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Abstract: The mining industry operates in a complex and dynamic environment, and faces many challenges that can nega- 16 

tively affect sustainable development goals. To avoid these effects, mining needs to adopt strategic decisions. Therefore, it 17 

requires effective decision-making processes for resource optimization, operational efficiency, and sustainability. Multicrite- 18 

ria decision-making methods (MCDMs) have been considered valuable decision-support tools in the mining industry. This 19 

article comprehensively examines the MCDM methods and their applications in the mining industry. This article discusses 20 

the basic principles and concepts of the MCDM methods including the ability to prioritize and weigh conflicting, multiple 21 

criteria, and support decision-makers in evaluating diverse options. According to the results, 1579 MCDM articles in mining 22 

have been published from the beginning to April 15, 2023, and a scientometric analysis was done on these articles. In another 23 

part of this article, 19 MCDM methods, among the most important MCDM methods in this field, have been examined. The 24 

process of doing work in 17 cases of the reviewed methods is presented visually. Overall, this paper is a valuable resource 25 

for the researchers, mining industry professionals, policy-makers, and decision-makers that can lead to a deeper under- 26 

standing of the application of the MCDM methods in mining. By facilitating informed decision-making processes, the 27 

MCDM methods can potentially increase operational efficiency, resource optimization, and sustainable development in 28 

various mining sectors, ultimately contributing to mining projects' long-term success and sustainability. 29 

Keywords: Multicriteria decision-making, Sustainable development, Mining industry; Scientometric analysis, MCDM. 30 

 31 

1. Introduction 32 

The mining industry is one of the most important sectors for a nation's economic development and growth [1, 33 

2]. The industry is critical in providing essential raw materials and resources for various industries such as 34 

construction, manufacturing, and energy. However, the mining industry faces several challenges including en- 35 

vironmental concerns, resource depletion, social responsibility, and fluctuating commodity prices [3].  36 

All the written challenges can be attributed to one of the sustainable development indicators. In general, sus- 37 

tainable development is a process during which the people of a country meet their needs and improve their 38 

living standards without consuming resources belonging to future generations and wasting future capital to 39 
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meet immediate needs. Therefore, development is called sustainable when it is not destructive and provides 40 

the possibility of preserving resources (including water, soil, air, etc.) for the future [4-6]. At the core of sustain- 41 

able development lies the fundamental principle of preserving our natural resources, ensuring that future gen- 42 

erations can meet their needs and thrive to at least the same extent as the present generation. Sustainable de- 43 

velopment sets its primary objective as fulfilling basic human needs, elevating living standards universally, 44 

stewarding and enhancing ecosystems, and forging a path toward a secure and prosperous future. The term 45 

"sustainable" paints a vision of a world where the harmonious coexistence of humans and nature persists. This 46 

coexistence hinges on considering present needs alongside the rights of future generations, all while safeguard- 47 

ing the environment from profound and irreversible harm. Sustainable development entails crafting socio-eco- 48 

nomic solutions that preempt challenges such as unchecked population growth, poverty, resource and environ- 49 

mental depletion, disruptions to Earth's delicate ecosystems, and the subsequent fallout from environmental 50 

degradation. Pursuing economic and social objectives ensures the enduring preservation of resources, safe- 51 

guarding the environment, and promoting human health and well-being [7, 8]. Consequently, numerous chal- 52 

lenges encountered in diverse spheres of human life, most notably in industries such as mining, are intimately 53 

entwined with the principles and imperatives of sustainable development [5]. 54 

To address these challenges, mining companies must simultaneously make complex decisions considering mul- 55 

tiple criteria or attributes. Various decision methods in the mining context involve exploring the approaches 56 

and techniques used to make critical decisions within the mining industry [9]. 57 

Various types of decision methods commonly used in mining include: 58 

• Multi-Criteria Decision Making (MCDM): Consider multiple factors such as environmental, so- 59 

cial, and economic aspects to make complex decisions. 60 

• Cost-Benefit Analysis (CBA): Evaluate the economic feasibility of mining projects by comparing 61 

costs and benefits. 62 

• Simulation modeling: Use computer simulations to model mining scenarios and assess out- 63 

comes. 64 

• Geostatistics: Incorporate spatial data and statistical techniques to estimate mineral reserves. 65 

• Risk assessment: Analyze the risks associated with mining operations and develop risk mitiga- 66 

tion strategies. 67 

• Machine learning and artificial intelligence: Utilize advanced algorithms to optimize mining 68 

processes and predict outcomes. 69 

The advantages and disadvantages of types of decision methods are shown in Table 1 [10]. 70 

 71 
Table 1. Advantages and disadvantages of types of decision methods. 72 

Advantages of types of decision methods Disadvantage of types of decision methods 

❖ It improved decision quality and accuracy. 

❖ Enhanced resource allocation and project 

planning. 

❖ Better risk management and reduced 

uncertainty. 

❖ It has increased efficiency and cost-

effectiveness. 

❖ Compliance with regulatory and 

environmental standards. 

❖ Data and information limitations. 

❖ Complexity and resource-intensive nature. 

❖ Potential for biases in decision-making. 

❖ Difficulty in quantifying certain factors (e.g. 

environmental and social impacts). 

❖ Technological and expertise requirements. 

 73 
The decision-making process in the mining industry involves a wide range of variables including geological, 74 

technical, economic, social, and environmental factors [11]. The complexity of these variables makes the deci- 75 

sion-making process in the mining industry challenging and time-consuming. To simplify the decision-making 76 

process, Multicriteria Decision Making (MCDM) and Multi-Attribute Decision Making (MADM) techniques are 77 

used [12]. MCDM techniques are used to rank alternatives based on multiple criteria, while MADM techniques 78 

are used to choose the best alternative based on a set of attributes. MCDM techniques in the mining industry 79 
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have become increasingly popular in the recent years. These techniques provide a systematic approach to deci- 80 

sion-making that enables mining companies to make informed decisions based on multiple criteria or attributes 81 

[13]. Using MCDM techniques, mining companies can identify the most critical criteria or attributes and assign 82 

weights based on their relative importance. This approach enables companies to evaluate and compare various 83 

alternatives based on their performance against multiple criteria, leading to a better understanding of each 84 

alternative's trade-offs and potential risks. There are various applications of MCDM techniques in the mining 85 

industry including selecting the best location for a mine, selecting the optimal extraction method, and deter- 86 

mining the most cost-effective way to manage waste [14, 15]. The benefits of using MCDM techniques in the 87 

mining industry are numerous. These techniques allow mining companies to make more objective, consistent, 88 

and transparent decisions. In addition to the benefits mentioned above, using MCDM techniques can contribute 89 

to more sustainable and responsible mining practices. Mining companies can use these techniques to evaluate 90 

the environmental impact of different mining practices, consider social and economic factors, and identify op- 91 

portunities to reduce waste and improve resource efficiency [16]. Finally, using MCDM techniques in the min- 92 

ing industry can improve decision-making processes and contribute to more sustainable and responsible min- 93 

ing practices. The mining industry faces many challenges, and using these techniques provides a systematic 94 

approach to decision-making that enables mining companies to make informed decisions based on multiple 95 

criteria or attributes [11, 12]. 96 

Decision methods in mining should provide a balanced view of their utility, acknowledging their strengths and 97 

weaknesses, while emphasizing the importance of informed decision-making in the mining industry [17, 18]. 98 

Thus one of the most important decision types is MCDM. Because of that, in this paper, all articles published 99 

in the field of MCDM and mining have been analyzed from the beginning to April 15, 2023, and then the most 100 

important MCDM methods were reviewed in summary form. Finally, the discussion and results of this article 101 

are presented. 102 

2. Scientometrics Analysis of MCDM and Mining Articles 103 

Scopus has meticulously compiled a comprehensive database encompassing all articles published at the inter- 104 

section of Multicriteria Decision-Making (MCDM) and the mining domain. Our analysis reveals that from 1977 105 

to April 15, 2023, 1,579 articles have been published, collectively employing MCDM methodologies within the 106 

mining context. Leveraging the Scopus platform with the VOS viewer software, we have successfully extracted 107 

valuable insights and data using MCDM techniques in this domain. 108 

The evolving landscape of scholarly publications related to applying Multicriteria Decision-Making (MCDM) 109 

methods in mining reveals a noteworthy pattern. Until the year 2019, the utilization of these methods exhibited 110 

a relatively stable trajectory, occasionally experiencing fluctuations. However, in the wake of technological ad- 111 

vancements and the synergistic integration of hybrid MCDM approaches, a substantial resurgence has occurred 112 

since 2019. This resurgence has rekindled significant interest among researchers, marking a distinct and vigor- 113 

ous revival in adopting MCDM methods within the mining domain (Figure 1). 114 

 115 
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Figure 1. The trend of published MCDM articles in mining from the beginning to 2022 (time of receiving information: April 116 
15, 2023). 117 

An analysis of the 1,579 extractive articles under scrutiny has unveiled a notable trend in utilizing Multicriteria 118 

Decision-Making (MCDM) methods within the mining domain. Specifically, Chinese and Iranian researchers 119 

have emerged as active contributors to this field, surpassing their counterparts from other nations' research 120 

output. Additionally, the cooperative endeavors between Chinese and Iranian researchers have been more ex- 121 

tensive than collaborations involving researchers from different countries, as depicted in Figures 2 and 3. 122 

 123 

Figure 2. The authors were working on writing a paper on using MCDM. Circle size indicates the number of articles pre- 124 
sented in the mentioned field by the researchers, and the link between the data indicates the frequency of collaboration 125 
between two researchers in writing MCDM articles in mining (limitation of this data: having at least five articles in the 126 
mentioned field and ten references to the articles of these researchers in the field of MCDM in mining). 127 

 128 

Figure 3. Researchers with the most published articles in the field of MCDM and mining from the beginning of 2023 (data 129 
received April 15, 2023). 130 

Examining the global landscape concerning adopting Multicriteria Decision-Making (MCDM) methods within 131 

the mining domain highlights Iran and China as frontrunners in this field, a finding substantiated by Figures 4 132 
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to 5. However, a noteworthy shift has emerged in the recent years. This shift can be attributed to a change in 133 

the research focus of scholars in these leading countries. 134 

 135 

Figure 4. The leading countries in publishing articles in the field of MCDM and mining from the beginning to 2023 (time of 136 
receiving information April 15, 2023). 137 

 138 

Figure 5. The most active academic institutions in publishing articles in the field of MCDM and mining from the beginning 139 
to 2023 (data received April 15, 2023). 140 

Figure 6 examines various MCDM techniques extensively applied within the mining domain. A comprehensive 141 

data analysis derived from Scopus (as detailed in Table 2) underscores the widespread adoption of these tech- 142 

niques across various facets of the mining sector. Researchers have employed these methodologies to publish 143 

many articles spanning different mining disciplines. 144 

Figure 6 visually represents the prevalent keywords employed in these articles, shedding light on the specific 145 

terminologies and concepts frequently explored within the context of MCDM in mining research. 146 
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 147 

Figure 6. The important keywords used by researchers in the mining field are related to MCDM. 148 

Table 2. Number of words used as keywords in articles from the beginning to April 15, 2023 (Limitation: at least 20 repeti- 149 
tions). 150 

Keyword 

O
ccu

rren
ces 

Keyword 

O
ccu

rren
ces 

Multicriteria decision-making 31 Decision-making 163 

Coal mine 30 Hierarchical systems 130 

Minerals 29 Analytic hierarchy process 118 

MCDM 28 Mining 100 

Mineral resources 28 Coal mines 90 

Planning 28 Analytical hierarchy process 88 

Coal deposits 27 AHP 79 

Coal industry 27 Coal 72 

Open-pit mining 27 Analytic hierarchy process (AHP) 68 

Geographic information systems 25 Sustainable development 66 

Environmental protection 24 Risk assessment 57 

Fuzzy AHP 23 China 44 

Mining industry 23 Multicriteria analysis 40 

Groundwater 21 Data mining 38 

Multicriteria decision-making 21 GIS 37 

Economics 20 Coal mining 35 

Remote sensing 20 Fuzzy mathematics 35 

Sustainability 20 TOPSIS 35 

Environmental impact 20 Iran 33 
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 151 

Figure 7 provides a comprehensive breakdown of the data sources in the context of using MCDM methods in 152 

mining. Notably, it reveals that a substantial majority, amounting to 69.2 percent, of the reviewed data is dis- 153 

seminated through articles, while conference papers constitute the remaining 30.8 percent. 154 

 155 

Figure 7. Distribution of the type of documents published in the field of MCDM and mining from the beginning to 2023 156 
(data received April 15, 2023). 157 

To put it briefly, our comprehensive analysis of the intersection of Multicriteria Decision-Making (MCDM) 158 

methods and the mining domain, facilitated by Scopus and the VOS viewer software, has yielded valuable 159 

insights into the evolving research landscape in this field. 160 

Over the years, we have witnessed a notable trajectory in the publication of MCDM-related articles in mining, 161 

with a stable trend until 2019. Subsequently, a resurgence in interest and research activity has been observed, 162 

driven by technological advancements and the integration of hybrid MCDM methodologies. 163 

Chinese and Iranian researchers have emerged as prolific contributors, spearheading this domain with remark- 164 

able research output and collaboration. However, a noteworthy shift has occurred in recent years, with devel- 165 

oping nations such as Saudi Arabia, the UAE, Nigeria, and Nepal actively engaging in MCDM research, further 166 

enriching the global research landscape. 167 

We have observed diverse applications of MCDM techniques across various facets of the mining sector, em- 168 

phasizing their versatility and utility. Additionally, our analysis of keywords employed in research articles has 169 

shed light on the prevalent terminologies and concepts central to MCDM in mining research. 170 

Citation patterns have provided insights into research articles' evolving impact and interconnectivity, while co- 171 

citation analysis has illuminated the shared knowledge base and collaborative networks within the field. 172 

Lastly, the distribution of document types has revealed that articles dominate the dissemination of research 173 

findings, constituting 69.2 percent of the reviewed data, while conference papers account for the remaining 30.8 174 

percent. This comprehensive analysis is a valuable resource for researchers, policy-makers, and industry pro- 175 

fessionals, offering a deep understanding of the state of MCDM research within the mining domain. It also 176 

highlights the dynamic nature of this field, underlining the critical role of collaboration, technological advance- 177 

ments, and emerging research trends in shaping its future trajectory. 178 

3. MCDM 179 

MCDM is a vital approach in decision analysis to tackle choices involving multiple, often conflicting, criteria. 180 

In various real-world scenarios, a single factor cannot adequately capture decisions. Instead, they depend on 181 

several dimensions: cost, benefit, risk, time, and sustainability. MCDM provides a methodical framework to 182 

handle these complexities, aiding decision-makers in systematically evaluating alternatives and arriving at 183 

well-informed choices. By considering a range of criteria and their relative importance, MCDM helps ensure 184 

decisions align closely with the objectives and preferences of the decision-makers. 185 

According to the analysis of the published articles that used MCDM in mining areas, 19 of the most important 186 

techniques used MCDM have been reviewed in this section. 187 

3.1. Analytic Hierarchy Process (AHP) 188 
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The AHP is a structured approach to decision-making that facilitates the resolution of complex decisions by 189 

breaking them down into more manageable components. This methodology is highly effective because it ena- 190 

bles decision-makers to consider qualitative and quantitative factors systematically. One of the key strengths of 191 

AHP is its ability to incorporate the preferences and viewpoints of multiple stakeholders in the decision-making 192 

process. However, it should be noted that the proper implementation of AHP demands considerable effort and 193 

expertise, especially in accurately defining the decision problem and constructing precise pairwise comparison 194 

matrices [19-22]. The AHP process is shown in Figure 8.  195 

 196 

Figure 8. Steps of the AHP method. 197 

3.2. Analytic Network Process (ANP) 198 

The ANP is an extension of the AHP that allows decision-makers to model and analyze complex decision prob- 199 

lems that involve interdependent criteria and alternatives. ANP is particularly useful when the decision prob- 200 

lem involves feedback loops, interdependence, and mutual influences between criteria and alternatives. It ena- 201 

bles decision-makers to evaluate the relative importance of criteria and their interactions. This is achieved by 202 

representing the decision problem as a network of clusters and elements, with clusters representing criteria and 203 

elements representing alternatives [11, 23]. The ANP process is shown in Figure 9. ANP allows decision-makers 204 

to model the interactions between criteria and alternatives more sophisticatedly than AHP. However, it can be 205 

more complex and time-consuming to implement than AHP, requiring more expertise and data input [13, 16, 206 

24]. 207 

 208 

Figure 9. Steps of the ANP method. 209 
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 210 

3.3. Best Worst Method (BWM) 211 

The BWM is a decision-making technique that helps decision-makers identify the most important and least 212 

important criteria or alternatives in a given decision problem. The BWM is a simple and intuitive method for 213 

identifying the most important and least important criteria or alternatives in a given decision problem. It allows 214 

decision-makers to focus on the most critical factors and to make informed decisions based on their relative 215 

importance. However, it does not consider the interactions between criteria or alternatives, which may be im- 216 

portant in some decision problems [25, 26]. The BWM process is shown in Figure 10 [27, 28]. 217 

 218 

Figure 10. Steps of the BWM method. 219 

3.4. Choquet Integral (CI) 220 

The CI is a non-linear aggregation function used in multicriteria decision-making to combine criteria with dif- 221 

ferent levels of importance or uncertainty. The CI is based on the idea that decision-makers have preferences 222 

that are not necessarily additive, meaning that a combination of criteria cannot simply be calculated by adding 223 

up the values of each criterion. Instead, the CI considers the interactions between criteria and the degree of 224 

importance or uncertainty associated with each criterion [29]. The CI provides a flexible and powerful way to 225 

aggregate criteria with different levels of importance or uncertainty. It allows decision-makers to capture the 226 

interactions between criteria and make decisions based on their importance. However, it can be computation- 227 

ally intensive and requires significant data input and expertise to implement properly [30, 31]. 228 

1. Define the decision problem and identify the criteria that will be used to evaluate the alterna- 229 

tives. 230 

2. Specify the weighting function, which assigns a weight to each subset of criteria based on its 231 

degree of importance or relevance. This function is represented by a set function, which maps 232 

from subsets of criteria to real numbers between 0 and 1. 233 

3. Calculate the weighted average of the criteria, where the weighting function determines the 234 

weights. This involves taking the average value of each subset of criteria, weighted by the cor- 235 

responding weight. 236 

4. Aggregate the weighted averages of the criteria using the CI formula. This involves taking a 237 

weighted sum of the weighted averages, where the weighting function determines the weights. 238 

3.5. Compromise Programming (CP) 239 

CP is a multicriteria decision-making technique that involves finding a compromise solution that satisfies mul- 240 

tiple objectives simultaneously. The CP approach allows decision-makers to identify a solution that balances 241 

the trade-offs between multiple objectives or criteria. It considers each objective or criterion's relative im- 242 

portance and target values and provides a systematic way to evaluate and compare alternatives [32, 33]. How- 243 

ever, it can be sensitive to the choice of compromise function and requires careful consideration of the objectives 244 

and criteria involved [34, 35]. The CP process is shown in Figure 11. 245 
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 246 

Figure 11. Steps of the CP method. 247 

3.6. Data Envelopment Analysis (DEA) 248 

DEA is a non-parametric method used to measure the efficiency of decision-making units (DMUs) in a given 249 

system. DEA provides a flexible and powerful way to measure the efficiency of DMUs and to identify best 250 

practices and improvement opportunities. It allows decision-makers to evaluate multiple DMUs' performance 251 

and compare their efficiency scores relative to each other [36, 37]. However, it can be sensitive to the choice of 252 

the DEA model and requires careful consideration of the inputs and outputs involved [38, 39]. The DEA 253 

flowchart is shown in Figure 12. 254 

 255 

Figure 12. Flowchart of DEA method [40]. 256 
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3.7. Electre (Elimination and Choice Expressing Reality) 257 

Electra is one of the MCDM methods. It is a widely used method for solving decision problems involving mul- 258 

tiple conflicting criteria. Electro is a flexible and powerful method that allows decision-makers to consider mul- 259 

tiple criteria and preferences simultaneously. It provides a systematic and transparent way to evaluate and 260 

compare alternatives, considering each criterion's relative importance and performance [41]. However, it can 261 

be sensitive to the choice of preference structure and weights, and it requires a significant amount of data input 262 

and expertise to implement properly [42, 43]. The Electre flowchart is shown in Figure 13. 263 

 264 

Figure 13. Flowchart of Electre method. 265 

3.8. Evaluation based on Distance from Average Solution (EDAS) 266 

EDAS is used in MCDM. It is a variation of the Technique for Order of Preference by Similarity to the Ideal 267 

Solution (TOPSIS) method and ranks alternatives based on their performance across multiple criteria. EDAS 268 

offers a straightforward and transparent approach by assessing alternatives' proximity to the average solution, 269 

representing each criterion's ideal performance. This method enables decision-makers to systematically and 270 

objectively consider multiple criteria and their relative importance [44, 45]. However, it is important to note 271 

that EDAS assumes equal importance among criteria and considers the average solution as the ideal perfor- 272 

mance, which may not always align with the decision context [46, 47]. The EDAS process is shown in Figure 14. 273 

 274 

Figure 14. Steps of the EDAS method. 275 

3.9. Fuzzy Analytic Hierarchy Process (FAHP) 276 

The FAHP is an enhanced version of the traditional AHP, extending its capabilities in multicriteria decision- 277 

making. FAHP effectively incorporates linguistic variables and fuzzy sets to address uncertainty and vagueness 278 
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inherent in decision-making processes. By utilizing linguistic variables and fuzzy sets, decision-makers can 279 

handle and represent preferences and performance flexibly and powerfully [48]. FAHP offers a systematic and 280 

transparent approach for evaluating and comparing alternatives, considering each criterion's relative im- 281 

portance and performance. It is important to note that FAHP implementation requires substantial data input 282 

and expertise, and its effectiveness can be influenced by the choice of preference structure and weights [3, 49]. 283 

FAHP flowchart is shown in Figure 15. 284 

 285 

Figure 15. Flowchart of FAHP method 3.10. Fuzzy Linguistic Quantifier (FLQ). 286 

FLQ is a mathematical tool used in fuzzy logic to quantify and measure linguistic terms commonly used to 287 

express subjective opinions and perceptions. FLQs are used to translate natural language expressions into quan- 288 

titative measures that can be processed by computers or used in mathematical models. FLQs use fuzzy sets to 289 

represent the degree of membership of a linguistic term in a set, usually expressed using a membership func- 290 

tion. FLQs can be categorized into different types based on their properties and characteristics, such as absolute, 291 

relative, and modifier quantifiers. FLQs are used in various applications, such as decision-making, control sys- 292 

tems, and information retrieval. They provide a flexible and powerful way to handle linguistic expressions and 293 

subjective opinions while allowing mathematical operations and computations [50]. However, using FLQs re- 294 

quires a significant amount of expertise in fuzzy logic and mathematics, and the choice of FLQs can affect the 295 

results and outcomes of the analysis [51, 52]. The FLQ process is shown in Figure 16. 296 
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 297 

Figure 16. Steps of the FLQ method. 298 

3.11. Grey Relational Analysis (GRA) 299 

GRA is a method for analyzing the relationship between input and output variables in a system. GRA involves 300 

converting numerical data into dimensionless grey numbers, representing the similarity between the input and 301 

output variables. Grey numbers consist of a black part and a white part, respectively, representing the variable's 302 

ideal and actual values. The closer a grey number's black and white parts are, the higher the similarity between 303 

the ideal and actual values. GRA can be used to identify the most influential input variables on the output 304 

variable and to evaluate the effectiveness of different scenarios or strategies. It can also be used for optimization 305 

and decision-making purposes. One of the advantages of GRA is that it is suitable for analyzing systems with 306 

incomplete or limited data [53, 54]. However, GRA has limitations, such as its sensitivity to the selection of 307 

reference series and the difficulty in determining the appropriate weighting of input variables. Therefore, it is 308 

recommended to use GRA in combination with other methods for a more comprehensive analysis [55, 56]. The 309 

GRA flowchart is shown in Figure 17. 310 

 311 

Figure 17. Flowchart of GRA method [57]. 312 
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3.12. Multi-Attribute Utility Theory (MAUT) 313 

MAUT is a decision-making framework that helps individuals or organizations make complex decisions in- 314 

volving multiple attributes or criteria. It is a formal method for evaluating and ranking options based on their 315 

perceived utility or value, considering the decision-maker's preferences. In MAUT, decision-makers identify 316 

and evaluate the attributes or criteria important to them in the decision-making process. These attributes can 317 

be qualitative or quantitative and may include cost, risk, quality, and time. Decision-makers establish a value 318 

or weight scale for each attribute that reflects their relative importance. MAUT provides a structured and trans- 319 

parent approach to decision-making, and it can handle a wide range of decision-making problems involving 320 

multiple criteria [58, 59]. It allows decision-makers to consider their preferences and priorities explicitly and 321 

incorporate objective and subjective information in decision-making [60, 61]. The MAUT process is shown in 322 

Figure 18. 323 

 324 

Figure 18. Steps of the MAUT method [62]. 325 

3.13. Multiple Criteria Decision Analysis (MCDA) 326 

MCDA is a family of methods to evaluate and prioritize alternatives based on multiple criteria or objectives. 327 

MCDA allows decision-makers to consider multiple criteria and objectives simultaneously and provides a sys- 328 

tematic and transparent approach to decision-making. MCDA methods help decision-makers to structure, com- 329 

pare, and evaluate different options and make informed decisions. MCDA methods can be used in various 330 

decision-making problems, such as project selection, risk assessment, and environmental impact assessment. 331 

Identifying and prioritizing the relevant criteria and assigning accurate weights to each criterion can be chal- 332 

lenging [63, 64]. 333 

Some MCDA methods can also be computationally complex, especially when dealing with many criteria or 334 

alternatives. Finally, MCDA methods rely on the accuracy of the data used in the evaluation, and the results 335 

can be sensitive to errors or uncertainties in the data [65-67]. MCDA flowchart is shown in Figure 19. 336 

 337 

Figure 19. Flowchart of MCDA methods. 338 
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3.14. Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) 339 

PROMETHEE is a multicriteria decision-making (MCDM) technique that ranks alternatives based on multiple 340 

criteria. As an outranking method, PROMETHEE compares alternatives pairwise to assess their relative perfor- 341 

mances. In PROMETHEE, preference measures are considered: preference functions and indifference thresh- 342 

olds. Preference functions quantify the degree of preference between two alternatives, indicating how much 343 

one alternative is preferred. On the other hand, indifference thresholds gauge the degree of indifference be- 344 

tween two alternatives, reflecting situations where the decision-maker perceives them as equally favorable. For 345 

each criterion, preference functions and indifference thresholds are defined and can be either linear or nonlin- 346 

ear. These functions allow for capturing various degrees of preference and indifference based on the decision- 347 

maker's evaluations [68, 69]. By incorporating preference functions and indifference thresholds, PROMETHEE 348 

offers a systematic approach to rank alternatives while considering multiple criteria in decision-making [70, 71]. 349 

To rank the alternatives, PROMETHEE calculates the net preference flow for each alternative, which is the dif- 350 

ference between the positive and negative preference flows. The positive preference flow measures the number 351 

of alternatives that are preferred to the given alternative. In contrast, the negative preference flow measures the 352 

number of alternatives that are inferior to the given alternative. The net preference flow reflects the degree of 353 

preference for an alternative compared to the other alternatives. After calculating the net preference flows, 354 

PROMETHEE ranks alternatives based on their values. PROMETHEE can also provide sensitivity analysis to 355 

investigate the effects of changes in the criteria weights or parameters on evaluating alternatives [72]. PROME- 356 

THEE has been widely used in practice for various decision-making problems, such as supplier selection, loca- 357 

tion analysis, and environmental management. It is a flexible and efficient method for dealing with multiple 358 

criteria and can provide valuable insights into complex decision problems [73, 74]. 359 

3.15. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 360 

The TOPSIS is a well-known MCDM technique to evaluate alternatives based on multiple criteria. The main 361 

objective of TOPSIS is to identify the alternative closest to the ideal solution and furthest from the negative ideal 362 

solution. TOPSIS can handle nonlinear relationships between criteria, enabling a more flexible assessment of 363 

alternatives. Additionally, it can incorporate uncertainty by utilizing fuzzy sets, allowing for a more nuanced 364 

representation of imprecise or vague information. However, it is important to note that TOPSIS may not always 365 

provide an optimal solution due to its methodology. The rankings generated by TOPSIS can be sensitive to the 366 

choice of weights assigned to the criteria and the normalization methods employed in the evaluation process 367 

[75, 76]. These factors can influence the outcome and should be carefully considered during applying TOPSIS 368 

[77-79]. The TOPSIS process is shown in Figure 20. 369 

 370 

Figure 20. Steps of TOPSIS method. 371 

3.16. VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) 372 

VIKOR is a multicriteria decision-making method developed in Yugoslavia in the 1980s. It is designed to pro- 373 

vide a compromise solution when conflicting criteria are considered. The VIKOR method differs from other 374 

multicriteria decision-making methods in considering the best and worst solutions for each criterion and the 375 

compromise solution [80, 81]. This allows for a more balanced assessment of alternatives, especially when con- 376 

flicting criteria cannot be fully optimized [82-84]. The VIKOR process is shown in Figure 21. 377 
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 378 

Figure 21. Steps of the VIKOR method. 379 

3.17. Multiobjective Optimization by Ratio Analysis (MOORA) 380 

It extends Simple Additive Weighting (SAW) principles and Weighted Product Model (WPM) methods. 381 

MOORA ranks alternatives based on their performance across multiple criteria by maximizing benefits and 382 

minimizing costs relative to other alternatives. In MOORA, decision-makers can express their preferences and 383 

priorities by assigning weights to the decision criteria. This allows for a tailored and customized evaluation of 384 

alternatives. MOORA can handle both quantitative and qualitative data, making it suitable for scenarios where 385 

criteria have different units or scales of measurement. However, one potential limitation of MOORA is its as- 386 

sumption of independence between the positive and negative performance ratios of each alternative [85]. This 387 

assumption may not always hold in real-world decision-making situations, which should be considered when 388 

applying the method [86, 87]. The MOORA process is shown in Figure 22. 389 

 390 

Figure 22. Steps of MOORA method. 391 

3.18. Complex Proportional Assessment (COPRAS) 392 

COPRAS is a popular MCDM technique to tackle complex decision-making problems. COPRAS employs ratio- 393 

based criteria weights and compensatory aggregation to determine the overall performance score of alterna- 394 

tives. COPRAS is particularly valuable when dealing with decision-making scenarios that involve multiple cri- 395 

teria and where the criteria weights are not predetermined. It offers a systematic approach to evaluate alterna- 396 

tives and rank them based on their performance scores. By employing ratio-based criteria weights, COPRAS 397 

allows decision-makers to consider the relative importance of each criterion in a flexible manner [88]. The com- 398 

pensatory aggregation process enables the integration of the various criteria and their weights to obtain an 399 

overall performance score for each alternative. COPRAS is an effective method for complex decision-making 400 

problems, providing a structured framework to evaluate alternatives and make informed choices based on their 401 

performance scores [89, 90]. The COPRAS process is shown in Figure 23. 402 

 403 

Figure 23. Steps of the COPRAS method. 404 

3.19. Decision-making Trial and Evaluation Laboratory (DEMATEL) 405 
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DEMATEL is a valuable MCDM method designed to analyze and comprehend the intricate relationships be- 406 

tween criteria and decision alternatives. DEMATEL operates on the premise that decision problems are inter- 407 

connected networks of factors and sub-factors. By utilizing DEMATEL, decision-makers can gain insights into 408 

the causal relationships among criteria and identify critical factors that significantly influence decision-making. 409 

The method is particularly beneficial in navigating complex social, economic, and environmental systems. It 410 

aids decision-makers in comprehending the interdependencies and interrelationships between various factors, 411 

facilitating a more informed decision-making process [91]. DEMATEL has been successfully applied in various 412 

domains, including project management, financial management, and environmental management. Its ability to 413 

uncover causal relationships and highlight critical factors makes it a valuable tool for tackling complex decision- 414 

making challenges [92-94]. DEMATEL flowchart is shown in Figure 24. 415 

 416 

Figure 24. Flowchart of DEMATEL method. 417 

4. Discussion 418 

Analyzing and discussing these 19 Multiple Criteria Decision Making (MCDM) methods can provide valuable 419 

insights into their applicability, advantages, disadvantages, and recommendations for mining scenarios. Here 420 

is a summary of the discussion for each method is shown in Table 3. 421 

 422 
Table 3. Advantages, disadvantages, and recommendation of 19 MCDM methods. 423 

Method Advantage Disadvantage 
Recommenda-

tion 
Input Output 

AHP 

Systematic con-
sideration of 
qualitative and 
quantitative fac-
tors, incorpora-
tion of multiple 
stakeholders' 
preferences. 

Requires effort 
and expertise in 
defining the de-
cision problem 
and construct-
ing precise pair-
wise compari-
son matrices. 

Suitable for 
mining deci-
sions involving 
multiple stake-
holders and di-
verse criteria. 

Environmental impact, cost, 
safety, and geological consid-
erations. 

Overall ranking or score of al-
ternatives based on their 
weighted priorities. 

ANP 

Addresses com-
plex decision 
problems with 
interdependent 
criteria and al-
ternatives. 

More complex 
and time-con-
suming than 
AHP, it requires 
expertise and 
data input. 

Ideal for mining 
decisions with 
interdependen-
cies among cri-
teria and alter-
natives. 

Defining clusters of criteria, 
specifying criteria and sub-
criteria, establishing network 
relations with pairwise com-
parisons, and assigning prior-
ity weights to assess interde-
pendencies and influences 
comprehensively. 

Priority vector for criteria and 
sub-criteria, reflecting their 
relative importance and over-
all rankings or scores for al-
ternatives based on their 
weighted priorities. 

BWM 

Simple and intu-
itive for identi-
fying critical fac-
tors. 

Doesn't con-
sider interac-
tions between 
criteria or alter-
natives. 

Useful for 
quickly identify-
ing important 
criteria or alter-
natives in 
straightforward 
mining deci-
sions. 

Identifying criteria, specifying 
alternatives, and conducting 
pairwise comparisons to de-
termine the best and worst el-
ements within each criterion 
facilitate decision-making. 

Priority order for alternatives 
within each criterion, high-
lighting the best and worst 
choices. 

CI 

Flexibly aggre-
gates criteria 
with different 
importance lev-
els. 

Computationally 
intensive, it re-
quires signifi-
cant data input 
and expertise. 

Suitable for 
mining deci-
sions involving 
non-additive 
preferences and 

Defining fuzzy measures to 
capture interactions between 
criteria, specifying the fuzzy 
capacities representing the 
importance of subsets, and 

Aggregated scores for alterna-
tives reflect the comprehen-
sive consideration of interac-
tions and dependencies. 
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Method Advantage Disadvantage 
Recommenda-

tion 
Input Output 

Interactions 
among criteria. 

Utilizing these measures to 
model complex decision con-
texts. 

CP 

Balances trade-
offs between 
multiple objec-
tives. 

Sensitive to the 
choice of com-
promise func-
tion requires 
careful consid-
eration of objec-
tives. 

Effective for 
mining deci-
sions with con-
flicting objec-
tives. 

Defining decision criteria, es-
tablishing their relative im-
portance, and setting accepta-
ble compromise levels to find 
solutions that balance con-
flicting objectives within the 
mining context. 

A solution that represents a 
balanced compromise among 
conflicting objectives in min-
ing engineering, providing a 
feasible and acceptable out-
come based on the specified 
compromise levels for deci-
sion criteria. 

DEA 

Measures effi-
ciency of deci-
sion-making 
units and identi-
fies best prac-
tices. 

Sensitive to the 
choice of DEA 
model requires 
careful consid-
eration of inputs 
and outputs. 

Useful for as-
sessing effi-
ciency in mining 
operations and 
benchmarking. 

Identifying input and output 
variables and quantifying 
their efficiencies to assess and 
improve the overall perfor-
mance of mining operations. 

Provides efficiency scores for 
each mining unit, identifying 
benchmarks and highlighting 
areas for improvement in re-
source utilization, aiding deci-
sion-makers in optimizing 
performance. 

Electre 

Addresses mul-
tiple conflicting 
criteria trans-
parent evalua-
tion. 

Sensitive to 
preference 
structure and 
weights, data-
intensive. 

Suitable for 
mining deci-
sions with con-
flicting criteria 
and the need for 
transparency. 

Defining criteria, assigning 
weights to criteria, and speci-
fying preference thresholds to 
assess and rank alternatives 
based on their performance 
against the established crite-
ria. 

A ranking of alternatives, em-
phasizing those that meet 
preference thresholds and re-
vealing viable choices based 
on the defined criteria in min-
ing engineering. 

EDAS 
Straightforward 
and objective 
approach. 

Assumes equal 
importance 
among criteria 
and considers 
the average so-
lution as ideal. 

Appropriate for 
mining deci-
sions with 
equal-weighted 
criteria and 
straightforward 
evaluations. 

Defining criteria, specifying 
weights for criteria, and eval-
uating alternatives based on 
their proximity to the average 
solution, facilitating decision-
making by assessing perfor-
mance against established cri-
teria. 

A ranking of alternatives, 
highlighting those with closer 
proximity to the average solu-
tion, aiding decision-makers 
in selecting mining engineer-
ing options based on the es-
tablished criteria and their 
performance against the aver-
age benchmark. 

FAHP 

Handles uncer-
tainty and 
vagueness in de-
cision-making. 

Requires sub-
stantial data in-
put and exper-
tise. 

Effective for 
mining deci-
sions in uncer-
tain environ-
ments or when 
linguistic varia-
bles are in-
volved. 

Defining criteria, establishing 
their fuzzy pairwise compari-
son matrices, and determin-
ing the weights of criteria to 
assess and prioritize alterna-
tives under uncertainty. 

Fuzzy priority vector for crite-
ria and alternatives, offering a 
nuanced and flexible decision-
making framework in mining 
engineering by considering 
uncertainties and preferences 
in the prioritization process. 

FLQ 

Translates lin-
guistic terms 
into quantita-
tive measures. 

Requires exper-
tise in fuzzy 
logic and mathe-
matics. 

Useful for han-
dling subjective 
opinions and 
linguistic ex-
pressions in 
mining deci-
sions. 

Defining linguistic variables, 
specifying fuzzy membership 
functions, and establishing 
fuzzy quantifiers to model im-
precise information and en-
hance decision-making. 

Quantified fuzzy values allow-
ing for a more nuanced repre-
sentation of imprecise infor-
mation in mining engineering 
decision-making, aiding in 
capturing and managing un-
certainties effectively. 

GRA 

Measures the 
relationship be-
tween input and 
output varia-
bles. 

Sensitive to the 
selection of ref-
erence series, 
difficulty in de-
termining input 
variable 
weights. 

Useful for as-
sessing the in-
fluence of input 
variables on 
mining out-
comes. 

Defining evaluation criteria, 
normalizing data, and estab-
lishing reference sequences to 
assess and rank alternatives 
based on their relationships. 

Grey relational grades, high-
lighting the closeness of alter-
natives to the reference se-
quence, aiding in decision-
making in mining engineering 
by identifying relationships 
and rankings based on evalu-
ated criteria. 

MAUT 

Evaluate and 
rank options 
based on per-
ceived utility 
and consider de-
cision-maker's 
preferences. 

Identifying cri-
teria and assign-
ing weights can 
be challenging. 

Suitable for 
mining deci-
sions involving 
multiple attrib-
utes and subjec-
tive preferences. 

Defining decision criteria, as-
signing weights to criteria, 
and quantifying the prefer-
ences or utility values for al-
ternatives, facilitating a sys-
tematic evaluation of complex 
decision scenarios. 

A utility score for each alter-
native, aiding in the system-
atic ranking and selection of 
mining engineering options 
based on the assigned weights 
and preferences for decision 
criteria, allowing for a com-
prehensive evaluation. 

MCDA 

Provides a sys-
tematic and 
transparent ap-
proach to evalu-
ate and compare 
alternatives. 

Challenges in 
prioritizing cri-
teria and han-
dling data inac-
curacies. 

Effective for 
mining deci-
sions with mul-
tiple criteria and 
objectives. 

Defining decision criteria, 
specifying their weights, and 
evaluating alternatives 
against these criteria to facili-
tate a structured decision-
making process. 

A ranking or scoring of alter-
natives, assisting in decision-
making within mining engi-
neering by considering multi-
ple criteria and their 
weighted importance, result-
ing in a more informed and 
balanced choice. 
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Method Advantage Disadvantage 
Recommenda-

tion 
Input Output 

PROME-
THEE 

Rank alterna-
tives based on 
pairwise com-
parisons con-
sider prefer-
ences and indif-
ference. 

Rankings are 
sensitive to 
weights and 
normalization 
methods. 

Suitable for 
mining deci-
sions with well-
defined prefer-
ences and pair-
wise compari-
sons. 

Defining criteria, assigning 
preference functions, and 
comparing alternatives to es-
tablish rankings based on 
their relative performance. 

Provides a preference ranking 
of alternatives, highlighting 
their suitability based on as-
signed preferences and crite-
ria, aiding decision-makers in 
mining engineering to choose 
optimal solutions. 

TOPSIS 

Identifies alter-
natives closest 
to the ideal solu-
tion and handles 
nonlinear rela-
tionships. 

Rankings are 
sensitive to cri-
teria weights 
and normaliza-
tion methods. 

Effective for 
mining deci-
sions with non-
linear relation-
ships and well-
defined criteria. 

Defining criteria, normalizing 
data, and calculating the Eu-
clidean distances to deter-
mine the proximity of alterna-
tives to the ideal solution, fa-
cilitating a systematic ranking 
process. 

Provides a ranking of alterna-
tives based on their closeness 
to the ideal solution and far-
thest from the negative ideal 
solution, aiding decision-mak-
ers in mining engineering to 
identify the most favorable 
options. 

VIKOR 

Provides a com-
promise solu-
tion for conflict-
ing criteria. 

Rankings influ-
enced by crite-
ria weights are 
not suitable for 
all scenarios. 

Useful for min-
ing decisions 
with conflicting 
criteria and the 
need for com-
promise. 

Defining criteria, assigning 
weights, and determining 
preference functions to assess 
and rank alternatives based 
on their overall performance, 
providing a compromise solu-
tion. 

Provides a compromise rank-
ing of alternatives, consider-
ing both maximum group util-
ity and individual regret, aid-
ing in decision-making in min-
ing engineering by offering a 
balanced solution that consid-
ers multiple criteria and pref-
erences. 

MOORA 

Customized 
evaluation with 
ratio-based cri-
teria weights. 

Assumes inde-
pendence be-
tween positive 
and negative ra-
tios. 

Suitable for 
mining deci-
sions with flexi-
ble criteria 
weights. 

Defining decision criteria, de-
termining their importance 
weights, and comparing alter-
natives to establish rankings 
based on the calculated ratios 
facilitates a systematic deci-
sion-making process. 

Provides a ranking of alterna-
tives based on the calculated 
scores, aiding in mining engi-
neering decision-making by 
identifying the most favorable 
options considering multiple 
criteria and their assigned 
weights. 

COPARS 

Systematic eval-
uation with ra-
tio-based crite-
ria weights. 

Assumes inde-
pendence be-
tween positive 
and negative ra-
tios. 

Effective for 
mining deci-
sions requiring 
a structured 
evaluation pro-
cess. 

Defining criteria, specifying 
preference values, and estab-
lishing decision matrix ele-
ments to systematically evalu-
ate and rank alternatives 
based on their performance. 

A comprehensive ranking of 
alternatives, considering both 
positive and negative aspects, 
aids decision-makers in min-
ing engineering by offering a 
balanced assessment that cap-
tures various criteria and 
preferences. 

DEMATEL 

Analyzes causal 
relationships 
between criteria 
and identifies 
critical factors. 

It focuses on re-
lationships and 
may not provide 
a direct ranking 
of alternatives. 

Suitable for 
mining deci-
sions where un-
derstanding 
causal relation-
ships is crucial. 

Defining criteria, conducting 
pairwise comparisons to es-
tablish the cause-and-effect 
relationships, and determin-
ing the influence strength, fa-
cilitating a structured analysis 
of interdependencies. 

A visualized influence net-
work and impact scores, aid-
ing decision-makers in under-
standing and managing the 
cause-and-effect relationships 
among criteria in mining engi-
neering, enhancing the deci-
sion-making process. 

 424 

Certainly, each of these MCDM methods offers distinct advantages and has its own set of limitations. The spe- 425 

cific characteristics and demands of the mining decision in question should guide the selection of the most 426 

suitable method. It is important to recognize that there is no one-size-fits-all approach, and the choice of method 427 

should be tailored to the unique circumstances of each mining scenario. To make the best-informed decision, 428 

engaging with domain experts with experience in the mining industry is often beneficial. Their insights can 429 

help identify the most relevant criteria and guide the weighting of those criteria, ultimately enhancing the ac- 430 

curacy of the decision-making process. A hybrid approach that combines multiple MCDM methods may be 431 

advantageous in some cases. This allows decision-makers to harness different techniques' strengths while mit- 432 

igating their weaknesses. Such an approach can lead to more robust and reliable outcomes, particularly in com- 433 

plex mining decisions. 434 

The choice of the most commonly used (standard) method can vary significantly depending on the practices 435 

and preferences of the mining company or organization. It is advisable to consider industry standards, best 436 

practices, and the specific context of the decision to determine which method best aligns best with the organi- 437 

zation's goals and requirements. Ultimately, the goal is to ensure a comprehensive and dependable decision- 438 

making process in the dynamic and multifaceted mining industry. 439 

 440 
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 441 

5. Conclusions 442 

Multicriteria Decision-Making (MCDM) techniques within the mining industry confer many advantages, un- 443 

derlining their pivotal role in enhancing decision-making processes. MCDM methodologies offer a systematic 444 

framework for evaluating and selecting alternatives founded on multiple criteria, empowering decision-makers 445 

to navigate intricate mining scenarios with insight and confidence. Mining engineers benefit significantly from 446 

MCDM methods, as they facilitate the simultaneous consideration of various factors spanning economic, envi- 447 

ronmental, social, and technical dimensions. This holistic approach provides a robust foundation for evaluating 448 

mining projects, allowing decision-makers to incorporate diverse stakeholders' perspectives and interests. One 449 

of the standout features of MCDM is its capacity to tackle the inherent uncertainty and risks entwined with 450 

mining operations. By doing so, MCDM aids in the identification of resilient solutions that exhibit reduced 451 

sensitivity to uncertainties, bolstering the decision-making process and its efficacy. Moreover, MCDM methods 452 

make substantial contributions to fostering sustainable mining practices. By integrating environmental and so- 453 

cial criteria into the decision-making framework, mining engineers can meticulously evaluate mining projects' 454 

ecological consequences, societal impacts, and long-term sustainability prospects. This holistic perspective al- 455 

lows MCDM to identify challenges, proffer environmentally and socially harmonious solutions, and safeguard 456 

natural resources, biodiversity, and the well-being of local communities. Additionally, the integration of 457 

MCDM methods into resource allocation processes stands out as a critical benefit. Mining engineers can effi- 458 

ciently allocate limited resources by simultaneously considering multiple objectives and constraints, enhancing 459 

resource management, cost reduction, and heightened operational efficiency. The synergy between MCDM 460 

methods and advanced technologies opens up new horizons for cutting-edge decision-making in mining engi- 461 

neering. These interdisciplinary approaches facilitate the seamless integration of diverse datasets, fostering 462 

more precise, dynamic, and agile decision-making processes. 463 

Incorporating MCDM techniques in mining engineering offers a structured and systematic framework for eval- 464 

uating alternatives, mitigating risks, advancing sustainability objectives, optimizing resource allocation, and 465 

harnessing technological advancements. Embracing these methodologies empowers stakeholders within the 466 

mining industry to engage in informed decision-making processes that harmonize economic priorities with 467 

environmental responsibility and social considerations. This, in turn, lays the foundation for the cultivation of 468 

mining practices characterized by enhanced sustainability and heightened social and environmental responsi- 469 

bility. 470 
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