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1 Introduction

In several papers on population dynamics the efFect upon stability due to different delay

mechanisms has been explored. Turning to the continuous case, the basic model for such

considerations, in absence of migration, is the van Foerster equation

dn dn
m + da = -'l( - )n (1)

(2)

See Caswell [7] or Murray [26], where n(t,a) is the age density function, fi(-) and b(-)

are the density dependent death and birth rates respectively. For example, Cushing [14]

used this approach to study the impact on stability in age-structured populations caused

by varying gestation periods and age-speciflc reproductive rates, McNair [25] considered

the impact of varying the length of the juvenile period, Bence and Nisbet [3] showed the

importance of time delays in open systems and De Roos et al. [17] extended the model

(1), (2) by also incorporating size structure in their Daphnia study.

By a direct forward difference discretization of (1),(2), see for example Guckenheimer

et al. [20] or Caswell [7], wc obtain the discrete analogue

(3)

where x = [xi, —e n ) is a n-dimensional population vector and A the Leslie matrix

(4)

with tecundity elements f, and year-to-year survival probabilities pt . Ergodic properties

ol the map (3) in case of density independent matrix elements may be found in Cohen

9
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9]. In the nonlinear case the ergodic results obtained by Cushing [15,16] and Crowe [10]

provide a basic setting to consider stability and bifurcation in matrix models.

When studying the system (3), (4) the usual approach has been to include density

efFects in the fecundity terms and not in the year-to-year survival probabilities. Especially

in fishery models this has often been motivated by the fundamental assumption that most

density effects occur within the first year of life, cf. Levin and Goodyear [23], Levin [22],

Fisher and Goh [18], Bergh and Getz [s], Silva and Hallam [28,29], Wikan and Mjølhus

36], and again turning to delay considerations, it is in general demonstrated that a delay

m reproduction (or generation delay, a term introduced in [23]) acts destabilizing. Similar

conclusions have also been established in corresponding difference delay equation models

ot the form

(5)

See for example Levin and May [24], Clark [B], Botsford [6], Le Page and Curry [21]. For

related models, cf. Nisbet and Onyiah [27], Tuljapurkar et al. [33].

Returning to the matrix model (3), (4), following Wikan and Mjølhus [35] and Wikan

34], the dynamical consequences of incorporating density dependence in the year-to

year survival probabilities instead of the fecundities are rrnich less explored although it

should be a fairly plausible assumption for may species. This brings us to the purpose of

this paper, namely the role of reproductive delay in Leslie matrix models with nonlinear

survival elements, and wc shall ultimate impose the restriction ft =o,i< n, fn oin

(4). In many respects this is the same strategy as in [18], but wc shall not focus on global

stability problems investigated in terms of Liapunov functions, instead our main concern

is the description ot the qualitative behaviour of the population in unstable and chaotic

parameter regions. a strategy which is adopted by only a few of the papers quoted above.

Among our results are:

1. In case ol two-age classes, using normal form calculations. see Guckenheimer and

Holmes [19], wc prove rigorously for large classes of nonlinear survival probability

Zt+i — x tf{xt-r)





functions that the fixed point of (3), (4) in the genene case imdergoes a supercritical

Hopf bifurcation at instability threshold. Wc also show that there exist parameter

values where the normal form also contains additional strong resonant terms, cf.

Arnold [2], which in turn implies that there are large parameter regions where the

dynamics beyond the bifurcation point has a strong resemblance of 3- or 4-cycles,

either exact or approximate, a qualitative hndmg which takes over to the chaotic

regime as well. This extends the results obtained in [34] and [35].

3. Wc also demonstrate that for any n > 1 there exists a region in parameter space

where the fixed point is unstable at its creation. This is valid both for overcompen

satory and compensatory survival probabilities, hence wc support the result obtained

by [28] that the tendency for compensatory models to be stable does not always

occur. The dynamics which is found in this part of parameter space is stable cycles

of period 2 k  n, cf. Cull and Vogt [11,12,13] and especially Allen [I].

Finally wc should stress that the analysis in this paper is pure theoretical and not

related to any concrete species. Nevertheless, it is tempting to suggest that our results

may apply to small rodent populations. For such species there are several examples of

cycles comparable to our findings (Stenseth and Ims [32]) and there is a lack of pure

density dependent models in the literature (Stenseth and Antonsen [30,31]).

The plan ot the paper is as follows: In section 2 wc present the model and describe

equilibria and stability. In section 3 and 4 wc present a detailed analysis of the dynamics

in '1 and 3 dimensions respectively. In section 5 wc extend results to higher dimensions.

2 Equilibria and Stability

Consider the map / : UT -» UT

(6)

1

2. When n = 3 the tendency towards 4-periodically dynamics is even more pronounced.

x —y Ax
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where x is a n-dimensional population vector and A anxn Leslie matrix of the form

(7)

Here the capital F indicates density independent fecundity and wc assume the same

density-dependent survival probability p = p(y) between any two-age classes where
n

(8)

Further wc require p'(y) < 0, thus except for depensatory effect [7] a rather general

situation is under consideration.
i

Assuming p(0) > Fn n 1 , at equilibrium
i

fr "- 1 (9)

and the unique nontrivial fixed point of (6) is given by

where /\ = at^ U^ 5") (Silva and Hallam [29]). Using standard linearization tech

niques (see [7] or [23]) the eigenvalue equation may after some algebra be east in the

form

(11)

where the (positive!) parameter ø which will be our bifurcation parameter, is defined as

file hxed point is locally stable as long as the spectral radius of (11) is less than unity

/ 0 •• • 0 Fn \
p 0 •• 0

.4 = 0 p 0

\ 0 ••• 0 p 0 )

5 densitv independent fecund

y = ) oiix,
= 1

y* = p l

(*;,aj;,..,<)=, ..,<)= (f '^*)f' ->pn~V)f) (io)

/ n \ In
yi + ne a^~ 2 xn' 1 + Yl a^~ 2 xn~ 2

V /
n \ /n-1 \

+Y, mp'' 2 n " 3 +• • + ( Y w*-2 u= it'=l I \i=l /
V /

<l> = <Kvm ) = -Avljjr (12)





3 Two-Age Classes

(13)

and (11) reduces to

By applying the Jury criteria [26] the conditions for (æj, x*2 ) to be locally stable are easily

toimd to be

First wc consider the case F 2 < a2 /ai. Then from (15b) there will be no stable

equilibrium. Since (15b) is associated with the possibility of (x^x^) to undergo a flip

bifurcåtion it is natural to search for (stable) cycles of order 2. Hence, consider the

second iterate:

Clearly, one possibility is F2p(yt ) = F2 p(yt+ i) = 1 which in turn implies yt = yt+l —y* —

p l (l/F2 ). Thus the 2-cycle is the trivial one where the unstable equilibrium is the only

point in the cycle.

Another possibility is to assume a 2-cycle of the form (i l5x 2) — (.4, 0) or (0, B). Then

from ( 16) wc find that the system oscillates between the points

—p- l (l/F2 ). 0 ) . (0, -^P~ l (l/F2 )) (17)

In order to investigate stability wc have computed the Jacobian of (16), used (17), and

tound the real eigenvalues to be

f»

Let n = 2 in (6). Then wc are left with the map

/ : IR2 —> IR2 (x u x 2 ) —> (F2x 2 ,p(y)a;i)

A2 +a2 (f)\ + al F2<p- 1= 0 (14)

o(^l^2 +a 2) > 0 (15a)

(j>{axF2 -a 2) > 0 (15b)

2-a1 F2 <J>>o (15c)

('i) _(F2Pi yt ) o \( Xl \

//! = l + F2p- l (l/F2 )p'(yt ) (18a)

H2= F2p{yt+l ) (18b)





Since F2p(yt ) =1, yt+i = {a2 /aiF2 )y t >yt => p{yt+i) < p{yt) = l/F2 . Consequently,

0 < fj>2 < 1 and for F 2sumciently close to 1, \/_ii\ < 1. Hence (17) is a stable 2-cycle for

/•_» small.

It, is further clear from (18a) that in the case a 2 ai, an increase of F 2will eventually

lead to a flip bifurcation creating a cycle of period 4. Wc emphasize that the form of the

4-cycle as well as the form of successive cycles of period 2k , k> 2, which is the outcome

ot a further enlargement of F 2, has the same structure as the 2-cycle, a qualitative result

which also takes over to the chaotic regime. Thus wc have demonstrated numerically that

the dynamics goes to the axes whenever F2< a2 /a\.

Since wc shall meet cycles like (17) also in models with more age classes it is convenient

at this stage to define (17) as the 2-age class extinguishing cycle, and more generally, the

cycle (A, 0, ..., 0), (0, B, 0, ..., 0), ..., (0, ..., 0, N) in a model with n-age classes as the n-age

class extinguishing cycle.

—ooo—

Next, consider the case F 2> a2 /ai. Then from (15c), <p(y*) < 2ja.\F2 ensures that

[xl^x^] is locally stable. Thus the only way for the nontrivial fixed point to become

unstable is through a Hopf bifurcation at the threshold

2
<f>{y*) = ——

aiF2

where the corresponding modulus 1 solutions of the eigenvalue ec{uation (14) are

(19)

(20)

Wc shall now prove that outside the strongly resonant cases F2= 2a2 /ai or a 2 — 0,

i he Hopt bifurcation is of the supercritical type (i.e. that there exists a stable attracting

invariant curve surrounding {x\, x*£) for o > 2/aiF2 , \ø — éc \ small where (j)c is the ø value

dermed in (19)) for a large number of survival probability functions p{y). The results will

be st at ed as theorems, proofs of which may be found in the appendix.

i

A = --^r ±-^rJ(a1 F2 ) 2 -a3ic*iF2 aiF2 V
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Theorem 1.

Consider the map / : IR2 -> IR 2

(21)

under the restrictions F 2 2a 2 /a\ 1 a 2 0.

Assume F 2 > a2 ja\. Then, for 7 > —aiF2 /2(aiF2 + a 2) the fixed point (x^x^) of

(21) will undergo a supercritical Hopf bifurcation at the threshold (19).

Theorem 2.

(22)

under the restrictions F2/ 2a 2 /ai 1 a 2 / 0.

Assume F2> a2 /ai. Then, for a> 2 the fixed point (x*, x2) of (22) will undergo a

supercritical Hopf bifurcation at the threshold (19).

Note that the strongly resonant cases F 2= 2a 2 /a 1 or a 2 = 0 correspond to eigen

values of third or fourth root of unity and that these cases require special treatment, see

Arnold [2]. The survival probability defined in (21) is sometimes (especially in the fishery

literature) referred to as a Deriso-Schnute relation [5,33], and the probability fimction in

(22) is called a Shepard relation [s]. The classical overcompensatory Ricker relation is

contained in (21) (7 —> 0), and the compensatory Beverton and Holt relation is contained

in both (21) and (22) (7 = -1, a = 1).

Our next goal is to discuss the dynamics beyond the bifurcation threshold, and in doing

so wc shall frequently refer to the survival probability functions in theorems 1 and 2.

Wc start with the interval 0 < a 2 < Qi. Then from the theorems wc know that (27, x*2 )

will undergo a supercritical Hopf bifurcation and by following Guckenheimer and Holmes

[19], the dynamics 011 the invariant curve may be described by the rotation map

(23)

(xu x2 )—+ {F2x 2, P1 (l- 7j/) 1/^1 )

Consider the map / : IR 2 ->• IR2

(zi,S2 )--> [F2 X 2, Y^^J

a





where b and c = arg A give asymptotic information on rotation numbers, \i — bifurcation

parameter, a is defined in appendix A and d — d/dfi\(X(O))\.

According to Wikan [34], see also the relations (A. 9), (A. 11) in appendix A, in case

of 7 < 0, 2 < a < 3 (which is the most interesting parameter intervals for the functions

in theorem 1 and 2), F\ is a large number at the bifurcation. Consequently, from (20),

arg Å ~ 7r/2, thus on the invariant curve, close to the bifurcation, the rotation number

er w 1/4. Hence the dynamics in the interval 0 < ct-i < ai, must be qualitative similar to

the special case a.\ — a 2 which was extensively studied in [34]. There it was found large

fecundity intervals where the dynamics was 4-periodical, either exact or approximate.

In Figure 1 wc show an exact 4-periodical orbit and in Figure 2 wc demonstrate the

4-periodical structure in the chaotic regime. For further reading, cf. [34] and [35].

Theorem 1 and 2 do not apply in the strongly resonant case «2 — 0, but from our

analysis above it is nevertheless natural to expect some kind of 4-periodical behaviour.

Indeed, numerical simulations suggest that as the fixed point (x^x^) fails to be stable, a

stable 4-cycle on the form

(24)

is created. Wc shall now demonstrate that for specific choices of p(y), A and C may

actually be computed. To this end, following the method of Levin [22] with p(y) —

P[ exp(— y), wc first observe that (13) implies

(25)

(26)

The graph of h(x) is shown in Figure 3 and once x is found it is easy to compute A and

C from (25).

!)

(A,p(C)C), (Ap(A)A) (C\p(A)A) (C,p(C)C)

A= F2 Pie~aiC C

C= F2 Pie-^A A

Now detine x = A/C. Then from (25)

F2= /i(ar) = 4-a; (ar+l)/(x" 1)Pi
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Finally, x = 1 implies A = C which means that the 4-cycle degenerates to only one

point in this case. Further by L'hopital's rule:

(27)

where (1/Pi)e2 is recognized as the F 2 value where (x\,x*2 ) goes unstable. Thus wc

have shown that the stable small amplitude 4-cycle evolves directly from the point where

(xijÆjj) bifurcates. Although the bifurcation described here clearly should not be called

supercritical it is definitely of local nature in contrast to the strongly resonant cases

discussed in [20], [22] and [36].

Finally, let us turn to the qualitative behaviour when ai < a 2. Wc deal separately

with the cases

(A) a2 /a\ — d d > 1 d small

Considering (A), Eg. (20) implies that the difference arg A — (tt/2) becomes large, thus the

4-periodicity vanishes. Consequently, in accordance with simulation results, quasiperiodic

orbits is the only outcome in the unstable parameter regions. The route to chaos also

differs from the previous case. For sufficiently large values of F 2wc first experience that

the invariant curve becomes kinked and then it breaks up into a number of separate

clouds, a situation somewhat akin to the description of the Dubois and Berge model in

Tj. An example of the chaotic attractor is given in Figure 4.

Whenever d is large, (B), at bifurcation, the difference F2— 2a2 /ai becomes small,

thus wc are close to the second strong resonance A 3 = 1. From [20], [22] and [36] wc

know that this opens for multiple attractors in a certain interval Fs < F2< Fk- Indeed,

il F2— Fs , wr e have by adopting the same technique as in [36] verifled numerically for

selected values of different survival probabilities, that the third iterate g = f o f o f

undergoes a saddle node bifurcation, creating 3 branches of stable and 3 branches of

unstable equilibria. Hence. whenever Fs < F2< Fe where Fe is the F 2value implicitly

dermed in (19). the stable large amplitude 3-cycle and (x^.x^) coexists. Further from

limh(x) = — e 2 \imh'(x) = 0x->l Pi x-y\

(B) 0-2I <^\ — d d> 1 d large
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theorem 1 and 2 it must also exist an interval Fe < F2< Fk where the coexistence is

between the 3-cycle and the invariant curve emerged from {x\,x^). This is exemplified in

Figure 5. At F2= F^ there is a global bifurcation which måkes the stable invariant curve

vanish, leaving the stable 3-cycle as the only stable attractor. The bifurcation occurs as

the 3 branches of unstable equilibria of g "hit" the invariant curve. Numerically wc have

shown this by frnding the point z on the invariant curve where x takes its maximum value

and verified that g(z) = z.

The route to chaos is not through period doublings, as in the above quoted papers.

Rather, by computing the eigenvalues of the Jacobian of g, wc have iound numerical

evidence that there exists a critical F2> F^ where the fixed points of g to through a Hopf

bifurcation establishing 3 invariant curves which are visited once every third iteration.

This is exemplified in Figure 6. Hence, in sharp contrast to the case a 2 < cni, wc have

demonstrated that a 2 a.\ leads to a qualitative finding of 3-cycles, either exact or

approximate in a large parameter region.

4 Three-Age Classes

By an ultimate application of the Jury criteria, see Murray [26], p. 704, on the eigenvalue

equation (11) (n = 3), it is clear that the fixed point {x\,x^,x*£) will be stable whenever

(P — P{y*))- First assume cy x + pa 2 = p 2a 3 . Then (28a), (28c) may be written as

Hyl > -r-1—pz a3 — ai
respectively. Thus the equilibrium is unstable at its creation in this case. a result which

easily may be extended to the parameter region

<%*)<— (28a)a 2

0 < <£(</*) < -I (28b)«1 + POL2

(ai -p a3 )ø(y ) < ; (28c)

<t>(y*) < -y—^p 2a 3 - aj

Of! + pa 2 < p 2a 3 (29)
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Assuming (29), in case of F 3 small, the only stable attractor found through numerical

experiments, is the age class extinguishing cycle

(30)

but in contrast to the two-age class study, A, B and C must be computed by means of

numerical methods. For the possibility of period doubling and chaotic dynamics, wc have

found the same qualitative behaviour as in the two-dimensional analysis.

—ooo—

Next, consider the parameter region

(31)

Then there exists a stable fixed point for <j>(y*) sufficiently small. If a.\ <C a2y (x^x^x^)

undergoes a (supercritical) nip bifurcation at the threshold

1
ø(y') (32a)

a 2

otherwise, the fixed point goes through a (supercritical) Hopf at the threshold

(32b)

Considering the latter situation first, the complex modulus 1 solutions of the eigenvalue

equations may be expressed as

(33)i

Assuming q-3 / 0 (the strongly resonant case), it is clear from (33) that there exists a

large parameter region where Å 1;2 are located close to the imaginary axis, thus there is also

here a strong indication of 4-periodical dynamics. In fact, several numerical simulations

suggest that the 4-periodicity is even more pronounced here than in the two-age class

model. For example, it is possible to find frequency locking into an exact 4-periodic orbit

also in the case a.\ < a-2 < a 3. This is shown in Figure 7.

(A, 0,0), (0,5,0), (0,0, C)

«1 + POL2> P2 «3

 * A p(«i +pa2 - 2p a 3)
VW = 7 , \7 2—\(a 1 +pa2 ){a l - p 2a3 )

p 2a 3
åi :2 — ±

ot\ + pa 2
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Unlike the corresponding two-age dass case, the route to chaos does not go through

period doublings, cf. [35]. Here wc have shown numerically by computing the Jacobian of

the fourth iterated map h = f o f o f o f that h undergoes a Hopf bifurcation as the exact

4-cycle fails to be stable. This extends the result in the simpler model studied by VVikan

34], Consequently, there exists a region in parameter space where the stable attractor

consists of 4 disjoint "circles" which are visited once in each "topological" 4-cycle. This

is exemplified in Figure 8.

—ooo—

11 «3  = 0, A = ±z at bifurcation threshold. Numerically, wc have verified that as

(æ*, x^ i ai' s to e stable, an exact small amplitude 4-periodical orbit is introduced.

Hence, the qualitative behaviour here is in many respects similar to what was found in

the corresponding strongly resonant case in the previous section. However, a computation

of the points in the cycle is out of reach.

Finally, in case of cc 2 large, the instability threshold is given by (32a). Thus there

exists a parameter region where a 2-cycle is the only stable attractor. However, this

region is very small since the composite g = f o f armost immediately undergoes a Hopf

bifurcation giving birth to 2 disjoint "circles". This is shown in Figure 9.

Hence, to summarize: Compared with the two-age class study, the tendency towards 4

periodical dynamics is even more pronounced here in 3 dimensions. The main difference is

the behaviour in case of large values of a 2. In the two-age class model wc found 3-periodical

dynamics either exact or approximate. Here the dynamics has a strong resemblance of
2 c veies.

5 Discussion

In chapter 3 and 4 wc showed that there exist parameter regions where the equilibrium is

unstable at its creation. Instead wc found the stable age class extinguishing 2-cycle (f 7)

in case of n = 2 and the corresponding cycle (.4, 0, 0), (0, B. 0), (0. 0. C) in case of n = 3.

Wc shall now extend these results.
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First, assume that n is even. Then by applying the Jury criterion (-l)P(X = — 1) > 0,

where P is the eigenvalue polynomial defmed in (11), it is straightforward to show that

(x*,..., x*) always is unstable at its creation in the region

(34)
J=l

Assuming n — 4, Eq. (34) does not necessarily imply that the age class extinguishing

4-cycle (A, 0, 0, 0), ..., (0, 0,0, D) is the only stable attractor in case of small F4 values.

Indeed a 4-cycle of the form (A, B, 0, 0), ..., (0, 0, C, D) is definitely also a possibility, but

this cycle as well as the other possibilities have all by means of numerical experiments

been found to be unstable, leaving the age class extinguishing cycle as the only stable

attractor. For a more thorough discussion of such cycles we refer to [36] where density

dependent fecundity and density independent survival terms are considered.

Next, assume n odd, Clearly 4> = 0 implies that all solutions Åo = ew , tp = 27rk/n,

k= 0, 1, ..., n—l of (11) are located on the unit circle. Further, in case of <p >0, ø small,

assume the expansion

This vields

Ai, the

sign ol the product

(35)

where * denotes complex conjugation) will decide

unit circle or not as the parameter o is increased.

eigenvalue will leave the

n-\
2^ < Pm-2 an

A = Åo + øAi H

i=2 I i=i I \j=i /
{ \^2 / J

Now, regarding the complex numbers A o , X\ as two-dimensional vectors A o and

/ \
11n I n

A o •\x = -(AO A~ + AqAi) = k ~ cosjif
j=i k=i

s complex coniugation) will decide whether an eie;envalu
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Now, assume (cf. (29))

(36)

Our goal is to show that the right hand side of (35) is positive under the restriction (36).

To this end suppose

Then (35) becomes

which clearly is positive. Hence, the fixed point (x^, ..., £*) is also here unstable at its

creation. Again, this does not actually prove that the age class extinguishing attractor

(-4,0, ...,0), ...(0, ...,O,iY) is the only stable cycle under the restriction (36), but as in the

case ot n odd, such a cycle is the only one found through numerical simulations.

—ooo—

In the rest of this section wc shall deal exclusively with the dynamics outside the

parameter regions defined in (34) and (36).

One oi our most significant results obtained from our two- and three-dimensional

analyses was that there exist large parameter regions where the dynamics is 4-periodical,

eit her exact or approximate. This is due to the fact that the eigenvalues cross the unit

circle close to the imaginary axis at bifurcation. Hence, wc are close to the strong reso

nance Å= ±i which occurs when a 2 =0, Qi oin the 2-dimensional case, and a 3 =0,

01\,012 7^ 0. in the 3-dimensional case.

Motivated by this. turning to 4-age classes, it is natural to search for a possible strong

resonance under the restriction a 4 — 0, at 0, i < 4. The corresponding eigenvalue

equation may now be east in the more simple form

(37)

n-1

J=l

= m > 1

n n

Xq •Ai = 2m n ~ l \ cos jtp — \ mJ ~ l cosjtp
r L i=i i=i J

ai (cos (p — rn)(l — mri )

p (1 — m cos Lp) 2 + (m sin Lp) 2 ]

A 4 + aiA3 + a 2A 2 + a 3 A +a4 = 0





where the coefficients at-, i< 4 may be obtained from (11). One of the Jury criteria which

iiiwst be satisfied in order to ensure that (x*, ...,^4) is locally stable, is

(1 - al) 2 - (a 3 - a4 ai)\ > |(1 - al)(a2 - a 4a 2 ) - (a3 - a4ai)(a1 - a 4a 3 )\ (38)

cf. Murray [26], and by applying this on (37) wc obtain ø < 0 which actually excludes the

possibility of a stable flxed point as well as a strong resonance.

From this wc conclude that the tendency towards 4-periodical dynamics must be much

less pronounced here than in the 2- and 3-dimensional cases. Further, since (38) is a Hopf

criterioD (it is easy to show (Jury) that the real solutions ol (37) in case ol cp > 0, 0

small, have modulus less than unity) the only possible dynamics in case of cf) small is

quasiperiodic orbits. This is exemplified in Figure 10.

For other values of the weight factors it is still possible to obtain a stable equilibrium.

For example, if q x = a-2 = a3 =a4 — a\ wc obtain from (38) that the fixed point is stable

whenever

but the real part of the corresponding modulus 1 eigenvalu.es at bifurcation is now positive

which clearly is different from the cases n = 2, n = 3, and again there is no sign of orbits

of linite period.

—000—

To investigate the case n > 4 wc may by assuming ø small use the same technique as

at the beginning of this section and once again appeal to formula (35).

Now, considering 5-age classes (n = 5), assuming k = 2, (35) may be written as

(40)

and in case of a, w aj and p sufficiently small, Ao • Ai > 0. Hence, the destabilizing effect

due to generation delay, cf. [23], [28], [29], [35] and [36] has now become so severe that

L6

1. „. I+bp -f 5p2 + fy?3 - a/1 + 12p 4- 14p3 +p4 - 4p5 + 4p6
) < ; (39)4(1 + p + p 2)

Ao •Ai= — - -fl- n/5 ) ( -a-i + p 2a 4 ) +7(1 + n/5 ) (a 2 + pa3 ) - p3 «5
o[4 v /\4 / 4 V /
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there is no stable equilibrium which is in contrast to the corresponding case in the 4-age

class inodel, cf. (39). Again, wc find that the dynamics is quasiperiodic in case of ø small.

Thus, vvhat these findings indicate is that outside the age class extinguishing parameter

regions (34), (36), orbits of finite periods, especially orbits of period 4, are restricted to two

and three-generation models. Further wc have demonstrated that the parameter region

which permits a stable fixed point shrinks as n is increased and finally that as n exceeds

3 the outcome is quasistationary behaviour in larger and larger parameter intervals.

—ooo—
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Appendix A

In this appendix we shall prove theorem 1 and theorem 2 in the main text.

First we consider the general map (13). From the main text, the eigenvalues

of the linearized map at bifurcation may be expressed as

1

a x F2
bi (A.l)al F2

V 1 0 )
(A.2)

which columns are the real and imaginary parts of the eigenvectors belonging to

(A.l).

Then, after expanding the second component of (13) up to third order, apply

ing the change of coordinates (xi,x 2 ) = {x\ — x\, x 2 — x*2 ) (in order to translate

the bifurcation to the origin) together with the transformations

( 13) may be east into standard form at the bifurcation as

(A.3)

where the nonlinear terms are

with

where b = J(a.\F2)2 — ot\-

Next, define the matrix

UH(:) (:Hi£)

(u\ I «^ \ / u \ //(„,„) \
{' ) _^ _^ [v ) + {g(u,v) )\ (XIF2 ot\F2 '

a-2 b , b 2.-, 1 ciob2  o 63 o
/(u,u) = - -f-^(y*)uv + — Av2 - - -±—p"(y*)uv2 + — £<; 3

g(u,v) = —f(u,v)

F2p'(,r) 2^ ly ' 3 F2pf(y)





4)

5)

6)

7)

Following Guckenheimer and Holmes [19] (theorem 3.5.2) defimng

(A

the bifurcation will be of the supercritical type whenever

-^-|A(o(y*)|>o (A

and that the stability coefficient

(A

in the normal form of (A. 3) is negative. Clearly, from (14) and (19):

Hence, the eigenvalues leave the unit circle at bifurcation.

Further, from (A. 3), (A.4) may (at bifurcation) be expressed as

{20

eO2

61

and tinally. by substituting into (A.6), wc have after some algebra

(A

L9

6o = i [(/u« -/™ + 2flfw ) + z(#uu - gyv - 2fuv )]

fil = i [(/«ti + /w) + lføu« + Øw)]

£()2 = I {{fun - fvv - 2guv) + ?'(V - 9vv + 2/w )]

V2l — j^g [\Juuu i Juvv i Quuv i Qvvv) i l\Quuu i Quvv Juuv JvvvJ]

a = -Re I (1 x A)A2 6i6o| ~ 2 ~ lU2 + Re(A6i)

j-\K^yl)\ = \^F2 >o

--^ Ub2A + ofaf) + ia2 fc(A - p')l4q;i l j
6.4 .

Fn = o— [o + ia2\
lai

-L[(b2A-alp') + ia2b(A + p')}

-^— \a2 b(p" - 6B) + iialp" + 662 5)16a x L

{b2 + og) f 2, 2 662 £ 2/2 q 2 6VA '
16a? F 2 a!F2 + a 2
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Wc are now ready to prove theorem 1 and theorem 2 in the main text.

Wc start with theorem 1 and consider the survival probability fimction

Now. in order to have a Hopf bifurcation at all. it follows from (19) that

(A.B)

Further, at bifurcation

(A.9)

and by using this expression in the computations of p\ A and B the stability

coefficient becomes

(A.10)

which clearly is negative under the restriction (A.B). Hence, theorem 1 is proved.

—ooo—

Repeating the analysis above for the function

in theorem 2 it is clear from (19) (see also Wikan [34]) that the Hopf bifurcation is

restricted to a > 2, and that the relation between the parameters at bifurcation

is:

(A.11)

The stability coefficient now becomes

(A.12)

where

p(y) = Pi(l--yy) lh

_ aiF-2
2(al F2 + a 2)

, i r 2( ai F2 + a 2)] lh _ i lhF 2aiF-2 F-2

D 2
a= - — {&2 (27 + 1)( 7 +1)+ «2 [«2 - l(aiF2 - a 2)}}

p(y) = a > 0
l+ya

p _1 aaiF2 J_
F 2 (a — 2)aiF2 — 2a 2 F 2

—<2#V + »)
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V = (a-l)b2G[{a-2)G + 3a]

W — aa2 (G —1) [{aa.2+ ct\F2 — a2 )G — aaiF2 ]

V > 0 for any a > 2. W > 0 for any (finite) a > 2 if o? = F2— a-2 /ai is sufficiently

small. Thus in this case a is clearly negative. W may become negative for large

values of d, but then, 6 > a.iF2 => V > \W\ => a < 0. This completes the proof

of theorem 2.
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Figure Captions

Figure 1. An exact 4-periodical orbit in the two-generation case. oc\ = a 2,

7 = -0.45, p(y) = Pl (l- 1y) 1 /\

Figure 2. The "4-periodical" attractor in the chaotic regime. 7 = —0.10. c*i

OL 2 .

Figure 5. Coexisting attractors in the case a t <C ol2 . Depending on the initial

condition the ultimate fate of an orbit is either a large amplitude exact

3-cycle or an almost 3-periodical orbit restricted on a small invariant curve.

Figure 6. 3 invariant curves which are visited once every third iteration. The

third iterate g of (21) has gone through a (supercritical) Hopf bifurcation.

ot\ < cx2 .

Figure 8. The map (^1,^2,^3) —> (F3 x 3l p(y)xi 1 p(y)x 2 ) after the secondary

Hopf bifurcation. ai < a 2 < «3.

Figure 10. A quasiperiodic orbit in the 4-generation case ai = 1, a 2 = a 3

a 4 =0.

Figure 3. The graph F2= h(x) = (1/ P1 )x^x+l^^-^ (Pi = 1.)

Figure 4. The map (21) in the chaotic regime, ai < a-2 .

Figure 7. An exact 4-periodical orbit in the 3-generation case c^ < a 2 < a 3.

Figure 9. 2-periodical dynamics in the 3-age class model. «! « a 2.
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