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Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional
networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration
in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high
field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in
healthy adult males and females with a fully data-driven approach. We revealed that spontaneous neural activity in subcorti-
cal regions can be decomposed into multiple independent subsignals that correlate with, or “echo,” the activity in functional
networks across the cortex. Distinct subregions of the thalamus, striatum, claustrum, and hippocampus showed a varied pat-
tern of echoes from attention, control, visual, somatomotor, and default mode networks, demonstrating evidence for a heter-
ogeneous organization supportive of functional integration. Multiple network activity furthermore converged within the
globus pallidus externa, substantia nigra, and ventral tegmental area but was specific to one subregion, while the amygdala
and pedunculopontine nucleus preferentially affiliated with a single network, showing a more homogeneous topography.
Subregional connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal gray, and locus
coeruleus did not resemble patterns of cortical network activity. Together, these finding describe potential mechanisms
through which the subcortex participates in integrated and segregated information processing and shapes the spontaneous
cognitive dynamics during rest.
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Significance Statement

Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional mapping of subcortical
structures severely lags behind that of the cortex. Recent developments in subcortical atlasing and imaging at ultra-high field
provide new avenues for studying the intricate functional architecture of the human subcortex. With a fully data-driven analy-
sis, we reveal subregional connectivity profiles of a large set of noncortical structures, including those rarely studied in fMRI
research. The results have implications for understanding how the functional organization of the subcortex facilitates integra-
tive processing through cross-network information convergence, paving the way for future work aimed at improving our
knowledge of subcortical contributions to intrinsic brain dynamics and spontaneous cognition.

Introduction
A large body of research in the past decades has focused on
descriptions of the macroscopic organization of the human brain
in terms of intrinsic functional connectivity (FC) and its role in
orchestrating cognition and behavior (Damoiseaux et al., 2006;
W. H. Lee et al., 2019; Liégeois et al., 2019). The integration of
distributed, functionally specialized brain networks is thought to
be essential, especially for higher-level cognition and conscious-
ness (Senden et al., 2014; Bell and Shine, 2016). With a variety of
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methods, specific sites for network convergence have been iden-
tified in the posterior cingulate cortex (PCC), anterior cingulate
cortex, and the posterior parietal cortices (Tomasi and Volkow,
2011; Bell and Shine, 2015; Lyu et al., 2021), revealing an ensem-
ble of transmodal regions in the cortex that enable efficient
global communication (Van der Heuvel and Sporns, 2011;
Grayson et al., 2014). With a novel multivariate approach, it was
revealed that subtle signals from functionally specialized subdivi-
sions within these regions have connectivity profiles that mirror,
or “echo,” the activity of different networks, potentially indicat-
ing a mechanism through which they facilitate cross-network in-
formation integration (Leech et al., 2012; Braga et al., 2013;
Braga and Leech, 2015).

Although this work has provided important insights, the
dominating corticocentric view overlooks potential contributions
from the highly diverse and interconnected structures in the sub-
cortex (Bell and Shine, 2016; Forstmann et al., 2017; Tian et al.,
2020). This knowledge gap is likely related to the challenges asso-
ciated with visualizing the subcortex using conventional MRI
because of the varied magnetic tissue properties and generally
weaker signal-to-noise ratio (SNR) compared with the cortex
(De Hollander et al., 2017; Keuken et al., 2018). Nonetheless,
many subcortical structures are part of extensive cortico-subcort-
ical circuitry and demonstrate widespread FC to networks,
including the default mode network (Haber, 2003; Bär et al.,
2016; T. W. Lee and Xue, 2018; Ji et al., 2019; Li et al., 2021).
Compared with the smaller subcortical nuclei in the deep brain,
larger structures, such as the thalamus (Tha) and striatum (Str),
have received a relatively high amount of attention, establishing
their hub-like properties and roles in integrative processing
(Choi et al., 2012; Jarbo and Verstynen, 2015; Hwang et al., 2017;
Greene et al., 2020; Seitzman et al., 2020; Cheng and Liu, 2021).
However, most of the subcortex remains underrepresented in
human fMRI studies, and the majority of available evidence is
based on lower field strength (3 Tesla), often combined with
extensive spatial smoothing, both of which limit the spatial reso-
lution needed to resolve smaller nuclei and increase the risk for
signal blurring (De Hollander et al., 2015; Forstmann et al.,
2017).

Because of these shortcomings, the functional architecture of
the subcortex and its role in integrative processing remain poorly
understood. Given that subcortical dysfunction is heavily impli-
cated in a wide range of neuropsychiatric diseases, advancing
this knowledge may be vital for our understanding of healthy
cognitive functioning as well as improving disease models.
Charting the topography of network echoes within the subcortex
provides a compelling approach to accomplish new insights into
the subcortical contributions to whole-brain communication
and higher-level cognition. Following previous work (Leech et
al., 2012; Braga et al., 2013), we define an echo as a unique subre-
gional connectivity profile that traces the activity pattern of a
functional network. By leveraging recent advances in automated
parcellation algorithms and sensitive fMRI protocols for the sub-
cortex at ultra-high field (Bazin et al., 2020; Miletic et al., 2020),
we aim to extend the previously established multivariate echo
analysis to a large set of subcortical structures, including those
rarely studied with human fMRI: the Tha, Str, globus pallidus
externa (GPe), globus pallidus interna (GPi), subthalamic nucleus
(STN), claustrum (Cl), hippocampus (HPC), amygdala (Amg), sub-
stantia nigra (SN), red nucleus (RN), ventral tegmental area (VTA),
locus coeruleus (LC), periaqueductal gray (PAG), and pedunculo-
pontine nucleus (PPN). Similar to findings for the cortex, we expect
that subcortical structures organized to facilitate multinetwork

integration demonstrate a heterogeneous subregional to-
pography of intrinsic echoes from separate functional net-
works, which are likely hidden with previous univariate
connectivity analyses.

Materials and Methods
Participants. The study was approved by the Ethics Review Board of

the University of Amsterdam and the Regional Committees for Medical
and Health Research Ethics in Norway. Forty healthy adults between 19
and 39 years old (21 female, mean age¼ 26.5 years, SD¼ 5.5 years) were
recruited from the general population in Norway and screened for MRI
compatibility. Exclusion criteria were self-reported (history of) neuro-
logic or psychiatric disease, impaired vision, or any contraindications for
MRI, such as metal implants. Written informed consent was obtained
from all participants before data collection. All materials, code, and
unthresholded group-level statistical maps from multivariate as well as
(supplementary) univariate connectivity analyses are publicly available
in an Open Science Framework repository at https://osf.io/wt3uc.

fMRI acquisition and preprocessing. Neuroimaging data were col-
lected with a Siemens MAGNETOM Terra 7 Tesla (7 T) system with a
32-channel phased-array head coil. Structural images were obtained
with a MP2RAGE sequence (Marques et al., 2010) in 224 sagittal sli-
ces at 0.75 mm isotropic voxel resolution (TR¼ 4300 ms; TI1,2 ¼ 840,
2370ms; flip angles1,2 ¼ 5, 6°; TE¼ 1.99ms; FOV¼ 240� 240� 168
mm). Functional images were acquired using a gradient EPI sequence
with a voxel resolution of 1.5 mm isotropic (82 transverse slices per
volume; TR¼ 1380 ms; TE¼ 14 ms; flip angle¼ 60°; in-plane acceler-
ation factor (GRAPPA) ¼ 3; multiband acceleration factor¼ 2; partial
Fourier¼ 6/8). An additional EPI sequence with opposite phase-
encoding direction was performed for susceptibility distortion cor-
rection purposes. Heart rate and respiratory data were acquired with
a fingerclip and waistband, respectively, to correct for physiological
noise, which is especially prominent in the subcortex.

MR images were preprocessed with fMRIPrep (version 20.2.6)
(Esteban et al., 2019) in the Nipype framework (Gorgolewski et al.,
2011). The structural (T1-weighted) scan was corrected for intensity
nonuniformity with N4BiasFieldCorrection (ANTs version 2.3.3)
(Tustison et al., 2010) and skull-stripped with antsBrainExtraction
using the OASIS30ANTs target template. Brain tissue segmentation
of CSF, white matter, and gray matter was performed with FAST (FSL
version 5.0.9) (Zhang et al., 2001). For each of the two resting-state
runs, a reference volume and its skull-stripped version were gener-
ated. A fieldmap based on the EPI references with opposing phase-
encoding directions was calculated with 3dQwarp (AFNI) (Cox,
1996), and susceptibility distortion correction was applied to the EPI
reference before coregistration to the T1-weighted reference using
the boundary-based registration cost-function in bbregister with 6
degrees of freedom (FreeSurfer) (Greve and Fischl, 2009). Head-
motion parameters (rotation and translation) were estimated with
MCFLIRT (FSL version 5.0.9) (Jenkinson et al., 2002), and slice-time
correction to half of the acquisition range (0.674 s) was performed with
AFNI’s 3dTshift. Following fMRIPrep, data were spatially smoothed
with a FWHM Gaussian kernel of 1.5 mm using SUSAN (S. M. Smith
and Brady, 1997) and denoised with a first-level GLM in FEAT
(Woolrich et al., 2001) that included fMRIPrep-derived confound
regressors, including the following: mean signal in CSF and white mat-
ter, framewise displacement, six rotation and translation parameters,
and discrete-cosine transform basis functions to model low-frequency
scanner drifts. In addition, cardiac and respiratory sources of nuisance
were based on acquired physiological data and modeled with
RETROICOR (Glover et al., 2000) using the MATLAB PhysIO toolbox
(Kasper et al., 2017) in TAPAS (Frässle et al., 2021). For one subject
with missing physiological data, the same number of fMRIPRrep’s ana-
tomic component-based noise correction (aCompCor; Behzadi et al.,
2007) regressors were entered in the model instead. The modeled data
were obtained via linear regression and normalized. Finally, the two resid-
ual runs were concatenated and registered to the ICBM 152 Nonlinear
Assymetrical template version 2009c (MNI152Nlin2009cAsym) (Fonov et
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al., 2009) using the nonlinear registration tool in antsRegistration (Avants
et al., 2008) with the transformation parameters provided by fMRIPrep.

Experimental design and ROIs. Two runs of 15min eyes-open wake-
ful rest (fixation on centered cross) were collected together with struc-
tural (or anatomical) scans during the first of four sessions that were
part of a larger multisession 7 T study. The anatomical and experimental
data acquired during the other sessions are not part of this study. Figure
1 provides an overview of the analysis, extending the data-driven echo
approach (Leech et al., 2012; Braga et al., 2013) to the subcortex. With
this multivariate technique, unique FC patterns are estimated while
controlling for other subsignals within a region, revealing a more
subtle subregional functional organization beyond a region’s global
connectivity profile that remains concealed with univariate analyses
(Leech et al., 2012).

Fourteen subcortical ROIs were defined based on open-source parcel-
lations (Table 1; Fig. 2a). Binary ROI masks were computed from the
Multi-contrast Anatomical Subcortical Structure Parcellation algorithm
(MASSP) (Bazin et al., 2020) that is based on quantitative MRI data
(N¼ 105, ages 18-80) from the 7 T Amsterdam ultra-high field adult life-
span database (Alkemade et al., 2020) in high-resolution MNI space
(MNI152Nlin2009bAsym) (Fonov et al., 2009). The MASSP parcellations
include the Tha, Str, Cl, GPe, GPi, SN, STN, VTA, RN, Amg, PAG, and
PPN. The LC was defined with the 7 T Probabilistic LC Atlas based on 53
healthy adults aged 52-84 years (Ye et al., 2021). In addition, the 17-net-
work cortical parcellation (Yeo et al., 2011) was used for extracting a mask
of the HPC, which was taken from the Default C network. To validate the
results for noncortical structures, we also assessed whether we could
reproduce the pattern of echoes within various cortical regions, including
the PCC, medial prefrontal cortex (mPFC), and visual cortex (Braga et al.,
2013). We used the same cortical network parcellation to derive masks for
the striate and extrastriate cortex (Visual Central network) and the
PCC and mPFC (Default A network). For bilateral ROIs, left and
right hemispheres were combined into a single binary mask, and
all masks were resampled to the resolution of the functional data

with FLIRT using nearest-neighbor interpolation (version 6.0)
(Jenkinson and Smith, 2001). The probabilistic LC mask was
thresholded liberally so that voxels that overlapped 1% or more
were included in the resampled mask.

Statistical analysis. The individual preprocessed resting-state times-
eries were masked with each of the binary ROIs and decomposed into 10

Figure 1. Overview of the data analysis.

Table 1. Parcellation details for ROIs

Abbreviation N voxelsa
Mean (SD)
tSNR Sourceb

Forebrain
Thalamus Tha 6130 47.94 (6.31) MASSP
Striatum Str 8552 52.17 (8.11) MASSP
Globus pallidus externa GPe 1241 35.44 (5.58) MASSP
Globus pallidus interna GPi 453 34.18 (4.39) MASSP
Subthalamic nucleus STN 93 32.30 (4.25) MASSP
Claustrum Cl 683 59.12 (4.71) MASSP
HPC HPC 2894 37.84 (10.44) 17-network cortical

parcellation
Amygdala Amg 1063 39.89 (7.22) MASSP

Midbrain
Substantia nigra SN 481 31.51 (5.32) MASSP
Red nucleus RN 232 33.75 (3.05) MASSP
Ventral tegmental area VTA 220 37.68 (3.05) MASSP
Periaqueductal gray PAG 198 32.37 (10.56) MASSP

Brainstem
Locus coeruleus LC 98 39.01 (7.31) 7 T Probabilistic

LC Atlas
Pedunculopontine nucleus PPN 135 40.00 (3.29) MASSP

aNumber of voxels (N voxels) in functional space (1.5 mm isotropic voxel size) and mean (SD) of ROI-wise
tSNR values.
bSource: MASSP (Bazin et al., 2020); 17-network cortical parcellation (Yeo et al., 2011); 7 T Probabilistic LC
Atlas (Ye et al., 2021).
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spatiotemporal independent subregions with a spatially restricted group
canonical independent component analysis (canICA) as implemented
in Nilearn. Although the temporal concatenation ICA approach is a
popular technique in combination with dual regression, biases in the
estimation of group-level networks may arise with varying degrees of
interindividual variability (Hu and Yang, 2021). Instead, canICA
applies a hierarchical approach in which individual data are decom-
posed before canonical correlation analysis to identify group com-
monalities (Varoquaux et al., 2010). The ROI-wise canICAs were
restricted to find 10 independent components. Model order selection
constitutes a main challenge in ICA, and the exact number of underlying
signals in the diverse subcortical structures remains unknown.While prior
analyses on the PCC demonstrated qualitatively similar outcomes for vari-
ous model orders (Leech et al., 2012), conducting such comprehensive
comparisons for all included structures was beyond the scope of this study.
Instead, we opted to follow previous approaches and fix the number of
components, addressing interregional differences in network echoes rather
than precise dimensionality of individual structures.

Following spatiotemporal decomposition, the unique whole-brain
FC of each independent component (subregion) was then investigated
with dual regression (Beckmann et al., 2009; Zuo et al., 2010). First, the
10 spatial maps from the canICA were regressed onto every individual’s
whole-brain resting-state data to estimate the subject-specific time
course for each subregion. By simultaneously entering all 10 spatial
maps as design matrix, the time course for each subregion was estimated
while statistically controlling for the variance in the other subregions’
time courses. Second, the 10 subject-specific independent time courses
were regressed onto the subject’s resting-state data to obtain spatial
maps corresponding to the whole-brain, voxel-wise unique FC of each
subregion. These subject-level FC maps were then combined in a non-
parametric group-level analysis using random permutation testing (5000
permutations) with threshold-free cluster enhancement. This resulted in
one group-level t-statistical map for each of the 10 subregions within
each individual ROI that was thresholded with family-wise error correc-
tion at p, 0.05.

To quantify the presence of echoes from canonical resting-state net-
works within subcortical regions, the thresholded group-level FC maps
were spatially correlated with data-driven reference networks obtained
from a canICA on the whole-brain timeseries restricted to find 20 inde-
pendent components. Based on visual inspection and low spatial
Pearson product-moment correlation coefficients with an established
17-network cortical parcellation (Yeo et al., 2011), four independent
components (r¼ 0.05, r¼ 0.04, r¼ 0.13, r¼ 0.04) were identified as arti-
factual and removed from further analysis. The resulting 16 reference
networks were masked with the cortical network parcellation to remove

any voxels located outside cortical gray matter (e.g., cerebral white mat-
ter, subcortex, CSF).

The extent of the spatial correlation between the FC map for each
subregion and the reference networks was used to identify whether pat-
terns of cortical network activity were mirrored, or echoed, in the unique
subregional time courses.

Results
Data-driven networks correspond to existing cortical
network parcellations
The 16 data-driven reference networks were labeled automati-
cally according to their maximum spatial correlation with the
well-established 17-network cortical parcellation (Yeo et al.,
2011; Fig. 2b), which is based on rs-fMRI data from 1000 indi-
viduals. Despite large differences in field strength, data resolu-
tion, and parcellation method, we found correlation coefficients
ranging from 0.21 to 0.67 (mean r¼ 0.44, SD¼ 0.14), generally
indicating moderate to good spatial overlap with their reference
network counterparts (Fig. 2b, bottom right): Somatomotor A
(r¼ 0.66), Somatomotor B (r¼ 0.30), Control A (r¼ 0.46),
Control B (r¼ 0.51), Control C (r¼ 0.57), Salience/Ventral
Attention A (r¼ 0.34), Salience/Ventral Attention B (r¼ 0.54),
Temporal Parietal (r¼ 0.21), Dorsal Attention A (DorA,
r¼ 0.46), Dorsal Attention B (DorB, r¼ 0.25), Default A
(r¼ 0.42), Default B (r¼ 0.47), Limbic A (r¼ 0.30), Limbic
B (r¼ 0.41), Visual Central (r¼ 0.49), and Visual Peripheral
(r¼ 0.67). The data-driven Temporal Parietal network also
partially overlapped with the Control A network parcellation
(r¼ 0.15).

Together, the reference networks covered 66% of cortical
gray matter defined in the parcellation by Yeo et al. (2011).
The strongest deviation was observed in the anterior tempo-
ral cortex, which was not remedied by increasing model
order (40 or 100 independent components) or a cortically re-
stricted canICA. To assess corresponding variations in tem-
poral SNR (tSNR), we calculated voxel-wise tSNR values as
the ratio of the mean and SD of the resting-state timeseries
after temporal high-pass filtering (1/128 s). Individual tSNR
maps were registered to standard MNI space and averaged
(voxel-wise) across subjects and runs. Compared with other
cortical areas, reduced tSNR in the temporal lobe was

Figure 2. Parcellations of subcortical ROIs and reference networks. a, Subcortical ROIs defined with open-source atlases and b data-driven reference networks from a whole-brain canonical
ICA on the resting-state timeseries, labeled according to their maximum spatial correlation with a 17-network cortical parcellation. Corresponding whole-brain tSNR maps are shown
in Extended Data Figure 2-1. SomA/B, Somatomotor A/B; ConA/B/C, Control A/B/C; TemPar, Temporal Parietal; DefA/B, Default A/B; VisC, Visual Central; VisP, Visual Peripheral; LimA/B, Limbic
A/B; SalA/B, Salience/Ventral Attention A/B.
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observed; and as a consequence, temporal networks were
underrepresented in the analysis (Extended Data Fig. 2-1).

Subcortical structures echo signals from different resting-
state networks
The 10 thresholded FC maps for each ROI, representing the
unique whole-brain FC of each subregion at group level, were
spatially correlated with the 16 unthresholded spatial maps of the
data-driven reference networks. Figure 3a summarizes the
degree of network echoes for the nine ROIs that demonstrated at
least one spatial correlation with any reference network above a
threshold that was arbitrarily set at the 97th percentile of all spa-
tial correlations (r¼ 0.16). Echoes were summarized by counting
above-threshold spatial correlations in terms of (1) the number
of reference networks represented in each ROI and (2) the num-
ber of subregions that echoed a reference network. For example,
six distinct striatal subregions displayed FC profiles that spatially
correlated above-threshold with in total 10 different resting-state
networks. Figure 3b presents the actual maximum spatial corre-
lations between each ROI and each reference network, independ-
ent of subregion. The reference network that was represented
most often was the Salience B network, correlating above-thresh-
old with seven ROIs, followed by Default A, Control C, and
Visual Peripheral, each with at least one above-threshold spatial
correlation with six different ROIs.

Seven subcortical ROIs echoed signals from more than one
network, including the following: Tha, Str, HPC, Cl, GPe, SN, and
VTA. The former four ROIs furthermore showed that the echoes
from different reference networks were distributed among

multiple subregions, indicating evidence for a heterogeneous func-
tional organization. In contrast, both the Amg and PPN showed
medium and small spatial correlations, respectively, with only one
reference network (Amg: r¼ 0.37 [DefA]; PPN: r¼ 0.19 [SalB]).
The GPi, STN, RN, PAG, and LC failed to show evidence of ech-
oes as none of their subregions demonstrated a connectivity pat-
tern that resembled the pattern of an intrinsic connectivity
network. In some cases, a subregion’s FC profile was widespread
and shared spatial similarity with more than one reference net-
work. Extended Data Figure 3-1 presents a few FC maps to illus-
trate the diversity and similarity in connectivity profiles to
different reference networks across a subset of subcortical
structures.

The FC maps of each subregion were also spatially correlated
with the 17-network cortical parcellation (Yeo et al., 2011),
which yielded generally lower spatial correlations but a qualita-
tively similar pattern of results (Extended Data Fig. 3-2). To vali-
date these novel results for the subcortex, we repeated the
analyses for three cortical regions that were previously investi-
gated. Results for the PCC, mPFC, and visual cortex are pre-
sented in Extended Data Figure 3-3 and are largely consistent
with previous findings (Leech et al., 2012; Braga et al., 2013).

Topographic organization of functionally heterogeneous
subcortical structures
Figure 4 shows the topographic pattern of network echoes in the
subregions of the seven ROIs with more than one above-thresh-
old spatial correlation. Subregions are color-coded according to
the reference network they echoed most strongly, whereas

Figure 3. Echoes of intrinsic connectivity networks in the subcortex. a, The number of distinct subregions within an ROI with an FC profile that resembled a reference network (Subregions)
and the number of different reference networks that were echoed within a region (Networks) both defined by counting above-threshold spatial correlations. b, The maximum spatial correla-
tion between each ROI and each reference network, independent of subregion, for nine ROIs that demonstrated at least one above-threshold spatial correlation to any reference network.
Subregional FC profiles for a subset of structures and their spatial correlation with reference networks are illustrated in Extended Data Figure 3-1. The same analysis was repeated with ref-
erence networks taken from the 17-network cortical parcellation (Yeo et al., 2011) shown in Extended Data Figure 3-2 as well as for three cortical ROIs (Extended Data Fig. 3-3). SomA/B,
Somatomotor A/B; ConA/B/C, Control A/B/C; TemPar, Temporal Parietal; DefA/B, Default A/B; VisC, Visual Central; VisP, Visual Peripheral; LimA/B, Limbic A/B; SalA/B, Salience/Ventral
Attention A/B.
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subregions with a maximum spatial correlation below threshold
(r, 0.16) are translucent. For every ROI, there were several sub-
regions that did not mirror the activity in any intrinsic connec-
tivity network, because they were predominantly functionally
connected to other subcortical structures or because their signal
largely reflected noise on visual inspection.

Five thalamic subregions echoed signals from various reference
networks, demonstrating a heterogeneous organization that was
mostly symmetrically distributed in bilateral subdivisions. Left and
right ventromedial subregions were both most strongly correlated
to the Somatomotor A network (left: r¼ 0.26, right: r¼ 0.20),
although the right subregion’s connectivity profile also spatially
overlapped with Salience B (r¼ 0.20). A more dorsomedial bilat-
eral subregion displayed a connectivity pattern that correlated
with the pattern of multiple reference networks, including Default
A (r¼ 0.38), Default B (r¼ 0.32), and Control A (r¼ 0.25).
Another bilateral subregion, more dorsolaterally located, corre-
lated most strongly with the DorA network (r¼ 0.31), although
there was also spatial overlap with Somatomotor A (r¼ 0.29),
DorB (r¼ 0.25), and Visual Peripheral (r¼ 0.24) networks.
Finally, the Default B network was represented in the posterior
part of the left-sided Tha (r¼ 0.22).

Within the Str, there were six different subregions that echoed
one or more reference networks, located mostly within the caudate
nucleus. A subregion primarily in the left tail of the caudate nu-
cleus spatially correlated with the Default B network (r¼ 0.21),
whereas a subregion covering more of the right tail of caudate nu-
cleus most strongly echoed Control B (r¼ 0.26), although its
widespread connectivity pattern also overlapped with Temporal
Parietal (r¼ 0.23) and Salience A (r¼ 0.22) networks. A bilateral
subregion covering the NAc correlated most strongly with Default
A (r¼ 0.40), whereas another bilateral subregion in the mediodorsal
part of the caudate head was functionally connected with Control A
(r¼ 0.26) and Default B (r¼ 0.21) networks. Subregions that
most strongly echoed the Salience A network included a divi-
sion in the posterior parts of the left caudate tail and left
putamen (r¼ 0.20) as well as a bilateral region in the lateral
NAc (r¼ 0.19).

For the HPC, we observed that different intrinsic connectivity
networks were echoed within four different subregions. In the
left hemisphere, a posterior dorsal subregion correlated most
strongly with Default A (r¼ 0.34), whereas a more ventrally
located subregion correlated exclusively with the Limbic A net-
work (r¼ 0.24). A bilateral anteromedial subregion was func-
tionally connected to the Visual Central network (r¼ 0.21),

whereas a posterior dorsal subregion in the right hemisphere
echoed the Visual Peripheral (r¼ 0.30) as well as the Dorsal
Attention networks (DorA: r¼ 0.28, DorB: r¼ 0.30).

Five subregions of the Cl showed an FC profile that corre-
lated with different reference networks. A small, bilateral
subregion in the ventral Cl had a widespread cortical connec-
tivity that had the strongest spatial similarity with DorA
(r¼ 0.23), but also Somatomotor A (r¼ 0.20), Dorsal atten-
tion B (r¼ 0.19), and Salience B (r¼ 0.19) networks. Left and
right subdivisions in the posterior part both echoed the
Salience A network (r¼ 0.26 and r¼ 0.21, respectively). In
addition, an exclusive functional connection with the Default
B network was observed in an anterior subregion of the left
Cl (r¼ 0.32) and with the Somatomotor A network in a more
posterior subregion of the right Cl (r¼ 0.35).

The GPe and SN each had one subregion with a widespread
connectivity profile comprising seven and three reference net-
works, respectively (Fig. 3b). In the GPe, a bilateral dorsolateral
subdivision most strongly echoed the Somatomotor A network
(r¼ 0.26), but its signal also correlated with activity in DorA
(r¼ 0.23) and Control networks A and B (r¼ 0.20 and r¼ 0.22,
respectively). The most pronounced network echo within the SN
was from Default A (r¼ 0.24) and came from a bilateral subre-
gion in the medial anterior SN. The same subregion also showed
traces from Salience B (r¼ 0.22) and Control C (r¼ 0.16) net-
works. For the VTA, a large inferomedial subdivision in the right
hemisphere was most strongly connected to Salience B (r¼ 0.19)
and just below threshold to Visual Peripheral (r¼ 0.15) net-
works. Echoes from the Default A network were furthermore
present in two other subregions of the VTA, but spatial correla-
tions were weaker (r¼ 0.15 and r¼ 0.13).

Discussion
Despite accumulating insights into the mechanisms of functional
integration within the cortex, subcortical substrates of cross-net-
work convergence are largely unexplored. Nonetheless, the sub-
cortex is embedded within an extensive cortico-subcortical
architecture that is thought to serve integrative rather than
purely segregated functions (Haber, 2003). Here, we aimed
to more closely examine the underlying functional organiza-
tion of subcortical nuclei and their subregional connectivity
to functional networks across the cortex.

Consistent with our expectations, we show that individual
subcortical structures contain a composite of neural signals that
can be decomposed into activity traces of intrinsic network

Figure 4. Topography of network echoes within heteromodal subcortical structures. Spatiotemporal decomposition of subcortical structures into independent subregions, color-coded accord-
ing to their strongest network echo or made translucent if their maximum spatial correlation with any reference network did not reach threshold. SomA/B, Somatomotor A/B; ConA/B/C,
Control A/B/C; TemPar, Temporal Parietal; DefA/B, Default A/B; VisC, Visual Central; VisP, Visual Peripheral; LimA/B, Limbic A/B; SalA/B, Salience/Ventral Attention A/B.
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activity. In their study, Braga et al. (2013) showed that activity in
multiple networks converges at specific transmodal zones in the
cortex, as reflected in a mixture of signals that partially correlate
with different networks. We demonstrate that this property is
not limited to cortical regions by revealing potential mechanisms
for multinetwork integration in the subcortex. The results pro-
vide the strongest evidence for functional heterogeneity within
the Tha, Str, Cl, and HPC, for which we observed a complex pat-
tern of subregional whole-brain FC that resembled spontaneous
activity in distinct functional networks. Subregions in left and
right hemispheres had similar spatiotemporal signatures that
echoed the same functional networks, showing a symmetrical
bilateral topography that is consistent with prior work (Cheng
and Liu, 2021).

The Tha and Str are the most commonly represented non-
cortical structures in studies of global brain connectivity, provid-
ing support for their putative role as hub regions (Van der
Heuvel and Sporns, 2011; Bell and Shine, 2015, 2016). Whereas
several studies report an amalgamation of primarily sensory in-
formation within thalamic subregions consistent with its gating
function (Tomasi and Volkow, 2011; Ji et al., 2019), we observed
traces of somatomotor as well as default mode and dorsal atten-
tion networks. The somatomotor subdivisions also spatially over-
lapped with cingulo-opercular regions of the salience network,
which aligns with findings of a “motor integration zone” within
ventral thalamic nuclei (Greene et al., 2020). Additionally, dorsal
attention, somatomotor, and visual networks converged in a
dorsolateral subregion, similar albeit slightly less posterior to
the “visual integration zone” in the pulvinar nucleus reported
earlier (Greene et al., 2020). For the Str, we observed signal ech-
oes from default mode, control, and salience networks predom-
inantly within the caudate head and left tail, right tail, and left
putamen, respectively. Despite large methodological differences
across studies, these findings are consistent with prior evidence
for “cognitive” integration within the Str (Choi et al., 2012;
Greene et al., 2020; Seitzman et al., 2020) and supports thalamic
and striatal roles in information integration and higher-level
cognitive functioning (Haber, 2003; Hwang et al., 2017).

Although organizational principles may broadly concur, pre-
cise functional boundaries and network connections diverge
across studies. For example, the subregional profiles identified
here partially deviate from another data-driven co-partitioning
(Cheng and Liu, 2021) and a voxel-wise winner-take-all approach
(Seitzman et al., 2020) for the Tha, as well as the from the striatal
architecture reported by Choi et al. (2012). Additionally, we found
interhemispheric differences in the HPC (i.e., visual and dorsal
attention network echoes in the right and default mode and limbic
in the left side) that are inconsistent with reports of lateralized sub-
divisions along an anterior-posterior axis, as well as the location
along this axis of the preferential connection to the default mode
network (Blessing et al., 2016; Cheng et al., 2020; Ezama et al.,
2021). Given differences in connectivity with entorhinal and para-
hippocampal cortex (Qin et al., 2016; Seoane et al., 2022), it is
possible that the extent of hippocampal and surrounding vox-
els included in the analysis explains some of the discrepancies
across studies, which might be further exacerbated by the
effects of spatial smoothing. Furthermore, high degrees of
individual variability in subcortical anatomy and FC may
result in distortions of group-level estimations (De Hollander
et al., 2015; Greene et al., 2020; Sylvester et al., 2020; Tian et
al., 2020; Marek and Greene, 2021).

Similar to previous observations for the cortex (Braga et al.,
2013), we demonstrate that functional heterogeneity is not

ubiquitously present throughout the subcortex. Within the GPe,
SN, and VTA, only one subregion’s connectivity profile resembled
patterns of functional network activity. A region in the dorsolat-
eral GPe echoed somatomotor as well as dorsal attention and con-
trol networks, indicating an integrative site that may support its
known role in voluntary, planned movement. Both the SN and
VTA showed a pattern of converging signals from default
mode and salience networks, although less evident in the
VTA. Whereas this association with the default mode network
is more established (Bär et al., 2016; Zhang et al., 2016; Edlow,
2021; Li et al., 2021), connectivity to the salience network is
less known and may indicate involvement in attention and
spontaneous cognition (O’Callaghan et al., 2021).

No clear evidence for functional integration was observed for
the Amg and PPN. Whereas the PPN likely takes part in more
specialized subcortical circuitry involved in arousal and locomo-
tion (Martinez-Gonzales et al., 2011; Bennarroch, 2013), the
Amg was previously proposed as hub structure (Tomasi and
Volkow, 2011) and showed dissociable FC profiles from its sepa-
rate nuclei (Kerestes et al., 2017). Although we did not find
evidence for such heterogeneity when controlling for other
subregional time courses, we observed an intact connection
with the default mode network, which is supported by other
work (Kerestes et al., 2017; Sylvester et al., 2020; Harrison et
al., 2021). For the remaining structures (i.e., GPi, STN, RN,
PAG, and LC), we failed to find network echoes. Although
previous univariate FC studies have indicated correlations
with widespread cortical activity for some of these structures
(e.g., Zhang et al., 2016; Anteraper et al., 2018), the multivar-
iate analysis here did not result in a clear group-level pattern
of cortical connectivity. Similar to the PPN, these structures
may be less involved in integrating spontaneous signals from
distributed functional processes across the cortex, but are
likely more strongly embedded in local networks to support
segregated functional processing (Singh et al., 2022). Recent
findings suggest that neuromodulatory nuclei for dopami-
nergic and noradrenergic systems are driving systems-level
integration and cognition (Zhang et al., 2016; De Gee et al.,
2017; Liu et al., 2017). However, not all findings converge.
For example, Bär et al. (2016) showed that LC connectivity to
the default mode network disappeared when controlling for
adjacent neural signals and that hub-like features of mid-
brain nuclei were not supported by a graph theory analysis.
The results presented here align with this observation and
emphasize that integrative properties of these structures,
among which the LC, remain somewhat elusive. Given pro-
posed roles of the LC in mediating the dynamics of cortical
connectivity and neural gain (Aston-Jones and Cohen, 2005;
Munn et al., 2021), it is perhaps not surprising that no disso-
ciable traces of functional network activity are observed.
That is, the LC may drive global states of network integration
and segregation rather than serving as a convergence zone in
itself.

In conclusion, our results suggest that subcortical structures
exhibit varying degrees of functional heterogeneity. This charac-
teristic might be expressed along a gradient, where structures ad-
jacent to the cortex seem more likely to support multinetwork
integration compared with deep brain nuclei. However, several
factors may confound interpretations of interregional differences
in the subcortex. For example, deep brain nuclei are generally
smaller in size and have weaker SNR, while subcortex near the
cortex is susceptible to signal bleeding from adjacent cortical
voxels, to which they are also reciprocally connected (Choi et al.,

Groot et al. · Echoes in the Subcortex J. Neurosci., September 27, 2023 • 43(39):6609–6618 • 6615



2012). This issue might be especially prominent in the Cl, which
is a thin sheet-like structure situated directly between the Str and
insula. In a recent study, Krimmel et al. (2019) used a novel
regression technique on similar high-resolution fMRI data (1.5
mm isotropic voxels) to isolate the signal in the Cl from nearby
cortical and striatal voxels, which preserved the widespread FC
with cortical networks involved in attention and cognitive con-
trol. Although we did not correct for potential signal bleeding
beyond limiting the amount of spatial smoothing, our finding of
functionally heterogeneous network echoes within the Cl’s sub-
divisions coincides with this work and its postulated role in
attention and cognition (Bell and Shine, 2015; Krimmel et al.,
2019; J. B. Smith and Jackson, 2020).

It should be noted that recent work highlights the difference
in FC between eyes-open and eyes-closed resting-state condi-
tions, particularly with regard to internetwork connectivity of
visual and sensorimotor networks to default mode and salience
networks (Agcaoglu et al., 2019; Costumero et al., 2020; Han et
al., 2023). While a large portion of studies on subcortical connec-
tivity cited here are correspondingly based on eyes-open resting-
state fMRI (e.g., Choi et al., 2012; Blessing et al., 2016; Hwang et
al., 2017; Greene et al., 2020; Seitzman et al., 2020; Sylvester et al.,
2020), future efforts could contrast our results to potential recon-
figurations during other resting-state and experimental condi-
tions. Investigating changes in the pattern of echoes according to
external factors, such as cognitive demand, and internal state are
likely necessary to illuminate their functional relevance (e.g.,
Leech et al., 2012).

Although the precise significance of network echoes for cogni-
tion and behavior is not resolved, we strengthen the evidence that
the subcortex participates in cross-network integration through
echoing intrinsic network activity. These results may ignite new
intriguing hypotheses on the mechanisms of spontaneous cogni-
tive processes, such as mind wandering (Mittner et al., 2016;
Zuberer et al., 2021). Previous work has shown that mind wander-
ing correlates with activity and connectivity in the default mode
and frontoparietal control networks as well as the subcortex
(Mittner et al., 2014; Kucyi et al., 2017; Groot et al., 2022). Given
that both subtle and pronounced reorganizations in FC occur with
changes in task demand (Leech et al., 2012; Braga et al., 2013; Tian
et al., 2020), investigations of how the complex pattern of echoes
in the subcortex is perturbed by attentional changes may reveal
novel insights into the mechanisms that drive mind wandering.
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