction curves or is interested in rapid responses. It is important to note that even with a fast maturation rate, it will still take time before a maximum expression is observed.

# 7 Results and Discussion

This thesis approaches microbial response to external cues within the context of adaptation. The first contact between bacteria and the immediate environment is the cell envelope, which for Gram-negative bacteria includes an outer membrane. The cell membrane provides a hydrophobic barrier with size-exclusion properties and contains components indispensable for bacterial survival and growth. As such, the cell membrane has become increasingly attractive as an antimicrobial target. The composition of the membrane is ever-changing and allows for environmental sensing and initiating an appropriate response. Additionally extracellular DNA is actively taken up form the environmental. Moreover, the cell membrane is directly involved in regulating membrane protein activity.

#### 7.1 Membrane Protein localization: Cardiolipin and MgtA

MgtA is an inner membrane P-type ATPase, linked to virulence in *E. coli*. The ATPase is known to interact with CL. In **paper III** this was further characterized in depth. Maximum activity was demonstrated by the ATPase when in the presence of CL 18:1 and 16:0. This nomenclature describes the structure of the acyl chain and refers to 18 carbons and 1 double bond, or 16 carbons without a double bond. CL 18:1 is therefore monounsaturated in cis making the chain kinked while 16:0 is saturated and straight. It should be noted that biological membranes contain more than 50 different types of CL species and my collaborators only tested three different kinds. The CL species tested were CL16:0, CL16:1, and CL18:1. They were selected based on high prevalence in biological membranes.

Monounsaturated lipids increase fluidity, which mediates dynamic transmembrane proteins that undergo a conformational change. The catalytic cycle of MgtA transitions between several states and might require the fluid environment provided by the CL18:1 kink. MgtA activity and stability also required 50% saturated CL 16:0. This could be an artifact for the experimental setup, seeing as these lipid moieties form more ordered domains. The activity was also tested in an artificial membrane, which have different constraints than biological membranes. The enzymatic assays were performed using detergent-lipid micelles instead of liposomes. Micelles consist of lipid monolayers while liposomes are bilayers. MgtA is located in the inner membrane and does not traverse the outer membrane, so a micelle setup is sufficient. However, the assay was performed with only CL species and MgtA. The optimal temperature required to ensure that CL is in a liquid crystalline form is higher than the optimal temperature for MgtA activity and stability. Further, they notice variations in the activity profile of MgtA, likely linked to the detergent used in the

setup, glycol mono-dodecyl ether (C12E8). There is a clear connection between MgtA activity and CL species, which creates a foundation for further studies. However, the activity profile of MgtA should be tested in a lipid bilayer without the presence of detergent, and with various CL species as well as other phospholipids that would allow the membrane to be in a crystalline liquid phase at temperatures that match the transition temperatures for MgtA activity.

Previous experiments showed MgtA localized to the cell poles<sup>167</sup>. In that study they evaluated localization patterns of MgtA wild-type and a nonphorsphorylatable mutant, MgtA D373N, fused with a C-terminal fluorescent protein (blue fluorescent protein, BFP). They found MgtA-BFP localized to the cell poles, while the MgtA D373N mutant was diffusely spread through the cell. The constructs were expressed in an overexpression model useful for protein isolation, however this can lead to incorrect localization profiles. Overexpressed protein can form aggregates at the cell pole<sup>194</sup>, and would result in artifacts. In the case of overexpression, the localization pattern depends on the rate of production. A slow rate of addition favors a single pole, while fast addition results in bipolar localization. Further, my collaborators discovered the C-terminus was involved in Mg<sup>2+</sup> sensing (unpublished data), indicating that the Cterminal fusion of MgtA would have reduced activity. We, therefore, created an Nterminal fusion of Clover within pBAD33.1, under the control of an inducible promoter, Para, that allowed for a graded response of protein expression. We opted to avoid BFP as the fluorescent protein (FP) is excited at 381nm and has a peak emission at 445nm. The FP is known to form dimers, which would be disadvantageous to a localization study. Clover, on the other hand, is an optimized version of GFP (green fluorescent protein). It is monomeric providing minimal clustering and undergoes rapid maturation. Additionally, the excitation/emission profiles are tighter than BFP, and matched our filter settings better. The ex/em peaks for Clover at 505/515nm. Further, the FP is brighter and has increased photostability allowing for a lower expression of the construct. Several factors influence the brightness of FPs, such as the quantum yield, extinction coefficient, and the protein folding or maturation rate. The quantum yield shows the ratio of how efficiently incoming light is converted into an output, e.g. the amount of absorbed light vs emitted light. Meanwhile, the extinction coefficient informs the user how strongly the molecule absorbs light at a particular wavelength (nm). These parameters are both theoretical and are void if the protein does not fold properly. Depending on the imaging setup various maturation rates can be used, however for localization studies a faster maturation rate is desirable. A longer maturation rate can be also be used, but should be properly evaluate within the context of timing. The maturation rate for Clover is 22 min at 37°C<sup>195</sup>. Once the construct was optimized, we needed to decide which strain backgrounds would provide useful information.

Originally the MgtA-BFP construct was expressed in an *E. coli* C43(DE3) which is an overexpression strain. C43(DE3) is a derivative of the BL21 (DE3) strain that can

better withstand the toxic expression of proteins<sup>196</sup>. The overexpression is mediated by the bacteriophage T7 RNA polymerase which has a higher rate of protein expression than the corresponding RNA polymerase in wild-type *E. coli*. We therefore utilized *E. coli* K-12 MG1655 since is derived from a descendent of K-12. K-12 was collected from a fecal isolate from a diphtheria patient in 1922, and has since been maintained in a laboratory setting with minimal alterations to the genome. MG1655 is fully sequenced and wildly used as wild-type *E. coli*. This strain was also the parent strain used by the Weibel lab to create a CL synthase triple knockout,  $\Delta$ clsABC<sup>197</sup>. Additionally, *V. cholerae* lacks a native homolog of MgtA, while having a relatively similar membrane composition. These strain backgrounds allowed us to evaluate MgtA localization patterns within a wild-type, a strain with minimal to no CL, and an unfamiliar wild-type background.

The localization patterns for wild-type *E. coli* demonstrated peripheral localization with preferential bipolar accumulation and an occasional minor cluster close to the center of the cell along the membrane. The CL synthase mutant demonstrated a similar localization pattern, although less protein was localized to the membrane and one of the cell poles demonstrated a preference for accumulation. This pattern is not detected in the *V. cholerae* background, although minor detection was observed diffusely spread throughout the membrane and did not exhibit a polar preference. Whereas, MgtA localized to the cell pole in both wild-type and  $\Delta clsABC E.coli$  strains. This indicates that while CL is involved in the activity and possibly stabilizing the MgtA complex, it is not necessarily important for localization.

There could be an unknown membrane protein that mediates polar localization. meaning MgtA could implement a diffusion-capture process. The protein is unlikely to be able to sense membrane curvature as it would result in polar aggregates in V. *cholerae* as well. Further, there are likely traces of CL in the  $\triangle c/sABC$ . Even though the synthases are removed, some redundancies could aid in CL accumulation. Phosphatidylserine synthase, for instance, can result in a minor formation of CL<sup>198</sup>. Cumulative redundancies could result in a threshold amount of required CL. A low level of CL could aggregate at one pole, and within the context of asymmetric cell division this could result in some cells having more CL than others. This could be enough CL enabling MgtA clustering to one cell pole, especially as not all cells exhibited polar MgtA localization in the  $\Delta$ cls mutant. This is, however, purely speculative from my part. Another possibility could be the presence of PG. PG association has been found to promote MgtA activity as well, similar to CL but to a lesser extent<sup>167</sup>. The same study that generates the  $\Delta c/sABC$  knockout also found that PG localized to the poles in the absence of CL. It is currently not possible at this time to state definitively whether CL impacts MgtA localization, and further experiments are required.

There are many unanswered questions when it comes to protein localization. While several proteins have been found to localize to the cell pole and some interact with CL, the actual role of CL remains unclear. CL was previously thought to play a role in shaping the bacterial cell due to its conical shape. If this were the case, a triple knockout for the main synthases of CL would result in an observable phenotype, given that multiple redundancies do not mask the effect. The cell only requires 5% CL and the amount of CL accumulates throughout the cell cycle, being more prominent in the stationary phase. Therefore most CL experiments require the bacteria to be above an optical density of 1. In paper III we avoided the stationary phase and only investigated early exponential (OD:0.3) as several peculiar effects occur in the stationary phase. Further, the exponential phase is better suited for protein expression studies and reproducibility. As a result, we experienced weak detection of CL (unpublished). Additionally, knocking out the main synthase for PG, *pgsA*, resulted in a slow-growing and fragile cell<sup>197</sup>, whereas  $\triangle clsABC$  was unaffected. These results, indicate that CL is not as involved in the cell shape as previously thought. Additionally, CL was recently found to be localized preferentially to membrane curvature after curvature was artificially induced<sup>199</sup>. While, there is a lack of consensus within the field regarding CL and curvature, it is possible that the role of CL is to increase fluidity and that is is not specifically involved in shaping the cell.

Further, there is increasing evidence that bacteria utilize a wide variety transcription factors and regulatory RNAs, as well as small proteins to regulate gene expression and environmental response. Small proteins have previously been ignored due to the size cutoffs for genome annotation. However, they are unique in the sense that they consist of 16 - 50 amino acids in the absence of processing, as they have their own open reading frames (ORFs)<sup>200</sup>. About 30% of the identified small proteins in E. coli have been predicted to localize to the membrane, with some even having transmembrane domains. Small proteins can either have subcellular localization or be associated with other proteins. They have been found to integrate into the membrane and influence cellular processes by interacting with or stabilizing other membrane proteins. The small protein, MgtS, is expressed by E. coli and contains a hydrophobic  $\alpha$ -helix that inserts into the inner membrane<sup>201,202</sup>. It was previously named YneM before the interaction with MgtA was observed. Interaction with the 33 amino acid protein occurs at the membrane and increases MgtA activity when internal levels of Mg<sup>2+</sup> are low. Further, it protects MgtA degradation from the membrane-bound protease, FtsH. Interestingly, the small protein was also seen to inhibit PitA when Mg<sup>2+</sup> is low. PitA is a phosphate/metal transporter, also known as a cation symporter, present in the membrane, and it can dramatically decrease internal levels of Mg<sup>2+</sup> <sup>202,203</sup>. However, MgtS limits Mg<sup>2+</sup> efflux by PitA<sup>204</sup>. The increased stability, protection, and activity provided by MgtS could also mediate localization at the cell pole. The protein – protein interaction would also require more space aided by CL.

While CL might not be responsible for inducing curvature, it can increase membrane fluidity, which mediates interactions between essential membrane-bound protein complexes and could aid in complex clustering. Several proteins are found to be recruited to the cell pole and yet how this occurs is still not fully understood. Two main models for polar localization have been proposed. Firstly, the 'stochastic nucleation' model suggests that receptors nucleate at the mid-cell rather than merging in polar clusters<sup>205,206</sup>, eventually becoming the new cell pole after division. Another model suggests the slightly curved geometry of receptor clustering is attracted to the curves of the cell poles and aids in reducing curvature mismatch<sup>206</sup>. However, these models are directed at chemoreceptors that traverse the cell envelope and often demonstrate a conical shape where the widest part is in the outer membrane. The receptors are also often found as trimer dimerization. However, these models do not include the considerable amount of membrane protein traffic that occurs within the membrane. The rate of diffusion for eukaryotes is roughly 0.3 um<sup>2</sup>/sec<sup>207</sup>. A study assuming a similar rate for *B. subtillus* estimated that it would take less than 1 min for a septal protein to diffuse to the cell pole<sup>208,209</sup>. Further, MinD preferentially binds the inner membrane and shuttles between the two cell poles in an ATP-dependent manner. The pole-to-pole oscillation takes roughly 50 s to complete a full cycle<sup>148</sup>. There is an enormous amount of traffic occurring within the membrane, and yet protein complexes are organized with preferential localization, where some proteins are septal while others are found at the pole. This could very well be a result of septal insertion and stochastic diffusion. However, signaling events and assembly of protein complexes occur rapidly, indicating an assist. Membrane organization is increasingly understood to be complex. Various lipids accumulate according to the growth phase and environment conditions. Additionally, protein complexes can be sorted based on cell division and protein activity is modulated by lipid interactions and other membrane proteins. The membrane is not simply a scaffold that holds proteins in place, but instead plays an active role in bacterial survival and environmental responses and as such merits further investigation. Further, the cell membrane plays a major role in antibiotic resistance. The cell can adjust its membrane composition to reduce uptake, increase efflux or generate biofilms that provide an additional "impenetrable" layer of protection<sup>12</sup>.

#### 7.2 Mechanistic models can limit antibiotic resistance

While the cell envelope is a major obstacle for antibiotic treatment, the bacteria can also inactivate the drug, and alter the target of the drug, as well as acquiring functionalities that mediate drug evasion. Antibiotic resistance is steadily increasing and remains a global challenge. In addition to the absence of novel antibiotic discovery, a proper understanding of drug-target interactions can alleviate some immediate obstacles for antibiotic treatment. Appropriate antibiotic treatment can limit the bacterial response by maximizing bacterial killing and reducing selection for resistance, as well as minimizing the opportunity for resistance to emerge and spread. Proper application of PK/PD knowledge can circumvent such unwanted antibacterial effects.

The success of the antibiotic treatment will depend on the concentration at the target site. Traditionally, the MIC has been used to describe the "potency" of the drug. However, this is a crude measurement with room for error. The MIC informs at what concentrations of drug results in the inhibition of the bacterial growth. The Clinical and Laboratory Standards Institute (CLSI) recommends an inoculum of  $5 \times 10^5$  CFU/mL, or within the range of  $2 \times 10^5 - 8 \times 10^5$  CFU/mL<sup>210</sup>, and the antibiotic is often diluted in 2-fold increments. The standardized measurement is observed after 18 h ± 2h at  $34 - 37^{\circ}C^{211}$ . There is often lab-to-lab variation, and the outcome is dependent on the inoculum. If the inoculum is greater or the duration is longer, the MIC will likely be higher as well. The value is also not directly comparable to *in vivo* concentration during treatment and does not provide any information above or below the MIC.

The MIC is primarily used by diagnostic laboratories to determine resistances as well as *in vitro* activity of new antimicrobials. The MIC value is determined at a relatively low inoculum. Further, as the MIC is a single end-point measurement, the value does not consider important characteristics of bacterial growth and death under antibiotic pressure. This can, for instance, result in treatment failure during clinical decisionmaking due to improper characterization of the strain and ineffective dosing regimens. Time-kill curves, however, can capture the dynamic relationship between bacteria and drug concentration<sup>212</sup>. The effect of the drug is evaluated at several constant concentrations as a function of time and compared to the growth curve in the absence of the drug. Bactericidal drugs will have a negative growth rate, as there is a killing effect while pure bacteriostatic drugs will reduce the growth rate until it becomes zero. A downside to time-kill curves is that the concentration is constant, while the concentration fluctuates for in vivo conditions, limiting the predictive power<sup>212</sup>. Yet, subsequent PK/PD analysis of time-kill data does provide a meaningful understanding of the dynamic drug-target interaction, providing useful information during clinical trials<sup>212</sup>.

PK/PD models can benefit all phases of clinical trials, including preclinical trials. During phase I and II of clinical trials such models reduce the time and cost by informing proper dosing regimens, predicting activity, and mediating with determining the best-suited candidates. Our model is an initial framework intended to mediate phase I and II of clinical trials, as proper evaluation and initial stages can reduce future costly drug failure<sup>213</sup>.

Determining the MIC is highly dependent on the test conditions, and can therefore differ greatly between labs. It is also a static measurement. However, performing time-kill curves is time-consuming. In **paper II** we proposed an alternative framework for characterizing pharmacodynamic profiles, grounded in drug-target interactions. To this end, we utilized readily available information regarding traditional drug compounds to construct a mechanistic model with predictive capability. During drug development, specific parameters that characterize the drug-target interaction are defined. One such biochemical property is the binding affinity of the drug to its target, which is typically displayed as a disassociation constant, K<sub>D</sub>. A small value indicates a strong affinity between the drug and target. By evaluating different binding affinities against the corresponding MICs, my coauthors found a linear correlation between the two values, indicating a strong relationship between the two.

The model, generated by my coauthors in **paper II**, describes the action of the drug on the bacteria as a function of time. The drug's action is based on binding kinetics, i.e. the dynamics of drug-targets complexes using binding and unbinding rates of drug molecules with their targets. Initially, we assume that all of the drug moleulces are unbound as well as all the targets inside the bacteria. A growing number of bound targets is related to a decrease of the growth rate (bacteriostatic effect) and/or to an increase of the killing rate (bactericidal effect). The model also considered bound target inheritance upon cell division, as well as a slowing of the growth rate as the population reaches the environmental carrying capacity. The model assumes the concentration outside and inside the bacteria is the same. As, the drug binds its target the concentration of the available drug will decrease, and when the drug unbinds its target the concentration can increase. The drug molecule will then have a probability of interaction with its, e.g. rate of interaction, and is defined by the binding rate. This is essentially a probability that demonstrates that it takes time for the drug to bind to its target. Due to the randomness of drug binding, the bacterial population will demonstrate different target occupancy. The more target that is bound, the stronger the effect the drug will have, until a threshold is reached. This percentage of target occupancy will also change in accordance to time.

The model was calibrated by time-kill curves where wild-type *E. coli* MG1655 was challenged in the presence of ciprofloxacin. This is a commonly used mixed-action drug, meaning it has both bactericidal and bacteriostatic effects. There are two known molecular targets of the drug: DNA gyrase (GyrA<sub>2</sub>B<sub>2</sub>) and DNA topoisomerase

IV (ParC<sub>2</sub>E<sub>2</sub>). However, the drug does preferentially bind the DNA gyrase complex in Gram-negative bacteria<sup>214</sup>. The inoculum of the time-kill experiments, as well as each serial diluted time point, was performed in large volumes and triplicates. While this is laborious it does greatly diminish error. To best fit the model, several concentrations ranging from at least 0.5 – 100x MIC, as well as several time points, were required. According to the Eucast table, the MIC breakpoint for susceptible strains is 0.25 mg/L, if ciprofloxacin is used to treat meningitis, and 0.125 mg/L if it is used for a different treatment. In this case, resistance must be excluded. We expected resistance to be excluded for our wild-type strain, and evaluated the MIC by a 3-fold dilution of drug range from 0 - 2 mg/L ciprofloxacin. The MIC was found to be somewhere between 0.0081 mg/L and 0.027 mg/L. (The MIC was later determined to be 0.0139 mg/L, by the model.) This indicated that the solubility limit of the drug could potentially be just above 100 time the MIC required for the model. We also needed to perform a pilot time-kill to determine the appropriate time points to ensure proper sampling of the curve, to evaluate how the drug affected the change in growth rate. Lastly, some final time points were excluded due to the appearance of growth at maximum concentrations. This could be due to either experimental error, tolerance, or resistance however further characterization of this was not performed.



Figure 20 Time-kill curves challenging *E. coli* with ciprofloxacin

The data from the time-kill curves were used to inform how the drug affects the growth and death rates of the bacteria. Paper II, Figure 3a shows the model fit to experimental data while Figure 20, in this section, shows the raw data obtained from the time-kill curves. As the model is fullv mechanistic, i.e. all parameters have a physical meaning, it can predict the time it takes for drug target occupancy to exert an observable effect. As the drug binds to its target this will impact the growth and death rate of the bacteria. The model estimates the

growth and death rate of the bacteria based on the effect of the drug used. The shape of this curve will describe the effect of the drug whether it is bacteriostatic or bactericidal. If the growth is zero the effect of the drug slows the growth rate to zero. If the death rate is increasing, the drug is bactericidal, confirming the drug has mixed action. The parameters for growth and death were kept separate in the model. There is a growth rate ranging between zero and the maximum growth, obtained with bacterial growth with no drug. While the death rate is between zero and a maximum death rate, describing how many bacteria perish per unit of time. While the maximum

death rate was determined by the highest drug concentration used in the kill curves. Therefore, the maximum concentration used should be much higher than the MIC (e.g. 50 or 100 times the MIC) to ensure the maximum death rate was achieved, however, one would still need to be able to collect a few samples. The concentrations in-between should provide a proper sampling of the final growth and death rates as a function of the drug concentration or bound targets (**Paper II**, **Figure 3b**).

The most commonly used PK/PD indices are; the amount of drug that stays within the therapeutic window (Cmax/MIC), the unbound fraction of the drug (AUC/MIC), and the dosing interval where the amount of free drug in e.g. the serum, exceeds the MIC (T>MIC). The PK/PD indices are still highly reliant on the MIC, meaning the variability and drawbacks of MIC determination will propagate. We showed it is possible to evaluate drug efficacy by using other parameters than the MIC. The model provides information about resistance development given that it arises from an altered K<sub>D</sub>. Different drug concentrations will affect the bacteria differently. While a high concentration will likely inhibit growth or ensure killing, such a dose can be toxic to the patient. Further, an appropriate drug concentration for *in vitro* killing may not be high enough to reach the site of infection in vivo. A rational dose regimen should therefore effectively treat the infection as well as prevent the emergence of resistance. My coauthors also coupled the model to a PK model and were able to inform dosing regimens (Paper II, Figure S14). The model allows for the prediction of the mutant selection window. Further showing that MSW is sensitive to timing (Paper II, Figure 6), as there will be a slight replication rate at initial dose administration making the drug effect less prominent. However, this changes as the drug associates with its target.

Mechanistic models have enormous potential for reducing the cost of drug development as well as optimizing the care of individual patients, by for example informed precision dosing<sup>215</sup>. This is a MIC-independent approach that uses readily available drug parameters<sup>216</sup>. The potential of such models can further be seen by a burst of new bacterial susceptibility testing using non-MIC methods<sup>217</sup>. By modeling the dynamic relationship between the drug and bacteria, all the information is retained in a mechanistic PD model. To apply the PK/PD models to clinical practice more research is required. However, antibiotic treatments can benefit from a more complex evaluation and precise dosing approaches<sup>216</sup>. Mechanistic models aimed to streamline new drug development and inform dosing regimens of old antibiotics can address the rise and spread of antibiotic resistance and treatment failure<sup>218</sup>.

#### 7.3 Amino acid metabolism modulates natural transformation

An important route for adaptation is HGT. Bacteria can acquire large stretches of genetic material that enable them to adapt to their environment. This can lead to emergence of new traits, which for pathogenic bacteria can increase infectivity as well as improve colonization, all of which can have devastating consequences for the human host. A mode of HGT is natural transformation, which entails active uptake of free DNA from the environment and subsequent genomic integration. In order for DNA uptake to occur, the bacteria must first enter the physiological state of competence. V. cholerae is able at acquiring new genetic information via natural transformation. Further, efficient shuffling or import of genetic material contribute to the success of the pathogen. From a medical perspective this has major socioeconomic implications on vulnerable human communities that limit further development<sup>62-64</sup>. The current cholera pandemic is caused by the El Tor strains and began in 1961<sup>219</sup>. The EI Tor biotype is much more efficient at acquiring exogenous DNA via chitin-induced natural transformation than the classical O1 biotype. The prototypical classical strain lacks this ability due to a frameshift mutation in the regulatory gene  $hapR^{220}$ . It has been speculated that the classical strain was outcompeted by EI Tor strains, as a result of the reduced capacity to undergo natural transformation<sup>221</sup>.

Natural transformation is widespread across species but also within the Vibrio genus. While it is not the sole driver it does contribute to the evolution of Vibrio species, resulting in genomic flexibility<sup>222</sup>. While the natural transformation machinery has been partially characterized through genetic studies and orthology analysis, its full complexity remains elusive. To gain deeper insights, we employ transposon insertion sequencing. This high-throughput technique facilitates the evaluation of fitness contributions of genomic regions. The method is well suited to assess fitness landscapes as it directly links phenotype to genotype<sup>182</sup>.

In **paper I**, we find that amino acid metabolism genes modulate the progression of natural transformation. In short, we constructed a high-complexity near-saturation transposon insertion library in *V. cholerae*. The library was applied to an optimized natural transformation assay in the presence of chitin (to induce competence), and we compare how the disruption frequencies change in the presence and absence of donor DNA. This procedure allowed us to determine which genes were conditionally essential for DNA uptake and recombination. Analysis of the sequencing data showed that amino acid metabolism was a major pathway involved in DNA uptake and recombination. Deletion mutants of amino acid metabolism genes, *metE*, and *asnB*, resulted in severely reduced transformation frequencies. However, transformation proficiency was recovered by adding the corresponding amino acids, methionine, and asparagine, respectively. By extending our investigation to include fluorescence reporter constructs we could assess competence induction within these

strains. We showed the defective amino acid mutants were impacted in four of the major pathways associated with competence development: chitin metabolism, nucleotide scavenging, carbon catabolite repression (CCR), and quorum sensing, clearly indicating a regulatory role for the amino acid metabolism genes to achieve successful DNA uptake and chromosomal integration. We also find a greater variation of expression levels of genes critical for competence induction within the defective amino acid metabolism strains.

Another transposon insertion study investigating the lifestyle switches of V. cholerae between environments found an increased need for amino acid metabolism in pond water<sup>71</sup>. Other transposon insertion studies have also found amino acid metabolism to be enriched for V. cholerae in animal models<sup>183,223,224</sup>. These studies further indicate that the host environment is a nutritionally limited environment, and the pathogen would need to switch metabolic focus. Pritchard et al. (2014). compare the input library created in enriched media with the limiting environment of a rabbit gastrointestinal tract, specifically passaging three samples through a rabbit infection model and pooling the sequencing output<sup>183</sup>. In the study, they find several amino acid metabolism genes to be "essential", which they suggest could be due insufficient supply of nutrients within the host. However, they compare two vastly different conditions: enriched media against a limiting environment, the host. According to their findings, amino acid metabolism is likely linked to a metabolic switch. Our study compares two conditions that experience the same environment, with the main differences being the presence of exogenous DNA and antibiotic selection. If amino acid metabolism was critical for survival on chitin in a limiting environment, the respective genes would be apparent in the control condition and removed from our screen. Instead, the result of our genetic screen suggests there is a connection between amino acid metabolism and natural transformation.

Interestingly, specific amino acids have been found to increase the levels of a major virulence regulator in *V. cholerae* known as ToxR <sup>225,226</sup>. ToxR is a transmembrane transcription activator that through an intricate signaling cascade is involved in activating ToxT, a central virulence gene regulator <sup>227,228</sup>. Furthermore the activity of the transcription factor increases in the presence of bile. Mey et al. (2015) noted that supplementing specifically with a mix of asparagine, arginine, glutamate, and serine increased the levels of ToxR expression beyond that of bile induction. This result indicates a potential role for amino acids in terms of environmental sensing and virulence induction, and the authors suggested this induction occurred via a different pathway than that of bile. They further pointed out that the protein composition of the outer membrane changed in response to amino acids and bile, likely as a result of the increased levels of ToxR.

They suggest that the response to amino acids and bile could be linked to a timedependent mechanism that plays a role in safeguarding against antimicrobial peptides in the small intestine. This suggests a wider range of functionality for amino acids beyond that of a conventional metabolic role.

Amino acids have also been seen to regulate natural transformation in the Grampositive organism, *Micrococcus luteus*<sup>229</sup>. Lichev et al. (2019), found amino acids to acts as nutritional factors or environmental cues, where individual amino acids had both stimulatory and inhibitory effects on competence induction<sup>229</sup>. They noticed a threshold-dependent response and observed a slight increase in transformation at low amino acid concentrations. They assume this stimulatory effect was a result of amino acids depletion (e.g. by metabolic processes) before transformation could occur, as the duration of their assay was 20 h. Furthermore, they demonstrated a link between natural transformation and the stringent response. The stringent response is a conserved stress response that enables bacteria to react towards nutrient deprivation<sup>230</sup>. Essentially, an alarmone, (p)ppGpp, downregulates factors involved in growth and upregulates stress response genes<sup>231</sup>. In the *M. luteus* study they find that the alarmone partly directs natural transformation. The addition of external amino acids results in low levels of alarmone and decreased transformation frequency, whereas auxotrophy leads to reduced transformation as well due to a high level of alarmone.

Stimulatory and inhibitory effects of amino acids on competence development have also been described in *B. subtilis*, by Wilson et al. (1968)<sup>232</sup>. Glutamic acid and alanine were found to be detrimental to competence development, while the amino acids histidine, tryptophan, arginine, valine, lysine, threonine, glycine, aspartic acid, and methionine had stimulatory effects. The highest level of competence induction when all the stimulatory amino acids were added as a mixture. Competence development in *B. subtilis* is growth dependent and occurs in the late exponential phase/stationary phase<sup>233</sup>. Competence is further a result of bistable expression of comK, the master regulator for competence for B. subtilis. Fluctuating levels of its expression will determine the fate of the cell. The population has generally low expression levels of *comK*, as it is under the control of a weak promoter. However, due to intrinsic noise, the cell-to-cell variation is high<sup>234</sup>. In *B. subtilis*, competence development is likely not linked to catabolite repression to the same extent as competence development and CCR in V. cholerae. At the same time, the stimulatory effect of amino acids on competence induction within *B. subtilis* would suggest a role at least in parallel with metabolic activity. Additionally, upon supplementing B. subtilis with hydrolyzed casein, or casamino acids, the authors also detected high variation within competence development<sup>232</sup>.

Lichev et al. and Wilson et al. are the only studies we could find that had investigated the effects of amino acids on natural transformation, and both studies were performed in Gram-positives. In **Paper I** we found a concentration- and timedependent reduction of transformation frequencies upon addition of external amino acids. We argue that optimal amino acid metabolism is required for competence development and find that the competence induce bacteria will rapidly internalize DNA and proceed to recombination before inhibitory substances exert an effect. This could be a strategy to sequestering DNA as a resource. Further, we find a cell-to-cell variation that could indicate there is a specific threshold for gene expression to become competent and that this process is stabilized by amino acid metabolizing genes. This could be a way to subdivide the population where only a fraction will attempt DNA internalization and recombination.

In **Paper I** we found substantial cell-to-cell variation for competence expression for the defective amino acid metabolism mutants tested,  $\Delta metE$  and  $\Delta asnB$ . This could suggest that amino acid metabolism in *V. cholerae* has a role in competence induction, potentially explaining why the transformation frequencies were severely impaired. Interestingly the fluorescent reporter constructs showed a similar trend in promoter activity as the transformation frequencies. The  $\Delta tfoX$  mutant demonstrated background signaling close to our detection limit with minimal cell-to-cell variation. Other mutants,  $\Delta metE$  and  $\Delta asnB$ , displayed greater variation within the promoter activity of the competence genes. Intriguingly, the  $\Delta asnB$  strain only just managed to achieve transformation within the detection limit of our natural transformation screen, where the promotor activity was just above that of the  $\Delta tfoX$  mutant. The  $\Delta asnB$  mutant demonstrated only a few cells with strong *comEA* promoter activity. The cell-to-cell variation could be what enables the remaining transformation frequencies. We therefore interpreted these results as a threshold requirement for competence induction, aided by functional amino acid metabolism.

When adding casamino acids to the wild-type we found a slight increase in transformation frequencies between the 24 h and 30 h timepoints. Casamino acids were found to inhibit transformation frequencies at early stages of our assay. We associate this to competence development; it is therefore interesting that there is a minor increase in transformation frequencies at the later stages. We did not see any major growth differences between these timepoints and have previously not detected increased CFUs between initial and final timepoints during the natural transformation assay, so the increase in transformation frequency is likely not due to cell growth. When we added DNase at different time points post DNA induction, we found the majority of DNA was taken up during the first hour however there was a slight increase in transformation frequencies for the later time points as well. We suggest this is a result of recombination. We show that DNA uptake is rapid, however recombination takes longer<sup>235</sup>. Dalia et al. demonstrated that V. cholerae can undergo several recombination attempts if the first fails, as most attempt fail<sup>82</sup>. To reach peak transformation frequencies several integration attempts may be required. This could be the reason we find a slight increase during the casamino and DNase experiments.

Interestingly, Dalia et al. find that the newly incorporated DNA is synthesized before cell division and test this further by implementing antibiotic resistance markers as transforming DNA. They find the newly synthesized antibiotic resistance gene product is synthesized and stochastically distributed upon cell division. After cell division one cell will have the transformed DNA incorporated into the genome, while the other will have the parental DNA. However, both will have a random distribution of gene product, allowing for nongenetic transfer of gene products. It is thought that competence development and natural transformation is a bet-hedging strategy because the competence state results in a fitness cost<sup>59,236</sup>, and is a way to safeguard the population from deleterious mutations.

In our reporter assay only half of the wild-type population exhibits detectable *comEA* promoter activity, while the transformation frequencies are less than 5% of the population in optimal conditions. In such a scenario either all cells have the potential to become competent or some cells are predisposed to become competent. The probability would be either based on reaching a threshold for gene expression relevant for competence or an inherent difference. We suggest in **Paper I** that there is a subpopulation of competent cells where a threshold connencted to amino acid metabolism, could act as a regulatory checkpoint. I would like to build on this scenerio and place it in an evolutionary context. Is it conceivable that natural transformation is a bet-hedging strategy to limit the fitness cost of competence development and potentially detrimental transforming DNA. Additionally, amino acid metabolism has inherent heterogeneity which results in differences within an isogenic population. Within the context of intrinsic noise, it is tempting to envision a more direct role for amino acids in terms of competence induction and natural transformation.

A speculative interpretation of the results in **paper I** could explain why only a small fraction of the V. cholerae population become competent, not simply suggesting a bet-hedging strategy but also implying an underlying mechanism. A stochastic availability of amino acids could prime a subset of the population for DNA uptake, before induction of competence by chitin actually leads to expression of the DNA uptake machinery. Ultimately the underlying metabolic foundation determines the cell fate. The regulatory circuitry of natural transformation has in broad strokes been characterized for V. cholerae. La Scrudato et al. developed a model for the regulation of competence and natural transformation<sup>237</sup>. In that study the authors used plasmids with transcriptional reporter constructs of (red) fluorescent protein genes under control of promoters of competence genes, one of which being the promoter for the comEA competence gene, included an internal control construct, a green fluorescent protein under control of a constitutive housekeeping (gyrA) promoter. The authors employed both flow cytometry and microscopy for all reporter constructs included in the paper. Based on the representative images there is clear cell-to-cell variation present for the [P<sub>comEA</sub>]-dsRED expression. This is to be expected as our study uses the same strain and reporter construct, generously donated by M. Blokesch (Lausanne). Our results in part align with this study. In the paper, they interpreted the heterogeneity as a response to the disorganized topography of chitin, even though, they used chitin-coated beads which would be more uniform than environmentally available chitin. Moreover, the authors indicate a homogenous competence induction upon artificial induction of the master regulator tfoX. While the artificial induction of tfoX does greatly increase competence and transformation frequencies the representative images still display a slight variation in the [P<sub>comEA</sub>]-dsRED expression, albeit diminished. It is possible that overexpression of *tfoX* would bypass the required threshold for underlying amino acid metabolism. It is possible that V. cholerae could benefit from constant surveillance for environmental DNA, as it experiences a range of environments. However, it would be energetically costly and ultimately inefficient for the entire population to acquire DNA. This consideration implies a need for spatiotemporal regulation provided by asymmetric cell division and stochastic metabolic noise. As we find an involvement of amino acid metabolism, this could add a level of regulation and result in simple fate determination.

Altogether our findings suggest amino acid metabolism could prepare cells for DNA uptake. This assumption is dependent on varied metabolic strategies within a population<sup>238</sup>. These considerations would align with a bet-hedging strategy where only a fraction of the population actually samples the available DNA, any adverse effects would be outcompeted, while potentially beneficial mutations provide improved fitness<sup>239</sup>. Amino acid metabolism could maintain stochastic signaling pathways allowing for cells to overcome this threshold. Isogenic populations consistently feature phenotypic variations, even in homogenous environments<sup>38</sup>. This is generally a result of propagated molecular noise (transcriptional variance), transcriptional feedback, and asymmetric partitioning, all of which produce metabolic heterogeneity<sup>38,39,44</sup>. Furthermore, essential genes are often under strict control whereas metabolic genes exhibit greater heterogeneity in expression<sup>45</sup>, allowing for increased variation within metabolic activity<sup>38</sup>. We therefore, suspect amino acid metabolism could be the determinant for which bacteria become competent and undergo successful DNA uptake and recombination. Our results hint towards there being a subpopulation that will attempt DNA uptake and integration regardless of nutritional availability in the presence of donor DNA. Our results suggest amino acid metabolism stabilizes the progression of natural transformation. Successful DNA integration is dependent on overcoming a competence threshold. In strains with defective amino acid metabolism, transformation was still partially detected which could be aided by the visible cell-to-cell variation. Intrinsic noise within amino acid metabolism could explain this variation, resulting in a fraction of cells that breach the threshold, as they are predisposed, achieving successful DNA uptake and integration.

Of course, as always: Further experiments are required.

## 8 Conclusion

Bacteria are complex systems that integrate feedback from various components. Eventually, the sum of the inputs will reach a threshold and a different process will be implemented. Signal feedback and intercepting pathways make up the regulatory network of bacteria, and the adaptive processes of bacteria tend to overlap. Further, regulatory cascades and proteins often have pleiotropic effects. By connecting pathways through positive and negative feedback, shared regulators can coordinate and initiate an appropriate response to the immediate environment. Natural transformation is an excellent example of this as the machinery is dependent on the interplay of several regulatory pathways, such as quorum sensing, chitin-dependent competence induction, and carbon catabolite repression<sup>240</sup>. While this can be efficient enable fast change, it also maintains a metabolic budget.

Dynamic transporters present in the membrane, such as MgtA, interact with its lipid environment in a flexible and adaptive manner. Understanding how the membrane components interact and modulate each other has implications for drug development, not only by identifying novel drug targets but also inhibiting core complexes. The bacterial membrane is the foundation of survival and is a major barrier to overcome. While there are several ways for bacteria to circumvent drug therapies, this can be bypassed by a proper understanding of drug-to-target dynamics. By modeling how the bacterial population will interact with the drug, it is possible to avoid selection pressure that promote resistance. Due to the intrinsic noise within a population, implementing more robust parameters such as binding kinetics could further improve dosing and minimize the amount of failed clinical trials.

While natural transformation is not as efficient as mobile genetic elements or conjugation in terms of spreading resistance, it does allow for the inheritance of both genetic resistance and nongenetic tolerance. This potential phenomenon makes natural transformation a contender that needs to be dealt with. Due to the reliance on amino acid metabolism within bacteria, it has been suggested that drugs targeting metabolic pathways would promote the killing of antibiotic-resistant bacteria. While it has not been shown that natural transformation can occur within the small intestine, it is hypothesized, as there is overlap in gene expression involved in DNA uptake. Targeting metabolic pathways such as amino acid synthesis could also repress transformation as an added benefit. Proper knowledge of bacterial machinery is the foundation of novel drug discovery and proper treatment strategies, and aids in understanding the adaptive evolutionary mechanisms of bacteria.

## 9 Outlook

Further investigation is needed to address the impact of amino acid metabolism on natural transformation. Amino acid metabolism is connected to the central metabolism, and has a multitude of redundancies. However, there are some flanking branches that could allow for the production of some addiational auxotrophs. While there is little overall growth on chitin, it is difficult to disentangle dormant bacteria as a result of metabolic inactivity and a true effect. It would therefore be interesting to investigate the transcriptome by implementing RNAseq on the wild-type strain, and potentially one of the mutants, either  $\Delta metE$  or  $\Delta asnB$ . It would also be possible to perform a transposon insertion sequencing on one of the mutants to investigate how other pathways compensate. Additionally, it would be interesting to quantify internal levels of amino acids by comparing an enriched media with a minimal media in the presence of chitin, using mass spectroscopy. Further, it could be beneficial to investigate whether transformation within *B. subtillus* is also dependent on amino acid metabolism. As this organism is better characterized than *V. cholerae*, a similar dependence could help guide the direction of the study.

Localization of the natural transformation machinery has gained some attention in recent years, however anchoring, functionality, and the role of the membrane are yet to be defined. The individual components of the natural transformation machinery complex have been suggested to follow a "diffusion and capture" model. It would be interesting to test this hypothesis. In the natural transformation study, we generate a *pilW* knockout mutant, without which transformation drops dramatically. This protein has homology with the *N. gonorrhoeae pilW*, which functions in both pilus formation and DNA uptake. Additionally stabilizing *pilQ* in the membrane. An additional gene *pilF* is suggested to be a pilotine that can move between the inner and outer membrane. There is a greater role for membrane dynamics in terms of DNA uptake which deserves a closer look. Additionally, the organism also defines its environment through the combination of the type VI secretion system and the DNA uptake pilus can function in kin recognition <sup>241</sup>. Are the two machineries located in proximity of eachother so that once a foreign neighbor is killed the DNA can be taken up more readily? There are also indications of the machinery being primed or semiassembled in the membrane, however, what is the actual triggering event for assembly? Is DNA sensed, somehow? V. cholerae is rather promiscuous when it comes to DNA uptake as it does not require specific sequences, and only minor homology is required for integration. Is there a characteristic of DNA that is recognized?

It would further be interesting to characterize the observation that *V. cholerae* demonstrated tolerance after incubation on chitin, both in regards to UV light and low antibiotic concentrations. While this was a great source of frustration, it was also intriguing that this tolerance to low-level antibiotics in some cases resulted in

permanent resistance to high levels of antibiotics. While the low level of antibiotics was enough to kill the wild-type bacteria when passaged in the absence of chitin, the same concentration was insufficient for killing after bacteria has been incubated in the presence of chitin. Based on my experience, I would expect *V.cholerae* to exhibit an increased tolerance to several stress factors after being incubated on chitin. Especially, as my preliminary experiments investigating "chitin-dependent" tolerance, demonstrated more that a log higher survival in CFUs, compared to the LB cultured control, upon UV-radiation. While the implications for a chitin-induced state of tolerance is unclear it merits investigation, and I hypothesize that it will apply to survival in low pH, which could have implications for acid tolerance as the pathogen can be associated with chitin upon ingestion.

## 10 References

- 1 Almagro-Moreno, S., Pruss, K. & Taylor, R. K. Intestinal Colonization Dynamics of Vibrio cholerae. *PLoS Pathog* **11**, e1004787 (2015). https://doi.org:10.1371/journal.ppat.1004787
- 2 Abuaita, B. H. & Withey, J. H. Bicarbonate Induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. *Infect Immun* **77**, 4111-4120 (2009). <u>https://doi.org:10.1128/IAI.00409-09</u>
- Bharati, K. & Ganguly, N. K. Cholera toxin: a paradigm of a multifunctional protein. *Indian J Med Res* **133**, 179-187 (2011).
- 4 Nielsen, A. T. *et al.* RpoS controls the Vibrio cholerae mucosal escape response. *PLoS Pathog* **2**, e109 (2006). <u>https://doi.org:10.1371/journal.ppat.0020109</u>
- 5 Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *Lancet* **399**, 629-655 (2022). https://doi.org:10.1016/S0140-6736(21)02724-0
- 6 Lidstrom, M. E. & Konopka, M. C. The role of physiological heterogeneity in microbial population behavior. *Nat Chem Biol* **6**, 705-712 (2010). <u>https://doi.org:10.1038/nchembio.436</u>
- 7 Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. *Nat Rev Microbiol* **13**, 497-508 (2015). <u>https://doi.org:10.1038/nrmicro3491</u>
- 8 Jung, K., Fabiani, F., Hoyer, E. & Lassak, J. Bacterial transmembrane signalling systems and their engineering for biosensing. *Open Biol* 8 (2018). <u>https://doi.org:10.1098/rsob.180023</u>
- 9 Giles, D. K., Hankins, J. V., Guan, Z. & Trent, M. S. Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments. *Mol Microbiol* **79**, 716-728 (2011). <u>https://doi.org:10.1111/j.1365-2958.2010.07476.x</u>
- 10 Winter, M., Buckling, A., Harms, K., Johnsen, P. J. & Vos, M. Antimicrobial resistance acquisition via natural transformation: context is everything. *Curr Opin Microbiol* **64**, 133-138 (2021). <u>https://doi.org:10.1016/j.mib.2021.09.009</u>
- 11 Sinha-Ray, S., Alam, M. T., Bag, S., Morris, J. G., Jr. & Ali, A. Conversion of a recA-Mediated Non-toxigenic Vibrio cholerae O1 Strain to a Toxigenic Strain Using Chitin-Induced Transformation. *Front Microbiol* 10, 2562 (2019). <u>https://doi.org:10.3389/fmicb.2019.02562</u>
- 12 Carey, A. B., Ashenden, A. & Köper, I. Model architectures for bacterial membranes. Biophysical Reviews 14, 111-143 (2022). <u>https://doi.org:10.1007/s12551-021-00913-7</u>
- 13 Schönknecht, G. *et al.* Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. *Science* **339**, 1207-1210 (2013). <u>https://doi.org:10.1126/science.1231707</u>
- 14 Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. *Nat Rev Microbiol* **3**, 679-687 (2005). <u>https://doi.org:10.1038/nrmicro1204</u>
- 15 Lercher, M. J. & Pál, C. Integration of Horizontally Transferred Genes into Regulatory Interaction Networks Takes Many Million Years. *Molecular Biology and Evolution* **25**, 559-567 (2007). <u>https://doi.org:10.1093/molbev/msm283</u>
- 16 Woods, L. C. *et al.* Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. *Proc Natl Acad Sci U S A* **117**, 26868-26875 (2020). <u>https://doi.org:10.1073/pnas.2005331117</u>
- 17 Heidelberg, J. F. *et al.* DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. *Nature* **406**, 477-483 (2000). <u>https://doi.org:10.1038/35020000</u>

- 18 Wagner, A. Distributed robustness versus redundancy as causes of mutational robustness. *Bioessays* 27, 176-188 (2005). <u>https://doi.org:10.1002/bies.20170</u>
- 19 Wakeley, J. The limits of theoretical population genetics. *Genetics* **169**, 1-7 (2005). <u>https://doi.org:10.1093/genetics/169.1.1</u>
- 20 Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. *Genetics* **148**, 1667-1686 (1998). https://doi.org:10.1093/genetics/148.4.1667
- 21 Tröbner, W. & Piechocki, R. Selection against hypermutability in Escherichia coli during long term evolution. *Mol Gen Genet* **198**, 177-178 (1984). https://doi.org:10.1007/bf00328720
- 22 Litvak, Y. A.-O. & Bäumler, A. A.-O. The founder hypothesis: A basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens.
- 23 Kimura, M. Evolutionary rate at the molecular level. *Nature* **217**, 624-626 (1968). <u>https://doi.org:10.1038/217624a0</u>
- 24 Gasperotti, A., Brameyer, S., Fabiani, F. & Jung, K. Phenotypic heterogeneity of microbial populations under nutrient limitation. *Curr Opin Biotechnol* **62**, 160-167 (2020). <u>https://doi.org:10.1016/j.copbio.2019.09.016</u>
- 25 Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gramnegative bacteria. *Nature Reviews Microbiology* 14, 576-588 (2016). <u>https://doi.org:10.1038/nrmicro.2016.89</u>
- 26 Epstein, P. R. Cholera and the environment. *Lancet* **339**, 1167-1168 (1992).
- Bridges, A. A. & Bassler, B. L. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. *PLoS Biol* 17, e3000429 (2019). https://doi.org:10.1371/journal.pbio.3000429
- 28 Gorelik, O. *et al.* Vibrio cholerae autoinducer-1 enhances the virulence of enteropathogenic Escherichia coli. *Scientific Reports* **9**, 4122 (2019). https://doi.org:10.1038/s41598-019-40859-1
- 29 Suckow, G., Seitz, P. & Blokesch, M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. *J Bacteriol* **193**, 4914-4924 (2011). <u>https://doi.org:10.1128/jb.05396-11</u>
- 30 Taniguchi, Y. *et al.* Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells. *Science* **329**, 533-538 (2010). <u>https://doi.org:10.1126/science.1188308</u>
- 31 Acar, M., Mettetal, J. T. & van Oudenaarden, A. Stochastic switching as a survival strategy in fluctuating environments. *Nature Genetics* **40**, 471-475 (2008). <u>https://doi.org:10.1038/ng.110</u>
- 32 Xie, X. S., Cai, L. & Friedman, N. Stochastic protein expression in individual cells at the single molecule level. *Nature* **440**, 358-362 (2006). <u>https://doi.org:10.1038/nature04599</u>
- Baudrimont, A., Jaquet, V., Wallerich, S., Voegeli, S. & Becskei, A. Contribution of RNA Degradation to Intrinsic and Extrinsic Noise in Gene Expression. *Cell Rep* 26, 3752-3761.e3755 (2019). <u>https://doi.org:10.1016/j.celrep.2019.03.001</u>
- 34 Jones, D. & Elf, J. Bursting onto the scene? Exploring stochastic mRNA production in bacteria. *Curr Opin Microbiol* **45**, 124-130 (2018). https://doi.org:10.1016/j.mib.2018.04.001
- 35 Chong, S., Chen, C., Ge, H. & Xie, X. S. Mechanism of transcriptional bursting in bacteria. *Cell* **158**, 314-326 (2014). <u>https://doi.org:10.1016/j.cell.2014.05.038</u>

- 36 Wolf, D. M., Vazirani, V. V. & Arkin, A. P. Diversity in times of adversity: probabilistic strategies in microbial survival games. *J Theor Biol* **234**, 227-253 (2005). https://doi.org:10.1016/j.jtbi.2004.11.020
- 37 Kussell, E. & Leibler, S. Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments. *Science* **309**, 2075-2078 (2005). https://doi.org:10.1126/science.1114383
- 38 Evans, T. D. & Zhang, F. Bacterial metabolic heterogeneity: origins and applications in engineering and infectious disease. *Curr Opin Biotechnol* **64**, 183-189 (2020). https://doi.org:10.1016/j.copbio.2020.04.007
- 39 Şimşek, E. & Kim, M. The emergence of metabolic heterogeneity and diverse growth responses in isogenic bacterial cells. *The ISME Journal* 12, 1199-1209 (2018). <u>https://doi.org:10.1038/s41396-017-0036-2</u>
- 40 Spratt Madison, R. & Lane, K. Navigating Environmental Transitions: the Role of Phenotypic Variation in Bacterial Responses. *mBio* **13**, e02212-02222 (2022). https://doi.org:10.1128/mbio.02212-22
- 41 Solopova, A. *et al.* Bet-hedging during bacterial diauxic shift. *Proc Natl Acad Sci U S A* **111**, 7427-7432 (2014). <u>https://doi.org:10.1073/pnas.1320063111</u>
- 42 Mustafi, N., Grünberger, A., Kohlheyer, D., Bott, M. & Frunzke, J. The development and application of a single-cell biosensor for the detection of 1-methionine and branched-chain amino acids. *Metab Eng* **14**, 449-457 (2012). <u>https://doi.org:10.1016/j.ymben.2012.02.002</u>
- 43 Hernandez-Valdes, J. A., van Gestel, J. & Kuipers, O. P. A riboswitch gives rise to multi-generational phenotypic heterogeneity in an auxotrophic bacterium. *Nature Communications* **11**, 1203 (2020). <u>https://doi.org:10.1038/s41467-020-15017-1</u>
- 44 Soltani, M., Vargas-Garcia, C. A., Antunes, D. & Singh, A. Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes. *PLoS Comput Biol* **12**, e1004972 (2016). <u>https://doi.org:10.1371/journal.pcbi.1004972</u>
- 45 Silander, O. K. *et al.* A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli. *PLoS Genet* **8**, e1002443 (2012). <u>https://doi.org:10.1371/journal.pgen.1002443</u>
- 46 Magasanik, B. Catabolite repression. *Cold Spring Harb Symp Quant Biol* **26**, 249-256 (1961). <u>https://doi.org:10.1101/sqb.1961.026.01.031</u>
- 47 Boulineau, S. *et al.* Single-cell dynamics reveals sustained growth during diauxic shifts. *PLoS One* **8**, e61686 (2013). <u>https://doi.org:10.1371/journal.pone.0061686</u>
- 48 Morawska, L. P., Hernandez-Valdes, J. A. & Kuipers, O. P. Diversity of bet-hedging strategies in microbial communities-Recent cases and insights. *WIREs Mech Dis* 14, e1544 (2022). <u>https://doi.org:10.1002/wsbm.1544</u>
- 49 Kotte, O., Volkmer, B., Radzikowski, J. L. & Heinemann, M. Phenotypic bistability in Escherichia coli's central carbon metabolism. *Mol Syst Biol* **10**, 736 (2014). <u>https://doi.org:10.15252/msb.20135022</u>
- 50 Merrell, D. S. & Camilli, A. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. *Mol Microbiol* **34**, 836-849 (1999). https://doi.org:10.1046/j.1365-2958.1999.01650.x
- 51 Angelichio, M. J., Merrell, D. S. & Camilli, A. Spatiotemporal analysis of acid adaptation-mediated Vibrio cholerae hyperinfectivity. *Infect Immun* **72**, 2405-2407 (2004). <u>https://doi.org:10.1128/iai.72.4.2405-2407.2004</u>
- 52 Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. *Science* **272**, 1910-1914 (1996). <u>https://doi.org:10.1126/science.272.5270.1910</u>

- 53 Pál, C., Papp B Fau Lercher, M. J. & Lercher, M. J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer.
- 54 Sun, D. Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria. *Front Microbiol* **9**, 2154 (2018). <u>https://doi.org:10.3389/fmicb.2018.02154</u>
- 55 Moradigaravand, D. & Engelstädter, J. The Evolution of Natural Competence: Disentangling Costs and Benefits of Sex in Bacteria. *Am Nat* **182**, E112-E126 (2013). <u>https://doi.org:10.1086/671909</u>
- 56 Redfield, R. J., Schrag, M. R. & Dean, A. M. The evolution of bacterial transformation: sex with poor relations. *Genetics* **146**, 27-38 (1997). https://doi.org:10.1093/genetics/146.1.27
- 57 Goodman, S. D. & Scocca, J. J. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. *Proc Natl Acad Sci U S A* **85**, 6982-6986 (1988). https://doi.org:10.1073/pnas.85.18.6982
- 58 Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C. Y. & Schoolnik, G. K. Chitin induces natural competence in Vibrio cholerae. *Science* **310**, 1824-1827 (2005). <u>https://doi.org:10.1126/science.1120096</u>
- 59 Johnsen, P. J., Dubnau, D. & Levin, B. R. Episodic selection and the maintenance of competence and natural transformation in Bacillus subtilis. *Genetics* 181, 1521-1533 (2009). <u>https://doi.org:10.1534/genetics.108.099523</u>
- 60 Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. *Nat Rev Microbiol* **12**, 181-196 (2014). <u>https://doi.org:10.1038/nrmicro3199</u>
- 61 Blokesch, M. Natural competence for transformation. *Current Biology* **26**, R1126-R1130 (2016). <u>https://doi.org/10.1016/j.cub.2016.08.058</u>
- 62 Ali, M. *et al.* The global burden of cholera. *Bull World Health Organ* **90**, 209-218a (2012). <u>https://doi.org:10.2471/blt.11.093427</u>
- 63 Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in endemic countries. *PLoS Negl Trop Dis* **9**, e0003832 (2015). <u>https://doi.org:10.1371/journal.pntd.0003832</u>
- 64 Ganesan, D., Gupta, S. S. & Legros, D. Cholera surveillance and estimation of burden of cholera. *Vaccine* **38 Suppl 1**, A13-a17 (2020). https://doi.org:10.1016/j.vaccine.2019.07.036
- 65 Fuesslin, V. *et al.* Prediction of Antibiotic Susceptibility Profiles of Vibrio cholerae Isolates From Whole Genome Illumina and Nanopore Sequencing Data: CholerAegon. *Front Microbiol* **13**, 909692 (2022). <u>https://doi.org:10.3389/fmicb.2022.909692</u>
- 66 De, R. Mobile Genetic Elements of Vibrio cholerae and the Evolution of Its Antimicrobial Resistance. *Frontiers in Tropical Diseases* (2021). https://doi.org:10.3389/fitd.2021.691604
- 67 Teschler, J. K. *et al.* Living in the matrix: assembly and control of Vibrio cholerae biofilms. *Nat Rev Microbiol* **13**, 255-268 (2015). <u>https://doi.org:10.1038/nrmicro3433</u>
- 68 Zhu, J. & Mekalanos, J. J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. *Dev Cell* **5**, 647-656 (2003).
- 69 Freter, R., O'Brien, P. C. & Macsai, M. S. Effect of chemotaxis on the interaction of cholera vibrios with intestinal mucosa. *Am J Clin Nutr* **32**, 128-132 (1979).
- 70 Butler, S. M. & Camilli, A. Going against the grain: chemotaxis and infection in Vibrio cholerae. *Nat Rev Microbiol* **3**, 611-620 (2005). <u>https://doi.org:10.1038/nrmicro1207</u>

- Kamp, H. D., Patimalla-Dipali, B., Lazinski, D. W., Wallace-Gadsden, F. & Camilli,
  A. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle.
  *PLoS Pathog* 9, e1003800 (2013). <u>https://doi.org:10.1371/journal.ppat.1003800</u>
- 72 Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C.-Y. & Schoolnik, G. K. Chitin Induces Natural Competence in Vibrio cholerae. *Science* **310**, 1824-1827 (2005). <u>https://doi.org:10.1126/science.1120096</u>
- Blokesch, M. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. *Environ Microbiol* 14, 1898-1912 (2012). <u>https://doi.org:10.1111/j.1462-2920.2011.02689.x</u>
- 74 Metzger, L. C. & Blokesch, M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae.
- 75 Blokesch, M. & Schoolnik, G. K. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. *J Bacteriol* **190**, 7232-7240 (2008). https://doi.org:10.1128/jb.00959-08
- 76 Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. *Proc Natl Acad Sci U S A* **110**, 2623-2628 (2013). <u>https://doi.org:10.1073/pnas.1222783110</u>
- 77 Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. *Nat Rev Microbiol* **12**, 137-148 (2014). <u>https://doi.org:10.1038/nrmicro3185</u>
- 78 Borgeaud, S., Metzger, L. C., Scrignari, T. & Blokesch, M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer.
- 79 Seitz, P. & Blokesch, M. DNA-uptake machinery of naturally competent Vibrio cholerae. *Proc Natl Acad Sci U S A* **110**, 17987-17992 (2013). https://doi.org:10.1073/pnas.1315647110
- 80 Matthey, N. & Blokesch, M. The DNA-Uptake Process of Naturally Competent Vibrio cholerae. *Trends Microbiol* **24**, 98-110 (2016). <u>https://doi.org:10.1016/j.tim.2015.10.008</u>
- 81 Seitz, P. *et al.* ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells.
- Balia, A. B. & Dalia, T. N. Spatiotemporal Analysis of DNA Integration during Natural Transformation Reveals a Mode of Nongenetic Inheritance in Bacteria. *Cell* 179, 1499-1511 e1410 (2019). <u>https://doi.org:10.1016/j.cell.2019.11.021</u>
- 83 Dalia, A. B., Seed, K. D., Calderwood, S. B. & Camilli, A. A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. *Proc Natl Acad Sci U S A* **112**, 10485-10490 (2015). <u>https://doi.org:10.1073/pnas.1509097112</u>
- 84 Huq, A. *et al.* Simple sari cloth filtration of water is sustainable and continues to protect villagers from cholera in Matlab, Bangladesh. *mBio* **1** (2010). <u>https://doi.org:10.1128/mBio.00034-10</u>
- 85 Santacroce, L., Del Prete, R., Charitos, I. A. & Bottalico, L. Mycobacterium leprae: A historical study on the origins of leprosy and its social stigma. *Infez Med* 29, 623-632 (2021). <u>https://doi.org:10.53854/liim-2904-18</u>
- 86 Gould, K. Antibiotics: from prehistory to the present day. *Journal of Antimicrobial Chemotherapy* **71**, 572-575 (2016). <u>https://doi.org:10.1093/jac/dkv484</u>
- 87 Chain, E. *et al.* Penicillin as a chemotherapeutic agent. 1940. *Clin Orthop Relat Res*, 3-7 (1993).
- 88 Ligon, B. L. Sir Howard Walter Florey--the force behind the development of penicillin. Semin Pediatr Infect Dis 15, 109-114 (2004). <u>https://doi.org:10.1053/j.spid.2004.04.001</u>
- 89 Wainwright, M. Moulds in Folk Medicine. *Folklore* **100**, 162-166 (1989).

- 90 Nelson, M. L., Dinardo, A., Hochberg, J. & Armelagos, G. J. Brief communication: Mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350-550 CE. *Am. J. Phys. Anthropol* **143**, 151-154 (2010). https://doi.org:10.1002/ajpa.21340
- 91 Falkinham, J. O., 3rd *et al.* Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan's red soils. *Appl Environ Microbiol* **75**, 2735-2741 (2009). https://doi.org:10.1128/aem.00104-09
- 92 Cook, M., Molto, E. & Anderson, C. Fluorochrome labelling in Roman period skeletons from Dakhleh Oasis, Egypt. *Am J Phys Anthropol* **80**, 137-143 (1989). https://doi.org:10.1002/ajpa.1330800202
- Bassett, E. J., Keith, M. S., Armelagos, G. J., Martin, D. L. & Villanueva, A. R. Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350). *Science* 209, 1532-1534 (1980). <u>https://doi.org:10.1126/science.7001623</u>
- 94 Hummert, J. R. & Van Gerven, D. P. Tetracycline-labeled human bone from a medieval population in Nubia's Batn el Hajar (550-1450 A.D.). *Hum Biol* **54**, 355-363 (1982).
- 95 Grauer, A., Armelagos, GJ. *Skeletal biology of Hesban: a biocultural interpretation.*, (Berrin Springs, 1998).
- 96 Johnson, M. & Kelley, B. L. *Tots Goes to Gbarnga: The Life of Mattiedna Johnson, R.N., M.T.M.A. Div. : a Biography.* (Mattiedna Johnson Family Company, 1988).
- 97 10.2 Mechanisms of Antibacterial Drugs.
- 98 *Mode of Actions and Targets for Antibacterial Drugs.* (Creative Biolabs).
- 99 Shelby Watford, S. W. *Bacterial DNA Mutations*. (StatPearls, 2022).
- 100 Fleming, A. *Chemotherapy: Yesterday, To-Day, and To-Morrow.*, 39 (Cambridge University Press, 1946).
- 101 WHO. *Global Action Plan on Antimicrobial Resistance*. (WHO Document Production Services, 2015).
- 102 CDC. 2022 SPECIAL REPORT: COVID-19 U.S. Impact on Antimicrobial Resistance. (Department of Health and Human Services, CDC, 2022).
- 103 Towse, A. *et al.* Time for a change in how new antibiotics are reimbursed: Development of an insurance framework for funding new antibiotics based on a policy of risk mitigation. *Health Policy* **121**, 1025-1030 (2017). https://doi.org:10.1016/j.healthpol.2017.07.011
- 104 Plackett, B. Why big pharma has abandoned antibiotics. *Nature (London)* **586**, S50-S52 (2020). <u>https://doi.org:10.1038/d41586-020-02884-3</u>
- Aslam, B. *et al.* Antibiotic resistance: a rundown of a global crisis. *Infect Drug Resist* 11, 1645-1658 (2018). <u>https://doi.org:10.2147/IDR.S173867</u>
- Bianco, A., Papadopoli, R., Mascaro, V., Pileggi, C. & Pavia, M. Antibiotic prescriptions to adults with acute respiratory tract infections by Italian general practitioners. *Infect Drug Resist* 11, 2199-2205 (2018). <a href="https://doi.org:10.2147/IDR.S170349">https://doi.org:10.2147/IDR.S170349</a>
- 108 Dekker, A. R., Verheij, T. J. & van der Velden, A. W. Inappropriate antibiotic prescription for respiratory tract indications: most prominent in adult patients. *Fam Pract* **32**, 401-407 (2015). <u>https://doi.org:10.1093/fampra/cmv019</u>

- 109 Sulis, G. *et al.* Antibiotic overuse in the primary health care setting: a secondary data analysis of standardised patient studies from India, China and Kenya. *BMJ Glob Health* **5** (2020). <u>https://doi.org:10.1136/bmjgh-2020-003393</u>
- 110 Boeree, M. J. *et al.* A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. *Am J Respir Crit Care Med* **191**, 1058-1065 (2015). https://doi.org:10.1164/rccm.201407-1264OC
- 111 Roord, J. J., Wolf, B. H., Gossens, M. M. & Kimpen, J. L. Prospective open randomized study comparing efficacies and safeties of a 3-day course of azithromycin and a 10-day course of erythromycin in children with community-acquired acute lower respiratory tract infections. *Antimicrob Agents Chemother* 40, 2765-2768 (1996). <u>https://doi.org:10.1128/AAC.40.12.2765</u>
- 112 Van Deun, A., Salim, M. A., Das, A. P., Bastian, I. & Portaels, F. Results of a standardised regimen for multidrug-resistant tuberculosis in Bangladesh. *Int J Tuberc Lung Dis* **8**, 560-567 (2004).
- 113 Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. *Nat Rev Microbiol* **7**, 578-588 (2009). https://doi.org:10.1038/nrmicro2174
- 114 Sharma, D., Misba, L. & Khan, A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. *Antimicrob Resist Infect Control* 8, 76 (2019). <u>https://doi.org:10.1186/s13756-019-0533-3</u>
- 115 Kamaruzzaman, N. F., Kendall, S. & Good, L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. *Br J Pharmacol* **174**, 2225-2236 (2017). <u>https://doi.org:10.1111/bph.13664</u>
- Munita, J. M. & Arias, C. A. Mechanisms of Antibiotic Resistance. *Microbiol Spectr* 4 (2016). <u>https://doi.org:10.1128/microbiolspec.VMBF-0016-2015</u>
- 117 Tenaillon, O., Toupance, B., Le Nagard, H., Taddei, F. & Godelle, B. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. *Genetics* **152**, 485-493 (1999). <u>https://doi.org:10.1093/genetics/152.2.485</u>
- 118 Denamur, E. & Matic, I. Evolution of mutation rates in bacteria. *Mol Microbiol* **60**, 820-827 (2006). <u>https://doi.org:10.1111/j.1365-2958.2006.05150.x</u>
- 119 Bridier-Nahmias, A. *et al.* Escherichia coli Genomic Diversity within Extraintestinal Acute Infections Argues for Adaptive Evolution at Play. *mSphere* **6** (2021). <u>https://doi.org:10.1128/mSphere.01176-20</u>
- 120 Swings, T. *et al.* Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli. *Elife* **6** (2017). <u>https://doi.org:10.7554/eLife.22939</u>
- 121 Ochiai, K., Yamanaka, T., Kimura, K. & Sawada, O. Studies on inheritance of drug resistance between Shigella strains and Escherichia coli strains. *Nippon Iji Shimpo* **1861**, 34-46 (1959).
- 122 Akiba, T., Koyama, K., Ishiki, Y., Kimura, S. & Fukushima, T. On the mechanism of the development of multiple drug-resistant clones of Shigella. *Japanese journal of microbiology* **4**, 219-227 (1960).
- 123 Lambrecht, E. *et al.* Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). *Int J Food Microbiol* **311**, 108357 (2019). https://doi.org:10.1016/j.ijfoodmicro.2019.108357
- 124 Tawfick, M. M., Elshamy, A. A., Mohamed, K. T. & El Menofy, N. G. Gut Commensal Escherichia coli, a High-Risk Reservoir of Transferable Plasmid-Mediated Antimicrobial Resistance Traits. *Infect Drug Resist* **15**, 1077-1091 (2022). <u>https://doi.org:10.2147/idr.S354884</u>

- 125 Liu, G., Thomsen, L. E. & Olsen, J. E. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. *J Antimicrob Chemother* 77, 556-567 (2022). <u>https://doi.org:10.1093/jac/dkab450</u>
- 126 Prudhomme, M., Attaiech, L., Sanchez, G., Martin, B. & Claverys, J. P. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. *Science* **313**, 89-92 (2006). <u>https://doi.org:10.1126/science.1127912</u>
- 127 Dorer, M. S., Fero, J. & Salama, N. R. DNA damage triggers genetic exchange in Helicobacter pylori. *PLoS Pathog* **6**, e1001026 (2010). https://doi.org:10.1371/journal.ppat.1001026
- 128 Vogan, A. A. & Higgs, P. G. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. *Biol Direct* **6**, 1 (2011). https://doi.org:10.1186/1745-6150-6-1
- 129 Grogan, S. & Preuss, C. V. in *StatPearls* (2022).
- 130 Udy, A. A., Roberts, J. A. & Lipman, J. Antibiotic *Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill.* (Singapore: Springer Singapore Pte. Limited, 2017).
- 131 Reichel, A. & Lienau, P. Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety. *Handb Exp Pharmacol* 232, 235-260 (2016). https://doi.org:10.1007/164\_2015\_26
- 132 Talevi, A. & Bellera, C. L. in *The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics* (ed Alan Talevi) 718-725 (Springer International Publishing, 2022).
- 133 Zeitlinger, M. A. *et al.* Protein binding: do we ever learn? *Antimicrob Agents Chemother* **55**, 3067-3074 (2011). <u>https://doi.org:10.1128/aac.01433-10</u>
- Beer, J., Wagner, C. C. & Zeitlinger, M. Protein binding of antimicrobials: methods for quantification and for investigation of its impact on bacterial killing. *Aaps j* 11, 1-12 (2009). <a href="https://doi.org:10.1208/s12248-008-9072-1">https://doi.org:10.1208/s12248-008-9072-1</a>
- 135 Alagga Abdulrahman, G. V. *Drug Absorption*. (StatPearls Publishing, Treasure Island (FL), 2022).
- 136 Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics.
- 137 Abel Zur Wiesch, P. *et al.* Classic reaction kinetics can explain complex patterns of antibiotic action. *Sci Transl Med* **7**, 287ra273 (2015). https://doi.org:10.1126/scitranslmed.aaa8760
- 138 Clarelli, F. *et al.* Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. *PLoS Comput Biol* **16**, e1008106 (2020). <u>https://doi.org:10.1371/journal.pcbi.1008106</u>
- 139 Gullberg, E. *et al.* Selection of resistant bacteria at very low antibiotic concentrations. *PLoS Pathog* 7, e1002158 (2011). <u>https://doi.org:10.1371/journal.ppat.1002158</u>
- 140 Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics. *Nat Rev Microbiol* **12**, 465-478 (2014). https://doi.org:10.1038/nrmicro3270
- 141 P Connors, K. Optimizing Antibiotic Pharmacodynamics for Clinical Practice. *Pharmaceutica analytica acta* **4** (2013). <u>https://doi.org:10.4172/2153-2435.1000214</u>
- 142 Monogue, M. L., Kuti, J. L. & Nicolau, D. P. Optimizing Antibiotic Dosing Strategies for the Treatment of Gram-negative Infections in the Era of Resistance. *Expert Rev Clin Pharmacol* 9, 459-476 (2016). <u>https://doi.org:10.1586/17512433.2016.1133286</u>
- 143 Benedetto Tiz, D., Kikelj, D. & Zidar, N. Overcoming problems of poor drug penetration into bacteria: challenges and strategies for medicinal chemists. *Expert*

*Opin Drug Discov* **13**, 497-507 (2018). <u>https://doi.org:10.1080/17460441.2018.1455660</u>

- 144 Paulowski, L. *et al.* The Beauty of Asymmetric Membranes: Reconstitution of the Outer Membrane of Gram-Negative Bacteria. *Front Cell Dev Biol* **8**, 586 (2020). https://doi.org:10.3389/fcell.2020.00586
- 145 Raetz, C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. *Microbiol Rev* **42**, 614-659 (1978). https://doi.org:10.1128/mr.42.3.614-659.1978
- 146 Miller, S. I. & Salama, N. R. The gram-negative bacterial periplasm: Size matters. *PLoS Biol* **16**, e2004935 (2018). <u>https://doi.org:10.1371/journal.pbio.2004935</u>
- 147 Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. *Cold Spring Harb Perspect Biol* **2**, a000414 (2010). <u>https://doi.org:10.1101/cshperspect.a000414</u>
- 148 Engelman, D. M. Membranes are more mosaic than fluid. *Nature* **438**, 578-580 (2005). <u>https://doi.org:10.1038/nature04394</u>
- Jeucken, A., Helms, J. B. & Brouwers, J. F. Cardiolipin synthases of Escherichia coli have phospholipid class specific phospholipase D activity dependent on endogenous and foreign phospholipids. *Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids* 1863, 1345-1353 (2018). https://doi.org/10.1016/j.bbalip.2018.06.017
- Murzyn, K., Róg, T. & Pasenkiewicz-Gierula, M. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. *Biophys J* 88, 1091-1103 (2005). <u>https://doi.org:10.1529/biophysj.104.048835</u>
- 151 van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. *Nature Reviews Molecular Cell Biology* **9**, 112-124 (2008). https://doi.org:10.1038/nrm2330
- 152 Guo, D. & Tropp, B. E. A second Escherichia coli protein with CL synthase activity. *Biochim Biophys Acta* **1483**, 263-274 (2000). <u>https://doi.org:10.1016/s1388-1981(99)00193-6</u>
- 153 Tan, B. K. *et al.* Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. *Proc Natl Acad Sci* USA **109**, 16504-16509 (2012). <u>https://doi.org:10.1073/pnas.1212797109</u>
- 154 Shivaji, S. & Prakash, J. S. How do bacteria sense and respond to low temperature? *Arch Microbiol* **192**, 85-95 (2010). <u>https://doi.org:10.1007/s00203-009-0539-y</u>
- 155 Romantsov, T. *et al.* Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. *Mol Microbiol* **64**, 1455-1465 (2007). https://doi.org:10.1111/j.1365-2958.2007.05727.x
- 156 Romantsov, T. *et al.* Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of Escherichia coli cells. *Molecular microbiology* **107**, 623-638 (2018). <u>https://doi.org:10.1111/mmi.13904</u>
- 157 Hiraoka, S., Matsuzaki, H. & Shibuya, I. Active increase in cardiolipin synthesis in the stationary growth phase and its physiological significance in Escherichia coli. *FEBS Lett* 336, 221-224 (1993). <u>https://doi.org:10.1016/0014-5793(93)80807-7</u>
- 158 Tunaitis, E. & Cronan, J. E. Characterization of the cardiolipin synthetase activity of Escherichia coli envelopes. Archives of Biochemistry and Biophysics 155, 420-427 (1973). <u>https://doi.org/10.1016/0003-9861(73)90132-X</u>
- 159 Romantsov, T., Battle Andrew, R., Hendel Jenifer, L., Martinac, B. & Wood Janet, M. Protein Localization in Escherichia coli Cells: Comparison of the Cytoplasmic Membrane Proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. *Journal of Bacteriology* 192, 912-924 (2010). <u>https://doi.org:10.1128/JB.00967-09</u>

- 160 Narita, S.-i. & Tokuda, H. Bacterial lipoproteins; biogenesis, sorting and quality control. *Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids* 1862, 1414-1423 (2017). <u>https://doi.org/10.1016/j.bbalip.2016.11.009</u>
- 161 Carbonnelle, E., Helaine, S., Prouvensier, L., Nassif, X. & Pelicic, V. Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. *Mol Microbiol* **55**, 54-64 (2005). https://doi.org:10.1111/j.1365-2958.2004.04364.x
- 162 Metzger, L. C. & Blokesch, M. Composition of the DNA-uptake complex of Vibrio cholerae. *Mob Genet Elements* **4**, e28142 (2014). <u>https://doi.org:10.4161/mge.28142</u>
- 163 Martin, N. R. *et al.* CrvA and CrvB form a curvature-inducing module sufficient to induce cell-shape complexity in Gram-negative bacteria. *Nat Microbiol* 6, 910-920 (2021). <u>https://doi.org:10.1038/s41564-021-00924-w</u>
- 164Bartlett, T. M. et al. A Periplasmic Polymer Curves Vibrio cholerae and Promotes<br/>Pathogenesis.Cell168,172-185.e115(2017).https://doi.org:10.1016/j.cell.2016.12.019172-185.e115172-185.e115172-185.e115(2017).
- 165 Maddock, J. R. & Shapiro, L. Polar Location of the Chemoreceptor Complex in the Escherichia coli Cell. *Science* **259**, 1717-1723 (1993). <u>https://doi.org:10.1126/science.8456299</u>
- 166 Laloux, G. & Jacobs-Wagner, C. How do bacteria localize proteins to the cell pole? J Cell Sci 127, 11-19 (2014). <u>https://doi.org:10.1242/jcs.138628</u>
- 167 Subramani, S., Perdreau-Dahl, H. & Morth, J. P. The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. *eLife* **5**, e11407 (2016). <u>https://doi.org:10.7554/eLife.11407</u>
- 168 Ishijima, S. *et al.* Magnesium uptake of Arabidopsis transporters, AtMRS2-10 and AtMRS2-11, expressed in Escherichia coli mutants: Complementation and growth inhibition by aluminum. *Biochimica et Biophysica Acta (BBA) Biomembranes* **1848**, 1376-1382 (2015). <u>https://doi.org/10.1016/j.bbamem.2015.03.005</u>
- 169 Groisman, E. A. *et al.* Bacterial Mg2+ homeostasis, transport, and virulence. *Annu Rev Genet* **47**, 625-646 (2013). <u>https://doi.org:10.1146/annurev-genet-051313-051025</u>
- Bourret, T. J., Liu, L., Shaw, J. A., Husain, M. & Vázquez-Torres, A. Magnesium homeostasis protects Salmonella against nitrooxidative stress. *Sci Rep* 7, 15083 (2017). <u>https://doi.org:10.1038/s41598-017-15445-y</u>
- 171 Zardecki, C. A.-O. *et al.* PDB-101: Educational resources supporting molecular explorations through biology and medicine.
- 172 Yildiz, F. H. & Schoolnik, G. K. Role of rpoS in stress survival and virulence of Vibrio cholerae. *J Bacteriol* **180**, 773-784 (1998). https://doi.org:10.1128/jb.180.4.773-784.1998
- Matthey, N., Drebes Dörr Natália, C. & Blokesch, M. Long-Read-Based Genome Sequences of Pandemic and Environmental Vibrio cholerae Strains. *Microbiology Resource Announcements* 7, e01574-01518 (2018). https://doi.org:10.1128/MRA.01574-18
- 174 Stutzmann, S. & Blokesch, M. Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes. *mSphere* 1 (2016). <u>https://doi.org:10.1128/mSphere.00098-16</u>
- 175 Jaskólska, M., Adams, D. W. & Blokesch, M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. *Nature* **604**, 323-329 (2022). https://doi.org:10.1038/s41586-022-04546-y
- 176 Espinosa, E. *et al.* 1-Arabinose Induces the Formation of Viable Nonproliferating Spheroplasts in Vibrio cholerae. *Applied and Environmental Microbiology* **87**, e02305-02320 (2021). <u>https://doi.org:10.1128/AEM.02305-20</u>

- 177 Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. *Nature Reviews Microbiology* **2**, 123-140 (2004). <u>https://doi.org:10.1038/nrmicro818</u>
- 178 Leimbach, A., Hacker, J. & Dobrindt, U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. *Curr Top Microbiol Immunol* 358, 3-32 (2013). <u>https://doi.org:10.1007/82\_2012\_303</u>
- 179 Hayes, F. TRANSPOSON-BASED STRATEGIES FOR MICROBIAL FUNCTIONAL GENOMICS AND PROTEOMICS. *Annu Rev Genet* **37**, 3-29 (2003). https://doi.org:10.1146/annurev.genet.37.110801.142807
- 180 Pray, L. Transposons: The jumping genes. *Nature Education* **1**, 204 (2008).
- 181 van Opijnen, T. & Camilli, A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. *Nat Rev Microbiol* 11, 435-442 (2013). https://doi.org:10.1038/nrmicro3033
- 182 Cain, A. K. *et al.* A decade of advances in transposon-insertion sequencing. *Nat Rev Genet* **21**, 526-540 (2020). <u>https://doi.org:10.1038/s41576-020-0244-x</u>
- 183 Pritchard, J. R. *et al.* ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing. *PLoS Genet* **10**, e1004782 (2014). https://doi.org:10.1371/journal.pgen.1004782
- 184 Chao, M. C. *et al.* High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. *Nucleic Acids Res* **41**, 9033-9048 (2013). <u>https://doi.org:10.1093/nar/gkt654</u>
- 185 Chao, M. C., Abel, S., Davis, B. M. & Waldor, M. K. The design and analysis of transposon insertion sequencing experiments. *Nat Rev Microbiol* 14, 119-128 (2016). <u>https://doi.org:10.1038/nrmicro.2015.7</u>
- 186 Marvig, R. L. & Blokesch, M. Natural transformation of Vibrio cholerae as a tool-optimizing the procedure. *BMC Microbiol* 10, 155 (2010). <u>https://doi.org:10.1186/1471-2180-10-155</u>
- 187 Dalia, A. B. & Dalia, T. N. Spatiotemporal Analysis of DNA Integration during Natural Transformation Reveals a Mode of Nongenetic Inheritance in Bacteria. *Cell* 179, 1499-1511.e1410 (2019). <u>https://doi.org:10.1016/j.cell.2019.11.021</u>
- 188 Tham, K. C. *et al.* Mismatch repair inhibits homeologous recombination via coordinated directional unwinding of trapped DNA structures. *Mol Cell* **51**, 326-337 (2013). <u>https://doi.org:10.1016/j.molcel.2013.07.008</u>
- 189 Spies, M. & Fishel, R. Mismatch repair during homologous and homeologous recombination. *Cold Spring Harb Perspect Biol* **7**, a022657 (2015). https://doi.org:10.1101/cshperspect.a022657
- 190 Lorenz, M. G. & Wackernagel, W. Bacterial gene transfer by natural genetic transformation in the environment. *Microbiol Rev* 58, 563-602 (1994). https://doi.org:10.1128/mr.58.3.563-602.1994
- 191 Diekmann, R. *et al.* Chip-based wide field-of-view nanoscopy. *Nature Photonics* **11**, 322-328 (2017). <u>https://doi.org:10.1038/nphoton.2017.55</u>
- 192 Tinguely, J.-C., Helle, Ø. I. & Ahluwalia, B. S. Silicon nitride waveguide platform for fluorescence microscopy of living cells. *Opt. Express* 25, 27678-27690 (2017). https://doi.org:10.1364/OE.25.027678
- 193 Hebisch, E., Knebel, J., Landsberg, J., Frey, E. & Leisner, M. High variation of fluorescence protein maturation times in closely related Escherichia coli strains. *PLoS One* 8, e75991 (2013). <u>https://doi.org:10.1371/journal.pone.0075991</u>
- 194 Scheu, K., Gill, R., Saberi, S., Meyer, P. & Emberly, E. Localization of aggregating proteins in bacteria depends on the rate of addition. *Front Microbiol* **5**, 418 (2014). https://doi.org:10.3389/fmicb.2014.00418

- 195 Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. *Nature Methods* 15, 47-51 (2018). <u>https://doi.org:10.1038/nmeth.4509</u>
- 196 Dumon-Seignovert, L., Cariot, G. & Vuillard, L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). *Protein Expr Purif* 37, 203-206 (2004). https://doi.org:10.1016/j.pep.2004.04.025
- 197 Oliver Piercen, M. *et al.* Localization of Anionic Phospholipids in Escherichia coli Cells. *Journal of Bacteriology* **196**, 3386-3398 (2014). <u>https://doi.org:10.1128/JB.01877-14</u>
- 198 Nishijima, S. *et al.* Disruption of the Escherichia coli cls gene responsible for cardiolipin synthesis. *J Bacteriol* **170**, 775-780 (1988). https://doi.org:10.1128/jb.170.2.775-780.1988
- 199 Beltrán-Heredia, E. *et al.* Membrane curvature induces cardiolipin sorting. *Communications Biology* **2**, 225 (2019). <u>https://doi.org:10.1038/s42003-019-0471-x</u>
- 200 Hemm, M. R., Paul, B. J., Schneider, T. D., Storz, G. & Rudd, K. E. Small membrane proteins found by comparative genomics and ribosome binding site models. *Mol Microbiol* 70, 1487-1501 (2008). <u>https://doi.org:10.1111/j.1365-2958.2008.06495.x</u>
- 201 Fontaine, F., Fuchs, R. T. & Storz, G. Membrane localization of small proteins in Escherichia coli. *J Biol Chem* **286**, 32464-32474 (2011). https://doi.org:10.1074/jbc.M111.245696
- 202 Wang, H. *et al.* Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. *Proc Natl Acad Sci U S A* **114**, 5689-5694 (2017). <u>https://doi.org:10.1073/pnas.1703415114</u>
- Jackson, R. J. *et al.* Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. *FEMS Microbiology Letters* 289, 219-224 (2008). <u>https://doi.org:10.1111/j.1574-6968.2008.01386.x</u>
- 204 Yin, X. *et al.* The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. *Mol Microbiol* **111**, 131-144 (2019). <u>https://doi.org:10.1111/mmi.14143</u>
- 205 Thiem, S. & Sourjik, V. Stochastic assembly of chemoreceptor clusters in Escherichia coli.
- 206 Thiem, S., Kentner D Fau Sourjik, V. & Sourjik, V. Positioning of chemosensory clusters in E. coli and its relation to cell division.
- 207 Rudner, D. Z., Pan Q Fau Losick, R. M. & Losick, R. M. Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture.
- 208 Meinhardt, H. & de Boer, P. A. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site.
- 209 Wettmann, L. & Kruse, K. A.-O. The Min-protein oscillations in Escherichia coli: an example of self-organized cellular protein waves. LID - 10.1098/rstb.2017.0111 [doi] LID - 20170111.
- 210 Standard, A. & Edition, N. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute (2012).
- 211 Andrews, J. M. Determination of minimum inhibitory concentrations. *J Antimicrob Chemother* **48 Suppl 1**, 5-16 (2001). <u>https://doi.org:10.1093/jac/48.suppl\_1.5</u>
- 212 Mueller, M., de la Peña, A. & Derendorf, H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. *Antimicrob Agents Chemother* **48**, 369-377 (2004). <u>https://doi.org:10.1128/aac.48.2.369-377.2004</u>

- 213 Sun, D., Gao, W., Hu, H. & Zhou, S. Why 90% of clinical drug development fails and how to improve it? *Acta Pharmaceutica Sinica B* **12**, 3049-3062 (2022). https://doi.org/https://doi.org/10.1016/j.apsb.2022.02.002
- 214 Drlica, K., Malik, M., Kerns, R. J. & Zhao, X. Quinolone-mediated bacterial death. *Antimicrob Agents Chemother* **52**, 385-392 (2008). <u>https://doi.org:10.1128/aac.01617-06</u>
- 215 Rayner, C. R. *et al.* Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. *Clin Pharmacol Ther* **109**, 867-891 (2021). https://doi.org:10.1002/cpt.2198
- 216 Wicha, S. G. *et al.* From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. *Clin Pharmacol Ther* **109**, 928-941 (2021). https://doi.org:10.1002/cpt.2202
- 217 van Belkum, A. *et al.* Innovative and rapid antimicrobial susceptibility testing systems. *Nature Reviews Microbiology* **18**, 299-311 (2020). https://doi.org:10.1038/s41579-020-0327-x
- 218 Landersdorfer, C. B. & Nation, R. L. Limitations of Antibiotic MIC-Based PK-PD Metrics: Looking Back to Move Forward. *Front Pharmacol* **12**, 770518 (2021). <u>https://doi.org:10.3389/fphar.2021.770518</u>
- Hu, D. *et al.* Origins of the current seventh cholera pandemic.
- 220 Joelsson, A., Liu, Z. & Zhu, J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. *Infect Immun* 74, 1141-1147 (2006). <u>https://doi.org:10.1128/iai.74.2.1141-1147.2006</u>
- Lloyd, C. J., Mejia-Santana, A., Dalia, T. N., Dalia, A. B. & Klose, K. E. Natural Transformation in a Classical-Biotype Vibrio cholerae Strain. *Appl Environ Microbiol* 87 (2021). <u>https://doi.org:10.1128/aem.00060-21</u>
- 222 Ke, H. M. *et al.* Tracing Genomic Divergence of Vibrio Bacteria in the Harveyi Clade. *J Bacteriol* **200** (2018). <u>https://doi.org:10.1128/jb.00001-18</u>
- Fu, Y., Waldor, M. K. & Mekalanos, J. J. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. *Cell Host Microbe* 14, 652-663 (2013). <u>https://doi.org:10.1016/j.chom.2013.11.001</u>
- 224 Warr, A. R. *et al.* Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. *PLoS Pathog* **15**, e1007652 (2019). https://doi.org:10.1371/journal.ppat.1007652
- 225 Mey, A. R., Craig, S. A. & Payne, S. M. Effects of amino acid supplementation on porin expression and ToxR levels in Vibrio cholerae. *Infect Immun* **80**, 518-528 (2012). <u>https://doi.org:10.1128/iai.05851-11</u>
- 226 Mey, A. R., Butz, H. A. & Payne, S. M. Vibrio cholerae CsrA Regulates ToxR Levels in Response to Amino Acids and Is Essential for Virulence. *mBio* **6**, e01064 (2015). <u>https://doi.org:10.1128/mBio.01064-15</u>
- 227 Miller, V. L., Taylor, R. K. & Mekalanos, J. J. Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. *Cell* **48**, 271-279 (1987). https://doi.org:10.1016/0092-8674(87)90430-2
- 228 Krukonis, E. S., Yu, R. R. & Dirita, V. J. The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. *Mol Microbiol* **38**, 67-84 (2000). <u>https://doi.org:10.1046/j.1365-2958.2000.02111.x</u>
- 229 Lichev, A., Angelov, A., Cucurull, I. A.-O. & Liebl, W. A.-O. Amino acids as nutritional factors and (p)ppGpp as an alarmone of the stringent response regulate natural transformation in Micrococcus luteus.
- 230 Boutte, C. C. & Crosson, S. Bacterial lifestyle shapes stringent response activation.

- 231 Magnusson, L. U., Farewell A Fau Nyström, T. & Nyström, T. ppGpp: a global regulator in Escherichia coli.
- 232 Wilson Ga Fau Bott, K. F. & Bott, K. F. Nutritional factors influencing the development of competence in the Bacillus subtilis transformation system.
- 233 Hamoen, L. W., Venema, G. & Kuipers, O. P. Controlling competence in Bacillus subtilis: shared use of regulators. *Microbiology (Reading)* **149**, 9-17 (2003). https://doi.org:10.1099/mic.0.26003-0
- 234Maamar, H., Raj, A. & Dubnau, D. Noise in Gene Expression Determines Cell Fate in<br/>Bacillus subtilis. Science 317, 526-529 (2007).<br/>https://doi.org:10.1126/science.1140818
- 235 Kickstein, E., Harms, K. & Wackernagel, W. Deletions of recBCD or recD influence genetic transformation differently and are lethal together with a recJ deletion in Acinetobacter baylyi. *Microbiology (Reading)* 153, 2259-2270 (2007). https://doi.org:10.1099/mic.0.2007/005256-0
- 236 Wylie, C. S., Trout, A. D., Kessler, D. A. & Levine, H. Optimal strategy for competence differentiation in bacteria. *PLoS Genet* 6, e1001108 (2010). <u>https://doi.org:10.1371/journal.pgen.1001108</u>
- 237 Lo Scrudato, M. & Blokesch, M. The regulatory network of natural competence and transformation of Vibrio cholerae. *PLoS Genet* **8**, e1002778 (2012). https://doi.org:10.1371/journal.pgen.1002778
- 238 Passalacqua, K. D., Charbonneau, M. E. & O'Riordan, M. X. D. Bacterial Metabolism Shapes the Host-Pathogen Interface. *Microbiol Spectr* **4** (2016). https://doi.org:10.1128/microbiolspec.VMBF-0027-2015
- 239 Moradigaravand, D. & Engelstädter, J. The impact of natural transformation on adaptation in spatially structured bacterial populations. *BMC Evol Biol* **14**, 141 (2014). <u>https://doi.org:10.1186/1471-2148-14-141</u>
- 240 Sun, Y., Bernardy, E. E., Hammer, B. K. & Miyashiro, T. Competence and natural transformation in vibrios. *Mol Microbiol* **89**, 583-595 (2013). https://doi.org:10.1111/mmi.12307
- Adams, D. W., Stutzmann, S., Stoudmann, C. & Blokesch, M. DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. *Nat Microbiol* 4, 1545-1557 (2019). https://doi.org:10.1038/s41564-019-0479-5
Paper I

# **1** Transposon insertion sequencing reveals dependency

# <sup>2</sup> of natural transformation on amino acid metabolism

3 Merete Storflor<sup>1</sup>, João Alves Gama<sup>1</sup>, Klaus Harms<sup>1</sup>, Sören Abel<sup>1</sup>

4 <sup>1</sup> Department of Pharmacy, UiT - The Arctic University of Norway, 9037 Tromsø, Norway

5 \**Correspondence should be addressed to soren.abel@fhi.no* 

# 6 Abstract

7 Natural transformation is a major mode of horizontal gene transfer that shapes the evolution of bacteria. 8 Here we identify genes important for natural transformation with a transposon insertion sequencing 9 approach. By using a highly saturated transposon library in Vibrio cholerae we find that an impaired 10 amino acid metabolism inhibits transformation. Transformation of mutants in amino acid metabolizing 11 genes could be recovered back to wild-type level upon supplementation with amino acids. Such 12 supplementation had a concentration- and time- dependent effect on competence induction. Reporter 13 assays for competence regulators demonstrate considerable heterogeneity in amino acid metabolism 14 mutants. This study indicates that amino acid metabolism regulates induction of competence for natural 15 transformation.

# 16 Background

17 Horizontal gene transfer (HGT) aids in the transfer of virulence factors and antibiotic resistance markers in prokaryotes. This raises global concerns, as the spread of antibiotic resistance renders current drugs 18 19 ineffective against pathogenic bacteria. A major mechanism of horizontal gene transfer is natural 20 transformation. Which, not only promotes the spread of antibiotic resistance<sup>1</sup>, but also drives the 21 emergence of new pathogenic strains, as demonstrated by the conversion of non-toxigenic to toxigenic 22 Vibrio cholerae<sup>2</sup>. The current cholera pandemic is caused by V. cholerae O1 El Tor. This is an intestinal 23 pathogen that, upon ingestion, can cause debilitating, even life-threatening, diarrhea, Like many other 24 bacteria, V. cholerae can take up exogenous DNA from neighboring bacteria using a mechanism known as natural transformation. Previous pandemics have been caused by the classical biotype, a strain with 25 26 reduced natural transformation. While the machinery is present, a mutation in hapR inhibits its expression<sup>3</sup>. The current cholera pandemic is known as the 7<sup>th</sup> and began in 1961, whoever the strain 27 persists today making this pandemic the longest of its kind<sup>4</sup>. It has been theorized that this is due to the 28 29 increased adaptability of the strain promoted by natural transformation as well as mobile genetic elements. Current studies estimate that the pathogen causes one to four million infections per year 30 leading to 21.000 to 143.000 deaths<sup>5-7</sup>. While, rehydration therapy is an efficient treatment, outbreaks 31 32 typically occur in regions with limited access to care and clean water. Therefore in 2014, the Global 33 Task Force on Cholera Control (GTFCC) launched a strategy for ending cholera outbreaks by 2030, 34 however there are at present no clear indications of decreasing outbreaks. Proper sanitation and access to clean water and food is critical in controlling the progression of this disease, as well as understanding 35

36 the regulatory systems that control the pathogens environmental adaptation.

Naturally competent bacteria can take up free DNA present in the environment, allowing access to a vast genetic pool and enabling transfer across species and strains. Specifically for *V. cholerae*, the

39 competence state is induced upon association with chitin, and enables natural transformation. Which in

40 combination with competence development is a highly orchestrated response to the environment. The activation of natural transformation requires an intricate network of receptors and response regulators 41 42 that rapidly sense and react to the immediate environment. The presence of chitin is critical for 43 competence induction and natural transformation, as this increases the expression of the master regulator 44 of natural transformation,  $tfox^{8,9}$ . The activity of TfoX is enhanced by TfoS, which is a membrane-bound transcriptional regulator linking chitin to DNA uptake<sup>10</sup>. The chitin-dependent production of TfoX 45 works in unison with carbon catabolite repression (CCR) and is co-regulated by cell density in the form 46 47 of quorum sensing (QS)<sup>11,12</sup>. CCR enables bacteria to regulate their metabolism to better adapt to their environment, and acts to inhibit natural transformation in the presence of glucose<sup>8</sup>. CyaA will in the 48 49 absence of a preferred carbon source indirectly enable TfoX to induce transcription of several natural 50 transformation genes<sup>13</sup>. This interplay is under the control of a nucleotide scavenging repressor, CytR, 51 which functions as a global regulator<sup>14</sup>. However, the exact interactions are not fully understood. 52 Additionally, natural transformation has been found to be regulated by amino acids in Micrococcus 53 luteus<sup>15</sup>. Lichev et. al, found amino acids to function as environmental cues, where amino acid starvation 54 resulted in competence induction<sup>15</sup>. Further, stimulatory, and inhibitory effects of amino acids on 55 competence development have also been detected in *B. subtilis*, by Wilson et. al<sup>16</sup>. Glutamic acid and 56 alanine were found to be detrimental to competence development, while other amino acids demonstrated 57 stimulatory effects. Meanwhile, the quorum sensing regulator, HapR, is important to down regulate the extracellular DNA endonuclease, Dns and Xds<sup>17</sup>. Exogenous DNA is recognized by a type IV pilus. The 58 59 DNA is pulled into the periplasm via PilQ, an outer membrane pore complex. ComEA binds the DNA and shuttles one strand into the cytoplasm via an inner membrane channel ComEC<sup>18</sup>. Once in the 60 cytoplasm single-stranded DNA binding proteins (Ssb) and DprA binds the ssDNA and facilitates RecA-61 62 dependent recombination with the chromosomal DNA. RecA is a universally conserved DNA repair and 63 maintenance protein that catalyzes strand exchange and is responsible for inserting the transforming DNA to the chromosomal DNA resulting in a heteroduplex. Resolving the heteroduplex results in the 64 65 ssDNA being incorporated into one of the strands of the chromosomal DNA and can then be inherited by one of the daughter cells after cell division. 66

67 The natural transformation machinery is costly and requires precise orchestration of several pathways. 68 How this machinery originated and is maintained has long been debated. It has been suggested that DNA can be utilized as a nutrient, as well as for DNA repair. Another theory suggests that natural 69 70 transformation is maintained to sample the genetic diversity of neighboring populations. In this theory, 71 naturally competent populations are always genetically heterogenic, and a small fraction samples the 72 genetic fitness landscape. This could be why only a fraction of a population is transformable and even 73 fewer successfully take up DNA. With this bet-hedging strategy, the potentially detrimental effects of the newly acquired genes would be restricted to a minority of the population, while the pathogen is still 74 sampling potentially beneficial genes. Heterogeneity is often greater for metabolic genes<sup>19</sup>. Further 75 several metabolic systems have been acquired via horizontal gene transfer<sup>20</sup>. It has also been observed 76 77 that non-pathogenic V. cholerae can become pathogenic by taking up a cluster of virulence factors, 78 referred to as the pathogenicity island<sup>21,22</sup>.

To evaluate the fitness contributions of genomic features under specific growth conditions, a high throughput method known as transposon insertion sequencing (TIS) can be implemented. The method is well suited to assess fitness landscapes as it directly links phenotype to genotype<sup>23</sup>. This is accomplished by creating a population of bacteria where a single transposon disrupts genomic features, e.g. loci. Simplified, if a disrupted locus is maintained in the population, it is classified as "non84 essential", while an uninterrupted locus may indicate an "essential" function. To determine the position of the disruption, the method relies on next-generation sequencing. In the population a locus may be 85 86 interrupted several times, and at several positions. The mutants that pass the condition carry either 87 disrupted elements that produce a neutral effect or disrupted elements that would have been 88 disadvantageous, and if uninterrupted would have inhibited the bacteria from passing the condition. The 89 regions of the genome where transposon insertions are missing or reduced can be identified by 90 sequencing a part of the transposon as well as a short stretch of the flanking genomic DNA that bridges 91 the insertion site. In so doing, one can detect loci critical for survival under the condition the library was subjected to. These mutants are denoted as "essential", because of their high fitness costs. By comparing 92 93 two different growth conditions with distinct selection pressures, it is possible to identify genetic 94 elements critical for optimal fitness under these specific conditions. The method compares the disruption 95 frequencies of loci of a specific selection pressure to a control condition, as a proxy for fitness. This 96 allows for the identification of "conditionally essential" genetic elements, i.e., disrupted genetic 97 elements with strong fitness defects under the test conditions.

98 In this study, we generated a high-density transposon library in V. cholerae and exposed it to a strong 99 selection pressure, selecting for natural uptake and recombination of free DNA into its genome. This setup allowed us to identify a large set of genes involved in natural transformation and recombination. 100 101 In addition to known regulators like TfoX, we identified MetE and AsnB with strong phenotypes and 102 confirmed their effects by reproducing the results of the transposon screen with independent, genetically engineered disruption mutants. Strikingly, we detected a large set of genes involved in amino acid 103 104 transport and metabolism that affected natural transformation and further investigated the impact on 105 DNA uptake and recombination.

## 106 Results

#### 107 Generating a TIS library to investigate factors involved in natural transformation

108 To investigate the genes that are important for natural transformation, a high-density transposon library 109 was created in V. cholerae. Random insertion of the transposon into the genome occurred upon delivery 110 of a non-replicative plasmid containing the transposable element through conjugation. The transposable 111 element is a modified Tn Mariner containing a kanamycin (Km) resistance gene flanked by inverted 112 repeats<sup>24</sup>. This transposon can insert at specific DNA sites where the two nucleosides thymine (T) and 113 adenine (A) follow each other (TA sites). By selecting for the transposable element after conjugation, a 114 library of V. cholerae was generated where, every bacterium has one transposon randomly inserted within its genetic material. Here it, potentially disrupts the function of a genetic locus, e.g., a gene. After 115 conjugation, the input library yielded ~5.7M CFUs, indicating a number of independently generated 116 117 insertion mutants in the same order of magnitude. After inserting the transposon, we evaluated the quality of the library. We aimed for high complexity, which means that the majority of the available 118

- 119 insertion sites have been disrupted.
- 120 Genomic DNA was isolated from an aliquot of the library and PCR was performed, so that the resulting
- 121 PCR product spanned the transposon insertion site. The PCR products were then sequenced with an
- 122 Illumina MiSeq sequencer using the MiSeq V3, 150-cycle kits. The output sequences were filtered to
- 123 avoid false positives. The sequencer yielded 21.7 M reads, out of which 19.4 M passed filtering criteria
- 124 and 17.6M reads mapped once to the genome. Approximately 84% of the potential insertion sites,

including intergenic regions, were hit (165'020 TA sites). See Table 1 for a summary of the input
library. We concluded that the input library was of high complexity and near-saturation.

| 127 | Table 1: Sequencing stati | Table 1: Sequencing statistics of the input library |  |  |  |
|-----|---------------------------|-----------------------------------------------------|--|--|--|
| 128 | Reads                     | 17.6 M                                              |  |  |  |
| 129 | Sites Hit                 | 165'020                                             |  |  |  |
| 130 | TAs hit                   | 84%                                                 |  |  |  |
| 131 | Average Read Count        | 90                                                  |  |  |  |

## 132 TIS analysis reveals a role for amino acid metabolism genes in natural transformation

To investigate genes involved in natural transformation, we used our transposon library in a transformation assay that selects against all bacteria that did not take up and chromosomally recombine the donor DNA. If a gene with a function in natural transformation, or recombination, is disrupted by the transposon, it will be less frequently represented, or not at all, within the pool of transformants isolated after the assay and its absence can be detected by sequencing.

138 For the transformation assays, we first induced competence. Our library was grown to early exponential phase in LB media, washed in M9<sup>+</sup> media, and then transferred to fresh M9<sup>+</sup> media supplemented with 139 chitin flakes, two sample populations were created (Figure 1). After 24 h, one population received donor 140 141 DNA denoted as the "TnNT" population. The other, "Ctrl" population, did not receive donor DNA. The donor DNA is a PCR product of the *rpsL* gene with a point mutation, A128G. Successful transformation 142 143 and recombination confers resistance to streptomycin (Sm) allowing for selection of transformants. 144 After another 24 h, the bacteria were detached from chitin by vortexing. A fraction of both populations 145 was used for determining colony-forming units (CFUs), by plating a serial dilution on both selective 146 (Sm) and non-selective LB plates. The ratio of the TnNT population sizes in absence and presence of 147 Sm was used to determine the transformation frequency. The number of colonies from the Ctrl sample 148 on selective plates was used to determine the frequency of spontaneous resistance to Sm. The remaining 149 liquid cultures from both conditions were grown out on 15 mm Petri dishes. The Ctrl sample was plated 150 on non-selective plates, while the TnNT was plated on selective plates containing Sm. All colonies were 151 harvested the next day and prepared for whole genome sequencing. In the Ctrl sample, we expect to find 152 a first set of genes required for survival under the assay conditions, presented as missing insertions. In the TnNT sample, we expect to find in addition a second set of genes required for natural transformation 153 154 and recombination, and survival on Sm. By comparing the sequencing results from the TnNT sample to 155 the Ctrl sample, we aim to identify the second set of genes. A total of 4.2 M CFUs were harvested for the Ctrl assay, while 1.3 M CFUs were harvested for the TnNT assay. Throughout the assay, spontaneous 156 157 resistance to Sm was not encountered (Figure 2a). The transformation efficiency was  $5.5 \times 10^{-2}$  (Figure 158 2b). Each sample was sequenced twice, and the results were merged. The sequence statistics are 159 summarized in Table S. 1. The Ctrl sample yielded 28.8M reads covering 85% of the genome-wide 160 available TA sites and the TnNT output had 30.5M reads covering 72% of the available TA sites. On average, each site was sequenced about 150 times. As expected with such a high coverage, in the 161 162 majority of genes, most intragenic TA sites were hit by a transposon at least once (Figure 2c). This 163 reflects that most genes are non-essential under the assay conditions. A more detailed analysis of the TnNT TIS screen using the ARTIST pipeline<sup>25</sup> identified 263 genes out of a total of 3751 to be 164

- 165 conditionally essential and therefore likely to be involved in taking up and incorporating exogenous
- 166 DNA. Previously discovered factors involved in competence and transformation were detected as well
- 167 and functioned as positive controls to validate the screen. For an overview of all annotated genes found
- 168 to be essential for TnNT, the donor DNA receiving sample, refer to Table S. 2. The complete list of
- 169 annotated genes along with the statistics and the corresponding fitness assigned by the analysis pipeline
- 170 can be found in **Table S. 2**.



Figure 1 Schematic representation of the transposon insertion experiment to identify genes involved in natural transformation. Bacteria are depicted as curved cylinders with different colors that represent different transposon mutants. The chitin that is used to induce natural competence is depicted with black lagged lines. Donor DNA is depicted as a green line and bacteria that successfully integrated donor DNA have a green fill. The integrated donor DNA provides resistance to streptomycin (Sm). For the control assay, no DNA was added, indicated by a red cross. Transposon mutants that do not survive are indicated by a dotted line. They either die because the transposon mutant is not able to survive the general growth conditions of the assay (violet cell) or because they have not taken up and integrated the donor DNA (blue and grey cells). After sequencing the surviving bacteria, the sequencing results can be visualized graphically. Genes are schematically depicted as arrows with black lines on top representing potential transposon insertion sites (TA-sites). If transposons have inserted at this site, this is indicated by a black triangle. Under each gene, an actual data set depicting transposon sequencing results is shown. Where, each black line depicts a transposon insertion, and the height of the black line represents how often a transposon insertion at this site was sequenced, either in the forward orientation (lines pointing upwards) or the reverse orientation (lines pointing downwards). Depending on the transposon integration pattern, we can classify a genetic locus as "neutral" - when the locus is frequently found disrupted by transposons in the TnNT and the Ctrl assay, "essential" - when it is not disrupted in the TnNT and Ctrl assay, and "conditional" - when it is disrupted in the control condition but not in the TnNT assay.



**Figure 2 Natural transformation of TIS library and sequence analysis.** (a) Bacterial numbers during the transformation assay. CFU/mL were measured for the TnNT sample (squares) that received donor DNA and the Ctrl sample (circles) that did not receive donor DNA with (black) and without (green) selection for streptomycin (Sm). The Ctrl sample remained sensitive to the antibiotics and did not survive, < d.I = below detection limit. (b.) Transformation frequencies of the TnNT sample (green), the transformation frequency was not applicable for the Ctrl sample. (c) Distribution of relative disruptions of TA sites within genes. The graph displays fraction of disrupted insertion sites (TA-sites) per gene plotted by the number of genes for both the Ctrl sample (black bars), and the TnNT sample (green bars).

#### 172 Cluster orthologous groups and enrichment analysis

To identify important processes for natural transformation, we categorized the detected genes by 173 functional groups. The protein sequences of the 263 hits from our screen were mapped and sorted into 174 cluster orthologous groups (COGs), using the eggNOG sequence mapper<sup>26</sup>. When cross-referencing a 175 random subset of sequences with other online databases a small discrepancy was observed for comEA. 176 177 KEGG and Uniprot states the molecular function is DNA binding with involvement of the type II 178 secretion system. This is a periplasmic protein that is critical for shuttling external DNA into the 179 periplasm<sup>18</sup>. However, it was sorted into the "replication and repair" COG. While the protein binds DNA 180 it is not directly involved in replication or repair. To avoid biasing the screen we did not diverge from the COG classifications assigned by eggNOG. An enrichment analysis was performed by comparing the 181 182 amino acid sequences of all detected genes to the V. cholerae A1552 proteome. The relative abundance 183 of COGs in the conditionally essential group was compared to the relative abundance of the 184 corresponding COG for the entire proteome (Figure 3). Three COGs have an enrichment index above one, intracellular trafficking, amino acid metabolism and cell motility. Nucleotide metabolism has an 185 enrichment index close to one. Looking into the genes assigned to this COG we find the majority of the 186 genes are involved in amino acid synthesis. We therefore focused on genes from the three categories 187 188 above 1. The intracellular trafficking COG consisted of 32 enriched sequences, there were 58 enriched 189 sequences in amino acids metabolism, and 28 enriched sequences in the cell motility COG. Several of 190 the genes sorted into the intracellular trafficking and the cell motility COGs have a clear link to natural

- 191 transformation. For example, several pili proteins are involved in the type IV MSHA pilus is required for colonizing chitin<sup>27</sup>, and the type IV competence pilus is required for DNA uptake<sup>28</sup>. As, these groups 192 overlap we also investigated the nucleotide metabolism COG where we found several amino acids 193 194 metabolism genes with dual functions in nucleotide metabolism as well as, cyaA, an adenylyl cyclase. A  $\Delta cvaA$  mutant is unable to synthesis cAMP and does not transform on chitin<sup>11,13</sup>. The amino acid 195 metabolism COG involves biosynthesis and catabolism of amino acids. Amino acid metabolism is the 196 197 second greatest enriched COG and is yet to be investigated in the context of natural transformation in Gram-negatives. To our knowledge only one study in Micrococcus luteus, mentions amino acids within 198 199 the context of natural transformation<sup>15</sup>. We also found that the largest group of our hits from our TIS 200 screen were involved in amino acid metabolism and transport, indicating a prominent and novel role for
- 201 amino acids in natural transformation.



**Figure 3** COG analysis of conditionally essential genes important for natural transformation. Y-axis defined as COG enrichment index by log2(COG conditionally essential/ COG whole genome), with COG categories on the x-axis. Categories above zero are colored in green-scale, while categories below zero are depicted in gray-scale.

203

## 204 Verification of TIS screen and transformation frequencies

We validated the quality of our TIS screen using a two-pronged approach. Firstly, we compiled a list of genes from the literature with confirmed roles in natural transformation and recombination. By comparing this list with our hits, we evaluated how comprehensive our screen was and assessed the number of false negatives. Secondly, we selected a set of genes from our hit list, disrupted the gene function, and tested the transformation efficiency of these mutants. This enabled us to evaluate the selectiveness of our screen and assess the number of false positives.

- 211 We systematically searched for articles describing genes involved in natural transformation in V.
- 212 *cholerae*. To be included in our reference list, genes had to fulfill at least one of the following criteria:
- i) investigated directly for their role in natural transformation, or ii) available knowledge from
- 214 homologues genes (Table 2). Based on the literature review we did not find any false negatives and

- assume a low rate of false positives. Important genes described in the literature to be required for natural
- transformation, such as *tfoX*, were classified in our screen as conditionally essential for the donor DNA
- 217 receiving sample. In addition, *recA* and *hapR/luxO* were described in the literature as critical for natural
- 218 competence these genes were found to be essential in both conditions, and likely required for survival
- within our assay conditions. Further, genes known to inhibit natural transformation, such as *dns*, were confirmed to be non-essential in both conditions as well. Our screen further overlaps with the same set
- of genes as studies using different methodologies $^{29,30}$ .

222 To test for false negative, a set of 12 genes from our list of detected genes were selected (Table 3). 223 These genes were chosen to represent the major COGs, including some previously identified genes from 224 our positive control list such as *tfoX* (competence activator gene). Knockouts were created by deleting 225 the majority of the open reading frame and replacing it by a tetracycline resistance cassette by allelic 226 exchange. These deletion strains were used as recipients of donor DNA in our standard natural 227 transformation assay. The respective transformation frequencies are presented in Figure 4. We detect a range of impaired transformation frequencies.  $\Delta mshL$ ,  $\Delta mshQ$ ,  $\Delta pmg$ ,  $\Delta carB^{31}$ ,  $\Delta lapD^{32,33}$ , and  $\Delta ppc$ 228 had moderately impaired transformation frequencies.  $\Delta asnB^{34}$ , and  $\Delta metE^{35}$  were severely impaired, 229 close to the limit of detection. While no transformants were observed for  $\Delta t fo X^{36}$ ,  $\Delta t sa P^{37,38}$ ,  $\Delta pi l W$ , and 230  $\Delta t f o S^{10}$ . We could accurately reproduce the published phenotypes from the previously characterized 231 232 genes in our validation set (tfoX, mshL, mshQ, pilW, and tfoS). The only exception is  $\Delta tsaP$ . In our 233 analysis, the deletion mutant of this gene had a transformation frequency below the detection limit, while 234 in Jaskólska, et al. this deletion had a milder phenotype with only a 10-fold reduction<sup>37</sup>. The reason for 235 this is unknown. The genes pmg, asnB, metE, carB, lapD, and ppc have to our knowledge not been 236 characterized in terms of natural transformation. Together, these results indicate that our screen struck 237 a good balance between strictness (false negatives) and inclusiveness (false positives) and we are 238 confident that we identified a large number of genes involved in natural transformation, without 239 including too many false positives. Furthermore, we noticed that the two amino acid metabolism genes 240 had severely reduced transformation frequencies. This reinforces the results from the COG analysis and 241 strengthens the hypothesis that amino acid metabolism plays an important role in natural transformation 242 of V. cholerae.

| Table 2 TIS screen validation, genes used as positive and negative controls |                                                |                  |               |            |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------|------------------|---------------|------------|--|--|
|                                                                             | Only essential for the donor DNA received      | ing sample, posi | tive controls |            |  |  |
| Gene                                                                        | Product description                            | Locus tag        | Locus tag     | References |  |  |
|                                                                             |                                                | c6706            | A1552         |            |  |  |
| tfoX                                                                        | Master competence regulator                    | VC1153           | A1552VC_00900 | 36         |  |  |
| comEA                                                                       | Competence protein                             | VC1917           | A1552VC_01694 | 8,30       |  |  |
| comEC                                                                       | Competence protein                             | VC1879           | A1552VC_01659 | 8,30       |  |  |
| qstR                                                                        | Quorum sensing and TfoX-dependent regulator    | VC0396           | A1552VC_00153 | 39         |  |  |
| _                                                                           |                                                |                  |               |            |  |  |
| comM                                                                        | Competence protein                             | VC0032           | A1552VC_00023 | 30         |  |  |
| comF                                                                        |                                                | VC2718           | A1552VC_02473 | 30,40      |  |  |
| pilA                                                                        | Type IV pilus assembly protein, major subunit  | VC2423           | A1552VC_02186 | 8          |  |  |
| pilQ                                                                        | Type IV pilus biogenesis protein               | VC2630           | A1552VC_02390 | 8          |  |  |
|                                                                             | Essential in both conditions,                  | positive control | S             |            |  |  |
| recA                                                                        | DNA repair and recombination protein           | VC0543           | A1552VC_00306 | 28         |  |  |
| hapR/luxO                                                                   | master global transcription factors, directs   | VC1021           | A1552VC_00769 | 41         |  |  |
|                                                                             | downstream gene expression in response to cell |                  |               |            |  |  |
|                                                                             | density                                        |                  |               |            |  |  |
|                                                                             | Not essential in any condition                 | , negative contr | ol            |            |  |  |
| dns                                                                         | Extracellular deoxyribonuclease                | VC0470           | A1552VC_00234 | 40         |  |  |

| Table 3 list of the validation set |                |      |                              |                                       |  |  |  |
|------------------------------------|----------------|------|------------------------------|---------------------------------------|--|--|--|
| Locus                              | Locus tag      |      |                              | COG category                          |  |  |  |
| tag c6706                          | A1552          | gene | Product description          |                                       |  |  |  |
|                                    |                |      | Uncharacterized protein      | Energy production & conversion        |  |  |  |
| VC0047                             | A1552VC_00037  | tsaP | with LysM domain             |                                       |  |  |  |
|                                    |                |      |                              | Intracellular trafficking & secretion |  |  |  |
| VC0402                             | A1552VC_00159  | mshL | MSHA biogenesis protein      |                                       |  |  |  |
|                                    |                |      |                              | Intracellular trafficking & secretion |  |  |  |
| VC0414                             | A1552VC_00171  | mshQ | MSHA biogenesis protein      |                                       |  |  |  |
|                                    |                |      |                              | Carbohydrate metabolism & transport   |  |  |  |
| VC0611                             | A1552VC_00374  | pgm  | Phosphoglucomutase           |                                       |  |  |  |
|                                    |                |      | Type IV fimbrial biogenesis  | Intracellular trafficking & secretion |  |  |  |
| VC0860                             | A1552VC_00617  | pilW | protein PilW                 |                                       |  |  |  |
|                                    |                |      | Asparagine synthetase B      | Amino acid metabolism & transport     |  |  |  |
| VC0992                             | A1552VC_00741  | asnB | [glutamine-hydrolyzing]      |                                       |  |  |  |
|                                    |                |      | Master competence            | Transcription                         |  |  |  |
| VC1154                             | A1552VC_00900  | tfoX | regulator                    |                                       |  |  |  |
|                                    |                |      | 5-                           | Amino acid metabolism & transport     |  |  |  |
|                                    |                |      | methyltetrahydropteroyltrigl |                                       |  |  |  |
|                                    |                |      | utamatehomocysteine          |                                       |  |  |  |
| VC1704                             | A1552VC_01494  | metE | methyltransferase            |                                       |  |  |  |
|                                    |                |      | HTH-type transcriptional     | Transcription                         |  |  |  |
| VC2080                             | A1552VC_01851  | tfoS | regulator CdhR               |                                       |  |  |  |
|                                    |                | -    | Carbamoyl-phosphate          | Nucleotide metabolism and transport   |  |  |  |
| VC2389                             | A1552VC_02152  | carB | synthase large chain         |                                       |  |  |  |
|                                    |                |      | Phosphoenolpyruvate          | Coenzyme metabolism                   |  |  |  |
| VC2646                             | A1552VC_02405  | ppc  | carboxylase                  |                                       |  |  |  |
|                                    |                |      | Membrane bound c-di-GMP      | Signal Transduction                   |  |  |  |
| VCA1082                            | A1552VC_A03758 | lapD | receptor, pdeB_2             |                                       |  |  |  |



Figure 4 Transformation frequency of the knockout mutants selected from the TnNT screen. Mutants:  $\Delta tfoX$ ,  $\Delta tsaP$ ,  $\Delta piIW$ , and  $\Delta tfoS$  are below detection limit (< d.l.). All samples were tested in triplicates, except from  $\Delta piIW$ ,  $\Delta carB$  n=2. The dotted line indicates the median transformation efficiency of the wild-type, the dots denote the median of the experiments, and the error bars denote the standard deviation. \* indicates p<0.05,  $\Delta carB$  was not included in this analysis due to sample size. (Unpaired two-tailed t-test).

#### 245 External addition of casamino acids inhibit competence initiation

246 We identified a large number of genes involved in amino acid metabolism in our TIS screen. Additionally, the amino acid metabolism COG group was highly enriched. To get an initial impression 247 248 of how amino acids affect natural transformation, we supplemented V. cholerae with casamino acids 249 (CA), a mixture of amino acids obtained through hydrolyzing casein. CA was added in different concentrations at different times during the natural transformation protocol, and the resulting 250 251 transformation frequencies were recorded. See Figure 5a for a schematic overview of the experimental 252 setup. We found a concentration dependent decrease in transformation frequency (Figure 5b). CA had 253 the greatest impact on transformation frequency when added during the initial stages of the experiment, 254 when the bacteria were exposed to chitin in the absence of DNA. There was a significant drop in 255 transformation frequencies when CA was added during the initial stages. If CA were added at the start 256 of the experiment all concentrations above 0.2% w/v significantly decreased transformation. After 6 h, 257 all CA concentrations above 0.1% w/v resulted in significantly reduced transformation frequencies. This effect increased with concentration. If CA were added along with or after donor DNA addition, the 258 259 transformation-inhibiting effect was attenuated. At 24 h, 1 % and 4% CA resulted in a significantly reduced transformation, none of the other concentrations effected the transformation frequency once 260 261 DNA was added after 24h. By determining the total number of V. cholerae, i.e., viable transformed and untransformed cell, at the end of the experiment, we found that CFUs increased slightly with increasing 262 263 concentrations of CA (Figure S 1). Supplementing the natural transformation reaction with casamino 264 acids demonstrated a more prominent inhibitory effect during the initial stages of our natural 265 transformation assay before DNA induction. According to literature the DNA uptake rate for 266 Acinetobactor calcoaceticus was calculated, based on experimental evidence, to be a minimum of 60 nucleotides per second<sup>42</sup>. Although competence induction for this Gram-negative species differs from 267 V. cholerae, we theorized most of the DNA would be taken up efficiently within the first few hours. To 268 test this hypothesis, we introduced DNase into our natural transformation assay at specific timepoints 269 270 after DNA induction (1 h, 3 h, and 5 h), see Figure 5c for the experimental setup. The addition of DNase efficiently degrades exogenous DNA, preventing further DNA uptake<sup>42</sup>. Samples subjected to DNase 271 272 treatment were harvested 30min after the addition of DNase, while control samples, not subjected to 273 DNase, were harvested the next day. Figure 5d shows the transformation frequencies of the 274 corresponding timepoints. While the positive control in this experiment has a wider error bar, there was 275 no statistically significant difference between the DNase treated samples and the positive control. This 276 indicates the majority of DNA is taken up within the first hour and could explain why adding casamino 277 acids post-DNA induction does not impact the transformation frequency. These results indicate that 278 DNA is taken up efficiently within the first hour of induction. Further the growth curve shown in Figure S. 1 show that that CA was used by V. cholerae as a source of nutrition. Since the nutritional status has 279 been shown to be important for induction of competence<sup>9</sup>, we speculate one of two possibilities. Either 280 casamino acid availability functions as a nutrient source affecting competence induction, or the 281 combination of amino acids have counteracting inhibitory and stimulatory effects that ultimately limit 282 competence development, as suggested by Lichev et. al<sup>15</sup>. 283



Figure 5 Amino acid supplementation reduces transformation efficiency. (a) Schematic of the experimental setup. At time point 0 h, a culture of wild-type V. cholerae in mid-exponential growth phase was exposed to chitin. At 24 h, DNA was added to the culture. Casamino acids (CA) were added to the culture at different concentrations and times during the natural transformation assay. CA concentrations ranged from 0 - 4% w/v and are depicted by increasing saturation of green. Timepoints assessed were 0 h, 6 h, 24 h, and 30 h. b) Transformation frequencies with different CA concentrations added at the indicated time points. As positive control, no CA was added (black diamond). A dotted line extends from this point to illustrates the difference between the other samples. As negative control, no DNA was added, not depicted in graph as zero colonies grew on the selective media. An asterisk above the timepoint indicates CA addition resulted in a significant decrease in transformation for that timepoint. A white center of the dot indicates which transformation frequencies were significantly impacted. c) Schematic overview of experimental setup with DNase treatment, no casamino acids were added. Wild-type V. cholerae was grown to mid-exponential growth phase and exposed to chitin for 24 h after which DNA was added to all cultures. DNase was added to the cultures at different times during the natural transformation assay. Timepoints assessed were 1 h, 3 h and 5 h post DNA induction. DNase treated cultures were incubated 30 min before cells were harvested. The positive (DNA receiving sample) and negative (non-DNA receiving sample) controls were not subjected to DNase treatment, and where harvest the following day. All conditions were performed in triplicates, the median and 95% CI is displayed. The statistics used was an unpaired two-tailed T-test performed on log transformed data.

285

#### 287 An optimal concentration of amino acids promotes natural competence

There was a substantial transformation defect observed for the knockouts involving amino acid 288 289 metabolism genes,  $\Delta metE$  and  $\Delta ansB$  (Figure 4). The two genes are both catabolic. metE encodes for a 290 homocysteine methyltransferase involved in methionine formation. While, asnB encodes an asparagine synthase catalyzing the formation of asparagine<sup>43</sup>. External addition of casamino acids resulted in a 291 292 reduction of transformation frequencies for the wild-type. Specific amino acids, however, could rescue 293 the reduced transformation frequency seen for the defective amino acid metabolic genes. To investigate 294 this effect, we supplemented the  $\Delta metE$  mutant and the  $\Delta ansB$  mutant with methionine and asparagine 295 respectively, using wild-type V. cholerae as the control strain. Competence development was evaluated by measuring transformation frequencies, which were assess by transformants divided by total CFU 296 297 count. The effect on bacterial growth was measured by total CFU (Figure 6). As observed previously, the wild-type had a transformation frequency of approximately  $10^{-2}$  (Figure 6a&c). This did not change 298 299 with the addition of low concentrations of either methionine or asparagine. However, at concentrations in the molar range (0.3 M methionine and 0.19 M asparagine), the transformation efficiency dropped 300 substantially to approximately 10<sup>-7</sup> and is in a similar range as observed for high CA concentrations 301 302 added at the same time point (Figure 5b). As also expected, the deletion of *metE* and *asnB* substantially 303 decreased the transformation frequency to approximately 10<sup>-7</sup>. However, in contrast to the wild-type, 304 the addition of small amounts of the respective amino acid increased the transformation efficiency. In the case of  $\Delta metE$ , 0.3 mM methionine increased the transformation efficiency to wild-type levels at the 305 306 same amino acid concentration, thereby completely rescuing the phenotype. In the case of  $\Delta asnB$ , 0.19 307 nM, 0.19 µM and 0.19 mM asparagine all increased the mutant's transformation frequency substantially to approximately  $10^{-5}$ . For both mutants, the addition of amino acids in the molar range decreased the 308 transformation frequency to a similar extend than the wild-type. The effect of the amino acids on total 309 310 bacterial growth are minimal, except for the highest tested concentration. Here, methionine reduced the 311 total CFUs of the wild-type and the  $\Delta metE$  mutant, while asparagine increased the total CFUs of the 312 wild-type and the  $\Delta asnB$  mutant (Figure 6b&d). Because both amino acids reduce the transformation frequency at this high concentration, there is no correlation between growth and competence. The 313 314 mutants also had different growth rates compared to the wild-type, but both effects did not correlate with transformation frequencies (Figure 6b&d). These results indicate that it is the lack of available 315 amino acid that reduces competence in contrast to the deletion of the gene itself. They also indicate an 316 317 optimal range of amino acid availability to promote natural competence, where the lack of an amino 318 acid reduces competence to a similar degree as the overabundance of amino acids.



Figure 6 Addition of specific amino acids can rescue the transformation defect of amino-acid metabolism gene deletions. Amino acids were added added (0 h) at different concentrations spanning four orders of magnitude to a standard transformation assay of the wild-type (filled black circles) or an amino acid metabolism gene deletion mutant (open black circles). The transformation frequencies and the total CFUs were recorded. (a) Transformation frequencies of wild-type and  $\Delta metE$ , supplemented with methionine. (b) Total CFUs of the same strains and conditions. (c) Transformation frequencies of wild-type and  $\Delta asnB$ , supplemented with asparagine. (d) Total CFUs of the same strains and conditions. All tests were performed in triplicates. The circles denote the mean; the error bars indicated the standard deviation. \* denotes a p-value <0.05, \*\*\* denotes a p-value <0.01 in a Students t-test.



326 Redundancies within the amino acid pathways suggest why defective amino acid

327 genes still undergo transformation

328 Natural transformation is a multifaceted phenomenon that involved various pathways. In the case of V. 329 cholerae, transformation can only occur when induced by chitin, indicating its niche-specific and metabolically distinct nature. Our research finding suggest that active amino acids metabolism is 330 331 necessary for the integration of DNA. Consequently, an amino acid auxotroph, which relies on external 332 sources of specific amino acids, would be unable to undergo transformation. To examine the impact of 333 metE and asnB deletions in V. cholerae, we compared colony formation between mutant and wild-type 334 strains on plates with and without amino acids. Cells were spread on M9<sup>+</sup> agar plates, and a 10  $\mu$ l amino acid solution was applied at the center of each plate separately. All amino acids, expect for methionine 335 and asparagine, were dissolved in water at a final concentration of 1M and sterile filtered. Methionine, 336 337 and asparagine, on the other hand, have a limited solubility above 0.3M, and 0.19 M, respectively. the plates were then incubated at 30°C, and growth zones were monitored over two days. The results, 338 presented in Table 4, indicate the no auxotrophic strains grew without the presence of amino acids. 339 340 However, the  $\Delta metE$  exhibited growth in the presence of all tested amino acids, suggesting redundant pathways for methionine biosynthesis. It is important to note that methionine metabolism is highly 341 342 conserved and interconnected with the tricarboxylic acid (TCA) cycle. Conversely, the  $\Delta asnB$  mutant 343 was unable to grow on minimal media, and other amino acids failed to rescue the phenotype. Neither the  $\Delta metE$  nor the  $\Delta asnB$  mutants displayed impaired growth in minimal media. MetE serves as a one 344 of two-methionine synthase, with the other being *metH*. According to the literature, disruption of *metE* 345 346 function renders V. cholerae incapable of growing in minimal media, while disruption of metH does not 347 exhibit a phenotypic effect<sup>35</sup>. Additionally, our TIS screen did not identify *metH* as an essential 348 component. As for asparagine synthesis, V. cholerae has two, namely asnA and asnB. AsnA catalyzes 349 the ammonia-dependent synthesis of asparagine, while asnB converts aspartic acid into asparagine, 350 utilizing either glutamine or ammonia as the nitrogen source in an ATP-dependent process. In our TIS 351 screen, asnA was found to be non-essential and thus was not tested. Although the  $\Delta metE$  mutant strains 352 were rescued by redundant mechanisms, the same was not observed for the  $\Delta asnB$  mutant. This suggests 353 that asnB primarily functions as the main synthase involved in asparagine biosynthesis under these 354 conditions, leading to an auxotrophic phenotype in minimal media. This finding explains why the  $\Delta asnB$ 355 mutant exhibited lower transformation frequencies compared to the  $\Delta metE$  mutant (Figure 4).

356

| т     | Table 4: Amino acids drop test |                                                  |                                                                                  |                                                                           |                                                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                      |
|-------|--------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | NA                             | Met                                              | Gly                                                                              | Ans                                                                       | Gln                                                                                                                        | Pro                                                                                         | Ser                                                                                                                                                                                                                                                                  |
| Wt    | ×                              | 1                                                | 1                                                                                | 1                                                                         | 1                                                                                                                          | 1                                                                                           | 1                                                                                                                                                                                                                                                                    |
| ∆metE | ×                              | 1                                                | $\uparrow$                                                                       | 1                                                                         | +                                                                                                                          | $\uparrow$                                                                                  | $\uparrow$                                                                                                                                                                                                                                                           |
|       |                                |                                                  |                                                                                  |                                                                           |                                                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                      |
| ∆asnB | ×                              | ×                                                | ×                                                                                | 1                                                                         | ×                                                                                                                          | ×                                                                                           | ×                                                                                                                                                                                                                                                                    |
|       |                                |                                                  |                                                                                  |                                                                           |                                                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                      |
|       | T<br>Wt<br>∆metE<br>∆asnB      | Table 4: /NAWt $\land$ metE $\land$ asnB $\land$ | Table 4: Amino aciNAMetWt $\times$ $\Delta metE$ $\wedge$ $\Delta asnB$ $\times$ | Table 4: Amino acids drop tNAMetGlyWt×↑ $\Delta metE$ ×↑ $\Delta asnB$ ×× | Table 4: Amino acids drop testNAMetGlyAnsWt× $\uparrow$ $\uparrow$ $\Delta metE$ × $\uparrow$ $\uparrow$ $\Delta asnB$ ××× | Table 4: Amino acids drop testNAMetGlyAnsGlnWt×↑↑↑↑ $\Delta metE$ ×↑↑↑+ $\Delta asnB$ ××××× | Table 4: Amino acids drop testNAMetGlyAnsGlnProWt $\times$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\Delta metE$ $\times$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\uparrow$ $\Delta asnB$ $\times$ $\times$ $\times$ $\uparrow$ $\star$ $\times$ |

#### 365 Reporter constructs suggest heterogeneity determines competence development

Mutants with defective amino acid metabolism exhibited reduced transformation frequencies. The data 366 provided suggest the observed decrease in transformation frequencies could be attributed to impaired 367 368 competence induction. We therefore opted to investigate the transcription of *comEA*. ComEA is essential to natural transformation and is a DNA binding protein found in the periplasm<sup>8</sup>. As the induction of 369 370 natural transformation relies on coordination of several pathways, we opted to investigate in parallel carbon catabolite repression (CCR), nucleotide scavenging and quorum sensing (QS)<sup>13</sup>. We investigated 371 372 the involvement of these pathways among the amino acid metabolism defective mutants, the wild-type 373 and the *tfoX* knockout. TfoX, and CytR are master regulators and co-regulate natural competence 374 induction<sup>8,14</sup>. TfoX transcription is induced on chitin and facilitates expression of both *comEA* and *cytR*. 375 The induction of *comEA* therefore serves as a biomarker for successful competence induction as well as 376 functional chitin metabolism. The transcriptional repressor, CytR, regulates genes involved in 377 scavenging and metabolizing nucleotides. The expression of TfoX is reduced in a  $\Delta cyaA$  mutant defective in synthesizing the secondary messenger cyclic adenosine monophosphate (cAMP). 378 Supplementation of cAMP restores the expression of TfoX<sup>44</sup>. Altogether this demonstrates a link 379 between CyaA and competence induction. Finally, bacterial populations can collectively control gene 380 381 expression via QS. In V. cholerae, high cell densities relieve repression of the QS master regulator, HapR. HapR then positively regulates the expression of comEA, which is required for successful 382 competence induction<sup>45</sup> via a cofactor QstR<sup>39</sup>. A direct indicator of HapR activity is hapA promoter 383 activity, as HapR directly derepresses the hapA promoter<sup>46</sup>. By using the promoter regions of comEA, 384 385 cyaA, cytR and hapA as reporters, we aimed to compare if the reduced transformation frequencies were 386 related to either an impaired competence induciton, nucleotide scavenging, CCR, or QS.

We implemented the previously published transcriptional reporter fusion construct (pBR-[Pgyra]GFP-387 [P<sub>comEA</sub>]dsRed)<sup>47</sup>. This plasmid expresses the fluorescent proteins DsRed.T3[DNT]<sup>48</sup> under control of the 388 comEA promoter, and GFP.mut3<sup>49</sup> the under control of the promoter of gvrA (housekeeping gene), 389 390 respectively. We created additional constructs by replacing the promoter region of *comEA* with either 391 cyaA, cytR, or hapA. The cells were incubated on chitin for 24 h, harvested, and imaged. The fluorescence of each cell was quantified for both channels. The ratio between the reporter (red 392 393 fluorescent protein, RFP) and internal control (green fluorescent protein, GFP) is displayed for each 394 reporter in each strain background, see Figure 7.

395 For the *comEA* promoter activity the  $[P_{comEA}]$ dsRed expression relative to  $[P_{gyrA}]$ GFP expression are depicted in Figure 7a; Figure 7b for representative images. The wild-type population demonstrated the 396 397 highest ratio between RFP and GFP signal (wild-type: median = 0.54,  $\Delta metE$ : median = 0.26,  $\Delta asnB$ : median = 0.13,  $\Delta t foX$ : median = 0.06). In addition to a weaker signal, only a fraction of the population 398 399 was RFP positive. This is in accordance with previous results<sup>47</sup>. All mutant backgrounds expressed 400 significantly lower intensity ratios relative to the wild-type population (Kruskal-Wallis test followed by 401 Dunn's test set with wild-type as control group, all p-values < 0.0001). Both  $\Delta metE$  and  $\Delta asnB$  displayed 402 greater interquartile ranges than the wild-type and  $\Delta t fo X$ . This suggests greater variation in expression levels for  $\Delta metE$  and  $\Delta asnB$ . The  $\Delta asnB$  population showed a more skewed distribution than  $\Delta metE$ , 403 404 because most cells had very low P<sub>comEA</sub> activity, while a small fraction of cells had high activity (Figure 405 **7b**). The wild-type population had lower variation, and the signal variation in the  $\Delta t f o X$  population was 406 even lower. This is in accordance with the literature as TfoX is strictly required for comEA expression<sup>8,17</sup>.

- 407 For the *cyaA* promoter activity relative to the control is displayed in Figure 7c, representative images
- 408 in Figure 7d. The RFP/GFP ratios differed significantly between mutant background and wild-type
- 409 (Kruskal-Wallis test followed by Dunn's test set with wild-type as control group, all p-values  $\Delta metE$ :
- 410 <0.0001,  $\Delta asnB$ : 0.0391,  $\Delta tfoX$ : 0.0002). Interestingly, the  $\Delta metE$  population exhibited a lower ratio
- 411 (median = 1.87) compared to the wild-type (median = 6.20), but with greater variation. In contrast,
- 412  $\Delta asnB$  (median = 6.59), and  $\Delta t foX$  (median = 6.47) populations had a slightly higher ratio compared to
- the wild-type.
- 414 The RFP/GFP ratios for the *cytR* promoter constructs were noticeably higher in the mutant backgrounds
- 415 compared to the wild-type (Kruskal-Wallis test followed by Dunn's test set with wild-type as control
- 416 group, all p-values <0.0001). Similar to the  $\Delta t$  foX, the amino acid metabolism defective mutants appear
- 417 to have derepressed *cytR* (Figure 7e, representative images in Figure 7f).
- 418 The *hapA* promoter constructs demonstrated significantly lower ratios for the mutants compared to the
- 419 wild-type (Kruskal-Wallis test followed by Dunn's test set with wild-type as control group, all p-values
- 420 <0.0001). Additionally, the mutants exhibited lower variation (Figure 7g, representative images in
- 421 **Figure 7h**).

These overall results demonstrate dysregulation of several pathways in the mutants, ultimately failing to induce competence at wild-type levels. This could explain the reduced transformation frequencies observed previously for the amino acid metabolism defective mutants. These findings indicate that an intracellular balance of amino acids is important for natural transformation by aiding competence induction in *V. cholerae*.

- 427
- 428

- 430
- 431
- 432
- 433
- 434



**Figure 7** Visualization of the expression of associated pathways required for competence expression within deletion strains. (a., c., e., g.) Shows boxplots of the RFP/GFP ratios for the *comEA*, *cyaA*, *cytR*, and *hapA* promoter constructs, respectively. (b., d., f., h.) Depicts representative images of each promoter construct *comEA*, *cyaA*, *cytR*, *hapA* respectively. The top row shows the fluorescent channels for RFP signal for wild-type,  $\Delta metE$ ,  $\Delta asnB$ , and  $\Delta tfoX$ . The bottom row shows the corresponding GFP images, the [P<sub>g/rA</sub>]GFP internal control. All images were leveled to the wild-type image of each dataset. \* indicates a statistical significance, p<0.05. The scalebar is 2 µm.

## 436 Discussion

437 Natural transformation is an elaborate and energy-consuming process that for *V. cholerae* occurs under

438 specific conditions. Further, the current prevalent El Tor biotype is more efficient in DNA uptake than 439 its predecessor and it is speculated that this could be the reason for why the classical strain was

440 replaced<sup>50</sup>. To investigate the complexity of natural transformation, we generated a robust transposon

441 library within V. cholerae A1552, the analysis of which can be a useful resource for future studies

- 442 involving DNA uptake and recombination (Table S.3). Our analysis revealed a novel and prominent
- 443 role for amino acid metabolism, where the individual genes modulated the natural transformation
- 444 frequencies. Deletion of amino acid synthases result in reduced transformation frequencies, whereas the
- 445 addition of specific amino acids either fully or partially recovered the phenotype. Further we found a
- 446 cell-to-cell variation within the transcriptional activity of the competence-associated gene, *comEA*. Our
- 447 results show that amino acid metabolism genes modulate the progression of natural transformation.

448 Transposon insertion sequencing is a powerful tool to investigate the genetic response to a specific 449 condition. A drawback when using this method is experimental noise, mainly referring to genetic drift 450 and sampling error<sup>25</sup>. The genetic drift and sampling will directly impact the complexity and saturation of the screen with further implications for the analysis. Any experimental bottlenecks, such as sample 451 452 preparation, should therefore be considered and minimized and the biological bottleneck should be 453 sampled thoroughly. Our major bottleneck was low transformation frequencies, as only a fraction of 454 cells takes up DNA and recombine. However, this resulted a random loss on insertion. We therefore 455 optimized the transformation assay to obtain a higher number of transformants, sampled in excess and 456 compared the donor DNA receiving sample to a control population. In addition to identifying a role for 457 amino acid metabolism, our genetic screen confirmed a large number of genes involved in both DNA 458 uptake and recombination. Additionally, the TIS output should be validated by other approaches to 459 assess the expected gene fitness derived from the screen<sup>51</sup>. Our TIS screen identified 263 genes to be conditionally essential. Out of which we generated a validation set of knockouts that all resulted in 460 reduced transformation frequencies (Table S. 2, and Figure 4), and corroborated corresponding 461 462 published phenotypes. It should be noted that in our screen deletion of *tsaP* abolished transformation frequencies, however in Jaskólska, et al. this deletion demonstrated only a 10-fold reduction compared 463 to wild-type<sup>37</sup>, likely due to slight variations in experimental conditions. To our knowledge, the genes 464 pmg, asnB, metE, carB, lapD, and ppc have not been characterized in terms of natural transformation. 465 466 Furthermore, our screen was conservatively assessed, found to be robust and can be a useful resource 467 for future studies involving DNA uptake and recombination.

468 We find that the defective amino acids metabolism dysregulates pathways upstream of competence 469 development (Figure 7). The *comEA* promoter activity is the only pathway that displays a graded 470 response depending on the mutant background (Figure 7a). Whereas the defective amino acids' impact 471 on competence development also appears to affect the other pathways nucleotide scavenging, CCR, and 472 OS. The overall irregular cvaA expression detected in our reporter assay could impact nucleotide 473 scavenging potentially by affecting the levels of cAMP which would have repercussions for tfoX474 expression<sup>44</sup>, further inhibiting competence development. The amino acid metabolism mutants also 475 seem to have derepressed CytR promoter activity, it is thus conceivable that the CCR pathway is not 476 functioning optimally in the mutants. Further, the result for the hapA promoter activity indicates that 477 HapA is downregulated suggesting an inhibitory effect on HapR in the mutants, which would have 478 implications for QS. The amino acid metabolism mutants demonstrate throughout statistically different 479 promoter activity from wild-type following instead a similar trend to that of the  $\Delta t fo X$ . Tfox is a master

regulator for natural transformation. It is therefore intriguing that the amino acid mutants behave similarly within all flanking regulatory pathways expect for the *comEA* promoter activity, that instead demonstrates a graded response, more comparable to the transformation frequencies. Further we see more variation in the transformation frequency for  $\Delta metE$  as compared to  $\Delta asnB$  (Figure 4). We also find that the *asnB* mutant is a true auxotroph while the *metE* mutant can be rescued by redundancies within the amino acid pathway (Table 4). Likely contributing to the variation we detect indicating more heterogeneity within the defective amino acid metabolism mutants.

487 The defective amino acid metabolism mutants demonstrated lower comEA promoter activity than wild-488 type levels, further demonstrating a graded response within the amino acid metabolism genes. This 489 indicates that the reduced transformation frequencies could be explained by a role of amino acid 490 metabolism in competence induction and or chitin metabolism, as the transformation frequencies follow 491 a similar trend (Figure 4). The defective amino acid metabolism genes have varying responses to the 492 DNA uptake and integration while the transformation frequencies for  $\Delta t foX$  and *comEA* reporter activity 493 is inhibited. Further we observe heterogeneity within the defective amino acid metabolism genes, is 494 more prominent within  $\Delta asnB$ , compared to  $\Delta metE$ . A fraction of the  $\Delta asnB$  population demonstrated 495 comparable *comEA* promoter activity at or above wild-type levels. It is therefore plausible that these 496 cells are competent and capable of taking up and integrating external DNA and could explain the barely 497 detected transformation frequencies we observe for the amino acid metabolism mutants. On a population 498 basis we find that the defective amino acid metabolism genes severely reduce transformation 499 frequencies, while on a single cell level they appear to be a mixture of varying levels of competence. We, therefore, hypothesis that there is an optimal threshold for *comEA* promoter activity to achieve 500 501 competence induction, this being established by an optimal amino acid metabolism, comparable to 502 competence induction in *Bacillus subtilis*<sup>52</sup>. Where inherent molecular noise results in a bistabile gene 503 expression resulting in competence development<sup>53</sup>.

504 Addition of external amino acids had an inhibiting effect on transformation frequencies (Figure 5b). As 505 far as we know the only studies that investigates the effect of amino acids on natural transformation was performed by Lichev et. al<sup>15</sup>, and Wilson et. al<sup>16</sup>. Both studies were performed in Gram-positive bacteria 506 507 Micrococcus luteus, and Bacillus subtilis, respectively. In the Lichev study they propose a regulatory 508 model, where amino acids have both stimulatory and inhibitory roles impacting competence 509 development. Wilson et. al detect stimulatory and inhibitory effects of amino acids on competence 510 development when added during early stationary phase of growth. Stating that amino acids play a defining role in competence development, and they could detect either an stimulatory or inhibitory 511 512 response within 5 min of addition of amino acids. In our study we show that casamino acids significantly reduce transformation frequencies in both a concentration- and time- dependent manner. It is probable, 513 casamino acids can function as nutrition <sup>54</sup>, inhibiting competence development via the catabolite 514 repression pathway as this is a prerequisite for competence induction<sup>13</sup>. Interestingly we find this to be 515 516 alleviated in a time-dependent manner. At the 24 h and 30 h time points we find that the transformation 517 frequencies are impaired to a much lesser extent, and only for the higher concentrations. At the 24 h timepoint when DNA and casamino acids are added at the same time, it is feasible the effect of casamino 518 519 acids takes far longer to exert an effect while DNA internalization is immediate. This is supported by 520 our finding demonstrating that maximum transformation frequencies are achieved within 1 h post DNA induction (Figure 5d). It has been hypothesize that there are several pre-assembled or semi-assembled 521 DNA uptake machinery present within the cell<sup>56</sup>, indicating that DNA internalization is rapid as the cell 522 523 machinery appear to be somewhat primed for assembly. Further, there is evidence of immediate DNA

- 524 uptake within *V. cholerae* A1552 $\Delta$ *dns* when donor DNA is simultaneously inoculated on chitin<sup>17</sup>. In the 525 same study Blokesch et al. further show that *V. cholerae* needs to be on chitin for at least 6 h before 526 transformation frequencies can be detected. As we find distinct fractions or subpopulations that exhibit 527 wild-type level *comEA* promoter activity after 24 h on chitin, it is likely that competence is already 528 induced and the cells are ready for DNA uptake minimizing the effect of casamino acids. These cells
- are likely to be competent and achieve transformation frequency. Recombination, however, takes longer
- than internalization and has been found to require several attempts<sup>57</sup>.
- 531 Within the context of our study, additional amino acids could function as nutrition hindering competence induction. However, as the concurrent addition of amino acids and donor DNA did not significantly 532 533 impact transformation frequencies, likely due to rapid internalization of DNA uptake and possibly a 534 readiness for DNA that trumps amino acids. Further we also found less growth in samples receiving 535 amino acids concurrently or after donor DNA (Figure S 1), suggesting that the presence of donor DNA 536 could initiate a growth arrest and promote DNA uptake. This has been seen to occur in both Bacillus subtilis<sup>58</sup>, and Acinetobacter baylyi<sup>59</sup>. Taken together with our results this could suggest competence 537 538 induction is a binary mechanism aided by optimal amino acid metabolism, and further that once the 539 threshold for competence is breached, the cells will attempt DNA internalization. This could be an 540 intriguing strategy to sequester DNA as a resource, somewhat similarly to the efficient uptake and utilization of chitin that V. cholerae exhibits<sup>60,61</sup>. 541
- 542 Our findings indicate that amino acid metabolism plays a stabilizing role in the progression of 543 competence induction and natural transformation. Further, we speculate that functional amino acid 544 metabolism act as a checkpoint. However, the specific function of this checkpoint remains unclear. 545 Further investigation is required to precisely determine the role of amino acid metabolism within the 546 process of natural transformation.
- 547

- 549 Acknowledgment
- 550 We would like to thank Melanie Blockesch and the Laboratory of Molecular Microbiology for the
- donation of the strain *V. cholerae* A1552 Wild type, O1 El Tor Inaba, RifR, and reporter constructs:
- 552 pBR-GFP\_dsRED\_Kan
- 553 pBR-GFP-[PcomEA]dsRED-Kan
- 554 pBR-GFP PgyrA\_PcomEA dsRED\_Kan
- 555

- 557 Declaration of Interests
- 558 The authors declare no Competing Financial or Non-Financial Interests.

## 559 Methods

#### 560 Strains, media, and culture conditions

561 Wildtype Vibrio cholerae A1552 was grown on Luria Broth agar plates supplemented with 50 ug/mL

562 rifampicin (Rif), while the V. cholerae transposon mutant library was selected on LB/Rif/Km,

563 kanamycin (Km) concentration was 50ug/mL. Escherichia coli SM10 lambda pir, carrying the

- 564 conjugative suicide vector pSC186, was grown in LB supplemented with 50ug/mL carbenicillin (Carb).
- 565 All *V. cholerae* and *E. coli* strains were grown overnight at 37°C unless otherwise indicated. See **Table**
- 566 **5** for complete strain list.

#### 567 Transposon insertion sequencing

#### 568 Library construction by conjugation

569 Random insertion of the transposon occurred upon delivery of a non-reproducible plasmid containing a 570 transposable element through conjugation. The transposable element is a modified 571 Tn Mariner containing a kanamycin (Km) resistance gene flanked by inverted repeats. By selecting for 572 the transposable element after conjugation, a library of V. cholerae was generated. Every single 573 bacterium has one transposon randomly inserted within its genetic material, which potentially disrupts 574 a gene function. pSC186 was conjugated into V. cholerae A1552 in independent reactions. For each 575 conjugation reaction 250 µl overnight culture E. coli SM10  $\lambda$  pir carrying pSC186 and 250 µl overnight 576 culture of V. cholerae A1552 was washed in PBS (1min x 13'000xg), pelleted and finally resuspended 577 in a total of 50 µl PBS. The final resuspension was then spotted onto 0.45mm HA filter (Sigma) placed 578 on LB plates and incubated for 1.5h at 37°C to allow for conjugation, along with single strain controls 579 treated similarly. This yielded 41'117 transposon mutants per conjugation. 139 conjugation reaction 580 were used for the library to ensure high density and maximum coverage of potential insertion sites. After 581 conjugation the filters were transferred to Eppendorf tubes containing 1 mL LB and resuspended by 582 vortex for 20 s and pipetting. Resuspended cells from all filters were pooled pelleted and resuspended 583 in 255 ml LB, the entire volume was plates. 100 µl distributed amongst 251 LB/ Rif/ Kan plate (100 mm x 15 mm) and grown at 30°C overnight, ~18 h. The input library yielded ~5.7 M CFUs, where each 584 585 colony represents one insertion mutant. The remaining culture was plated on LB Sm to check for 586 spontaneous.

#### 587 Input transposon library applied to optimized natural transformation assay

588 The TIS library was grown to early exponential phase, transferred to supplemented  $M9^+$  media, and 589 incubated on chitin flakes for natural competence induction. The next day, the populations were divided 590 into two conditions, as follows: One population received donor DNA denoted as the "TnNT" population. 591 The second " control " population did not receive donor DNA. Both populations became competent 592 during overnight incubation due to exposure to chitin, however only the population receiving donor 593 DNA could take up the DNA and undergo chromosomal integration. The following day, the TnNT 594 population was removed from chitin by vortexing. A fraction of the sample (450µl) was used for colony 595 determination by serial dilution and plated on both selective (Sm) and non-selective LB plates. The ratio 596 of the population sizes in absence and presence of Sm was used to determine the transformation 597 frequency. The control assay was plated on non-selective LB agar plates. Additionally, the control 598 sample was also tested for spontaneous resistance to Sm by plating selective plates. The remaining liquid 599 culture of both conditions was plated on 15mm Petri dishes for outgrowth and downstream sequencing 600 preparation. The control sample was plated on non-selective plates, while the TnNT was plated on plates 601 containing Sm. All colonies were harvested the next day and prepared for whole genome sequencing. A

602 total of  $4.2 \times CFUs$  were harvested for the control assay. While the TnNT assay consisted of  $1.3 \times CFUs$ .

#### 603 Transposon insertions sequencing analysis after natural transformation assay

Before the sequences could be statistically analyzed the sequences were trimmed and unwanted 604 sequence were removed, using cutadapt<sup>68</sup>. All sequences lacking the adapter were discarded. The 5' end 605 of all sequences were trimmed, and short sequences were discarded, to avoid low quality reads. The 606 sequences were mapped to the genome using Bowtie2<sup>69</sup>. The Bowtie2 default mapping criteria were 607 used, as this was stringent enough. The sequence statistics are summarized in Table 2. The control 608 609 sample yielded 28.8M reads with 85% TA sites detected. The TnNT output had 30.5M reads and reached 610 a TA insertion of 72%. Both the TnNT and control output were the result of two merged runs. The 611 control sample had almost twice the amount of reads as compared to the initial input library. We 612 sequenced the sample much deeper and therefore assume the input is slightly higher than 84%. However, 613 85% is likely the maximum as the total number of hits does not differ significantly even though the 614 number of reads almost doubled. The number of hit sites between TnNT output sequencing runs # 1, 615 and # 2 are slightly different as the merged dataset has a slight increase in the percentage of TA sites 616 hit. This is minor and does not affect the main results, therefore the analysis was performed on the 617 concatenated sequencing data. The two datasets were compared using the ARTIST pipeline<sup>25</sup>. In brief, the datasets are normalized to limit replication bias. The analysis then finds the individual likelihood of 618 619 each TA site being disrupted for each dataset separately. By implementing a sliding window analysis 620 that is used to inform a Hidden Markov Model (HMM). The resulting datasets are then used to simulate 621 several experimental bottleneck events. The disruption ratios are run through the simulated bottlenecks 622 to assess the probabilities of the transposon insertions and evaluate whether the locus is essential. This 623 allows us to see which genes are important for natural transformation. Due to the resolution of our input 624 data and the statistical analysis of the pipeline, we can also assess intergenomic regions as well as detect 625 genetic domains that are important. However, due to the amount of data obtained, this was excluded 626 from our analysis.

#### 627 TIS sample preparation and sequencing

628 The entire culture of TnNT and outgrowth was used for gDNA extraction. The leftover purified gDNA 629 was stored at -20 degrees. Genomic DNA was extracted following the Promega protocol. At least 20ml of each sample underwent lysis, protein removal and DNA precipitation via 100% isopropanol. The 630 631 gDNA pellet was carefully washed in 75% ethanol and left to dry at RT for 15-30min. Each gDNA 632 pellet was resuspended in 100ul nuclease free water and incubated overnight at 4°C. We avoided flicking and mixing the liquid in the tube as this resulted in dissolving impurities. The next day the purity and 633 634 concentration of each sample was examined by nanodrop. Only the highest concentrations and purest 635 samples were used for downstream sample preparation. gDNA was randomly fragmented to 600-300 bp 636 pieces by sonication with a Covaris M220 focused-ultrasonicator. 25-30ug gDNA was pooled and aliquoted into covaries tubes (microTUBE-50 AFA Fiber Screw-Cap). Each tube could take 5ug gDNA 637 each, supplemented with 5µl low EDTA buffer (TE Buffer pH 8.0: 10mM Tris-HCl pH8.0,1mM EDTA 638 639 pH 8.0.) the ends of the DNA fragments were adapter ligated (using previously published sequences) 640 and subjected to two rounds of PCR amplification with the main purpose being to enrich transposon 641 insertions flanked by genomic DNA and as well as attaching the hybridization sequences P5 and P7, 642 including a barcode and spacers. PCR reactions were carried out with Phusion or Onetaq, according to 643 the manufacturer's instructions, primers are listed in Table 7. Before sequencing the fragments were 644 purified by gel extraction 2% agarose in TBE buffer, 300-600bp was excised. Sequencing was

- 645 performed with an Illumina MiSeq sequencer using the MiSeq V3, 150-cycle kits. The resulting reads
- 646 were evaluated using FastQC, processed with cutadapt, and mapped to the genome with Bowtie2. A
- 647 published pipeline known as ARTIST pipeline was followed<sup>25,70,71</sup>.

## 648 Natural transformation assay: optimizing the transforming DNA size and

#### 649 concentrations

650 The natural transformability of V. cholerae was tested by incubating the bacterial on chitin in minimal media. The transformation assay was based on the optimized protocol from Blokesch<sup>72</sup>, with slight 651 652 modifications made to the media due to solubility issues. The transforming material was a PCR fragment amplified from genomic DNA of c6706. This is a non-transforming strains due to a frameshift that 653 results in insufficient expression of LuxO and ultimately impairs quorum sensing (Stutzman and 654 655 Blokesch, 2016). The strain contains a point mutation within the *rpsL* gene that confers resistance to 656 streptomycin. We avoided gDNA as this could lead to uptake of DNA that would be outside of our 657 detection. We also tested different concentrations of our transformation DNA (tDNA), as well as varying stretched of DNA flanking the point mutation (500bp 1000bp, and 2000bp). the tDNA with 2000bp had 658 659 the highest recombination frequency. We also tested the amount of DNA 0.5, 1µg, 2µg, 4µg, and 10µg. 660 2µg gave a sufficiently high transformation frequency, close to saturation, while being experimentally efficient. The transformation assay was performed using chitin flakes from shrimp shell (Sigma). The 661 frequencies were calculated by dividing the number of streptomycin resistant transformants on the total 662 number of CFUs. the standard deviation was shown as error bars. and are a result of three biological 663

## 665 Computation analysis, COG

replicates if not otherwise specified.

664

Function annotation was performed using the eggNOG-mapper v5.0<sup>26</sup>. The sequences were uploaded to 666 the eggNOG database and blasted the V. cholerae genome. The COG assignments for then used for an 667 668 enrichment analysis, which was calculated as the fraction of conditionally essential group found in each COG category divided by the fraction of the whole genome with that COG<sup>73</sup>. A random subset of 36 669 hits were chosen and cross-referenced to ensure the COG annotations were congruent with other 670 databases available online: KEGG<sup>74</sup>, PATRIC<sup>75</sup>, and UniProt were used. We found no discrepancies 671 672 between the COG annotations and these databases. Some sequences were associated with several COGs, 673 aiming to minimize bias in the analysis we included all assigned COGs. An example of such a sequence 674 is PilU. It was assigned both cell motility, and intracellular trafficking. The protein is involved in the type IV pilus and functions as an PilT-dependent retraction ATPase<sup>76</sup>. The pilus is important for cell 675 676 surface anchoring and extends and retracts through a pore in the outer membrane of V. cholerae. Several other pilus proteins also had this "double" classification, indicating there is functional overlap between 677 678 the two COGs. Regardless, the minor differences detected between the COG annotations provided by 679 eggNOG and other databases did not impact the screen as a whole. The COG enrichment analysis

680 revealed that amino acid metabolism was a major functional group.

## 681 Construction of *V. cholerae* knockouts

682 Knockouts were generated by allelic exchange vector. PCR products obtained from primers listed in 683 **Table 6** were ligated into pCVD442 via isothermal assembly (ITAC) cloning, generating deletion 684 plasmid for allelic exchange. This vector does not replicate in V. cholerae and allows for sucrose counter 685 selection, as described previously <sup>77</sup>. The deletion constructs disrupt the gene of interest with a TetAR,

conferring resistance to tetracycline, creating in frame deletions leaving 30bp of the start and end of the

687 gene. The tetracycline resistance marker was flanked by 2kb homology regions. The entire 6kb region

was PCR amplified and used as donor DNA in our optimized natural transformation assay, transformants

- 689 were selected on tetracycline0.75ug/ml. This is above the MIC obtained for our A1552 strain.
- 690 Traditional allelic exchange did not function as the tetracycline resistance mechanism in concert with
- levansucrase, encoded by sacB, increases the counter-selection by orders of magnitude <sup>78</sup>, and likely had
- 692 a toxic effect on V. cholerae. While the plasmids were already created we attempted homologous
- 693 recombination using the natural transformation protocol <sup>72,79</sup>.

## 694 Addition of casamino acids and addition carbon sources to the natural transformation

## 695 assay.

- Three independent ON cultures of wild-type V. cholerae were diluted 1:100 in LB and grown with 696 697 aeration at 37°C until the cultures reached an OD600 of 0.3. After which, 800 µl of each culture was 698 divided into Eppendorf tubes, spun down (5600 x g 5 min, RT), washed in M9+ media spun down again, resuspended in M9<sup>+</sup> media either containing CA or not. 18tubes across triplicates were resuspended in 699 M9<sup>+</sup> media containing CA, this would be timepoint zero. Each CA concentration was performed for 700 701 each triplicate and were as follows: 0.1 %, 0.2 % 0.5 %, 1.0 %, 2,0 %, 4.0 % w/v CA, final volume 702 equaled 1mL for all samples. Each resuspended pellet was then transferred to a culture tube containing 703 chitin flakes per triplicate, and incubated statically at 30°C. After 6 h 18 tubes containing M9+ media 704 were supplemented with concentrated CA, stock was 20%, to reach the final concentration of the 705 previously mentioned concentrations and placed back into 30°C. This was the 6h timepoint. After 24h 706 all tubes were carefully decanted and fresh M9+ media was added. All tubes previously containing CA 707 received the same concentration again, and an additional 18 tubes received the CA concentrations 708 mentioned above, this is the 24 h timepoint. Before placing the tubes back into the incubator all tubes 709 received 2 µg freshly prepared donor DNA. 6 h later another 18 samples received concentrated CA to 710 reach the previously mentioned CA concentrations, the 30h time point 48 h after the experiment initiated 711 the samples were harvested by vortex for 20 s RT and plated for CFU count on LB agar both with and
- 712 without Sm.

## 713 DNase treatment

- Three independent ON cultures of wild-type V. cholerae were diluted 1:100 in LB and grown with
- aeration at  $37^{\circ}$ C until the cultures reached an OD600 of 0.3. After which, 800  $\mu$ l of each culture was
- 716 divided into Eppendorf tubes, spun down (5600 x g 5 min, RT), washed in M9+ media, spun down, and
- resuspended in  $M9^+$  media. The suspensions were transferred to chitin flakes and incubated statically at
- 718 30°C, all samples were prepared in triplicates. After 24 h donor DNA wa added to all samples except
- for the negative controls. 1  $\mu$ g DNase was added to the sample tubes after 1, 3, and 5 h. The DNase was
- incubated for 30min in each sample before immediate removal from chitin by vortex for 20 s and plated
- for CFU count on LB agar both with and without Sm. Both the positive and negative controls were left
- on chitin until the next day, followed our standard natural transformation assay.

## 723 Amino acid drop test

- 724 ON cultures of wild-type,  $\Delta metE$ , and  $\Delta asnB$  strains were diluted and grown to an OD of 0.1. cells were
- evenly spread on LB agar plates. A line was drawn down the middle of each plate. On one side, the
- 726 wild-type cells were spread evenly on the other half either  $\Delta \underline{metE}$  or  $\Delta asnB$  was spread, special care was
- taken to avoid the two strains touched. Fresh 1 M stocks of amino acids were prepared of glycine,
- proline, and serine. Methionine 0. 3M, asparagine 0.19 M and glutamine 0.2 M. Amino acids tested

- were and methionine. 10µl of each amino acid solution was placed at the center of the plate between the two strains, wild-type worked as a growth control. Each plate was prepared in triplicate, using the same amino acid stock. Plates were incubated at 30°C for 18 h and checked for growth. After which the plates
- stayed at RT and were checked for growth every day for three days total.

### 733 Promoter reporter constructs, epi fluorescent microscopy settings

The reporter construct pBR-[P<sub>evrA</sub>]GFP-[P<sub>comEA</sub>]dsRed, along with an empty plasmid lacking promotor 734 regions was gifted by Blokesch<sup>47</sup>. Using the empty plasmid we created three additional reporter 735 736 constructs:  $pBR-[P_{gyrA}]GFP-[P_{cyaA}]dsRed,$  $pBR-[P_{gyrA}]GFP-[P_{cytR}]dsRed,$ and pBR-[PgyrA]GFP-[PhapA]dsRed. The constructs are transcriptional fusions of promoter regions, P<sub>cvaA</sub>, P<sub>cvtR</sub>, and P<sub>hapA</sub>, and 737 genes encoding a fluorescent protein (FPs). The FPs used were GFP.mut3<sup>49</sup>, and DsRed.T3[DNT]<sup>48</sup>. 738 739 This is a slightly outdated FP pairing as the protein folding for the GFP variant is much faster than 740 DsRED, however, this did not impact our assay as the timeframe for induction was 24h and protein 741 stability was more important. Additionally, we decided to keep this pairing to allow for comparison with 742 the original study<sup>47</sup>. The co-expression of these FPs is also well-suited as they have distinct peaks. The 743 channels were imaged sequentially, and no spectral bleed-through was detected. Each of the reporter 744 constructs were transferred to the wild-type,  $\Delta metE$ ,  $\Delta asnB$ , and  $\Delta tfoX$  strains, respectively. As, V. *cholerae* has a plasmid defense system, it is likely to remove plasmids even under selective conditions. 745 746 To ensure detection of the reporter constructs was correctly evaluated the promoter region of the constitutively expressed housekeeping gene, gyrA ([PgyrA]GFP), functioned as an internal control for each 747 plasmid was used. As such only [Pgyra]GFP positive cells were included from the analysis. The strains 748 749 were incubated on chitin for 24h, harvested, and imaged with a 1% agar patch.

750 ON cultures of wild-type,  $\Delta metE$ ,  $\Delta asnB$ ,  $\Delta carB$ , and  $\Delta tfoX$  were prepared as normal for competence 751 induction on chitin. After 24 h on chitin the samples were harvested by vortex and images one by one. Epifluorescence images were acquired using a DeltaVision Elite Imaging system with Olympus IX-71 752 753 base (GE healthcare), EDGE / sCMOS camera, solid state illumination source. Filters used were 754 GFP/FITC 475/28, and TRITC 542/27 along with an oil immersion objective Olympus U-Plan Fluorite 755 100X/1.30. Images were acquired using software "Softworx" built-in panel function, as well as the 756 hardware-based, and image-based autofocus unit. Exposure time for both GFP and TRITC channels 757 were set to 600 ms. No foci were detected and the fluorescent signal was evenly spread throughout the cells. The GFP channel was used to generate masks, which were then overlayed on both GFP and RFP 758 759 channels to extract the corresponding intensity profiles. The ratio between channels was calculated on a single- cell level and plotted as a boxplot, no background subtraction or normalization was performed. 760 761 The RFP reporter signal was divided by the corresponding GFP internal control signal for each 762 individual cell.

- 763
- 764
- 765
- 766
- 767

# 768 Tables:

| Table 5 St               | rain list                                                                                              |                                                                                                                                                                                                                                                                               |                                                           |
|--------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Name<br>used in<br>study | Genotype                                                                                               | Relevant description                                                                                                                                                                                                                                                          | Source                                                    |
| A1552                    | A1552 Rif <sup>R</sup>                                                                                 | Vibrio cholerae O1 El Tor biotype Inaba<br>isolate containing a mutation that makes it<br>resistant to rifampicin (Rif). Used as wild-<br>type in this study.                                                                                                                 | Melanie Blokesch<br>https://bacdive.dsmz.de/strain/139869 |
| C6706                    | C6706 Sm <sup>R</sup>                                                                                  | Vibrio cholerae O1 El Tor biotype Inaba<br>isolate containing a mutation that makes it<br>resistant to streptomycin (Sm). Used as<br>source to transfer the Sm resistance.                                                                                                    | Matthew Waldor <sup>80</sup>                              |
| SM10 λpir                | thi thr leu tonA lacY supE<br>recA::RP4-2-Tc::Mu, λpir<br>phage lysogen                                | <i>E. coli</i> carrying the transfer genes of the<br>broad host range IncP type plasmid RP4<br>integrated in its chromosome. Can<br>mobilizing mobRP4 plasmids. The presence<br>of λpir allows the replication of a defective<br>R6K suicide plasmid and derivatives thereof. | Matthew Waldor                                            |
| DH5α λpir                | sup E44, ΔlacU169<br>(ΦlacZΔM15), recA1, endA1,<br>hsdR17, thi-1, gyrA96, relA1,<br>λpir phage lysogen | E. coli standard strain for cloning and<br>propagation of plasmids. The presence of<br>$\lambda$ pir allows the replication of a defective R6K<br>suicide plasmid and derivatives thereof.                                                                                    | Matthew Waldor                                            |
| ΔtfoX                    | A1552 tfoX::tetRA                                                                                      | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>tfoX</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |
| ΔtsaP                    | A1552 tsaP:tetRA                                                                                       | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>tsaP</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |
| ΔmshL                    | A1552 mshL::tetRA                                                                                      | Strain A1552 Rif <sup>R</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>mshL</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |
| ∆mshQ                    | A1552 mshQ::tetRA                                                                                      | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>mshQ</i> gene of <i>V. cholerae</i> O1 El Tor<br>strain A1552.                                                                                            | This study                                                |
| Δpmg                     | A1552 pmg::tetR                                                                                        | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>pmg</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                             | This study                                                |
| ΔpilW                    | A1552 pilW::tetRA                                                                                      | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>pilW</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |
| ΔasnB                    | A1552 asnB::tetRA                                                                                      | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>asnB</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |
| ∆metE                    | A1552 metE::tetRA                                                                                      | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>metE</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |
| ∆tfoS                    | A1552 tfoS::tetRA                                                                                      | Strain A1552 Rif <sup>R</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>tfoS</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |
| Δ <i>carB</i>            | A1552 carB:tetRA                                                                                       | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>carB</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |
| ΔΙαρD                    | A1552 lapD::tetRA                                                                                      | Strain A1552 Rif <sup>®</sup> harboring a regulator and<br>the tetracycline resistance cassette replacing<br>the <i>lapD</i> gene of <i>V. cholerae</i> O1 El Tor strain<br>A1552.                                                                                            | This study                                                |

## 769 Table 6 Plasmid list

| Plasmids                             | Description                                                                                                                                                                                                                                  | Source                         |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| pSC189                               | R6K suicide plasmid containing the mobRP4 origin of transfer, a ampicillin/carbenicillin resistance gene ( <i>bla</i> ) and a <i>Tn</i> -mariner transposon. The transposon transfers a kanamycin/neomycin ( <i>nptII</i> ) resistance gene. | 24                             |
| pCVD442                              | R6K suicide plasmid containing the mobRP4 origin of transfer, a<br>ampicillin/carbenicillin resistance gene ( <i>bla</i> ) and a sucrose<br>counter-selectable marker ( <i>sacB</i> ).                                                       | 81                             |
| pCVD442-tfoX                         | Upstream and downstream fragments flanking <i>tfoX</i> and cloned to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC method.                                                                                             | This study                     |
| pCVD442-tsaP                         | Upstream and downstream fragments flanking <i>tsaP</i> and cloned<br>to flank a <i>tetRA</i> cassette on pCVD442 cut by XbaI using the ITAC<br>method.                                                                                       | This study                     |
| pCVD442-mshL                         | Upstream and downstream fragments flanking <i>mshL</i> and cloned<br>to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC<br>method.                                                                                       | This study                     |
| pCVD442-mshQ                         | Upstream and downstream fragments flanking <i>mshQ</i> and cloned<br>to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC<br>method.                                                                                       | This study                     |
| pCVD442-pmg                          | Upstream and downstream fragments flanking <i>pmg</i> and cloned<br>to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC<br>method.                                                                                        | This study                     |
| pCVD442-pilW                         | Upstream and downstream fragments flanking <i>pilW</i> and cloned<br>to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC<br>method.                                                                                       | This study                     |
| pCVD442-asnB                         | Upstream and downstream fragments flanking <i>asnB</i> and cloned to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC method.                                                                                             | This study                     |
| pCVD442-metE                         | Upstream and downstream fragments flanking <i>metE</i> and cloned to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC method.                                                                                             | This study                     |
| pCVD442-tfoS                         | Upstream and downstream fragments flanking <i>tfoS</i> and cloned to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC method.                                                                                             | This study                     |
| pCVD442-carB                         | Upstream and downstream fragments flanking <i>carB</i> and cloned to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC method.                                                                                             | This study                     |
| pCVD442-lapD                         | Upstream and downstream fragments flanking <i>lapD</i> and cloned<br>to flank a <i>tetRA</i> cassette on pCVD442 cut by Xbal using the ITAC<br>method.                                                                                       | This study                     |
| pBR-GFP-dsRed-Kan                    | pBR322 derivative, <i>aph</i> gene from pBKdsGFP, Ampr <sup>R</sup> , Kan <sup>R</sup> .                                                                                                                                                     | Melanie Blokesch <sup>47</sup> |
| pBR-[PgyrA]GFP-<br>[PcomEA]dsRed-Kan | Uprestream region of <i>comEA</i> cloned into Stul site of pBR-GRP-<br>dsRed-Kan.                                                                                                                                                            | Melanie Blokesch <sup>47</sup> |
| pBR-[PgyrA]GFP-[PcyaA]dsRed-<br>Kan  | Upstream region of PgyrA gene and PcyaA (~200bp each) cloned into Ndel/HindIII site for pBR-GFP-dsRed-Kan.                                                                                                                                   | This study                     |
| pBR-[PgyrA]GFP-[PcytR]dsRed-<br>Kan  | Upstream region of PgyrA gene and PcytR (~200bp each) cloned into Ndel/HindIII site for pBR-GFP-dsRed-Kan.                                                                                                                                   | This study                     |
| pBR-[PgyrA]GFP-[PhapR]dsRed-<br>Kan  | Upstream region of PgyrA gene and PhapA (~200bp each) cloned into Ndel/HindIII site for pBR-GFP-dsRed-Kan.                                                                                                                                   | This study                     |

| Table 7 | Primer list                                                                               |                                                                                                                    |
|---------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Primer  | Sequence                                                                                  | Description                                                                                                        |
| P0709   | TACCACGACCA[3d_A]                                                                         | Makes the adaptor, Chain terminator                                                                                |
| P710    | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTCGTGGTAT                                             | Makes the adaptor, Index Fork                                                                                      |
| P711    | CGCCTTCTTGACGAGTT                                                                         | Himmer3 out primer. Binds transposon                                                                               |
| P712    | GTGACTGGAGTTCAGACGTGTG                                                                    | IndexRPrimer, binds to the adaptor after adaptor ligation, brings in an index seqeunce                             |
| P713    | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT<br>CTGACTTATCAGCCAACCTGT         | P5 nr.1, amplifies from the transposon and includes a spacer sequence                                              |
| P714    | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT<br>CTCGACTTATCAGCCAACCTGT        | P5 nr.2 amplifies from the transposon and includes a spacer sequence                                               |
| P715    | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT<br>CTATGACTTATCAGCCAACCTGT       | P5 nr.3 amplifies from the transposon and includes a spacer sequence                                               |
| P716    | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT<br>CTTGTCGACTTATCAGCCAACCTGT     | P5 nr.4 amplifies from the transposon and includes a spacer sequence                                               |
| P717    | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT<br>CTTCGACGACTTATCAGCCAACCTGT    | P5 nr.5 amplifies from the transposon and includes a spacer sequence                                               |
| P718    | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT<br>CTGCAGCGACGACTTATCAGCCAACCTGT | P5 nr.6 amplifies from the transposon and includes a spacer sequence                                               |
| P719    | CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCT<br>CTTCCGATC                       | P7nr1 brings in th eP7 chip attachment site as<br>well as a barcode for identification. Binds the<br>indexsequence |
| P0024   | CTCTTATGAACGTGGCGAGC                                                                      | Amplify donor DNA, Rpsl including 2kb flank                                                                        |
| P0025   | ACCTGACTGACGAACGAACT                                                                      | Amplify donor DNA, Rpsl including 2kb flank                                                                        |
| P256    | TCAGCGATCGGCTCGTTG                                                                        | Amplifies tetracycline cassette                                                                                    |
| P257    | TCAATCGTCACCCTTTCTCG                                                                      | Amplifies tetracycline cassette                                                                                    |
| P0277   | caacgagccgatcgctga                                                                        | Test primer binds inside the Tet cassette, rev                                                                     |
| P0278   | cgagaaagggtgacgattga                                                                      | Test primer binds inside the Tet cassette, for                                                                     |
| P0192   | caacgagccgatcgctgattggtaggcgccaaacttag                                                    | Upstream fragment <i>tfoX</i> flank 2kb UptfoxtetR                                                                 |
| P0193   | cgagaaagggtgacgattgataagttaaagcgttagccacg                                                 | Upstream fragment <i>tfoX</i> flank 2kb tetDowntfoxF                                                               |
| P0194   | CGGGAGAGCTCGATATCGCATGCGGTACCTaccggcaccaatagactcag                                        | Downstream fragment <i>tfoX</i> flank 2kb UpnewtfoxF                                                               |
| P0195   | GTGATGGGTTAAAAAGGATCGATCCTCTAGatgaggccatgatccaactc                                        | Downstream fragment <i>tfoX</i> flank 2kb<br>DwNewTfoXR                                                            |
| P0279   | gtgctcaggcgtttcataatc                                                                     | <i>tfoX</i> , gDNA test primers, for                                                                               |
| P0280   | gcgcggtactgaaaccttat                                                                      | <i>tfoX</i> , gDNA test primers, rev                                                                               |

| P0262 | CGGGAGAGCTCGATATCGCATGCGGTACCTcgctgatagttacgcagcac | Upstream fragment <i>tsaP</i> flank 2kb             |
|-------|----------------------------------------------------|-----------------------------------------------------|
| P0263 | CGCAGGGCAACGAGCCGATCGCTGAcatgaccttgcttccttggt      | Upstream fragment <i>tsaP</i> flank 2kb             |
| P0264 | CGAGAAAGGGTGACGATTGAaccgagcagccagatgtagt           | Downstream fragment <i>tsaP</i> flank 2kb           |
| P0265 | GTGATGGGTTAAAAAGGATCGATCCTgttcgataaggtggcctttg     | Downstream fragment <i>tsaP</i> flank 2kb           |
| P0300 | TTCGAGCAGGGCTTGATACT                               | <i>tsaP</i> , gDNA test primers, for                |
| P0301 | ATGCCTGCTGCACTTTTCTT                               | <i>tsaP</i> , gDNA test primers, rev                |
| P0228 | CGGGAGAGCTCGATATCGCATGCGGTACCTaaacgtaatcgatggcgaac | Upstream fragment mshL flank 2kb                    |
| P0229 | CGCAGGGCAACGAGCCGATCGCTGAtttgacgactgttcgtctcgz     | Upstream fragment mshL flank 2kb                    |
| P0232 | CGAGAAAGGGTGACGATTGAacttggcaaaaagagctgga           | Downstream fragment mshL flank 2kb                  |
| P0233 | GTGATGGGTTAAAAAGGATCGATCCTctcggcaaacgagacaattt     | Downstream fragment mshL flank 2kb                  |
| P0292 | TTGTTTGAACAGGTGCTTCG                               | mshL, gDNA test primers mshLgDNASeqF                |
| P0293 | GGGTTCACTTGCACCTGATT                               | mshL, gDNA test primers mshLgDNASeqR                |
| P0253 | CGGGAGAGCTCGATATCGCATGCGGTACCTccttgcagtaatgctgcgta | Upstream fragment mshQ flank 2kb                    |
| P0254 | CGCAGGGCAACGAGCCGATCGCTGAgagagcaatgcaaaacatccc     | Upstream fragment mshQ flank 2kb                    |
| P0407 | CGGGAGAGCTCGATATCGCATGCGGTACCTGaatactctgcgcctcttgc | Downstream fragment mshQ flank 2kb                  |
| P0408 | atcaatcacaccaagagccccatggccttgaacaacactg           | Downstream fragment mshQ flank 2kb                  |
| P0286 | CCTTGCAGTAATGCTGCGTA                               | mshQ, gDNA test primers                             |
| P0287 | ACATTCGGAACCACGACTTC                               | mshQ, gDNA test primers                             |
| P0246 | CGGGAGAGCTCGATATCGCATGCGGTACCTtacccgcaccttggactaac | Upstream fragment <i>pmg</i> flank 2kb              |
| P0247 | CGCAGGGCAACGAGCCGATCGCTGAtgatgttggctaacgcttga      | Upstream fragment <i>pmg</i> flank 2kb              |
| P0250 | CGAGAAAGGGTGACGATTGAatactgcggagcgtgttctt           | Downstream fragment <i>pmg</i> flank 2kb            |
| P0251 | GTGATGGGTTAAAAAGGATCGATCCTgctggcgctggtactttatc     | Downstream fragment <i>pmg</i> flank 2kb            |
| P0298 | CAGCCGGGACAATTTACCTA                               | pmg, gDNA test primers                              |
| P0299 | ACTGTTTGGGGTACCGTCAG                               | pmg, gDNA test primers                              |
| P0210 | CGGGAGAGCTCGATATCGCATGCGGTACCTaaggcacctcagcacaaact | Upstream fragment <i>pilW</i> (VC0860) flank 2kb    |
| P0211 | CGCAGGGCAACGAGCCGATCGCTGAccaatgcaattgaaagcaga      | Upstream fragment <i>pilW</i> (VC0860) flank 2kb    |
| P0214 | CGAGAAAGGGTGACGATTGAcgttggaaagaaggaagctg           | Downstream fragment <i>pilW</i> (VC0860) flank 2kb  |
| P0215 | GTGATGGGTTAAAAAGGATCGATCCTccgataccggttgatttcac     | Downstream fragment <i>pilw</i> (VCc0860) flank 2kb |
| P028  | cggtgacgtgtttggtgata                               | pilW, gDNA test primers                             |
| P0282 | aacggtgattctagcggaga                               | pilW, gDNA test primers                             |

| P0274 | CGGGAGAGCTCGATATCGCATGCGGTACCTctttctgccgcatttttagc  | Upstream fragment asnB flank 2kb          |
|-------|-----------------------------------------------------|-------------------------------------------|
| P0275 | CGCAGGGCAACGAGCCGATCGCTGAaggctgtgcgccactattta       | Upstream fragment <i>asnB</i> flank 2kb   |
| P0276 | CGAGAAAGGGTGACGATTGAtccaaccaccaaagaaggtt            | Downstream fragment asnB flank 2kb        |
| P0277 | GTGATGGGTTAAAAAGGATCGATCCTcgtgtgctagggtgaggttt      | Downstream fragment asnB flank 2kb        |
| P0311 | GCTTTTGCTATGATCAAACGTG                              | asnB, gDNA test primers                   |
| P0312 | CAGTGAAGTTGGCATTTGGA                                | asnB, gDNA test primers                   |
| P0266 | CGGGAGAGCTCGATATCGCATGCGGTACCTgtatctgccatgctcactgc  | Upstream fragment metE flank 2kb          |
| P0267 | CGCAGGGCAACGAGCCGATCGCTGActttttgcaatgcccagttt       | Upstream fragment metE flank 2kb          |
| P0268 | CGAGAAAGGGTGACGATTGAcagcgtttgtgggtcaac              | Downstream fragment metE flank 2kb        |
| P0269 | GTGATGGGTTAAAAAGGATCGATCCTcggtaaagagctcaccttgc      | Downstream fragment metE flank 2kb        |
| P0302 | GTTTAGCGCTGGCTTACGTC                                | metE, gDNA test primers                   |
| P0303 | TGTTTGGTGGCATGACCTTA                                | metE, gDNA test primers                   |
| P0411 | CGGGAGAGCTCGATATCGCATGCGGTACCTgcccatcaccatcagtttct  | Upstream fragment <i>tfoS</i> flank 2kb   |
| P0412 | gttgtatggctgcttgctcatattgagtggggggaaaatc            | Upstream fragment <i>tfoS</i> flank 2kb   |
| P0413 | gattttcgccccactcaatatgagcaagcagccatacaac            | Downstream fragment <i>tfoS</i> flank 2kb |
| P0414 | ATATGTGATGGGTTAAAAAGGATCGATCCTcgaagttctgaccagcatca  | Downstream fragment <i>tfoS</i> flank 2kb |
| P0284 | AAAGCCAACGTCACAAAACC                                | tfos, gDNA test primers                   |
| P0285 | GTATTCCGCAGCCTCTTCTG                                | tfos, gDNA test primers                   |
| P0270 | CGGGAGAGCTCGATATCGCATGCGGTACCTtgagcataccgccatgtttgc | Upstream fragment <i>carB</i> flank 2kb   |
| P0271 | CGCAGGGCAACGAGCCGATCGCTGAgccatttctgggtcagtcat       | Upstream fragment <i>carB</i> flank 2kb   |
| P0272 | CGAGAAAGGGTGACGATTGAaactacaccaccaccactgaacg         | Downstream fragment carB flank 2kb        |
| P0273 | GTGATGGGTTAAAAAGGATCGATCCTaaacgcatagaaagcactgga     | Downstream fragment carB flank 2kb        |
| P309  | TGAAGCTCATCATCGCCATA                                | carB, gDNA test primers                   |
| P310  | TCATCCTATCAACGCATAGCC                               | carB, gDNA test primers                   |
| P0234 | CGGGAGAGCTCGATATCGCATGCGGTACCTccaaggccgacaaaataaga  | Upstream fragment <i>lapD</i> flank 2kb   |
| P0235 | CGCAGGGCAACGAGCCGATCGCTGActaaagccaaacccaccgta       | Upstream fragment <i>lapD</i> flank 2kb   |
| P0238 | CGAGAAAGGGTGACGATTGAcatcacgggttgaaacacag            | Downstream fragment <i>lapD</i> flank 2kb |
| P0239 | GTGATGGGTTAAAAAGGATCGATCCTttggaagcggaagatattgg      | Downstream fragment <i>lapD</i> flank 2kb |
| P0294 | GCTTATGGCGCCAGTCTATC                                | <i>lapD</i> , gDNA test primers           |
| P0295 | ACGTCGGTAAAGGCATCATC                                | <i>lapD</i> , gDNA test primers           |

| P0483 | tatagggacatggcggaattcAGAGCCATTATCCCTCTATAGTTTG  | promoter region of gyrA used to drive GFP expression  |
|-------|-------------------------------------------------|-------------------------------------------------------|
| P0484 | gatatctcccgggagaattcTTTAAGACGCAACCAAGGTCAC      | promoter region of gyrA used to drive GFP expression  |
| P0485 | tatagggacatggcggaattcGATAGACCCTCATTTTGGTTGTTG   | promoter region of comEA used to drive GFP expression |
| P0486 | gatatctcccgggagaattcCTGGCGGGTGTGATCAGTGT        | promoter region of comEA used to drive GFP expression |
| P0487 | gaattctcccgggagatatcTATGATGTTCCTATCCATCTGTTT    | promoter region of cyaA used to drive GFP expression  |
| P0488 | ttcctgtgtgaaggcctgatCACACCAAACTAAACACTTATCAAC   | promoter region of cyaA used to drive GFP expression  |
| P0489 | gaattctcccgggagatatcATTCACATCGCGTTTTATAACGC     | promoter region of cytR used to drive RFP expression  |
| P0490 | ttcctgtgtgaaggcctgatGTATTTTACCCTCTTTTCTCTATCGAG | promoter region of cytR used to drive RFP expression  |
| P0491 | gaattctcccgggagatatcGCTTTCTTATCGAGTATTCCTGC     | promoter region of hapR used to drive RFP expression  |
| P0492 | ttcctgtgtgaaggcctgatTTCTCAATCCTAGAGATGTTGAATG   | promoter region of hapR used to drive RFP expression  |
| P0493 | gaattctcccgggagatatcTTTAAGACGCAACCAAGGTCAC      | promoter region of gyrAused to drive RFP expression   |
| P0494 | ttcctgtgtgaaggcctgatAGAGCCATTATCCCTCTATAGTTTG   | promoter region of gyrAused to drive RFP expression   |
| P0495 | GTCGCATTATAGGGACATGGC                           | pBRs1 test and sequencing primers                     |
| P0496 | TCATAGCTGTTTCCTGTGTGA                           | pBRs2 test and sequencing primers                     |

# 775 Supplementary figures:



**Figure S 2** Total bacterial count at the end of amino acid supplementation. At time point 0 h, a culture of wild-type V. cholerae in mid-exponential growth phase was exposed to chitin. At 24 h, DNA was added to the culture. Casamino acids (CA) were added to the culture at different concentrations and times during the natural transformation assay. CA concentrations ranged from 0 - 4% w/v and are depicted by increasing saturation of green. Timepoints assessed were 0 h, 6 h, 24 h, and 30 h. Positive (no CA; filled black circles) and negative (no DNA; open black circles) controls have very similar CFU on the non-selective plates. The dotted line extends form the CFU count of the positive control. All conditions were tested in triplicates.

776

# 777 Supplementary table:

| Table S. 1<br>Sequencing<br>statistics |         | TnNT    |         |         | Ctrl    |         |
|----------------------------------------|---------|---------|---------|---------|---------|---------|
| Miseq run #                            | 1       | 2       | Merged  | 1       | 2       | Merged  |
| Reads                                  | 14.8M   | 15.9M   | 30.7M   | 13.0M   | 15.8M   | 28.8M   |
| Sites Hit                              | 134'195 | 134'807 | 141'498 | 152'218 | 161'511 | 165'420 |
| Percent TAs hit                        | 69      | 69      | 72      | 78      | 83      | 85      |
| Average Read<br>Count                  | 75      | 81      | 157     | 66      | 80      | 147     |

778

## 779 Table S. 2 Extended list of candidates

| Table S. 2 list of candidates, tested candidates in bold |                             |             |                                            |                  |  |  |
|----------------------------------------------------------|-----------------------------|-------------|--------------------------------------------|------------------|--|--|
| Gene (A1552)                                             | Gene ( <mark>c6706</mark> ) | Gene name   |                                            | p-value from MWU |  |  |
| A1552VC_01851                                            | VC2078                      | cdhR (TfoS) | HTH-type transcriptional regulator<br>CdhR | 4.18E-57         |  |  |
| A1552VC_00384                                            | VC0622                      | torS_1      | Sensor protein TorS                        | 1.16E-40         |  |  |
| A1552VC_01659                                            | VC1878                      | comEC       | ComE operon protein 3                      | 3.99E-34         |  |  |
| A1552VC_00383                                            | VC0620                      | appA_1      | Oligopeptide-binding protein AppA          | 9.99E-30         |  |  |
| A1552VC_00171                                            | VC0414                      | mshQ        | hypothetical protein                       | 2.17E-28         |  |  |
| A1552VC_00618                                            | VC0861                      | -           | hypothetical protein                       | 1.02E-24         |  |  |
| A1552VC_02405                                            | VC2645                      | ррс         | Phosphoenolpyruvate carboxylase            | 1.67E-24         |  |  |
| A1552VC_01420                                            | VC1628                      | ftsX        | hypothetical protein                       | 2.01E-24         |  |  |
| A1552VC_02152                                            | VC2388                      | carB        | Carbamoyl-phosphate synthase large chain   | 2.07E-22         |  |  |

| A1552VC 00741     | VC0991  | asnB   | Asparagine synthetase B [glutamine-<br>hydrolyzing] | 5.36E-22 |
|-------------------|---------|--------|-----------------------------------------------------|----------|
|                   | VC1703  | metF   | 5-<br>methyltetrahydronteroyltriglutamate           |          |
| A1552VC_01494     | VC1705  | mett   | -                                                   | 2.23E-21 |
| A1552VC_00159     | VC0402  | xcpQ   | Type II secretion system protein D                  | 2.70E-21 |
| A1552VC_A03758    | VCA1081 | lapD   | Cyclic di-GMP phosphodiesterase<br>PdeB             | 3.85E-21 |
| A1552VC_00724     | VC0972  | chiP   | Chitoporin                                          | 5.98E-21 |
| A1552VC_02390     | VC2629  | pilQ   | Type IV pilus biogenesis and<br>competence protein  | 5.81E-19 |
| A1552VC_01835     | VC2062  | cheA_2 | Chemotaxis protein CheA                             | 6.21E-19 |
| A1552VC_00132     | VC0384  | cysJ_1 | Sulfite reductase [NADPH] flavoprotein              | 6.48E-19 |
| A1552VC_02245     | VC2482  | ilvl   | Acetolactate synthase isozyme 3 large subunit       | 1.74E-18 |
| A1552VC_00923     | VC1174  | trpE   | Anthranilate synthase component 1                   | 6.03E-18 |
| A1552VC_02187     | VC2423  | epsE_2 | Type II secretion system protein E                  | 8.76E-18 |
| A1552VC_00019     | VC0028  | ilvD   | Dihydroxy-acid dehydratase                          | 1.04E-16 |
| A1552VC_00156     | VC0399  | mshl   | hypothetical protein                                | 3.49E-16 |
| A1552VC_00432     | VC0665  | zraR_1 | Transcriptional regulatory protein ZraR             | 7.65E-16 |
| A1552VC_02545     | VC0126  | lysA   | Diaminopimelate decarboxylase                       | 8.63E-16 |
| A1552VC_00037     | VC0047  | tsaP   | hypothetical protein                                | 1.32E-15 |
| A1552VC_02759     | VC0163  | ilvC   | Ketol-acid reductoisomerase<br>(NADP(+))            | 2.53E-15 |
| A1552VC_00133     | VC0385  | cysl   | Sulfite reductase [NADPH]<br>hemoprotein            | 3.33E-15 |
| A1552VC_00374     | VC0611  | pgm_1  | Phosphoglucomutase                                  | 6.18E-15 |
| A1552VC_02188     | VC2424  | gspF   | Putative type II secretion system<br>protein F      | 6.27E-15 |
| A1552VC_00468     | VC0705  | pheA   | P-protein                                           | 6.39E-15 |
| A1552VC_00162     | VC0405  | epsE_1 | Type II secretion system protein E                  | 6.88E-15 |
| A1552VC_02251     | VC2489  | leuA   | 2-isopropylmalate synthase                          | 1.04E-14 |
| A1552VC_00163     | VC0406  | epsF_1 | Type II secretion system protein F                  | 1.96E-14 |
| A1552VC_00169     | VC0412  | mshO   | hypothetical protein                                | 2.28E-14 |
| A1552VC_02757     | VC0165  | bepE_2 | Efflux pump membrane transporter<br>BepE            | 2.32E-14 |
| A1552VC_00038     | VC0048  | dprA   | DNA processing protein DprA                         | 6.24E-14 |
| A1552VC_02243     | VC2480  | serA   | D-3-phosphoglycerate dehydrogenase                  | 1.38E-13 |
| A1552VC_02186     | VC2422  | pilA   | Fimbrial protein                                    | 2.21E-13 |
| A1552VC_01790     | VC2017  | pabC   | Aminodeoxychorismate lyase                          | 2.89E-13 |
| A1552VC_00623     | VC0869  | mltF   | Membrane-bound lytic murein<br>transglycosylase F   | 3.07E-13 |
| A1552VC_00881     | VC1134  | hisC   | Histidinol-phosphate aminotransferase               | 3.21E-13 |
| A1552VC_00378     | VC0615  | -      | hypothetical protein                                | 3.48E-13 |
| <br>A1552VC_00382 | VC0619  | dppB_1 | Dipeptide transport system permease protein         | 5.82E-13 |
| A1552VC_02401     | VC2641  | argG   | Argininosuccinate synthase                          | 1.41E-12 |
| <br>A1552VC_02045 | VC2272  | proA   | Gamma-glutamyl phosphate reductase                  | 1.53E-12 |
|                   | VC2640  | argH   | Argininosuccinate lyase                             | 2.41E-12 |
|                   | VC2633  | pilM   | hypothetical protein                                | 2.88E-12 |

| A1552VC_02123         VC361         thrC         Threonine synthase         1.106.11           A1552VC_00380         VC1133         Ni5D         Hittichnol dehydrogenase         1.596-11           A1552VC_00381         VC0618         dppC_1         Dipeptide transport system permease         1.596-11           A1552VC_00376         VC0613         exo I         Beta-haxosaminidase         1.636-11           A1552VC_00379         VC1050         rssB         Regulator of RpoS         1.775-11           A1552VC_00380         VC1423         /putrescine-<br>binding         Sprimiline         2.066-11           A1552VC_02235         VC4911         leuC         3-isogropy/malate dehydratase large<br>subunit         2.946-11           A1552VC_02157         VC2363         /homoserine         Bfunctional aspartokinase         4.266-11           A1552VC_02107         VC244         ser6         Phosphoserine phosphatase         5.26E-11           A1552VC_02107         VC244         ser6         Phosphoserine phosphatase         5.26E-11           A1552VC_01403         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein Oppf         8.89E-11           A1552VC_00307         VC0616         oppF_1         Oligopetide transport ATP-binding<br>protein Oppf         1.35E-10                                                                                                                                                                                                                                                                                                                                                | A1552VC_02043  | VC2270  | ribD                                   | Riboflavin biosynthesis protein RibD               | 6.57E-12 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|----------------------------------------|----------------------------------------------------|----------|
| A1552VC_00880         VC1133         hisD         Histidinol dehydrogenase         1.59E-11           A1552VC_00381         VC0618         dppC_1         Dipetide transport system permease<br>protein         1.59E-11           A1552VC_00376         VC0613         exo I         Beta-hexosaminidase         1.63E-11           A1552VC_00798         VC1050         rs8         Regulator of RpoS         1.73E-11           A1552VC_00730         VC1432         /putrescine-<br>binding<br>periplosmic         Spermidine         2.09E-11           A1552VC_00235         VC1491         leuC         3-isopropyimalate dehydratase large<br>subunit         2.94E-11           A1552VC_02253         VC2491         leuC         3-isopropyimalate dehydratase         2.29E-11           A1552VC_02125         VC2434         serf8         Phosphoserine phosphatase         5.24E-11           A1552VC_02107         VC2344         serf8         Phosphoserine phosphatase         5.26E-11           A1552VC_0017         VC2844         serf8         Phosphoserine phosphatase         5.26E-11           A1552VC_0017         VC2840         serf8         Phosphoserine phosphatase         5.26E-11           A1552VC_0017         VC2840         serf8         Phosphoserine phosphatase         5.26E-11           A1                                                                                                                                                                                                                                                                                                                                                       | A1552VC_02123  | VC2361  | thrC                                   | Threonine synthase                                 | 1.10E-11 |
| A1552VC_00381         VC0618         dppC_1         Dipetide transport system permease protein         1.59E-11           A1552VC_00376         VC0613         exo 1         Beta-hexosaminidase         1.63E-11           A1552VC_00798         VC1050         rssB         Regulator of PpoS         1.73E-11           A1552VC_00790         VC1020         rssB         Regulator of PpoS         1.73E-11           A1552VC_00790         VC1021         trxB         Thioredoxin reductase         2.06E-11           A1552VC_002253         VC2491         leuC         3-isopropyimalate dehydratase large         2.06E-11           A1552VC_002105         VC2301         homoserine         Bifunctional aspartokinase         4.26E-11           A1552VC_01030         VC1010         metA         Homoserine 0-succinytransferase         5.26E-11           A1552VC_01040         VC0806         tyrA         T-protein 0-suportiants         6.12E-11           A1552VC_00401         VC0800         i.YA         T-protein 0-propen         8.98E-11           A1552VC_00101         VC0800         i.YA         T-protein 0-propen         8.98E-11           A1552VC_00102         VC0800         i.SA         Namoserine 0-suportiant 7P-binding protein 0-propen         8.99E-11           A1552VC_00130<                                                                                                                                                                                                                                                                                                                                                                   | A1552VC_00880  | VC1133  | hisD                                   | Histidinol dehydrogenase                           | 1.59E-11 |
| A1552VC_00376         VC0613         exo 1         Beta-hexosaminidase         1.63E-11           A1552VC_00798         VC1050         rssB         Regulator of RpoS         1.73E-11           A1552VC_00798         VC1021         /putrescine-<br>binding<br>periplawnic         Spermidine         2.09E-11           A1552VC_00798         VC1032         trx8         Thioredoxin reductase         2.66E-11           A1552VC_002253         VC2401         leuC         3-isopropyimalate dehydratase large<br>subunit         2.94E-11           A1552VC_002253         VC2363         /homoserine         Blfunctional aspartokinase         4.26E-11           A1552VC_01403         VC1610         metA         Homoserine O-succinvitransferase         5.24E-11           A1552VC_01040         VC2644         ser6         Phosphoserine phosphatase         5.24E-11           A1552VC_00461         VC0860         tyrA         T-protein fore on the phosphatase         5.24E-11           A1552VC_00451         VC0860         iprof.         Phosphoserine phosphatase         5.24E-11           A1552VC_00451         VC0404         mshN         hypothetical protein         6.15E-10           A1552VC_00161         VC0404         mshN         hypothetical protein         1.55E-10           A1552VC_0020                                                                                                                                                                                                                                                                                                                                                          | A1552VC_00381  | VC0618  | dppC_1                                 | Dipeptide transport system permease protein        | 1.59E-11 |
| A1552VC_00798         VC1050         rss8         Regulator of RpoS         1.73E-11           A1552VC_01159         //Ltrzscine-<br>binding<br>periplasmic         Spermidine         2.09E-11           A1552VC_0223         VC1120         trx8         Thioredoxin reductase         2.66E-11           A1552VC_0223         VC2491         leuC         3-isopropimalate dehydratase large<br>subunit         2.94E-11           A1552VC_02125         VC2363         /homoserine         Bifunctional aspartokinase         4.26E-11           A1552VC_02107         VC2444         serB         Phosphoserine phosphatase         5.24E-11           A1552VC_00107         VC2440         serB         Phosphoserine phosphatase         5.26E-11           A1552VC_00107         VC0606         tyrA         T-protein         8.60E-11           A1552VC_00017         VC0616         oppF_1         Oligopeptide transport ATP-binding         8.93E-11           A1552VC_00017         VC0616         oppF_1         Dildopetide protein         1.53E-10           A1552VC_00039         VC0615         opfF_1         Dildopetide protein         1.53E-10           A1552VC_00030         VC1133         tfoX_1         DNA transformation protein ToX1         1.64E-10           A1552VC_00030         VC153                                                                                                                                                                                                                                                                                                                                                                      | A1552VC_00376  | VC0613  | exo I                                  | Beta-hexosaminidase                                | 1.63E-11 |
| VCI423         //putrescine-<br>binding<br>perplasmic         Spermidine         2.09E-11           A1552VC_00930         VC1182         tr.M         Thioredoxin reductase         2.66E-11           A1552VC_02253         VC2491         leuC         3-stopropylmalate dehydratase large<br>subunit         2.94E-11           A1552VC_02125         VC2363         /homoserine         Bifunctional aspatokinase         4.26E-11           A1552VC_0103         VC1610         metA         Homoserine O-succinyltransferase         5.24E-11           A1552VC_01040         VC1610         metA         Homoserine phosphatase         5.26E-11           A1552VC_01050         VC2344         ser8         Phosphoserine phosphatase         5.26E-11           A1552VC_00060         VC0696         tyrA         T-protein         6.12E-11           A1552VC_00061         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_00151         VC0164         mshN         hypothetical protein         1.15E-10           A1552VC_00161         VC258         cysN         Suffat adenylytransferase subunit 1         1.94E-10           A1552VC_02039         VC2153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_02030 </td <td>A1552VC_00798</td> <td>VC1050</td> <td>rssB</td> <td>Regulator of RpoS</td> <td>1.73E-11</td>                                                                                                                                                                                                                                         | A1552VC_00798  | VC1050  | rssB                                   | Regulator of RpoS                                  | 1.73E-11 |
| A1552VC_00930         VC1182         trx8         Thioredoxin reductase         2.66E-11           A1552VC_02253         VC2491         leuC         3-isopropyimalate dehydratase large<br>subunit         2.94E-11           A1552VC_02125         VC2363         /homoserine         Bifunctional aspartokinase         4.26E-11           A1552VC_02107         VC2344         serB         Phosphoserine phosphatase         5.24E-11           A1552VC_00400         VC0696         tyrA         T-protein         6.12E-11           A1552VC_00460         VC0696         tyrA         T-protein         8.60E-11           A1552VC_00460         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_00451         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_00451         VC0614         msN         hypothetical protein         1.75E-10           A1552VC_00403         VC153         tfox1_1         DNA transformation protein Tfox1         1.64E-10           A1552VC_02033         VC033         asd1         Aspartate semialdehyde<br>dehydrogenase 1         1.88E-10           A1552VC_02043         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate<br>reductase         5.40E-10                                                                                                                                                                                                                                                                                                                                   | A1552VC_01159  | VC1423  | /putrescine-<br>binding<br>periplasmic | Spermidine                                         | 2.09E-11 |
| A1552VC_02253         VC2491         leuC         3-isopropyimalate dehydratase large         2.94E-11           A1552VC_02253         VC363         /homoserine         Bl/unctional aspartokinase         4.26E-11           A1552VC_02103         VC1610         metA         Homoserine O-succinyltransferase         5.24E-11           A1552VC_02107         VC344         serB         Phosphoserine phosphatase         5.26E-11           A1552VC_01390         pleD_3         Response regulator PleD         5.80E-11           A1552VC_00460         VC0696         tyrA         T-protein         6.12E-11           A1552VC_00507         VC0616         oppF_1         Plogoptide transport ATP-binding plotteransport ATP-binding attractoreansport ATP-binding Attractoreansp | A1552VC_00930  | VC1182  | trxB                                   | Thioredoxin reductase                              | 2.66E-11 |
| A1552VC_02125         VC2363         /homoserine         Bifunctional aspartokinase         4.26E-11           A1552VC_01403         VC1610         metA         Homoserine O-succinyltransferase         5.24E-11           A1552VC_01207         VC2344         serB         Phosphoserine phosphatase         5.26E-11           A1552VC_01300         pleD_3         Response regulator PleD         5.80E-11           A1552VC_00460         VC0696         tyrA         T-protein         6.12E-11           A1552VC_00507         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_0017         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_00161         VC0404         msNN         hypothetical protein         1.35E-10           A1552VC_00100         VC1153         tf0X1_1         DNA transformation protein Tf0X1         1.64E-10           A1552VC_00283         VC4039         -         hypothetical protein         1.75E-10           A1552VC_01806         VC235         asd1         Aspartate-semialdehyde         1.88E-10           A1552VC_02083         VC214         argA         Amino-acid acetyltransferase         3.50E-10           A1552VC_02084                                                                                                                                                                                                                                                                                                                                                                 | A1552VC_02253  | VC2491  | leuC                                   | 3-isopropylmalate dehydratase large subunit        | 2.94E-11 |
| A1552VC_01403         VC1610         metA         Homoserine O-succinyltransferase         5.24E-11           A1552VC_02107         VC2344         serB         Phosphoserine phosphatase         5.26E-11           A1552VC_01390         pleD_3         Response regulator PleD         5.80E-11           A1552VC_00460         VC0696         tyrA         T-protein         6.12E-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_0011         VC0614         mshN         hypothetical protein         1.35E-10           A1552VC_002319         VC2558         cysN         Sulfate adenylyltransferase subunit 1         1.53E-10           A1552VC_002319         VC2558         cysN         Sulfate adenylyltransferase subunit 1         1.64E-10           A1552VC_00230         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_002383         VC2035         asd1         Aspartate-semialdehyde<br>dehydrogenase 1         1.88E-10           A1552VC_02083         VC214         argA         Amino-acid acetyltransferase         3.50E-10           A1552VC_02084         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate<br>reductase         5.40E-10                                                                                                                                                                                                                                                                                                                                                | A1552VC_02125  | VC2363  | /homoserine                            | Bifunctional aspartokinase                         | 4.26E-11 |
| A1552VC_02107         VC2344         ser8         Phosphoserine phosphatase         5.26F-11           A1552VC_01390         pleD_3         Response regulator PleD         5.80F-11           A1552VC_00460         VC0696         tyrA         T-protein         6.12F-11           A1552VC_00460         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93F-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93F-11           A1552VC_00319         VC2558         cysN         Sulfate ademylyltransferase subunit 1         1.53F-10           A1552VC_00300         VC1153         tfox1_1         DNA transformation protein Tfox1         1.64F-10           A1552VC_01806         VC2035         asd1         Aspartate-semialdehyde<br>dehydrogenase 1         1.88F-10           A1552VC_02038         VC2014         argA         Amino-acid acetyltransferase         3.50F-10           A1552VC_02038         VC214         argA         Amino-acid acetyltransferase         3.50F-10           A1552VC_02039         VC2043         argC         Photochrome-like protein cph2         3.50F-10           A1552VC_02040         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate         5.40F-10                                                                                                                                                                                                                                                                                                                                           | A1552VC_01403  | VC1610  | metA                                   | Homoserine O-succinyltransferase                   | 5.24E-11 |
| A1552VC_01390         pleD_3         Response regulator PleD         5.80F-11           A1552VC_00460         VC0696         tyrA         T-protein         6.12F-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.60F-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93F-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93F-11           A1552VC_00379         VC0558         cysN         Sulfate adenylyltransferase subunit 1         1.35F-10           A1552VC_00300         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64F-10           A1552VC_00300         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64F-10           A1552VC_01806         VC2035         asd1         dehydrogenase 1         1.88F-10           A1552VC_02083         VC2014         argA         Amino-acid acetyltransferase         3.50F-10           A1552VC_02083         VC2043         argC         N-acetyl-gamma-glutamyl-phosphate         5.40F-10           A1552VC_02074         itvA         L-threonine dehydrates biosynthetic         1.38F-10                                                                                                                                                                                                                                                                                                                                           | A1552VC_02107  | VC2344  | serB                                   | Phosphoserine phosphatase                          | 5.26E-11 |
| A1552VC_00460         VC0696         tyrA         T-protein         6.12E-11           A1552VC_00617         VC0860         -         hypothetical protein         8.60E-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_00300         VC153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_00283         VCA0039         -         hypothetical protein         1.75E-10           A1552VC_00283         VCA0039         -         hypothetical protein         1.75E-10           A1552VC_00283         VCA0164         cph2_6         Phytochrome-like protein cph2         3.50E-10           A1552VC_02083         VC2043         argC         N-acetyl-gamma-glutamyl-phosphate         5.40E-10           A1552VC_02043         VC20643         argC         regulatory         regulatory         1.15E-09           A1552VC_02074         iVA         L-threonine dehydratase biosynthetic         1.15E-09         1.15E-09           A1552VC_0018         VC0027         iIvA         L-threonine dehydratase protein onpD         1.15E-09                                                                                                                                                                                                                                                                                                                                                      | A1552VC_01390  |         | pleD_3                                 | Response regulator PleD                            | 5.80E-11 |
| A1552VC_00617         VC0860         -         hypothetical protein         8.60E-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding<br>protein OppF         8.93E-11           A1552VC_00201         VC0404         mshN         hypothetical protein         1.35E-10           A1552VC_02319         VC2558         cysN         Sulfate adenylyltransferase subunit 1         1.64E-10           A1552VC_00900         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_01806         VC2035         asd1         Aspartate-semialdehyde<br>dehydrogenase 1         1.88E-10           A1552VC_02083         VC2014         argA         Amino-acid acetyltransferase         3.50E-10           A1552VC_02034         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate<br>reductase         5.40E-10           A1552VC_02040         VC2027         ilvA         L-threonine dehydratase biosynthetic<br>livA         7.18E-10           A1552VC_02274         VC2070         argF         Ornithine carbamoyltransferase         9.29E-10           A1552VC_0153         VC0617         oppD_1         Cg8BAC operon tran                                                                                                                                                                                                                                                                                                                 | A1552VC_00460  | VC0696  | tyrA                                   | T-protein                                          | 6.12E-11 |
| A1552VC_00379         VC0616         oppF_1         Oligopeptide transport ATP-binding protein OppF         8.93E-11           A1552VC_00161         VC0404         mshN         hypothetical protein         1.35E-10           A1552VC_02319         VC2558         cysN         Sulfate adenylyltransferase subunit 1         1.53E-10           A1552VC_02319         VC2558         cysN         Sulfate adenylyltransferase subunit 1         1.53E-10           A1552VC_00900         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_02083         VCA0039         -         hypothetical protein         1.75E-10           A1552VC_02083         VC2314         argA         Amino-acid acetyltransferase         3.50E-10           A1552VC_02083         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate reductase         5.40E-10           A1552VC_02274         VC2677         argF         Ornithine carbamoyltransferase         9.29E-10           A1552VC_00153         VC0027         ilvA         L-threonine dehydratase biosynthetic livA         7.18E-10           A1552VC_00153         VC0617         oppD_1         OppD_1         Pilogopetide transport ATP-binding protein OppD         1.15E-09           A1552VC_00135         VC0617         oppD_1                                                                                                                                                                                                                                                                                                                                           | A1552VC_00617  | VC0860  | -                                      | hypothetical protein                               | 8.60E-11 |
| A1552VC_00161         VC0404         mshN         hypothetical protein         1.35E-10           A1552VC_02319         VC2558         cysN         Sulfate adenylyltransferase subunit 1         1.53E-10           A1552VC_00900         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_00900         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_01806         VC2035         asd1         Aspartate-semialdehyde dehydrogenase 1         1.88E-10           A1552VC_02083         VC2314         argA         Amino-acid acetyltransferase         3.50E-10           A1552VC_02084         VC20164         cph2_6         Phytochrome-like protein cph2         3.97E-10           A1552VC_02038         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate reductase         5.40E-10           A1552VC_02038         VC0027         ilvA         L-threonine dehydratase biosynthetic livA         7.18E-10           A1552VC_02070         argF         Ornithine carbarnoyltransferase         9.29E-10           A1552VC_00153         VC0396         csgD_1 qstR         CsgBAC operon transcriptional regulatory         1.15E-09           A1552VC_00380         VC0617         oppD_1         Oligopeptide transport ATP-binding protei                                                                                                                                                                                                                                                                                                                       | A1552VC_00379  | VC0616  | oppF_1                                 | Oligopeptide transport ATP-binding<br>protein OppF | 8.93E-11 |
| A1552VC_02319         VC2558         cysN         Sulfate adenylyltransferase subunit 1         1.53E-10           A1552VC_00900         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_00900         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_02083         VCA0039         -         hypothetical protein         1.75E-10           A1552VC_01806         VC2035         asd1         Aspartate-semialdehyde<br>dehydrogenase 1         1.88E-10           A1552VC_02083         VC2314         argA         Amino-acid acetyltransferase         3.50E-10           A1552VC_02404         VCA0164         cph2_6         Phytochrome-like protein cph2         3.97E-10           A1552VC_02403         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate<br>reductase         5.40E-10           A1552VC_0018         VC0027         ilvA         L-threonine dehydratase biosynthetic<br>livA         7.18E-10           A1552VC_00274         VC2507         argF         Ornithine carbamoyltransferase         9.29E-10           A1552VC_00153         VC0396         csgD_1 qstR         CsgBAC operon transcriptional<br>regulatory         1.15E-09           A1552VC_00380         VC0617         oppD_1         Oligoopptide transpor                                                                                                                                                                                                                                                                                                                    | A1552VC_00161  | VC0404  | mshN                                   | hypothetical protein                               | 1.35E-10 |
| A1552VC_00900         VC1153         tfoX1_1         DNA transformation protein TfoX1         1.64E-10           A1552VC_00283         VCA0039         -         hypothetical protein         1.75E-10           A1552VC_01806         VC2035         asd1         Aspartate-semialdehyde<br>dehydrogenase 1         1.88E-10           A1552VC_02083         VC2314         argA         Amino-acid acetyltransferase         3.50E-10           A1552VC_02084         VCA0164         cph2_6         Phytochrome-like protein cph2         3.97E-10           A1552VC_02040         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate<br>reductase         5.40E-10           A1552VC_02070         iVA         L-threonine dehydratase biosynthetic<br>livA         7.18E-10           A1552VC_00018         VC0027         iIvA         L-threonine dehydratase biosynthetic<br>livA         7.18E-10           A1552VC_00153         VC2507         argF         Ornithine carbamoyltransferase         9.29E-10           A1552VC_00153         VC0617         oppD_1         Oligopetide transport ATP-binding<br>protein OppD         1.18E-09           A1552VC_00380         VC0617         oppD_4         MetPl-acetping chemotaxis protein<br>McpP         1.42E-09           A1552VC_00232         VC0312         comM         Competence protein ComM                                                                                                                                                                                                                                                                                                                   | A1552VC_02319  | VC2558  | cysN                                   | Sulfate adenylyltransferase subunit 1              | 1.53E-10 |
| A1552VC_A02833         VCA0039         -         hypothetical protein         1.75E-10           A1552VC_01806         VC2035         asd1         Aspartate-semialdehyde<br>dehydrogenase 1         1.88E-10           A1552VC_02083         VC2314         argA         Amino-acid acetyltransferase         3.50E-10           A1552VC_02084         VCA0164         cph2_6         Phytochrome-like protein cph2         3.97E-10           A1552VC_02040         VC2643         argC         N-acetyl-gamma-glutamyl-phosphate<br>reductase         5.40E-10           A1552VC_02018         VC0027         ilvA         L-threonine dehydratase biosynthetic<br>livA         7.18E-10           A1552VC_02274         VC2507         argF         Ornithine carbamoyltransferase         9.29E-10           A1552VC_00153         VC0396         csgD_1 qstR         CsgBAC operon transcriptional<br>regulatory         1.15E-09           A1552VC_00380         VC0617         oppD_1         Oligopeptide transport ATP-binding<br>protein OppD         1.18E-09           A1552VC_0023         VC0322         comM         Competence protein ComM         1.59E-09           A1552VC_0023         VC032         comM         Competence protein ComM         1.59E-09           A1552VC_0023         VC1291         aspC         Aspartate aminotransferase                                                                                                                                                                                                                                                                                                                            | A1552VC_00900  | VC1153  | tfoX1_1                                | DNA transformation protein TfoX1                   | 1.64E-10 |
| A1552VC_01806VC2035asd1Aspartate-semialdehyde<br>dehydrogenase 11.88E-10A1552VC_02083VC2314argAAmino-acid acetyltransferase3.50E-10A1552VC_02083VC20164cph2_6Phytochrome-like protein cph23.97E-10A1552VC_02403VC2643argCN-acetyl-gamma-glutamyl-phosphate<br>reductase5.40E-10A1552VC_02018VC0027iivAL-threonine dehydratase biosynthetic<br>livA7.18E-10A1552VC_02274VC2507argFOrnithine carbamoyltransferase9.29E-10A1552VC_00133VC0396csgD_1 qstRCsgBAC operon transcriptional<br>regulatory1.15E-09A1552VC_00380VC0617oppD_1Oligopetide transport ATP-binding<br>protein OppD1.18E-09A1552VC_01576VC1897mcpP_4Methyl-accepting chemotaxis protein<br>McpP1.42E-09A1552VC_0023VC0032comMCompetence protein ComM1.59E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00895VC1148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_0233VC2661glnDBifunctional2.19E-09A1552VC_0235VC2611glnDBifunctional2.19E-09A1552VC_0235VC2261glnDBifunctional2.19E-09A1552VC_0235VC2261glnDBifunctional2.19E-09A1552VC_0235VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metB<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1552VC_A02833 | VCA0039 | -                                      | hypothetical protein                               | 1.75E-10 |
| A1552VC_02083VC2314argAAmino-acid acetyltransferase3.50E-10A1552VC_02034VCA0164cph2_6Phytochrome-like protein cph23.97E-10A1552VC_02403VC2643argCN-acetyl-gamma-glutamyl-phosphate<br>reductase5.40E-10A1552VC_02018VC0027ilvAL-threonine dehydratase biosynthetic<br>IlvA7.18E-10A1552VC_02274VC2507argFOrnithine carbamoyltransferase9.29E-10A1552VC_02274VC0396csgD_1 qstRCsgBAC operon transcriptional<br>regulatory1.15E-09A1552VC_00380VC0617oppD_1Oligopeptide transport ATP-binding<br>protein OppD1.18E-09A1552VC_02392VC2631pilOhypothetical protein1.56E-09A1552VC_00335VC1291aspCAspartate aminotransferase1.75E-09A1552VC_0034VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00355VC1148hexRHTH-type transcriptional regulator<br>reductase1.84E-09A1552VC_0235VC261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1552VC_01806  | VC2035  | asd1                                   | Aspartate-semialdehyde<br>dehydrogenase 1          | 1.88E-10 |
| A1552VC_A02944VCA0164cph2_6Phytochrome-like protein cph23.97E-10A1552VC_02403VC2643argCN-acetyl-gamma-glutamyl-phosphate<br>reductase5.40E-10A1552VC_00018VC0027iivAL-threonine dehydratase biosynthetic<br>IIvA7.18E-10A1552VC_02274VC2507argFOrnithine carbamoyltransferase9.29E-10A1552VC_00153VC0396csgD_1 qstRCsgBAC operon transcriptional<br>regulatory1.15E-09A1552VC_00380VC0617oppD_1Oligopeptide transport ATP-binding<br>protein OppD1.18E-09A1552VC_01676VC1897mcpP_4Methyl-accepting chemotaxis protein<br>McpP1.42E-09A1552VC_00232VC0032comMCompetence protein ComM1.59E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_0035VC2148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_0235VC261glnDBifunctional<br>2.19E-092.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1552VC_02083  | VC2314  | argA                                   | Amino-acid acetyltransferase                       | 3.50E-10 |
| A1552VC_02403VC2643argCN-acetyl-gamma-glutamyl-phosphate<br>reductase5.40E-10A1552VC_00018VC0027ilvAL-threonine dehydratase biosynthetic<br>IlvA7.18E-10A1552VC_02274VC2507argFOrnithine carbamoyltransferase9.29E-10A1552VC_00153VC0396csgD_1 qstRCsgBAC operon transcriptional<br>regulatory1.15E-09A1552VC_00380VC0617oppD_1Oligopeptide transport ATP-binding<br>protein OppD1.18E-09A1552VC_01676VC1897mcpP_4Methyl-accepting chemotaxis protein<br>MccpP1.42E-09A1552VC_0023VC0032comMCompetence protein ComM1.59E-09A1552VC_01035VC1291aspCAspartate aminotransferase1.76E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_02035VC2611glnDBifunctional2.19E-09A1552VC_02035VC2612glnDBifunctional2.19E-09A1552VC_02035VC2631glnDBifunctional2.95E-09A1552VC_02035VC2612glnDBifunctional2.95E-09A1552VC_02035VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02035VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1552VC_A02944 | VCA0164 | cph2_6                                 | Phytochrome-like protein cph2                      | 3.97E-10 |
| AlsourcourControlControlA1552VC_0018VC0027iivAL-threonine dehydratase biosynthetic<br>livA7.18E-10A1552VC_02274VC2507argFOrnithine carbamoyltransferase9.29E-10A1552VC_00153VC0396csgD_1 qstRCsgBAC operon transcriptional<br>regulatory1.15E-09A1552VC_00380VC0617oppD_1Oligopeptide transport ATP-binding<br>protein OppD1.18E-09A1552VC_01676VC1897mcpP_4Methyl-accepting chemotaxis protein<br>McpP1.42E-09A1552VC_02392VC2631pilOhypothetical protein ComM1.56E-09A1552VC_00135VC1291aspCAspartate aminotransferase1.75E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00235VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02805VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1552VC 02403  | VC2643  | argC                                   | N-acetyl-gamma-glutamyl-phosphate                  | 5 40F-10 |
| A1552VC_02274VC2507argFOrnithine carbamoyltransferase9.29E-10A1552VC_00153VC0396csgD_1 qstRCsgBAC operon transcriptional<br>regulatory1.15E-09A1552VC_00380VC0617oppD_1Oligopeptide transport ATP-binding<br>protein OppD1.18E-09A1552VC_01676VC1897mcpP_4Methyl-accepting chemotaxis protein<br>McpP1.42E-09A1552VC_02392VC2631pilOhypothetical protein ComM1.59E-09A1552VC_00023VC0032comMCompetence protein ComM1.59E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00895VC1148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_0235VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_02437VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1552VC 00018  | VC0027  | ilvA                                   | L-threonine dehydratase biosynthetic               | 7.18E-10 |
| A1552VC_00153VC0396csgD_1 qstRCsgBAC operon transcriptional<br>regulatory1.15E-09A1552VC_00380VC0617oppD_1Oligopeptide transport ATP-binding<br>protein OppD1.18E-09A1552VC_01676VC1897mcpP_4Methyl-accepting chemotaxis protein<br>McpP1.42E-09A1552VC_02392VC2631pilOhypothetical protein ComM1.56E-09A1552VC_00023VC0032comMCompetence protein ComM1.59E-09A1552VC_0135VC1291aspCAspartate aminotransferase1.75E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_0035VC1148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_0237VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_00980VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1552VC 02274  | VC2507  | argF                                   | Ornithine carbamoyltransferase                     | 9.29E-10 |
| A1552VC_00133VC0617oppD_1Oligopeptide transport ATP-binding<br>protein OppD1.15E-09A1552VC_00380VC0617oppD_1Methyl-accepting chemotaxis protein<br>McpP1.18E-09A1552VC_01676VC1897mcpP_4Methyl-accepting chemotaxis protein<br>McpP1.42E-09A1552VC_02392VC2631pilOhypothetical protein1.56E-09A1552VC_00023VC0032comMCompetence protein ComM1.59E-09A1552VC_01035VC1291aspCAspartate aminotransferase1.75E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00235VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_00800VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | VC0396  | csgD_1 qstR                            | CsgBAC operon transcriptional                      | 1 155 00 |
| A1552VC_01676VC1897mcpP_4Methyl-accepting chemotaxis protein<br>McpP1.42E-09A1552VC_02392VC2631pilOhypothetical protein1.56E-09A1552VC_00023VC0032comMCompetence protein ComM1.59E-09A1552VC_01035VC1291aspCAspartate aminotransferase1.75E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00895VC1148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_02035VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_00800VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1552VC_00153  | VC0617  | oppD_1                                 | Oligopeptide transport ATP-binding                 | 1.13E-09 |
| A1552VC_02392VC2631pilOhypothetical protein1.56E-09A1552VC_00023VC0032comMCompetence protein ComM1.59E-09A1552VC_01035VC1291aspCAspartate aminotransferase1.75E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00895VC1148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_02035VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_00800VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1552VC 01676  | VC1897  | mcpP_4                                 | Methyl-accepting chemotaxis protein                | 1.42E-09 |
| A1552VC_00023VC0032comMCompetence protein ComM1.59E-09A1552VC_01035VC1291aspCAspartate aminotransferase1.75E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00895VC1148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_02035VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_00800VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1552VC 02392  | VC2631  | pilO                                   | hypothetical protein                               | 1.56E-09 |
| A1552VC_01035VC1291aspCAspartate aminotransferase1.75E-09A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00895VC1148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_02035VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_00800VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1552VC 00023  | VC0032  | comM                                   | Competence protein ComM                            | 1.59E-09 |
| A1552VC_00134VC0386cysHPhosphoadenosine phosphosulfate<br>reductase1.76E-09A1552VC_00895VC1148hexRHTH-type transcriptional regulator<br>HexR1.84E-09A1552VC_02035VC2261glnDBifunctional2.19E-09A1552VC_02437VC2682metBCystathionine gamma-synthase2.95E-09A1552VC_00800VC1233sbcBExodeoxyribonuclease I3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1552VC 01035  | VC1291  | aspC                                   | Aspartate aminotransferase                         | 1.75E-09 |
| A1552VC_00895         VC1148         hexR         HTH-type transcriptional regulator<br>HexR         1.84E-09           A1552VC_02035         VC2261         glnD         Bifunctional         2.19E-09           A1552VC_02437         VC2682         metB         Cystathionine gamma-synthase         2.95E-09           A1552VC_00980         VC1233         sbcB         Exodeoxyribonuclease I         3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1552VC 00134  | VC0386  | cysH                                   | Phosphoadenosine phosphosulfate reductase          | 1.76E-09 |
| A1552VC_02035         VC2261         glnD         Bifunctional         2.19E-09           A1552VC_02437         VC2682         metB         Cystathionine gamma-synthase         2.95E-09           A1552VC_00980         VC1233         sbcB         Exodeoxyribonuclease I         3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1552VC 00895  | VC1148  | hexR                                   | HTH-type transcriptional regulator<br>HexR         | 1 84F-09 |
| A1552VC_02437         VC2682         metB         Cystathionine gamma-synthase         2.95E-09           A1552VC_00980         VC1233         sbcB         Exodeoxyribonuclease I         3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1552VC 02035  | VC2261  | glnD                                   | Bifunctional                                       | 2 19F-09 |
| A1552VC 00980 VC1233 sbcB Exodeoxyribonuclease I 3.08F-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1552VC 02437  | VC2682  | metB                                   | Cystathionine gamma-synthase                       | 2.15E 05 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1552VC_00980  | VC1233  | sbcB                                   | Exodeoxyribonuclease I                             | 3 N8F-N9 |
| A1552VC_02252     | VC2490                          | leuB              | 3-isopropylmalate dehydrogenase                   | 3.27E-09 |
|-------------------|---------------------------------|-------------------|---------------------------------------------------|----------|
| A1552VC_00615     | VC0858                          | fimA              | Fimbrial protein                                  | 3.33E-09 |
| A1552VC_02404     | VC2644                          | argE              | Acetylornithine deacetylase                       | 3.38E-09 |
|                   | VC1170;<br>overlaps             | trnB 2            | Tryntophan synthase beta chain                    |          |
| A1552VC_00917     | another                         |                   |                                                   | 4.06E-09 |
| A1552VC_00166     | VC0409                          | mshA              | hypothetical protein                              | 4.10E-09 |
| A1552VC_02042     | VC2269                          | ribE              | Riboflavin synthase                               | 4.65E-09 |
| A1552VC_00168     | VC0411                          | mshD              | hypothetical protein                              | 5.92E-09 |
| A1552VC_01613     | VC1833                          | сроВ              | Cell division coordinator CpoB                    | 6.05E-09 |
| A1552VC_01654     | VC1873; Stress<br>UPF0229 prote | s response<br>ein | hypothetical protein                              | 6.47E-09 |
| A1552VC 01404     | VC1611                          | bepA_1            | Beta-barrel assembly-enhancing protease           | 1.05E-08 |
| <br>A1552VC 00616 | VC0859                          | -                 | hypothetical protein                              | 2.04E-08 |
| <br>A1552VC 01701 | VC1922                          | tig               | Trigger factor                                    | 2.28E-08 |
| <br>A1552VC 00167 | VC0410                          | mshC              | hypothetical protein                              | 3.44E-08 |
| <br>A1552VC 01462 | VC1670                          | metC              | Cystathionine beta-lyase MetC                     | 3.78E-08 |
| A1552VC 01750     | VC1976                          | alaA              | Glutamate-pyruvate aminotransferase               | 4.45E-08 |
| A1552VC_01730     | VC2450                          | relA              | GTP pyrophosphokinase                             | 4.90E-08 |
| A1552VC_02214     | VC1185                          | ydaM_1            | putative diguanylate cyclase YdaM                 | 4.50E=08 |
| A1552VC 02046     | VC2273                          | proB              | Glutamate 5-kinase                                | 6.66E-08 |
| A1552VC 02320     | VC2559                          | cysD              | Sulfate adenylyltransferase subunit 2             | 7.27F-08 |
| A1552VC 00020     | VC0029                          | ilvE              | Branched-chain-amino-acid                         | 9 905 08 |
| A1552VC_00020     | VC2684                          | metF              | 5,10-methylenetetrahydrofolate                    | 9.902-08 |
| A1552VC_02439     | VC2082                          | auaD              | reductase<br>SuccinateCoA ligase [ADP-forming]    | 1.45E-07 |
| A1552VC_01855     | VC2083                          | SUCD              | subunit                                           | 1.46E-07 |
| A1552VC_01856     | VC2084                          | sucC              | subunit                                           | 1.95E-07 |
| A1552VC_00879     | VC1132                          | hisG              | ATP phosphoribosyltransferase                     | 2.22E-07 |
| A1552VC_02124     | VC2362                          | thrB              | Homoserine kinase                                 | 3.07E-07 |
| A1552VC_02393     | VC2632                          | pilN              | hypothetical protein                              | 3.61E-07 |
| A1552VC_01419     | VC1627                          | -                 | hypothetical protein                              | 4.40E-07 |
| A1552VC_A03701    | VCA1019                         | gltR_2            | HTH-type transcriptional regulator<br>GltR        | 4.86E-07 |
| A1552VC_00157     | VC0400                          | mshJ              | hypothetical protein                              | 5.55E-07 |
| A1552VC_00922     | VC1173                          | trpG_1            | Anthranilate synthase component 2                 | 6.63E-07 |
| A1552VC_01006     | VC1262                          | ribA              | GTP cyclohydrolase-2                              | 9.10E-07 |
| A1552VC 00302     | VC0539                          | cysT_1            | Sulfate transport system permease<br>protein CysT | 1.03E-06 |
| A1552VC 00619     | VC0863                          | -                 | hypothetical protein                              | 1.22E-06 |
| A1552VC 01102     | VC1362                          | cysG_1            | Siroheme synthase                                 | 1.49E-06 |
| A1552VC 00921     | VC1172                          | trpGD             | Bifunctional protein TrpGD                        | 1.73E-06 |
| A1552VC 00170     | VC0413                          | mshP              | hypothetical protein                              | 1.82E-06 |
| A1552V/C 01161    | VC1425                          | ydcV              | Inner membrane ABC transporter                    | 1.015.00 |
| H1002AC_01101     |                                 | I                 | permease protein                                  | 1.915-06 |

|                   | VC2417                         | dsbC                                        | Thiol:disulfide interchange protein                |          |
|-------------------|--------------------------------|---------------------------------------------|----------------------------------------------------|----------|
| A1552VC_02181     | NA: overlans                   |                                             | DsbC                                               | 1.99E-06 |
| A1552VC_00919     | another                        | trpC_2                                      | Tryptophan biosynthesis protein TrpCF              | 2.93E-06 |
| A1552VC_00303     | VC0540                         | cysW_1                                      | Sulfate transport system permease<br>protein CysW  | 2.97E-06 |
| A1552VC_02402     | VC2642                         | argB                                        | Acetylglutamate kinase                             | 3.33E-06 |
| A1552VC_02473     | VC2718                         | comF                                        | hypothetical protein                               | 3.72E-06 |
| A1552VC_01789     | VC2016                         | mltG                                        | Endolytic murein transglycosylase                  | 3.80E-06 |
| A1552VC_02321     | VC2560                         | cysG_2                                      | Siroheme synthase                                  | 4.52E-06 |
| A1552VC_00882     | VC1135                         | hisB                                        | Histidine biosynthesis bifunctional<br>protein     | 5.81E-06 |
| A1552VC_02391     | VC2630                         | pilP                                        | hypothetical protein                               | 8.22E-06 |
| <br>A1552VC_01162 | VC1426                         | /putrescine<br>transport system<br>permease | Spermidine                                         | 1.15E-05 |
| A1552VC A03756    | VCA1079                        | prsE                                        | Type I secretion system membrane<br>fusion protein | 1.50F-05 |
|                   | VC0541                         | /thiosulfate<br>import ATP-                 | Sulfate                                            | 1002.00  |
| A1552VC_00304     |                                | binding protein                             |                                                    | 1.62E-05 |
| A1552VC_01660     | VC1879                         | -                                           | hypothetical protein                               | 1.93E-05 |
| A1552VC_00516     | VC0756                         | ndk                                         | Nucleoside diphosphate kinase                      | 3.35E-05 |
| A1552VC_02547     | VC0123                         | суаА                                        | Adenylate cyclase                                  | 3.52E-05 |
| A1552VC_00916     | NA; overlaps<br>another        | trpB_1                                      | Tryptophan synthase beta chain                     | 3.66E-05 |
| A1552VC_00097     | VC0346                         | miaA                                        |                                                    | 5.56E-05 |
| A1552VC_01558     | VC1774                         | ybbH                                        | putative HTH-type transcriptional<br>regulator     | 5.99E-05 |
| A1552VC_01694     | VC1916                         | comEA                                       | ComE operon protein 1                              | 6.14E-05 |
| A1552VC_00915     | VC1169                         | trpA                                        | Tryptophan synthase alpha chain                    | 7.86E-05 |
| A1552VC_00377     | VC0614                         | gspK_1                                      | Glucosamine kinase GspK                            | 8.63E-05 |
| A1552VC_02318     | VC2556                         | cysC                                        | Adenylyl-sulfate kinase                            | 0.000123 |
| A1552VC_00920     | NA; overlaps another           | trpC_3                                      | Tryptophan biosynthesis protein TrpCF              | 0.000131 |
| A1552VC_01653     | VC1872                         | -                                           | hypothetical protein                               | 0.00017  |
| A1552VC_02254     | VC2492                         | leuD1                                       | 3-isopropylmalate dehydratase small<br>subunit 1   | 0.000197 |
| A1552VC_02232     | VC2469                         | -                                           | hypothetical protein                               | 0.000203 |
| A1552VC 00158     | VC0401                         | mshK                                        | hypothetical protein                               | 0.000321 |
| A1552VC_02244     | VC2481                         | ilvH                                        | Acetolactate synthase isozyme 3 small subunit      | 0.000583 |
| A1552VC_00918     | VC1171;<br>overlaps<br>another | trpC_1                                      | Tryptophan biosynthesis protein TrpCF              | 0.000646 |
| A1552VC_02756     | VC0166                         | mdtA_2                                      | Multidrug resistance protein MdtA                  | 0.000989 |
| A1552VC_01421     | VC1629                         | -                                           | putative ABC transporter ATP-binding<br>protein    | 0.001148 |
| A1552VC_A03702    | VCA1020                        | -                                           | hypothetical protein                               | 0.001171 |
| A1552VC_02233     | VC2470                         | sdhE                                        | FAD assembly factor SdhE                           | 0.00971  |
| A1552VC_00160     | VC0403                         | mshM                                        | hypothetical protein                               | 0.13502  |
| A1552VC_01836     | VC2063                         | -                                           | hypothetical protein                               | 0.970461 |

| 781 | Table S. 3 li | ist of annotated | output form | analysis pipeline. |
|-----|---------------|------------------|-------------|--------------------|
|-----|---------------|------------------|-------------|--------------------|

| Con-ARTIST numbers defined |                        |                                    |            |          |
|----------------------------|------------------------|------------------------------------|------------|----------|
| 1                          | Domain is conditional  | ly essential                       |            |          |
| 2                          | Entirely conditionally | essential                          |            |          |
| з                          | Domain conditionally   | enriched                           |            |          |
| 4                          | Entirely conditionally | enriched                           |            |          |
| 5                          | No difference betwee   | n conditions                       |            |          |
|                            |                        |                                    |            |          |
| MWU statistics defined     |                        |                                    |            |          |
| MWU p-values               | Average p-value for e  | ach locus across all MWU simulatio | ons        |          |
|                            | 1                      |                                    |            | N 414/11 |
| c6706                      | gene                   | A1552                              | Con-ARTIST | p-values |
| NC002505_VC0027            | ilvA                   | A1552VC 00018                      | 1          | 7.18E-10 |
| NC002505_VC0028            | ilvD                   | A1552VC 00019                      | 2          | 1.04E-16 |
| NC002505_VC0029            | ilvE                   |                                    | 2          | 9.90E-08 |
| NC002505_VC0030            | ilvM                   |                                    | 2          | 0.587632 |
| NC002505_VC0032            | comM                   | A1552VC 00023                      | 1          | 1.59E-09 |
| NC002505_VC0034            | dsbA                   | A1552VC 00025                      | 1          | 4.58E-06 |
| NC002505_VC0047            | tsaP                   | A1552VC 00037                      | 2          | 1.32E-15 |
| NC002505_VC0048            | dprA                   | A1552VC 00038                      | 2          | 6.24E-14 |
| NC002505_VC0051            | purK                   | A1552VC_00041                      | 1          | 0.007791 |
| NC002505_VC0052            | purE                   | A1552VC 00042                      | 2          | 9.19E-06 |
| NC002505_VC0056            | aroE                   | A1552VC 00045                      | 2          | 2.47E-10 |
| NC002505_VC0057            |                        | A1552VC 00046                      | 1          | 0.340881 |
| NC002505_VC0346            | miaA                   | A1552VC 00097                      | 1          | 5.56E-05 |
| NC002505_VC0384            | cysJ_1                 | A1552VC 00132                      | 2          | 6.48E-19 |
| NC002505_VC0385            | cysl                   | A1552VC 00133                      | 2          | 3.33E-15 |
| NC002505_VC0386            | cysH                   | A1552VC 00134                      | 2          | 1.76E-09 |
| NC002505_VC0396            | csgD_1                 | A1552VC 00153                      | 2          | 1.15E-09 |
| NC002505_VC0399            | mshl                   | A1552VC 00156                      | 2          | 3.49F-16 |
| NC002505_VC0400            | mshJ                   | A1552VC 00157                      | 2          | 5.55E-07 |
| NC002505_VC0401            | mshK                   | A1552VC 00158                      | 2          | 0.000321 |
| NC002505_VC0402            | xcpQ                   | A1552VC 00159                      | 2          | 2.70E-21 |
| NC002505_VC0403            | mshM                   | A1552VC 00160                      | 2          | 0.13502  |
| NC002505_VC0404            | mshN                   | A1552VC 00161                      | 2          | 1.35E-10 |
| NC002505_VC0405            | epsE_1                 | A1552VC 00162                      | 2          | 6.88E-15 |
| NC002505_VC0406            | epsF_1                 | A1552VC 00163                      | 2          | 1.96F-14 |
| NC002505_VC0407            | mshF                   | A1552VC 00164                      | 2          | 0.584881 |
| NC002505_VC0408            | pilE                   | A1552VC 00165                      | 2          | 0.094115 |
| NC002505_VC0409            | mshA                   | A1552VC 00166                      | 2          | 4.10F-09 |
| NC002505_VC0410            | mshC                   | A1552VC 00167                      | 2          | 3.44E-08 |
| NC002505_VC0411            | mshD                   | A1552VC 00168                      | 2          | 5.92F-09 |
| NC002505_VC0412            | mshO                   | A1552VC 00169                      | 2          | 2,28F-14 |
| NC002505_VC0413            | mshP                   | A1552VC 00170                      | 2          | 1.82F-06 |
| NC002505_VC0414            | mshQ                   | A1552VC 00171                      | 2          | 2,17F-28 |
| NC002505_VC0462            | pilT_1                 | A1552VC 00226                      | 2          | 4.84F-08 |

| NC002505_VC0538 | cysP                                       | A1552VC_00301 | 2 | 0.008327 |
|-----------------|--------------------------------------------|---------------|---|----------|
| NC002505_VC0539 | cysT_1                                     | A1552VC_00302 | 2 | 1.03E-06 |
| NC002505_VC0540 | cysW_1                                     | A1552VC_00303 | 2 | 2.97E-06 |
| NC002505_VC0541 | /thiosulfate import<br>ATP-binding protein | A1552VC_00304 | 2 | 1.62E-05 |
| NC002505_VC0574 | petB                                       | A1552VC_00341 | 2 | 0.019233 |
| NC002505_VC0575 | /c1                                        | A1552VC_00342 | 2 | 0.018749 |
| NC002505_VC0596 | dksA                                       | A1552VC_00361 | 2 | 0.000368 |
| NC002505_VC0604 | acnB                                       | A1552VC_00367 | 1 | 2.41E-14 |
| NC002505_VC0611 | pgm_1                                      | A1552VC_00374 | 2 | 6.18E-15 |
| NC002505_VC0613 | exo I                                      | A1552VC_00376 | 1 | 1.63E-11 |
| NC002505_VC0614 | gspK_1                                     | A1552VC_00377 | 2 | 8.63E-05 |
| NC002505_VC0615 |                                            | A1552VC_00378 | 2 | 3.48E-13 |
| NC002505_VC0616 | oppF_1                                     | A1552VC_00379 | 2 | 8.93E-11 |
| NC002505_VC0617 | oppD_1                                     | A1552VC_00380 | 2 | 1.18E-09 |
| NC002505_VC0618 | dppC_1                                     | A1552VC_00381 | 2 | 1.59E-11 |
| NC002505_VC0619 | dppB_1                                     | A1552VC_00382 | 2 | 5.82E-13 |
| NC002505_VC0620 | appA_1                                     | A1552VC_00383 | 2 | 9.99E-30 |
| NC002505_VC0622 | torS_1                                     | A1552VC_00384 | 2 | 1.16E-40 |
| NC002505_VC0623 | rsmC                                       | A1552VC_00385 | 1 | 0.299418 |
| NC002505_VC0665 | zraR_1                                     | A1552VC_00432 | 1 | 7.65E-16 |
| NC002505_VC0696 | tyrA                                       | A1552VC_00460 | 1 | 6.12E-11 |
| NC002505_VC0705 | pheA                                       | A1552VC_00468 | 2 | 6.39E-15 |
| NC002505_VC0756 | ndk                                        | A1552VC_00516 | 2 | 3.35E-05 |
| NC002505_VC0829 | tсрВ                                       | A1552VC_00584 | 1 | 0.072654 |
| NC002505_VC0831 | tcpC                                       | A1552VC_00586 | 1 | 0.02039  |
| NC002505_VC0832 | tcpR                                       | A1552VC_00587 | 1 | 0.269931 |
| NC002505_VC0835 | tcpT                                       | A1552VC_00590 | 1 | 0.002058 |
| NC002505_VC0837 | tcpF                                       | A1552VC_00592 | 2 | 0.005772 |
| NC002505_VC0840 | pctA_1                                     | A1552VC_00595 | 1 | 0.001339 |
| NC002505_VC0845 | acfD                                       | A1552VC_00601 | 1 | 0.001243 |
| NC002505_VC0852 | bamE                                       | A1552VC_00609 | 2 | 0.005835 |
| NC002505_VC0858 | fimA                                       | A1552VC_00615 | 2 | 3.33E-09 |
| NC002505_VC0859 |                                            | A1552VC_00616 | 2 | 2.04E-08 |
| NC002505_VC0860 |                                            | A1552VC_00617 | 2 | 8.60E-11 |
| NC002505_VC0861 |                                            | A1552VC_00618 | 2 | 1.02E-24 |
| NC002505_VC0863 |                                            | A1552VC_00619 | 2 | 1.22E-06 |
| NC002505_VC0869 | mltF                                       | A1552VC_00623 | 1 | 3.07E-13 |
| NC002505_VC0870 | purL                                       | A1552VC_00624 | 1 | 5.35E-08 |
| NC002505_VC0893 | pomA                                       | A1552VC_00645 | 2 | 2.01E-08 |
| NC002505_VC0894 | motB                                       | A1552VC_00646 | 1 | 1.81E-05 |
|                 | treA                                       | A1552VC_00664 | 1 | 5.38E-07 |
| NC002505_VC0966 | ptsl                                       | A1552VC_00718 | 2 | 3.69E-11 |
| NC002505_VC0968 | ptsH                                       | A1552VC_00719 | 2 | 0.000861 |
| NC002505_VC0973 | chiP                                       | A1552VC_00724 | 2 | 5.98E-21 |
| NC002505_VC0992 | asnB                                       | A1552VC_00741 | 2 | 5.36E-22 |
| NC002505_VC1051 | rssB                                       | A1552VC_00798 | 2 | 1.73E-11 |

| NC002505_VC1099                   | ackA_1                                    | A1552VC_00844     | 2 | 0.003887 |
|-----------------------------------|-------------------------------------------|-------------------|---|----------|
| NC002505_VC1133                   | hisG                                      | A1552VC_00879     | 2 | 2.22E-07 |
| NC002505_VC1134                   | hisD                                      | A1552VC_00880     | 2 | 1.59E-11 |
| NC002505_VC1135                   | hisC                                      | A1552VC_00881     | 2 | 3.21E-13 |
| NC002505_VC1136                   | hisB                                      | A1552VC_00882     | 2 | 5.81E-06 |
| NC002505_VC1137                   | hisH                                      | A1552VC_00883     | 2 | 1.72E-05 |
| NC002505_VC1138                   | hisA                                      | A1552VC_00884     | 2 | 0.000133 |
| NC002505_VC1139                   | hisF                                      | A1552VC_00885     | 2 | 1.27E-05 |
| NC002505_VC1140                   | hisl                                      | A1552VC_00886     | 1 | 8.19E-05 |
| NC002505_VC1142                   | icd2                                      | A1552VC_00888     | 1 | 5.15E-14 |
| NC002505_VC1149                   | hexR                                      | A1552VC_00895     | 2 | 1.84E-09 |
| NC002505_VC1153                   |                                           | A1552VC_00899     | 1 | 3.05E-08 |
| NC002505_VC1154                   | tfoX1_1                                   | A1552VC_00900     | 2 | 1.64E-10 |
| NA; overlaps another              | trpA                                      | A1552VC_00915     | 1 | 7.86E-05 |
| NC002505_VC1170; overlaps another | trpB_1                                    | A1552VC_00916     | 2 | 3.66E-05 |
| NC002505_VC1171; overlaps another | trpB_2                                    | A1552VC_00917     | 2 | 4.06E-09 |
| NA; overlaps another              | trpC_1                                    | A1552VC_00918     | 2 | 0.000646 |
| NA; overlaps another              | trpC_2                                    | A1552VC_00919     | 2 | 2.93E-06 |
| NC002505_VC1172                   | trpC_3                                    | A1552VC_00920     | 2 | 0.000131 |
| NC002505_VC1173                   | trpGD                                     | A1552VC_00921     | 2 | 1.73E-06 |
| NC002505_VC1174                   | trpG_1                                    | A1552VC_00922     | 2 | 6.63E-07 |
| NC002505_VC1177                   | trpE                                      | A1552VC_00923     | 2 | 6.03E-18 |
| NC002505_VC1183                   | trxB                                      | A1552VC_00930     | 1 | 2.66E-11 |
| NC002505_VC1186                   | ydaM_1                                    | A1552VC_00933     | 1 | 6.05E-08 |
| NC002505_VC1199                   |                                           | A1552VC_00945     | 2 | 1.46E-20 |
| NC002505_VC1234                   | sbcB                                      | A1552VC_00980     | 1 | 3.08E-09 |
| NC002505_VC1263                   | ribA                                      | A1552VC_01006     | 2 | 9.10E-07 |
| NC002505_VC1293                   | aspC                                      | A1552VC_01035     | 2 | 1.75E-09 |
| NC002505_VC1363                   | cysG_1                                    | A1552VC_01102     | 1 | 1.49E-06 |
| NC002505_VC1408                   | yfiR                                      | A1552VC_01142     | 2 | 5.43E-05 |
| NC002505_VC1421                   | /homoserine lactone<br>efflux protein     | A1552VC_01154     | 1 | 0.001395 |
| NC002505_VC1424                   | /putrescine-binding<br>periplasmic        | A1552VC 01159     | 2 | 2.09F-11 |
| NC002505_VC1426                   | ydcV                                      | A1552VC 01161     | 1 | 1.91E-06 |
| NC002505_VC1427                   | /putrescine transport<br>system permease  | A1552VC 01162     | 2 | 1.15E-05 |
| NC002505_VC1428                   | /putrescine import<br>ATP-binding protein | A1552VC 01163     | 2 | 0.001459 |
| NC002505_VC1435                   |                                           |                   | 2 | 0.046456 |
| NC002505_VC1436                   |                                           |                   | 2 | 0.429994 |
| NC002505_VC1437                   | copA_1                                    |                   | 2 | 0.000278 |
| NC002505_VC1438                   |                                           | <br>A1552VC 01173 | 2 | 0.20913  |
| NC002505_VC1439                   | ccoP2                                     |                   | 2 | 0.61108  |
| NC002505_VC1440                   |                                           | <br>A1552VC_01175 | 2 | 0.176755 |
| NC002505_VC1441                   |                                           | A1552VC 01176     | 2 | 0.071642 |
| NC002505_VC1442                   | ccoN1                                     | A1552VC_01177     | 2 | 0.043858 |
| NC002505_VC1496                   | prc                                       | A1552VC_01290     | 2 | 1.93E-06 |
| NC002505_VC1539                   |                                           | A1552VC_01330     | 2 | 0.000348 |

| NC002205_VCI611metAA1552VC_01493IS.3.4E.11NC002505_VCI612bePA.1A1552VC_0149I1.065.08NC002505_VCI6137V/PR_2A1552VC_01419I0.01235NC002505_VCI628IA1552VC_01419I4.406.07NC002505_VCI628IA1552VC_01419I0.00184NC002505_VCI628IA1552VC_01420I2.016.74NC002505_VCI630ImetCA1552VC_01421I0.001184NC002505_VCI671metCA1552VC_01494I2.026.74NC002505_VCI721metRA1552VC_0159I1.366.06NC002505_VCI721puRAA1552VC_01584I2.006248NC002505_VCI721puRAA1552VC_0158I6.068.69NC002505_VCI721puRAA1552VC_01562I0.001137NC002505_VCI731puBHA1552VC_01562I0.0011372NC002505_VCI847ruCA1552VC_01651I0.0011372NC002505_VCI847ruCA1552VC_01652I0.00017NC002505_VCI847ruCA1552VC_01652I0.00017NC002505_VCI847ruCA1552VC_01652I0.00017NC002505_VCI847ruCA1552VC_01660I1.916.76NC002505_VCI847ruCA1552VC_01660I1.916.76NC002505_VCI847ruCA1552VC_01681I0.000317NC002505_VCI847ruCA1552VC_01681I1.916.76NC002505_VCI847ruCA1552VC_01861 </th <th>NC002505_VC1599</th> <th>pleD_3</th> <th>A1552VC_01390</th> <th>2</th> <th>5.80E-11</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NC002505_VC1599 | pleD_3 | A1552VC_01390     | 2 | 5.80E-11 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|-------------------|---|----------|
| NC002505_VC1612bepA_1A1552VC_0140911.055-08NC002505_VC1617VyrR_2A1552VC_014100.10.001684NC002505_VC1628A1552VC_014101.02.01F-24NC002505_VC1628ftsXA1552VC_014101.00.001168NC002505_VC1629ftsXA1552VC_014201.02.01F-24NC002505_VC1630metCA1552VC_014211.10.001168NC002505_VC1741metCA1552VC_014942.22.23F-21NC002505_VC1740metRA1552VC_01592.20.000449NC002505_VC1741purRA1552VC_015812.20.000449NC002505_VC1741purRA1552VC_015842.20.000449NC002505_VC1741purRA1552VC_015632.20.000449NC002505_VC1741purRA1552VC_015632.20.001248NC002505_VC1874ruvCA1552VC_015632.20.0017NC002505_VC1874ruvCA1552VC_016562.20.0017NC002505_VC1874ruvCA1552VC_016562.20.0017NC002505_VC1874ruvCA1552VC_016562.20.0017NC002505_VC1874ruvCA1552VC_016562.20.0017NC002505_VC1874ruvCA1552VC_016562.20.0017NC002505_VC1874ruvCA1552VC_017672.20.0017NC002505_VC1874ruvCA1552VC_017672.20.0017NC002505_VC1807ruvCA1552VC_017672.20.0017NC002505_VC1807 <td< td=""><td>NC002505_VC1611</td><td>metA</td><td>A1552VC_01403</td><td>2</td><td>5.24E-11</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NC002505_VC1611 | metA   | A1552VC_01403     | 2 | 5.24E-11 |
| NC002505_VC1617oynR_2A1552VC_0140910.01285NC002505_VC1618yrfMA1552VC_0141010.00168NC002505_VC1629ftxXA1552VC_0142110.00118NC002505_VC1629ftxXA1552VC_0142110.00118NC002505_VC1629metCA1552VC_0142110.00118NC002505_VC1704metCA1552VC_0146222.235-11NC002505_VC1704metRA1552VC_0149520.00248NC002505_VC1704metRA1552VC_0158120.00248NC002505_VC1705ybbHA1552VC_0158420.00218NC002505_VC1775ybbHA1552VC_0165620.011372NC002505_VC1847ruCA1552VC_0165620.00118NC002505_VC1847ruCA1552VC_0165620.001172NC002505_VC1847ruCA1552VC_0165620.001172NC002505_VC1847ruCA1552VC_0165716.47F09NC002505_VC1847ruCA1552VC_0165711.42F09NC002505_VC1847ruCA1552VC_0165711.01647NC002505_VC1847ruCA1552VC_0165611.01647NC002505_VC1847ruCA1552VC_0165711.42F09NC002505_VC1847ruCA1552VC_0165611.01647NC002505_VC1847ruCA1552VC_0165611.01647NC002505_VC1847ruCA1552VC_0176711.42F09NC002505_VC1848muCP_4A1552VC_01861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NC002505_VC1612 | bepA_1 | A1552VC_01404     | 1 | 1.05E-08 |
| NC002505_VC1618ymMA1552VC_0141910.001684NC002505_VC1628FLSXA1552VC_0142110.001168NC002505_VC1630CA1552VC_0142110.00118NC002505_VC1671metCA1552VC_01421122.23E-21NC002505_VC1704metEA1552VC_01421122.23E-21NC002505_VC1705metRA1552VC_01457120.000449NC002505_VC1706metRA1552VC_0158420.00248NC002505_VC1775ybHA1552VC_0158410.001188NC002505_VC1775ybHA1552VC_0158420.00248NC002505_VC1841cpo8A1552VC_0163110.511792NC002505_VC1847ruvCA1552VC_0165210.011137NC002505_VC1871IA1552VC_0165210.00017NC002505_VC1871ruvCA1552VC_0165320.00017NC002505_VC1874ComECA1552VC_0165411.42E-09NC002505_VC1879comECA1552VC_0165411.42E-09NC002505_VC1879comECA1552VC_016810.00327NC002505_VC1817comEAA1552VC_016811.42E-09NC002505_VC1817comEAA1552VC_016811.42E-09NC002505_VC1917gbAA1552VC_016811.42E-09NC002505_VC1917gbAA1552VC_017022.28E-81NC002505_VC1917gbAA1552VC_0178411.34E-09NC002505_VC1917 <td< td=""><td>NC002505_VC1617</td><td>cynR_2</td><td>A1552VC_01409</td><td>1</td><td>0.1235</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NC002505_VC1617 | cynR_2 | A1552VC_01409     | 1 | 0.1235   |
| NC002505_VC1628InskA1552VC_01429IndIndIndNC002505_VC1629PiskA1552VC_01421IndIndIndNC002505_VC1630metCA1552VC_01421IndIndIndNC002505_VC1704metCA1552VC_01494IndIndIndNC002505_VC1705metRA1552VC_01510IndIndIndNC002505_VC1721purRA1552VC_01584IndIndIndNC002505_VC1775ybbHA1552VC_01584IndIndIndNAIndA1552VC_01584IndIndIndNC002505_VC1874ruvCA1552VC_01626IndIndIndNC002505_VC1874ruvCA1552VC_01631IndIndIndNC002505_VC1874ruvCA1552VC_01653IndIndIndNC002505_VC1874ruvCA1552VC_01654IndIndIndNC002505_VC1874rumCA1552VC_01654IndIndIndNC002505_VC1874rumCA1552VC_01654IndIndIndNC002505_VC1874rumCA1552VC_01654IndIndIndNC002505_VC1874rumCA1552VC_01680IndIndIndNC002505_VC1874rumCA1552VC_01680IndIndIndNC002505_VC1874rumCA1552VC_01680IndIndIndNC002505_VC1874rumCA1552VC_01680IndIndIndNC002505_VC1974rumCA1552VC_01680Ind<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC002505_VC1618 | ynfM   | A1552VC_01410     | 1 | 0.001684 |
| NC002505_VC1629ftsXA1552VC_01420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NC002505_VC1628 |        | A1552VC_01419     | 1 | 4.40E-07 |
| NC002505_VC1630         ImmetC         A1552VC_01421         ImmetC         A1552VC_01462         ImmetC         A1552VC_01494         ImmetC         A1552VC_01494         ImmetC         A1552VC_01494         ImmetC         A1552VC_01495         ImmetC         A1552VC_01495         ImmetC         A1552VC_01495         ImmetC         A1552VC_01584         ImmetC         ImmetC         A1552VC_01584         ImmetC         ImmetC         A1552VC_01584         ImmetC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NC002505_VC1629 | ftsX   | A1552VC_01420     | 2 | 2.01E-24 |
| NC002505_VC1671         metC         A1552VC_01462         2         3.78E-08           NC002505_VC1704         metE         A1552VC_01494         2         2.23E-21           NC002505_VC1706         metR         A1552VC_01495         2         0.000408           NC002505_VC1721         purR         A1552VC_01510         2         0.000408           NC002505_VC1721         purR         A1552VC_01584         2         0.032148           NC002505_VC1834         Cp08         A1552VC_01626         2         0.0111372           NC002505_VC1871         ruvC         A1552VC_01626         2         0.0111372           NC002505_VC1871         ruvC         A1552VC_01652         2         3.98E-08           NC002505_VC1872         ruvC         A1552VC_01652         2         0.00171           NC002505_VC1874         ruvC         A1552VC_01653         2         0.00171           NC002505_VC1879         comEC         A1552VC_01650         2         1.93E-05           NC002505_VC1879         comEC         A1552VC_01660         2         1.93E-05           NC002505_VC1917         comEA         A1552VC_01676         1         1.02073           NC002505_VC1917         comEA         A1552VC_01680 </td <td>NC002505_VC1630</td> <td></td> <td>A1552VC_01421</td> <td>1</td> <td>0.001148</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NC002505_VC1630 |        | A1552VC_01421     | 1 | 0.001148 |
| NC002505_VC1704metEA1552VC_01494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NC002505_VC1671 | metC   | A1552VC_01462     | 2 | 3.78E-08 |
| NC00250S_VC1706         metR         A1552VC_01495         2         1.36E-06           NC00250S_VC1721         purR         A1552VC_01510         2         0.000449           NC00250S_VC1775         VbbH         A1552VC_01584         2         5.99F-05           NA         cpoB         A1552VC_01584         2         6.05E-09           NC00250S_VC1847         ruvC         A1552VC_01626         2         0.111372           NC00250S_VC1871         ruvC         A1552VC_01652         2         3.98E-08           NC00250S_VC1872         ruvC         A1552VC_01653         2         0.00017           NC00250S_VC1874         ruvC         A1552VC_01653         2         0.00017           NC00250S_VC1874         comEC         A1552VC_01653         2         3.99E-34           NC00250S_VC1874         comEC         A1552VC_01650         1         1.42E-09           NC00250S_VC1874         mcpP_4         A1552VC_01680         2         1.93E-05           NC00250S_VC1920         d5bB         A1552VC_01680         2         1.01E-07           NC00250S_VC1921         pvrF         A1552VC_01680         2         2.28E-08           NC00250S_VC1921         pvrF         A1552VC_01780 <t< td=""><td>NC002505_VC1704</td><td>metE</td><td>A1552VC_01494</td><td>2</td><td>2.23E-21</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NC002505_VC1704 | metE   | A1552VC_01494     | 2 | 2.23E-21 |
| NC00250S_VC1721         purR         A15S2VC_01510         2         0.000449           NC00250S_VC1775         ybbH         A15S2VC_01558         2         5.99E-05           NA         Image A15S2VC_01584         2         0.032148           NC00250S_VC1874         Cp08         A15S2VC_01613         2         0.0111372           NC00250S_VC1871         Image A15S2VC_01651         1         0.511792           NC00250S_VC1871         Image A15S2VC_01653         2         0.00017           NC00250S_VC1873         Image A15S2VC_01653         2         0.00017           NC00250S_VC1874         Image A15S2VC_01654         1         6.47E-09           NC00250S_VC1879         comEC         A15S2VC_01654         1         1.42E-09           NC00250S_VC1879         comEC         A15S2VC_01664         1         1.42E-09           NC00250S_VC1879         comEA         A15S2VC_01680         2         1.01E-07           NC00250S_VC1902         dsb8         A15S2VC_01681         1         0.000327           NC00250S_VC1917         comEA         A15S2VC_0169         2         2.28E-08           NC00250S_VC1917         comEA         A15S2VC_0170         2         3.80E-66           NC00250S_VC191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NC002505_VC1706 | metR   | A1552VC_01495     | 2 | 1.36E-06 |
| NC002505_VC1775         YbbH         A1552VC_01558         2         S.99E-05           NA         Image: Constraint of the constraint | NC002505_VC1721 | purR   | A1552VC_01510     | 2 | 0.000449 |
| NA         A1552VC_01584         2         0.032148           NC002505_VC1834         cpoB         A1552VC_01613         2         6.05E-09           NC002505_VC1847         ruvC         A1552VC_01626         2         0.111372           NC002505_VC1871         I         A1552VC_01651         1         0.511792           NC002505_VC1872         I         A1552VC_01652         2         3.98E-08           NC002505_VC1873         T         A1552VC_01654         1         6.47E-09           NC002505_VC1874         ComEC         A1552VC_01659         2         3.99E-34           NC002505_VC1879         comEC         A1552VC_01650         1         1.42E-09           NC002505_VC1880         mcpP_4         A1552VC_01680         2         1.01E-07           NC002505_VC1911         pyrF         A1552VC_01688         1         0.000237           NC002505_VC1917         comEA         A1552VC_01701         2         2.28E-08           NC002505_VC1923         tig         A1552VC_01701         2         3.80E-06           NC002505_VC1931         pabC         A1552VC_01790         2         3.80E-06           NC002505_VC2033         adhE_1         A1552VC_01820         2         2.89E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC002505_VC1775 | уbbH   | A1552VC_01558     | 2 | 5.99E-05 |
| NC002505_VC1834         cpoB         A1552VC_01613         2         6.05E-09           NC002505_VC1847         ruvC         A1552VC_01626         2         0.111372           NC002505_VC1871         I         A1552VC_01651         1         0.511792           NC002505_VC1872         I         A1552VC_01652         2         3.98F-08           NC002505_VC1873         I         A1552VC_01653         2         0.00017           NC002505_VC1874         I         A1552VC_01654         1         6.47E-09           NC002505_VC1879         comEC         A1552VC_01660         2         3.99E-34           NC002505_VC1880         mcPP_4         A1552VC_01660         2         1.01E-07           NC002505_VC1989         mcPP_4         A1552VC_01676         1         1.42E-09           NC002505_VC1911         pyrF         A1552VC_01680         2         1.01E-07           NC002505_VC1923         tig         A1552VC_01694         2         2.28E-08           NC002505_VC1933         tig         A1552VC_01750         2         2.89E-08           NC002505_VC2033         adhE_1         A1552VC_01790         2         2.89E-08           NC002505_VC2033         adhE_1         A1552VC_01820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA              |        | A1552VC_01584     | 2 | 0.032148 |
| NC002505_VC1847         ruvC         A1552VC_01626         2         0.111372           NC002505_VC1871         I         A1552VC_01651         I         0.511792           NC002505_VC1872         I         A1552VC_01652         2         3.98E-08           NC002505_VC1873         I         A1552VC_01653         2         0.00017           NC002505_VC1874         I         A1552VC_01659         2         3.99E-34           NC002505_VC1879         comEC         A1552VC_01650         2         1.93E-05           NC002505_VC1880         ImcPP_4         A1552VC_01660         2         1.93E-05           NC002505_VC1902         dsb8         A1552VC_01660         2         1.01E-07           NC002505_VC1911         pvrF         A1552VC_01688         1         0.000270           NC002505_VC1917         comEA         A1552VC_01694         2         6.14E-05           NC002505_VC1917         alaA         A1552VC_0170         2         2.28E-08           NC002505_VC2017         mltG         A1552VC_01790         2         2.89E-13           NC002505_VC203         adhE_1         A1552VC_01806         2         1.88E-10           NC002505_VC203         adhE_1         A1552VC_01821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NC002505_VC1834 | сроВ   | A1552VC_01613     | 2 | 6.05E-09 |
| NC002505_VC1871         A1552VC_01651         1         0.511792           NC002505_VC1872         A1552VC_01652         2         3.98E-08           NC002505_VC1873         A1552VC_01653         2         0.00017           NC002505_VC1874         A1552VC_01654         1         6.47E-09           NC002505_VC1879         comEC         A1552VC_01659         2         3.99E-34           NC002505_VC1880         A1552VC_01660         2         1.93E-05           NC002505_VC1898         mcpP_4         A1552VC_01676         1         1.42E-09           NC002505_VC1902         dsbB         A1552VC_01680         2         1.01E-07           NC002505_VC1910         pvrF         A1552VC_01688         1         0.000327           NC002505_VC1917         comEA         A1552VC_01694         2         2.28E-08           NC002505_VC1917         alaA         A1552VC_01750         2         2.88E-08           NC002505_VC2017         mHG         A1552VC_01789         2         3.80E-06           NC002505_VC2018         pabC         A1552VC_01780         2         2.88E-10           NC002505_VC203         adhE_1         A1552VC_01820         2         2.89E-13           NC002505_VC203         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC002505_VC1847 | ruvC   | A1552VC_01626     | 2 | 0.111372 |
| NC002505_VC1872         A1552VC_01652         2         3.98E-08           NC002505_VC1873         A1552VC_01653         2         0.00017           NC002505_VC1874         A1552VC_01654         1         6.47E-09           NC002505_VC1879         comEC         A1552VC_01659         2         3.99E-34           NC002505_VC1880         mcpP_4         A1552VC_01660         2         1.93E-05           NC002505_VC1988         mcpP_4         A1552VC_01660         2         1.01E-07           NC002505_VC1910         dsbB         A1552VC_01688         1         0.000307           NC002505_VC1911         pyrF         A1552VC_01694         2         6.14E-05           NC002505_VC1917         comEA         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01750         2         4.45E-08           NC002505_VC2017         mlt6         A1552VC_01790         2         2.89E-13           NC002505_VC2018         pabC         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01820         2         6.29E-06           NC002505_VC2036         asd1         A1552VC_01820         2         6.29E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NC002505_VC1871 |        | A1552VC_01651     | 1 | 0.511792 |
| NC002505_VC1873         A1552VC_01653         2         0.00017           NC002505_VC1874         A1552VC_01654         1         6.47E-09           NC002505_VC1879         comEC         A1552VC_01659         2         3.99E-34           NC002505_VC1880         A1552VC_01660         2         1.93E-05           NC002505_VC1898         mcpP_4         A1552VC_01676         1         1.42E-09           NC002505_VC1902         dsbB         A1552VC_01680         2         1.01E-07           NC002505_VC1911         PVrF         A1552VC_01688         1         0.000327           NC002505_VC1917         comEA         A1552VC_01694         2         6.14E-05           NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01789         2         3.80E-06           NC02505_VC2018         pabC         A1552VC_01790         2         2.89E-13           NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01820         2         6.29E-06           NC002505_VC2036         cmH_1         A1552VC_01821         2         0.061099 <t< td=""><td>NC002505_VC1872</td><td></td><td></td><td>2</td><td>3.98E-08</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC002505_VC1872 |        |                   | 2 | 3.98E-08 |
| NC002505_VC1874         A1552VC_01654         1         6.47E-09           NC002505_VC1879         comEC         A1552VC_01659         2         3.99E-34           NC002505_VC1880         mcPP_4         A1552VC_01660         2         1.93E-05           NC002505_VC1898         mcPP_4         A1552VC_01676         1         1.42E-09           NC002505_VC1902         dsbB         A1552VC_01680         2         1.01E-07           NC002505_VC1911         PyrF         A1552VC_01688         1         0.000327           NC002505_VC1917         comEA         A1552VC_01694         2         6.14E-05           NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01789         2         3.80E-06           NC002505_VC2017         mHG         A1552VC_01790         2         2.89E-13           NC002505_VC2038         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2048         mIaA         A1552VC_01820         2         6.29E-06           NC002505_VC2048         mIaA         A1552VC_01821         2         0.06199           NC002505_VC2049         ccmH_1         A1552VC_01823         2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC1873 |        |                   | 2 | 0.00017  |
| NC002505_VC1879         comEC         A1552VC_01659         2         3.99F.34           NC002505_VC1880         mcpP_4         A1552VC_01660         2         1.93E-05           NC002505_VC1898         mcpP_4         A1552VC_01676         1         1.42E-09           NC002505_VC1902         dsbB         A1552VC_01680         2         1.01E-07           NC002505_VC1911         PyrF         A1552VC_01688         1         0.000327           NC002505_VC1917         comEA         A1552VC_01694         2         2.28E-08           NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01780         2         3.80E-06           NC002505_VC2017         mltG         A1552VC_01790         2         2.89E-13           NC002505_VC2038         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01804         1         1.39E-06           NC002505_VC2048         mlaA         A1552VC_01820         2         0.061099           NC002505_VC2050         ccmH_1         A1552VC_01821         2         0.00177           NC002505_VC2050         ccmF         A1552VC_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC1874 |        |                   | 1 | 6.47E-09 |
| NC002505_VC1880         mcpP_4         A1552VC_01660         2         1.93E-05           NC002505_VC1898         mcpP_4         A1552VC_01676         1         1.42E-09           NC002505_VC1902         dsb8         A1552VC_01680         2         1.01E-07           NC002505_VC1911         pyrF         A1552VC_01688         1         0.000327           NC002505_VC1917         comEA         A1552VC_01694         2         6.14E-05           NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01750         2         4.45E-08           NC002505_VC2017         mltG         A1552VC_01790         2         2.89E-13           NC002505_VC2018         pabC         A1552VC_01804         1         1.39E-06           NC002505_VC2033         adhE_1         A1552VC_01806         2         1.88E-10           NC002505_VC2036         asd1         A1552VC_01820         2         6.29E-06           NC002505_VC2048         mlaA         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_1         A1552VC_01823         2         0.055212           NC002505_VC2050         ccmF         A1552VC_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC1879 | comEC  | <br>A1552VC 01659 | 2 | 3.99E-34 |
| NC002505_VC1898         mcpP_4         A1552VC_01676         1         1.42E-09           NC002505_VC1902         dsb8         A1552VC_01680         2         1.01E-07           NC002505_VC1911         pyrF         A1552VC_01688         1         0.000327           NC002505_VC1917         comEA         A1552VC_01694         2         6.14E-05           NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01750         2         4.45E-08           NC002505_VC2017         mltG         A1552VC_01790         2         2.89E-13           NC002505_VC2018         pabC         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2036         asd1         A1552VC_01820         2         6.29E-06           NC002505_VC2048         mlaA         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_1         A1552VC_01823         2         0.055212           NC002505_VC2051         dsbE         A1552VC_01824         2         0.00177           NC002505_VC2052         ccmF         A1552VC_01825 </td <td>NC002505_VC1880</td> <td></td> <td></td> <td>2</td> <td>1.93E-05</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NC002505_VC1880 |        |                   | 2 | 1.93E-05 |
| NC002505_VC1902         dsbB         A1552VC_01680         2         1.01E-07           NC002505_VC1911         pyrF         A1552VC_01688         1         0.000327           NC002505_VC1917         comEA         A1552VC_01688         1         0.000327           NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01750         2         4.45E-08           NC002505_VC2017         mHG         A1552VC_01790         2         2.89E-13           NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mIaA         A1552VC_01820         2         6.29E-06           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_2         A1552VC_01822         2         0.00177           NC002505_VC2051         dsbE         A1552VC_01823         2         0.00177           NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825 <td>NC002505_VC1898</td> <td>mcpP_4</td> <td></td> <td>1</td> <td>1.42E-09</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NC002505_VC1898 | mcpP_4 |                   | 1 | 1.42E-09 |
| NC002505_VC1911         pyrF         A1552VC_01688         1         0.000327           NC002505_VC1917         comEA         A1552VC_01694         2         6.14E-05           NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01750         2         4.45E-08           NC002505_VC2017         mltG         A1552VC_01789         2         3.80E-06           NC002505_VC2018         pabC         A1552VC_01790         2         2.89E-13           NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mlaA         A1552VC_01820         2         6.29E-06           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_2         A1552VC_01823         2         0.055212           NC002505_VC2051         dsbE         A1552VC_01823         2         0.00177           NC002505_VC2052         ccmF         A1552VC_01825         2         0.114495           NC002505_VC2053         ccmC         A1552VC_01826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC1902 | dsbB   |                   | 2 | 1.01E-07 |
| NC002505_VC1917         comEA         A1552VC_01694         2         6.14E-05           NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01750         2         4.45E-08           NC002505_VC2017         mltG         A1552VC_01789         2         3.80E-06           NC002505_VC2018         pabC         A1552VC_01790         2         2.89E-13           NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mlaA         A1552VC_01820         2         6.29E-06           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_22         A1552VC_01823         2         0.055212           NC002505_VC2051         dsbE         A1552VC_01823         2         0.00177           NC002505_VC2053         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01826         2         0.427757           NC002505_VC2054         A1552VC_01826         2 <td>NC002505_VC1911</td> <td>pyrF</td> <td></td> <td>1</td> <td>0.000327</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC002505_VC1911 | pyrF   |                   | 1 | 0.000327 |
| NC002505_VC1923         tig         A1552VC_01701         2         2.28E-08           NC002505_VC1977         alaA         A1552VC_01750         2         4.45E-08           NC002505_VC2017         mltG         A1552VC_01789         2         3.80E-06           NC002505_VC2018         pabC         A1552VC_01790         2         2.89E-13           NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mlaA         A1552VC_01820         2         0.061099           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.00943           NC002505_VC2050         ccmH_2         A1552VC_01823         2         0.00177           NC002505_VC2051         dsbE         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmF         A1552VC_01826         2         0.427757           NC002505_VC2054         A1552VC_01827         2         0.089981           NC002505_VC2055         ccmC         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmB         A1552VC_01827         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NC002505_VC1917 | comEA  |                   | 2 | 6.14E-05 |
| NC002505_VC1977         alaA         A1552VC_01750         2         4.45E-08           NC002505_VC2017         mltG         A1552VC_01789         2         3.80E-06           NC002505_VC2018         pabC         A1552VC_01790         2         2.89E-13           NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mlaA         A1552VC_01820         2         6.29E-06           NC002505_VC2048         mlaA         A1552VC_01821         2         0.061099           NC002505_VC2048         mlaA         A1552VC_01822         2         0.00943           NC002505_VC2050         ccmH_1         A1552VC_01823         2         0.055212           NC002505_VC2051         dsbE         A1552VC_01823         2         0.00177           NC002505_VC2052         ccmF         A1552VC_01825         2         0.01177           NC002505_VC2053         ccmE         A1552VC_01826         2         0.427757           NC002505_VC2054         A1552VC_01827         2         0.08981           NC002505_VC2055         ccmC         A1552VC_01828         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC002505_VC1923 | tig    | <br>A1552VC 01701 | 2 | 2.28E-08 |
| NC002505_VC2017         mltG         A1552VC_01789         2         3.80E-06           NC002505_VC2018         pabC         A1552VC_01790         2         2.89E-13           NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mlaA         A1552VC_01820         2         6.29E-06           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_2         A1552VC_01822         2         0.009943           NC002505_VC2051         dsbE         A1552VC_01823         2         0.055212           NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825         2         0.14495           NC002505_VC2054         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1 <td>NC002505_VC1977</td> <td>alaA</td> <td><br/>A1552VC_01750</td> <td>2</td> <td>4.45E-08</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC002505_VC1977 | alaA   | <br>A1552VC_01750 | 2 | 4.45E-08 |
| NC002505_VC2018         pabC         A1552VC_01790         2         2.89E-13           NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mlaA         A1552VC_01820         2         6.29E-06           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_2         A1552VC_01822         2         0.009943           NC002505_VC2051         dsbE         A1552VC_01823         2         0.055212           NC002505_VC2052         ccmF         A1552VC_01823         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01826         2         0.427757           NC002505_VC2054         CmC         A1552VC_01826         2         0.427757           NC002505_VC2054         CmC         A1552VC_01827         2         0.089981           NC002505_VC2055         ccmC         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmB         A1552VC_01825 </td <td>NC002505_VC2017</td> <td>mltG</td> <td>A1552VC_01789</td> <td>2</td> <td>3.80E-06</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NC002505_VC2017 | mltG   | A1552VC_01789     | 2 | 3.80E-06 |
| NC002505_VC2033         adhE_1         A1552VC_01804         1         1.39E-06           NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mlaA         A1552VC_01820         2         6.29E-06           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_2         A1552VC_01822         2         0.009943           NC002505_VC2051         dsbE         A1552VC_01823         2         0.055212           NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825         2         0.114495           NC002505_VC2054         MCM         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmC         A1552VC_01828         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NC002505_VC2018 | pabC   | A1552VC_01790     | 2 | 2.89E-13 |
| NC002505_VC2036         asd1         A1552VC_01806         2         1.88E-10           NC002505_VC2048         mlaA         A1552VC_01820         2         6.29E-06           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_2         A1552VC_01822         2         0.009943           NC002505_VC2051         dsbE         A1552VC_01823         2         0.055212           NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825         2         0.114495           NC002505_VC2054         CmC         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01826         1         0.061912           NC002505_VC2056         ccmB         A1552VC_01826         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC2033 | adhE_1 | A1552VC_01804     | 1 | 1.39E-06 |
| NC002505_VC2048         mlaA         A1552VC_01820         2         6.29E-06           NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_2         A1552VC_01822         2         0.009943           NC002505_VC2051         dsbE         A1552VC_01823         2         0.055212           NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825         2         0.114495           NC002505_VC2054         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmA         A1552VC_01828         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC002505_VC2036 | asd1   | A1552VC_01806     | 2 | 1.88E-10 |
| NC002505_VC2049         ccmH_1         A1552VC_01821         2         0.061099           NC002505_VC2050         ccmH_2         A1552VC_01822         2         0.009943           NC002505_VC2051         dsbE         A1552VC_01823         2         0.055212           NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825         2         0.114495           NC002505_VC2054         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmA         A1552VC_01827         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NC002505_VC2048 | mlaA   | A1552VC_01820     | 2 | 6.29E-06 |
| NC002505_VC2050         ccmH_2         A1552VC_01822         2         0.009943           NC002505_VC2051         dsbE         A1552VC_01823         2         0.055212           NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825         2         0.114495           NC002505_VC2054         CmC         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2063         cheA 2         A1552VC_01825         1         0.61912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC002505_VC2049 | ccmH_1 | A1552VC 01821     | 2 | 0.061099 |
| NC002505_VC2051         dsbE         A1552VC_01823         2         0.055212           NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825         2         0.114495           NC002505_VC2054         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2056         ccmB         A1552VC_01825         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC2050 | ccmH_2 |                   | 2 | 0.009943 |
| NC002505_VC2052         ccmF         A1552VC_01824         2         0.00177           NC002505_VC2053         ccmE         A1552VC_01825         2         0.114495           NC002505_VC2054         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2063         cheA 2         A1552VC_01825         1         0.6315140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC002505_VC2051 | dsbE   | <br>A1552VC_01823 | 2 | 0.055212 |
| NC002505_VC2053         ccmE         A1552VC_01825         2         0.114495           NC002505_VC2054         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2063         cheA 2         A1552VC_01825         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC002505_VC2052 | ccmF   | A1552VC_01824     | 2 | 0.00177  |
| NC002505_VC2054         A1552VC_01826         2         0.427757           NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2063         cheA 2         A1552VC_01825         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC002505_VC2053 | ccmE   | A1552VC_01825     | 2 | 0.114495 |
| NC002505_VC2055         ccmC         A1552VC_01827         2         0.089981           NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2063         cheA 2         A1552VC_01825         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC2054 |        | A1552VC 01826     | 2 | 0.427757 |
| NC002505_VC2056         ccmB         A1552VC_01828         1         0.061912           NC002505_VC2063         cheA_2         A1552VC_01825         1         0.061912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC002505_VC2055 | ccmC   |                   | 2 | 0.089981 |
| NC002505 VC2063 cheA 2 A1553VC 01925 1 C 315 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC2056 | сстВ   | A1552VC_01828     | 1 | 0.061912 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC2063 | cheA_2 | A1552VC_01835     | 1 | 6.21E-19 |
| NC002505_VC2064 A1552VC 01836 2 0.970461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NC002505_VC2064 |        | A1552VC 01836     | 2 | 0.970461 |
| NC002505_VC2065 cheY_4 A1552VC 01837 2 1.29E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC002505_VC2065 | cheY_4 | <br>A1552VC_01837 | 2 | 1.29E-05 |
| NC002505_VC2080 cdhR A1552VC 01851 2 4.18E-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NC002505_VC2080 | cdhR   | A1552VC 01851     | 2 | 4.18E-57 |
| NC002505_VC2084 sucD A1552VC 01855 2 1.46E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NC002505_VC2084 | sucD   |                   | 2 | 1.46E-07 |

| NC002505_VC2085 | sucC        | A1552VC_01856 | 2 | 1.95E-07 |
|-----------------|-------------|---------------|---|----------|
| NC002505_VC2092 | gltA        | A1552VC_01863 | 2 | 1.46E-14 |
| NC002505_VC2154 |             | A1552VC_01919 | 2 | 0.085653 |
| NC002505_VC2156 | bamC        | A1552VC_01920 | 2 | 1.26E-06 |
| NC002505_VC2164 | bepA_3      | A1552VC_01927 | 2 | 1.35E-07 |
| NC002505_VC2198 | flgD        | A1552VC_01972 | 2 | 5.42E-05 |
| NC002505_VC2262 | glnD        | A1552VC_02035 | 2 | 2.19E-09 |
| NC002505_VC2270 | ribE        | A1552VC_02042 | 1 | 4.65E-09 |
| NC002505_VC2271 | ribD        | A1552VC_02043 | 2 | 6.57E-12 |
| NC002505_VC2273 | proA        | A1552VC_02045 | 2 | 1.53E-12 |
| NC002505_VC2274 | proB        | A1552VC_02046 | 2 | 6.66E-08 |
| NC002505_VC2316 | argA        | A1552VC_02083 | 1 | 3.50E-10 |
| NC002505_VC2345 | serB        | A1552VC_02107 | 2 | 5.26E-11 |
| NC002505_VC2362 | thrC        | A1552VC_02123 | 2 | 1.10E-11 |
| NC002505_VC2363 | thrB        | A1552VC_02124 | 2 | 3.07E-07 |
| NC002505_VC2364 | /homoserine | A1552VC_02125 | 2 | 4.26E-11 |
| NC002505_VC2389 | carB        | A1552VC_02152 | 2 | 2.07E-22 |
| NC002505_VC2390 | carA        | A1552VC_02153 | 1 | 3.72E-07 |
| NC002505_VC2418 | dsbC        | A1552VC_02181 | 2 | 1.99E-06 |
| NC002505_VC2419 | xerD_1      | A1552VC_02182 | 1 | 0.015063 |
| NC002505_VC2422 | nadC        | A1552VC_02185 | 1 | 0.158101 |
| NC002505_VC2423 | pilA        | A1552VC_02186 | 2 | 2.21E-13 |
| NC002505_VC2424 | epsE_2      | A1552VC_02187 | 2 | 8.76E-18 |
| NC002505_VC2425 | gspF        | A1552VC_02188 | 2 | 6.27E-15 |
| NC002505_VC2441 |             | A1552VC_02205 | 1 | 0.051528 |
| NC002505_VC2451 | relA        | A1552VC_02214 | 2 | 4.90E-08 |
| NC002505_VC2453 | barA_2      | A1552VC_02216 | 1 | 3.30E-13 |
| NC002505_VC2470 |             | A1552VC_02232 | 1 | 0.000203 |
| NC002505_VC2471 | sdhE        | A1552VC_02233 | 2 | 0.00971  |
| NC002505_VC2481 | serA        | A1552VC_02243 | 2 | 1.38E-13 |
| NC002505_VC2482 | ilvH        | A1552VC_02244 | 2 | 0.000583 |
| NC002505_VC2483 | ilvl        | A1552VC_02245 | 2 | 1.74E-18 |
| NC002505_VC2490 | leuA        | A1552VC_02251 | 2 | 1.04E-14 |
| NC002505_VC2491 | leuB        | A1552VC_02252 | 2 | 3.27E-09 |
| NC002505_VC2492 | leuC        | A1552VC_02253 | 2 | 2.94E-11 |
| NC002505_VC2493 | leuD1       | A1552VC_02254 | 2 | 0.000197 |
| NC002505_VC2508 | argF        | A1552VC_02274 | 2 | 9.29E-10 |
| NC002505_VC2510 | pyrB        | A1552VC_02275 | 2 | 3.61E-05 |
| NC002505_VC2515 | ibaG        | A1552VC_02280 | 1 | 0.567681 |
| NC002505_VC2516 | yrbB        | A1552VC_02281 | 2 | 0.436607 |
| NC002505_VC2517 | mlaC        | A1552VC_02282 | 2 | 0.002056 |
| NC002505_VC2518 | mlaD        | A1552VC_02283 | 2 | 0.061351 |
| NC002505_VC2519 | mlaE        | A1552VC_02284 | 2 | 0.003503 |
| NC002505_VC2520 | mlaF        | A1552VC_02285 | 1 | 0.057171 |
| NC002505_VC2529 | rpoN        | A1552VC_02292 | 2 | 2.33E-06 |
| NC002505_VC2558 | cysC        | A1552VC_02318 | 1 | 0.000123 |

| NC002505_VC2559          | cysN             | A1552VC_02319     | 2 | 1.53E-10 |
|--------------------------|------------------|-------------------|---|----------|
| NC002505_VC2560          | cysD             | A1552VC_02320     | 2 | 7.27E-08 |
| NC002505_VC2561          | cysG_2           | A1552VC_02321     | 2 | 4.52E-06 |
| NC002505_VC2618          | /acetylornithine | A1552VC_02378     | 2 | 1.34E-06 |
| NC002505_VC2630          | pilQ             | A1552VC_02390     | 2 | 5.81E-19 |
| NC002505_VC2631          | pilP             | A1552VC_02391     | 2 | 8.22E-06 |
| NC002505_VC2632          | pilO             | A1552VC_02392     | 2 | 1.56E-09 |
| NC002505_VC2633          | pilN             | A1552VC_02393     | 2 | 3.61E-07 |
| NC002505_VC2634          | pilM             | A1552VC_02394     | 2 | 2.88E-12 |
| NC002505_VC2641          | argH             | A1552VC_02400     | 2 | 2.41E-12 |
| NC002505_VC2642          | argG             | A1552VC_02401     | 2 | 1.41E-12 |
| NC002505_VC2643          | argB             | A1552VC_02402     | 2 | 3.33E-06 |
| NC002505_VC2644          | argC             | A1552VC_02403     | 2 | 5.40E-10 |
| NC002505_VC2645          | argE             | A1552VC_02404     | 2 | 3.38E-09 |
| NC002505_VC2646          | ррс              | A1552VC_02405     | 2 | 1.67E-24 |
| NC002505_VC2683          | metB             | A1552VC_02437     | 2 | 2.95E-09 |
| NC002505_VC2685          | metF             | A1552VC_02439     | 2 | 1.45E-07 |
| NC002505_VC2686          | zapB             | A1552VC 02440     | 1 | 0.968132 |
| NC002505_VC2719          | comF             | A1552VC 02473     | 2 | 3.72E-06 |
| NC002505_VC0125          | lysA             | A1552VC 02545     | 2 | 8.63E-16 |
| NC002505_VC0123          | суаҮ             | A1552VC 02546     | 2 | 0.829217 |
| NC002505_VC0122          | суаА             | A1552VC 02547     | 1 | 3.52E-05 |
| NC002505_VC0217          | radC             | <br>A1552VC 02696 | 2 | 2.80E-06 |
| NC002505_VC0211          | pyrE             | A1552VC 02702     | 2 | 2.59E-05 |
| NC002505_VC0186          | gor              | A1552VC 02725     | 2 | 2.24E-05 |
| NC002505_VC0165          | mdtA_2           | A1552VC 02756     | 2 | 0.000989 |
| NC002505_VC0164          | bepE_2           | A1552VC_02757     | 2 | 2.32E-14 |
| NC002505_VC0163          |                  | A1552VC_02758     | 2 | 0.68648  |
| NC002505_VC0162          | ilvC             | A1552VC_02759     | 2 | 2.53E-15 |
| NC002506_VCA0013         | malP             | A1552VC_A02807    | 1 | 0.000874 |
| NC002506_VCA0015-VCA0016 | glgB             | A1552VC_A02809    | 1 | 3.52E-15 |
| NC002506_VCA0040         |                  | A1552VC_A02833    | 2 | 1.75E-10 |
| NC002506_VCA0078         |                  | A1552VC_A02865    | 1 | 0.805847 |
| NC002506_VCA0079         | mepM_4           | A1552VC_A02866    | 2 | 2.20E-07 |
| NC002506_VCA0165         | cph2_6           | A1552VC_A02944    | 2 | 3.97E-10 |
| NC002506_VCA0166         | cspV_1           | A1552VC_A02946    | 2 | 0.013533 |
| NC002506_VCA0454         | sbp_1            | A1552VC_A03177    | 1 | 0.060177 |
| NC002506_VCA0802         | ltaS2            | A1552VC_A03501    | 1 | 0.000768 |
| NC002506_VCA0862         |                  | A1552VC_A03554    | 2 | 0.001133 |
| NC002506_VCA0863         | volA             | A1552VC_A03555    | 1 | 0.002356 |
| NC002506_VCA0925         | pyrC             | A1552VC_A03613    | 1 | 0.000348 |
| NC002506_VCA1020         | gltR_2           | A1552VC_A03701    | 2 | 4.86E-07 |
| NC002506_VCA1021         |                  | A1552VC_A03702    | 2 | 0.001171 |
| NC002506_VCA1025         | nagB             | A1552VC_A03705    | 2 | 1.36E-06 |
| NC002506_VCA1080         | prsE             | A1552VC_A03756    | 1 | 1.50E-05 |
| NC002506_VCA1082         | pdeB_2           | A1552VC_A03758    | 2 | 3.85E-21 |

# 782 References:

- 7831Blokesch, M. Natural competence for transformation. Current Biology 26, R1126-R1130784(2016). <a href="https://doi.org/10.1016/j.cub.2016.08.058">https://doi.org/10.1016/j.cub.2016.08.058</a>
- Sinha-Ray, S., Alam, M. T., Bag, S., Morris, J. G., Jr. & Ali, A. Conversion of a recAMediated Non-toxigenic Vibrio cholerae O1 Strain to a Toxigenic Strain Using ChitinInduced Transformation. *Front Microbiol* 10, 2562 (2019).
  https://doi.org:10.3389/fmicb.2019.02562
- Joelsson, A., Liu, Z. & Zhu, J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. *Infect Immun* 74, 1141-1147 (2006).
  https://doi.org:10.1128/iai.74.2.1141-1147.2006
- Hu, D. *et al.* Origins of the current seventh cholera pandemic.
- 793
   5
   Ali, M. et al. The global burden of cholera. Bull World Health Organ 90, 209-218a (2012).

   794
   https://doi.org:10.2471/blt.11.093427
- Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in endemic countries. *PLoS Negl Trop Dis* 9, e0003832 (2015).
  https://doi.org:10.1371/journal.pntd.0003832
- 798 7
  798 7
  799 6
  799 6
  799 7
  790 6
  790 7
  790 7
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 8
  790 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
  70 9
- 800 8 Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C.-Y. & Schoolnik, G. K. Chitin Induces
  801 Natural Competence in Vibrio cholerae. *Science* 310, 1824-1827 (2005).
  802 https://doi.org:10.1126/science.1120096
- Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C. Y. & Schoolnik, G. K. Chitin induces
  natural competence in Vibrio cholerae. *Science* 310, 1824-1827 (2005).
  https://doi.org:10.1126/science.1120096
- 80610Dalia, A. B., Lazinski, D. W. & Camilli, A. Identification of a membrane-bound807transcriptional regulator that links chitin and natural competence in Vibrio cholerae. mBio 5,808e01028-01013 (2014). https://doi.org:10.1128/mBio.01028-13
- 809 11 Blokesch, M. Chitin colonization, chitin degradation and chitin-induced natural competence of
   810 Vibrio cholerae are subject to catabolite repression. *Environ Microbiol* 14, 1898-1912 (2012).
   811 https://doi.org:10.1111/j.1462-2920.2011.02689.x
- 812 12 Metzger, L. C. & Blokesch, M. Regulation of competence-mediated horizontal gene transfer
   813 in the natural habitat of Vibrio cholerae.
- Sun, Y., Bernardy, E. E., Hammer, B. K. & Miyashiro, T. Competence and natural transformation in vibrios. *Mol Microbiol* 89, 583-595 (2013).
  <u>https://doi.org:10.1111/mmi.12307</u>
- 817 14 Watve, S. S., Thomas, J. & Hammer, B. K. CytR Is a Global Positive Regulator of
  818 Competence, Type VI Secretion, and Chitinases in Vibrio cholerae. *PLoS One* 10, e0138834
  819 (2015). <u>https://doi.org:10.1371/journal.pone.0138834</u>
- Lichev, A., Angelov, A., Cucurull, I. A.-O. & Liebl, W. A.-O. Amino acids as nutritional
  factors and (p)ppGpp as an alarmone of the stringent response regulate natural transformation
  in Micrococcus luteus.
- 823 16 Wilson Ga Fau Bott, K. F. & Bott, K. F. Nutritional factors influencing the development of
  824 competence in the Bacillus subtilis transformation system.
- 825 17 Blokesch, M. & Schoolnik, G. K. The extracellular nuclease Dns and its role in natural 826 transformation of Vibrio cholerae. *J Bacteriol* 190, 7232-7240 (2008).
  827 https://doi.org:10.1128/jb.00959-08
- 828 18 Seitz, P. *et al.* ComEA is essential for the transfer of external DNA into the periplasm in 829 naturally transformable Vibrio cholerae cells.
- 830 19 Silander, O. K. *et al.* A genome-wide analysis of promoter-mediated phenotypic noise in
  831 Escherichia coli. *PLoS Genet* 8, e1002443 (2012).
- 832 <u>https://doi.org:10.1371/journal.pgen.1002443</u>
- Pál, C., Papp B Fau Lercher, M. J. & Lercher, M. J. Adaptive evolution of bacterial
  metabolic networks by horizontal gene transfer.
- 835 21 Kumar, A., Bag, S. & Das, B. Novel Genetic Tool to Study the Stability of Genomic Islands.

| 836 | 22 | Kumar, A., Das, B. & Kumar, N. Vibrio Pathogenicity Island-1: The Master Determinant of           |
|-----|----|---------------------------------------------------------------------------------------------------|
| 837 |    | Cholera Pathogenesis.                                                                             |
| 838 | 23 | Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 21,     |
| 839 |    | 526-540 (2020). https://doi.org:10.1038/s41576-020-0244-x                                         |
| 840 | 24 | Chiang, S. L. & Rubin, E. J. Construction of a mariner-based transposon for epitope-tagging       |
| 841 |    | and genomic targeting. Gene 296, 179-185 (2002). https://doi.org:10.1016/s0378-                   |
| 842 |    | 1119(02)00856-9                                                                                   |
| 843 | 25 | Pritchard, J. R. et al. ARTIST: high-resolution genome-wide assessment of fitness using           |
| 844 |    | transposon-insertion sequencing. PLoS Genet 10, e1004782 (2014).                                  |
| 845 |    | https://doi.org:10.1371/journal.pgen.1004782                                                      |
| 846 | 26 | Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically             |
| 847 |    | annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res          |
| 848 |    | 47, D309-d314 (2019). https://doi.org:10.1093/nar/gky1085                                         |
| 849 | 27 | Adams, D. W., Stutzmann, S., Stoudmann, C. & Blokesch, M. DNA-uptake pili of Vibrio               |
| 850 |    | cholerae are required for chitin colonization and capable of kin recognition via sequence-        |
| 851 |    | specific self-interaction. Nat Microbiol 4, 1545-1557 (2019). https://doi.org:10.1038/s41564-     |
| 852 |    | 019-0479-5                                                                                        |
| 853 | 28 | Ellison, C. K. et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake        |
| 854 |    | during natural transformation in Vibrio cholerae. <i>Nat Microbiol</i> <b>3</b> , 773-780 (2018). |
| 855 |    | https://doi.org:10.1038/s41564-018-0174-y                                                         |
| 856 | 29 | Dalia, A. B., Lazinski, D. W. & Camilli, A. Identification of a Membrane-Bound                    |
| 857 |    | Transcriptional Regulator That Links Chitin and Natural Competence in Vibrio cholerae.            |
| 858 |    | <i>mBio</i> 5, 10.1128/mbio.01028-01013 (2014). https://doi.org:doi:10.1128/mbio.01028-13         |
| 859 | 30 | Seitz, P. & Blokesch, M. DNA-uptake machinery of naturally competent <i>Vibrio</i>                |
| 860 |    | cholerae. Proceedings of the National Academy of Sciences 110, 17987-17992 (2013).                |
| 861 |    | https://doi.org:doi:10.1073/pnas.1315647110                                                       |
| 862 | 31 | Beyhan, S., Bilecen, K., Salama, S. R., Casper-Lindley, C. & Yildiz, F. H. Regulation of          |
| 863 |    | Rugosity and Biofilm Formation in <i>Vibrio cholerae</i> : Comparison of VpsT and VpsR            |
| 864 |    | Regulons and Epistasis Analysis of <i>vpsT</i> , <i>vpsR</i> , and <i>hapR</i> . Journal of       |
| 865 |    | Bacteriology 189, 388-402 (2007). https://doi.org:doi:10.1128/JB.00981-06                         |
| 866 | 32 | Kitts, G. et al. A Conserved Regulatory Circuit Controls Large Adhesins in Vibrio cholerae.       |
| 867 |    | <i>mBio</i> 10 (2019). https://doi.org:10.1128/mBio.02822-19                                      |
| 868 | 33 | Kitts, G. et al. A Conserved Regulatory Circuit Controls Large Adhesins in Vibrio cholerae.       |
| 869 |    | LID - 10.1128/mBio.02822-19 [doi] LID - e02822-19.                                                |
| 870 | 34 | Fresquet, V., Thoden Jb Fau - Holden, H. M., Holden Hm Fau - Raushel, F. M. & Raushel, F.         |
| 871 |    | M. Kinetic mechanism of asparagine synthetase from Vibrio cholerae.                               |
| 872 | 35 | Bogard, R. W., Davies, B. W. & Mekalanos, J. J. MetR-regulated Vibrio cholerae metabolism         |
| 873 |    | is required for virulence. <i>mBio</i> <b>3</b> (2012). https://doi.org:10.1128/mBio.00236-12     |
| 874 | 36 | Yamamoto, S. et al. Identification of a chitin-induced small RNA that regulates translation of    |
| 875 |    | the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J          |
| 876 |    | Bacteriol 193, 1953-1965 (2011). https://doi.org:10.1128/jb.01340-10                              |
| 877 | 37 | Jaskólska, M., Stutzmann, S., Stoudmann, C. & Blokesch, M. QstR-dependent regulation of           |
| 878 |    | natural competence and type VI secretion in Vibrio cholerae.                                      |
| 879 | 38 | Siewering, K. et al. Peptidoglycan-binding protein TsaP functions in surface assembly of type     |
| 880 |    | IV pili. Proc Natl Acad Sci US A 111, E953-961 (2014).                                            |
| 881 |    | https://doi.org:10.1073/pnas.1322889111                                                           |
| 882 | 39 | Lo Scrudato, M. & Blokesch, M. A transcriptional regulator linking quorum sensing and             |
| 883 |    | chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Research 41,    |
| 884 |    | 3644-3658 (2013). https://doi.org:10.1093/nar/gkt041                                              |
| 885 | 40 | Jaskólska, M., Stutzmann, S., Stoudmann, C. & Blokesch, M. QstR-dependent regulation of           |
| 886 |    | natural competence and type VI secretion in Vibrio cholerae. Nucleic Acids Res 46, 10619-         |
| 887 |    | 10634 (2018). https://doi.org:10.1093/nar/gky717                                                  |
| 888 | 41 | Ball, A. S., Chaparian, R. R. & van Kessel, J. C. Quorum Sensing Gene Regulation by               |
| 889 |    | LuxR/HapR Master Regulators in Vibrios. LID - 10.1128/JB.00105-17 [doi] LID - e00105-17.          |

890 42 Palmen, R., Vosman, B., Buijsman, P., Breek, C. K. & Hellingwerf, K. J. Physiological 891 characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139, 295-305 (1993). https://doi.org:10.1099/00221287-139-2-295 892 893 43 Fresquet, V., Thoden, J. B., Holden, H. M. & Raushel, F. M. Kinetic mechanism of asparagine 894 synthetase from Vibrio cholerae. Bioorg Chem 32, 63-75 (2004). https://doi.org:10.1016/j.bioorg.2003.10.002 895 896 44 Wu, R. et al. Direct regulation of the natural competence regulator gene tfoX by cyclic AMP 897 (cAMP) and cAMP receptor protein (CRP) in Vibrios. Scientific Reports 5, 14921 (2015). 898 https://doi.org:10.1038/srep14921 899 Suckow, G., Seitz, P. & Blokesch, M. Quorum Sensing Contributes to Natural Transformation 45 900 of Vibrio cholerae in a Species-Specific Manner. Journal of Bacteriology 193, 4914-4924 901 (2011). https://doi.org:doi:10.1128/jb.05396-11 902 46 Tsou, A. M., Cai, T., Liu, Z., Zhu, J. & Kulkarni, R. V. Regulatory targets of quorum sensing 903 in Vibrio cholerae: evidence for two distinct HapR-binding motifs. Nucleic Acids Res 37, 904 2747-2756 (2009). https://doi.org:10.1093/nar/gkp121 905 47 Lo Scrudato, M. & Blokesch, M. The regulatory network of natural competence and 906 transformation of Vibrio cholerae. PLoS Genet 8, e1002778 (2012). 907 https://doi.org:10.1371/journal.pgen.1002778 Bevis, B. J. & Glick, B. S. Rapidly maturing variants of the Discosoma red fluorescent protein 908 48 909 (DsRed). Nat Biotechnol 20, 83-87 (2002). https://doi.org:10.1038/nbt0102-83 910 49 Cormack, B. P., Valdivia, R. H. & Falkow, S. FACS-optimized mutants of the green 911 fluorescent protein (GFP). Gene 173, 33-38 (1996). https://doi.org:10.1016/0378-912 <u>1119(95)00685</u>-0 913 50 Lloyd, C. J., Mejia-Santana, A., Dalia, T. N., Dalia, A. B. & Klose, K. E. Natural 914 Transformation in a Classical-Biotype Vibrio cholerae Strain. Appl Environ Microbiol 87 915 (2021). https://doi.org:10.1128/aem.00060-21 van Opijnen, T. & Camilli, A. Transposon insertion sequencing: a new tool for systems-level 916 51 917 analysis of microorganisms. Nat Rev Microbiol 11, 435-442 (2013). 918 https://doi.org:10.1038/nrmicro3033 919 52 Dubnau, D. The regulation of genetic competence in Bacillus subtilis. Molecular 920 Microbiology 5, 11-18 (1991). https://doi.org/https://doi.org/10.1111/j.1365-921 2958.1991.tb01820.x 922 53 Maamar, H., Raj, A. & Dubnau, D. Noise in Gene Expression Determines Cell Fate in 923 Bacillus subtilis. Science 317, 526-529 (2007). https://doi.org:10.1126/science.1140818 924 54 Rojo, F. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and 925 interactions with the environment. FEMS Microbiol Rev 34, 658-684 (2010). 926 https://doi.org:10.1111/j.1574-6976.2010.00218.x 927 Giuliodori, A. M., Gualerzi, C. O., Soto, S., Vila, J. & Tavio, M. M. Review on Bacterial 55 928 Stress Topics. Ann N Y Acad Sci 1113, 95-104 (2007). 929 https://doi.org:10.1196/annals.1391.008 930 Metzger, L. & Blokesch, M. Composition of the DNA-uptake complex of Vibrio cholerae. 56 931 Mobile genetic elements 4, e28142 (2014). https://doi.org:10.4161/mge.28142 932 57 Kickstein, E., Harms, K. & Wackernagel, W. Deletions of recBCD or recD influence genetic 933 transformation differently and are lethal together with a recJ deletion in Acinetobacter baylyi. Microbiology (Reading) 153, 2259-2270 (2007). https://doi.org:10.1099/mic.0.2007/005256-0 934 935 Johnsen, P. J., Dubnau, D. & Levin, B. R. Episodic selection and the maintenance of 58 936 competence and natural transformation in Bacillus subtilis. Genetics 181, 1521-1533 (2009). 937 https://doi.org:10.1534/genetics.108.099523 938 59 Utnes, A. L. et al. Growth phase-specific evolutionary benefits of natural transformation in 939 Acinetobacter baylyi. Isme j 9, 2221-2231 (2015). https://doi.org:10.1038/ismej.2015.35 940 Li, X. & Roseman, S. The chitinolytic cascade in Vibrios is regulated by chitin 60 941 oligosaccharides and a two-component chitin catabolic sensor/kinase. Proceedings of the 942 National Academy of Sciences 101, 627-631 (2004). 943 https://doi.org:doi:10.1073/pnas.0307645100

| 944                                                                                                                                                                                | 61                                                                                                         | Meibom, K. L. <i>et al.</i> The Vibrio cholerae chitin utilization program. <i>Proceedings of the</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 945                                                                                                                                                                                |                                                                                                            | National Academy of Sciences 101, 2524-2529 (2004).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 946                                                                                                                                                                                |                                                                                                            | https://doi.org:doi:10.1073/pnas.0308707101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 947                                                                                                                                                                                | 62                                                                                                         | Passalacqua, K. D., Charbonneau, M. E. & O'Riordan, M. X. D. Bacterial Metabolism Shapes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 948                                                                                                                                                                                |                                                                                                            | the Host-Pathogen Interface. <i>Microbiol Spectr</i> <b>4</b> (2016).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 949                                                                                                                                                                                |                                                                                                            | https://doi.org:10.1128/microbiolspec.VMBF-0027-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 950                                                                                                                                                                                | 63                                                                                                         | Moradigaravand, D. & Engelstädter, J. The impact of natural transformation on adaptation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 951                                                                                                                                                                                | 00                                                                                                         | spatially structured bacterial populations. <i>BMC Evol Biol</i> <b>14</b> , 141 (2014).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 952                                                                                                                                                                                |                                                                                                            | https://doi.org/10.1186/1471-2148-14-141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 953                                                                                                                                                                                | 64                                                                                                         | Evans T D & Zhang F Bacterial metabolic heterogeneity: origins and applications in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 954                                                                                                                                                                                | 01                                                                                                         | engineering and infectious disease <i>Curr Onin Riotechnol</i> <b>64</b> 183-189 (2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 955                                                                                                                                                                                |                                                                                                            | https://doi.org/10.1016/i.copbio.2020.04.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 956                                                                                                                                                                                | 65                                                                                                         | Simsek E & Kim M. The emergence of metabolic beterogeneity and diverse growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 950                                                                                                                                                                                | 05                                                                                                         | reaponess in isogenia hastorial calls. The ISME Journal 12, 1100 (2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 957                                                                                                                                                                                |                                                                                                            | $\frac{12}{100} = \frac{1000}{1000} =$ |
| 938                                                                                                                                                                                | ((                                                                                                         | nups://doi.org:10.1038/841396-017-0036-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 959                                                                                                                                                                                | 66                                                                                                         | Soltani, M., Vargas-Garcia, C. A., Antunes, D. & Singh, A. Intercellular Variability in Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 960                                                                                                                                                                                |                                                                                                            | Levels from Stochastic Expression and Noisy Cell Cycle Processes. <i>PLoS Comput Biol</i> 12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 961                                                                                                                                                                                | < <b>-</b>                                                                                                 | e1004972 (2016). <u>https://doi.org:10.1371/journal.pcbi.1004972</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 962                                                                                                                                                                                | 67                                                                                                         | Dalia, A. B. & Dalia, T. N. Spatiotemporal Analysis of DNA Integration during Natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 963                                                                                                                                                                                |                                                                                                            | Transformation Reveals a Mode of Nongenetic Inheritance in Bacteria. Cell 179, 1499-1511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 964                                                                                                                                                                                |                                                                                                            | e1410 (2019). https://doi.org:10.1016/j.cell.2019.11.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 965                                                                                                                                                                                | 68                                                                                                         | Cutadapt v. 2.5 (2019).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 966                                                                                                                                                                                | 69                                                                                                         | Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 967                                                                                                                                                                                |                                                                                                            | 357-359 (2012). https://doi.org:10.1038/nmeth.1923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 968                                                                                                                                                                                | 70                                                                                                         | Chao, M. C., Abel, S., Davis, B. M. & Waldor, M. K. The design and analysis of transposon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 969                                                                                                                                                                                |                                                                                                            | insertion sequencing experiments. Nat Rev Microbiol 14, 119-128 (2016).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 970                                                                                                                                                                                |                                                                                                            | https://doi.org:10.1038/nrmicro.2015.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 971                                                                                                                                                                                | 71                                                                                                         | Chao, M. C. <i>et al.</i> High-resolution definition of the Vibrio cholerae essential gene set with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                    |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 972                                                                                                                                                                                |                                                                                                            | hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 972<br>973                                                                                                                                                                         |                                                                                                            | hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids</i><br><i>Res</i> <b>41</b> , 9033-9048 (2013). https://doi.org:10.1093/nar/gkt654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 972<br>973<br>974                                                                                                                                                                  | 72                                                                                                         | hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> <b>41</b> , 9033-9048 (2013). <u>https://doi.org:10.1093/nar/gkt654</u><br>Marvig, R. L. & Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 972<br>973<br>974<br>975                                                                                                                                                           | 72                                                                                                         | hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> <b>41</b> , 9033-9048 (2013). <u>https://doi.org:10.1093/nar/gkt654</u><br>Marvig, R. L. & Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> <b>10</b> , 155 (2010). https://doi.org:10.1186/1471-2180-10-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 972<br>973<br>974<br>975<br>976                                                                                                                                                    | 72<br>73                                                                                                   | hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> <b>41</b> , 9033-9048 (2013). <u>https://doi.org:10.1093/nar/gkt654</u><br>Marvig, R. L. & Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> <b>10</b> , 155 (2010). <u>https://doi.org:10.1186/1471-2180-10-155</u><br>Shields, R. C., Zeng, L., Culp, D. J. & Burne, R. A. Genomewide Identification of Essential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 972<br>973<br>974<br>975<br>976<br>977                                                                                                                                             | 72<br>73                                                                                                   | hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> <b>41</b> , 9033-9048 (2013). <u>https://doi.org:10.1093/nar/gkt654</u><br>Marvig, R. L. & Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> <b>10</b> , 155 (2010). <u>https://doi.org:10.1186/1471-2180-10-155</u><br>Shields, R. C., Zeng, L., Culp, D. J. & Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> <b>3</b> (2018).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 972<br>973<br>974<br>975<br>976<br>977<br>978                                                                                                                                      | 72<br>73                                                                                                   | hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> <b>41</b> , 9033-9048 (2013). <u>https://doi.org:10.1093/nar/gkt654</u><br>Marvig, R. L. & Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> <b>10</b> , 155 (2010). <u>https://doi.org:10.1186/1471-2180-10-155</u><br>Shields, R. C., Zeng, L., Culp, D. J. & Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> <b>3</b> (2018).<br>https://doi.org:10.1128/mSphere.00031-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979                                                                                                                               | 72<br>73<br>74                                                                                             | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980                                                                                                                        | 72<br>73<br>74                                                                                             | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981                                                                                                                 | 72<br>73<br>74                                                                                             | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>981                                                                                                          | 72<br>73<br>74<br>75                                                                                       | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983                                                                                                   | 72<br>73<br>74<br>75                                                                                       | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center Nucleic Acids Res 45, D535-d542 (2017)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984                                                                                            | 72<br>73<br>74<br>75                                                                                       | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985                                                                                     | 72<br>73<br>74<br>75<br>76                                                                                 | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). <a href="https://doi.org:10.1093/nar/gkw1017">https://doi.org:10.1093/nar/gkw1017</a></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>984                                                                              | 72<br>73<br>74<br>75<br>76                                                                                 | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). <a href="https://doi.org:10.1093/nar/gkw1017">https://doi.org:10.1093/nar/gkw1017</a></li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein pill. functions as a pilt dopendent retraction ATBose. <i>PLoS Cente</i> 15, e1008203</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>986<br>986                                                                       | 72<br>73<br>74<br>75<br>76                                                                                 | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). <a href="https://doi.org:10.1093/nar/gkw1017">https://doi.org:10.1093/nar/gkw1017</a></li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PiIT-dependent retraction ATPase. <i>PLoS Genet</i> 15, e1008393 (2010). <a href="https://doi.org/10.1093/nar/gku910">https://doi.org/10.1093/nar/gku910</a></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>984<br>985<br>986<br>987<br>088                                                  | 72<br>73<br>74<br>75<br>76                                                                                 | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). https://doi.org:10.1093/nar/gkt654</li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). https://doi.org:10.1186/1471-2180-10-155</li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). https://doi.org:10.1128/mSphere.00031-18</li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). https://doi.org:10.1093/nar/gkac963</li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). https://doi.org:10.1093/nar/gkw1017</li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. <i>PLoS Genet</i> 15, e1008393 (2019). https://doi.org:10.1371/journal.pgen.1008393</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>984<br>985<br>986<br>987<br>988                                                  | 72<br>73<br>74<br>75<br>76<br>77                                                                           | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). https://doi.org:10.1093/nar/gkt654</li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). https://doi.org:10.1186/1471-2180-10-155</li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). https://doi.org:10.1128/mSphere.00031-18</li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). https://doi.org:10.1093/nar/gkac963</li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). https://doi.org:10.1093/nar/gkw1017</li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. <i>PLoS Genet</i> 15, e1008393 (2019). https://doi.org:10.1371/journal.pgen.1008393</li> <li>Donnenberg, M. S. &amp; Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>986<br>987<br>988<br>989                                                         | <ul> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> <li>77</li> </ul>                         | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> <b>41</b>, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> <b>10</b>, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> <b>3</b> (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> <b>51</b>, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> <b>45</b>, D535-d542 (2017). <a href="https://doi.org:10.1093/nar/gkw1017">https://doi.org:10.1093/nar/gkw1017</a></li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. <i>PLoS Genet</i> <b>15</b>, e1008393 (2019). <a href="https://doi.org:10.1371/journal.pgen.1008393">https://doi.org:10.1371/journal.pgen.1008393</a></li> <li>Donnenberg, M. S. &amp; Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. <i>Infect Immun</i> <b>59</b>, 4310-4317</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>986<br>987<br>988<br>987<br>988<br>989                                           | <ul> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> <li>77</li> <li>70</li> </ul>             | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gka2963">https://doi.org:10.1093/nar/gka2963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). <a href="https://doi.org:10.1093/nar/gkw1017">https://doi.org:10.1093/nar/gkw1017</a></li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. <i>PLoS Genet</i> 15, e1008393 (2019). <a href="https://doi.org:10.1371/journal.pgen.1008393">https://doi.org:10.1371/journal.pgen.1008393</a></li> <li>Donnenberg, M. S. &amp; Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. <i>Infect Immun</i> 59, 4310-4317 (1991). <a href="https://doi.org:10.1128/iai.59.12.4310-4317.1991">https://doi.org:10.1128/iai.59.12.4310-4317.1991</a></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>986<br>987<br>988<br>987<br>988<br>989<br>990<br>991                             | <ul> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> <li>77</li> <li>78</li> </ul>             | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gka2963">https://doi.org:10.1093/nar/gka2963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). <a href="https://doi.org:10.1093/nar/gkw1017">https://doi.org:10.1093/nar/gkw1017</a></li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. <i>PLoS Genet</i> 15, e1008393 (2019). <a href="https://doi.org:10.1371/journal.pgen.1008393">https://doi.org:10.1371/journal.pgen.1008393</a></li> <li>Donnenberg, M. S. &amp; Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. <i>Infect Immun</i> 59, 4310-4317 (1991). <a href="https://doi.org:10.1128/iai.59.12.4310-4317.1991">https://doi.org:10.1128/iai.59.12.4310-4317.1991</a></li> <li>Li, X. T., Thomason, L. C., Sawitzke, J. A., Costantino, N. &amp; Court, D. L. Positive and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>984<br>985<br>986<br>987<br>988<br>989<br>990<br>991<br>992                      | <ul> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> <li>77</li> <li>78</li> </ul>             | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <u>https://doi.org:10.1093/nar/gkt654</u></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <u>https://doi.org:10.1186/1471-2180-10-155</u></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). <a href="https://doi.org:10.1093/nar/gkw1017">https://doi.org:10.1093/nar/gkw1017</a></li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. <i>PLoS Genet</i> 15, e1008393 (2019). <a href="https://doi.org:10.1371/journal.pgen.1008393">https://doi.org:10.1371/journal.pgen.1008393</a></li> <li>Donnenberg, M. S. &amp; Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. <i>Infect Immun</i> 59, 4310-4317 (1991). <a href="https://doi.org:10.1128/iai.59.12.4310-4317.1991">https://doi.org:10.1128/iai.59.12.4310-4317.1991</a></li> <li>Li, X. T., Thomason, L. C., Sawitzke, J. A., Costantino, N. &amp; Court, D. L. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in the total set of the total set of the total set of the total set of the total set of</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>986<br>987<br>988<br>987<br>988<br>989<br>990<br>991<br>992<br>993               | <ul> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> <li>77</li> <li>78</li> </ul>             | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> <b>1</b>, 9033-9048 (2013). <a href="https://doi.org:10.1093/nar/gkt654">https://doi.org:10.1093/nar/gkt654</a></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> <b>10</b>, 155 (2010). <a href="https://doi.org:10.1186/1471-2180-10-155">https://doi.org:10.1186/1471-2180-10-155</a></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> <b>3</b> (2018). <a href="https://doi.org:10.1128/mSphere.00031-18">https://doi.org:10.1128/mSphere.00031-18</a></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> <b>51</b>, D587-d592 (2023). <a href="https://doi.org:10.1093/nar/gkac963">https://doi.org:10.1093/nar/gkac963</a></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> <b>45</b>, D535-d542 (2017). <a href="https://doi.org:10.1093/nar/gkw1017">https://doi.org:10.1093/nar/gkw1017</a></li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PiIT-dependent retraction ATPase. <i>PLoS Genet</i> <b>15</b>, e1008393 (2019). <a href="https://doi.org:10.1128/iai.59.12.4310-4317.1991">https://doi.org:10.1128/iai.59.12.4310-4317.1991</a></li> <li>Li, X. T., Thomason, L. C., Sawitzke, J. A., Costantino, N. &amp; Court, D. L. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. <i>Nucleic Acids Res</i> <b>41</b>, e204 (2013). <a href="https://doi.org:10.1093/nar/gkt1075">https://doi.org:10.1093/nar/gkt1075</a></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>984<br>985<br>986<br>987<br>988<br>989<br>990<br>991<br>992<br>993<br>994        | <ul> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> <li>77</li> <li>78</li> <li>79</li> </ul> | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). <u>https://doi.org:10.1093/nar/gkt654</u></li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). <u>https://doi.org:10.1186/1471-2180-10-155</u></li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). <u>https://doi.org:10.1128/mSphere.00031-18</u></li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). <u>https://doi.org:10.1093/nar/gkac963</u></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). <u>https://doi.org:10.1093/nar/gkac963</u></li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). <u>https://doi.org:10.1093/nar/gkw1017</u></li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. <i>PLoS Genet</i> 15, e1008393 (2019). <u>https://doi.org:10.1371/journal.pgen.1008393</u></li> <li>Donnenberg, M. S. &amp; Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. <i>Infect Immun</i> 59, 4310-4317 (1991). <u>https://doi.org:10.1128/iai.59.12.4310-4317.1991</u></li> <li>Li, X. T., Thomason, L. C., Sawitzke, J. A., Costantino, N. &amp; Court, D. L. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. <i>Nucleic Acids Res</i> 41, e204 (2013). <u>https://doi.org:10.1093/nar/gkt1075</u></li> <li>Dalia, A. B. Natural Cotransformation and</li></ul>                                                                                                                                                                                                                                                                                                                                                                                              |
| 972<br>973<br>974<br>975<br>976<br>977<br>978<br>979<br>980<br>981<br>982<br>983<br>984<br>985<br>986<br>987<br>988<br>987<br>988<br>989<br>990<br>991<br>992<br>993<br>994<br>995 | <ol> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> <li>77</li> <li>78</li> <li>79</li> </ol> | <ul> <li>hidden Markov model-based analyses of transposon-insertion sequencing data. <i>Nucleic Acids Res</i> 41, 9033-9048 (2013). https://doi.org:10.1093/nar/gkt654</li> <li>Marvig, R. L. &amp; Blokesch, M. Natural transformation of Vibrio cholerae as a tooloptimizing the procedure. <i>BMC Microbiol</i> 10, 155 (2010). https://doi.org:10.1186/1471-2180-10-155</li> <li>Shields, R. C., Zeng, L., Culp, D. J. &amp; Burne, R. A. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. <i>mSphere</i> 3 (2018). https://doi.org:10.1128/mSphere.00031-18</li> <li>Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. &amp; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. <i>Nucleic Acids Res</i> 51, D587-d592 (2023). https://doi.org:10.1093/nar/gka2963</li> <li>Wattam, A. R. <i>et al.</i> Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. <i>Nucleic Acids Res</i> 45, D535-d542 (2017). https://doi.org:10.1093/nar/gkw1017</li> <li>Adams, D. W., Pereira, J. M., Stoudmann, C., Stutzmann, S. &amp; Blokesch, M. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. <i>PLoS Genet</i> 15, e1008393 (2019). https://doi.org:10.1371/journal.pgen.1008393</li> <li>Donnenberg, M. S. &amp; Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. <i>Infect Immun</i> 59, 4310-4317 (1991). https://doi.org:10.1128/iai.59.12.4310-4317.1991</li> <li>Li, X. T., Thomason, L. C., Sawitzke, J. A., Costantino, N. &amp; Court, D. L. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. <i>Nucleic Acids Res</i> 41, e204 (2013). https://doi.org:10.1093/nar/gkt1075</li> <li>Dalia, A. B. Natural Cotransformation and Multiplex Genome Editing by Natural Transformation (MuGENT) of Vibrio cholerae. <i>Methods Mol Biol</i> 1839, 53-64 (2018).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

- 80 Häse, C. C. *et al.* Construction and characterization of recombinant Vibrio cholerae strains
  998 producing inactive cholera toxin analogs. *Infect Immun* 62, 3051-3057 (1994).
  999 https://doi.org:10.1128/iai.62.8.3051-3057.1994
- 100081Donnenberg, M. S. & Kaper, J. B. Construction of an eae deletion mutant of enteropathogenic1001Escherichia coli by using a positive-selection suicide vector. *Infection and Immunity* **59**, 4310-10024317 (1991). <a href="https://doi.org:doi:10.1128/iai.59.12.4310-4317.1991">https://doi.org:doi:10.1128/iai.59.12.4310-4317.1991</a>
- 1003

Paper II



# GOPEN ACCESS

**Citation:** Clarelli F, Palmer A, Singh B, Storflor M, Lauksund S, Cohen T, et al. (2020) Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. PLoS Comput Biol 16(8): e1008106. https://doi.org/10.1371/journal. pcbi.1008106

Editor: Peter M. Kasson, University of Virginia, UNITED STATES

Received: April 3, 2020

Accepted: June 30, 2020

Published: August 14, 2020

**Copyright:** © 2020 Clarelli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: Data and computer code will be available at https://www.abel-zurwiesch-lab.com/ upon acceptance of the manuscript.

**Funding:** This work was funded by Bill and Melinda Gates Foundation Grant OPP1111658 (to T.C. & P. AzW.), Research Council of Norway (NFR) Grant 262686 (to P.AzW.) and 249979 (to S.A.), and Helse-Nord Grant 14796 (to S.A.). The funders had no role in study design, data collection and **RESEARCH ARTICLE** 

# Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones

Fabrizio Clarelli<sup>1,2,3</sup>, Adam Palmer<sup>4</sup>, Bhupender Singh<sup>1</sup>, Merete Storflor<sup>1,5</sup>, Silje Lauksund<sup>1</sup>, Ted Cohen<sup>6</sup>, Sören Abel<sup>1,3,5,7</sup>, Pia Abel zur Wiesch<sup>1,2,3,7</sup>\*

1 Department of Pharmacy, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway, 2 Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States of America, 3 Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States of America, 4 Department of Pharmacology, Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America, 5 Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, PA, United States of America, 6 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America, 7 Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Oslo, Norway

• These authors contributed equally to this work.

\* pkz5060@psu.edu

# Abstract

Antibiotic resistance is rising and we urgently need to gain a better quantitative understanding of how antibiotics act, which in turn would also speed up the development of new antibiotics. Here, we describe a computational model (COMBAT-COmputational Model of Bacterial Antibiotic Target-binding) that can quantitatively predict antibiotic dose-response relationships. Our goal is dual: We address a fundamental biological guestion and investigate how drug-target binding shapes antibiotic action. We also create a tool that can predict antibiotic efficacy a priori. COMBAT requires measurable biochemical parameters of drugtarget interaction and can be directly fitted to time-kill curves. As a proof-of-concept, we first investigate the utility of COMBAT with antibiotics belonging to the widely used guinolone class. COMBAT can predict antibiotic efficacy in clinical isolates for quinolones from drug affinity ( $R^2>0.9$ ). To further challenge our approach, we also do the reverse: estimate the magnitude of changes in drug-target binding based on antibiotic dose-response curves. We overexpress target molecules to infer changes in antibiotic-target binding from changes in antimicrobial efficacy of ciprofloxacin with 92-94% accuracy. To test the generality of our approach, we use the beta-lactam ampicillin to predict target molecule occupancy at MIC from antimicrobial action with 90% accuracy. Finally, we apply COMBAT to predict antibiotic concentrations that can select for resistance due to novel resistance mutations. Using ciprofloxacin and ampicillin as well defined test cases, our work demonstrates that drug-target binding is a major predictor of bacterial responses to antibiotics. This is surprising because antibiotic action involves many additional effects downstream of drug-target binding. In addition, COMBAT provides a framework to inform optimal antibiotic dose levels that maximize efficacy and minimize the rise of resistant mutants.

analysis, decision to publish, or preparation of the manuscript.

**Competing interests:** The authors have declared that no competing interests exist.

#### Author summary

Antibiotic efficacy is traditionally assessed with a single value, the minimal inhibitory concentration, despite its limited predictive power. Dose-response curves that assess efficacy over a range of antibiotic concentrations are promising, but extremely work intensive. Using the well-characterized antibiotics ciprofloxacin and ampicillin as proof-of-concept, we provide a mathematical framework that allows predicting optimal dosing of antibiotics based on drug-target binding parameters. These could be measured early in drug development and can also change when bacteria become resistant. Thus, we can predict the probability that resistant strains are selected at a given dosing regimen without isolating and testing a multitude of resistant strains. Predicting optimal dosing with early accessible experimental data can reduce the prevalent trial-and-error approaches and thereby the number of antibiotic candidates that fail late in drug development.

## Introduction

The rise of antibiotic resistance represents an urgent public health threat. In order to effectively combat the spread of antibiotic resistance, we must optimize the use of existing drugs and develop new drugs that are effective against drug-resistant strains. Accordingly, methods to improve antibiotic dose levels to i) maximize efficacy against susceptible strains and ii) minimize resistance evolution play a key role in our defense against antibiotic resistant pathogens.

It is noteworthy that dosing strategies for treatment of susceptible strains (e.g., dosing level [1], dosing frequency [2], and treatment duration [3-5] have recently been substantially improved, even for antibiotic treatments that have been standard of care for decades. This suggests that there likely remains significant room for optimization in our antibiotic treatment regimens. It also highlights the difficulty in identifying optimal dosing levels for new antibiotics. Indeed, optimizing dosing is one of the biggest challenges in drug development. Traditionally, antibiotic efficacy was mainly described by a single value, the minimal inhibitory concentration (MIC). While correlations between treatment success and MIC have been demonstrated there is limited predictive power [6, 7]. When susceptibility is assessed by MIC, not all patients infected with "susceptible" bacteria are successfully treated with antibiotics. Additionally, a large majority of patients with a "resistant" infection can be successfully treated with antibiotics even when the underlying infection is serious and untreated patients are unlikely to recover [8]. This was e.g. shown for patients with complicated intraabdominal infections [7]. Reasons for this mismatch may include that the MIC only gives the minimal concentration to suppress bacterial growth and contains no information on antibiotic efficacy above or below MIC [9]. This makes the MIC ill-suited to describe efficacy of the strongly fluctuating antibiotic concentrations in patients. This has led to an increase in more sophisticated dose-response measurements where bacteria are exposed to multiple antibiotic concentrations and the kill rate is assessed at each concentration individually (pharmacodynamic profiles). However, these approaches require orders of magnitude more experimental effort than simple MIC measurements because they involve a multitude of antibiotic concentrations and time points. This process is too time-consuming when testing new drug candidates.

It is even more challenging to optimize dose levels to minimize the emergence of antibiotic resistance, both for existing and novel antibiotics. Typically, not only the MIC changes when a strain acquires resistance, also other properties such as the steepness of the dose-response curve and the maximal kill rate at very high concentrations change [10]. Predicting the changes in the dose-response curve is therefore not trivial. Thus, a full pharmacodynamic

profile should be assessed for each potential resistant strain. To this end, resistant strains must be isolated and due to the amount of different resistance mechanisms, a good saturation of the mutational target must be achieved. This requires substantial and lengthy evolutionary experiments. In addition, there remains substantial debate about which dosing strategies best prevent the emergence of resistance during treatment [11-13]. In this context, a useful concept that links antibiotic concentrations with resistance evolution is the resistance selection window (mutant selection window) that ranges from the lowest concentration at which the resistant strain grows faster than the wild-type, usually well below the wild-type MIC, to the MIC of the resistant strain [14-16]. Antibiotic concentrations above the resistance selection window safeguard against *de novo* resistance emergence. Antibiotic concentrations below the resistant strain and therefore do not kill the susceptible strain, but also do not favor the resistant strain and therefore do not promote emergence of resistance. To limit resistance, it is therefore important to identify the resistance selection window and optimize dosing accordingly. However, this again requires obtaining a full pharmacodynamic profile of a majority of the expected resistant mutants and is therefore not feasible as a standard assessment in drug development.

The next challenge to successfully designing antibiotic treatment arises when the experimental information is integrated into mathematical pharmacodynamic models that then predict efficacy under realistic, fluctuating concentrations in patients. Pharmacodynamic models from 1910 ( $E_{max}$  or Hill-models) [17] are still widely used despite assuming instantaneous equilibria of antibiotic-target binding and therefore being often inaccurate when antibiotic concentrations fluctuate. Recently described models that relax these assumptions have been useful in gaining a better qualitative understanding of realistic dosing and complicated drug effects, such as post-antibiotic effects, inoculum effects, and bacterial persistence [18–21]. However, to speed the development of new antibiotics or to inform practices which minimize resistance, we require quantitative predictions for antibiotics or resistant bacterial strains that do not exist yet. Models which permit quantitative predictions of changes in drug efficacy as a function of modification of antibiotic molecules (i.e. new drugs) or novel resistance mutations would be invaluable. Such tools would advance our general mechanistic understanding of antibiotic action, could guide dosing trials of new drugs, and suggest better dosing of existing drugs.

In this report, we describe a mechanistic computational modeling framework (COMBAT-COmputational Model of Bacterial Antibiotic Target-binding) that allows us to predict full pharmacodynamic profiles based solely on accessible biochemical parameters describing drugtarget interaction. These parameters can be determined early in drug development. We use this framework to investigate how changes in drug target binding, either due to improvements in existing antibiotics or due to resistance mutations in bacteria, affect antibiotic efficacy. We first show that COMBAT accurately predicts bacterial susceptibility as a function of drug-target binding and, conversely, allows inference of these biochemical parameters on the basis of observed patterns of bacterial growth suppression or killing. We then use COMBAT to predict the susceptibility of newly arising resistant variants based on the molecular mechanism of resistance and determine the resistance selection window.

## Results

#### Quinolone target affinities correlate with antibiotic efficacy

To investigate how biochemical changes in antibiotic action modifies bacterial susceptibility, we explored how the affinity of antibiotics to their target affects the MIC. We compared the MICs of quinolones, an antibiotic class in which individual antibiotics have a wide range of affinities to one of their targets, gyrase ( $K_D \sim 10^{-4} - 10^{-7}$  M) but are of similar molecular sizes

and have a similar mode of action [22]. This choice allowed us to isolate the effects of differences in drug-target affinity on the MIC.

We obtained binding affinities of quinolones to their gyrase target in *Escherichia coli* from previous studies [23–27]. We then retrieved MIC data for several quinolones from clinical Enterobacteriaceae isolates collected before 1990 [28], i.e., before the widespread emergence of quinolone resistance [22]. We assume that quinolone affinities obtained from clinical Enterobacteriaceae isolates collected before the emergence of resistance correspond to those measured in wild-type *E. coli*.

To make qualitative predictions of MICs, we employed a simplified model based on the assumptions that i) drug-target binding occurs much more quickly than bacterial replication, ii) the antibiotic concentration remains constant and iii) that during the 18 hours of an MIC assay, the concentration gradient of the drug inside and outside the cell has equilibrated. Under these assumptions, the MIC can be expressed as

$$MIC = K_D \frac{f_c}{1 - f_c} \tag{1}$$

where  $K_D$  represents the affinity constant and  $f_c$  the fraction of the target bound at the MIC [29]. Accordingly, this model predicts that the MIC is linearly correlated with  $K_D$ .

Fig 1 shows the correlations between drug-target affinities and MICs for seven quinolones and clinical isolates of 11 different Enterobacteriaceae species. We observed a significant (p < 0.018) linear correlation between MIC and  $K_D$  in all species, confirming the qualitative model prediction.

#### A quantitative model to predict antibiotic efficacy

While it was encouraging that our model can qualitatively predict MIC changes, our aim was to quantitatively predict antibiotic treatment performance. The simplified model assumes that the binding kinetics are much faster than bacterial replication, which may not be true in all cases. To expand the generalizability of the model, we extended the modeling framework to allow that bacterial replication may occur in a similar time frame as drug-target binding events.

The full model (COMBAT- COmputational Model of Bacterial Antibiotic Target-binding) describes the binding and unbinding of antibiotics to their targets and predicts how such binding dynamics affects bacterial replication and death (Fig 2A). In previous work linking drugtarget binding kinetics with bacterial replication [21], we described a population of bacteria with  $\theta$  target molecules per cell with a system of  $\theta$  + 1 (bacteria with 0, 1, ...,  $\theta$  bound target molecules) ordinary differential equations (ODEs). This system increases in complexity with the number of target molecules and makes fitting the model to data computationally too demanding for most settings. To simplify this prior approach, we developed new mathematical models based on partial differential equations (PDEs), where a single equation describes all bacteria simultaneously. The sum of bacteria within all target occupancy states over time can be described by a time kill curve (Fig 2B), during which the bacterial population is characterized by the distribution of bacterial cells with different levels of target occupancies at each time-step (Fig 2C). This curve can be visualized as a two-dimensional surface in a threedimensional coordinate system where the number of bacteria is represented on the z-axis, the percent of bacteria with the fraction of bound target molecules on the x-axis, and time on the v-axis (Fig 2D).

Antibiotic action is described by rates of binding  $(k_f)$  and unbinding  $(k_r)$  to bacterial target molecules (Fig 2A and 2E). The binding of an antibiotic to a target results in the formation of an antibiotic-target molecule complex *x*, where *x* ranges between 0 and  $\theta$ .



Fig 1. Clinical data confirm linear correlation between MICs and affinities of quinolones to gyrase. We analyzed MIC and drug-target affinity data from 11 Enterobacteriaceae isolates and seven different quinolones. The x-axes show the affinities ( $K_D$ ) as reported in the literature [24, 26–28], and the y-axes show the MICs, both in mol/L. The adjusted R<sup>2</sup> and p-value of each correlation are given. In cases where there was more than one  $K_D$  value reported in the literature, we used the mean for this analysis. The tested MIC values are the median of several clinical isolates described previously [28].

COMBAT consists of two mass balance equations:  $\underline{Eq 2}$  describing bacterial numbers as a function of bound targets and time and  $\underline{Eq 3}$  describing antibiotic concentration as a function of time (see Methods).

$$\frac{\partial B(x,t)}{\partial t} + \frac{\partial}{\partial x} (v_B(x,t)B(x,t)) = \underbrace{\operatorname{Replication and its effects on binding}}_{-r(x)B(x,t)F_{lim}(t) + S_B(x,t)F_{lim}(t)} - \underbrace{\delta(x)B(x,t)}_{\delta(x)B(x,t)}$$
(2)

$$\frac{dA(t)}{dt} = -\hat{k}_f A(t) \int_0^\theta (\theta - x) B(x, t) dx + k_r \int_0^\theta x B(x, t) dx$$
(3)

a



Fig 2. Illustration of modeling approach. a, Schematic illustration of binding kinetics (adapted from [59]). The grey squares depict the drug target molecules, and the blue circles represent antibiotic molecules within bacteria. The arrows indicate individual binding and

unbinding events of the antibiotic to its target molecule in the cell.  $\hat{k}_f$  is the adjusted forward reaction rate,  $k_r$  is the reverse reaction rate, A is the concentration of antibiotics inside the bacterium, x is the number of bound targets,  $\theta$  is the number of targets and  $B_x$  is the number of bacteria with x bound targets. **b**, Modeled sample time-kill curve, in which the sum of bacteria in all binding states (i.e., the entire population of living bacteria) is followed over time after exposure to antibiotics. The vertical dotted lines indicate the time points depicted in (**c**); 1 min (grey), 14 min (yellow), and 80 min (purple). **c**, The percentage of bound antibiotic targets in the bacterial population at indicated time points. **d**, Illustration of how the partial differential equation describes the bacterial population as a surface in a three-dimensional coordinate system, the dimensions of which represent percent bound target (x-axis), time (y-axis), and number of bacteria (z-axis). The three time points shown in (**c**) represent two-dimensional cross-sections at different points of the y-axis. **e**, Overview of used parameters and functions.

https://doi.org/10.1371/journal.pcbi.1008106.g002

where  $v_B = v_f - v_r$ ,  $v_f = k_f A(t)(\theta - x)$  and  $v_r = k_r x$ .  $v_B$ ,  $v_f$  and  $v_r$  can be seen as a generalized velocity  $v = \frac{dx}{dt}$ .

Eq 4 (part of the replication term in Eq 2) describes how daughter cells inherit bound target molecules from the mother cell during replication:

$$S_{\scriptscriptstyle B}(x,t) = 2 \int_x^\theta h(x,z) r(z) B(z,t) dz; \ \forall x \in [0,\theta]$$
(4)

Eq 5 (part of the replication term in Eq 2) is a logistic growth model describing reduced bacterial replication as the carrying capacity is approached:

$$F_{lim} = \left(1 - \frac{\int_{0}^{\theta} B(x,t)dx}{K}\right)$$
(5)

#### Model fit to ciprofloxacin time-kill data

We used the quinolone ciprofloxacin to quantitatively fit bacterial time-kill curves, since this is a commonly used antibiotic for which binding parameters have been directly measured. S1 Table gives an overview of the known parameters used for fitting; S2 Table gives the parameters resulting from our fit.

The functional relationship between the levels of bacterial replication and death on the fraction of bound target molecules is extremely hard to obtain experimentally. We therefore treated the relationships between the fraction of bound target and bacterial replication and death as free parameters in our model fitting. Ciprofloxacin is considered to have both bacteriostatic and bactericidal action (mixed action)[30, 31], and we fitted functions for a monotonically decreasing replication and a monotonically increasing killing with each successively bound target molecule (see Methods & S1 Fig).

Overall, we found that COMBAT could fit the time-kill curves well ( $R^2 = 0.93$ , Fig 3A). Fig 3B shows the predicted bacterial replication r(x) and death as a function of target occupancy  $\delta$  (x) based on the fit obtained in Fig 3A. After model calibration, we simulated bacterial replication during exposure to different antibiotic concentrations for 18 h. For this simulation, positive values indicate an increase in the number of bacteria, and negative values indicate a decrease in the number of bacteria. We estimated a MIC of 0.0139 mg/L (Fig 3C), a value that is within the range of MIC determinations for wt *E. coli* (0.01 mg/L, 0.015 mg/L, 0.017 mg/L and 0.023 mg/L [15, 32–34]).



**Fig 3. Model predictions for the MIC and the bacteriostatic and bactericidal effects of ciprofloxacin. a**, Model fit to experimental time-kill curves. The points indicate the experimental data of three independent replicates, and the lines indicate the model fit. Each color indicates a ciprofloxacin concentration as reported in the figure. **b**, The blue line indicates the bacteriostatic effect (r(x), replication rate) of ciprofloxacin and the red line the bactericidal effect ( $\delta(x)$ , death rate) as a function of the number of bound targets predicted by the model fit in (**a**). The values of the fitted parameters are listed in S2 Table. **c**, The net growth rate as determined by the slope of a line connecting the initial bacterial density and the final bacterial density of a time-kill curve at 18 h on a logarithmic scale, is given as function of the drug concentration (blue). The dotted horizontal line indicates zero net growth, and the intersection with the blue line predicts the MIC (0.0139 mg/mL).

#### Accurate prediction of target overexpression from time-kill data

Having shown that COMBAT can quantitatively fit experimental data on antibiotic action within biologically plausible parameters, we continued to test the predictive ability of the model. Given our hypothesis that modifications in antibiotic-target interactions lead to predictable changes in bacterial susceptibility, we experimentally induced changes in the antibiotic-target interaction of ciprofloxacin in *E. coli*. We then quantified these biochemical changes by fitting COMBAT to corresponding time-kill curves and compared them to the experimental results. Ciprofloxacin acts on gyrase  $A_2B_2$  tetramers [22]. We used an *E. coli* strain for which both gyrase A and gyrase B are under the control of a single inducible

promoter ( $P_{lacZ}$ ), such that the amount of gyrase  $A_2B_2$  tetramer can be experimentally manipulated [35]. We measured net growth rates for this strain at different ciprofloxacin concentrations in the presence of 10  $\mu$ M isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG; mild overexpression) and 100  $\mu$ M IPTG (strong overexpression) and compared it to the wild-type in the absence of the inducer (Fig 4A).

Like previously reported, we find that increasing gyrase content makes *E. coli* more susceptible to ciprofloxacin [35]. We fitted net growth rates allowing the target molecule content, i.e. gyrase  $A_2B_2$ , to vary. We assumed that the only change between the different conditions was the amount of target. We further assumed that the relationship between bound target and bacterial replication or death did not differ between the control strain containing a mock plasmid (no IPTG) and the experiments with overexpression (Fig 4B, between 0% and 100%). Finally, we assumed that the maximal kill rate at very high antibiotic concentrations was accurately measured in our experiments and forced the function describing bacterial death through the measured value when all target molecules are bound. We found the best fit for a 1.31x increase in GyrA<sub>2</sub>B<sub>2</sub> target molecule content for bacteria grown in the presence of 10  $\mu$ M IPTG and a 2.02x increase in GyrA<sub>2</sub>B<sub>2</sub> target molecule content for those grown in the presence of 100  $\mu$ M IPTG.

We subsequently tested these predictions experimentally by analyzing Gyrase A and B content by western blot Figs 4C and S2). Using realistic association and dissociation rates for biological complexes [36], we predicted a range of functional tetramers based on the relative amount of Gyrase A and B proteins (Fig 4D). S3 Table details the individual measurements, and the procedure to estimate tetramers is provided in the methods section. We found that the observed overexpression was very close to our theoretical prediction, with 1.43x [95% CI 1.19–1.81] overexpression (model prediction = 1.31x overexpression) in the presence of 10  $\mu$ M IPTG and 2.15x [95% CI 1.73–2.87] overexpression in the presence of 100  $\mu$ M IPTG (model prediction = 2.02x overexpression).

#### Accurate prediction of target occupancy at MIC from time-kill data

Next, we tested whether COMBAT can be applied to the action of the beta-lactam ampicillin, a very different antibiotic with a distinct mode of action from quinolones. Using published pharmacodynamic data of *E. coli* exposed to ampicillin [34] also allowed us to compare COMBAT predictions to established pharmacodynamic approaches. Most of the biochemical parameters for ampicillin binding to its target, penicillin-binding proteins (PBPs), have been determined experimentally (S1 Table). Ampicillin is believed to act as a bactericidal drug [37], and this mode of action is supported by findings from single-cell microscopy [29]. We therefore assume that ampicillin binding does not affect bacterial replication. In order to model the consumption of beta-lactams at target inhibition and eventual target recovery, we made small adjustments to Eq 13 (see Methods, description of beta-lactam action).

We fitted COMBAT to published time-kill curves of *E. coli* exposed to ampicillin (Fig 5A). Again, COMBAT provides a good fit to the experimental data between 0 min and 40–60 min. After that time, observed bacterial killing showed a characteristic slowdown at high ampicillin concentrations which is often attributed to persistence [21] (Fig 5A). For the sake of simplicity, we chose to omit bacterial population heterogeneity in this work and therefore cannot describe persistence, even though COMBAT can be adapted to capture this phenomenon [21]. Because ampicillin acts in an entirely bactericidal manner, we assume a constant replication rate (see Methods & S1 Fig) and fitted bacterial death as a function of target binding,  $\delta(x)$  (Fig 5B, fitted parameters in S4 Table). Fig 5C shows the predicted net growth rate over a range of drug concentrations. We estimated a MIC of 2.6 mg/L. This MIC is based on the Clinical & Laboratory



**Fig 4. Prediction of relative antibiotic target molecule content from time-kill curves. a**, Dose-response curves of *E. coli* expressing *gyrA* and *gyrB* under the same IPTG-inducible promoter (SoA3329) grown in the presence of 10  $\mu$ M IPTG (mild overexpression; red) and 100  $\mu$ M IPTG (strong overexpression; yellow). A control strain (SoA3330), which expresses wild-type GyrAB levels and contains a mock plasmid, is grown in the absence of inducer (blue). The x-axis indicates the ciprofloxacin concentration, and the y-axis indicates the fold change in colony forming units over time. The dotted lines indicate experimental data, and the solid lines indicate the model fit. The best model fit was obtained for relative target molecule contents of 131% (mild overexpression) and 202% (strong overexpression) relative to the control strain (WT). **b**, Death rates of *E. coli* expressing different levels of GyrAB. The colors represent GyrAB expression conditions as in (**a**). The x-axis shows the percentage of bound antibiotic target normalized to the control strain; the y-axis shows the death rate  $\delta(x)$ . Each line represents the best fit for  $\delta(x)$ . **c**, Western blot analysis of GyrA&B in the strains/conditions shown in (**a**). CRP (cAMP receptor protein) was used as loading control. A representative example of six replicates is show; see <u>S2 Fig</u> for full blots. **d**, comparison of theoretical prediction (from (**b**), solid colors). For the experimental measurements, the bars indicate the mean, and the whiskers represent the 95% confidence interval.

Standards Institute definition of the MIC determined at 18 h. The original source of the MIC, which was based on experimental data and a pharmacodynamic model [34] determined an MIC of 3.4 mg/L at 1 h. If we change our prediction to 1 h, our estimated MIC is 3.32 mg/L, which is within 2.5% of the reported value [34].

Having established that COMBAT can also adequately capture the pharmacodynamics of ampicillin, we next tested whether we can estimate experimentally determined target occupancy at the MIC. Our estimated mean occupancy considering both living and dead bacteria is 89% (Fig 5B), a value within previously reported experimental estimates from *Staphylococcus aureus* (84–99%)[38].

# Sensitivity of antibiotic efficacy to parameters of drug-target binding

It is possible to vary all parameters in COMBAT and explore their effect. We used this to test how hypothetical chemical changes to ampicillin or ciprofloxacin would affect antibiotic efficacy (S3–S11 Fig). These changes could reflect either bacterial resistance mutations or modifications of the antibiotics themselves. We predict that changes in drug-target affinity,  $K_D$ , have more profound effects than changes in target molecule content, bacterial reaction to increasingly bound target (i.e.  $\delta(x)$  and r(x)), or changes in target molecule content. We also predict that the individual binding rates  $k_r$  and  $k_f$  and not just the ratio of these terms, the  $K_D$ , are important factors in efficiency. The faster a drug binds, the more efficient we predicted it will be. One intuitive explanation for the observation that  $k_f$  drives efficacy is that a slow binding



**Fig 5. Model prediction of MIC and target occupancy at MIC for ampicillin. a**, Model fit to previously published time-kill curves [34]. The points represent experimental data, and the lines represent the fit of the model. Each color indicates a single ampicillin concentration, as described in the legend. b, Replication (blue) and death (red) rates as a function of the number of bound targets predicted by the model fit in (**a**). The black line indicates the predicted distribution of target occupancies in a bacterial population (both living and dead cells) exposed to ampicillin at the MIC for 18 h. c, The net growth rate, as determined by the slope of a line connecting the initial bacterial density and the bacterial density at 18 h on a logarithmic scale predicted from the model fit in (**a**), is shown as function of the drug concentration (blue). The dotted horizontal line indicates zero net growth, and the intersection with the blue line predicts the MIC (2.6 mg/mL).

fails to rapidly interfere with bacterial replication, which may allow for the production of additional target molecules and thereby reduce the ratio of free antibiotic to target molecules.

#### Forecasting the resistance selection window

Finally, we illustrate how COMBAT can be used to explore how the molecular mechanisms of resistance mutations affect antibiotic concentrations at which resistance can emerge, i.e., the resistance selection window. We compared predicted net growth rates as a function of cipro-floxacin concentrations for a wild-type strain and an archetypal resistant strain. For this analysis, we assumed that the resistant strain has a 100x slower drug-target binding rate (i.e. ~100x

increased MIC, realistic for novel point mutations [39]) and that the maximum replication rate of the resistant strain is 85% of the wild type strain [40]. We then predicted the antibiotic concentrations at which resistance would be selected. Interestingly, when comparing COM-BAT to previous pharmacodynamics models (Fig 5), we observed that estimates of replication rates depend on the selected time frame (Fig 6A). When the timeframe for MIC determination is set to 18 h as defined by CLSI [41], the "competitive resistance selection window", i.e., the concentration range below the MIC of both strains where the resistant strain is fitter than the wild type, ranges from 0.002 mg/L to 0.014 mg/L for ciprofloxacin (Fig 6A) and 1 mg/L to 2.6 mg/L for ampicillin (S12 Fig), respectively. This corresponds well with previous observations that ciprofloxacin resistance is selected for well below MIC [15]. However, when measuring after 15 min or 45 min, the results are substantially different. The reason for this is illustrated in Fig 6B. COMBAT reproduces non-linear time kill curves where bacterial replication continues until sufficient target is bound to result in a negative net growth rate. This compares well with experimental data around the MIC in Figs 3A and 5A. In Fig 6B, we show model predictions for ciprofloxacin concentrations corresponding to a zero net growth (i.e. same population size) after 15 min, 45 min and 18 h (MIC<sub>Resistant; 15 min</sub>, MIC<sub>Resistant; 45 min</sub>, MIC<sub>Resistant; 18</sub> b). In all cases, the bacterial population first increases and then decreases slowly. This may have consequences for the selection of resistant strains. Fig 6C illustrates how the resistance selection windows depending on the observed time frame. This suggests that even at concentrations above the 18 h MIC of the resistant strain, there may be initial growth of the resistant strain. In this case, the resistant strain could continue growing at concentration of up to 7 mg/ L ciprofloxacin at 15 min, even though the MIC at 18 h is 1.27 mg/L.

Thus, we estimate that sustained levels of 1.27-7mg/L would safeguard against resistance. While ciprofloxacin plasma concentrations typically reach concentrations of 2mg/L after oral uptake and 6mg/L after intravenous administration [42], levels of 2.6 mg/L and above were shown to be chondrotoxic in young animals [43] and concentrations of 40 mg/L are toxic to mitochondria [44]. Clearly, toxicity and risk of resistance must be carefully weighed when deciding on dosing.

#### Discussion

Optimizing dosing levels of antibiotics is important for maximizing drug efficacy against wildtype strains as well as for minimizing the rise of resistant mutants. Antibiotic efficacy is traditionally described by a single value, the minimal inhibitory concentration (MIC), which has limited predictive power [7, 8]. In more sophisticated dose-response measurements, bacteria are exposed to multiple antibiotic concentrations and the kill rate is assessed at each concentration individually in dose-response curves (pharmacodynamic profiles). However, this approach requires substantial experimental effort and is too time-consuming when testing large libraries of new drug candidates. Limited predictive power of standard measures of pharmacodynamics is not only a problem for antibiotic development, drug attrition in general is mainly due to insufficient predictions of pharmacodynamics rather than pharmacokinetics [45].

Because of the experimental effort, pharmacodynamic profiles for either novel drug candidates or novel resistant strains are often not obtained. Thus, we need a transferrable framework that allows quantitative predictions based on parameters that can be determined *a priori*. Recent studies have reported methods to predict MICs from whole genome sequencing data [46, 47]. However, these methods require transfer of prior knowledge on how the resistance mutations affect MICs in other organisms. There are no methods that could predict *a priori* how chemical changes to an antibiotic structure or novel resistance mutations affect bacterial growth at a given antibiotic concentration.



Fig 6. Predicted mutation selection windows for E. coli exposed to ciprofloxacin. a, The drug concentration of ciprofloxacin is shown on the x-axes, and the average bacterial net growth rate in the first 15 min (grey panel), 45 min (yellow panel), and 18 h (purple panel) of exposure is given on the y-axes. The blue line represents the wild-type strain based on the fits shown in Fig 3, and the red line represents a strain with a hypothetical resistance mutation that decreases the binding rate  $(k_i)$  100-fold and imparts a 15% fitness cost. The horizontal dotted line indicates no net growth. The vertical dotted line indicates where the resistant strain becomes more fit than the wild-type, the solid vertical line indicates the MIC of the wild-type, and the dashed vertical line indicates the MIC of the resistant strain. b, Modeled time kill curves of the resistant strain for ciprofloxacin concentrations at which there is no growth at 15 min (grey; MIC<sub>15 min</sub> = 7 mg/L), 45 min (yellow; MIC<sub>45 min</sub> = 3 mg/L) and 18 h (purple; MIC<sub>18 h</sub> = 1.27 mg/L). The horizontal dotted line indicates the initial population size; the vertical dotted lines represent the time points at which the initial and final population size is the same. c, The mutation selection window depends on the time at which bacterial growth is observed. The x-axis shows the observed time at which replication rates were determined, the y-axis shows ciprofloxacin concentrations. The dotted curve shows the ciprofloxacin concentration at which the resistant becomes fitter than the WT (Fitness<sub>Resistant</sub> > Fitness<sub>WT</sub>), the solid line the MIC of the WT (MIC<sub>WT</sub>), and the dashed line the MIC of the resistant strain (MIC<sub>Resistant</sub>). The area between the dotted and dashed line indicates the competitive resistance selection window.

Here, we accurately predict antibiotic action on the basis of accessible biochemical parameters of drug-target interaction. Our computational model, COMBAT provides a framework to predict the efficacy of compounds based on drug-target affinity, target number, and target occupancy. These parameters may change both when improving antibiotic lead structures as well as when bacteria evolve resistance. Importantly, they can be measured early in drug development and may even be a by-product of target-based drug discovery [48]. When these data are available, COMBAT makes only one assumption: that the rate of bacterial replication decreases and/or the rate of killing increases with successive target binding. While fitting, we allow this relationship to be gradual or abrupt and select the best fit. This means we do not model specific molecular mechanisms down-stream of drug-target binding, but their effects are subsumed in the functions that connect the kinetics of drug-target binding to bacterial replication and death.

In previous work, for example on antipsychotics [18], antivirals [19] and antibiotics [20, 21], models of drug-target binding kinetics have been used to improve our qualitative understanding of pharmacodynamics. Our study substantially advances this work by making quantitative predictions across antibiotics and bacterial strains when measurable biochemical characteristics change with extremely high accuracy. This is possible because COMBAT employs an efficient and versatile mathematical approach, based on partial differential equations, that makes it computationally feasible to fit the model to a large range of data. Importantly, we are not only able to predict antibiotic action from biochemical parameters, but can also vice versa use COMBAT to accurately predict biochemical changes from observed patterns of antibiotic action. We have confirmed the excellent predictive power of COMBAT with clinical data as well as experiments with antibiotics with very different mechanisms of action. The high predictive power makes it possible to use modeling to guide dosing. This gives us confidence that biochemical parameters are major determinants of antibiotic action in bacteria and that COMBAT helps to make rational decisions about antibiotic dosing.

In drug development, our mechanistic modeling approach provides insight into which chemical characteristics of drugs may be useful targets for modification. For example, our sensitivity analyses indicate that antibiotics with a similar affinity but faster binding inactivate bacteria more quickly and therefore prevent replication and production of more target molecules, which would change the ratio of antibiotic to target. Furthermore, because e.g. antibiotic binding and unbinding rates can be determined early in the drug development process, such insight can help the transition to preclinical and clinical dosing trials. This may contribute to reducing bottlenecks between these phases of drug development and thereby save money and time.

Avoiding antibiotic concentrations that select for resistance is challenging for two reasons. First, the differences in the pharmacodynamic curves of wild-type and resistant strains are not trivial. Resistance can affect not only the MIC, but also the maximal kill rate at high drug concentrations and the steepness of the dose-response curve [10]. Therefore, one would need to record full pharmacodynamic profiles rather than just MICs to assess the mutation selection window for resistant mutants. Second, this process would have to be repeated for all (or at least a representative set of) potential emerging resistant mutants. This makes it extremely time- and resource-consuming to safeguard against resistance by determining the resistance selection window.

COMBAT offers insight into determinants of the resistance selection window and builds transferrable knowledge that allows estimating useful dose ranges. In concordance with a recent meta-analysis of experimental data [49], our sensitivity analyses predict that changes in drug target binding and unbinding have a greater impact on susceptibility than changes in target molecule content or down-stream processes. Thus, a more comprehensive characterization of the binding parameters of spontaneous resistant mutants would allow an overview of the maximal biologically plausible levels of resistance that can arise with one mutation. Dosing above this level should then safeguard against resistance. This is especially useful for compounds for which it is difficult to saturate the mutational target for resistance, or for safeguarding against resistance to newly introduced antibiotics for which we do not yet have a good overview of resistance conferring mutations.

Good quantitative estimates on the dose-response relationship of new drugs would also help defining the therapeutic window, i.e. the range of drug concentrations at which the drug is effective but not yet toxic. For example in ciprofloxacin, the doses found necessary to prevent resistance after marketing were found to be toxic [50], and an early assessment of doses that might become necessary after resistance is wide-spread might preserve antibiotic utility. If toxicity, solubility or other constraints do not allow dosing above the MIC of expected resistant strains, COMBAT can also predict the concentration range at which resistance is less strongly selected. This could guide decisions on treating with low versus high doses, which is currently controversially debated [11, 12]. COMBAT therefore offers new promise to reduce the failure rates of candidate compounds late in the drug development process when resistance is observed in patients and substantial resources have been invested.

Our quantitative work can help to identify optimal dosing strategies at constant antibiotic concentrations for homogeneous bacterial populations. These measures are commonly used to

assess antibiotic efficacy. In addition, previous work has demonstrated that drug-target binding models outperform traditional pharmacodynamic models for the fluctuating concentrations that actually occur in patients [29, 51]. To illustrate this, we coupled a pharmacokinetic model describing different modes ampicillin administration in patients and predict the pathogen load in infected tissues based on the realistic, fluctuating antibiotic concentrations (S1 Text, S13 and S14 Figs and S5 Table). They can also explain complicated phenomena such as biphasic kill curves, the post-antibiotic effect, or the inoculum effect [20, 21, 52] that often complicate the clinical phase of drug development. COMBAT has similar characteristics that allow capturing these complex phenomena. Therefore, employing COMBAT may be useful for guiding drug development to maximize antibiotic efficacy and minimize *de novo* resistance evolution.

# Materials and methods

#### Mathematical model

COMBAT incorporates the binding and unbinding of antibiotics to their targets and describes how target binding affects bacterial replication and death. This work extends the model developed in [21]. COMBAT consists of a system of two mass balance equations: one PDE for bacteria (describing replication and death as a function of both time and target binding) and one ODE for antibiotic molecules (describing the concentrations as function of time).

In the most basic version of COMBAT, we ignored differences between extracellular and intracellular antibiotic concentrations and only followed the total antibiotic concentration *A*, assuming that the time needed for drug molecules to enter bacterial cells is negligible. We model ciprofloxacin (to which there is a limited diffusion barrier [53]) and ampicillin (where the target is not in the cytosol, even though the external membrane in gram negatives has to be crossed to reach PBPs). We therefore believe that this assumption is justified in wild-type *E. coli*. This basic version of COMBAT is therefore more accurate for describing antibiotic action where the diffusion barrier to the target is weak.

## **Binding kinetics**

We describe the action of antibiotics as a binding and unbinding process to bacterial target molecules [21]. For simplicity, we assume a constant number of available target molecules  $\theta$ . The binding process is defined by the formula  $A + T \rightleftharpoons x$ , where the intracellular antibiotic molecules *A* react with target molecules T at a rate  $k_f$  and form an antibiotic-target molecule complex x, where values for x range between 0 and  $\theta$ . If the reaction is reversible, the complex dissociates with a rate  $k_r$ .

In [21], the association and dissociation terms are described by the following terms

Association term

Dissociation term

$$\frac{dB_{i}(t)}{dt} = \overbrace{\hat{k}_{f}A(t)((\theta - i + 1)B_{i-1}(t) - (\theta - i)B_{i}(t))}^{\mathsf{d}B_{i}(t)} - \overbrace{\hat{k}_{r}(iB_{i}(t) - (i + 1)B_{i+1}(t))}^{\mathsf{d}E_{i+1}(t)}; \ i\epsilon[0,\theta]$$
(6)

where  $\hat{k}_f = \frac{k_f}{V_{tot}n_A}$ ,  $k_f$  is the association rate,  $V_{tot}$  is the volume in which the experiment is performed,  $n_A$  is Avogadro's number,  $k_r$  is the dissociation rate,  $B_i$  is the number of bacteria with *i* bound targets, and  $\theta$  is the total number of targets.

This approach requires the use of a large number of ordinary differential equations, (0 + 1) for the bacterial population and one for the antibiotic concentration. To generalize this approach, we assume that the variable of bound targets is a real number  $x \in \mathcal{R}$ . Under this

continuity assumption, we consider the bacterial cells as a function of *x* and the time *t*, thereby reducing the total number of equations to two.

Under the continuity approximation ( $x \in \mathcal{R}$ ), we can rewrite the binding kinetics in the form

Association term Dissociation term (7)

$$\frac{\partial B(x,t)}{\partial t} = \overbrace{\frac{\partial}{\partial x} \left( \hat{k}_f A(t)(\theta - x) B(x,t) \right)}^{\partial B(x,t)} - \overbrace{\frac{\partial}{\partial x} \left( k_r x B(x,t) \right)}^{\partial B(x,t)}$$

or simply

$$\frac{\partial B(x,t)}{\partial t} = \frac{\partial}{\partial x} \left( \nu_f(x,t) B(x,t) - \nu_r(x,t) B(x,t) \right)$$
(8)

where  $v_f = k_f A(t)(\theta - x)$  and  $v_r = k_r x$  can be considered as two velocities, i.e., the derivative of the bound targets with respect to the time  $\frac{dx}{dt}$ .

**Replication rate.** We assume that the replication rate of bacteria, r(x), is dependent on the number of bound target molecules x. The function r(x) is a monotonically decreasing function of x, such that fewer bacteria replicate as more target is bound. r(0) is the maximum replication rate, corresponding to the replication rate of bacteria in absence of antibiotics. Thus, r(x) describes the bacteriostatic action of the antibiotics, i.e., the effect of the antibiotic on bacterial replication.

**Carrying capacity.** Replication ceases as the total bacterial population approaches the carrying capacity *K*. At that point, the replication term of the equation is

$$\frac{\partial B(x,t)}{\partial t} = r(x)B(x,t)\frac{K - \int_{0}^{\theta} B(x,t)dx}{K} = r(x)B(x,t)F_{lim}$$
(9)

where  $F_{lim} = \frac{K - \int_0^{\theta} B(x,t) dx}{K}$  is the replication-limiting term due to the carrying capacity *K*, and  $0 \le F_{lim} \le 1$ .

**Distribution of target molecules upon division.** We assume that the total number of target molecules doubles at replication, such that each daughter cell has the same number as the mother cell. We also assume that the total number of drug-target complexes is preserved in the replication and that the distribution of *x* bound target molecules of the mother cell to its progeny is described by a hypergeometric sampling of *n* molecules from *x* bound and  $2\theta - x$  unbound molecules. Under the continuity assumption, we generalize the concept of hypergeometric distribution. Because the hypergeometric distribution is a function of combinations and because a combination is defined as function of factorials, we can use  $\Gamma$  functions in place of factorials and redefine a continuous hypergeometric distribution as a function of  $\Gamma$  functions. A  $\Gamma$  function is

$$\Gamma(\zeta) = \int_0^\infty x^{\zeta - 1} e^{-x} dx; \ Re(\zeta) > 0 \tag{10}$$

where  $\zeta$  is a complex number. In this way, the distribution can be expressed as a probability density function of continuous variables. The amount of newborn bacteria is given by the term  $r(x)B(x, t)F_{lim}(t)$ . We assume that bound target molecules are distributed randomly between mother and daughter cells, with each of them inheriting 50% upon division on average. This means that twice the amount of newborn cells must be redistributed along *x* to account for the

random distribution process. For example, if a mother cell with 4 bound targets divides, we have two daughter cells, each with a number of bound targets between 0 and 4 (their sum has to be 4), following the generalized hypergeometric distribution. For simplicity, we define S(x,t) to be a function related to the replication rate that depends on the number of bacteria with a number of bound target molecules ranging between *x* and  $\theta$ , their specific replication rate r(x), and the fraction of their daughter cells expected to inherit *x* antibiotic-target complexes h(x,z):

$$S(x,t) = 2\int_{x}^{\theta} h(x,z)r(z)B(z,t)dz$$
(11)

**Death rate.** The death rate function  $\delta(x)$  depends on the number of bound target molecules. The function  $\delta(x)$  is assumed to be a monotonically increasing function of x, where  $\delta(\theta)$  is the maximum death rate, when all targets in the bacteria have been bound by antibiotics. The shape of this function describes the bactericidal action of the antibiotic.

**Bacteriostatic and bactericidal effects.** We consider several potential functional forms of the relationship between the percentage of bound targets and replication and death rates, because the exact mechanisms how target occupancy affects bacteria is unknown (S1 Fig). We use a sigmoidal function that can cover cases ranging from a linear relationship to a step function. When the inflection point of a sigmoidal function is at 0% or 100% target occupancy, the relationship can also be described by an exponential function. We assume that replication in bactericidal and death in bacteriostatic drugs is independent of the amount of bound target. With sufficient experimental data, the replication rate r(x) and/or the death rate  $\delta(x)$  can be obtained by fitting COMBAT to time-kill curves of bacterial populations after antibiotic exposure. The sigmoidal shape of r(x) and  $\delta(x)$  can be written as:

$$r(x) = \frac{r_0}{1 + e^{\gamma_r(x - x_{rth})}}; \ \delta(x) = \frac{d_{max}}{1 + e^{-\gamma_d(x - x_{dth})}}$$
(12)

Death

where  $x_{rth}$  is the replication rate threshold,  $x_{dth}$  is the death rate threshold, and both represent the point where the sigmoidal function reaches ½ of its maximum.  $\gamma_r$  and  $\gamma_d$  represent the shape parameters of the replication and death rate functions, respectively. These factors determine the steepness around the inflection point. When they are extreme, the relationship approaches a linear or a step function.

**Full equation describing bacterial population.** Putting these components together, the full equation describing a bacterial population is:

Binding kinetics

$$\frac{\partial B(x,t)}{\partial t} + \overbrace{\frac{\partial}{\partial x}(v_f(x,t)B(x,t) - v_r(x,t)B(x,t))}^{O} =$$

Replication and its effects on binding

(13)

$$r(x)B(x,t)F_{lim}(t) + S_B(x,t)F_{lim}(t) - \overline{\delta(x)B(x,t)}$$

where B(x,t) is the number of bacteria.

**Equation describing antibiotic concentration.** The free antibiotic concentration results from mass conservation, i.e., all antibiotic molecules associating with their target are sub-tracted and all dissociating antibiotic molecules are added. Eq.3 in the results section describes the dynamics of the antibiotic concentration.

**Description of beta-lactam action.** Beta-lactams acetylate their target molecules (PBPs) and thereby inhibit cell wall synthesis. The acetylation of PBPs consumes beta-lactams. However, PBPs can recover through deacetylation. We modified the term of drug-target dissociation in the equation describing antibiotic concentrations (Eq 3), and set the unbinding rate  $k_r$  = 0. To reflect the recovery of target molecules, we substituted the dissociation rate  $k_r$  in the equation describing the bacterial population with the deacetylation rate  $k_a$ , as described in [29].

**Initial and boundary conditions.** At t = 0, we assume that all bacteria have zero bound targets (x = 0), and the initial concentration of bacteria is B(x, 0) = 0, x > 0, and  $B(0,0) = B_0$ .

At the boundaries of the partial differential equation  $(x = 0, x = \theta)$ , we specify that the outgoing velocities are zero. For x = 0, i.e. no bound target molecules, the unbinding velocity  $v_r(0, t) = 0$ , and in  $x = \theta$ , i.e. all targets are bound, the binding velocity  $v_f(\theta, t)=0$ . When the replication term at x = 0 and the death term at  $x = \theta$  are known, we can solve the partial differential equation with two ordinary differential equations at the boundaries. They are similar to the equations at x = 0 and at  $x = \theta$  described by Abel zur Wiesch et al. [21], but taking into account that x is a continuous variable instead of a natural number.

**Numerical schemes.** To solve our system of differential equations, we used a firstorder upwind scheme. Specifically, we used the spatial approximation  $u_{-}^{f} = \frac{u(i)-u(i-1)}{\Delta x}$  for the binding term ( $v_{f} > 0$ ) and the spatial approximation  $u_{+}^{f} = \frac{u(i+1)-u(i)}{\Delta x}$  for the unbinding term ( $v_{r} < 0$ ). For the time approximation of both the PDEs and the ODEs, we used the forward approximation  $\frac{\Delta B}{\Delta t} = \frac{B^{n+1}-B^{n}}{\Delta t}$ [54]. We also verified that the Courant-Friedrichs-Lewy condition is satisfied. For fitting the experimental data of bacteria exposed to ciprofloxacin and ampicillin, we used the particle swarm method ("particleswarm" function in Matlab, MathWorks software).

**Concentrations of gyrase**  $A_2B_2$  **tetramers.** We assumed that gyrases A and B first homodimerize to  $A_2$  and  $B_2$ , respectively, which in turn bind to each other to form the tetramer TR [55]. The following system of equations describes their binding kinetics:

First, we calibrated the model to ensure that we obtain the correct number of gyrase  $A_2B_2$  tetramers (~100) per wild type bacterial cell [56, 57]. This results in an average of each 206

gyrase A and B monomers. Because the association and dissociation rates of the dimers and tetramers are unknown, we sampled  $10^4$  sets of six parameters in Eq 14 ( $k_{-3}, \ldots k_3$ ) in a Latin hypercube approach from a biologically plausible range where the association rates are between  $10^7-10^9$  M<sup>-1</sup> s<sup>-1</sup> and the dissociation rates between  $10^{-3}-10^{-1}$  s<sup>-1</sup> [36]. This results in  $10^4$  estimates for each of the six experimental replicates quantifying gyrase A and B (Figs <u>4</u> and S2 and S3 Table).

#### **Experimental methods**

**Strains, growth conditions and strain construction.** *Escherichia coli* strain BW25113 [58] (SoA2740) was transformed with plasmids pCA24N-SC101-gyrAB [35] and pCA24N-SC101- $\Delta$ P-YFP [35] using electroporation, resulting in strains BW25113/pCA24N-SC101-gyrAB (SoA3329) and BW25113/pCA24N-SC101- $\Delta$ P-YFP (SoA3330), respectively. pCA24N-SC101-gyrAB encodes the *E. coli gyrAB* genes under control of the IPTG inducible LacZ promoter. pCA24N-SC101- $\Delta$ P-YFP encodes a promoterless copy of YFP and was used as a control. Bacteria were grown at 30°C on either LB agar or in LB broth, both supplemented with 10 µg/mL chloramphenicol (Cm) and 10 µM (mild induction) or 100 µM (strong induction) of isopropyl β-D-1-thiogalactopyranoside (IPTG) (43714 5X, VWR Chemicals) when necessary.

**Time-kill curves.** Overnight cultures of BW25113 or SoA3329 and SoA3330 were diluted 1:1000 in pre-warmed LB or LB-Cm and LB-Cm-IPTG, respectively, and grown with shaking to  $OD_{600} \sim 0.5$ . A 1:3 dilution series of ciprofloxacin was made and added to the cultures at indicated concentrations. Additional cultures without antibiotics and with a very high concentration of ciprofloxacin (2.187 mg/L) were used to determine the minimal and maximal kill rate, respectively. Samples were taken immediately prior to addition of the antibiotic and in ~20 min intervals or after 45 min, respectively. Samples were washed once in phosphate buffered saline (PBS) before colony forming units (CFUs) were determined for each sample by plating a 1:10 dilution series in PBS on LB agar plates.

**GyrAB quantification.** To quantify the relative amount of GyrAB, samples of SoA3329 and SoA3330 were collected after 45 min of drug treatment as described above. An equal number of cells corresponding to 1 mL culture at  $OD_{600} = 1$  were harvested by centrifugation. Pelleted cells were lysed at room temperature for 20 min using B-PER bacterial protein extraction reagent (90078, Thermo Scientific) supplemented with 100 µg/mL lysozyme, 5 units/mL DNaseI (all part of B-PER with Enzymes Bacterial Protein Extraction Kit, 90078, Thermo Scientific) and 100 µM/ mL PMSF (52332, Calbiochem). Samples were stored at -80 °C until further use.

Samples were heated to 70°C for 10 min after addition of 1x Bolt sample reducing agent (B0009, Life Technologies) and 1x fluorescent compatible sample buffer (LC2570, Invitrogen). Proteins in whole-cell lysates were separated on 4–15% Mini-Protean TGX Precast gels (456–1085, Bio-Rad) and transferred to 0.2  $\mu$ m Nitrocellulose membranes (1704158, Bio-Rad).

Membranes were blocked in Odyssey blocking buffer-TBS (927–50000, Li-Cor) for at least one hour at room temperature. Primary antibodies raised against GyrA (Rabbit  $\alpha$ -Gyrase A, PA005, Inspiralis), GyrB (Rabbit  $\alpha$ -Gyrase B, PB005, Inspiralis), and CRP (Mouse  $\alpha$ -*E. coli* CRP, 664304, Nordic Biosite antibodies) were diluted 1:250, 1:250, and 1:2,000 in Odyssey blocking buffer-TBS, respectively. The blocked membranes were incubated with the appropriate primary antibodies overnight at 4°C, washed 4x for 15 min each in TBS-T solution (Tris buffered saline supplemented with Tween20: 0.138 M sodium chloride, 0.0027 M potassium chloride, 0.1% Tween20, pH 8.0 at 25°C), and incubated for 2 h at room temperature with fluorescent labelled secondary antibodies (1:10,000 of IRDye 680RD Goat anti-Mouse IgG, P/N 925–68070, Li-Cor and 1:5000 of IRDye 800CW Goat anti-Rabbit IgG, P/N 925–32211, Li-Cor) in Odyssey blocking buffer-TBS. Finally, the membranes were washed 4x for 15 min each in TBS-T solution and imaged at 700 nm and 800 nm using a Li-Cor Odyssey Sa scanning system.

Band intensities were quantified from unmodified images using the record measurement tool of Photoshop CS6, normalized to the CRP loading control after background subtraction, and reported relative to SoA3330. For clarity, the "levels" tool of Photoshop CS6 was used to enhance the contrast of shown Western blot images.

# **Supporting information**

S1 Fig. Functions connecting successive antibiotic target binding with bacterial replication and death in bacteriostatic and bactericidal drugs. These graphs show which functions were used to fit the dependence of bacterial replication, r(x), and death,  $\delta(x)$ , on target occupancy for antibiotics with bacteriostatic, bactericidal or mixed action. Solid lines indicate a sigmoidal relationship, dotted lines indicate a step function, dashed lines indicate a linear relationship, and dash-dotted lines indicate independence, i.e. a constant replication or death rate. The left panels, show the replication rates (blue), the right panels show the death rates (red). The top panels, show rates for a bacteriostatic drug, the middle panels, show rates for a bactericidal drug, and the bottom panels, show rates for a drug with mixed effects. The sum of the replication and death rates at certain target occupancies gives the net growth or decline rate of the bacterial population.



S2 Fig. Western blots of GyrA, GyrB and CRP in *E. coli* whole cell lysates. a, b, *E. coli* expressing *gyrA* and *gyrB* under control of the same IPTG-inducible promoter (SoA3329) grown in the presence of 10  $\mu$ M IPTG (mild overexpression) and 100  $\mu$ M IPTG (strong over-expression). A control strain containing a mock plasmid (SoA3330), representing wild-type GyrAB levels, was grown in the absence of inducer. Whole cell lysates were separated on a SDS-PAGE gel, blotted, and detected with specific fluorescent antibodies against GyrA (green), GyrB (green) and CRP (red). CRP (cAMP receptor protein) was used as loading control.



S3 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the binding rate  $k_f$ . We use the model fitted to experimental data to explore the sensitivity of our results to changes in  $k_f$  (0.01x, 0.1x, 1x, 10x, and 100x original value). **a**, Net growth rate (log<sub>10</sub>(bacterial number at 18 h)—log<sub>10</sub>(bacterial number at 0 h))/18 h) as function of drug concentration for different values of the binding rate  $k_f$  (see legend). The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the corresponding MICs. **b**, Sensitivity of the MIC to  $k_f$  obtained from simulations in (**a**). The color code indicates the MIC corresponding to the simulation with the same color in (**a**). (TIF)

S4 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the dissociation rate  $k_r$ . We use the model fitted to experimental data to explore the sensitivity of our results to changes in  $k_r$ (0.01x, 0.1x, 1x, 10x, and 100x original value). **a**, Net growth rate (log<sub>10</sub>(bacterial number at 18 h)—log<sub>10</sub>(bacterial number at 0 h))/18 h) as function of drug concentration for different values of the binding rate  $k_r$  (see legend). The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the respective MICs. **b**, Sensitivity of the MIC to  $k_r$  obtained from simulations in (**a**). The color code indicates the MIC corresponding to the simulation with the same color in (**a**). (TIF)
S5 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the drug-target turnover rate. We use the model fitted to experimental data to explore the sensitivity of our results to changes in the turnover rate of the drug-target complex. We changed  $k_r$  and  $k_f$  (0.01x, 0.1x, 1x, 10x, 100x, and 1000x original value) while keeping the ratio between  $k_f$  and  $k_r$ , the affinity  $K_D$ , constant. **a**, shows the net growth rate (log<sub>10</sub>(bacterial number at 18 h)—log<sub>10</sub>(bacterial number at 0 h))/18 h) as function of drug concentration for different values of the turnover rate. The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the respective MICs. **b**, Sensitivity of the MIC to turnover rate obtained from simulations in (**a**). The color code indicates the MIC corresponding to the simulation with the same color in (**a**).



S6 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the replication rate with increasingly bound target r(x). We use the model fitted to experimental data to explore the sensitivity of our results to changes in the replication rate with increasingly bound target r(x). We change the value of bound target at which we obtain a half-maximal replication rate,  $x_{1/2}$ . **a**, Functions connecting bacterial replication rates r(x) to percentage of bound target molecules with different half-maximal replication rates. **b**, Net growth rate ( $\log_{10}(bacterial number at 18 h)$ — $\log_{10}(-bacterial number at 0 h)$ )/18 h) as function of drug concentration for different values of  $x_{1/2}$ (see legend). The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the respective MICs. **c**, Sensitivity of the MIC to r(x) obtained from simulations in (**b**). The color code indicates the MIC corresponding to the simulation with the same color in (**a**&**b**). (TIF)

S7 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the death rate with increasingly bound target  $\delta(\mathbf{x})$ . We use the model fitted to experimental data to explore the sensitivity of our results to changes in the death rate with increasingly bound target  $\delta(\mathbf{x})$ . We change the value of bound target at which we obtain a half-maximal death rate,  $\mathbf{x}_{1/2}$ . **a**, Functions connecting bacterial death rates  $\delta(\mathbf{x})$  to percentage of bound target molecules with different half-maximal death rates. **b**, Net growth rate ( $\log_{10}(\text{bacterial number at 18 h})$ — $\log_{10}(\text{bacterial number at 0 h})$ )/18 h) as function of drug concentration for different values of  $x_{1/2}$  (see legend). The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the respective MICs. **c**, Sensitivity of the MIC to  $\delta(x)$  obtained from simulations in (**b**). The color code indicates the MIC corresponding to the simulation with the same color in (**a&b**).

#### (TIF)

**S8 Fig. Sensitivity analysis of ampicillin fit: Changes in the binding rate**  $k_f$ . We use the model fitted to experimental data (Fi 5) to explore the sensitivity of our results to changes in  $k_f$  (0.01x, 0.1x, 1x, 10x, and 100x original value). **a**, Net growth rate (log<sub>10</sub>(bacterial number at 18 h)—log<sub>10</sub>(bacterial number at 0 h))/18 h) as function of drug concentration for different values of the binding rate  $k_f$  (see legend). The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the respective MICs. **b**, Sensitivity of the MIC to  $k_f$  obtained from simulations in (**a**). The color code indicates the MIC corresponding to the simulation with the same color in (**a**). (TIF)

**S9** Fig. Sensitivity analysis of ampicillin fit: Changes in the deacetylation rate  $k_a$ . We use the model fitted to experimental data (Fig 5) to explore the sensitivity of our results to changes

in  $k_a$  (0.01x, 0.1x, 1x, 10x, and 100x original value). **a**, Net growth rate (log<sub>10</sub>(bacterial number at 18 h)—log<sub>10</sub>(bacterial number at 0 h))/18 h) as function of drug concentration for different values of the binding rate  $k_a$  (see legend). The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the respective MICs. **b**, Sensitivity of the MIC to  $k_a$  obtained from simulations in (**a**). The color code indicates the MIC corresponding to the simulation with the same color in (**a**). (TIF)

**S10** Fig. Sensitivity analysis of ampicillin fit: Changes in the drug-target turnover rate. We use the model fitted to experimental data (Fig 5) to explore the sensitivity of our results to changes in the turnover rate of the drug-target complex. We changed values for  $k_a$  and  $k_f$  (0.01x, 0.1x, 1x, 10x, and 100x original value) while keeping the ration of  $k_a/k_f$  constant. **a**, Net growth rate (log<sub>10</sub>(-bacterial number at 18 h)—log<sub>10</sub>(bacterial number at 0 h))/18 h) as function of drug concentration for different values of the turnover rate (see legend). The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the respective MICs. **b**, Sensitivity of the MIC to turnover rate obtained from simulations in (**a**). The color code indicates the MIC corresponding to the simulation with the same color in (**a**). (TIF)

S11 Fig. Sensitivity analysis of ampicillin fit: Changes in the death rate with increasingly **bound target**  $\delta(x)$ . We use the model fitted to experimental data (Fig 5) to explore the sensitivity of our results to changes in the death rate with increasingly bound target  $\delta(x)$ . We change the value of bound target at which we obtain a half-maximal death rate,  $x_{1/2}$  (see legend). **a**, Functions connecting bacterial death rates  $\delta(x)$  to percentage of bound target molecules with different half-maximal replication rates  $x_{1/2}$  (see legend). **b**, Net growth rate (log<sub>10</sub>(bacterial number at 18 h)—log<sub>10</sub>(bacterial number at 0 h))/18 h) as function of drug concentration for different values of  $\delta(x)$  (see legend). The dotted horizontal line indicates zero net growth. The intersections of the simulated dose-response curves with this line indicate the respective MICs. **c**, Sensitivity of the MIC to  $\delta(x)$  obtained from simulations in (**b**). The color code indicates the MIC corresponding to the simulation with the same color in (**a**&**b**). (TIF)

S12 Fig. Predicted mutation selection windows for *E. coli* exposed to ampicillin. The drug concentration of ampicillin is shown on the x-axes, and the average bacterial net growth rate over 18 h is given on the y-axes. The blue line represents the wild-type strain based on the fits shown in Fig 5, and the red line represents a strain with a theoretical resistance mutation that decreases the binding rate ( $k_f$ ) 100-fold and imparts a 15% fitness cost. The dotted horizontal line represents no net growth. The first vertical dotted line indicates where the resistant strain becomes fitter than the wild-type (the start of the competitive resistance selection window), the solid vertical line indicates the MIC of the wild-type (the start of the classical resistance selection window), and the dashed vertical line indicates the MIC of the resistant strain, above which selection for resistance should be minimal because both growth of the wild-type and the resistant strain is inhibited.

(TIF)

**S13 Fig. Schematic of pharmacokinetic model.** We simulate plasma and tissue concentrations of ampicillin with a two-compartment pharmacokinetic model. This model described intravenous drug input into the "plasma" compartment, which has an apparent volume of  $V_1$ . From there, it can enter the peripheral "tissue" compartment, characterized by the apparent volume  $V_2$ , with a rate  $k_{12}$ . Conversely, the drug can also re-enter the plasma compartment

with a rate  $k_{21}$ . From the plasma compartment, the drug is eliminated with a rate  $k_{10}$ . (TIF)

**S14 Fig. Coupling a pharmacokinetic model to COMBAT.** Two modes of drug administrations, 2 g of drug per day given as single, 5 min i.v. infusions (blue line) and 2 g of drug per day given as continuous i.v. infusion (red line), are simulated. **a**, Simulated drug concentrations in the tissue (i.e., infected) compartment of a two compartment pharmacokinetic model over two days. The dotted black line indicates the MIC of the pathogen (2.6 mg/L). **b**, Pathogen load in the tissue compartment in response to fluctuating drug concentrations predicted by COMBAT over the same timeframe.



**S1 Table. Kinetic parameters for used antibiotics.** To our knowledge, the association rate for ciprofloxacin has not been determined directly. Because the values of the ratio of dissociation rate  $k_{\rm f}$  and association rate  $k_{\rm f}$ .  $K_{\rm D}$ , diverge by more than an order of magnitude in the literature, we chose to fit the association rate  $k_{\rm f}$  as a free parameter in our model while constraining  $K_{\rm D}$  to remain within the published range (the resulting value of  $k_{\rm f}$  is given together with other fitted parameters in S2 Table).

(DOCX)

S2 Table. Parameters resulting from model fit to experimental time-kill curves of ciprofloxacin in wild-type *E. coli*. Fig 3A shows the model fit and Fig 3B shows the resulting functions for the replication rate r(x) and the death rate  $\delta(x)$  as a function of the number of bound targets.

(DOCX)

S3 Table. Results of gyrase level determination and estimated  $GyrA_2B_2$  tetramer levels. (m) indicates mild overexpression, (s) indicates strong overexpression. Columns headed GyrA and GyrB show the experimentally determined overexpression as fold expression compared to the wild type. The columns headed  $GyrA_2B_2$  show the estimated tetramer levels resulting from each measurement. For the  $GyrA_2B_2$  tetramer estimation, we sampled  $10^4$  sets association and dissociation rates from a uniform distribution within their reported limits (Latin hypercube approach). We report the standard deviation for each estimate. We give summary estimates in the last row of the table.

(DOCX)

S4 Table. Parameters resulting from model fit to experimental time-kill curves of ampicillin in wild-type *E. coli*. Fig 5B shows the resulting death rate  $\delta(x)$  as an exponential function of the number of bound targets  $\delta(x) = a_3 e^{b3x} + c_3$ . (DOCX)

**S5 Table. Parameters used in pharmacokinetic model.** The parameters were obtained from [60].

(DOCX)

S1 Text. Predicting pathogen load in patient by coupling COMBAT with a pharmacokinetic model.

(DOCX)

# Acknowledgments

We thank Jingyi Liang, Vi Tran, Antal Martinecz, Giovanni Montani, Forrest W. Crawford, Roberto Natalini, Klaus Harms, Christoph Zimmer, Angelo Vannozzi and Rafal Mostowy for

helpful discussions and feedback on the manuscript. We would like to acknowledge R. Regoes for providing previously published raw data.

#### **Author Contributions**

Conceptualization: Pia Abel zur Wiesch.

Data curation: Fabrizio Clarelli, Pia Abel zur Wiesch.

Formal analysis: Fabrizio Clarelli, Adam Palmer, Pia Abel zur Wiesch.

Funding acquisition: Ted Cohen, Sören Abel, Pia Abel zur Wiesch.

- **Investigation:** Fabrizio Clarelli, Adam Palmer, Bhupender Singh, Merete Storflor, Silje Lauksund, Pia Abel zur Wiesch.
- Methodology: Fabrizio Clarelli, Adam Palmer, Bhupender Singh, Merete Storflor, Silje Lauksund.

Project administration: Ted Cohen, Sören Abel, Pia Abel zur Wiesch.

Resources: Ted Cohen, Sören Abel, Pia Abel zur Wiesch.

Software: Fabrizio Clarelli, Pia Abel zur Wiesch.

Supervision: Ted Cohen, Sören Abel, Pia Abel zur Wiesch.

Validation: Fabrizio Clarelli, Pia Abel zur Wiesch.

Visualization: Fabrizio Clarelli, Sören Abel, Pia Abel zur Wiesch.

Writing - original draft: Fabrizio Clarelli, Sören Abel, Pia Abel zur Wiesch.

Writing – review & editing: Fabrizio Clarelli, Adam Palmer, Bhupender Singh, Merete Storflor, Silje Lauksund, Ted Cohen, Sören Abel, Pia Abel zur Wiesch.

#### References

- Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015; 191 (9):1058–65. https://doi.org/10.1164/rccm.201407-1264OC PMID: 25654354.
- Lan AJ, Colford JM, Colford JM Jr. The impact of dosing frequency on the efficacy of 10-day penicillin or amoxicillin therapy for streptococcal tonsillopharyngitis: A meta-analysis. Pediatrics. 2000; 105(2):E19. https://doi.org/10.1542/peds.105.2.e19 PMID: 10654979.
- Roord JJ, Wolf BH, Gossens MM, Kimpen JL. Prospective open randomized study comparing efficacies and safeties of a 3-day course of azithromycin and a 10-day course of erythromycin in children with community-acquired acute lower respiratory tract infections. Antimicrob Agents Chemother. 1996; 40 (12):2765–8. https://doi.org/10.1128/AAC.40.12.2765 PMID: 9124837; PubMed Central PMCID: PMC163618.
- Van Deun A, Salim MA, Das AP, Bastian I, Portaels F. Results of a standardised regimen for multidrugresistant tuberculosis in Bangladesh. Int J Tuberc Lung Dis. 2004; 8(5):560–7. PMID: 15137531.
- WHO. The shorter MDR-TB regimen. <u>http://www.hoint/tb/Short\_MDR\_regimen\_factsheetpdf?ua=1</u>. 2016.
- Colangeli R, Jedrey H, Kim S, Connell R, Ma S, Chippada Venkata UD, et al. Bacterial Factors That Predict Relapse after Tuberculosis Therapy. N Engl J Med. 2018; 379(9):823–33. Epub 2018/08/30. https://doi.org/10.1056/NEJMoa1715849 PMID: 30157391; PubMed Central PMCID: PMC6317071.
- Goldstein EJ, Solomkin JS, Citron DM, Alder JD. Clinical efficacy and correlation of clinical outcomes with in vitro susceptibility for anaerobic bacteria in patients with complicated intra-abdominal infections treated with moxifloxacin. Clin Infect Dis. 2011; 53(11):1074–80. Epub 2011/10/15. <u>https://doi.org/10.1093/cid/cir664</u> PMID: 21998288.

- Doern GV, Brecher SM. The Clinical Predictive Value (or Lack Thereof) of the Results of In Vitro Antimicrobial Susceptibility Tests. Journal of Clinical Microbiology. 2011; 49(9 Supplement):S11–S4. https://doi.org/10.1128/jcm.00580-11
- Onufrak NJ, Forrest A, Gonzalez D. Pharmacokinetic and Pharmacodynamic Principles of Anti-infective Dosing. Clin Ther. 2016; 38(9):1930–47. Epub 2016/07/28. https://doi.org/10.1016/j.clinthera.2016.06. 015 PMID: 27449411; PubMed Central PMCID: PMC5039113.
- Foerster S, Unemo M, Hathaway LJ, Low N, Althaus CL. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol. 2016; 16:216. Epub 2016/09/19. https://doi.org/10.1186/s12866-016-0838-9 PMID: 27639378; PubMed Central PMCID: PMC5027106.
- Kouyos RD, Metcalf CJ, Birger R, Klein EY, Abel zur Wiesch P, Ankomah P, et al. The path of least resistance: aggressive or moderate treatment? Proc Biol Sci. 2014; 281(1794):20140566. https://doi. org/10.1098/rspb.2014.0566 PMID: 25253451; PubMed Central PMCID: PMC4211439.
- Read AF, Day T, Huijben S. The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc Natl Acad Sci U S A. 2011; 108 Suppl 2:10871–7. https://doi.org/10.1073/pnas. 1100299108 PMID: 21690376; PubMed Central PMCID: PMC3131826.
- Colijn C, Cohen T. How competition governs whether moderate or aggressive treatment minimizes antibiotic resistance. Elife. 2015; 4. <u>https://doi.org/10.7554/eLife.10559</u> PMID: <u>26393685</u>; PubMed Central PMCID: PMC4641510.
- Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis. 2007; 44(5):681–8. https://doi.org/10.1086/511642 PMID: 17278059.
- Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011; 7(7):e1002158. https://doi.org/10.1371/journal. ppat.1002158 PMID: 21811410; PubMed Central PMCID: PMC3141051.
- Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother. 2003; 52 (1):11–7. Epub 2003/06/14. https://doi.org/10.1093/jac/dkg269 PMID: 12805267.
- Gesztelyi R, Zsuga J, Kemeny-Beke A, Varga B, Juhasz B, Tosaki A. The Hill equation and the origin of quantitative pharmacology. Arch Hist Exact Sci. 2012; 66(4):427–38. <u>https://doi.org/10.1007/s00407-012-0098-5</u> PubMed PMID: WOS:000305840700003.
- Sykes DA, Moore H, Stott L, Holliday N, Javitch JA, Lane JR, et al. Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat Commun. 2017; 8 (1):763. Epub 2017/10/04. https://doi.org/10.1038/s41467-017-00716-z PMID: 28970469; PubMed Central PMCID: PMC5624946.
- Shen L, Rabi SA, Sedaghat AR, Shan L, Lai J, Xing S, et al. A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs. Sci Transl Med. 2011; 3(91):91ra63. https:// doi.org/10.1126/scitranslmed.3002304 PMID: 21753122; PubMed Central PMCID: PMC3488347.
- Walkup GK, You Z, Ross PL, Allen EK, Daryaee F, Hale MR, et al. Translating slow-binding inhibition kinetics into cellular and in vivo effects. Nat Chem Biol. 2015; 11(6):416–23. Epub 2015/04/22. https:// doi.org/10.1038/nchembio.1796 PMID: 25894085; PubMed Central PMCID: PMC4536915.
- Abel zur Wiesch P, Abel S, Gkotzis S, Ocampo P, Engelstadter J, Hinkley T, et al. Classic reaction kinetics can explain complex patterns of antibiotic action. Sci Transl Med. 2015; 7(287). doi: ARTN 287ra73 https://doi.org/10.1126/scitranslmed.aaa8760 PMID: 25972005 PubMed PMID: WOS:000354433900001.
- Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014; 53(10):1565–74. Epub 2014/03/01. https://doi.org/10.1021/bi5000564 PMID: 24576155; PubMed Central PMCID: PMC3985860.
- Shen LL, Pernet AG. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA. Proc Natl Acad Sci U S A. 1985; 82(2):307–11. https://doi.org/10.1073/pnas.82.2.307 PMID: 2982149; PubMed Central PMCID: PMC397026.
- Shen LL, Mitscher LA, Sharma PN, O'Donnell TJ, Chu DW, Cooper CS, et al. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug—DNA binding model. Biochemistry. 1989; 28(9):3886–94. https://doi.org/10.1021/bi00435a039 PMID: 2546585.
- 25. Andriole VT. The quinolones. 3rd ed. San Diego: Academic Press; 2000. XX, 517 S. p.
- 26. Jungkind DL, American Society for Microbiology Eastern Pennsylvania Branch. Antimicrobial resistance a crisis in health care. New York etc.: Plenum Press; 1995. X, 248 S. p.
- Kampranis SC, Maxwell A. The DNA gyrase-quinolone complex. ATP hydrolysis and the mechanism of DNA cleavage. J Biol Chem. 1998; 273(35):22615–26. Epub 1998/08/26. https://doi.org/10.1074/jbc. 273.35.22615 PMID: 9712890.

- Siporin C, Heifetz CL, Domagala JM. The New generation of quinolones. New York: M. Dekker; 1990. xii, 347 p., 2 p. of plates p.
- Abel Zur Wiesch P, Clarelli F, Cohen T. Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies. PLoS Comput Biol. 2017; 13(1):e1005321. https://doi.org/10.1371/journal.pcbi. 1005321 PMID: 28060813; PubMed Central PMCID: PMC5257006.
- Elliott TS, Shelton A, Greenwood D. The response of Escherichia coli to ciprofloxacin and norfloxacin. J Med Microbiol. 1987; 23(1):83–8. Epub 1987/02/01. https://doi.org/10.1099/00222615-23-1-83 PMID: 3546699.
- Silva F, Lourenco O, Queiroz JA, Domingues FC. Bacteriostatic versus bactericidal activity of ciprofloxacin in Escherichia coli assessed by flow cytometry using a novel far-red dye. J Antibiot (Tokyo). 2011; 64(4):321–5. Epub 2011/02/18. https://doi.org/10.1038/ja.2011.5 PMID: 21326251.
- 32. Garoff L, Yadav K, Hughes D. Increased expression of Qnr is sufficient to confer clinical resistance to ciprofloxacin in Escherichia coli. J Antimicrob Chemother. 2018; 73(2):348–52. Epub 2017/11/07. https://doi.org/10.1093/jac/dkx375 PMID: 29106520; PubMed Central PMCID: PMC5890660.
- Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother. 2001; 45(4):1126–36. Epub 2001/03/21. https://doi.org/10.1128/AAC.45.4.1126-1136.2001 PMID: 11257026; PubMed Central PMCID: PMC90435.
- Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother. 2004; 48(10):3670–6. https://doi.org/10.1128/AAC.48.10.3670-3676.2004 PMID: 15388418; PubMed Central PMCID: PMC521919.
- Palmer AC, Kishony R. Opposing effects of target overexpression reveal drug mechanisms. Nat Commun. 2014; 5:4296. Epub 2014/07/02. https://doi.org/10.1038/ncomms5296 PMID: 24980690; PubMed Central PMCID: PMC4408919.
- 36. Fontana W. Lecture Notes: Continuous-Time Monte-Carlo of Reaction Systems.
- Ocampo PS, Lazar V, Papp B, Arnoldini M, Abel zur Wiesch P, Busa-Fekete R, et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother. 2014; 58 (8):4573–82. Epub 2014/05/29. <u>https://doi.org/10.1128/AAC.02463-14</u> PMID: <u>24867991</u>; PubMed Central PMCID: PMC4135978.
- Chambers HF, Sachdeva MJ, Hackbarth CJ. Kinetics of penicillin binding to penicillin-binding proteins of Staphylococcus aureus. Biochem J. 1994; 301 (Pt 1):139–44. <u>https://doi.org/10.1042/bj3010139</u> PMID: 8037661; PubMed Central PMCID: PMC1137153.
- Al-Emran HM, Heisig A, Dekker D, Adu-Sarkodie Y, Cruz Espinoza LM, Panzner U, et al. Detection of a Novel gyrB Mutation Associated With Fluoroquinolone-Nonsusceptible Salmonella enterica serovar Typhimurium Isolated From a Bloodstream Infection in Ghana. Clin Infect Dis. 2016; 62 Suppl 1:S47–9. Epub 2016/03/05. https://doi.org/10.1093/cid/civ790 PMID: 26933021.
- Vogwill T, MacLean RC. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl. 2015; 8(3):284–95. Epub 2015/04/11. <u>https://doi.org/10.1111/eva.12202</u> PMID: 25861386; PubMed Central PMCID: PMC4380922.
- Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009; 49(11):1749–55. Epub 2009/10/28. https://doi.org/10.1086/ 647952 PMID: 19857164.
- Lipman J, Scribante J, Gous AG, Hon H, Tshukutsoane S. Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. The Baragwanath Ciprofloxacin Study Group. Antimicrob Agents Chemother. 1998; 42(9):2235–9. Epub 1998/09/16. https://doi.org/10.1128/AAC.42.9.2235 PMID: 9736541; PubMed Central PMCID: PMC105792.
- Stahlmann R, Kuhner S, Shakibaei M, Schwabe R, Flores J, Evander SA, et al. Chondrotoxicity of ciprofloxacin in immature beagle dogs: immunohistochemistry, electron microscopy and drug plasma concentrations. Arch Toxicol. 2000; 73(10–11):564–72. Epub 2000/02/09. https://doi.org/10.1007/ s002040050009 PMID: 10663388.
- Hangas A, Aasumets K, Kekalainen NJ, Paloheina M, Pohjoismaki JL, Gerhold JM, et al. Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of Topoisomerase 2. Nucleic Acids Res. 2018; 46(18):9625–36. Epub 2018/09/01. <u>https://doi.org/10.1093/nar/gky793</u> PMID: <u>30169847</u>; PubMed Central PMCID: PMC6182158.
- Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015; 14 (7):475–86. Epub 2015/06/20. https://doi.org/10.1038/nrd4609 PMID: 26091267.
- 46. Metcalf BJ, Chochua S, Gertz RE Jr., Li Z, Walker H, Tran T, et al. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive

pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect. 2016; 22(12):1002 e1- e8. Epub 2016/08/21. https://doi.org/10.1016/j.cmi.2016.08.001 PMID: 27542334.

- Eyre DW, De Silva D, Cole K, Peters J, Cole MJ, Grad YH, et al. WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J Antimicrob Chemother. 2017; 72(7):1937–47. Epub 2017/03/24. https://doi. org/10.1093/jac/dkx067 PMID: 28333355; PubMed Central PMCID: PMC5890716.
- Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007; 6(1):29–40. Epub 2006/12/13. https://doi.org/10. 1038/nrd2201 PMID: 17159923.
- 49. van der Putten BC, Pasquini G, Remondini D, Janes VA, Matamoros S, Schultsz C. Quantifying the contribution of four resistance mechanisms to ciprofloxacin minimum inhibitory concentration in Escherichia coli: a systematic review. 2018:372086. https://doi.org/10.1101/372086 %J bioRxiv
- Bennett AC, Bennett CL, Witherspoon BJ, Knopf KB. An evaluation of reports of ciprofloxacin, levofloxacin, and moxifloxacin-association neuropsychiatric toxicities, long-term disability, and aortic aneurysms/ dissections disseminated by the Food and Drug Administration and the European Medicines Agency. Expert Opin Drug Saf. 2019; 18(11):1055–63. Epub 2019/09/11. https://doi.org/10.1080/14740338. 2019.1665022 PMID: 31500468.
- 51. Copeland RA. The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov. 2016; 15(2):87–95. Epub 2015/12/19. https://doi.org/10.1038/nrd.2015.18 PMID: 26678621.
- Srimani JK, Huang S, Lopatkin AJ, You L. Drug detoxification dynamics explain the postantibiotic effect. Mol Syst Biol. 2017; 13(10):948. Epub 2017/10/25. https://doi.org/10.15252/msb.20177723 PMID: 29061668; PubMed Central PMCID: PMC5658699.
- Cramariuc O, Rog T, Javanainen M, Monticelli L, Polishchuk AV, Vattulainen I. Mechanism for translocation of fluoroquinolones across lipid membranes. Biochim Biophys Acta. 2012; 1818(11):2563–71. Epub 2012/06/06. https://doi.org/10.1016/j.bbamem.2012.05.027 PMID: 22664062.
- Hirsch C. Numerical computation of internal and external flows: introduction to the fundamentals of CFD. Oxford: Butterworth-Heinemann,; 2007. Available from: <a href="http://app.knovel.com/web/toc.v/cid:kpNCIEFFC2">http://app.knovel.com/web/toc.v/cid:kpNCIEFFC2</a>.
- 55. Wu J, Zhang Z, Mitchenall LA, Maxwell A, Deng J, Zhang H, et al. The dimer state of GyrB is an active form: implications for the initial complex assembly and processive strand passage. Nucleic Acids Res. 2011; 39(19):8488–502. Epub 2011/07/13. <u>https://doi.org/10.1093/nar/gkr553</u> PMID: 21745817; PubMed Central PMCID: PMC3201873.
- 56. Maier T, Schmidt A, Guell M, Kuhner S, Gavin AC, Aebersold R, et al. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol. 2011; 7:511. Epub 2011/07/21. https://doi.org/10.1038/msb.2011.38 PMID: 21772259; PubMed Central PMCID: PMC3159969.
- Malmstrom J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature. 2009; 460(7256):762–5. Epub 2009/07/17. https://doi.org/10.1038/nature08184 PMID: 19606093; PubMed Central PMCID: PMC2723184.
- Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000; 97(12):6640–5. Epub 2000/06/01. https://doi.org/10. 1073/pnas.120163297 PMID: 10829079; PubMed Central PMCID: PMC18686.
- Martinecz A, Abel Zur Wiesch P. Estimating treatment prolongation for persistent infections. Pathog Dis. 2018; 76(6). Epub 2018/08/15. https://doi.org/10.1093/femspd/fty065 PMID: 30107522; PubMed Central PMCID: PMC6134427.
- Ripa S, Ferrante L, & Prenna M (1990) Pharmacokinetics of sulbactam/ampicillin in humans after intravenous and intramuscular injection. Chemotherapy 36(3):185–192. <u>https://doi.org/10.1159/000238765</u> PMID: 2338029

Paper III

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462033; this version posted September 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 2

# The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species

- 3 Julia Weikum<sup>1,2</sup>, Jeroen van Dyck<sup>3</sup>, Saranya Subramani<sup>1</sup>, David P. Klebl<sup>4</sup>, Merete Storflor<sup>5</sup>,
- 4 Stephen P. Muench<sup>4</sup>, Sören Abel<sup>5</sup>, Frank Sobott<sup>\*6</sup>, J. Preben Morth<sup>\*1,2,7</sup>
- <sup>5</sup> <sup>1</sup> Membrane Transport Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL
- 6 Partnership, University of Oslo, P.O. Box 1137 Blindern, 0318 Oslo, Norway.
- <sup>7</sup><sup>2</sup> Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology,
- 8 Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads,
- 9 2800, Kgs. Lyngby, Denmark.
- <sup>3</sup> Department of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan
- 11 171, G.V. 418, 2020 Antwerpen, Belgium.
- <sup>4</sup> School of Biomedical Sciences & The Astbury Centre for Structural Molecular Biology,
- 13 University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
- <sup>5</sup> The Abel Lab, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø,
  Norway.
- <sup>6</sup> School of Molecular and Cellular Biology & The Astbury Centre for Structural Molecular
  Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom.
- <sup>7</sup> Institute for Experimental Medical Research (IEMR), Oslo University Hospital, Ullevål PB 4956
- 19 Nydalen, NO-0424 Oslo, Norway.
- 20
- 21 \* correspondence should be addressed to f.sobott@leeds.ac.uk or premo@dtu.dk
- 22

# 23 Abstract

A significant challenge today within protein lipidology is to understand the relationship between cell structure, lipid membrane integrity, ion homeostasis and the embedded membrane proteins. The bacterial magnesium transporter A (MgtA) is a specialized P-type ATPase important for Mg<sup>2+</sup> import into the cytoplasm; disrupted magnesium homeostasis is linked to intrinsic ribosome

- 28 instability and nitro-oxidative stress in *Salmonella* strains. MgtA's function is highly dependent
- 29 on anionic lipids, particularly cardiolipin, and further co-localization of cardiolipin with MgtA at

the E. coli cell poles has been revealed. Here, we show that MgtA has functional specificity for 30 cardiolipin 18:1, but it reaches maximum activity only in combination with cardiolipin 16:0, 31 equivalent to the major components of native cardiolipin found in E. coli membranes. This is the 32 33 first time it has been shown experimentally that two different lipid species from the same class, individually promoting low activity, can enhance activity in combination. Native mass 34 35 spectrometry verifies the presence of two binding sites for cardiolipin and kinetic studies reveal that a cooperative relationship likely exists between the two different cardiolipin variants 36 37 (cardiolipin 16:0 and cardiolipin 18:1). This is the first experimental evidence of cooperative effects between lipids of the same class, with only minor variations in their acyl chain composition, 38 acting on a membrane protein. In summary, our results reveal that MgtA exhibits a highly complex 39 interaction with one cardiolipin 18:1 and one cardiolipin 16:0, affecting protein activity and 40 stability, and contributing to our understanding of the particular interactions between lipid 41 environment and membrane proteins. Further, a better understanding of Mg<sup>2+</sup> homeostasis in 42 bacteria, due to its role as a virulence regulator, will provide further insights into the regulation 43 and mechanism of bacterial infections. 44

45

# 46 Introduction

Biological membranes function as a dynamic interplay between proteins and lipids. The plasma 47 membrane contains a specific lipid composition which can differ locally, and these regions can 48 accommodate functional specialization based on non-random lipid-lipid and lipid-protein 49 50 interactions (1). The lipid ensemble reveals a high degree of molecular variation in both the head group structure which presents various functional groups at the membrane surface, and in the acyl 51 52 chains with their variable length and degree of saturation (2), located within the transmembrane segment. This combinatorial space opens the possibility of an additional regulatory function by 53 54 lipids of the same type which differ only marginally in their acyl chain composition, but have unique structural and functional properties (3). Significant progress has been made in elucidating 55 the intricate and complex interplay between membrane proteins and lipids from experimental 56 studies (4, 5). For several P-type ATPase family members, a role of specific lipid interactions has 57 been elucidated, specifically the plasma membrane Ca<sup>2+</sup>-ATPase (PMCA) and dimyristoyl 58 phosphatidylcholine-dependent activity variation between PMCA2 and PMCA4 (6), and lipid-59

protein stoichiometric variations dependent on the functional state of the PMCA (6). The prominent Na<sup>+</sup>/K<sup>+</sup>-ATPase is strongly stimulated and inhibited by lipid-protein interactions (7); of particular importance is the modulatory effect of cholesterol (8) and the stimulatory effect of polyunsaturated lipids such a phosphatidylethanolamine (PE) and phosphatidylserine (PS) (9). The stimulus mainly accelerates the E1P–E2P conformational transition and is mediated by two independent lipid binding sites, with a PS lipid bound between  $\alpha$ TM8–10 and the FXYD transmembrane helix, and a PE bound between  $\alpha$ M2, 4, 6, and 9 (10).

Membrane proteins from bacterial species have also been investigated and while many, however 67 not all, show selective lipid binding (4), their function role often remains poorly understood. 68 Typically, structural studies have revealed the molecular basis of various lipid binding sites in 69 membrane proteins. Specific binding pockets for lipids are referred to as «non-annular lipid sites», 70 characterized through longer lipid residence times (11). They are stabilized through polar 71 72 interactions between head groups and charged amino acids at the water-lipid interface or hydrophobic interactions between acyl chains and hydrophobic residues in the transmembrane 73 segments (11). Interestingly, the lipid composition of the membrane, which determines the bulk 74 properties of the lipid bilayer, such as membrane fluidity and bilayer thickness, also influences 75 membrane protein function, as shown for certain P-type ATPases (12). Lipids that associate 76 weakly with transmembrane segments exhibit faster lipid exchange rates. They have been termed 77 78 «annular lipids/annular lipid shell», as they often form a ring-like structure around the membraneembedded protein section (11). This study mainly focuses on non-annular, i.e. tightly 79 bound/structural lipid interactions between MgtA and specific cardiolipin species. The magnesium 80 transporter A (MgtA) is a primary active  $Mg^{2+}$  transporter, transporting  $Mg^{2+}$  from the periplasm 81 to the cytoplasm with orthology widely distributed throughout eubacteria, fungi and plants (13, 82 14). The transporter ensures  $Mg^{2+}$  homeostasis which is essential for stabilising membranes and 83 ribosomes, ensuring correct folding of oligonucleotides, and functions as a co-factor for enzymatic 84 reactions. Additionally,  $Mg^{2+}$  has been revealed as a bacterial virulence regulator (15) and can also 85 86 protect against hostile environments, such as withstanding nitro-oxidative stress in professional phagocytes during infection (16). Furthermore, a recently discovered role for MgtA and especially 87 88 its homologue MgtB suggests that the transporters promote survival in macrophages during infections, by preventing  $Mg^{2+}$  deprivation (17). 89

MgtA is a P-type ATPase transporter which utilizes energy from the hydrolysis of adenosine 90 triphosphate (ATP) for Mg<sup>2+</sup> transport (15, 18) and exhibits a classical P-type ATPase structural 91 composition with three cytoplasmic domains, termed nucleotide-binding (N), phosphorylation (P) 92 93 and actuator (A) domain, and a transmembrane core with ten transmembrane helices (19, 20). The expression of MgtA is tightly regulated by the two-component system PhoP/PhoQ, which 94 upregulates MgtA levels under low extracellular Mg<sup>2+</sup> concentrations, low pH and in the presence 95 of antibacterial peptides (15). The PhoP/PhoQ-induced sigma factor RpoS accumulates as a 96 response to low cytoplasmic Mg<sup>2+</sup> levels in Salmonella, tied to the presence of functional Mg<sup>2+</sup> 97 homeostasis mediated via MgtA and MgtB in Salmonella and other pathogens (21-23). Additional 98 99 regulation of MgtA expression is present through the mgtA mRNA leader region, mgtL, which senses intracellular Mg<sup>2+</sup> levels and only promotes MgtA translation under low intracellular Mg<sup>2+</sup> 100 concentrations (24-26). The enzymatic activity of MgtA is also under tight regulation through 101 substrate inhibition by Mg<sup>2+</sup>free, which allows MgtA activation only in the concentration range of 102 10  $\mu$ M to 1 mM Mg<sup>2+</sup>free (14). Mg<sup>2+</sup>free describes Mg<sup>2+</sup> ions that are not coordinated by ATP but 103 are available for transport by MgtA. However, the mechanism of MgtA inhibition by Mg<sup>2+</sup>free 104 105 remains unclear. While most of our understanding of bacterial Mg<sup>2+</sup> homeostasis derives from Salmonella, considerable similarities between E. coli, which only has MgtA and not its homologue 106 MgtB, have been described (27). 107

MgtA is located in the inner membrane of E. coli, which contains only approximately  $\sim 5 \%$ 108 cardiolipin (CL), with the remainder being ~75 % phosphatidylethanolamine (PE) and ~20 % 109 phosphatidylglycerol (PG) (28). Previously, we have shown that CL performs an essential function 110 for MgtA activation, and that it co-localizes at the inner membrane of E. coli poles and septal 111 112 regions (14). Cardiolipin has four acyl chains in comparison to classical glycerophospholipids which only have two. In contrast to eukaryotes, which often have only one or two major 113 cardiolipins (29), E. coli contains a large variety of CL species with variable hydrophobic tails 114 115 with palmitic acid (16:0), palmitoleic acid (16:1) and oleic acid (18:1) as the most abundant acyl 116 chains (30). It has been proposed previously that the anionic head group of cardiolipin is most critical for MgtA ATPase activity, while the acyl chain composition of the lipid only contributes 117 marginally to the enzyme activation (14). Therefore, a function of cardiolipin as a  $Mg^{2+}$  or  $H^+$ 118 chaperone or reservoir for MgtA-mediated Mg<sup>2+</sup>-transport was hypothesized (14). The data 119 presented here however indicates a more complex interaction between MgtA and cardiolipin. In 120

this study, we show the specific interaction of MgtA with selected cardiolipin species. Enzyme 121 122 kinetics studies and native mass spectrometry determined that these lipid-protein interactions are likely mediated through site-specific interactions and biophysical properties of the lipid bilayer 123 124 environment. We reveal high selectivity of MgtA for CL species 18:1 and CL 16:0, and cooperativity of binding of these two CL molecules to MgtA. Additionally, we show thermal 125 stabilization of MgtA by CL 18:1 through nano differential scanning fluorimetry, while no effect 126 on MgtA stabilization by CL 16:0 was detected. These results highlight the complexity of lipid-127 128 membrane protein interactions, with highly selective roles found even for closely related lipid species varying only slightly in acyl chain structure. The implications of this exquisite fine tuning 129 130 of membrane protein function might indeed be suggestive of a much greater role of lipid composition than previously anticipated. 131

132

# **133** Material and Methods

Lipids were purchased from Avanti Polar Lipids and solubilized in chloroform. E. coli cardiolipin 134 135 (cat no. 841199), cardiolipin 18:1 (cat no. 710335) and cardiolipin 16:0 (cat no. 710333) were purchased as stock solutions of 10 mg/ml. Cardiolipin 14:1 (cat no. 710337) and cardiolipin 16:1 136 (cat no. 710339) were obtained as stock solutions of 5 mg/ml. Total E. coli lipid extract (cat no. 137 100500) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) (cat no. 850757) 138 139 were purchased as 25 mg/ml stock solution. Detergents were obtained from either Chemical Point UG, Deisenhofen, Germany for n-dodecyl-β-D-maltopyranoside (DDM) or from Nikko Chemicals 140 for octaethylene glycol monododecyl ether ( $C_{12}E_8$ ). All other chemicals were purchased as grade 141 BioUltra from Sigma-Aldrich. 142

143

# 144 Heterologous expression and purification of MgtA

145 Cloning of *E. coli* MgtA into pETM11 vector (EMBL), heterologous expression in *E. coli* 146 C43(DE3) and purification were performed as described in Subramani *et al.* (2016) (14, 31). In 147 brief, isolated *E coli* membranes with overexpressed MgtA were solubilized in 1%  $\beta$ -dodecyl 148 maltoside ( $\beta$ -DDM) prior to Histrap HP (GE Healthcare) purification equilibrated in (25 mM 149 HEPES pH 7.0, 100 mM K<sub>2</sub>SO<sub>4</sub>, 5% glycerol, 1 mM PMSF, 5 mM  $\beta$ -mercaptoethanol, 3x CMC 150 β-DDM) and eluted in (25 mM HEPES pH 7.0, 100 mM K<sub>2</sub>SO<sub>4</sub>, 5% glycerol, 1 mM PMSF, 5 mM 151 β-mercaptoethanol, 300 mM imidazole pH 7.6). The elution was followed by size exclusion 152 chromatography, using a HiLoad 16/600 Superdex 200 pg column equilibrated with 1.5 CV of 153 buffer E buffer E (25 mM HEPES, pH 7.0, 100 mM K<sub>2</sub>SO<sub>4</sub>, 5% glycerol, 1 mM dithiothreitol, 3x 154 CMC β-DDM).

155

# 156 ATPase enzymatic assay

Lipid stocks for ATPase enzymatic assays were prepared by tempering indicated lipids, dissolved 157 in chloroform, to room temperature, or heating them to 40 °C until completely dissolved. The 158 lipids were dried under an argon stream with vigorous shaking. The dried lipid film was 159 resuspended in Milli-Q water and 20 mM C<sub>12</sub>E<sub>8</sub> with vigorous shaking for at least 1 hour at RT 160 and sonication intervals of 5-10 min in between. A final lipid concentration of 6.12 mM or 161 12.24 mM for lipid profiles or a final concentration of 12 mM for Mg<sup>2+</sup> profiles, respectively, was 162 obtained. Fresh lipid stocks were prepared prior to enzymatic assays. For enzymatic assays in the 163 presence of increasing lipid concentrations (lipid profiles), dilutions to indicated concentrations 164 were prepared in Milli-Q water with 20 mM  $C_{12}E_8$ . The same volume (1  $\mu$ L) of lipid dilutions was 165 added to the reaction volume to keep detergent levels constant (final concentration: 3x CMC 166  $C_{12}E_8$ ), independent of the lipid concentration. 167

168 ATPase enzymatic assays measuring ATP hydrolysis by detecting released inorganic phosphate 169 were performed according to the protocol described earlier (14). The online web service MAXC 170 (maxchelator.stanford.edu) was used to calculate  $Mg^{2+}_{free}$  levels in the presence of given 171 concentrations of ATP at pH 7.0 at 37 °C. Apparent V<sub>max</sub> and K<sub>m</sub> were calculated by fitting the 172 curves (specific activity) as a function of  $Mg^{2+}_{free}$  using a modified uncompetitive substrate 173 inhibition model (equation 1)

$$Y = \frac{V_{max}X}{K_m + X(1 + \frac{X^n}{K_i})} \tag{1}$$

174

with X referring to the substrate concentration, Y to the enzyme activity and n to the number of uncompetitive inhibitor sites, provided by GraphPad Prism8 (www.graphpad.com).  $k_{cat}$  was estimated using the formula  $k_{cat} = V_{max}/[MgtA]$ .

The Hill coefficient for CL binding was obtained by fitting the curves using the allosteric sigmoidalequation 2

$$Y = \frac{V_{max}X^h}{K_{half}^h + X^h}$$
(2)

180

provided by GraphPad Prism8 with X referring to the substrate concentration, Y to the enzyme
activity, K<sub>half</sub> to the substrate concentration that produces half-maximal enzyme velocity and h to
the Hill slope.

184

# **185** Native Mass Spectrometry

Native mass spectrometry (native MS) was performed on purified MgtA protein, subsequently 186 187 incubated with lipids depending on the experiment. For lipid selectivity of MgtA, total E. coli lipid extract (consisting of 67 % PE, 23 % PG and 10 % CL) was used, while selected lipids, POPE and 188 189 CL, were included for competition assays. Chloroform, in which lipids were dissolved, was removed under an argon stream until the lipid film was completely dried. The lipid film was 190 191 resuspended in buffer (25 mM HEPES, pH 7.0; 200 mM KCl; 5 % Glycerol) and 6x CMC (1.02 mM) DDM for a final concentration of 1.47 mg/ml for total *E. coli* lipid (for lipid selectivity) 192 193 or 400 µM for CL and 2.4 mM for POPE (for competition assays). For the competition assays, CL and POPE were mixed in the indicated ratio. MgtA was diluted in the buffer to a final concentration 194 of 20  $\mu$ M. 25 ul MgtA (20  $\mu$ M) were mixed with 25  $\mu$ l lipid solution and incubated for 16 h at 195 4 °C in a rotator (5 rpm). 196

197 MgtA protein samples had to be desalted prior to the native MS measurement. This was 198 accomplished by washing the sample several times in a 100 kDa cut-off concentrator column, with 199 the cut-off small enough to remove most of the unbound lipids and protein-free detergents micelles 200 as well as the non-volatile salts. The protein micelle mass was expected to be around 170 kDa 201 (102.5 kDa for MgtA + ca. 65-70 kDa for the DDM micelle). MgtA was washed with freshly 202 prepared aqueous ammonium acetate (AmAc) at a concentration of 200 mM (adjusted with ammonium hydroxide to pH 7.0), including 3x CMC DDM or  $C_{12}E_8$ . 25 µL MgtA was added to 475 µL washing solution in the cut-off concentrator column. The sample was concentrated back to 25 µL (ca. 20 µM protein, without Mg<sup>2+)</sup> by spinning it at 10,000 g at 4 °C. When concentrated, the flow-through was discarded and 475 µL fresh wash solution was added. Wash steps were repeated four times, after which the sample was placed in an Eppendorf tube on ice until measurement.

- Native MS measurements were performed a Synapt G2 HD Q-TOF mass spectrometer (Waters, 209 Wilmslow, UK) with travelling wave (T-wave) ion mobility, using nano-electrospray ionization 210 (ESI) with gold-coated borosilicate capillaries prepared in-house. Instrument parameters in TOF 211 mode were chosen to preserve noncovalent interactions while ensuring optimum spectral 212 resolution: capillary voltage 2.0 kV; source temperature 30 °C; sample cone 200 V; extraction 213 cone 2.0 V; trap collision energy 150 V; transfer collision energy 150 V; trap bias 45 V. Gas 214 pressures in the instrument were: source 6.4 mbar; trap and transfer cell 0.02 mbar; IM cell 215 216  $3.7 \cdot 10^{-4}$  mbar. Settings were optimized to provide desolvated signals while maintaining important non-covalent interactions. 217
- 218

# 219 Nano Differential Scanning Fluorometry (nanoDSF)

E. coli cardiolipin, specific cardiolipin species or POPE dissolved in chloroform were dried under 220 221 an argon stream. The lipid film was resuspended in buffer (25 mM HEPES, pH 7.0; 200 mM KCl; 5 % glycerol and 21x CMC (1.9 mM) C<sub>12</sub>E<sub>8</sub>) to a final concentration of 1.3 mM. MgtA (final 222 223 concentration: 14 µM) was mixed with lipid in a 1:100 molar ratio in a final detergent concentration of 3x CMC  $C_{12}E_8$  and filled up with buffer to 40  $\mu$ L sample volume. Samples were 224 225 incubated at 4 °C for 16 h, and afterwards excess lipids were removed by centrifugation (20000 g, 15 min, 4 °C). nanoDSF was performed using Prometheus NT.48 (Nanotemper) in a temperature 226 227 range of 15 - 95 °C with a temperature gradient of 1 °C per minute. A minimum of triplicates was used for all experiments. 228

- Protein melting temperatures were determined as maxima of the first derivative of the 350 nm/330
  nm ratio determined by GraphPad Prism8 (www.graphpad.com).
- 231

# 232 In vivo localization

A plasmid carrying clover-mgtA was created by gene synthesis (Eurofin Genomics). A start codon free mgtA was connected to the 3' end of a stop codon free *clover* by a linker (GGATCCGCTGGCTCCGCTGCTGGTTCTGGCGAATTCggatatc). The sequence is a Gly and Ser rich flexible linker previously designed for GFP fusions (32).

This construct was inserted behind the ParaBAD promoter of pBAD33.1 (pBAD33.1 was a gift from 237 238 Christian Raetz; Addgene plasmid #36267; http://n2t.net/addgene:36267; RRID:Addgene 36267) (33), so that the ATG of the NdeI restriction site in pBAD33.1 is replaced by the clover start codon 239 to create pSoA280. pSoA280 was transformed in E. coli MG1655, MG1655 clsABC::FRT 240 (MG1655 Acls; PO10), and Vibrio cholerae c6706. All bacteria were grown at 37 °C in Luria-241 Bertani (LB) medium with aeration. The media were supplemented with 50 µg/mL or 5 µg/mL 242 chloramphenicol for E. coli or V. cholerae, respectively, to maintain the plasmid. Expression of 243 Clover-MgtA fusion proteins was induced by addition of 0.2 % L-arabinose (Sigma) in exponential 244 growth phase for 2 h. A Deltavision Elite (GE Healthcare) microscope equipped with Deltavision 245 CMOS camera, a climate chamber set to 37 °C, and an UPlanFLN 100x PH NA1.30 objective 246 (Olympus) was used to image bacteria. 2 µL induced bacterial culture was spotted on a 1 % agar 247 patches immediately prior to microscopy and images in the phase contrast as well as the GFP 248 channel were acquired. The software Oufti (2015 Oufti, Jacobs-Wagner Lab) was used to detect 249 bacteria in the phase contrast channel and overlay their outlines with a mesh that subdivides each 250 251 cell in segments (34). This mesh was used to quantify the fluorescent intensity in each subdivision in the GFP channel. Intensity values and cell lengths were extracted from the Oufti output files 252 253 using Matlab (R2019a, Mathworks) and used to plot the intensity profiles of cells. For better visualization, the microscopic image were adjusted using the levels tool in Photoshop CS6 (Adobe) 254 255 by setting the same black- and white-point values for all fluorescent images.

256

## 257 SDS-PAGE and immunoblot

20 ml LB supplemented with appropriate concentrations of arabinose and chloramphenicol were
inoculated 1:100 with overnight culture. Cultures were grown for 2 h at 37 °C with aeration. The
OD<sub>600</sub> of the culture was measured and similar cell amounts were harvested by centrifugation at
~20000 x g at 4 °C. Pellets were re-suspended in SDS loading buffer (50 mM Tris-HCl (pH 6.8);
2 % sodium dodecyl sulfate (SDS); 100 mM dithiothreitol (DTT); 10 % glycerol, 0.02 % NaN<sub>3</sub>)

and heated for 10 min at 90 °C. The samples were separated by SDS-polyacrylamide gel
electrophoresis (PAGE) on 10 % gels and transferred to nitrocellulose membranes (BioRad).
Clover was detected using monoclonal antibodies (anti-GFP 1:5000, Santa Cruz Biotechnologies)
and monoclonal anti mouse secondary antibodies conjugated to horseradish peroxidase (1:5000,
Bio-Rad). After incubation with ECL substrate (BioRad) chemiluminescence was recorded on a
Bio-Rad ChemiDoc MP Imaging System.

269

# 270 Flow cytometry

5 ml LB, supplemented with appropriate concentrations of arabinose and chloramphenicol, were
inoculated 1:100 with overnight culture. Cultures were grown for 2 h at 37 °C with aeration. The
OD<sub>600</sub> of the culture was measured and the same amount of cells was harvested by centrifugation
at 20000 x g at 4 °C. Pellets were resuspended in PBS and FSC, SSC and fluorescence (EX 488
nm; EM 533 +/-30 nm) was rescored on a BD Accuri C6 Plus Flow Cytometer (BD Biosciences).
PBS was used as control to distinguish bacterial cells from other particles in FSC and SSC.

278 **Results** 

### 279 Native mass spectrometry reveals selective binding of two cardiolipin molecules

Native mass spectrometry (MS) has recently emerged as a powerful tool for the investigation of dynamic and heterogeneous membrane protein structures and lipid interactions (35, 36). This approach was used in this study to characterize the stoichiometry of MgtA-lipid interations, and to investigate the selectivity of specific cardiolipin species binding preferentially to the protein.

284 Lipid interaction experiments were performed on purified protein, but full delipidation was not always achieved with the protocol (described in Material and Methods) with some samples 285 showing low levels of retained native lipids. Two types of experiments were carried out: (i) a full 286 E. coli lipid extract (Avanti Polar Lipids) was added to the purified protein in the presence of 3x 287 CMC DDM in order to examine lipid binding selectivity, and (ii) a titration with cardiolipin (CL) 288 was carried out to investigate binding affinity, using POPE as a nonspecific binding control. The 289 E. coli lipid extract, used for MgtA lipidation, contains only 9.8 % CL, while the majority of the 290 lipid content consists of PE (57.5 %), PG (15.1 %) and uncharacterized components (17.6 %) 291

(Avanti Polar Lipids). Cardiolipin used for titration experiments was extracted from *E. coli*membranes (Avanti Polar Lipids), containing a large variety of CL species with different acyl
chain composition.

Figure 1a shows two charge states (m/z peaks) in the native mass spectrum of delipidated MgtA 295 (as purified) and without addition of lipids; the corresponding full mass spectrum is shown in 296 297 Supplementary figure 1. From this, the protein mass is determined experimentally as 102,585 +/-8 Da, which matches the calculated sequence mass for MgtA, i.e. 102,665.0 Da with and 102,533.8 298 Da without the N-terminal methionine, reasonably well. Figure 1b shows the same charge states, 299 using the same experimental conditions, after incubation of purified MgtA with E. coli lipid extract 300 and subsequent detergent wash. Additional peaks are apparent now which suggests that lipid 301 binding is detected, with the apparent mass shift for the first binding event calculated from these 302 charge states as ca. 1380 +/- 200 Da, and for the second as ca. 1440 +/- 125 Da. These masses 303 broadly correspond to the molecular weight of one and two cardiolipin molecules, respectively. It 304 should be noted that other lipids present in the extract, in particular PE (719.3 Da) and PG (761.07 305 306 Da), have masses which are roughly half the mass of CL. It is therefore possible, at the limited mass resolution obtained on this instrument, that the observed lipid adduct peaks might be instead 307 due to two or four bound PE or PG molecules, respectively. However, in that case the mass spectra 308 309 would also be expected to show the 1x and 3x bound states, which is not the case. The identification 310 of the bound lipids as cardiolipin species is also further corroborated by the following data.

311

312 We additionally performed a competition experiment in which binding of cardiolipin was studied in the presence of another lipid, POPE, added in large excess (Figure 2 and Supplementary figure 313 314 2). POPE is a major lipid component present in the *E. coli* membrane and, therefore, was used as a negative control representing the native E. coli lipid environment. Additionally, POPE was 315 316 included to evaluate if hydrophobic exposed patches on the protein show any nonspecific lipid interactions in our setting. Lipid binding to MgtA was studied in the absence and presence of CL 317 with increasing concentrations up to 30 µM, and correspondingly decreasing concentrations of 318 POPE from 1000 to 970  $\mu$ M, respectively. This leaves the total lipid concentration constant at 319 1000 µM, which corresponds to a 1:100 molar ratio between MgtA and lipid. In this experiment 320 samples were obtained from a different protein batch, and even the control sample (first two panels 321 in Figure 2a, Purified MgtA after lipid removal, and 1000 µM POPE) revealed already a low 322

amount of bound cardiolipin, which was most likely retained during the purification process in this 323 case. These co-purified cardiolipins were not observed in the delipidated sample of the previous 324 experiment (Figure 1), presumably due to differences in delipidation efficiency. Nevertheless, the 325 326 addition of increasing amounts of CL showed a corresponding increase in the relative intensity of adduct peaks which correlate to those seen in Figure 1, with the relative intensity of the 1x bound 327 state in particular increasing slightly from ca. 25% to ca. 30%, for both the 25+ and 24+ charge 328 states. Interestingly the 2x lipid-bound peak intensity seems to not change significantly within the 329 330 limited concentration range studied here (Figure 2b and Supplementary figure 2). While the data demonstrate qualitatively that the binding of the first CL lipid occurs with higher affinity and 331 332 increases with increasing CL concentration, the second lipid binding event is of lower affinity and can only be seen clearly above 20 µM CL (i.e. at a 2:1 ratio to the protein). 333

These results support that MgtA selectively binds up to two cardiolipin molecules, and not any 334 other lipids present in the native E. coli membrane. They also show that the first binding event 335 happens with higher affinity, and the mass of this cardiolipin species appears to be somewhat lower 336 than that of the second one binding, although the achievable mass resolution and peak shapes do 337 ultimately not allow to make firm conclusions. With a more powerful spectrometer, the masses of 338 the individual lipids bound could be determined more accurately, and the lipid titration series 339 presented here could also be extended to higher CL : POPE ratios in order to quantitatively 340 341 determine binding affinities and possible cooperative effects.

342

## 343 No specificity of cardiolipin binding to selected conformational states of MgtA was detected

As a P-type ATPase, MgtA transports Mg<sup>2+</sup> according to the catalytic cycle described by the Post-344 Albers-scheme (35). During the catalytic cycle MgtA likely alternates between different 345 346 conformational states as described in the introduction for the Na<sup>+</sup>/K<sup>+</sup>-ATPase. The two major conformational states are termed E1 and E2, which exhibit large structural differences and 347 348 different affinities to the transported ion and counter ion (35) (Supplementary figure 3A). To investigate whether MgtA has a higher affinity for cardiolipin in one specific conformational state, 349 350 which would indicate a role of cardiolipin for a specific transport step, the protein was incubated with inhibitors AlF<sub>4</sub> and ADP-AlF<sub>4</sub>. These inhibitors essentially mimic phosphate and ATP at the 351

binding sites on the enzyme and lock MgtA in the two different conformational states, E1 and E2, respectively. After samples were incubated with inhibitors, CL extracted from the *E. coli* membrane (*E. coli* CL) was added to MgtA as previously described. Native MS spectra showed binding of cardiolipin in all samples (Supplementary figure 3B). This indicates that there is no, or only a very small, preference of cardiolipin to a selected conformational state of MgtA. In summary, we find that MgtA contains two specific binding sites for lipids, and selectively binds cardiolipin among other major lipids present in *E. coli* membranes.

359

# 360 The composition of the hydrophobic cardiolipin tail plays a major role in MgtA activation

361 Cardiolipins are anionic lipids with a unique dimeric structure, with two phosphate ester groups 362 and four acyl chains (Figure 3A). While the head group defines the lipid class, large molecular diversity is present through variations in the length and saturation degree of the fatty acid chains 363 (Figure 3A). Previously, we have shown that cardiolipin is required for MgtA activation (11). 364 365 However, all enzymatic assays were performed in the presence of cardiolipin extracted from E. coli membranes consisting of a mixture of different cardiolipin species (11). To investigate 366 whether specific cardiolipins stimulate MgtA activity, cardiolipin species with varying acyl chain 367 length and saturation were used in the ATPase assay. In E. coli, a large variety of cardiolipin 368 species have been detected with over 50 different types present ranging in acyl carbon chain length 369 from 12 to 19 containing different acyl chain combinations (30). Commercially only cardiolipins 370 with four identical acyl chains are available at Avanti Polar Lipids, but these do not mimic the 371 372 most common natural cardiolipin species in the *E. coli* membrane which contain mixed acyl chains. However, we used the CL species consisting of palmitic acid (16:0), palmitoleic acid (16:1) 373 and oleic acid (18:1) as the most common acyl chains present in E. coli cardiolipin. Large 374 differences in MgtA ATPase activity levels were detected in the presence of these different types 375 of cardiolipin molecules (Figure 3B). For instance, activity was reduced to approximately 50 % in 376 the presence of CL 18:1 and to barely 10 % in the presence of CL 14:1 in comparison to E. coli 377 378 CL. In the presence of any single cardiolipin species, MgtA activity never reached the same activation level as in the presence of E. coli extracted cardiolipin. 379

Interestingly, an equimolar combination of two species, CL 18:1 and CL 16:0, exhibited higher
 MgtA ATPase activity levels relative to *E. coli* CL at the same protein:lipid ratio. It is noteworthy

that although MgtA exhibits lower activity in the presence of CL 18:1 alone, CL 16:0 by itself does not seem to activate MgtA at all. This corresponds to previous results comparing MgtA activation in the presence of cardiolipin extracted from either *E. coli* or bovine heart membranes, which showed a decreased activity in the latter (14). While cardiolipins share the same head group, *E. coli* cardiolipin has a diverse fatty acid composition with 16:0-18:1 fatty acids at positions 1 and 2 of sn-glycerol 3-phosphate as the most dominant species (35 %), whereas bovine heart CLs contain almost entirely linoleate chains (18:1, 18:2, 18:3) and no stearic chains (16:0) (14).

As activity studies shown in figure 3B revealed the importance of two different cardiolipin species, 389 CL 18:1 and CL 16:0 for MgtA activity, we hypothesized the specific interactions of these two 390 lipid species with individual binding sites in MgtA. ATPase activity in the presence of selected 391 cardiolipin species followed a sigmoidal shaped curve, which indicates cooperative binding at 392 more than one binding site (Figure 3B). Cooperativity in protein-ligand interaction refers to 393 increased affinity for additional ligands upon binding of the first ligand in the case of positive 394 cooperativity, or decreased ligand affinity of the protein for additional ligands for negative 395 cooperativity (37). Cooperativity of ligand binding can be quantified by the Hill coefficient  $(n_H)$ , 396 which measures the sigmoidal character of the activation curve (38). The reference state is a 397 hyperbolic curve with a single monomeric binding site, characterized by n<sub>H</sub>=1. Therefore, binding 398 curves with  $n_{\rm H}>1$  are a direct measurement for cooperativity. Although,  $n_{\rm H}$  is not a direct 399 400 measurement of ligand binding sites, it is a useful index for the theoretical upper limit of the number of binding sites (38). Only recently, the first case of allosteric modulation and positive 401 cooperative lipid binding has been detected for lipid-lipid interaction on E. coli ammonium 402 channel AmtB (39). Fitting of the cardiolipin-dependent activation curve of MgtA to a sigmoidal 403 404 allosteric model revealed positive cooperative binding of cardiolipin (Figure 3B; Table 1). In our analysis only least squares fits (R-square) of 0.95 or above were considered; i.e. only activation 405 curves in the presence of E. coli CL and the CL 18:1 / CL 16:0 mixture in equimolar ratio. MgtA 406 activation curves in the presence of CL 14:1, CL 18:1, CL 16:1 and CL 16:0 were excluded based 407 408 on the poorer fit. Plotting of MgtA activation curves in the presence of E. coli CL, or equimolar amounts of CL 18:1 and CL 16:0 against an allosteric sigmoidal fit, showed a Hill coefficient of 409 410 2.4 - 3. This supports the hypothesis of more than one cardiolipin binding site with cooperative binding of multiple CL species. 411

#### 412

#### 413 Cardiolipin 16:0 is required for optimal MgtA activation

To better understand the effect of CL 18:1 and 16:0 and their combination on MgtA activation, 414 ATPase activity profiles in the presence of these CL species with increasing Mg<sup>2+</sup> concentrations 415 were performed. The total lipid concentration was kept constant at 12 mM in all experiments. 416 Results confirmed previous observations that equimolar amounts of both lipid species lead to 417 maximum activation (Figure 4A), mimicking the activity levels achieved previously in the 418 419 presence of native E. coli CL(14). In the presence of CL 18:1 alone, MgtA exhibited lower levels of activity, while no measurable ATPase activity was observed in the presence of CL 16:0 alone 420 (Figure 4A). To assess whether the molar ratio between CL 18:1 and CL 16:0 affects activation 421 levels, ATPase assays were performed with molar ratios of 3:1 and 1:3, with either CL 18:1 or CL 422 423 16:0 as the major lipid. Additionally a molar ratio of 1:1 between CL 18:1 and CL 16:0 (as above) was included again. Maximum enzyme activity was obtained only when 50 % or more of the lipid 424 content consisted of CL 16:0. Enzymatic assays with higher percentages of CL 18:1, e.g. in the 425 426 3:1 ratio, resembled the activity levels obtained in the presence of CL 18:1 alone (Figure 4B).

To verify whether only either CL 18:1 or CL 16:0, mixed with another cardiolipin species, were 427 needed for optimal activation, ATPase assays in the presence of CL 18:1 or CL 16:0 mixed in a 428 1:1 molar ratio with CL 16:1 were performed (Figure 4C). Activation levels did not reach their 429 maximum for samples containing CL 16:1 alone or in either combination with CL 16:0 or 18:1. 430 This highlights the importance of both species, CL 18:1 and CL 16:0, for MgtA activation. It 431 should be noted though that only activating effects according to cardiolipin species were 432 investigated, whereas possible variations in binding affinities between cardiolipin species were not 433 assessed. As all experiments were however performed in large excess of CL at the same total 434 concentration of 12 mM, we assume that if CL 16:0 would exhibit a much higher binding affinity 435 than CL 18:1, it would occupy both binding sites, even in a sample with the majority of lipid 436 represented by CL 18:1, and therefore MgtA would exhibit similar activity levels as in samples 437 438 containing CL 18:1 and CL 16:0 in a 3:1 and 1:1 molar ratio.

439 Calculated  $V_{max}$ ,  $K_m$  and  $k_{cat}$  in the presence of different cardiolipin species are given in Table 2. 440 Interestingly, higher  $V_{max}$  and  $k_{cat}$  values were observed in the presence of CL 18:1 and CL 16:0 441 in equimolar amounts ( $V_{max}$ : 19.3 µmol min<sup>-1</sup> mg<sup>-1</sup>,  $k_{cat}$ : 32.8 s<sup>-1</sup>) or in excess of CL 16:0 ( $V_{max}$ : 442 24.6  $\mu$ mol min<sup>-1</sup> mg<sup>-1</sup>, k<sub>cat</sub>: 41.8 s<sup>-1</sup>) in comparison to previously obtained kinetic parameters in the 443 presence of *E. coli* CL (V<sub>max</sub>: 13.7  $\mu$ mol min<sup>-1</sup> mg<sup>-1</sup>, k<sub>cat</sub>: 23 s<sup>-1</sup>)(14). However, K<sub>m</sub> values also 444 increased for both samples (CL 18:1/16:0 1:1, 67  $\mu$ M; CL 18:1/16:0 3:1, 120.9  $\mu$ M) in comparison 445 to *E. coli* CL (10  $\mu$ M), indicating decreased affinity for Mg<sup>2+</sup><sub>free</sub>. It should be noted that K<sub>m</sub> 446 increased for all samples containing CL 16:0 or CL 16:1. Overall, results indicate an intricate 447 interplay of lipid species CL 18:1 and CL 16:0 for maximum activity of MgtA.

448

## 449 MgtA reveals increased thermal stability in the presence of specific cardiolipin species

To determine the effect of cardiolipin on MgtA thermal stability, nano differential scanning 450 fluorimetry (nanoDSF) was performed in the presence of E. coli CL or POPE in a 1:100 protein-451 lipid molar ratio, matching native MS experiments (Figure 5A). Melting temperatures revealed an 452 increase of ca. 7 °C in the presence of E. coli CL (T<sub>m</sub>: 49.7 °C) relative to purified MgtA without 453 lipids. The presence of POPE (T<sub>m</sub>: 42.2 °C) did not show any upwards temperature shift and 454 455 resembled the control of MgtA without lipids (T<sub>m</sub>: 41.8 °C) (Table 3). This indicates that 456 cardiolipin specifically stabilizes MgtA, while the presence of any other lipid environment, represented by POPE as a major E. coli lipid component, does not lead to significant protein 457 stabilization. To analyze whether specific cardiolipin species affect MgtA stability differently. 458 nanoDSF was performed with CL 18:1, CL 16:0 and mixtures of both in different ratios (Figure 459 5B and C). In the presence of CL 18:1, the melting temperature of MgtA was significantly 460 increased by ca. 10 °C, while no thermal stabilization was detectable in the presence of CL 16:0 461 alone (Figure 5B). Melting curves in the presence of both, CL 18:1 and CL 16:0, revealed increased 462 stabilization when the higher proportion of CL 18:1 was present in the mixture (Figure 5C). While 463 a 1:3 mixture, with CL 16:0 as the major component, or 1:1 CL 18:1/16:0 showed melting 464 temperatures of 42.5 and 43.2 °C, respectively, in a 3:1 mixture with CL 18:1 as the major 465 component, a melting temperature of 47 °C was determined. This reflects previous results from 466 the enzymatic studies, which revealed activation in the presence of CL 18:1 and CL 16:0, while in 467 468 the presence of CL16:0 alone no activity was detectable. Interestingly, thermal stabilization of MgtA is detectable in the presence of CL 18:1 alone, while this single cardiolipin species was not 469 enough for maximal enzymatic activation. 470

As a control, thermal stabilization of MgtA in the presence of only the inhibitors, AlF<sub>4</sub><sup>-</sup> and ADP-471 AlF<sub>4</sub>, was investigated, which revealed no effect (Figure 5D). It should be mentioned that melting 472 curves in the presence of E. coli CL, CL 18:1 and CL 18:1/16:0 mix showed a flattened curve in 473 474 comparison to the control without lipids. MgtA was incubated with the indicated lipids in excess overnight (1:100 molar ratio between MgtA and lipid) and excess lipid was removed prior to the 475 experiment by centrifugation. In the case of E. coli CL, CL 18:1 and CL 18:1/16:0, some of the 476 protein was removed during the centrifugation step, likely pulled down together with the excess 477 478 lipid. This affected the final protein concentration in the experiment. The different curve shapes might therefore be due to lower protein concentrations or due to the presence of lipid vesicles 479 forming around the protein, which could interfere with the absorbance measured at 350 and 330 480 nm upon unfolding. Interestingly, the removal of protein by centrifugation of excess lipids already 481 indicates binding of MgtA to the E. coli CL and CL 18:1. In summary, MgtA is selectively 482 stabilized by a specific cardiolipin species, CL 18:1. 483

484

## 485 Cardiolipin is not sole signal for localization of MgtA to cell poles

Previously, we showed co-localization of a fluorescently-tagged MgtA to E. coli C43(DE3) cell 486 poles (14). As C43(DE3) is an expression strain with genetic modifications in comparison to wild 487 type E. coli (40), we verified here that fluorescently-tagged MgtA under the arabinose promoter 488 (Figure 6A) also localizes to the cell poles in wild-type strain E. coli MG1655 (Figure 6B). 489 Additionally, we could detect localization of MgtA to cell poles in cardiolipin-deficient strain 490 491 MG1655 $\Delta cls$  that contains a deletion of all three cardiolipin synthases (Figure 6B). To test whether the cardiolipin functions as a localization signal and the presence of cardiolipin is sufficient for 492 MgtA localization to the cell poles, its localization was analysed in Vibrio cholerae. V. cholerae 493 is a Gram-negative bacterium with a similar membrane composition as E. coli (41). However, it 494 does not encode an endogenous MgtA homologue. Fluorescently-tagged MgtA did not localize to 495 V. cholerae cell poles but distributed equally along the entire cell membrane (Figure 6C,D). To 496 497 verify that the fluorescent signal is constituted by Clover-MgtA, a western blot directed against GFP investigating the expression of Clover-MgtA in E. coli and V. cholerae was performed. This 498 control revealed that the fluorescence mainly derives from full-length Clover-MgtA in both 499 bacterial strains, and degradation products or free GFP do not contribute to the fluorescent signal 500

(Supplementary figure 4). In summary, these results indicate that MgtA is localized to bacterialcell poles through an unknown mechanism, which is, at least not solely, dependent on CL.

503

# 504 **Discussion**

Recent research has shown the importance of lipids for membrane protein function, affecting protein activity, stability, localization and oligomerization (42). However, one must distinguish effects through site-specific lipid-protein interactions in comparison to effects mediated through chemical and physical properties of the bilayer, e.g. membrane fluidity, tension and thickness or interfacial curvature (42). Lipid-protein interactions have long focused on different lipid classes, varying in their hydrophobic head group. Only recently, the high selectivity of proteins binding only to specific lipids with defined hydrophobic fatty acid tails has been detected.

In our work, we investigated lipid-membrane protein interactions of bacterial magnesium 512 transporter MgtA and its highly specific binding of cardiolipin. We identified high specificity of 513 MgtA for two cardiolipin species, CL 18:1 and CL 16:0. They are essential for enzymatic activity 514 and thermal stabilization of MgtA. Further, native MS revealed two specific cardiolipin binding 515 sites. These results highlight for the first time positive cooperative binding of two different species 516 517 of the same lipid type leading to an activating effect on protein activity. However, as solely CL 18:1 mediated MgtA thermal stabilization, differences in the interaction between MgtA and both 518 CL species and, therefore, potentially different roles of both lipid species for MgtA function can 519 be hypothesized. As native MS revealed two cardiolipin binding sites and CL 18:1 has been shown 520 to affect thermal stability, one can hypothesize that both binding sites are preferentially occupied 521 by CL 18:1 leading to MgtA stabilization (Figure 7). CL 16:0 plays an essential role during MgtA 522 523 ATPase activity in combination with CL 18:1. As activity assays are performed in large excess of cardiolipin, CL 16:0 might not interact directly with MgtA, but play an unknown role in the 524 protein-lipid bilayer environment. However, this is purely speculative and the interaction between 525 MgtA and both CL species requires further investigation. 526

527 Interestingly, *E. coli* membranes contain a large variety of cardiolipins with the most abundant 528 species containing acyl chains 18:1, 16:1 and 16:0 (30). We highlight the importance of the 529 combination of specific species CL 18:1 and CL 16:0 for MgtA activity, as their combination with

another cardiolipin type, CL 16:1, exhibited severely decreased MgtA activity levels. Although 530 higher V<sub>max</sub> and k<sub>cat</sub> was determined in the presence of cardiolipin species CL 18:1 and CL 16:0 in 531 equimolar amounts in comparison to E. coli CL, Km values also increased. This indicates lower 532 affinity of MgtA to Mg<sup>2+</sup>free in the presence of the specific cardiolipin species. However, higher 533 K<sub>m</sub> values were always detected in the presence of CL 16:0 or CL 16:1. The more CL species with 534 acyl chain length of 16 were present in the lipid mixture, the higher K<sub>m</sub> values were determined. 535 Meanwhile, activity studies performed in the presence of CL 18:1 alone showed a K<sub>m</sub> of 12 µM, 536 similar to the K<sub>m</sub> determined in the presence of *E. coli* CL (10 µM). As an anionic lipid cardiolipin 537 binds Mg<sup>2+</sup> and one might speculate that different cardiolipin species vary in their binding 538 properties to Mg<sup>2+</sup>. CL has a propensity to form non-bilayer structures, proposed to form dynamic 539 protein-lipid membrane domains (43). The phase behavior of CL has been shown to be dependent 540 on divalent cations, including  $Mg^{2+}(44)$ , and further acyl chain length and composition can affect 541 lipid phase behavior (45). Therefore, it can be speculated that tested CL species exhibit small 542 differences in their phase behavior, leading to variations in their interaction with Mg<sup>2+</sup>. 543

Although we have shown the importance of CL 18:1 and CL 16:0 for MgtA activity, the interaction 544 between MgtA and these lipids is not completely understood yet. The molecular shape of acyl 545 chains affect lipid packing and, therefore, membrane bilayer properties (46). Monounsaturated 546 lipids such as CL 18:1 exhibit a kinked shape and tend to form fluid bilayers at physiological 547 548 temperatures. Therefore, they exhibit higher flexibility and fluidity in comparison to lipids with saturated acyl chains (46). P-type ATPases undergo large conformational changes during their 549 catalytic cycle, requiring flexibility regarding their lipid environment (47). Other members of the 550 P-type ATPase family, including bacterial Cu<sup>2+</sup> transporter CopA or heavy metal transporter ZntA, 551 552 have shown higher activity levels upon increased lipid disorder and fluidity in the presence of unsaturated lipids (48-50). Additionally, MgtA exhibited activation in the presence of CL extracted 553 from bovine heart membranes which contain mainly CL 18:2 (29). In summary, a preference of 554 MgtA for CL 18:1 as an abundant monounsaturated lipid of the E. coli membrane corresponds to 555 556 lipid interactions detected for other P-type ATPases.

In comparison, the interplay of CL16:0 and MgtA is more elusive and needs further investigation.
As a lipid with saturated acyl chains, CL 16:0 exhibits different properties in comparison to
monounsaturated lipids such as CL 18:1. Lipids with saturated acyl chains pack with higher

densities and tend to form non-fluid gel phases (46), so one might speculate that CL 16:0 allows 560 close packing of MgtA in lipid-detergent vesicles. In vivo the lipid bilayer exerts lateral pressure 561 that supports structural integrity. However, during the purification process, the detergent 562 563 solubilization decreases lateral pressure and likely increases conformational freedom of the protein (51). Enzymatic assays were not performed in liposomes, but instead in detergent-lipid micelles. 564 565 Therefore, tighter packing of CL 16:0 might be beneficial for in vitro MgtA activation, but its function in vivo needs further investigation. Unfortunately, no additional saturated cardiolipin 566 567 species could be included to investigate the effect of saturated lipids in MgtA-mediated ion transport, as only a limited selection of cardiolipins were commercially available at the time. 568

Further, cooperative binding of cardiolipin to MgtA was revealed, and the determined Hill 569 coefficient of 2.4-3 in the presence of equimolar concentrations of CL 18:1 and CL 16:0 (Table 1) 570 corresponds to the presence of two cardiolipin bining sites revealed by native MS. Allosteric 571 modulation of protein-protein interactions by lipids has been previously described (39), with the 572 E. coli ammonium channel AmtB binding two different lipid types, PE and CL (52). Additionally, 573 it was shown that individual lipid binding affected allosteric interaction between AmtB and a 574 soluble regulatory protein, GlnK. The allosteric modulation was highly selective regarding lipid 575 head group and acyl chain composition. In both cases, it was proposed that binding of certain lipids 576 stabilizes a specific conformation of AmtB which exhibits a higher binding affinity to PE or GlnK, 577 578 respectively. One can speculate a similar mechanism for positive allosteric modulation of MgtA-CL binding as described for AmtB, as CL has been shown to stabilize MgtA. CL interaction at a 579 580 specific binding site potentially stabilizes MgtA in a conformational state which exhibits increased affinity for the second CL molecule. 581

Interestingly, other members of the P-type ATPase family have shown high specificity towards 582 lipids with a defined acyl chain composition. Their high lipid specificity has been linked to their 583 requirement of high flexibility in the lipid bilayer due to the large conformational changes during 584 the catalytic cycle (47). SERCA adapts to membranes of different hydrophobic thickness by 585 inducing local deformations and a mismatch between hydrophobic thickness of the bilayer and its 586 membrane embedded part for optimal flexibility (53) is required, with 1-Palmitoyl-2-oleoyl-sn-587 glycero-3-phosphocholine (16:0-18:1-PC) as the optimal lipid environment for SERCA. Shorter 588 PC species (di-14:1-PC) were shown to surround the protein like a straitjacket, which prevented 589

rotational and translational movement of the transmembrane helices (53). MgtA also exhibited 590 591 decreased activation in the presence of the shorter cardiolipin species CL 14:1, likely induced through decreased flexibility required for conformational changes. It should be noted that, 592 593 although we propose CL 16:0 plays a more indirect role for MgtA function in the protein-lipid bilayer environment, it cannot be excluded that the two identified cardiolipin binding sites are 594 595 occupied with one from each cardiolipin species, one CL 18:1 and one CL 16:0. Small mass differences were identified between the first and second bound cardiolipin in the native MS 596 597 spectrum (Figure 1), with the second bound CL revealing a slightly higher mass (ca. 1440 +/- 125 Da) in comparison to the first one (1380  $\pm$  200 Da). The calculated masses for CL 18:1 which 598 599 has four identical oleic acid chains, and CL 16:0 with four palmitic acid tails, are 1501.0 Da and 1396.9 Da, respectively, making it tempting to suggest that the first binding site is occupied by CL 600 601 16:0, while CL 18:1 binds preferentially to the second site. One could speculate that each cardiolipin species could match the hydrophobic thickness of a specific conformational state of 602 MgtA during the catalytic cycle, therefore exhibiting different binding affinities in different states. 603 However native MS did not reveal changes in cardiolipin binding of MgtA locked in different 604 conformations in the presence of inhibitors (Supplementary Figure 3). The resolution of the native 605 606 MS experiments was too low to distinctively distinguish different cardiolipin species. Therefore, additional native MS studies with higher resolution could allow identification of specific 607 cardiolipin species bound to the two sites on MgtA. Further, native MS of lipid titration of CL 18:1 608 in the presence CL of 16:0, and vice versa, would allow determination of binding affinities of each 609 610 cardiolipin species and could shed further light on the cooperative interaction between the lipids and the enzyme. 611

612 Other P-type ATPases also revealed site-specific lipid binding sites. For Na<sup>+</sup>/K<sup>+</sup>-ATPase, two distinct lipid binding sites have been detected (10). Interestingly, distinct properties were assigned 613 614 for both sites. Lipid binding site A was connected to stabilization of the pump while lipid binding site B did not affect stabilization, but stimulated activity. Both effects are independent. We have 615 616 no indication of distinct functions associated with the identified two cardiolipin binding sites on MgtA. As removal of cardiolipin strongly affected MgtA stability making native MS spectrum 617 acquisition difficult, a role of both lipid sites for MgtA stability is likely. It should be noted that 618 native MS was performed in DDM, whereas other studies replaced DDM with UDM which has a 619 620 higher critical micelle concentration, and therefore allows acquisition of the spectra at lower activation energy (10). This might also allow obtaining spectra of less stable MgtA mutants. Although native MS measurements revealed binding of two cardiolipin molecules, no indication of the localization of the lipid binding site on MgtA could be obtained. In future work, structural characterization of lipid-protein interaction by *in silico* or experimental methods, such as X-ray crystallography or cryo-EM, should be conducted to provide answers to the interaction sites and role of the lipids for MgtA function.

627 We also investigated co-localization of MgtA with cardiolipin at bacterial cell poles. Lipids have been linked to membrane protein localization, e.g. polar localization of osmosensory transporter 628 ProP correlates with proportion and localization of cardiolipin and is less pronounced in *cls*<sup>-</sup> cells 629 (28). Therefore, cardiolipin has been proposed to promote ProP localization (28). Previous studies 630 also showed co-localization of MgtA to cell poles with cardiolipin, proposing a promoting role of 631 cardiolipin for MgtA localization (14). Our work confirmed polar localization of MgtA in E. coli 632 wild-type strain MG1655. MgtA also localized at the cells poles in a cardiolipin synthase knockout 633 strain, E. coli MG1655\[Lambda clsABC. In this mutant strain no CL was detectable independent of the 634 bacterial growth phase (55). However, full depletion of CL by genetic approaches induced 635 636 increased PG concentrations at the cell poles. As PG has previously revealed activation of MgtA, although to a lesser extent than CL, MgtA could exhibit promiscuously a relatively high affinity 637 for PG and display a pattern of cellular localization that is not influenced by depletion of CL (56). 638 Therefore, no conclusion on the importance of cardiolipin for MgtA localization in E. coli can be 639 640 assumed. Interestingly, in V. cholerae, which contains a similar membrane composition as E. coli, but no MgtA homologue, MgtA did not exhibit polar localization, but localized over the entire cell 641 membrane. This highlights that cardiolipin does not function as the sole signal and promoter of 642 polar MgtA localization. Further research must be performed to identify the mechanism for MgtA 643 localization. A previously predicted signal peptide at the N-terminus, enriched in positively 644 charged residues and hypothesized to interact with cardiolipin, was shown not to be involved in 645 646 MgtA localization at the cell poles (14), but recent results imply a role of the N-terminus as a lipid anchor for MgtA (57). 647

In summary, our results reveal a complex interplay between MgtA and selective cardiolipin species, affecting MgtA activity, stability and localization. Insights obtained here contribute to our understanding of lipid specificity and lipid interaction of membrane proteins in general.

# 651

# 652 Acknowledgment

- 653 We would like to thank John Crook and the Weibel lab for the donation of the *E. coli* strains
- 654 MG1655 and MG1655*Acls*.

655

# 656 **Declaration of Interests**

657 The authors declare no Competing Financial or Non-Financial Interests.

658

# 659 **References**

| 660        | 1.  | Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578-                                                                |
|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 661        |     | 580.                                                                                                                                          |
| 662<br>663 | 2.  | van Meer G, Voelker DR, & Feigenson GW (2008) Membrane lipids: where they are and how they behave. <i>Nat Rev Mol Cell Biol</i> 9(2):112-124. |
| 664<br>665 | 3.  | Corradi V, et al. (2019) Emerging Diversity in Lipid-Protein Interactions. Chem Rev 119(9):5775-5848.                                         |
| 666        | 4.  | Reading E. Laganowsky A. Allison TM. & Robinson CV (2014) Membrane Proteins                                                                   |
| 667        |     | Bind Lipids Selectively To Modulate Their Structure And Function. <i>Protein Science</i>                                                      |
| 668        |     | 23:231-231.                                                                                                                                   |
| 669        | 5.  | Laganowsky A, et al. (2014) Membrane proteins bind lipids selectively to modulate their                                                       |
| 670        |     | structure and function. Nature 510(7503):172-175.                                                                                             |
| 671        | 6.  | Mangialavori IC, et al. (2012) Autoinhibition mechanism of the plasma membrane                                                                |
| 672        |     | calcium pump isoforms 2 and 4 studied through lipid-protein interaction. <i>Biochem J</i>                                                     |
| 673        |     | 443(1):125-131.                                                                                                                               |
| 674        | 7.  | Cornelius F, Habeck M, Kanai R, Toyoshima C, & Karlish SJ (2015) General and                                                                  |
| 675        |     | specific lipid-protein interactions in Na,K-ATPase. Biochim Biophys Acta 1848(9):1729-                                                        |
| 676        |     | 1743.                                                                                                                                         |
| 677        | 8.  | Cornelius F (2001) Modulation of Na,K-ATPase and Na-ATPase activity by                                                                        |
| 678        |     | phospholipids and cholesterol. I. Steady-state kinetics. <i>Biochemistry-Us</i> 40(30):8842-                                                  |
| 679        |     | 8851.                                                                                                                                         |
| 680        | 9.  | Habeck M, et al. (2015) Stimulation, inhibition, or stabilization of Na,K-ATPase caused                                                       |
| 681        |     | by specific lipid interactions at distinct sites. J Biol Chem 290(8):4829-4842.                                                               |
| 682        | 10. | Habeck M, Kapri-Pardes E, Sharon M, & Karlish SJ (2017) Specific phospholipid                                                                 |
| 683        |     | binding to Na,K-ATPase at two distinct sites. Proc Natl Acad Sci USA 114(11):2904-                                                            |
| 684        |     | 2909.                                                                                                                                         |
| 685        | 11. | Contreras FX, Ernst AM, Wieland F, & Brugger B (2011) Specificity of intramembrane                                                            |
| 686        |     | protein-lipid interactions. Cold Spring Harb Perspect Biol 3(6).                                                                              |
|            |     |                                                                                                                                               |

| 687 | 12. | Hossain KR & Clarke RJ (2019) General and specific interactions of the phospholipid            |
|-----|-----|------------------------------------------------------------------------------------------------|
| 688 | 10  | bilayer with P-type A l Pases. Biophys Rev 11(3):353-364.                                      |
| 689 | 13. | Pohland AC & Schneider D (2019) Mg2+ homeostasis and transport in cyanobacteria - at           |
| 690 | 1.4 | the crossroads of bacterial and chloroplast Mg2+ import. <i>Biol Chem</i> 400(10):1289-1301.   |
| 691 | 14. | Subramani S, Perdreau-Dahl H, & Morth JP (2016) The magnesium transporter A is                 |
| 692 |     | activated by cardiolipin and is highly sensitive to free magnesium in vitro. <i>Elife</i> 5.   |
| 693 | 15. | Groisman EA, et al. (2013) Bacterial Mg2+ homeostasis, transport, and virulence. Annu          |
| 694 | 1.6 | <i>Rev Genet</i> 47:625-646.                                                                   |
| 695 | 16. | Bourret IJ, Liu L, Shaw JA, Husain M, & Vazquez-Torres A (2017) Magnesium                      |
| 696 | 1.5 | homeostasis protects Salmonella against nitrooxidative stress. Sci Rep 7(1):15083.             |
| 697 | 17. | Cunrath O & Bumann D (2019) Host resistance factor SLC11A1 restricts Salmonella                |
| 698 | 10  | growth through magnesium deprivation. <i>Science</i> 366(6468):995-+.                          |
| 699 | 18. | Apell HJ (2004) How do P-type ATPases transport ions? <i>Bioelectrochemistry</i> 63(1-         |
| 700 | 10  | 2):149-156.                                                                                    |
| 701 | 19. | Bublitz M, Poulsen H, Morth JP, & Nissen P (2010) In and out of the cation pumps: P-           |
| 702 | • • | Type ATPase structure revisited. <i>Current Opinion in Structural Biology</i> 20(4):431-439.   |
| 703 | 20. | Morth JP, <i>et al.</i> (2011) A structural overview of the plasma membrane Na+,K+-ATPase      |
| 704 |     | and H+-ATPase ion pumps. <i>Nat Rev Mol Cell Biol</i> 12(1):60-70.                             |
| 705 | 21. | Ford DC, Joshua GWP, Wren BW, & Oyston PCF (2014) The importance of the                        |
| 706 |     | magnesium transporter MgtB for virulence of Yersinia pseudotuberculosis and Yersinia           |
| 707 |     | pestis. Microbiology (Reading) 160(Pt 12):2/10-2/17.                                           |
| 708 | 22. | Park M, Nam D, Kweon DH, & Shin D (2018) ATP reduction by MgtC and Mg(2+)                      |
| 709 |     | homeostasis by MgtA and MgtB enables Salmonella to accumulate RpoS upon low                    |
| 710 |     | cytoplasmic Mg(2+) stress. <i>Mol Microbiol</i> 110(2):283-295.                                |
| 711 | 23. | Lin Z, et al. (2017) Virulence and Stress Responses of Shigella flexneri Regulated by          |
| 712 |     | PhoP/PhoQ. Front Microbiol 8:2689.                                                             |
| 713 | 24. | Chadani Y, et al. (2017) Intrinsic Ribosome Destabilization Underlies Translation and          |
| 714 | ~ ~ | Provides an Organism with a Strategy of Environmental Sensing. <i>Mol Cell</i> 68(3):528-+.    |
| 715 | 25. | Park SY, Cromie MJ, Lee EJ, & Groisman EA (2010) A bacterial mRNA leader that                  |
| 716 |     | employs different mechanisms to sense disparate intracellular signals. <i>Cell</i> 142(5):/3/- |
| 717 | •   |                                                                                                |
| 718 | 26. | Gall AR, et al. (2016) Mg2+ regulates transcription of mgtA in Salmonella Typhimurium          |
| 719 |     | via translation of proline codons during synthesis of the MgtL peptide. <i>Proc Natl Acad</i>  |
| 720 |     | Sci U S A 113(52):15096-15101.                                                                 |
| 721 | 27. | Moncrief MB & Maguire ME (1999) Magnesium transport in prokaryotes. <i>J Biol Inorg</i>        |
| 722 | •   | Chem 4(5):523-527.                                                                             |
| 723 | 28. | Romantsov T, <i>et al.</i> (2007) Cardiolipin promotes polar localization of osmosensory       |
| 724 | •   | transporter ProP in Escherichia coli. <i>Mol Microbiol</i> 64(6):1455-1465.                    |
| 725 | 29. | Schlame M (2008) Cardiolipin synthesis for the assembly of bacterial and mitochondrial         |
| 726 | • • | membranes. J Lipid Res $49(8)$ :1607-1620.                                                     |
| 727 | 30. | Garrett TA, O'Neill AC, & Hopson ML (2012) Quantification of cardiolipin molecular             |
| 728 |     | species in Escherichia coli lipid extracts using liquid chromatography/electrospray            |
| 729 | 2.1 | ionization mass spectrometry. Rapid Commun Mass Spectrom 26(19):2267-2274.                     |
| 730 | 31. | Subramani S & Morth JP (2016) Heterologous Expression and Purification of the                  |
| 731 |     | Magnesium Transporter A (MgtA) in Escherichia coli. <i>Bio-protocol</i> 6(22):e2001.           |

| 732 | 32. | Waldo GS, Standish BM, Berendzen J, & Terwilliger TC (1999) Rapid protein-folding            |
|-----|-----|----------------------------------------------------------------------------------------------|
| 733 |     | assay using green fluorescent protein. Nat Biotechnol 17(7):691-695.                         |
| 734 | 33. | Chung HS & Raetz CR (2010) Interchangeable domains in the Kdo transferases of                |
| 735 |     | Escherichia coli and Haemophilus influenzae. Biochemistry-Us 49(19):4126-4137.               |
| 736 | 34. | Paintdakhi A, et al. (2016) Oufti: an integrated software package for high-accuracy, high-   |
| 737 |     | throughput quantitative microscopy analysis. <i>Mol Microbiol</i> 99(4):767-777.             |
| 738 | 35. | Konijnenberg A, van Dvck JF, Kailing LL, & Sobott F (2015) Extending native mass             |
| 739 |     | spectrometry approaches to integral membrane proteins. <i>Biol Chem</i> 396(9-10):991-1002.  |
| 740 | 36. | van Dyck JF, Konijnenberg A, & Sobott F (2017) Native Mass Spectrometry for the              |
| 741 |     | Characterization of Structure and Interactions of Membrane Proteins. Methods Mol Biol        |
| 742 |     | 1635:205-232.                                                                                |
| 743 | 37. | Neet KE (1995) Cooperativity in enzyme function: equilibrium and kinetic aspects.            |
| 744 |     | Methods Enzymol 249:519-567.                                                                 |
| 745 | 38. | Edelstein SJ & Le Novere N (2013) Cooperativity of allosteric receptors. J Mol Biol          |
| 746 |     | 425(9):1424-1432.                                                                            |
| 747 | 39. | Patrick JW, et al. (2018) Allostery revealed within lipid binding events to membrane         |
| 748 |     | proteins. Proc Natl Acad Sci USA 115(12):2976-2981.                                          |
| 749 | 40. | Miroux B & Walker JE (1996) Over-production of proteins in Escherichia coli: mutant          |
| 750 |     | hosts that allow synthesis of some membrane proteins and globular proteins at high           |
| 751 |     | levels. J Mol Biol 260(3):289-298.                                                           |
| 752 | 41. | Giles DK, Hankins JV, Guan Z, & Trent MS (2011) Remodelling of the Vibrio cholerae           |
| 753 |     | membrane by incorporation of exogenous fatty acids from host and aquatic environments.       |
| 754 |     | <i>Mol Microbiol</i> 79(3):716-728.                                                          |
| 755 | 42. | Corradi V, et al. (2018) Lipid-Protein Interactions Are Unique Fingerprints for              |
| 756 |     | Membrane Proteins. ACS Cent Sci 4(6):709-717.                                                |
| 757 | 43. | Mileykovskaya E & Dowhan W (2009) Cardiolipin membrane domains in prokaryotes                |
| 758 |     | and eukaryotes. Biochim Biophys Acta 1788(10):2084-2091.                                     |
| 759 | 44. | Vail WJ & Stollery JG (1979) Phase changes of cardiolipin vesicles mediated by divalent      |
| 760 |     | cations. Biochim Biophys Acta 551(1):74-84.                                                  |
| 761 | 45. | Sankaram MB, Powell GL, & Marsh D (1989) Effect of acyl chain composition on salt-           |
| 762 |     | induced lamellar to inverted hexagonal phase transitions in cardiolipin. Biochim Biophys     |
| 763 |     | <i>Acta</i> 980(3):389-392.                                                                  |
| 764 | 46. | Ernst R, Ejsing CS, & Antonny B (2016) Homeoviscous Adaptation and the Regulation            |
| 765 |     | of Membrane Lipids. J Mol Biol 428(24 Pt A):4776-4791.                                       |
| 766 | 47. | Thogersen L & Nissen P (2012) Flexible P-type ATPases interacting with the membrane.         |
| 767 |     | Curr Opin Struct Biol 22(4):491-499.                                                         |
| 768 | 48. | Autzen HE, et al. (2018) Interactions of a Bacterial Cu(I)-ATPase with a Complex Lipid       |
| 769 |     | Environment. Biochemistry-Us 57(28):4063-4073.                                               |
| 770 | 49. | Zimmer J & Doyle DA (2006) Phospholipid requirement and pH optimum for the in vitro          |
| 771 |     | enzymatic activity of the E. coli P-type ATPase ZntA. Biochim Biophys Acta                   |
| 772 |     | 1758(5):645-652.                                                                             |
| 773 | 50. | Moore BM, Lentz BR, & Meissner G (1978) Effects of sarcoplasmic reticulum Ca2+-              |
| 774 |     | ATPase on phospholipid bilayer fluidity: boundary lipid. <i>Biochemistry-Us</i> 17(24):5248- |
| 775 |     | 5255.                                                                                        |
| 776 | 51. | Palsdottir H & Hunte C (2004) Lipids in membrane protein structures. <i>Biochim Biophys</i>  |
| 777 |     | <i>Acta</i> 1666(1-2):2-18.                                                                  |

| 778 | 52. | Cong X, Liu Y, Liu W, Liang X, & Laganowsky A (2017) Allosteric modulation of               |
|-----|-----|---------------------------------------------------------------------------------------------|
| 779 |     | protein-protein interactions by individual lipid binding events. Nat Commun 8(1):2203.      |
| 780 | 53. | Sonntag Y, et al. (2011) Mutual adaptation of a membrane protein and its lipid bilayer      |
| 781 |     | during conformational changes. Nat Commun 2:304.                                            |
| 782 | 54. | Cohen E, et al. (2005) Purification of Na+,K+-ATPase expressed in Pichia pastoris           |
| 783 |     | reveals an essential role of phospholipid-protein interactions. J Biol Chem                 |
| 784 |     | 280(17):16610-16618.                                                                        |
| 785 | 55. | Ryabichko S, et al. (2020) Cardiolipin is required in vivo for the stability of bacterial   |
| 786 |     | translocon and optimal membrane protein translocation and insertion. Sci Rep                |
| 787 |     | 10(1):6296.                                                                                 |
| 788 | 56. | Oliver PM, et al. (2014) Localization of anionic phospholipids in Escherichia coli cells. J |
| 789 |     | Bacteriol 196(19):3386-3398.                                                                |
| 790 | 57. | Jephthah S, Mansson LK, Belic D, Morth JP, & Skepo M (2020) Physicochemical                 |
| 791 |     | Characterisation of KEIF-The Intrinsically Disordered N-Terminal Region of Magnesium        |
| 792 |     | Transporter A. <i>Biomolecules</i> 10(4).                                                   |
| 793 |     | -                                                                                           |
|     |     |                                                                                             |

794

# 795 Figures

- 796
- 797 Figure 1
  - a MgtA after stringend lipid removal





|                                  | m/z difference |               |  |
|----------------------------------|----------------|---------------|--|
|                                  | 22+            | 21+           |  |
| MgtA > <mark>MgtA + 1x CL</mark> | 62.54 ± 7.35   | 66.17 ± 10,83 |  |
| MgtA + 1x CL >MgtA + 2x CL       | 65.32 ± 5.03   | 68.88 ± 6,97  |  |

|                            | mass difference (Da) |            |  |
|----------------------------|----------------------|------------|--|
|                            | 22+                  | 21+        |  |
| MgtA >MgtA + 1x CL         | 1375 ± 161           | 1389 ± 238 |  |
| MgtA + 1x CL >MgtA + 2x CL | 1437 ± 105           | 1446 ± 146 |  |

**b** Added Ecoli lipid mix after stringent lipid removal
### 799 Figure 1: MgtA shows selective binding of cardiolipin in native mass spectrometry

Purified MgtA solubilized in 3x CMC DDM was analysed by native MS (a) in the absence or (b) presence 800 801 of total E. coli lipid extract. Total E. coli lipid extract contains only 9.8 % CL, while the remaining lipids 802 are 57.5 % PE, 15.1 % PG and 17.6 % unknown (Avanti Polar Lipids). The left spectrum shows the most intense charge states 22+ and 21+ of purified MgtA after lipid removal by high CMC DDM. The right 803 spectrum exhibits MgtA as seen after incubation with E. coli lipid mixture. This sample was washed with 804 805 3x CMC DDM to remove weakly bound lipids leaving only the strongest interacting lipids. The spectrum on the right reveals additions of approximately 1400 and 2800 Da (red and green) which correspond to the 806 molecular weight of one and two cardiolipin molecules, respectively. The spectra were recorded in TOF 807 mode and the key MS settings are the voltages (sampling cone, trap collision, transfer collision and trap 808 bias) and pressures (backing pressure, trap cell pressure). These values were 200 V, 150 V, 150 V, 45 V, 809 6.41 mbar and  $2.00 \times 10^{-2}$  mbar respectively. 810

- 811
- 812
- 813
- 814

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462033; this version posted September 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

### 816 Figure 2



Figure 2: Cardiolipin competition assay of MgtA in the presence of POPE reveals increase in CL binding

**a)** MS spectra showing a lipid competition assay of MgtA with increasing CL concentrations (0 to 30  $\mu$ M) and 1000 to 970  $\mu$ M POPE. In the spectra 1x and 2x CL adducts are assigned. In **b**) the increase in 1x or 2x CL molecules bound to MgtA is shown as percentages according to the increase in CL added to the sample. The spectra were recorded in TOF mode and the key MS settings are the voltages: sampling cone, trap collision, transfer collision, trap bias and pressures: backing pressure, trap cell pressure. These values where 150 V, 200 V, 5 V, 45 V, 8.41 mbar and 2.66 x10<sup>-2</sup> mbar.

826

817

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462033; this version posted September 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

#### 828 Figure 3



829

830 Figure 3: *E. coli* MgtA shows cooperative binding of specific cardiolipin species

(A) Cardiolipins 18:1 and 16:0 contain the same polar hydrophilic headgroup (red), but exhibit differencesin the length and saturation degree of their acyl chains.

833 (B) Concentration-dependent activation of MgtA ATPase activity by E. coli extracted cardiolipin (black),

834 a 1:1 mixture of cardiolipin 18:1 and 16:0 (green) or individual cardiolipin species. Lipids are prepared as

835 described in the Materials and Methods section; specific activity is determined by measuring phosphate

release. Curves are representatives from three independent experiments, showing mean +/- SD. Enzymatic

837 activation curves were fitted to an allosteric sigmoidal model (GraphPad, Prism8). Fitting curves are shown

- 838 (lines) for data with least squares fit of 0.95 or above with parameters described in table 1. Dotted lines
- represent activation curves that could not be fitted with the allosteric sigmoidal model.

- **Table 1:** Allosteric fit of purified MgtA in the presence of different cardiolipin species. The V<sub>max</sub> and Hill
- 842 coefficient were determined by least squares fit of the data from Figure 1B, as described in materials and
- 843 methods. Only data from least squares fit of 0.95 or above was included in the analysis.

|     |                   | V <sub>max</sub><br>(μmol min <sup>-1</sup> mg <sup>-1</sup> ) | Hill coefficient |  |
|-----|-------------------|----------------------------------------------------------------|------------------|--|
|     | <i>E. coli</i> CL | 11.0 +/- 0.8                                                   | 2.4 +/- 0.6      |  |
|     | CL 18:1 CL 16:0   | 14.1 +/- 1.9                                                   | 3.0 +/- 0.8      |  |
|     | (molar ratio 1:1) |                                                                |                  |  |
| 844 |                   |                                                                |                  |  |
| 845 |                   |                                                                |                  |  |
| 846 |                   |                                                                |                  |  |
| 847 |                   |                                                                |                  |  |
| 848 |                   |                                                                |                  |  |
| 849 |                   |                                                                |                  |  |
| 850 |                   |                                                                |                  |  |
| 851 |                   |                                                                |                  |  |
| 852 |                   |                                                                |                  |  |
| 853 |                   |                                                                |                  |  |
| 854 |                   |                                                                |                  |  |
| 855 |                   |                                                                |                  |  |
| 856 |                   |                                                                |                  |  |
| 857 |                   |                                                                |                  |  |
| 858 |                   |                                                                |                  |  |
| 859 |                   |                                                                |                  |  |
| 860 |                   |                                                                |                  |  |
| 861 |                   |                                                                |                  |  |
| 862 |                   |                                                                |                  |  |

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462033; this version posted September 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

### 863 Figure 4



864

# Figure 4: *E. coli* MgtA shows selective activation by cardiolipin species 18:1 and 16:0 in specific molar ratios

ATP hydrolysis was measured in the presence of specific cardiolipin species with increasing concentrations of  $Mg^{2+}$  at 3 mM ATP. Lipid concentration was kept constant at 12 mM (molar ratio of MgtA to lipid 1:5000). Curves are representatives from three independent experiments, showing mean +/- SD. Enzymatic data was fitted as a function of  $Mg^{2+}_{free}$  using Michaelis-Menten equation (Graphpad Prism 8) as described in the method section. Kinetic parameters are described in table 2.  $Mg^{2+}_{free}$  profiles of (A) CL 18:1, CL 16:0 and an equimolar mixture of both or (B) CL 18:1 and CL 16:0 in different molar ratios was assessed. (C) As a control  $Mg^{2+}_{free}$  profiles of CL 18:1 or CL 16:0 in combination with CL 16:1 were performed.

# 876 Table 2: Kinetic property of purified MgtA in the presence of different cardiolipin species. The

apparent  $V_{max}$ ,  $K_m$  and the turnover number ( $K_{cat}$ ) values were determined by least squares fit of the data from figure 2A, 2B and 2C and put in references to previously obtained kinetics (Subramani *et al.* (2016)).

|                                  | V <sub>max</sub> (µmol min <sup>-1</sup> mg <sup>-1</sup> ) | <b>K</b> <sub>m</sub> (μ <b>M</b> ) | K <sub>cat</sub> (s <sup>-1</sup> ) |
|----------------------------------|-------------------------------------------------------------|-------------------------------------|-------------------------------------|
| <i>E. coli</i> CL                | 13.7 +/- 0.2                                                | 10 +/- 0.6                          | 23 +/- 0.3                          |
| (Subramani <i>et al.</i> (2016)) |                                                             |                                     |                                     |
| CL 18:1                          | 7.6 +/- 0.7                                                 | 12 +/- 7.0                          | 12.8 +/- 1.2                        |
| CL 16:0                          | N/A                                                         | N/A                                 | N/A                                 |
| CL 18:1 CL 16:0                  | 19.3 +/- 2.4                                                | 67 +/- 3.0                          | 32.8 +/- 4.1                        |
| (ratio 1:1)                      |                                                             |                                     |                                     |
| CL 18:1 CL 16:0                  | 7.1 +/- 0.9                                                 | 4.4 +/- 2.6                         | 12.06 +/- 1.5                       |
| (ratio 3:1)                      |                                                             |                                     |                                     |
| CL 18:1 CL 16:0                  | 24.6 +/- 6.7                                                | 120.9 +/- 48.9                      | 41.8 +/- 11.4                       |
| (ratio 1:3)                      |                                                             |                                     |                                     |
| CL 16:1                          | 6.0 +/- 0.5                                                 | 103 +/- 5                           | 10.2 +/- 0.8                        |
| CL 18:1 CL 16:1                  | 6.6 +/- 0.8                                                 | 40 +/- 12                           | 11.3 +/- 1.4                        |
| (ratio 1:1)                      |                                                             |                                     |                                     |
| CL 16:0 CL 16:1                  | 3.9 +/- 0.5                                                 | 285 +/- 44                          | 6.7 +/- 0.8                         |
| (ratio 1:1)                      |                                                             |                                     |                                     |

879

880





# Figure 5: MgtA shows increased temperature stabilization in the presence of the specific cardiolipin species, cardiolipin 18:1

885 Nano differential scanning fluorimetry (nanoDSF) curves (left) and their first derivative (right) of purified MgtA in the presence of (A) cardiolipin and 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine 886 887 (POPE) or specific cardiolipin species CL 18:1 and CL 16:0 (B) alone and (C) in different molar ratios 888 were obtained. MgtA was incubated overnight with indicated lipids in a 1:100 molar ratio and samples were 889 centrifuged to remove excess of lipids. Melting curves were performed on Prometheus NT.48 (Nanotemper) 890 in a temperature range of 15 °C - 95 °C and a temperature gradient of 1 °C per minute. A paired, one-sided t-test was applied. \*\*\*p<0.001. (D) Additionally, melting curves were performed on MgtA in the presence 891 of inhibitors, ADP-AlF<sub>4</sub> and AlF<sub>4</sub>. MgtA was incubated with inhibitors in 1:500 molar ratio (2.95 mM) for 892 893 two hours at 4 °C before melting curves were performed. Curves are representatives from three independent 894 experiments, showing mean

- +/- SD. Obtained melting temperatures are described in table 3.
- 896
- 897

### Table 3: Melting temperatures of MgtA in the presence of lipids and inhibitors determined by nanoDSF

|                                           | Melting temperature [°C] |
|-------------------------------------------|--------------------------|
| MgtA (control)                            | 41.8 +/- 0.4             |
| MgtA in presence of E. coli cardiolipin   | 49.7 +/- 1.4 ***         |
| MgtA in presence of POPE                  | 42.2 +/- 0.4             |
| MgtA in presence of cardiolipin 18:1      | 52.5 +/- 1.2 ***         |
| MgtA in presence of cardiolipin 16:0      | 40.3 +/- 1.0             |
| MgtA in presence of cardiolipin 18:1 16:0 | 47.0 +/- 0.8             |
| (molar ratio 3:1)                         |                          |
| MgtA in presence of cardiolipin 18:1 16:0 | 43.2 +/- 1.2             |
| (molar ratio 1:1)                         |                          |
| MgtA in presence of cardiolipin 18:1 16:0 | 42.5 +/- 1.2             |
| (molar ratio 1:3)                         |                          |
| MgtA in presence of AIF <sub>4</sub>      | 41.8 +/- 0.6             |
| MgtA in presence of ADP-AlF <sub>4</sub>  | 41.6 +/- 0.6             |

900

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462033; this version posted September 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.



## 904 Figure 6: MgtA localization to the pole is not solely cardiolipin-dependent

- To assess whether cardiolipin functions as the main signal for polar MgtA localization in *E. coli*, in vivo imaging studies were performed using a GFP-tagged MgtA construct.
- 907 (A) Schematic representation of the Clover-MgtA expression plasmid. The expression is controlled by the 908 arabinose-inducible  $P_{ara}$  promoter.
- 909 (B) The localization of MgtA-GFP was assessed in wild-type E. coli strain MG1655, cardiolipin-deficient
- 910 E. coli MG1655 $\Delta cls$ , a knockout strain of cardiolipin synthase ( $\Delta cls$ ), and wild type Vibrio cholerae strain
- 911 C6706. The phase contrast channel (PH) and GFP channel (Clover-MgtA) of bacteria grown in the presence
- 912 of 0.2 % arabinose (induced) or in its absence (uninduced) are shown. White scale bars are 5  $\mu$ m.
- 913 (C) Intensity profiles of single, representative cells (highlighted by a dotted white box in (B)). The 914 intensities are normalized to the brightest area in each cell, respectively.
- 915 (D) Clover-MgtA localization profiles of cells sorted by their cell length. This representation approximates
- the localization patterns through the cell cycle with small cells approximating newborn cells and long cells
- 917 approximating cells immediately prior to division. The cell lengths are normalized to the longest cell in
- 918 each analysis and the fluorescent intensities are normalized to the brightest area in all cells from each strain.
- 919 *E. coli* MG1655 (n=171 cells), *E. coli* MG1655 Δ*cls* (n=75 cells), and *V. cholerae* C6706 (n=125 cells).
- 920
- 921





925

923 924

926 Figure 7: Model of cardiolipin interaction with MgtA

927 MgtA protein localizes in the inner membrane at the *E. coli* cell poles, which represent cardiolipin-rich 928 regions. Association of MgtA with cardiolipin is essential for MgtA activity and stability, but MgtA shows 929 high selectivity for specific cardiolipin species. We propose specific interaction between MgtA and two CL 920 18:1 melosules, effecting MatA thermal stabilization. Further, CL 18:1 is required for MatA. ATPage

930 18:1 molecules, affecting MgtA thermal stabilization. Further, CL18:1 is required for MgtA ATPase

activity. CL 16:0 is needed for maximal MgtA activation but does not affect protein stabilizationsignificantly.

933

934

# 935 Supplementary figures



936

#### 937 Supplemental figure 1: MgtA shows selective binding of cardiolipin in native mass spectrometry

Purified MgtA, solubilized in 3x CMC DDM, was analysed by native MS (a, b) in the absence or (c, d) 938 presence of total E. coli lipid extract. Total E. coli lipid extract contains only 9.8 % CL, while the remaining 939 lipids are 57.5 % PE, 15.1 % PG and 17.6 % unknown (Avanti Polar Lipids). The upper spectrum shows 940 delipidated MgtA in DDM (19+ to 24+) with DDM clusters in the lower m/z region, while the lower spectra 941 942 exhibits MgtA with E. coli lipid mixture (18+ to 24+) with a mixture of DDM clusters and lipids in the 943 lower m/z region. Close-up on MgtA spectra (right) reveals additions of approximately 1400 and 2800 Da 944 (red and green arrows) which correspond to the molecular weight of one and two cardiolipin molecules, 945 respectively. The spectra were recorded in TOF mode and the key MS settings used to record these spectra are the voltages (sampling cone, trap collision, transfer collision and trap bias) and pressures (backing 946

pressure, trap cell pressure). These values were 200 V, 150 V, 150 V, 45 V, 6.41 mbar and 2.00x10<sup>-2</sup> mbar
respectively.



949

950 Supplemental figure 2: MS spectra showing a competition assay of MgtA with POPE and increasing CL951 concentrations measured under activating conditions.

The concentrations in the spectra **a** to **f** of CL used is 0 to 30  $\mu$ M Cl and 1000 to 970  $\mu$ M POPE lipid. The red arrow is the +1 CL (~1400 Da) and the green arrow +2 CL (~2800 Da). The spectra were recorded in TOF mode and the key MS settings are the voltages: sampling cone, trap collision, transfer collision, trap bias and pressures: backing pressure, trap cell pressure. These values where 150 V,  $200 \text{ V}, 5 \text{ V}, 45 \text{ V}, 8.41 \text{ mbar and } 2.66 \text{ } \text{x}10^{-2} \text{ mbar}.$ 

957



958

959 Supplementary figure 3: Cardiolipin binding in the presence of MgtA inhibitors

960 To determine binding of cardiolipin to MgtA dependent on the stages of transport cycle, lipid binding of

961 MgtA was determined in the presence of  $AlF_4^-$  and  $ADP-AlF_4^-$ , which lock MgtA in the E2 and E1 state,

962 respectively.

(A) Mg<sup>2+</sup>-transport cycle of by MgtA is described by the Post-Albers cycle, in which MgtA alternates 963 964 between different conformational states, termed E1 and E2 state. The E1 state has high affinity and is open for ions binding from the cytoplasm. The ion transported from the cytoplasm to the periplasm in the case 965 966 of MgtA remains unknown. Upon ion binding, autophosphorylation of MgtA by ATP hydrolysis is induced, forming the E1P state. The phosphorylation induces domain rearrangements leading to the E2P state, which 967 is now open to the periplasmic side. E2P has low affinity for the bound ions and high affinity for the counter 968 ion, Mg<sup>2+.</sup> The exchange of counter ions dephosphorylates the enzyme and forms the E2 state. Upon further 969 970 conformational changes the enzyme returns to the E1 state and the counterions are released into the cytoplasm. MgtA inhibitors, AlF<sub>4</sub> and ADP-AlF<sub>4</sub>, lock the enzyme in the indicated conformational steps. 971 972 (B) MgtA was incubated with inhibitors in 1:100 molar ratio for two hours, following incubation with total 973 E. coli lipid extract in 1:100 molar ratio. Spectra of MgtA lipidated with cardiolipin in the absence (violet, 974 blue) and in the presence of inhibitors (dark blue, yellow) are shown. A control spectrum of unlipidated 975 MgtA (black) is included.

976

977



### 980 Supplementary figure 4: Expression of Clover-MgtA

981

982 (A) Western blot analysis of E. coli MG1655 and V. cholerae C6706 expressing Clover-fusion to MgtA. E. coli and V. cholerae containing either a plasmid encoding a translational fusion of Clover-MgtA under 983 control of the arabinose inducible BAD promoter (pClover-MgtA) or the empty pBAD33.1 plasmid 984 985 (pCTRL) were grown in the presence (0.2%) or absence  $(\emptyset)$  of arabinose. Samples of these cultures were 986 analyzed by Western blot with a monoclonal antibody directed against GFP. (B) Quantification of Clover-987 MgtA fluorescence by flow cytometry. E. coli containing the MgtA-Clover fusion plasmid (pClover-MgtA) 988 or no plasmid were induced with different arabinose concentrations. The fluorescence intensity was quantified after excitation at 488 nm. The bars depict the mean fluorescence, the error bars the standard 989 990 deviation of at least 450,000 cells.

