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Abstract. Monitoring air pollution is a critical step towards improv-
ing public health, particularly when it comes to identifying the primary
air pollutants that can have an impact on human health. Among these
pollutants, particulate matter (PM) with a diameter of up to 2.5 mi-
crometers (or PM2.5) is of particular concern, making it important to
continuously and accurately monitor pollution related to PM. The emer-
gence of mobile low-cost PM sensors has made it possible to monitor PM
levels continuously in a greater number of locations. However, the accu-
racy of mobile low-cost PM sensors is often questionable as it depends
on geographical factors such as local atmospheric conditions.
This paper presents new calibration methods for mobile low-cost PM
sensors that can correct inaccurate measurements from the sensors in
real-time. Our new methods leverage Neural Architecture Search (NAS)
to improve the accuracy and efficiency of calibration models for mobile
low-cost PM sensors. The experimental evaluation shows that the new
methods reduce accuracy error by more than 26% compared with the
state-of-the-art methods. Moreover, the new methods are lightweight,
taking less than 2.5ms to correct each PM measurement on Intel Neu-
ral Compute Stick 2, an AI-accelerator for edge devices deployed in air
pollution monitoring platforms.

1 Introduction

Air pollution monitoring is crucial to improving public health. According to the
World Health Organization (WHO), air pollution places 99% of the global pop-
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ulation at risk of developing various diseases and causes 6.7 million deaths each
year [14]. The primary air pollutants responsible for affecting human health in-
clude Particulate Matter (PM) and nitrogen dioxide (NO2). Out of the contam-
inants listed, particles with a diameter of up to 2.5 µm (also known as PM2.5)
are particularly hazardous. They have the ability to breach the body’s natural
barriers and enter the bloodstream, leading to cardiovascular and/or respira-
tory problems [21]. As a result, continuous and accurate monitoring of pollution
related to PM is of great significance [4, 13]. Dependable measurements of PM
are essential for creating early warning systems that can provide information on
sudden spikes or prolonged high levels of pollutants.

Current PM monitoring relies on a limited number of costly air monitoring
stations due to the inaccuracy of mobile low-cost PM sensors (MLCS). Although
the fixed stations can provide high quality measurements, their complex mea-
surement techniques result in very high purchase and maintenance cost, pre-
venting them from being deployed widely and monitoring many locations. The
mobile low cost PM sensors, on the other hand, enable covering more locations
quickly and cheaply. The MLCS sensors enable localizing hot spots and map-
ping the spatial and temporal dynamics of air pollution, particularly in urban
areas. However, the accuracy of the MLCS sensors is often questionable since it
depends on geographical factors such as local atmospheric conditions and pollu-
tant concentration levels [3]. Because of the small size and low cost requirements
of the MLCS sensors, the MLCS sensors cannot be equipped with built-in cal-
ibrator, air filtering equipment, temperature controller (cooler and heater) nor
relative humidity controllers that are used in the air monitoring stations.

Improving the accuracy of mobile low-cost PM sensors with in-situ software-
based calibration models is an emerging research area [11,17,20,22]. The accuracy
of the calibration methods can be evaluated using root mean square error RMSE
(µg/m3), which varies from 2.82 [20] to 8.48 [22]. The seminal work [20] has de-
veloped a kriging-based model to correct the measurement from MLCS sensors.
The kriging-based correction model is established using optimized lower and up-
per bounds, which are tailored to the environmental conditions for which both
PM measurements from the reference station and sensor are available. There-
fore, the model’s corrective capability is restricted to these specified ranges.
Alternatively, machine learning-based (ML-based) methods have been proposed
to improve the MLCS measurement accuracy [9, 11]. The PM measurement ac-
curacy of the ML-based methods is still limited with reported RMSE (µg/m3)
from 4.21 to 5.45 [11].

In this work, we propose new ML-based methods (called NAS-RS and NAS-
RE) that significantly improve the PM measurement accuracy of mobile low cost
sensors, achieving RMSE (µg/m3) of 1.89, reducing accuracy error by more than
26% compared with the state-of-the-art methods. Moreover, our new methods
are lightweight and their correction of each PM measurement takes less than
2.5 ms on Intel Neural Compute Stick 2 (NCS2) [6], an AI-accelerator for edge
devices deployed in air pollution monitoring platforms [1]. Our new methods
leverage Neural Architecture Search (NAS) [24] to improve the accuracy of cal-
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ibration models for MLCS. NAS is a growing field within the domain of deep
learning model design. NAS aims to find the best architecture for a new model
by automating architecture engineering, avoiding the time-consuming and error-
prone manual development of neural architectures. Even though NAS has several
potential benefits, it is still a young field [10,15,16,24]. There are few active NAS
frameworks for the mainstream audience, making NAS difficult to leverage by
users on their practical problems. Furthermore, the few libraries that do exist, of-
ten have a tendency to simplify the NAS-process to hyper-parameter tuning [23].
Although this works, to a degree, it does not fully utilize NAS capabilities. In
this work, we leverage NAS to find the most optimal architecture for a regres-
sion model to correct the PM measurement from MLCS that can run on edge
devices (e.g., Intel Neural Compute Stick 2 (NCS2) [6]). Furthermore, to ex-
amine the different features of NAS, we compare two NAS methods: a random
search method (NAS-RS) and a highly sophisticated evolution method called
regularized evolution (NAS-RE).

The rest of the paper is organized as follows. Section 2 describes the de-
sign and implementation of the new calibration methods. Section 3 presents the
model training and testing results. Section 4 discusses the results and Section 5
concludes the paper.

2 Design and Implementation

2.1 Data Preprocessing

Since the input data consists of several sensor measurements, with many of vastly
different ranges, the model was given standardized data as input. That is, the
model was given data where all the input values had a mean of 0 and a standard
deviation of 1. Equation 1 show the standardization formula.

y =
(x− µx)√

σ2
x

(1)

where x is some input feature, µx denotes the mean of the input features, and
σ2
x denotes the input feature’s variance.

2.2 Base Model Design for MLCS Calibration

To correct the inaccurate measurement from MLCS, we first build a small re-
gression model as the base model. Figure 1 shows this base model. It consists
of three fully connected layers, each with a width - set empirically - to 64 and
initialized using Kaiming’s initialization [5]. Following each fully connected layer
is ReLU activation function to act as a non-linearity. Both the input and the
output of the model is configurable.
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Fig. 1. Base Model

Fig. 2. Model Search Space

2.3 NAS Model Search Space for MLCS Calibration

Figure 2 depicts our NAS model search space created for the base regression
model. It is essentially a jumbo net expanding the depth of the network with an
optional convolution head and a bigger fully connected tail.

The convolution head is the first section of the expanded network and consists
of up to three convolution layers followed by a single max-pooling or average-
pooling layer. The head functions as an optional and lightweight feature extractor
motivated by the design of popular computer vision models like the VGG16 [19].
Its purpose is essentially to try and find features that the fully connected tail can
use later for the actual regression. Since the head is optional, it can be skipped,
allowing the data to flow directly to the fully connected tail.

In the head, the search space gives the convolution layers an independent
choice of kernel size and a shared choice of activation function and output chan-
nel. This means that each layer will have its own kernel size (e.g., 3, 5, or 7), but
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will share an output channel size (e.g., 8, 16, 32 or 64) and activation function
(listed below). For the pooling layer, the search space gives it the option to have
a kernel size of either 4 or 5. The values given by the search space were chosen
empirically.

Following the convolution head is the fully connected tail. As in the base
model, the fully connected layers are to do the regression and yield the final
output. As shown in Figure 2, the search space allows the tail to have a depth
ranging from 1-20, where each layer has a shared width (e.g., 8, 16, 32, 64, 128,
256 or 512) and activation function. The values given by the search space were
chosen empirically.

For both the convolution head and the fully connected tail, the following
activation functions can be selected: ELU, Hardshrink, HardSigmoid, Hardtanh,
HardSwish, LeackyReLU, LogSigmoid, PReLU, ReLU, ReLU6, RReLU, CELU,
GELU, Sigmoid, SiLU, Mish, SoftPlus, Softshrink, Softsign, Tanh, Tahnshrink,
GLU and No-activation, for a total of 22 choices. However, the convolution layers
were not able to utilize GLU, and thus the convolution head has 21 choices of
activation functions.

With the convolution head consisting of 3 optional convolution layers with
an independent kernel of 3 different choices, 21 shared activation functions for
the convolutions, 22 shared activation functions for the fully connected layers,
4 different output channel sizes for the convolutions, 2 optional pooling layers,
2 options for the pooling kernel-size, up to 20 fully connected layers, and 7
width choices for the fully connected layers, the model space features a total of
33 ∗ 21 ∗ 22 ∗ 4 ∗ 2 ∗ 2 ∗ 20 ∗ 7 = 27.9 million candidate architectures!

2.4 NAS Methods for MLCS Calibration

We leverage two NAS methods for MLCS calibration, namely Brute Force NAS
and Evolution-based NAS, to get insights into the affects of NAS methods on
MLCS calibration. NAS can be described as a gradient-based method that
exploits reinforcement learning (RL) to iteratively find better networks. The
method was first introduced in [24], and is based on the idea that most DNNs
have the structure and connectivity that can be expressed by a variable-length
string. This allows most DNN architectures to be defined by generative mech-
anisms that can define such a string. If the mechanism is trainable, it can be
taught to generate better and better architectures over time.

The NAS process consists of two main parts: a static search space, containing
all possible model configurations; and an iterative training loop that uses the
search space to train the generative mechanism (usually called the controller).
More specifically, a round of NAS can be expressed as follows:

1. The controller samples a network (referred as child network) from the search
space.

2. The child network is trained and tested using a predefined training and
validation set.
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3. The child network produces a validation score that the controller can use to
update itself.

4. The controller receives reward signal and updates itself, hopefully getting
slightly better. After the update, the controller once again samples a network
from the search space to create a new child network. Then, the entire process
repeats again.

Brute Force NAS. Brute force NAS considers algorithms that search their search
space unintelligently without using a controller for guidance, e.g., Grid-Search
[12], a method that systematically tries all options one-by-one. A variant of Brute
Force NAS is Random-Search NAS (NAS-RS), which chooses a candidate from
the search space at random. Although unintelligent, NAS-RS has been reported
to yield worthwhile results [2].

Evolution-based NAS. Evolution-based NAS is a method inspired by real life
biological evolution. Hence, instead of using a controller, it aims to directly
improve the model space by letting good models mutate and bad models die. By
doing this repeatedly, only good models will be the ones standing at the end [16].

An example of this approach can be found in Regularized Evolution [16]
(RE, but also known as Aging Evolution - AE). It follows the same principle as
other evolution based methods. However, instead of killing the worst performing
models in the population (or search space), it rather kills the oldest one. The
change acts as some sort of regularization, preventing overfitting.

3 Evaluation

Fig. 3. HAPADS air pollution monitoring
platform [1]

To train and test both the base model
and the child networks of the NAS
process, we utilized a dataset of mea-
surements from the HAPADS air pol-
lution monitoring platform (see Fig-
ure 3) [1]. The HAPADS platform de-
ploys the mobile low cost SPS30 PM
sensor [18] and provides the dataset
of PM measurements for evaluation in
this paper. The dataset contains 765
air quality measurements by the HA-
PADS platform over one month pe-
riod for an area in Gdansk, Poland.
The dataset includes inaccurate mea-
surements from the SPS30 PM sensor
in the HAPADS platform and highly accurate measurements from a nearby
modern weather station ARMAG. To form a regression problem, we used all
measurement data from the sensor (e.g., PM, air pressure, humidity, temper-
ature) in the HAPADS platform to predict the accurate PM2.5 measurements
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Table 1. Base model Mean Absolute Error (MAE) and Mean Square Error (MSE),
where columns Avg and Std are the average and standard deviation.

TensorFlow PyTorch Avg Std

MAE 1.88 1.83 1.84 1.84 1.90 1.80 1.72 1.75 1.74 1.70 1.80 0.06
MSE 6.90 6.42 6.63 7.13 7.01 6.38 5.88 6.62 6.16 6.52 6.57 0.36

Table 2. Mean preprocessing time and mean model runtime on the test set, using an
ONNX and OpenVINO IR version of the base model, where columns Avg and Std are
the average and standard deviation.

ONNX - PyTorch OpenVINO IR - PyTorch Avg Std

Warm Start Cold Start Warm Start Cold Start

Preprocessing (µs) 10.73 6.35 9.93 5.87 7.92 23.3 6.39 7.01 10.50 11.19 22.74 22.51 12.03 6.48
Model (ms) 1.78 1.75 1.75 1.70 1.85 2.00 1.76 1.78 1.80 1.74 1.86 1.83 1.80 0.07

from the modern weather station ARMAG (i.e., the ground truth). During the
development of the base model and NAS models, roughly 60% of the dataset was
used as a training set while the remaining 40% was used for validation/testing.
We used mean absolute error (MAE) and mean square error (MSE) for the loss
and accuracy, respectively.

3.1 Base Model

We trained the base model for 100 epochs on the train set using the Adam
optimizer. We utilized a machine with Intel i7-7700 4-core CPU for training. For
testing, we used the Intel Neural Compute Stick 2 (NCS2), an AI-accelerator for
edge devices deployed in the HAPADS air pollution monitoring platform (see
Figure 3) [1].

Table 1 shows the test loss (MAE) and test accuracy (MSE) after ten runs
of the base model. Among these runs, five runs were done using a model in-
stance created using the TensorFlow (TF) framework while the remaining five
runs were achieved using a model instance from the PyTorch (PT) framework.
Model instances were trained from the bottom before testing and tested in both
the ONNX and OpenVINO IR formats supported by NCS2. The results show
that base model achieves relatively good results with a mean test MAE of 1.80
and mean test MSE of 6.57. The results also show that the PT implementation
is slightly better than the TF one. However, the difference is quite small. In-
terestingly, there were no differences between running the models in the ONNX
and OpenVINO IR formats.

Table 2 shows the mean latency of data pre-processing (in microseconds)
and model (in millisecond) for each test sample. The test was done 12 times,
6 times using the OpenVINO IR model format and 6 times using the ONNX
model format. In both cases, the model came from a PT instance. For both the
OpenVINO IR and ONNX runs, 3 of the 6 runs were done from a cold state,
namely from a nearly idle state (i.e., 3-minute pause between each run). The
other 3 runs came from a warm state, namely the underlying hardware and
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network had already processed 1000 samples unrelated to the test set before
starting the test. There were also no pause between test runs while the model
was in a warm state. The table shows that the average latency of data pre-
processing is negligible to that of model (12.03µs vs. 1.80ms). Both the ONNX
and OpenVINO IR implementations have similar average latency.

3.2 NAS Models

Setup We evaluated NAS capabilities to find good architectures by exploring
the model space (defined in Section 2.3) using Regularized Evolution (NAS-RE)
and Random Search (NAS-RS) described in Section 2.4. During the evaluation,
both search strategies found 200 architectures and they repeated 3 times. NAS-
RE was run with a population size (model space size) of 100, a tournament size
of 25 and mutation probability of 0.05 in a specific direction. NAS-RE could use
the same configuration twice (i.e., deduplication set to false) while NAS-RS did
not use a model configuration more than once (i.e., deduplication set to true)
and ignored failed models, following the NNI framework recommendation [12].
The NAS processes were conducted using the NNI framework on a MacBook Pro
with 2,2 GHz 4-core Intel Core i7 processor. The metrics used for the evaluation
were the same as for the base model evaluation: MAE for loss and MSE for
accuracy.

Results Table 3 and table 4 show the 10 best models after the 3 runs of NAS-
RE and NAS-RS, respectively. The columns are divided into three main sections
(Conv1D, Pool and MLP) and depict the choices of the 11 options discussed in
Section 2.3 for each model, together with the model’s final accuracy MSE on the
test set.

The Conv1D section describes the convolution part of the convolution head.
Columns ”Num Layers”, ”Kernel Size”, ”Out Channels” and ”Activation Func-
tion” refer to the numbers of convolution layers, the kernel size of each layer,
the shared output channel size, and the shared activation function that follows
each layer, respectively. For example, the model at the last row in Table 3 has
2 convolution layers. The first layer has a kernel size of 7 while the second has
a kernel size of 3. Both layers have 8 output channels and use HardSigmoid as
their activation function.

The Pool section describes the pooling part of the convolution head. In this
section, columns ”Kernel Size” and ”Type” denote the filter size of the pooling
window and the kind of pooling operation, respectively. For example, the model
at the last row in Table 3 has an average pooling layer with the window size of
4.

Lastly, the MLP (Multilayer Perceptron) section describes the fully connected
part of the models. Columns ”Num Layers”, ”Num Neurons” and ”Activation
Function” refer to the number of MLP layers, the shared width of all layers and
the shared activation function that follows each layer. For example, the model at
the last row in Table 3 has a three MLP layers with a width of 32 and a GELU
activation function.
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Table 3. Top 10 best models using NAS-RE

Conv1D Pool MLP Final MSE

Num Layers Kernel Size Out Channels Activation Function Kernel Size Type Num Neurons Num Layers Activation Function

N/a N/a N/a N/a N/a N/a N/a N/a 32 18 N/a 3.57

3 5 3 3 16 N/a 5 Max 8 3 Mish 3.74

N/a N/a N/a N/a N/a N/a N/a N/a 512 2 Sigmoid 3.84

3 5 3 3 16 N/a 4 Max 8 3 Mish 3.92

2 7 3 N/a 8 Sigmoid 4 Avg 32 3 GELU 3.95

N/a N/a N/a N/a N/a N/a N/a N/a 32 2 Sigmoid 3.97

2 7 7 N/a 8 HardTanh 5 Avg 512 10 LeakyReLU 3.99

2 7 3 N/a 8 Sigmoid 4 Avg 32 3 GELU 4.00

N/a N/a N/a N/a N/a N/a N/a N/a 512 2 Sigmoid 4.01

2 7 3 N/a 8 HardSigmoid 4 Avg 32 3 GELU 4.02

Table 4. Top 10 best models using NAS-RS

Conv1D Pool MLP Final MSE

Num Layers Kernel Size Out Channels Activation Function Kernel Size Type Num Neurons Num Layers Activation Function

N/a N/a N/a N/a N/a N/a N/a N/a 8 1 HardSigmoid 3.94

3 7 7 7 8 HardTanh 5 Max 128 6 N/a 3.95

3 3 5 7 16 CELU 4 Max 512 4 SiLU 4.01

2 3 3 N/a 64 RReLU 4 Max 256 1 HardSigmoid 4.05

3 3 3 7 16 SiLU 5 Avg 256 8 N/a 4.10

2 7 7 N/a 16 HardSigmoid 4 Max 256 1 SiLU 3.97

2 7 7 N/a 8 HardTanh 5 Avg 512 10 LeakyReLU 4.2

N/a N/a N/a N/a N/a N/a N/a N/a 8 8 N/a 4.23

N/a N/a N/a N/a N/a N/a N/a N/a 8 14 N/a 4.26

3 7 5 5 16 N/a 4 Avg 8 3 ReLU 4.27

The results show that the overall best model - in terms of accuracy - was a
pure MLP network, found by NAS-RE (the top model in Table 3). The network
has 18 layers of which each has 32 neurons and no activation function. Interest-
ingly, the MSE of the network is only 0.17 better than that of the second best
model, a combination of convolution and MLP networks also found by NAS-RE.
Comparing the two search strategies, it is clear that NAS-RE achieves better
accuracy than NAS-RS. While NAS-RE achieved a top-5 MSE of 3.95, NAS-RS
only achieved a top-1 MSE of 3.94 and a top-5 MSE of 4.10.

Figure 4 and Figure 5 shows the PM measurements of the mobile low cost
SPS30 PM sensor [18] (HAPADS) against the ground truth from the reference
station (ARMAG) before and after corrected by our NAS-RE calibration method
using the best model (i.e., top model in Table 3), respectively. The results show
that our calibration methods can significantly improve the accuracy of the mo-
bile low cost PM sensor. Table 5 shows the accuracy comparison of our new
calibration methods (NAS-RE and NAS-RS) with state-of-the-art methods for
mobile low-cost PM sensors.

3.3 Evaluation of NAS-RE and NAS-RS for Particulate Matter
Monitoring Platform

To evaluate the viability of the new calibration models NAS-RE and NAS-RS in
practice, we run the top NAS-RE and NAS-RS models on Intel Neural Compute
Stick 2 (NCS2), an AI-accelerator for edge devices deployed in the HAPADS air
pollution monitoring platform (see Figure 3). Since HardSigmoid, the activation
function used in the best model from NAS-RS, is not supported by the NCS2,
we emulated HardSigmoid using HardTanh. Namely, we replaced HardSigmoid
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Fig. 4. The PM measurement of a low cost PM sensor (HAPADS) without correction
and the ground truth from a reference station (ARMAG). Figure 5 zooms in on the
the ground truth.
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Fig. 5. The PM measurement of a low cost PM sensor (HAPADS) corrected by our
NAS-RE method and the ground truth (ARMAG).

with HardTanh using a lower limit of -3 and and upper limit of 3, then scaling
the result by a factor of 1/6 and adding 0.5 to it.

Table 6 and table 7 show the test loss (MAE) and test accuracy (MSE) after
10 runs using the best NAS-RE model and best NAS-RS model, respectively.
All model instances were trained from the bottom before testing and tested in
both the ONNX and OpenVINO IR formats. The tables show that the top-1
NAS-RE model actually performed worse than anticipated, having a mean MSE
of 5.69. Meanwhile the top-1 NAS-RS model performed better than anticipated
and reported a mean MSE of 3.90.

Tables 8 and 9 show the mean latency of data pre-processing (in microsec-
onds) and model (in millisecond) for each test sample. The test was done 12
times, 6 times using the OpenVINO IR model format and 6 times using the
ONNX model format. In both cases, the model came from a PyTorch instance.
For both the OpenVINO IR and ONNX runs, 3 out of the 6 runs were done
from a cold state, namely from a nearly idle state (3 minute pause between each
run). The other 3 runs came from a warm state, namely the underlying hardware
and network had already processed 1000 samples unrelated to the test set before
starting the test. There is also no pause between test runs while the model was in
a warm state. The tables show that the average latency of data pre-processing
is negligible to that of model (e.g., 10.62µs vs. 1.74ms in Table 9). Both the
ONNX and OpenVINO IR implementations have similar model latency. The re-
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Table 5. Accuracy comparison of our new calibration methods (NAS-RE and NAS-
RS) with previous methods for mobile low-cost sensors (MLCS). Except for the Cluster
analysis method [22] using the PMS7003 PM sensor, all methods use the SPS30 PM
sensor [18] with the same measurement.

Methods RMSE (µg/m3) NAS-RE error reduction (%)

None (raw measurement) 1695.63 100%
Kriging-based [20] 2.82 33%
Cluster analysis [22] 8.48 78%
Linear regression 3.97 52%
Random forest [9] 2.55 26%
Gradient Boosting Regression Tree [8] 2.58 27%
AdaBoost [7] 2.77 32%
NAS-RS (this paper) 1.98 5%
NAS-RE (this paper) 1.89 0%

Table 6. Mean Absolute Error and Mean Square Error - Best NAS-RE Model, where
columns Avg and Std are the average and standard deviation.

OpenVINO/ONNX - PyTorch Avg Std

MAE 1.90 1.72 1.79 1.65 1.75 1.66 1.63 1.57 1.58 1.74 1.70 0.09
MSE 7.94 6.28 5.79 5.00 5.59 5.42 4.95 4.86 4.95 6.07 5.69 0.88

sults show that the best NAS-RS model (with average model runtime of 1.74ms)
is faster than the best NAS-RE model (with average model runtime of 2.44ms).
Both models are fast enough to correcting PM measurements from the HAPADS
platform where measurements occur every 10 minutes.

4 Discussion

Even though the top-1 NAS-RE model failed to bring satisfactory results on the
Intel NSC2 (i.e., its high MSE of 5.69), it is clear that the best NAS-RS model
succeeded and outperformed all tested models (i.e., its lowest MSE of 3.90).
Why it is so effective is likely because of its simplicity. Having only 8 neurons,
for instance, reduces the risk of overfitting, which is a problem with many deeper
neural networks. Because of its shallowness, its HardSigmoid non-linearity could
work optimally with less risk of running into the vanishing gradient problem.

In terms of latency, we see the same results as discussed above: the top-1 NAS-
RE model is worse than the top-1 NAS-RS model that outperforms all models.
Considering the total number of neurons in each model, this is not a surprising
result. The baseline model has 3*64 = 192 neurons in its hidden layers and the
top-1 NAS-RE model has 32*18 = 576 neurons in its hidden layers while the
top-1 NAS-RS model only has 8 neurons in its hidden layer. Since fewer neurons
imply fewer parameters and faster data throughput, it is clear that the model
with the fewest neurons (i.e., NAS-RS) will be faster than all other models, at
least when comparing MLPs.
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Table 7. Mean Absolute Error and Mean Square Error - Best NAS-RS Model, where
columns Avg and Std are the average and standard deviation.

OpenVINO/ONNX - PyTorch Avg Std

MAE 1.35 1.49 1.42 1.48 1.39 1.35 1.49 1.43 1.36 1.41 1.42 0.05
MSE 3.69 4.09 3.85 4.07 3.96 3.66 4.19 3.91 3.82 3.85 3.90 0.16

Table 8. Mean preprocessing time and mean model runtime of the best NAS-RE
model, where columns Avg and Std are the average and standard deviation.

ONNX - PyTorch OpenVINO IR - PyTorch Avg Std

Warm Start Cold Start Warm Start Cold Start

Preprocessing (µs) 10.73 9.94 9.16 25.21 20.33 10.80 9.69 10.41 9.66 9.87 9.34 20.89 13.00 5.41
Model (ms) 2.27 2.30 2.33 2.52 2.76 2.41 2.28 2.29 2.69 2.54 2.60 2.36 2.44 0.16

Table 9. Mean preprocessing time and mean model runtime of the best NAS-RS model,
where columns Avg and Std are the average and standard deviation.

ONNX - PyTorch OpenVINO IR - PyTorch Avg Std

Warm Start Cold Start Warm Start Cold Start

Preprocessing (µs) 9.43 16.26 7.39 15.73 13.13 8.74 6.73 8.45 9.98 9.59 12.46 9.60 10.62 2.96
Model (ms) 1.72 1.76 1.71 1.73 1.74 1.91 1.74 1.81 1.63 1.78 1.75 1.68 1.74 0.06

5 Conclusion

We have introduced new accurate lightweight calibration methods for improving
accuracy of measurements from mobile low-cost particulate matter sensors. The
new methods utilize Neural Architecture Search (NAS) to improve the accuracy
and efficiency of calibration models compared with the state-of-the-art methods.
The experimental results show that the new calibration methods achieves the
best root mean square error (RMSE) of 1.89, reducing accuracy error by more
than 26% compared with the state-of-the-art methods. The new methods take
less than 2.5ms to correct an inaccurate measurement from a mobile low-cost PM
sensors on the HAPADS air pollution monitoring platform, making the methods
suitable for real-time calibration. The new accurate lightweight methods would
contribute to resolving the accuracy challenge of mobile low-cost PM sensors,
enabling them to be deployed in monitoring PM continuously and accurately in
many locations.
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optimization. In Advances in Neural Information Processing Systems, volume 24,
2011.

3. European Commission. Review of sensors for air quality monitoring, jrc technical
report, 2019.



Title Suppressed Due to Excessive Length 13

4. A. Gressent, L. Malherbe, A. Colette, H. Rollin, and R. Scimia. Data fusion for air
quality mapping using low-cost sensor observations: Feasibility and added-value.
Environment International, 143:105965, 2020.

5. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification, 2015.

6. Intel. Intel neural compute stick 2 (intel ncs2), Accessed Feb. 26, 2023.
7. Scikit learn developers. An adaboost regressor, Accessed Feb. 26, 2023.
8. Scikit learn developers. Histogram-based gradient boosting regression tree, Ac-

cessed Feb. 26, 2023.
9. J.-M. Lepioufle, L. Marsteen, and M. Johnsrud. Error prediction of air quality

at monitoring stations using random forest in a total error framework. Sensors,
21(6), 2021.

10. H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search, 2018.
11. H.-Y. Liu, P. Schneider, R. Haugen, and M. Vogt. Performance assessment of a

low-cost pm2.5 sensor for a near four-month period in oslo, norway. Atmosphere,
10(2), 2019.

12. Microsoft. Neural Network Intelligence, 2021.
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