
1. Introduction
As a key climate change indicator, Arctic sea ice has been declining rapidly in the past few decades, especially in 
summer (Stroeve & Notz, 2018). This raises concerns as it has broad impacts on both local and global climate, 
ecosystems, and human society (Meier et al., 2014). Arctic sea ice loss brings challenges to local communities 
whose lifestyle heavily relies on sea ice and also attracts new economic activity (e.g., oil extraction, mining, 
and shipping). Subseasonal-to-seasonal predictions of Arctic summer sea ice have therefore become critical for 
stakeholder planning and decision making. Studies have shown that the current climate forecast systems are able 
to produce skillful predictions of pan-Arctic sea ice extent (SIE) (Chevallier et al., 2013; Merryfield et al., 2013; 
Peterson et al., 2015; Sigmond et al., 2013) and regional SIE (Bushuk et al., 2017; Dirkson et al., 2019; Sigmond 
et al., 2016). The actual prediction skill, however, is considerably lower than the models' potential predictability, 
which is partially due to the lack of knowledge of sea ice initial conditions (Bushuk et al., 2018).

The anomaly persistence and re-emergence (a rise in correlation after a initial drop with increased leading 
time) of sea ice concentration (SIC), volume (SIV), and upper ocean heat content are the major predictabil-
ity sources of Arctic sea ice (Blanchard-Wrigglesworth et  al.,  2011). While sea surface temperature (SST) 
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Plain Language Summary The dramatic decline of Arctic sea ice, especially in summer, has 
received a lot of attention. The ability to better predict Arctic summer sea ice several months ahead of time 
will help decision making on protecting local communities and ecosystems and regulating economic activities 
in the Arctic. Climate dynamical models have shown reasonable skill in predicting Arctic summer sea ice on 
seasonal timescales, but also contain considerable errors. Integrating observed sea ice thickness conditions 
into the model in the summer melt season has a large potential to reduce such errors. The prediction skill of 
summer Arctic sea ice initialized before June 1st is found to be notably lower than that initialized afterward, 
which is known as the spring predictability barrier. Hence constraining initial conditions post-June has great 
implications for summer Arctic sea ice predictions. This study combines a new year-round satellite sea ice 
thickness observational product with the sea ice and ocean dynamical model at GFDL and examines its impact 
on the seasonal prediction of Arctic sea ice. We find that the prediction skill has been improved in general, 
although some uncertainties exist due to the limited temporal availability of the observations.
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has been commonly assimilated into operational systems and proven to improve sea ice predictions (Bushuk 
et al., 2019; Dai et al., 2020; Kimmritz et al., 2019), the direct assimilation of sea ice observations is becom-
ing common in the past decade (e.g., Johnson et al., 2019; MacLachlan et al., 2015; Posey et al., 2015; G. C. 
Smith et al., 2016). The most commonly assimilated observation is satellite SIC because of its good spatial and 
temporal coverage. The assimilation of SIC has been shown to improve the modeled SIC significantly in differ-
ent model systems (Kimmritz et al., 2018; Lindsay & Zhang, 2006; Lisæter et al., 2003; Tietsche et al., 2013; 
Zhang et al., 2018, 2021). The benefits of SIC data assimilation (DA) on predictions of Arctic sea ice have been 
studied at sub-seasonal (e.g., Caya et al., 2010; Van Woert et al., 2004) and seasonal (e.g., Kimmritz et al., 2019; 
Massonnet et al., 2015) time scales. Zhang et al. (2022) conducted a comprehensive evaluation of SIC DA and 
showed that the subseasonal-to-seasonal predictions of Arctic summer sea ice are improved at both regional and 
grid-cell levels.

Compared to SIC, SIT satellite observations have more limited temporal coverage. Early SIT retrievals from 
IceSat-1 campaigns provided coverage in October–November and February–March over 2003–2008 (Kwok & 
Cunningham, 2008), whereas the more recent Soil Moisture and Ocean Salinity (SMOS; Tian-Kunze et al. (2014)) 
and CryoSat-2 (Laxon et al., 2013) satellites provide continuous winter SIT data from 2010–present, and the 
IceSat-2 satellite provides winter data from 2018–present (Petty et al., 2020). Several studies have shown that 
assimilating these winter satellite-retrieved SIT observations leads to improvements in the simulation of both 
SIC and SIT (Chen et al., 2017; Fritzner et al., 2019; Mu et al., 2018; Xie et al., 2016, 2018; Yang et al., 2014). 
Blockley and Peterson (2018) was the first study to demonstrate that by assimilating winter satellite SIT observa-
tions, the September Arctic SIE predicted from May 1st initialized reforecast experiments could be significantly 
improved compared to an experiment with no SIT assimilation. However, their improvement is mostly from 
the reduced model bias and did not assess the benefits of the observed SIT anomalies. More recently, studies 
assimilating winter SIT observations are shown to improve predictions of Arctic sea ice at subseasonal (Fiedler 
et al., 2022; Mignac et al., 2022) and seasonal (Allard et al., 2020; Yang et al., 2019) time scales. Due to the 
shortness of the data record, no studies have explored the potential benefits of SIT DA on improving predictions 
of SIE interannual variability.

Dynamical and statistical prediction systems have been found to consistently display an Arctic sea ice spring 
predictability barrier, in which forecasts initialized before June 1 have much lower skill than the forecasts initial-
ized after (Bonan et al., 2019; Bushuk et al., 2020; Zeng et al., 2023). Therefore, the conventional satellite-retrieved 
winter SIT observations are likely sub-optimal for improving summer Arctic sea ice predictions. J. C. Landy 
et al.  (2022) derived the first year-round Arctic SIT observations spanning 2011–2020 and showed a notable 
positive correlation between the observed pan-Arctic SIV in the melting season and summer SIE, which shows 
bright prospects for improving summer Arctic sea ice predictions.

Motivated by these potential prediction improvements, we have developed a sea ice data assimilation frame-
work with the GFDL sea ice–ocean model (MOM6/SIS2) and the Data Assimilation Research Testbed (DART). 
This study presents a methodology for joint assimilation of SIT and SIC in a multi-category sea ice model, 
and explores the additional benefit of SIT DA in Arctic sea ice summer predictions relative to a system that 
only assimilates SIC. We describe the data assimilation system and techniques in Section 2, present results in 
Section 3, and Discussion and Conclusions in Section 4.

2. Data and Methods
2.1. The GFDL SPEAR Prediction System

The Seamless System for Prediction and EArth System Research (SPEAR; (Delworth et al., 2020)), the current 
seasonal to decadal prediction system at GFDL, is used in this study. SPEAR uses the latest version of the GFDL 
atmosphere, land, ocean and sea ice models. The spatial resolution for ocean and sea ice models is 1° and has two 
options for atmosphere and land: 1° (SPEAR_LO) and 0.5° (SPEAR_MED). SPEAR_LO and SPEAR_MED 
have similar skill in predicting regional Arctic sea ice (Bushuk et al., 2022), so we use SPEAR_LO in this study 
considering the computational cost.

2.2. Assimilated Observations

We assimilate daily SIC retrievals from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor 
Microwave Imager/Sounder (SSMIS) sensors on the Defense Meteorological Satellite Program's (DMSP) 
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satellites, processed by the National Snow and Ice Data Center (NSIDC) using the NASA Team algorithm 
(Cavalieri et al., 1996).

We also assimilate year-round SIT observations retrieved from CryoSat-2 satellite measurements from J. C. 
Landy et al. (2022). They use a deep learning technique to discriminate melt ponds from open leads (Dawson 
et  al.,  2022), and retrieve freeboard from the radar altimetry observations of sea ice. The freeboard is then 
corrected for an electromagnetic range bias in the CryoSat-2 radar data and converted to SIT using snow depth 
data from the Lagrangian Snow Evolution Model (Liston et al., 2020). The original data is once every 2 weeks 
and has a spatial resolution of 80 km. We regrid the data to the SPEAR nominal 1° sea ice and ocean resolution 
and perform piecewise constant interpolation to get daily data. For example, the observed value on May 8th 
is  assigned to the dates from May 1st to May 15th, and the value on May 23rd is assigned to the dates from May 
16th to May 31st. To generate the initial condition for the June 1st forecast, the DA process stops at May 31st, 
in which no future data is used. The SIT anomalies (SITA) for each day are obtained by removing the 10-year 
climatology from 2011 to 2020. They are then added to the climatology from the SIC DA historical run to get the 
SIT data to be assimilated. The reason for assimilating SITA instead of SIT is stated in the next section.

Based on the validation exercise in Landy et al. (2022), the CryoSat-2 summer observations perform best in the 
seasonal ice zone, generally matching summers of especially high or low sea ice thickness observed by the Beau-
fort Gyre Exploration Program (BGEP) and AWI Laptev Sea Mooring arrays. Resolving such thickness anoma-
lies in the seasonal ice zone should enhance the skill of later SIC forecasts. The CryoSat-2 summer observations 
perform weakest directly north of Greenland and the Canadian Archipelagos, underestimating the thickness of 
sea ice measured by AWI airborne EM sensors. However, this region is currently ice-covered all year round, so 
has a lower impact on the skill of SIC forecasts.

2.3. Data Assimilation Framework and Experiments

Two data assimilation experiments using the GFDL MOM6/SIS2 model configured as in SPEAR_LO and 
forced by the JRA55do atmospheric reanalysis (Tsujino et  al.,  2018) are conducted to generate initial condi-
tions: SICDA_IC assimilates SIC observations only and SITDA_IC assimilates both SIC and SITA observations. 
Observations are assimilated every 5 days from 2011 to 2020. The DA frequency of every 5 days is chosen to 
match our earlier SIC DA study (Zhang et al., 2021), which considers the computational cost. The daily SIC 
and SIT data (interpolated) are assimilated. The baseline experiment SSTrest_IC does not assimilate any sea 
ice observations but otherwise shares the same configuration with the DA experiments. In all the initialization 
experiments, SST is nudged toward daily Optimum Interpolation Sea Surface Temperature (OISST; Reynolds 
et al. (2007)) where observed SIC is lower than 30% (Lu et al., 2020).

The Ensemble Adjustment Kalman Filter (EAKF; Anderson (2001)) is applied to assimilate observations. We 
perturb sea ice model parameters to generate 30 ensemble members of MOM6/SIS2, from which the background 
error covariance is calculated. In addition to the ice strength and albedo parameters that are perturbed in Zhang 
et al.  (2021), the snow conductivity parameter is also perturbed, which increases the ensemble spread of SIT 
and was found to improve assimilation performance. The ice strength parameter P* from Hibler (1979) follows 
a uniform distribution between 20,000 and 50,000 Nm −2 (the default value is 27,500 Nm −2). The albedo param-
eters of snow Rsnw, ice Rice, and pond Rpnd from Briegleb and Light (2007) follow a random uniform distribution 
between −1.6 and 1.6 standard deviations (the default value is 0). The snow conductivity follows a uniform 
distribution between 0.2 and 0.5 Wm −1 K −1 (default value is 0.31 Wm −1 K −1). The half-width of the localization 
radius is 0.03 radians (∼190 km) for SIC DA and 0.1 radians (∼550 km) for SIT DA, considering their different 
correlation length scales (Blanchard-Wrigglesworth & Bitz, 2014; Ponsoni et al., 2020). The SIC observational 
error is 10%, constant temporally and spatially, and the SITA observational error varies monthly based on the 
spatial-mean of the J. C. Landy et al. (2022) SIT uncertainty (Figure S1 in Supporting Information S1). The state 
variables updated by SIT DA are the SIC and SIT of each ice thickness category (SICN and SITN, respectively). 
SICN is the only variable that is updated by SIC DA due to the erroneous updates on SITN from SIC DA in some 
locations. An example is shown in Figure S2 in Supporting Information S1, where some ensemble members have 
ice in the fifth category (>1.1 m) and their SIT5 is above 1.1 m, while other ensemble members do not have ice 
in this category. This bounded and nonlinear feature of SITN leads to a skewed relationship between the observed 
SIC and the state variable SIT5 and causes unrealistic updates on SITN. Updating SITN by SIC DA is also not 
recommended by previous studies (Kimmritz et al., 2018; Zhang et al., 2018, 2021) for similar reasons.
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Three suites of reforecast experiments, SSTrest, SICDA and SITDA, using the SPEAR seasonal prediction 
system, are initialized on the first day of May, June, July, August, and September and run as 15-member 1-year 
ensemble forecasts. The experiments share the same initial conditions in the atmosphere, land and ocean compo-
nents, which are taken from the standard SPEAR_LO prediction system (Lu et al., 2020). SSTrest uses sea ice 
initial conditions from SSTrest_IC, SICDA from SICDA_IC, and SITDA from SITDA_IC. More detailed infor-
mation about the SPEAR reforecast configurations can be found in Zhang et al. (2022).

We decide to assimilate SITA instead of SIT mainly for two reasons. First, the model has a very different clima-
tology from CryoSat-2 (Figures S3a and S3c in Supporting Information S1). We find that directly assimilating 
SIT reduces modeled SIT in the first few DA cycles in some grid cells and triggers thickness-based ice albedo 
feedback that further melts sea ice in those locations (figure not shown). Second, there is a large decrease in 
SIT from June to July in the observational data (Figure S3c in Supporting Information S1), which is caused by 
a sudden reduction in snow depth therefore unrealistically rapid unloading of snow load from the ice. However, 
the high anomaly correlation between SIV in the melting season and September SIE (J. C. Landy et al., 2022) 
suggests that the SITA observations contain valuable information for seasonal prediction.

While assimilating the anomaly field circumvents the problems that come with big climatology differences 
between the model and the observation and has shown promising results in reanalysis (Kwon et al., 2022), it 
does not necessarily improve predictions (e.g., Galanti et al., 2003; D. M. Smith et al., 2013; Weber et al., 2015). 
More studies are needed to better assess the advantages and disadvantages of anomaly field and full field DA. 
This study represents the first attempt to assimilate anomaly field in sea ice DA and provides insights on how SIT 
anomaly DA impact seasonal predictions of Arctic summer sea ice.

2.4. Evaluation Metrics

We use the anomaly correlation coefficient (ACC) with observations to evaluate the model performance. 
Although the summer Arctic sea ice cover has declined notably in the past few decades, it does not have an 
obvious trend during our experiment time period (2011–2020). Therefore, we do not remove the trend of the time 
series when calculating ACC. To test if two ACC values, ACC1 and ACC2, are significantly different, we apply a 
bootstrap procedure to get 1000 random samples (with replacement) of their ACC difference. If ACC1 is greater 
than ACC2, and the lower bound (5%) of the bootstrapped distribution of their difference is greater than zero, then 
we say ACC1 is significantly greater than ACC2, and vice versa. To compute an average ACC over time or space, 
we apply the Fisher-z transform to each correlation coefficient to get their z values, average the z values, and then 
apply an inverse transform to obtain the averaged correlation coefficient.

3. Results
3.1. Assimilation of SIT Anomaly Observations

We first analyze the time series of pan-Arctic SIV from SICDA_IC and SITDA_IC and compare it with CryoSat-2 
(the CyoSat-2 SIT observations are multiplied by the NSIDC SIC observations to get SIV; Figure 1a). SICDA_IC 
can sometimes capture the sign of the SIV anomalies but fails to capture the interannual and seasonal variabil-
ity, while SITDA_IC does a much better job at tracking the observed anomalies. The ACC of pan-Arctic SIV is 
increased from 0.46 to 0.89 due to the assimilation of SITA. The lag of SIV anomalies in SITDA_IC as compared 
to CryoSat-2 is mostly due to the 5-day DA cycle. The lag is largely reduced in an experiment with daily DA 
frequency (plot not shown). Looking at the ACC of SIV at grid-cell level, Figure  1b shows that SICDA_IC 
simulates the SIV variability along the sea ice edges well, where the SIC component dominates the SIV varia-
bility. Conversely, SICDA_IC has zero or negative correlation with CryoSat-2 in the ice-covered Central Arctic, 
where SITDA_IC shows much higher ACC (Figure 1c). The correlation difference map (Figure 1d) confirms that 
SITDA_IC has similar ACC values to SICDA_IC in the marginal ice zones, and its major improvement is found 
in the Central Arctic. SSTrest_IC shows very similar SIV variability to SIC_IC (r = 0.46; not shown), which is 
expected since SIC DA has little impact on pan-Arctic SIV anomalies as stated in Zhang et al. (2021).

3.2. Impact of SIT on Seasonal Predictions

We first evaluate the ACC of grid-cell SIC and SIE averaged over the Arctic for the target month of September 
from the three suites of reforecast experiments (Figure 2). The evolution of skill as a function of forecasting days 

 19448007, 2023, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
105672 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [04/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

ZHANG ET AL.

10.1029/2023GL105672

5 of 12

from different experiments follows a similar pattern in both metrics (Figures 2a and 2c). SICDA and SITDA have 
an initial advantage over SSTrest (dashed lines) in the first month. SICDA (thin solid lines) has higher ACC than 
SITDA (thick solid lines) in the first ∼10 days in the July–to–September initialized experiments and gradually 
shows lower ACC than SITDA as the forecasting day increases. To focus on the September-targeted forecast, 
SITDA is better than SICDA in the May-to-August initialized forecasts, but the improvement is only significant 
in the July and August initialized forecasts (Figures 2b and 2d). SICDA is significantly more skillful than SITDA 
for September 1 initialized forecasts of SIC, and their skill is similar for local SIE. The mean skill of local SIC 
(SIE) averaged over all the initialization dates is 0.3(0.42) for SSTrest, 0.35(0.47) for SICDA, and 0.42(0.51) for 
SITDA. This suggests that the forecast skill of September local SIC and SIE is gradually improved by adding each 
observation, and the improvement from adding SIT DA is similar to the improvement from the SIC-only DA.

Figure 1. Comparison between the two DA experiments. (a) The time series of sea ice volume anomalies for SICDA_IC 
(blue), SITDA_IC (red), and observations (black). The spatial map of the ACC of simulated and observed SIV for (b) 
SICDA_IC, (c) SITDA_IC, and (d) their difference (SITDA_IC—SICDA_IC). The black contours on (d) are the observed 
SIE climatology over 2011–2020.
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Figure 3 shows the spatial map of the reforecast skill of all experiments. The skill from SSTrest and SICDA is 
negligible in the May-initialized runs and starts to emerge along the sea ice edge in June. SICDA has higher ACC 
than SSTrest, mostly along the sea ice edges, for the September-initialized forecast (also shown in Figure 2b). 
SITDA overall shows more positive ACC values (Figure 3c) across the whole Arctic than SSTrest and SICDA. 
The difference map between SITDA and SICDA (Figure 3d) highlights the skill improvement from adding SIT 
DA, which is most prominent in the Central Arctic and Fram Strait from the May-to-August initialized forecasts. 
Degradation is seen around the Chukchi Sea and part of the Beaufort in those months, especially in the May- and 
June-initialized forecasts. The skill differences in the September-initialized forecasts is minor across the Arctic 
but overall SICDA has better SIC skill than SITDA. This is because SICDA_IC has better SIC anomalies, which 
is the main source of predictability for September-initialized forecasts.

To understand the differences in September SIC prediction skill across the reforecast experiments, we analyze 
the correlation between observed September SIC and the earlier SIV in their initial conditions, as a diagnostic 
for potential SIV-based predictability (Figure 4). SSTrest_IC and SICDA_IC have very similar SIV-SIC corre-
lation on the first day of May, June, and July, with SICDA_IC showing slightly higher values than SSTrest_IC, 
thereafter. We find that the correlation is mostly positive along the sea ice edge in SICDA_IC and negative 
in the Central Arctic (except for the region around the pole) until September (Figure 4b). The correlation in 
CryoSat-2 (Figure 4d) has similar positive patterns near the ice edge but has more positive values in the Central 
Arctic, which leads to overall higher pan-Arctic averaged values (see text on each panel). SITDA_IC has higher 
pan-Arctic averaged correlation than CryoSat-2 for May, June, July, and August (Figure 4c), indicating that it 
combines the advantages of the model and both observation types. Figure 4e, which plots the correlation differ-
ences between SITDA_IC and SICDA_IC, shows notable improvements from SIT DA in the Central Arctic 
and the Greenland-Iceland-Norwegian (GIN) Seas. The differences are statistically significant for all months. 
However, degradation is seen in the Chukchi Sea and part of the Beaufort Sea, where SICDA_IC has neutral or 

Figure 2. Pan-Arctic averaged ACC of (a) local SIC and (c) local SIE as a function of forecast days, and the September-mean 
ACC of (b) local SIC and (d) local SIE from each initialization month. Prediction skill is shown for the SSTrest (dashed 
lines), SICDA (thin solid lines), and SITDA (thick solid lines) reforecast experiments. For each grid cell, the local SIE is one 
if SIC >15% and zero if SIC <15%. ACC is calculated every day of the year using data from 2011 to 2020. Only grid cells 
that have >10% SIC interannual variability are taken into average for each day. The purple dots/circles in (b, d) indicate that 
SICDA is significantly better/worse than SSTrest, and the red dots/circles that SITDA/SICDA is significantly better than 
SICDA/SITDA. The numbers in (b, d) indicate the mean ACC over all the initialization months for SSTrest (blue), SICDA 
(purple), and SITDA (red).
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slightly positive correlation but CryoSat-2 has negative correlation for May, June, and July. As a consequence, 
SITDA_IC has negative correlation values around the Chukchi Sea for those initialization dates. This is important 
for seasonal sea ice prediction because the September SIE contour is typically located over this region of anti-
correlation in the Chukchi Sea (Figure 4e). The difference map of the SIV-SIC correlation shows a very similar 
pattern to the skill difference map between SITDA and SICDA (Figure 3d), with prominent improvements seen 
in the Central Arctic and degradation around the Chukchi and Beaufort Seas. Their pattern correlations for all 
months are significantly positive, and are above 0.5 for the months of May, June, and July. This suggests that 
improvement/degradation in prediction skill is more likely to appear in regions where the SIV-SIC correlation is 
improved/degraded, especially at long lead times.

To assess if the negative SIV-SIC correlation is unique over the CryoSat-2 era 2011–2020, we first look at 
correlation maps computed over different decades from the SICDA_IC experiment, which was run over a longer 
period of 1991–2020 due to observational availability (Figure S4 in Supporting Information S1). We find that the 
negative regions of SIV-SIC correlation are only present in some decades and are not present over the longer time 
period (30 years). For instance, Arctic-averaged correlation between June SIV and September SIC was 0.4 in the 
2000s compared to 0.05 in the 2010s. We also performed a similar analysis using a large (30 member) ensem-
ble of SPEAR_LO Coupled Model Intercomparison Project Phase 6 (CMIP6) historical forcing simulations 
(Delworth et al., 2020). Although the ensemble mean shows a homogenous positive SIV-SIC map, the correlation 

Figure 3. Correlation between the observed September SIC and the forecasted September SIC initialized from May to 
September from (a) SSTrest, (b) SICDA, (c) SITDA, and (d) the difference between the two DA-initialized reforecast 
experiments (SITDA—SICDA). The number on each plot is the pan-Arctic area-weighted average of SIC ACC excluding the 
grid cells where the observed SIC interannual standard deviation is lower than 10% or there is no observation. The numbers 
with asterisk on (d) indicate that the differences between SITDA and SICDA passed the 95% significance test. The black lines 
on (d) indicate the 2011–2020 mean of the observed September sea ice edge.
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values vary greatly amongst members (Figure S5 in Supporting Information S1). Regions of negative SIV-SIC 
correlation are seen in most ensemble members in varying spatial locations. We calculate the percentage of area 
that has negative SIV-SIC correlation values from different experiments (Table S1 in Supporting Information S1) 
and confirm that the SPEAR_LO ensemble has a large range of negative area. All DA experiments are within this 
range, as well as the CryoSat-2 observations, which always have less negative area than SICDA_IC. This indi-
cates that the SIV-SIC correlation computed over a 10-year period has a large natural variability, and the negative 
values seen in CryoSat-2 are within this variability. According to the CryoSat-2 observations, the negative values 
for the 2010s are located around the Chukchi Sea. It is also possible that the CryoSat-2 observations have errors in 
this area. Figure S1 in Supporting Information S1 shows that the CryoSat-2 observations have large uncertainties 

Figure 4. Correlation between the observed September SIC and SIV from the 1st day of May, June, July, August, and 
September for (a) SSTrest_IC, (b) SICDA_IC, (c) SITDA_IC, and (d) CryoSat-2, and (e) the difference between the two DA 
experiments (SITDA_IC—SICDA_IC). The correlation is calculated for every day in September and is then averaged over 
30 days. The number on each map is the pan-Arctic area-weighted average correlation excluding the grid cells where the 
observed SIC interannual standard deviation is lower than 10% or there is no observation. The numbers with asterisk on the 
maps in (e) indicate that the differences between SITDA_IC and SICDA_IC passed the 95% significance test. The numbers 
above each map in (e) are the pattern correlations between (e) and Figure 3d and the asterisk indicates that the correlation is 
95% significantly positive. The black lines on (e) indicate the 2011–2020 mean of the observed September sea ice edge.
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in summer. We decompose the SIV-SIC correlation from CryoSat-2 into the freeboard-SIC and snow depth-SIC 
correlations and find that negative values are found in both of the component correlations as well. Further investi-
gations into the freeboard retrieval and snow depth estimates are necessary to understand the cause of the negative 
SIV-SIC correlations but it is outside the scope of this study.

We also evaluate the forecast skill of regional SIE and correspondingly examine the correlation between the 
observed September SIE and earlier SIV. SITDA shows better skill than SICDA in the Laptev and East Sibe-
rian Seas (Figures S6a and S6b in Supporting Information S1) and worse skill in the Chukchi Sea (Figure S6c 
in Supporting Information S1) and mostly better skill than SICDA in the Canadian Archipelago (Figure S6e 
in  Supporting Information S1). The improvement/degradation in the overall forecast skill can mostly be  explained 
by the improvement/degradation in their regional SIV-SIE correlations. SICDA_IC matches well with the obser-
vations in the Laptev and Beaufort Seas (Figures S6a and S6d in Supporting Information  S1) and performs 
poorly in the East Siberian Sea (Figure S6b in Supporting Information S1), where the SITDA_IC shows the 
greatest advantage. The observed SIV-SIE correlation in the Chukchi Sea drops abruptly from August to July 
and is even negative in June and earlier. This is also where the negative local SIV-SIC correlation exists in 
Figure 4c. As suggested in Figure S4 in Supporting Information S1, this is likely unique to the 2010s, when 
the SIV-SIE/SIC correlation is disrupted by other factors, for example, storms happening in the western Arctic 
during the melting season (Lukovich et al., 2021; Parkinson & Comiso, 2013). This negative correlation does not 
appear in the Chukchi Sea in SICDA_IC, except for the July lead (Figure S4c in Supporting Information S1) and 
hence assimilating CryoSat-2 actually reduces the SIV-SIE correlation significantly in this region (Figure S6c 
in Supporting Information S1). The results for the pan-Arctic SIE are more equivocal (Figure S6f in Supporting 
Information S1), in that although SITDA_IC has higher SIV-SIE correlation values than SICDA_IC on all initial-
ization dates (compare solid red to solid blue lines), we only see significant improvements in the August and 
September-initialized forecasts and significant degradation in the June-initialized forecast (compare red and blue 
dots). Also note that the pan-Arctic SIV-SIE correlation values for CryoSat-2 are a bit lower than those shown in 
Figure 3c in J. C. Landy et al. (2022) due to several differences in how the correlation is calculated for the pan 
Arctic (Text S1 in Supporting Information S1).

To better understand the June forecast skill in SITDA and SICDA, we compare the SIV-SIE and SIE-SIE corre-
lations at pan-Arctic scale in their initial conditions (i.e., SITDA_IC and SICDA_IC) from 2011 to 2020 (Figures 
S7a and S7b in Supporting Information S1) and find that the SIE-SIE correlation has a local maximum near 
mid-June after the initial drop from September, which is even greater than the SIV-SIE correlation. This feature 
is not seen in the longer time period (Figure S7c in Supporting Information S1). The comparison between Figures 
S7b and S7c in Supporting Information S1 suggests that the June SIV-SIE correlation is abnormally low and 
the June SIE-SIE correlation is abnormally high in the 2010s compared to their values in the climatology. This 
feature may help explain why the pan-Arctic June SIV is not a strong predictor of the pan-Arctic September SIE 
in the 2010s.

4. Discussion and Conclusions
In this study, we assimilate the first year-round sea ice thickness (SIT) observations retrieved from the CryoSat-2 
satellite radar altimeter into the GFDL ocean and sea ice model (MOM6/SIS2) through our sea ice data assimi-
lation framework built upon DART and SIS2. Considering that our model has a very different SIT climatology 
from CryoSat-2, and the observations have an unrealistically fast mean thickness drop from June to July due to 
problems in the snow depth estimates, we assimilate the SIT anomalies (SITA) instead of the original SIT. To 
counteract the large uncertainty in SIT retrievals resulting from snow depth uncertainty, we plan to directly assim-
ilate freeboard retrievals from CryoSat-2 in the near future.

Our DA results over the period 2011–2020 show that the pan-Arctic and regional sea ice volume anomalies are 
significantly improved when SIT is assimilated. The grid-cell scale evaluation shows that the improvements occur 
mainly in the Central Arctic. We conduct three suites of reforecast experiments, SSTrest that has no direct sea ice 
DA in initialization, SICDA that includes assimilation of SIC, and SITDA that has joint assimilation of SIC and 
SIT. The evaluation of grid-cell SIC and SIE shows that SITDA has better skill in predicting September sea ice 
than SICDA in the May to August-initialized forecasts, although only the July and August-initialized forecasts 
have passed the 95% significance test. The skill improvement is mostly found in the Central Arctic and GIN Seas. 
Degradation is seen around the Chukchi Sea, part of the Beaufort and East Siberian Seas. The mean skill averaged 
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over all initialization months for the three experiments suggest that the additional improvement on September sea 
ice forecast brought by SIT DA is comparable to SIC-only DA.

We hypothesize that the skill improvement from assimilating SIT is mainly due to the SIV-based predictability 
change. We analyze the correlation between September SIC and earlier SIV in the different initial conditions 
for diagnosis. The SIV-SIC correlation difference between SITDA and SICDA initial conditions closely mirrors 
the September SIC prediction skill differences between these experiments. CryoSat-2 has a region of nega-
tive SIV-SIC correlation around the Chukchi Sea. As a result of assimilating CryoSat-2 SITA, SITDA_IC has 
negative SIV-SIC correlation values around the same area, while it has higher SIV-SIC correlation values than 
SICDA_IC almost everywhere else, especially in the Central Arctic. We compute the SIV-SIC correlation in 
different decades using the SICDA initial conditions and find that the correlation is positive across the whole 
Arctic over a longer time period (30 years) but can have negative values in some decades. We also show this nega-
tive SIV-SIC correlation feature is seen in most ensemble members of SPEAR_LO, at varying spatial locations, 
which suggests that the SIV-SIC correlation has a large natural variability and there is not an obvious single or 
set of regions where we can choose to discard the observations. On the other hand, it is also possible that the 
CryoSat-2 observations have errors around the Chukchi Sea, and assimilating these data causes lower September 
SIC forecast skill in the area. Further observational studies are needed to assess and potentially improve the qual-
ity of the CryoSat-2 observations on a regional basis.

The pan-Arctic SIE results are more complicated. Although the SIV-based predictability of September SIE is 
clearly improved in the initial condition of SITDA in all months, statistically significant improvement in the 
actual September sea ice skill is only seen in the August- and September-initialized forecasts. SITDA shows lower 
skill than SICDA significantly in the June-initialized forecast, which is very likely due to the disrupted SIV-SIC 
correlation in the Chukchi and Beaufort area and to the enhanced impact (”bump”) of June SIC correlations in 
the 2010s.

Our results are limited by the length of the available SIT data, and hence should be interpreted with caution. 
The September Arctic sea ice in the 2010s decade is found to be particularly hard to predict at longer lead times 
because it seems to have a weaker correlation with its dominant predictor: the SIV anomaly in the melt season. 
In SICDA experiments the SIV-SIC correlations are significantly weaker in the 2010s compared to the 2000s. 
Nevertheless, we find unique value of the CryoSat-2 SIT observations for improving the Arctic summer sea ice 
prediction at longer lead times. Our study therefore suggests that having a longer record of satellite-retrieved SIT 
observations is critical for the seasonal prediction of Arctic summer sea ice due to the large interannual variability 
of the SIV-SIC correlations.

Data Availability Statement
Our model outputs including sea ice thickness and concentration from the data assimilation experiments and the 
reforecast experiments are shared at (Zhang, 2023). The year-round CryoSat-2 sea ice thickness observations can 
be downloaded at (J. Landy & Dawson, 2022). The NSIDC NASA Team sea ice concentration observations can 
be downloaded at (DiGirolamo et al., 2022).
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