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Abstract
Deep Learning (DL) models have developed tremendously over the last cou-
ple of decades in their ability to train across large datasets and give fast and
accurate results across a varied number of tasks like image classification and
segmentation. This is the reason why DL models are being increasingly adopted
for aiding medical professionals in the diagnosis and detection of various med-
ical conditions like colorectal cancer (CRC). There happens to be a specific
group of patients who suffer from Inflammatory Bowel Disease (IBD) who are
at a significantly higher risk of developing CRC, which is why they undergo
surveillance colonoscopies. However, precancerous lesions that have the poten-
tial of developing into cancer can sometimes be difficult to spot, identify and
observe changes in, during colonoscopies. IBD patients can have internal scar-
ring of tissue, which makes it even more difficult to detect precancerous lesions
and spot the changes in them during surveillance colonoscopies. Modern DL
models can be useful in aiding the detection and identification of these precan-
cerous lesions, which is why in this thesis, various DL-based approaches for the
detection and clustering of precancerous lesions during surveillance colono-
scopies of IBD patients were tested. Both a supervised object-detection-based
approach on a labelled dataset, and an unsupervised image-clustering-based
approach were tried out using pre-designed DL models. Furthermore, it was
investigated whether the colour channel separation and possible recombination
of certain colour channels of the images in the dataset could help improve the
detection of precancerous lesions, and make the object detection model more
accurate.

Some results of the unsupervised image-clustering-based approach looked
promising, but it was unable to segregate each type of potential precancer-
ous findings into separate clusters. The supervised learning-based approach
that did object detection worked very well with the labelled dataset used in
this project. The colour channel separation and recombination of images in
the dataset gave a significant improvement to the performance of the object
detection model, particularly when the images in the dataset consisted of only
the blue channel of the original RGB images.





Acknowledgements
I would like to express my deep gratitude to my supervisors Anne Håkansson
and Peter Thelin Schmidt for their patient guidance, encouragement and con-
structive critique throughout the course of this project, despite the international
borders and issues with Zoom that occasionally separated us.

I would also like to express my sincere thanks to the HMT Group and all its
members, whose medical expertise and input were instrumental in guiding the
work done in this project. Special thanks go to Thomas de Lange, whose expe-
rience in this field of research helped me immensely, and Camilla Wijkström,
whose contribution towards providing me with the new set of colonoscopy
videos to be used in this project was of great help.

I would also like to thank my friends and colleagues who have had to (some-
times begrudgingly) be my intellectual sparring partners over the last year. I
acknowledge now that colonoscopies were perhaps not the best topic for dinner
conversations.

Finally, this would not have been possible without the support of my family.
Especially my Dad - who has always done a fantastic job of pretending to
understand everything I tell him about my work with machine learning and
colonoscopies; and my Mom - whose wish for me to become a Doctor was never
fulfilled by me because of my squeamishness when it comes to invasive medical
procedures (only for life to come a full circle over the last year when I had to
work with colonoscopy videos on an almost daily basis for this Master thesis
project).





Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Goal(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research method . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Research approach . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Benefits, Sustainability and Ethics . . . . . . . . . . . . . . . 6
1.8 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.10 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Deep Learning and Related Work 9
2.1 Classification of DL approaches . . . . . . . . . . . . . . . . 10

2.1.1 Deep Supervised Learning . . . . . . . . . . . . . . . 10
2.1.2 Deep Unsupervised Learning . . . . . . . . . . . . . 11
2.1.3 Deep Semi-Supervised Learning . . . . . . . . . . . . 11

2.2 Important terms and techniques . . . . . . . . . . . . . . . 11
2.2.1 Bounding Box . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Object Detection . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Activation functions . . . . . . . . . . . . . . . . . . 12
2.2.4 Loss functions . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Batch Normalisation . . . . . . . . . . . . . . . . . . 15
2.2.6 Underfitting . . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Overfitting . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.8 Data Augmentation . . . . . . . . . . . . . . . . . . 16
2.2.9 Transfer Learning . . . . . . . . . . . . . . . . . . . 16

vii



viii contents

2.2.10 K-Means Clustering . . . . . . . . . . . . . . . . . . 16
2.2.11 Principal Component Analysis (PCA) . . . . . . . . . 17

2.3 Deep Learning models used in this project . . . . . . . . . . 17
2.3.1 YOLOv8 . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 YOLOv5 . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 VGG-16/ VGG-19 . . . . . . . . . . . . . . . . . . . 22

2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Deep Learning in Cancer Detection . . . . . . . . . . 25
2.5.2 Deep Learning in polyp/precancerous-lesions detection 26
2.5.3 Deep Learning based image clustering . . . . . . . . 27
2.5.4 Colour-channel separation of images . . . . . . . . . 27

3 IBD, Polyps and Colonoscopy 31
3.1 Inflammatory Bowel Disease (IBD) . . . . . . . . . . . . . . 31
3.2 Polyps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Paris Classification of polyps . . . . . . . . . . . . . 32
3.2.2 NICE Classification of polyps . . . . . . . . . . . . . 33

3.3 Precancerous colorectal lesions . . . . . . . . . . . . . . . . 34
3.4 Colonoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Commercial Endoscopy Systems . . . . . . . . . . . 37
3.4.2 Advanced colonoscopy techniques . . . . . . . . . . 37

4 Methods and Methodologies 39
4.1 Philosophical Paradigm . . . . . . . . . . . . . . . . . . . . 39
4.2 Research Methods . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . 40
4.4 Data Collection Method . . . . . . . . . . . . . . . . . . . . 40
4.5 Data Analysis Method . . . . . . . . . . . . . . . . . . . . . 40

5 Requirements and System Design 41
5.1 System Requirements . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Hardware Requirements . . . . . . . . . . . . . . . . 42
5.1.2 Software Requirements . . . . . . . . . . . . . . . . 42
5.1.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 System Design & Architecture . . . . . . . . . . . . . . . . . 46
5.2.1 Supervised learning based object detector . . . . . . 46
5.2.2 Supervised learning based object detector with colour-

channel separation and recombination . . . . . . . . 48
5.2.3 Unsupervised learning based image-clustering . . . . 49

6 Implementation 51
6.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 For object detection task . . . . . . . . . . . . . . . . 51



contents ix

6.1.2 For DL based image clustering task . . . . . . . . . . 52
6.2 Object detection model implementation . . . . . . . . . . . 55

6.2.1 Training and evaluation on Dataset 1 . . . . . . . . . 55
6.2.2 Training and evaluation on colour-channel separated

and recombined datasets . . . . . . . . . . . . . . . 56
6.3 DL-based image clustering model implementation . . . . . . 56

6.3.1 Image clustering on Dataset 2a . . . . . . . . . . . . 56
6.3.2 Image clustering on Dataset 2b . . . . . . . . . . . . 57
6.3.3 Image clustering on Dataset 2c . . . . . . . . . . . . 58

7 Results and Discussion 61
7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 For Object Detection with Dataset 1 . . . . . . . . . . 61
7.1.2 For Object Detection with colour-channel separation

and recombination . . . . . . . . . . . . . . . . . . . 64
7.1.3 For DL-based Image Clustering Task . . . . . . . . . 68

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2.1 For Object Detection with Dataset 1 . . . . . . . . . . 77
7.2.2 For Object Detection with colour-channel separation

and recombination . . . . . . . . . . . . . . . . . . . 79
7.2.3 For DL-based Image Clustering Task . . . . . . . . . 80

8 Future Work 85

9 Conclusion 87





List of Figures
2.1 Sample of a dataset having images with their respective labels 10
2.2 Image of an object (hyperplasia) labelled by a bounding box 12
2.3 Output produced by an object detection model . . . . . . . . 12
2.4 Plot of a Sigmoid activation function . . . . . . . . . . . . . 13
2.5 Plot of a SiLU activation function . . . . . . . . . . . . . . . 13
2.6 Plot of a ReLU activation function . . . . . . . . . . . . . . . 14
2.7 Demonstration of K-Means Clustering algorithm’s ability to

separate the original data points in a dataset into different
clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 YOLOv8 model architecture [19, 69] (visualisation made by
GitHub user RangeKing [111]). The rectangles with rounded
corners represent the model’s layers with their labels men-
tioning what kind of layers they are, along with associated
parameters (like kernel size, number of channels, etc.) [19].
The arrows represent the data flow between the layers, with
the direction of the arrow representing the flow of data [19]. 19

2.9 YOLOv5 model architecture. Image sourced from Ultralytics
Docs[146] (Authors - Glenn Jocher[45], Sergiu Waxmann [122]) 20

2.10 VGG-16 model [127] architecture (Reprinted from Comput-
ers in Industry, Volume 108, Solemane Coulibaly, Bernard
Kamsu-Foguem, Dantouma Kamissoko, Daouda Traore, "Deep
neural networks with transfer learning in millet crop images",
Pages 115-120, (2019), with permission from Elsevier." [30]) 23

2.11 An example of a Precision-Recall curve. There are 7 differ-
ent classes here represented with a uniquely coloured curve,
along with a bold blue curve for all classes. The APs for the
curve of each class, as well as the mAP associated with the
curve for all classes, are mentioned in the legend. . . . . . . 24

3.1 PARIS classification of polyps (Reprinted from Gastrointesti-
nal Endoscopy, Volume 58, Issue 6, Supplement, Participants
in the Paris Workshop, "The Paris endoscopic classification of
superficial neoplastic lesions: esophagus, stomach, and colon:
November 30 to December 1, 2002", Pages S3-S43, (2003),
with permission from Elsevier )[106] . . . . . . . . . . . . . 33

xi



xii l ist of figures

3.2 Stages of CRC (Reprinted from Sandouk, F., Al Jerf, F., & Al-
Halabi, M. H. (2013). Precancerous lesions in colorectal can-
cer. Gastroenterology research and practice, 2013, 457901.
https://doi.org/10.1155/2013/457901 [118]) . . . . . . . . 38

5.1 Images from Dataset 1 . . . . . . . . . . . . . . . . . . . . . 44
5.2 Sample frames of videos from Dataset 2 . . . . . . . . . . . 45
5.3 Pipeline of splitting dataset & using it to train, validate and

test the model . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Pipeline of splitting RGB images to separate R, G, B channels

& recombining it to form RG, RB and GB channel images . . 48
5.5 Pipeline of the unsupervised clustering algorithm based on

VGG-16/ VGG-19 . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 YOLOv8 vs YOLOv5 models’ comparison on Dataset 1 . . . . 61
7.2 YOLOv8x model’s learning curve, with Dataset 1 . . . . . . . 63
7.3 YOLOv8 models’ comparison while training and testing on

Dataset 1, with confidence threshold set as 0.9 for predictions 63
7.4 Comparison of YOLOv8x and YOLOv8l models’ confusion ma-

trices on test split of Dataset 1, with confidence threshold set
as 0.9 for predictions . . . . . . . . . . . . . . . . . . . . . 64

7.5 Comparison of YOLOv8x models trained and tested on differ-
ent colour-channel datasets (with the confidence threshold
for testing set at 0.9) . . . . . . . . . . . . . . . . . . . . . 65

7.6 Confusion matrices for YOLOV8x model trained and tested on
different colour channel datasets (with confidence threshold
0.9) - part I . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.7 Confusion matrices for YOLOv8x model trained and tested on
different colour channel datasets (with confidence threshold
0.9) - part II . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.8 Comparison of predictions of YOLOv8x model that was trained
and tested on Dataset 1 and Dataset 1-B for the same set of
images, with confidence threshold 0.9 . . . . . . . . . . . . 68



List of Tables
3.1 NICE classification of polyps (Adapted with permission from

Digestive endoscopy : official journal of the Japan Gastroen-
terological Endoscopy Society, 23 Suppl 1, 131–139. Tanaka,
S., & Sano, Y. (2011), "Aim to unify the narrow band imaging
(NBI) magnifying classification for colorectal tumors: current
status in Japan from a summary of the consensus symposium
in the 79th Annual Meeting of the Japan Gastroenterological
Endoscopy Society", Copyright (2011)) [137] . . . . . . . . 34

5.1 Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Dataset 2a . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Dataset 2b . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Dataset 2c . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 Template to label the findings (Provided by Camilla Wijk-

ström, Ersta Endoskopienhet, Sweden) . . . . . . . . . . . . 57
6.5 Unique categories in Dataset 2c used to set the number of

clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1 YOLOv5 models’ performance metrics with Dataset 1 . . . . 62
7.2 YOLOv8 models’ performance metrics with Dataset 1 . . . . 62
7.3 YOLOv8 models’ performance metrics on test split of Dataset

1, with confidence threshold set as 0.9 . . . . . . . . . . . . 64
7.4 YOLOv8x models’ performance metrics on different datasets

(with confidence threshold set as 0.9 for testing) . . . . . . 65
7.5 Dataset 2a (Video ERAI004) clustering assessment . . . . . . 69
7.6 Dataset 2a (Video ERAI006) clustering assessment . . . . . . 69
7.7 Dataset 2a (other videos) clustering assessment . . . . . . . 70
7.8 Dataset 2b (Video ERAI006) clustering assessment . . . . . . 71
7.9 Dataset 2b (Video ERAI028) clustering assessment . . . . . . 72
7.10 Dataset 2b (Video ERAI010) clustering assessment . . . . . . 73
7.11 Dataset 2b (Video ERAI020) clustering assessment . . . . . . 74
7.12 Assessment of clustering Dataset 2c into 12 clusters - Part 1 . 75
7.13 Assessment of clustering Dataset 2c into 12 clusters - Part 2 . 76

xiii





1
Introduction
Deep Learning (DL) is a powerful subset of Machine Learning (ML) that lever-
ages large datasets and sophisticated neural network architectures in order to
train models that are capable of performing a large number of complex tasks.
In this thesis, the use of DL models in the field of Colorectal cancer (CRC),
for the task of detecting and identifying precancerous lesions in chronic IBD
patients has been explored.

1.1 Background

Over the course of the last few years, the Deep Learning computing paradigm
has steadily developed to become the Gold Standard when it comes to the
Machine Learning (ML) community [7]. It has gradually developed into the
most widely used computational approach in ML, delivering excellent results
across a range of complex tasks, matching or even sometimes beating the per-
formance of humans in some of these tasks [7]. DL models have outperformed
many well-known traditional ML techniques and given excellent performances
in domains ranging from cybersecurity [50] to natural language processing
[35, 164], bioinformatics [71], speech processing [154, 4], computer vision [155,
102] and medical informational processing [89], amongst many others [7, 140,
74]. Deep Learning models are even used for specific applications like estimat-
ing the damage caused by natural disasters [142], the discovery of new drugs
[25] or the diagnosis of various forms of cancer [124, 39, 31, 9][7], which has

1



2 chapter 1 introduction

the potential for significantly improving human lives. The potential ability of
DL models to aid medical professionals with the detection and diagnosis of
precancerous lesions is what forms the focus of this thesis.

When it comes to the detection of cancer or precancerous lesions in videos
and images, DL models like YOLO [114] that do real-time object detection have
enormous potential to be developed and used [112, 94] for a full range of com-
puter vision tasks including object detection, segmentation, pose estimation,
tracking and classification which allows users and researchers to leverage the
model’s capabilities across diverse applications and domains [58]. One such
area of interest in exploring YOLO and other similar object-detection models’
use is for the detection and identification of precancerous lesions associated
with CRC.

These object detection models also come with the requirement of needing large
amounts of labelled datasets for the purpose of training these models, typically
in the form of bounding box annotations [113]. So when there is a large dataset
consisting of unlabelled images with no bounding box annotations, there is a
need to make use of DL techniques that do not need labelled datasets, like deep
clustering models [22, 163]. The ability of these kinds of DL-based clustering
models to cluster frames of colonoscopy videos having the same or similar
precancerous lesions into groups has also been explored in this thesis.

CRC is a disease where the cells in the colon or rectum grow out of control.
Sometimes, abnormal growths called polyps or lesions form in the colon or
rectum, which can occasionally turn cancerous [158]. Screening tests can help
find these lesions so that they can be removed before turning into cancer, and
can also help find CRC at an early stage when treatment works best [158].

Colorectal Cancer (CRC) is the third most common cancer worldwide, with over
1.9 million new cases reported in the year 2020 [27]. It also happens to be the
second most common cause of cancer mortality in the world, with over 900,000
cases of CRC mortality in the year 2020 [27][26]. It has been estimated by
the International Agency for Research on Cancer (IARC) that there will be a
56% increase in the global burden of CRC between the years 2020 and 2040,
to over 3 million new cases worldwide per year, which will also be coupled
with an estimated increase of 69% in the global CRC mortality per year to
approximately 1.6 million deaths in 2040 [26].

About 90% of the people whose CRC is detected before it spreads to nearby
lymph nodes or organs survive longer than 5 years after the diagnosis [77].
However, only 10% of those whose CRC has spread to distant parts of their
body survive this same period of 5 years [77].
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Given the significant numbers associated with CRC both in terms of the number
of new cases as well as the number of deaths attributed to it every year, there
is a heightened need to improve the current diagnostic and screening tools
associated with precancerous lesions and CRC detection. This need gets am-
plified when it is observed just how effective early detection is when it comes
to significantly boosting the 5-year survival rate of CRC patients, from 10% to
almost 90%.

There are a few risk factors associated with CRC like a personal history of
CRC or adenomatous polyps, a strong family history of CRC or polyps, a per-
sonal history of inflammatory bowel disease (IBD) and a family history of any
hereditary CRC syndrome such as familial adenomatous polyposis (FAP) and
Lynch syndrome [157]. It is recommended for people with an average risk to
begin screening for CRC when they are over the age of 50 years [77]. One of
the most commonly used tests for CRC screening is a colonoscopy, which is
recommended to be done at regular intervals depending on the risk factors
a patient has of developing CRC. For instance, experts recommend patients
who have a history of CRC in multiple first-degree relatives (FDRs) to undergo
colonoscopy (rather than any other screening methods for CRC) at an interval
of every 5 years, starting at the age of 40 or 10 years before the age of the
relative’s diagnosis, whichever comes first [17]. Similarly, it is recommended
for IBD patients to undergo surveillance colonoscopies beginning 8 years after
diagnosis [17].

1.2 Problem

Since there is a human element involved in the process of colonoscopy, there is
a need to automate and support real-time surveillance for patients at a higher
risk of developing precancerous lesions, especially chronic IBD patients. Also,
since colonoscopies are an operator-dependent procedure, human factors like
fatigue, lack of sensitivity to visual characteristics associated with polyps and
insufficient attentiveness during the colon examination can lead to potential
mis-detection of polyps [133]. A retrospective observational study of patients
who underwent a second colonoscopy within 6 months of the first evaluated
the miss rate of colorectal polyps to be 17.24%, with 38.69% of the patients
having at least 1 missed polyp [82].

Chronic IBD patients can have inflammation or scarring of tissue, which can
make it even more difficult to detect precancerous lesions. Given the fact that
early detection is of extreme importance in boosting the 5-year survival rate of
CRC patients and that surveillance colonoscopy as a procedure is recommended
to be done on IBD patients starting 8-10 years after initial diagnosis [17, 156] at
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an interval of 1-5 years depending on the risk factors [156], there is a significant
need in the field of medicine to minimise the human error factor associated
with colorectal screening of IBD patients during surveillance colonoscopies.
DL-based tools might be able to help to reduce this human error factor, as well
as support the surveillance colonoscopies of chronic IBD patients.

Problem to be investigated - How can DL-based systems support the detection
and identification of precancerous lesions during Inflammatory Bowel Disease
(IBD) surveillance colonoscopies?

1.3 Purpose

This thesis presents two primary tasks that were investigated over the course
of the project in order to explore the problem of precancerous lesion detection
and identification in IBD patients undergoing surveillance colonoscopies, using
DL-based models. These two tasks are :

• Object detection - The training and testing of a pre-designed DL model
(YOLOv8[69]/ YOLOv5[44]) for precancerous lesion detection in chronic
IBD patients. This also involves testing out different pre-processing steps
to improve the performance of the DL model, with a particular emphasis
on the colour-channel separation and recombination in the images.

• DL based image clustering - The testing of a DL based clustering model
on a dataset of images without bounding-box annotations, in order to
see how well this model can identify and detect precancerous lesions and
group them together into clusters, in surveillance colonoscopy patients.

1.4 Goal(s)

The goal of this thesis is a DL-based system that is best suited for the pur-
pose of detection and identification of precancerous lesions in IBD surveillance
colonoscopies.

DL models that can cluster these precancerous lesions together based on their
visual characteristics as recorded in the colonoscopy video feed will be probed.
Since the manual process of annotating colonoscopy datasets is a long, tedious
and resource-intensive process, the clustering algorithm would also benefit
medical professionals tasked with the labelling of these datasets by clustering
together images and video-frames that have similar forms of visual anomalies
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to help distinguish them from other clusters.

The DL model for object detection of precancerous lesions would ideally be of
a high enough accuracy as well as a decent enough frame rate to help aid med-
ical professionals engaged in conducting colonoscopies. Processes like colour-
channel separation and recombination of the split colour channels of the images
will also be probed in order to test if they give any boost to the accuracy of the
baseline DL model.

Medical health professionals, especially the ones associated with colonoscopies
related to colorectal screening of IBD patients would be the primary beneficia-
ries of this work. If the results are promising, the DL-based systems developed
in this project could be integrated into modern endoscopy systems used by
these medical professionals while performing colonoscopies in order to aid
them either during or after they conduct the procedure on patients, to help
detect or identify precancerous lesions.

The work done in this thesis would also serve as an initial exploration and test-
ing of DLmodels and techniques on the novel dataset of surveillance colonoscopy
videos of chronic IBD patients that was used for the first time for this the-
sis.

1.5 Research method

On a fundamental level, there are two broad categories of basic research meth-
ods - Quantitative research method and Qualitative research method. The Quan-
titative research method supports experiments & testing by measuring certain
variables in order to verify or falsify theories, hypotheses, computer systems’
functionalities & interfaces [49]. Meanwhile, Qualitative research method con-
cerns understanding meanings, opinions and behaviours in order to reach ten-
tative hypotheses & theories or to develop computer systems and inventions
[49]. There is also a third type of basic research method called Triangulation
where both the previous research methods are used as complements in order
to get a complete view of the research area [49].

Since this thesis investigates the performance of the DL-based system based on
the input and insight of medical professionals in the field of CRC and IBD, the
Qualitative research method [51] is used here. These insights from the group
of medical professionals associated with this project were essential towards the
further development of the DL-based system, especially the image clustering
system, which is why the Qualitative research method was most appropriate for
this project.
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1.6 Research approach

Research approaches, with the most famous being inductive and deductive, are
used for drawing conclusions and establishing what is true or false [49]. The
inductive approach involves formulating theories and propositions with alter-
native explanations from observations and patterns; with the data collected &
analysed in order to gain an understanding and establish different views on the
phenomenon [49]. Meanwhile, the deductive approach involves testing theories
to verify or falsify hypotheses by testing them using quantitative methods on
large datasets [49]. The inductive approach was used in this thesis as the
research approach for this thesis.

1.7 Benefits, Sustainability and Ethics

The benefits associated with the work done in this project are manifolds. It
will benefit the medical professionals conducting colonoscopies by aiding the
process of precancerous lesion detection, which would have otherwise been a
completely manual process which relied solely on the medical professionals.
The research work conducted in this project will also benefit society in general
and chronic IBD patients in particular by improving the process of precancerous
lesion detection during surveillance colonoscopies, hence helping in the early
diagnosis and treatment of CRC, especially in chronic IBD patients who have
a higher risk of developing CRC.

When it comes to the sustainability aspect of this research project, the model
that is designed and tested, assuming that it performs satisfactorily in the evalu-
ations, will be able to be used continuously to aid the detection of precancerous
lesions for patients, including newer patients that do not feature in the testing
dataset.

Since this research project involves working with medical data, there are strict
ethical codes in place to ensure that patient data remains private and anony-
mous. There is a clear demarcation between the project members who will be
collecting the patient data, and the project members who will be developing
and testing the DL-based system for detecting and clustering the precancer-
ous lesions. The doctors, nurses and other medical professionals collecting
the colonoscopy videos make sure to anonymize each of these videos so that
the patient cannot be identified on the basis of the colonoscopy videos col-
lected.
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1.8 Delimitations

This project was done with a few delimiting factors in mind, to help narrow
down the focus of the study. These are :

1. Testing population - The models that were developed were tested on a lim-
ited dataset of colonoscopy videos obtained from a total of 32 patients, with
10 patients contributing to an older dataset from 2021, and 22 patients con-
tributing to a newer, novel dataset used and explored in this project. This new
patient population consisted only of chronic IBD patients undergoing surveil-
lance colonoscopies. This was the target population to optimise the AI/DL
models for.

2. Timeframe - The older dataset of 10 patients was collected over a time period
of 16 months between October 2019 and January 2021, while the newer dataset
of 22 patients was collected over the course of 4 months, between July 2023
and October 2023.

3. Dataset quality - The older dataset that was from 2021 had pictures of a
lower resolution than the resolution of pictures/videos that modern endoscopy
equipment produces. Moreover, a major delimitation associated with this thesis
was that the newer dataset from 2023 of colonoscopy videos was not annotated
with bounding box labels in time to be used for the purpose of this project’s
object detection task.

4. Colonoscopy Equipment - The testing dataset is collected using the Olympus
Endoscopy System. So this project did not aim to test out how the DL systems
that were developed here could aid colonoscopies performed with other en-
doscopy systems like the Fuji Endoscopy System or the PENTAX Endoscopy
System.

5. DL techniques used - For the Object Detection task, just the YOLOv5 and
YOLOV8 models were explored here. No other DL models were used for this
task. Similarly, for the Image Clustering task, only the VGG-16 and VGG-19
models were used. Moreover, DL models for tasks like image segmentation
could not be used in this project due to the lack of proper segmentation-masks-
based annotations necessary for training these models, in the datasets used
here.
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1.9 Stakeholders

This project is the result of the collaboration and contribution of numerous
institutes and individuals across Sweden and Norway. Doctors, nurses, PhD
students, research fellows, professors and IBD patients from Ersta Hospital
(Sweden), Sahlgrenska University Hospital (Sweden), Karolinska Institutet
(Sweden), Uppsala University (Sweden), KTH Royal Institute of Technology
(Sweden), University of Göthenburg (Sweden) and UiT The Arctic University of
Norway (Norway) are the primary stakeholders of this multidisciplinary project
between individuals involved in the field of computer science and medicine.
In the long term, endoscopy device companies are also stakeholders in this
project.

This thesis forms a part of the project "RS2021-0316, Ansökningsnummer FoUI-
966813, Artificiell intelligens for tidig upptäckt av premaligna och maligna förän-
dringar i tjocktarmen.", and is funded by the HMT funds for 2022 and 2023.

1.10 Outline

This thesis comprises of several chapters that explore and demonstrate various
facets of this research topic. In Chapter 2, there is a focus on Deep Learning and
relatedwork, to gain a basic understanding of Deep Learning as well as to briefly
explore the existing literature and research that has been done using DL in this
field. Chapter 3 explores this project from a medical standpoint, while trying
to introduce and explain terms and conditions associated with IBD, polyps and
colonoscopies. In chapter 4, there is a focus on the methods and methodologies
employed over the course of this thesis, while justifying the reasoning behind
picking them. Chapter 5 focuses on the requirements and design of the system,
exploring the DL-model training and pre-processing pipeline. Chapter 6 lays
emphasis on the implementation of the system, highlighting how the datasets
were processed and how the experiments were performed over the course of this
thesis. Chapter 7 presents the results of the thesis, showcasing the performance
of the DL-based system and also discussing these results. Chapter 8 is about the
future works associated with the work done in the thesis, exploring avenues
for further research and refinement. Finally, chapter 9 encapsulates this thesis
with a conclusion, summarising the key findings and insights associated with
the work done over the course of this project.



2
Deep Learning and Related
Work

The term Deep Learning is believed to have been proposed by Rina Dechter
Dechter in 1986 [42], while the first general, working algorithm for a deep,
multilayered perception network was published in 1967 by Alexey Ivakhnenko
and Lapa [63, 161]. However, in the 21st century, Hinton et al. (2006) [56],
have been pioneers in the field of Deep Learning research, along with other
scientists and researchers like Yann LeCun and Yoshua Bengio [161]. Geoffrey
Hinton along with Yann LeCun and Yoshua Bengio were awarded the ACM A.M.
Turing Award in 2018 "for conceptual and engineering breakthroughs that have
made deep neural networks a critical component of computing" [1].

Deep Learning (DL) is based on the concept of Artificial Neural Networks
(ANNs) [64] - networks that are created by simulating a network of model
neurons in a computer [75]. DL is considered a subset of Machine Learning
(ML) and Artificial Intelligence (AI) in the working domain, and can be seen
as an AI function that mimics the human brain’s processing of data [120]. DL
is derived from conventional Neural Networks (NNs)[13] but has a tendency to
outperform its predecessors, owing to its ability to learn from massive amounts
of data [7, 120]. DL models are usually designed by stacking multiple layers of
NNs consisting of artificial neurons, which are fundamentally nodes through
which data and computations flow[149]. This stacking of layers of NNs forms
a deep architecture, which enables the DL model to extract features associated

9
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with the training data it is fed, hence enabling it to discover complex patterns
and relationships in data. This is why DL models tend to outperform traditional
MLmodels in many tasks, as discussed earlier in Chapter 1. However, the deeper
nature of these models leads to an increase in the number of training parame-
ters associated with the models, which is why training DL models usually is a
much longer and computationally more expensive process[162, 120].

2.1 Classification of DL approaches

DL techniques are classified into three major categories - supervised, unsu-
pervised and semi-supervised, although there is also a fourth category called
Reinforcement Learning (RL) which is a form of semi-supervised (and some-
times unsupervised) learning technique [7].

2.1.1 Deep Supervised Learning

This DL technique deals with datasets that contain properly annotated training
data [33]. Each training example has a label associated with it, which the DL
model trains itself to predict. Supervised Learning techniques induce models
from the training data, and these models can later be used to classify or predict
the labels of unlabelled data after training [33]. Tasks like image classification
(where the training data has a proper label associated with each image) or
image segmentation (where the training data has a proper label associated
with each pixel of the image) are suited for supervised learning techniques
to be used in. This thesis employs pre-designed supervised-learning based DL
models like YOLO [14, 58, 69] and VGG[127].

An example of a small sample of a labelled dataset can be seen in figure 2.1.
Each image has an associated label, with a total of 3 different labels available.
So a DL model that is trained to classify an image into one of these 3 labels
can be considered to be a type of deep supervised learning model.

(a) Dysplasia (b) Hyperplasia (c) Inflammation

Figure 2.1: Sample of a dataset having images with their respective labels
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2.1.2 Deep Unsupervised Learning

This technique lets the learning process be implemented even if the training
dataset does not have any labelled data [7]. In this, the DL model tries to
infer some underlying structure or patterns from the training data by trying
to learn the significant features or interior representation required to discover
the unidentified structure or relationships between the input data [7, 150].
Techniques of generative networks, dimensionality reduction and clustering
are often considered to be within the category of unsupervised learning [7].
One of the most popular approaches of unsupervised learning is clustering,
where the goal tends to be to categorize similar data into one cluster based on
certain measures (like Euclidean distance) [7, 96].

Using figure 2.1 above as an example, if the dataset had all the images but
without any of their associated labels, unsupervised learning techniques would
be employed to try and cluster the images into separate clusters on the basis of
similar visual characteristics. Aljalbout et al. (2018) [6] and Min et al. (2018)
[96] have described techniques to create such a DL model that is used for
unsupervised learning.

2.1.3 Deep Semi-Supervised Learning

The Deep Semi-Supervised Learning technique involves using labelled as well
as unlabelled data to perform certain learning tasks [150]. Semi-supervised
learning algorithms usually attempt to improve the performance of either a
supervised learning task or an unsupervised learning task, by utilising infor-
mation generally associated with the other [150].

2.2 Important terms and techniques

This section will briefly encapsulate a few terms associated with Deep Learning
as well as a few additional techniques that aremade use of over the course of this
project, either in association with DL models, or independent of them.

2.2.1 Bounding Box

A bounding box is a rectangular box that is drawn around an object that needs
to be identified/detected by a DL-based object detection model.
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Figure 2.2: Image of an object (hyperplasia) labelled by a bounding box

In figure 2.2, there is a bounding box of the colour red around an object that
needs to be detected, which in this case is hyperplasia. It helps localise the
object of interest.

2.2.2 Object Detection

Object detection is a type of supervised learning task that aims to locate and
classify the objects existing in any one image and label these objects with rect-
angular bounding boxes, to show the confidence of their existence [168].

Figure 2.3: Output produced by an object detection model

Figure 2.3 shows the visual representation of the output an object detection
model is supposed to produce. There is a red rectangular bounding box (gener-
ated by the model in the form of coordinates and dimensions of the bounding
box), a class label which is Hyperplasia in this case, and a confidence score of
0.9 for the existence of that.

2.2.3 Activation functions

Activation functions are used in artificial Neural Networks (NNs) in order to
transform an input signal to artificial neurons into an output signal [123], by
doing some sort of a transformation on the input signal(s). The activation
functions used by the DL models that are utilised in this project are :
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1. Sigmoid function - It is one of the most widely used activation functions due
to its non-linear nature [123]. It transforms the input signal/value to a value
in the range of 0 to 1, and is calculated using the formula 𝜎 (𝑥) = 1

1+𝑒−𝑥 .

The graphical plot made by this activation function is seen in figure 2.4.

Figure 2.4: Plot of a Sigmoid activation function

2. SiLU function - SiLU stands for Sigmoid-weighted Linear Unit and is calcu-
lated using the formula SiLU(𝑥) = 𝑥 · 𝜎 (𝑥).

Figure 2.5: Plot of a SiLU activation function

Figure 2.5 shows the graphical plot made by this activation function for various
values of input.

3. ReLU function - ReLU stands for Rectified Linear Unit and is a non-linear
activation function which is represented by the formula 𝑅𝑒𝑙𝑢 (𝑥) =𝑚𝑎𝑥 (0, 𝑥)
[123].

Figure 2.6 shows the graphical plot made by this activation function.
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Figure 2.6: Plot of a ReLU activation function

4. Softmax function - It is a combination of multiple sigmoid functions, which
are used to calculate the probabilities of different classes/categories in mul-
ticlass classification problems [123]. It can be represented with the following
formula:

𝜎 (𝑥𝑖) =
(

𝑒𝑥𝑖∑
𝑗
𝑒
𝑥𝑗

)
, 𝑗 = 1, ..., 𝑛.

2.2.4 Loss functions

Loss functions are functions that are used to calculate the distance or difference
between the present output of an algorithm or DL model, and the expected
output for the same set of input values from the training dataset [107]. This
calculated loss is then used to update the weights of the DL model in order
to reduce the loss in the next evaluation [20]. There are several examples of
loss functions that can be employed, like exponential loss, Mean Squared Error
(MSE) etc. However, the important loss functions utilised by the DL models
that were used in this project are briefly described below.

1. Complete Intersection over Union (CIoU) - This loss function pertains to
bounding box regression, which is a crucial step in object detection [169]. For
this loss function, there are three geometric factors associated with bounding
box regression - overlap area, central point distance and aspect ratio [169]
between the expected and the predicted bounding boxes that are taken into
consideration and combined. This leads to faster convergence and better per-
formance than other losses associated with bounding boxes like IoU loss or
generalised IoU (GIoU) loss [169].
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2. Distribution Focal Loss (DFL) [88] - It is a variant of focal loss that helps
improve the model performance when the training data is imbalanced, which
is why it is utilised in DL models like YOLOv8 to deal with class imbalance
problems that might arise when training a model on a dataset that has some
classes with very few training images [10, 45].

3. Binary Cross Entropy (BCE) - It is also known as the log loss, and it tracks
the incorrect labelling of the data’s class by a DL model [12]. The standard
binary cross entropy function is given by the formula [57] -

𝐽𝑏𝑐𝑒 = − 1
𝑀

𝑀∑︁
𝑚=1

[𝑦𝑚 × log (ℎ𝜃 (𝑥𝑚))

+ (1 − 𝑦𝑚) × log (1 − ℎ𝜃 (𝑥𝑚))
]

where 𝑀 is the number of training examples, 𝑦𝑚 is the target label for the
training example m, 𝑥𝑚 is the input data for training example m, and ℎ𝜃 is the
model with neural network weights 𝜃 [57].

2.2.5 Batch Normalisation

Batch Normalisation refers to the process of normalising the inputs to a DL
model’s layers and making this a part of the model architecture [60]. It allows
for the use of much higher learning rates during the training of a DL model
and be less careful about the initialisation [60].

2.2.6 Underfitting

A DL model is termed to be underfitting when it is unable to learn the patterns
in the data properly [98] and cannot create a mapping between the input and
target variable [103].

2.2.7 Overfitting

It is a condition associated with Deep Learning where a DL model learns/gets
trained to represent very well the training data and provides good results with
it, but it does not performwell on new information like the test data [119].
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2.2.8 Data Augmentation

Data Augmentation refers to a range of techniques that enhance the range
and quality of training datasets that a DL model is trained on, so that better
DL models can be built using these datasets [125]. There are various image
augmentation algorithms that can be used to implement this, including (but
not limited to) - geometric transformations, colour space augmentations, kernel
filters, mixing images, noise injection, random cropping and random erasing
[125]. This helps increase the size of the training dataset, while also providing
some variance to the quality of the original dataset. Data Augmentation is
an important process that is used to help DL models generalise well across
different datasets, and to also help against overfitting.

2.2.9 Transfer Learning

In transfer learning, the training data and testing data are not required to be
independent and identically distributed [135], because of which there can be a
transfer of knowledge from a source domain to a target domain [135].

From a more practical standpoint, transfer learning helps with the use of a pre-
trained model that was trained for one task to be repurposed as the starting
point for doing a new task [143]. For instance, a DL model that was pre-trained
for the task of identifying the name of car brands based on an image given as
input, can later be repurposed for the task of just identifying whether there
was a car in an input image or not.

2.2.10 K-Means Clustering

It is an unsupervised algorithm whose aim is to separate out 𝑀 data points
having 𝑁 dimensions (or features) into𝐾 clusters, such that the sum of squares
is minimised within each cluster [52]. In the context of machine learning, it
is the process of dividing a set of data points into a number of groups called
clusters such that the data points in each group/cluster are more comparable
to one another and different from the data points of other groups/ clusters
[70].

Figure 2.7 shows how the algorithm (with the value of K set as 4) separates
out the initial unlabeled data points having 2 features (as seen in figure 2.7a )
into 4 separate clusters, with the centroid of each cluster also marked with a
red cross, in figure 2.7b.



2.3 deep learning models used in this project 17

(a) Original data points (b) After k-means clustering

Figure 2.7: Demonstration of K-Means Clustering algorithm’s ability to separate the
original data points in a dataset into different clusters

2.2.11 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique that analyses a data table
that represents observations that are described by several dependent variables
that tend to be correlated in nature, in general [2]. The technique’s goal is to
extract the important information from the aforementioned data table and to
represent it as a set of new orthogonal variables known as principal components
[2]. In the context of this project, it is used as a dimensionality reduction tech-
nique, in order to reduce the dimensionality of a dataset while preserving the
most important patterns or relationships between the variables [110]. The prin-
cipal components that are produced by this technique are linear combinations
of the original variables in the dataset and are ordered in decreasing order of
importance [110].

2.3 Deep Learning models used in this project

2.3.1 YOLOv8

YOLOv8 [69] is the latest version of YOLO (You Only Look Once) [114], a DL
model for real-time object detection tasks that was originally developed in 2015
by Joseph Redmon et al [58, 114] that quickly gained popularity because of
its balance between high speed and accuracy [139], which was obtained by
leveraging a new approach to object detection where a single Neural Network
(NN) was responsible for both predicting the bounding boxes for an object
and its class probabilities directly from the full image in a single evaluation
[114].

YOLO presented for the first time a real-time end-to-end approach for object
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detection, unlike other more time-consuming and computationally-heavy ap-
proaches for object detection like using sliding windows followed by a classifier
[139]. This enabled it to be much faster than most other existing object de-
tectors which however came with the disadvantage of a higher localisation
error when compared to other state-of-the-art object detectors like Fast-RCNN
[43] [139]. This, amongst other disadvantages of the initial YOLO model, was
addressed over the course of the years that followed in the other versions of
YOLO that were developed.

YOLOv8 builds on the limitations faced by the previous versions of YOLO in
order to enhance its performance. It was developed by Ultralytics, who had
also developed the YOLOv5 model, and supports a variety of tasks like object
detection, image segmentation, pose estimating, object tracking and image
classification [58, 139]. It also has 5 different-scale versions of the model to
suit user needs - YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium),
YOLOv8l (large) and YOLOv8x (extra large) [58].

Figure 2.8 visualizes the model architecture of a YOLOv8 model [111, 19], where
themodel can be seen as consisting of a Backbone and aHead that come together
to form the whole model.

The Backbone consists of a series of convolutional layers that perform the task
of extracting features from the input images. The C2f module that forms a part
of the Backbone is the cross-stage partial bottleneck which combines high-level
features with contextual information as can be seen in the figure, in order
to improve detection accuracy [139, 19]. The Spatial Pyramid Pooling Fusion
(SPPF) module is designed to speed up the network’s computation speed by
pooling different-scaled features into a fixed-size feature map [19] and consists
of Convolutional andMax-Pooling layers,while the subsequentUpsample layers
increase the resolution of the feature maps [19].

As for the model’s Head, YOLOv8 uses an anchor-free model with a decoupled
head [139], unlike the anchor-based models found in many other iterations
of YOLO. The Detection module that forms a part of the Head uses a set of
convolutional and linear layers in order to map the high-dimensional features
from the C2f module to the output bounding boxes and object classes/labels
[19]. The architecture has been designed in this manner in order to be fast
and efficient while also achieving high detection accuracy [19]. The sigmoid
function is used in the output layer as the activation function for the objectness
score, which represents the probability that the bounding box contains an
object [139]. Meanwhile, for calculating the class probabilities which represent
the objects’ probabilities for belonging to each possible class, the model uses a
softmax function [139].
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Figure 2.8: YOLOv8 model architecture [19, 69] (visualisation made by GitHub user
RangeKing [111]). The rectangles with rounded corners represent the
model’s layers with their labels mentioning what kind of layers they are,
along with associated parameters (like kernel size, number of channels,
etc.) [19]. The arrows represent the data flow between the layers, with
the direction of the arrow representing the flow of data [19].

The Complete Intersection over Union (CIoU) [169] and Distribution Focal
Loss (DFL) [88] loss functions are used for bounding box prediction (by being
utilised to reduce the discrepancy between the predicted and the ground-truth
bounding boxes)[3], while binary cross-entropy is used for the classification
loss calculation [139]. When training a YOLOv8 model, each of these losses is
tracked for both the training and the validation datasets. The term box_loss
that is generated by the model is calculated via this CIoU loss, while the cls_loss
that is generated by the model is the classification loss [3].
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2.3.2 YOLOv5

YOLOv5[44] is a predecessor of YOLOv8 [69] developed by Ultralytics (the
company that also created YOLOv8). It was developed in PyTorch [139] and
uses amodifiedCSPDarknet53 [146, 153] as the Backbone,which allows formore
gradient flow through the network [32] and hence reduces the computation
time [153].

Figure 2.9: YOLOv5 model architecture. Image sourced from Ultralytics Docs[146]
(Authors - Glenn Jocher[45], Sergiu Waxmann [122])

The Backbone of the YOLOv5 model has convolutional layers that extract the
relevant features from the input image [139]. Just like YOLOv8, the Spatial
Pyramid Pooling Fusion (SPPF) module consisting of Convolutional and Max-
pooling layers is used to speed up the network’s computation speed by pooling
different-scaled features into a fixed-size feature map [139], while the Upsam-
ple layers are used to increase the resolution of the feature maps [139]. Each
convolution is followed by Batch Normalisation (BN) (to accelerate the training
of the model [60]) and SiLU activation function[55] [139], and these together
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are represented as ‘ConvBNSiLU’ in figure 2.9. The BottleNeck modules that
form a part of the architecture also consist of these ‘ConvBNSiLU’ layers, as
seen in figure 2.9.

The Neck (which utilizes the SPPF and New CSP-PAN structures) [146] and
Head (which resembles the head of YOLOv3 [139]) form the remainder of the
model architecture. Unlike YOLOv8, it is not an anchor-free approach. Hence,
the loss value calculation for this model is slightly different to YOLOv8.

The loss value in the YOLOv5 model is computed as a combination of 3 indi-
vidual loss components [146]:

• Classes Loss - A Binary Cross Entropy (BCE) loss to measure the error in
the classification task [146].

• Objectness Loss - A Binary Cross Entropy (BCE) loss to measure the error
in detecting if an object was present in a particular grid cell or not [146].

• Location Loss - A Complete Intersection over Union (CIoU) loss to mea-
sure the error in localising the object within the grid cell [146].

Just like with YOLOv8, these losses are also kept track of while training a
YOLOv5 model, for both the training and validation datasets.

There are a few terms defined for both YOLOv8 and YOLOv5 models that were
needed to make predictions using these models -

• IoU: It is the ratio between the area of intersection to the area of union
of the model’s predicted bounding box, and its ground truth bounding
box. It has a value between 0 and 1.

• Box confidence: It is a measure of how certain the model is that a bound-
ing box contains an object of interest, and is calculated by combining the
objectness score (the model’s certainty that a predicted bounding box
contains an object at all) with the IoU mentioned above [59].

• Class confidence: It is a measure of how certain the model is that the
object detected by the model belongs to a certain class, and is calculated
by taking the conditional probability of the class given that an object has
been detected, and then multiplying it with the objectness score and the
IoU [59].

• Confidence score: It is an output from the YOLOv8 model that is a combi-
nation of the Box confidence and Class confidence values, hence enabling
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it to balance between how certain it is that a box contains an object and
how certain it is about which class that object belongs to [59]. This is
one of the parameters this project will focus on, when evaluating the
performance of the model.

In both YOLOv5 and YOLOv8 models, there is a certain Confidence threshold
value and a IoU threshold value for a potentially-detected object’s bounding
box and class label to be over, in order for an object to be considered detected.
These thresholds are used to determine the final predicted bounding box from
multiple bounding boxes for a specific object [159].

2.3.3 VGG-16/ VGG-19

The Visual Geometry Group (VGG) at the University of Oxford developed the
two models VGG-16 and VGG-19, first introduced in the paper “Very Deep Con-
volutional Networks for Large-Scale Image Recognition” [127] by K. Simonyan
and A. Zisserman.

It is a deep CNN architecture with a large number of layers, with VGG-16 having
16 weight layers and VGG-19 having 19 weight layers, with each convolutional
layer having small 3*3 filters which enables the model to have such an increased
depth in the number of layers [127]. It was initially designed with a focus on the
ILSVRC-2012 dataset for an image classification task with the dataset consisting
of 1000 classes, which is why the final layer in the architecture is a softmax
layer designed for a 1000-way classification task [127].

The input to the model is a fixed-size 224*224 RGB image. Figure 2.10 shows
the architecture of a VGG-16 model, which consists of 13 convolutional layers
and 3 fully-connected (FC) layers, giving a total of 16 weight layers. Similarly,
the VGG-19 model has 16 convolutional layers and 3 fully-connected layers,
giving it a total of 19 weight layers. Apart from the 3*3 convolution filters,
there are also 1*1 convolution filters acting as linear transformation for the
input [127, 15]. This is followed by the ReLU (Rectified Linear Unit) activation
function [127, 15]. Convolution stride is set at 1 in order to preserve the spatial
resolution, while the max-pooling is performed over a 2*2 pixel window with
stride as 2 [127]. The number of channels for the convolutional layers starts at
64 and increases in multiples of 2 after every max-pooling layer till it reaches
512 [127], as seen in figure 2.10. The convolutional layers are followed by
the fully-connected layers, with the first two FC layers having 4096 channels
each, while the third FC layer has 1000 channels since it performs a 1000-way
image classification, and so has 1 channel for each class of the dataset [127].
All hidden layers have the ReLU activation function [127]. The final layer is
a softmax layer, which gives a value between 0 and 1 which corresponds to
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Figure 2.10: VGG-16 model [127] architecture (Reprinted from Computers in Indus-
try, Volume 108, Solemane Coulibaly, Bernard Kamsu-Foguem, Dantouma
Kamissoko, Daouda Traore, "Deep neural networks with transfer learn-
ing in millet crop images", Pages 115-120, (2019), with permission from
Elsevier." [30])

the confidence of the model about the image belonging to each class of the
dataset.

2.4 Evaluation Metrics

Evaluation metrics refer to a set of metrics and results that are used to assess
and compare the results that are obtained. There were a few metrics associated
with the Object Detection task that were used in the project to assess the quality
of the YOLOv8 and YOLOv5 models being trained. These metrics apply to the
bounding box and class label predictions generated by these models. These
were -

• Precision (P): A measure of the accuracy of the detected objects, which
indicates how many detections were correct [147]. It quantifies the pro-
portion of true positive predictions amongst all the positive predictions
[147].

• Recall (R): A measure of the ability of the model to identify all the in-
stances of objects in the images [147]. It quantifies the proportion of true
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positives amongst all the actual positives [147].

• Precision-Recall Curve: It is a graphical representation of the trade-offs
between the precision and recall at varied thresholds, in the form of the
curve [147].

• Average Precision (AP): It computes the area under the precision-recall
curve, hence providing a single value to indicate the model’s precision
and recall performance [147].

• Mean Average Precision (mAP): It extends the idea of AP by calculating
the average AP values across multiple object classes in a dataset, and
is especially useful in multi-class object-detection scenarios to gain an
insight into the model’s performance [147].

Figure 2.11: An example of a Precision-Recall curve. There are 7 different classes here
represented with a uniquely coloured curve, along with a bold blue curve
for all classes. The APs for the curve of each class, as well as the mAP
associated with the curve for all classes, are mentioned in the legend.

• mAP50: It is the mAP calculated at an IoU threshold of 0.50 [147]. mAP50
gives more of an insight into the accuracy of the model when it comes to
the easier-to-detect objects.

• mAP50-95: It is the average of the mAP values calculated at various IoU
thresholds between 0.50 and 0.95, and gives a more comprehensive view
of the model’s performance [147].

• Confusion Matrix: It is a visual representation of a detailed view of the
outcomes of the object-detection model, showcasing the number of True
Positives, True Negatives, False Positives and False Negatives for each
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class [147]. With the YOLOv5 and YOLOv8 models, an additional class
called ‘Background’ was added to the confusion matrix, to represent all
the instances where no object was present.

• Normalised Confusion Matrix: It is just a normalised version of the con-
fusion matrix, with the data in it present in proportions instead of raw
counts [147]. It has been manipulated for the sake of this project to give
the data in percentages instead of fractions.

2.5 Related Work

There has been some promising previous research work done in the field of both
cancer detection in general, and CRC detection as well. These are discussed in
detail in the following subsections.

2.5.1 Deep Learning in Cancer Detection

When it comes to aiding cancer diagnosis, DL models have shown some promis-
ing results over the years over multiple studies and surveys [91, 36, 39, 124,
11].

Mambou et al. (2018) [91] did a thorough comparative study of several Com-
puter Vision (CV) and Deep Learning (DL) powered breast cancer detection
models. Their work highlighted the importance of image processing which
was not performed to adequately sufficient levels by Artificial Intelligence (AI)
methods, relative to the human performance of the same. Hence, they ended
up proposing a Computer Assist Device (CAD) that uses a new model based on
a pre-trained Inception V3 [130] deep neural network with a Support Vector
Machine (SVM) [100] classifier coupled to that. The CAD would take thermal
images of breasts as input and give an output of whether the input was healthy
(without cancer) or sick (with cancer), along with the associated probability of
the same. Such a CAD system holds promise for other forms of cancer detection,
like CRC.

Dildar et al. (2021) [36] also did a systematic review of various neural network
techniques for skin cancer detection and classification. Various models based
on Artificial Neural Networks (ANNs) [64], Convolutional Neural Networks
(CNNs) [101], Kohonen Self-Organizing Neural Networks (KNNs) [148] and
Generative Adversarial Networks (GANs) [46] were explored, along with their
advantages and associated challenges. Their work noted how CNNs tended to
perform better when it came to the task of image classification.
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2.5.2 Deep Learning in polyp/precancerous-lesions
detection

Even when it comes to CRC-related polyp detection, there has been a fair
amount of research already done which show a few promising results [67, 104,
87, 90, 165, 83].

Li et al. (2021) [87] did a thorough evaluation and comparison of eight state-
of-the-art object detectors based on DL models on a relatively large dataset
for polyp detection that they had developed, where YOLOv4 [14], ATSS [166]
and RefineDet [167] seemed to be the models that gave a well-balanced and
consistent performance.

Liu et al. (2019) [90] meanwhile took a slightly different approach towards
polyp detection in colonoscopy videos. They tried handling the challenge of
limited training data for the training of DL models for polyp/CRC-detection by
proposing a novel single-shot detector (SSD) framework-based method with
3 different feature extractors for polyp detection. Their experimentation on
the ETIS-Larib [126] dataset showed a significantly high detection speed com-
pared to the other methods that were tried, as well as a high detection rate
for True Positives (TPs). Their work also showed the excellent performance
of InceptionV3 [131] as a DL model for feature extraction in their SSD-based
method.

Jha et al. (2019) [68] proposed a ResUNet++ based DL model for developing a
fully automatedmodel for pixel-wise polyp segmentation in colonoscopy videos
and images. Comprehensive tests performed on different datasets using this
architecture demonstrated how it outperformed State of the Art (SOTA) U-Net
and ResUNet architectures when it came to producing semantically accurate
predictions.

Jha et al. (2021) [65] later also built on this and demonstrated how Condi-
tional Random Field (CRF) [5] and Test-Time Augmentation (TTA) can be used
to further improve the performance of the previously discussed ResUNet++
architecture. This new framework showed an improved performance on vari-
ous polyp segmentation datasets that it was tested on. Furthermore, this new
framework overcame a major hurdle when it comes to CRC polyp detection,
by showing good results for flat or sessile and smaller polyps. These are the
polyps that are much harder to detect and contribute to a much higher polyp
miss rate in colonoscopies.

Jha et al. (2021) [67] also used the Kvasir-SEG [66] dataset to benchmark
the performance of various SOTA deep learning methods for polyp detection,
localisation and segmentation tasks. They also proposed a DL model called
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ColonSegNet for these tasks. It is an encoder-decoder model that uses residual
blocks with squeeze and excitation network as the main component. This gives
it the advantage of having very few trainable parameters compared to other
SOTA models, hence resulting in a very light-weight network that can give
real-time performance with a relatively high frame rate. For the Kvasir-SEG
dataset on which the benchmark tests were done, the highest frame rate was
obtained by the ColonSegNet model.

Pacal & Karaboga (2021) [104] proposed a YOLOv4[14]-based model for real-
time automatic polyp detection that showed higher accuracy and performance
compared to contemporary methods.

2.5.3 Deep Learning based image clustering

Caron et al. (2018) [23] presented a clustering method called DeepCluster
which uses a standard clustering algorithm like k-means to cluster the fea-
tures generated by a convolutional neural network on a dataset like ImageNet
[34], followed by updating the weights of the neural network by using the
cluster assignments produced earlier as pseudo-labels for prediction. This was
a promising approach for domains where labels and annotations are scarce
[23].

Yang et al. (2016) [163] proposed a framework for the joint unsupervised learn-
ing of deep representations as well as image clusters, with the image clustering
done during the forward pass of the training process, while the deep representa-
tion learning was done during the backward pass of the training process. Their
work showed that the model outperformed the state-of-the-art on image clus-
tering across a large variety of datasets like MNIST [81] and COIL20[99].

2.5.4 Colour-channel separation of images

Apart from research work on just finding the most accurate or efficient DL
models for CRC-related polyp or precancerous lesion detection, there has also
been research conducted on the kind of pre-processing steps that colonoscopy
videos can go through in order to improve the performance of the DL models
in their tasks. Pre-processing of data (be it images or videos) has always been
an important step most DL models need the data fed to them to go through,
before the model can perform its task - be it classification, segmentation or any-
thing else. Pre-processing in deep learning tasks related to images/video input
usually involves steps like resizing the images to a certain fixed dimension,
conversion to greyscale and normalisation of pixel values. However, there has
been evidence to suggest that the separation of colour channels of 3-channel
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RGB images and then combining a few channels together to form a new image
to be fed into the DL network can improve the performance of the DL model
[78, 73, 48, 62].

Lai et al. (2021) [78] did a study on this for endoscopy images of colon mucosa
and polyps, for CRC detection. 3-channel RGB images that were acquired using
Narrow-Band Imaging (NBI) [76] and White Light Endoscopy (WLE) were
studied. From each image, 1-channel, 2-channel & full-colour versions of images
were extracted separately, with the Deep Neural Network (DNN) being trained
on each of these combinations separately to see which showed the best results.
For WLE images, it was observed that the DNN performed much better using 2-
channel Red+Green (R+G) channel images, when compared to the full-colour
3-channel RGB WLE images. Meanwhile, for NBI images, the performance of
the R+G images was almost the same as that for the full-band images. The
improvement in results for R+G WLE images suggests that colour-channel
separation is a promising avenue to conduct further research on, to see if it can
boost the performance of the DL model.

Kim et al. (2022) [73] also did a similar study, but this time for cervical can-
cer classification using a DL model. Here, apart from the original image, there
were also Acetowhite Mask Images associated with each original image. The
pre-processing model they proposed involved splitting both the original and
the mask images into their constituent 3 channels each and then merging 2
channels from the original image and 1 channel from the mask image to form
a superimposed image. This superimposed image would eventually get fed to
a DL model for a classification task. Here the DL model used was ResNet [53].
Using this method helped increase the accuracy of the DL model from 72%
using the original image to 81% using the superimposed image (R channel of
acetowhite mask image + R&B channels of the original image, superimposed
together). An approach similar to this could be tried in the case of colonoscopy
images, to test out the potential of improving the performance of the DL mod-
els.

Similarly, Gupta &Manhas (2021) [48] did a similar study related to oral-cancer
detection using DL. They proposed a DL framework that involved splitting the
colour channels of the images and then extracting deep features from these
individual channels rather than a single combined channel, using the Efficient
Net B3 [136] DL model. The extracted features were later fused together using
a fusion module layer in the DL model. Using this method helped give a much
higher accuracy for oral cancer detection, compared to simply using the original
3-channel images.

All these studies conducted on the prospective benefits of colour-channel sepa-
ration and the associated improvement in performance it provides suggest that
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trying different colour-channel combinations for the input to the DL model is
as important a step as trying to find the best-performing DL model for that
particular dataset.





3
IBD, Polyps and
Colonoscopy

3.1 Inflammatory Bowel Disease (IBD)

Inflammatory Bowel Disease (IBD) is a term for two conditions - Crohn’s Dis-
ease (CD) and Ulcerative Colitis (UC), that is characterised by chronic inflam-
mation of the gastrointestinal (GI) tract [40]. IBD is associated with signif-
icant GI symptoms including diarrhoea, abdominal pain, bleeding, anaemia
and weight loss [109]. IBD also happens to be associated with a spectrum of
extraintestinal manifestations in the form of arthritis, ankylosing spondylitis,
sclerosing cholangitis, uveitis, iritis, pyoderma gangrenosum, and erythema
nodosum [109]. The risk of developing CRC for people with IBD increases by
0.5-1 % yearly, 8-10 years after diagnosis [97]. Approximately 5-10 % of IBD
patients develop CRC after 20 years and 12-20 % after 30 years of the disease
[97, 79].

IBD should not be confused with IBS (Irritable Bowel Syndrome), a condition
that affects 10% of adults, with a female predominance [134]. It is a common,
long-term condition of the digestive system and its symptoms include cramping,
abdominal pain, bloating, gas, and diarrhoea or constipation, or sometimes both
[61]. Although the condition can often be lifelong, the symptoms may change
over time and it can be successfully managed with the right strategies [61].
Unlike IBD, IBS does not pose any serious threat to one’s physical health and
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does not increase an individual’s chances of developing CRC or other bowel-
related conditions [61].

Endoscopy is considered to be the gold standard for the initial diagnosis of IBD
[8]. Patients with long-standing UC andCD have an increased risk of developing
colorectal cancer (CRC) [144]. This is why it is recommended for chronic IBD
patients to undergo surveillance colonoscopies 8 years after diagnosis, except
for the cases of ulcerative proctitis or proctosigmoiditis, which can be screened
according to average-risk population guidelines [17]. Wehkamp et al (2016)
[156] also mention how colonoscopy should be used to monitor for dysplasia
(presence of abnormal cells within a tissue or organ) starting 8-10 years after
the initial manifestation of either type of IBD. Chromoendoscopic surveillance
withmethylene blue dye [72] or indigo carmine dye [116] is better suited to this
than white-light endoscopy [129]. However, chronic IBD patients tend to have
scarring and inflammation of their colorectal tissue,which leads to something of
a noisy background during colonoscopies, hence making it more challenging to
do colorectal screening for precancerous lesions in IBD patients when compared
to patients with a healthy colon. This can be further complicated by intestinal
fibrosis, a condition where excessive scar tissue can accumulate on the intestinal
walls [115].

3.2 Polyps

Polyps are a group of cells that abnormally grow on the inner surface of a colon,
although they can occur anywhere in the gastrointestinal (GI) tract. They can
grow to eventually lead to CRC [132].

Colorectal polyps are histologically classified into two major classes - neoplas-
tic & non-neoplastic[28]. Non-neoplastic polyps are further subdivided into 4
other categories - hyperplastic polyps, hamartomas, lymphoid aggregates & in-
flammatory polyps, each of which are non-cancerous [28]. On the other hand,
neoplastic polyps are similarly classified into tubular adenomas, tubulovillous
adenomas & villous adenoma [28]. Each of these carries the potential to be
cancerous [28].

3.2.1 Paris Classification of polyps

In 2002, an international consortium of endoscopists, surgeons, and patholo-
gists gathered in Paris and developed the Paris classification of early and/or
superficial tumours in the GI tract [80, 145, 106]. Figure 3.1 below shows how
the Paris classification is used to segregate colorectal polyps into 6 different
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types [80, 106].

Out of these, types 0-Ip, 0-Is, 0-IIa & 0-IIb are less likely to be precancerous or
cancer; type 0-IIc is likely to be precancerous/cancer (when associated with
0-Ip, 0-Is, 0-IIa or 0-IIb) while type 0-III is highly likely to be cancer [16].

Figure 3.1: PARIS classification of polyps (Reprinted from Gastrointestinal Endoscopy,
Volume 58, Issue 6, Supplement, Participants in the Paris Workshop, "The
Paris endoscopic classification of superficial neoplastic lesions: esophagus,
stomach, and colon: November 30 to December 1, 2002", Pages S3-S43,
(2003), with permission from Elsevier )[106]

3.2.2 NICE Classification of polyps

Meanwhile, around 2010, an international consortium group consisting of mem-
bers from Japan, the USA and Europe called the Colon Tumor NBI Interest Group
developed a simple category classification for colorectal polyps [137]. This new
classification was called the NBI international colorectal endoscopic (NICE) clas-
sification and it classified colorectal polyps into types 1-3 by close observation
of colorectal tumours using a high-resolution videocolonoscope [137].

The table below (Table 3.1) shows how polyps are categorised differently ac-
cording to the NICE classification, as well as the associated characteristics of
each of these categories of polyps [137].

Using this classification, the most common pathology for each type of polyps is
- Hyperplastic for NICE Type 1, Adenoma for NICE Type 2 & Deep submucosal
invasive cancer for NICE Type 3 [38].
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Table 3.1: NICE classification of polyps (Adapted with permission from Digestive en-
doscopy : official journal of the Japan Gastroenterological Endoscopy So-
ciety, 23 Suppl 1, 131–139. Tanaka, S., & Sano, Y. (2011), "Aim to unify the
narrow band imaging (NBI) magnifying classification for colorectal tumors:
current status in Japan from a summary of the consensus symposium in the
79th Annual Meeting of the Japan Gastroenterological Endoscopy Society",
Copyright (2011)) [137]

3.3 Precancerous colorectal lesions

Premalignant or precancerous colorectal lesions are a collection of cells that
have undergone changes that make them more likely to develop into cancer,
although they are not yet cancer [84]. CRC is a tumour that develops from the
progression of acquired or hereditary premalignant lesions [29]. About 70% of
all CRCs are sporadic, perhaps attributed to unidentified genetic factors beyond
the risk factors associated with CRC, and colorectal adenomas are a precursor
of almost all sporadic CRCs [29].

Colorectal adenomas are typically asymptomatic lesions and are often found
incidentally during colonoscopies [29]. Not all colonic polyps are adenomas
and more than 90% of adenomas do not progress to cancer, yet it is concerning
that colorectal adenomatous polyps develop in up to 40% of people over the
age of 60 years [29, 86].

Advanced adenomas are usually considered to be the clinically relevant precur-
sors of CRC and need to be removed once they are detected [18]. Advanced
adenoma is considered to be present in a patient if they have at least one
adenoma with at least one of the following features: size greater than 1 cm,
tubulovillous or villous adenoma, high grade dysplasia or invasive cancer [18,
117]. The transformation rate of adenomatous polyps into carcinoma (cancer
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that forms in the epithelial tissue) is around 0.25% per year [29]. Moreover, the
(projected) annual transition rate from advanced adenomas to CRC increases
strongly with age (from 2.6% in the age group 55-59 years to 5.6% in the age
group of over 80 years among women, and from 2.6% in the age group 55–59
years to 5.1% in the age group of over 80 years among men) [18].

There are a few pathological features such as size, architectural growth, type
and dysplastic grade and organisation which are predictive of both the natural
history of lesions and the time frame of their potential evolution from adenoma
to carcinoma [29].

The size of the adenoma is a relevant determinant, since cancer develops in
1% of all adenomas < 1 cm, in 10% of adenomas > 1 cm & < 2 cm, and in 50%
of adenomas > 2 cm in size [29].

The histological features determining the malignant potential of an adenoma
are its growth pattern and the grade of dysplasia, with the risk of malignant
transformation increasing to almost 50% in adenomas with a mainly villous
architectural configuration [29].

Between 10-15% of sporadic CRCs are likely to have their origins in serrated
polyps, which tend to have a significant malignant potential [29]. Serrated
polyps include hyperplastic polyps (which form 80-90% of the cases) but also
sessile serrated adenomas (which prevail in about 5-10% of the general popula-
tion [95] ), traditional serrated adenomas andmixed polyps displaying features
of both [29].

There is a difference in the malignant potential of sessile serrated adenomas,
traditional serrated adenomas, and conventional adenomas, reflecting the dif-
ferences in their molecular pathways of carcinogenesis [29]. Histological assess-
ment suggests that there is a significantly lower degree of high-grade dysplasia
and carcinoma in situ for serrated adenomas in comparison to traditional ade-
nomas, which is why serrated adenomas are much less likely to develop into
CRC than traditional adenomas [85, 29].

The risk of cancer from colorectal adenoma is eliminated when it is completely
removed, even if the discovery of the adenoma indicated the potential risk of
metachronous lesions (cases in which the second primary cancer is diagnosed
more than 6months after the diagnosis of the first primary cancer) with variable
potential formalignancy, depending on the endoscopic and histological features
[29].
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3.4 Colonoscopy

One of the foremost ways to better prevent the occurrence of CRC is the early
detection and removal of polyps [24]. The method most commonly used to do
this is a colonoscopy. Colonoscopy is a visual examination of the entire length
of the colon and rectum with an endoscope that has a camera attached to its
end which is connected to a monitor for the examiner to observe [77]. This test
allows a direct mucosal inspection of the entire colon, and can be accompanied
by the removal of polyps or a biopsy [77].

The current clinical practice for detecting colorectal polyps is by using conven-
tionalWhite Light Endoscopy (WLE), which can be combined with dyes in order
to enhance the visualisation of the tissues in the areas being inspected [108].
This process is called chromoendoscopy [108]. The removed polyps are then
sent for a histopathological examination at a laboratory to determine if it is an
adenoma (and so has a higher risk of cancer) or if it is hyperplastic (and so a
lower risk of cancer) [108]. The stains used for dye-based chromoendoscopy
are of 2 major categories - either absorptive stains (such as methylene blue
[72]) or contrast stains (such as indigo carmine [116]) [21]. Methylene blue
gets absorbed by the epithelial cells of the small or large intestine which stain
blue, as opposed to dysplastic and cancerous lesions which tend to remain un-
stained [21]. Indigo carmine is a dark blue stain that tends to highlight mucosal
topography by coating mucosal structures, pits, erosions and depressions [21].
The application of these agents appears to enhance the detection and discrim-
ination of lesions by better defining the mucosal surface and light-absorptive
patterns [21].

Virtual chromoendoscopy (VCE) is another technique which has been de-
veloped to provide an enhanced visualisation of tissues without needing any
dyes, unlike conventional chromoendoscopy. VCE involves electronic endo-
scopic imaging techniques which help provide a much more detailed contrast
enhancement of the mucosal surface and blood vessels of the colorectal region
[108]. It usually makes use of an endoscope, a light source, a video processor
and a visual display monitor [151].

VCE technologies can either be optical or digital in nature. Optical VCE consists
of optical lenses being integrated into the endoscope’s light source that helps
selectively filter white light and results in narrow-band light [108, 92]. Mean-
while, Digital VCE involves using digital post-processing by the video processor
in order to enhance the real-time image being displayed [92].
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3.4.1 Commercial Endoscopy Systems

There are 3 major endoscopy systems used commercially, for the purpose of
colonoscopies -

1. The Olympus Endoscopy System - Developed by Olympus Medical Systems
Corp. Tokyo, Japan. Narrow Band Imaging (NBI), a type of optical chromoen-
doscopy technology is used in a few of the Olympus endoscopic video imaging
systems like EVIS LUCERA ELITE, EVIS EXERA III & EVIS LUCERA SPECTRUM
[108]. NBI helps enhance the contrast between the blood vessels & the sur-
rounding mucosa, when compared to standard WLE. The system allows the
endoscopist to switch between standard white light to NBI and vice versa at
any time [108].

2. Fuji Endoscopy System - Developed by HC21 Aquilant Endoscopy & Fu-
jiFilm (Europe) GmbH, Willich, Germany. Flexible Spectral Imaging Colour
Enhancement (FICE), a type of digital chromoendoscopy, is used in a few of
these systems like EPX-4450HD, EPX-3500HD and EPX-4400 [108]. Here, white
light is used to illuminate an area of interest before the images captured from
the reflected light are processed by the system’s software into spectral images
[108].

3. PENTAX Endoscopy System - Developed by PENTAX Europe GmbH, Ham-
burg, Germany. A digital chromoendoscopy technique called i-scan is used in
them, where white light illuminates an area of interest and then 3 different
algorithms for surface enhancement, contrast enhancement and tone enhance-
ment are applied for real-time image processing [108].

3.4.2 Advanced colonoscopy techniques

Once carcinoma is formed, there are five stages for CRC, as shown in figure 3.2
[118]. Stage 0 is when the tumour is located in the mucosal layer of the colon,
stage I is when it reaches the muscularis layer, stage II is when it just perforates
the serosa, stage III is when the surrounding lymph nodes are also involved,
and lastly, stage IV is with distal metastasis [118]. In CRC screening, ideally,
the precancerous lesions (or also up to Stage I cancer) should be discovered
so that they can be resected endoscopically, and for this to be possible, better
technology to discover earlier lesions is required [118].

It is of particular difficulty to discover mucosal flat lesions, especially in the
right colon, hence leading to some of them getting overlooked during colono-
scopies [118]. So, there is a need for extra modalities like chromoendoscopy
to appreciate the small, flat lesions [118]. With time, endoscopy systems have
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Figure 3.2: Stages of CRC (Reprinted from Sandouk, F., Al Jerf, F., & Al-Halabi, M.
H. (2013). Precancerous lesions in colorectal cancer. Gastroenterology
research and practice, 2013, 457901. https://doi.org/10.1155/2013/457901
[118])

developed in their functionalities by offering better resolution in their video
feed and better zoom functionalities. For instance, high definition (HD) digital
chromoendoscopy systems like Pentax i-Scan, Olympus NBI and Fujinon Fice
can be used to help with detecting the small, flat lesions better [118]. This
technology accentuates suspicious mucosal structures, hence providing us with
better delineation of borders and better vasculature patterns by enhancing the
minute mucosal and vessel structures [118]. Sometimes, with the superficial
enhancement technology, it can give us ideas about the cytological pathol-
ogy, especially when it is coupled with the advanced magnification/zooming
abilities of these endoscopy systems [118]. All these advancements in modern
chromoendoscopy systems better aid the detection of lesions.



4
Methods and
Methodologies

4.1 Philosophical Paradigm

The philosophical paradigm that forms the basis of this project is critical
realism[37, 128]. Critical realism states that the evidence we observe can come
close to reality but is always a fallible, social and subjective account of reality,
and that human perspectives are always ‘accounts of reality’ [128]. This stands
true in the case of this project too. With a focus on colonoscopies, the ability
to observe a precancerous lesion in a colonoscopy video is subjective- influ-
enced by the person performing the endoscopy, the tools that the person has
available, the resolution of the video feed and other similar factors. Even with
the DL System that is created and tested over the course of this project, the
observed results from it will just be another ‘account of reality’ instead of being
an objective representation of what is actually happening. This is why critical
realism is the philosophical paradigm that this project builds from.

4.2 Research Methods

Research methods tend to provide procedures for accomplishing the research
tasks associated with a project like this in order to support the process of
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conducting research [49].

A combination of applied research method and empirical research method
will be used in this project. This project aims to solve a known & practical prob-
lem of precancerous lesion detection using DL in surveillance colonoscopies of
IBD patients and builds on existing research, which is what applied research
methods are suited for. However, the project also aims to test predictions by fo-
cusing on real people who will be contributing to the test dataset of colonoscopy
videos. The observable evidence that is observed after the testing of the DL-
based system on the image dataset, is later analysed in order to provide an
explanation for it. Hence, the empirical research method [49] will also be in-
volved in this project.

4.3 Research Methodology

The research methodology that this project uses is case study [54]. This
project will be based on a mix of quantitative as well as qualitative evidence
about the performance of the AI/DL models that are used. Moreover, it will be a
study on a specific group of people (people suffering from chronic IBD) whose
colonoscopy videos form a part of our testing dataset. The results observed on
this limited number of people (and their associated dataset) should generalise
over the rest of the chronic IBD patient population too. Hence, this project
seems to be best suited to be a case study in terms of its research methodology
[54, 49].

4.4 Data Collection Method

On a similar note, the data collection method used for this project is also a
case study, since the number of people whose colonoscopy videos form a part
of our test dataset is fairly limited [49].

4.5 Data Analysis Method

Finally, the data analysis method used in this project was statistics since re-
sults were calculated over a sample of anonymous chronic IBD patients and later
an evaluation was performed on the significance of these results[49].



5
Requirements and System
Design

This project had a few requirements that needed to be followed throughout
the course of the research.

• Dataset: the only datasets to be used for all training and testing purposes
throughout this project were provided by the research group, and no
external datasets were supposed to be used.

• DL Model: it was a requirement to use a YOLO-based DL model for the
object detection task.

• Computer: the computer for all research purposes was a private one
provided by the university (UiT) and no other computational resources
could be used.

• GDPR [152]: due to the European privacy and data protection related
regulations, only the colonoscopy videos consensually provided by pa-
tients (and later anonymized) could be used to generate the dataset and
later be used in this project.
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5.1 System Requirements

There were significant hardware, software and data needs associated with this
project, that were necessary to be available in order to successfully undertake
this project.

5.1.1 Hardware Requirements

Training and running Deep Learning models is a computational-resources-
heavy process, especially when we take into consideration the large amount
of data in the datasets that are being dealt with and processed. In order to
make this process more efficient and less time-consuming, there is a prominent
need to use a high-performance Graphics Processing Unit (GPU) along with an
efficient computer. For the sake of this project, a computer with an 11th Gen
Intel(R) Core(TM) i9 processor that comes with 64 GB of RAM and an NVIDIA
GeForce RTX 3090 Graphics Card with 55.9 GB memory is being used.

5.1.2 Software Requirements

Python was used as the primary programming language because of its ease
of use as well as how well-integrated it is with libraries that are used in Deep
Learning like Tensorflow [105] and Keras [47]. For the object detection task,
the pre-designed YOLOv8 model [69] and YOLOv5 model [44] were used,
which come with an OSI-approved open-source license (AGPL-3.0 License) for
students and enthusiasts [58, 44]. Meanwhile, for the image clustering task,
the pre-designed and pre-trained VGG16 and VGG19 DL models were used,
which were made available through Keras Applications[138].

5.1.3 Dataset

There are two primary datasets that are used for both training and testing pur-
poses in this project. One of these is a labelled dataset with proper bounding-
box annotations from 2021, while the other is a new, novel dataset without
bounding-box annotations, that is being used for the first time in this project.

Dataset 1

Dataset 1 is a labelled, annotated dataset of 7420 images, each of resolution
(1024 * 576) pixels. Table 5.1 shows the distribution of the images in the dataset
across 7 categories that have been selected for the images in the dataset and
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their findings.

Table 5.1: Dataset 1

Olle Mannheimer (2021) in his degree project [93] mentions in further detail
the aspect of creating this dataset, which he had the major responsibility for do-
ing. The videos collected in order to create this dataset were collected between
October 2019 and January 2021 at Akershus University Hospital, Oslo, Norway
from 10 different patients diagnosed with Ulcerative colitis who each under-
went colonoscopies as part of their regular surveillance program [93]. The
colonoscopies were performed using the Olympus Endoscopy system and later
annotated using a web-based video annotation interface provided by Augere
Medical AS, Norway with bounding box annotations around each finding [93].
The bounding box annotations were labelled by masters students and then
further validated by 2 senior experts in gastroenterology with more than 15
years of experience as specialists and more than 3000 colonoscopies performed
[93]. The term Biopsy was used to label wherever a biopsy was taken with
biopsy forceps, while the term Polyp was used for the areas being resected with
a resection snare [93].

The dataset was exported to be used in this project in the YOLO Darknet TXT
format [160], where each one of the 7420 images in this dataset had an associ-
ated text file which contains the bounding box annotations of the image along
with a numeric representation of the label for that bounding box, along with a
labelmap which mapped the numerical label ID to the string labels associated
with them [160].

Figure 5.1 shows a sample image from each category of image in Dataset
1.

Dataset 1 was later used to generate 6 different datasets (Dataset 1-R, Dataset
1-G, Dataset 1-B, Dataset 1-RG, Dataset 1-GB, Dataset 1-RB) based on the colour
channel separation and recombination of the RGB images in the dataset, the
mechanism of which is described later in this chapter.
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(a) Dysplasia (Biopsy) (b) Dysplasia (Polyp)

(c) Inflammation (Biopsy) (d) Inflammation (Polyp)

(e) Normal (Biopsy) (f) Normal (Polyp)

(g) Hyperplasia

Figure 5.1: Images from Dataset 1
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Dataset 2

Dataset 2 on the other hand is a dataset of 22 colonoscopy videos collected at
a hospital in Stockholm that do not come with bounding-box annotations. The
videos for this dataset were collected over the course of 2023 on IBD patients
undergoing regular surveillance colonoscopies. The videos were anonymized
before being shared, in accordance with the ethics associated to the collection
and sharing of datasets in this project.

Figure 5.2: Sample frames of videos from Dataset 2

Each of these videos was collected using the Olympus Endoscopy System, with
the videos being of resolution 1920*1080 pixels, or 3840*2160 pixels; and last-
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ing in duration between 14 minutes to 64 minutes. The frame rate of these
videos was 50 fps.

Some of the videos came without any form of labels at all except an anonymized
unique video name,while some of the videos had time-stamp-based labels of the
histopathological findings observed in the videos. This helped generate labels
for those videos, although there were no bounding-box-based annotations, so
this dataset could not be used for the sake of training or testing the DL model
used for the object detection task.

The videos in this dataset capture frames from the colonoscopy feed consist-
ing of things ranging from precancerous findings like dysplasia, hyperplastic
mucosa to inflammatory activity, adenocarcinoma, stool, bubbles, and even in-
struments that are used to conduct biopsies during the colonoscopy. The patho-
logical findings associated with certain videos in this dataset are presented in
the next chapter.

Dataset 2 was later divided into 3 constituent datasets - Dataset 2a, Dataset
2b and Dataset 2c for further experiments and tests, for the DL-based image
clustering task. This division of Dataset 2 and further experiments with it are
described in detail in the next chapter.

5.2 System Design & Architecture

The DL system designed as part of this project consists of primarily 3 sub-
systems within it, performing different tasks -

5.2.1 Supervised learning based object detector

This system solely used Dataset 1 for its training step, and its purpose was to
detect using bounding boxes and classify anomalies that are observed in a
colonoscopy video or its associated image frames.

Dataset 1 was split up into 3 different subsets - 80% of images from each cat-
egory formed a training dataset, while 10% of the images from each category
formed a validation dataset and a test dataset respectively. Ideally, the test
dataset would have come from a different source, but since the project had
the constraint of just using Dataset 1 for all the training and testing associated
with the Object Detection Task and also because Dataset 2 did not have bounding
box annotations for the video frames in it, the Test dataset needed to be split
from the same source as the Training dataset and the Validation dataset.
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Figure 5.3: Pipeline of splitting dataset & using it to train, validate and test the model

For the DL models to be used in this system - the focus was only on YOLOv8
[69], and one of its predecessors - YOLOv5 [44].

The purpose of all these models is the same: to draw a rectangular bounding
box around any object that they detect and also label the object in the bounding
box based on the categories that the model has been trained on. In the case of
this project, the categories are any of the 7 categories of images in Dataset 1
- Dysplasia (Biopsy), Dysplasia (Polyp), Hyperplasia, Inflammation (Biopsy),
Inflammation (Polyp), Normal (Biopsy) or Normal (Polyp).

While training these models, online data augmentation was used in order to
increase the number of training image samples and to also provide a variance in
the quality of pictures so that the model is able to generalise better to different
datasets. Online data augmentation does not store the augmented images that
are generated but instead makes the data augmentation a part of the pre-
processing pipeline while training the model.

Figure 5.3 demonstrates the process of splitting the original Dataset 1 into
the Training, Validation and Test datasets, and how these datasets were used
for training our models as well as tuning its parameters & hyperparameters
according to the model’s performance on the validation dataset, and finally for
testing it on a separate test dataset.
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5.2.2 Supervised learning based object detector with
colour-channel separation and recombination

This system has fundamentally the same architecture and design as the last
system, but instead of using Dataset 1 like in the previous system, a variation
of that dataset was used here.

Dataset 1 consists of 7420 images that are RGB in nature. So, instead of using
all three channels of the images, the images were split up into their separate
colour channels - R (Red), G (Green) and B (Blue). So, the R channel images
form a separate dataset (Dataset 1-R), and similarly the G channel images form
Dataset 1-G and the B channel images form Dataset 1-B.

Furthermore, as seen in subsection 2.5.4, the colour-channel recombination of
images can also sometimes lead to improvements in the performance of DL
models. So, each of these individual channels was also combined to form sep-
arate datasets. The R+G channel images form Dataset 1-RG, the G+B channel
images form Dataset 1-GB while the R+B channel images combine to form
Dataset 1-RB.

Figure 5.4: Pipeline of splitting RGB images to separate R, G, B channels & recombin-
ing it to form RG, RB and GB channel images

The entire pipeline for splitting the colour channels of the RGB images and
then recombining them has been visualised in figure 5.4, with a sample image
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from Dataset 1 being used to demonstrate the effects of colour channel splitting
and recombination.

Each of these 6 newdatasets is split up into 80% training dataset, 10% validation
dataset and 10% test dataset like in the previous system. These datasets each
had the same images in their training, validation and test datasets as Dataset
1’s training, validation and test datasets. Just like the previous system, there is
an online data-augmentation of the images involved in this system too.

Then, these new datasets are used for training and testing the object detection
models mentioned in the previous system, to see if the colour-channel separa-
tion and/or recombination can give an improvement in results, compared to
the standard RGB dataset.

5.2.3 Unsupervised learning based image-clustering

This system was fundamentally built to deal with the unlabelled data available
in Dataset 2. Despite being unlabelled and hence not having any bounding-
box annotations for the images in it, Dataset 2 has images of a much higher
resolution than Dataset 1, and also has a significantly larger number of images
in it. Hence, an unsupervised learning based model was designed to cluster the
images into different clusters.

For this, a pre-trained VGG-16[127] or VGG-19[127] model (pre-trained on the
ImageNet [34] dataset) was used for feature extraction, by removing the final
layer of the model in order to get a feature vector produced when the model
runs on an image from the dataset on which clustering was being performed
[41].

A variation of the clustering pipeline described by Gabe Flomo (2020) [41] was
used in order to get a feature vector of length 4096 for each image that was
passed through the model. The original image was resized to the dimensions
224*224 pixels before being processed through the model since the VGG-16
and VGG-19 models run with those dimension images as input. This was done
for all images, so that a feature vector corresponding to every image was ob-
tained.

However, since the number of components (or dimensions of each feature vec-
tor) was high which would make the process of clustering computationally
very expensive, there was a need to reduce the number of components in the
feature vector [41]. For this, the method of principal component analysis (PCA)
[2] was harnessed in order to reduce the dimensions of the feature vector for
all images from 4096 down to 1000.
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Figure 5.5: Pipeline of the unsupervised clustering algorithm based on VGG-16/ VGG-
19

Finally, the K-Means clustering algorithm was used to group the feature vectors
into ‘k’ numbers of groups called ‘clusters’.

Figure 5.5 demonstrates the pipeline used by the unsupervised clustering al-
gorithm in this project on the datasets that it was run on.
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Implementation
In order to implement the system design discussed in Chapter 5, a few steps
needed to be systematically followed, which are mentioned in the following
sections.

6.1 Data preparation

For all the systems designed in Chapter 5, the datasets needed to be first pre-
pared to work with that system.

6.1.1 For object detection task

Dataset 1 was going to be used for the training as well as evaluation of the
object detector, and it was necessary for the dataset to be in the YOLO Darknet
TXT format [160] for the YOLOv5 and YOLOv8 models to work with it. Since
the dataset had already been provided in the correct format, there was only a
need to verify whether each image had a proper label file associated with it or
not.

Next, Dataset 1 was split up into 3 different subsets as described in Figure 5.3,
with 80% of images from each category formed a training dataset, while 10%
of the images from each category formed a validation dataset and a test dataset

51
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respectively. It was again verified that each image had its associated text file
with the proper annotations.

This was followed by implementing the colour-channel separation of the images
in Dataset 1, and then the colour-channel recombination to form 6 new datasets
- Dataset 1-R, Dataset 1-G, Dataset 1-B, Dataset 1-RG, Dataset 1-GB, Dataset 1-RB,
as described in Subsection 5.2.2 and seen in Figure 5.4. These datasets each
had the same images in their training, validation and test datasets as Dataset
1’s training, validation and test datasets.

With this, the datasets for training and testing the object detection models were
ready.

6.1.2 For DL based image clustering task

Dataset 2 needed a bit more pre-processing before it was ready for the experi-
ments since originally it only consisted of videos that were shared in the MP4
video format, after being anonymized to remove any personal information of
the patients.

In order to make this dataset easier to work with and utilise for training and
testing purposes later on over the course of this project, there was a need to
convert the videos into an image dataset. This was done using the FFMPEG tool
[141], where it was also possible to mention the frame rate to extract frames
at, in case there was a need to not extract all the original frames of the 50 fps
videos to reduce the number of similar-looking images in the dataset.

There were 3 different daughter-datasets that were created from this parent-
dataset Dataset 2, based on the number of frames extracted and whether those
videos had any time-stamp-based labels or not.

a) Dataset 2a -

This dataset was created towards the very beginning of the project, when the
first colonoscopy videos were collected and shared by the medical professionals
conducting the colonoscopies. At that point in time, none of the videos had
any histopathological findings associated with them. So, this dataset was a
completely unlabelled dataset.

The frames were extracted from the videos at the rate of 2 frames per second,
which served the purpose of ensuring that the dataset size does not explode
and become too big and memory-intensive to practically work with, and also
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that the dataset does not have too many similar-looking images. The images
had the same resolution as the resolution of the videos they were extracted
from - which was either 1920*1080 pixels, or 3840*2160 pixels. The extraction
of frames was done for the entire duration of the original videos.

Table 6.1: Dataset 2a

Table 6.1 gives a description of Dataset 2a, and the images in it. Each video’s
frames were saved in a separate folder, which had the same name as that of
the video. In the end, the dataset consisted of 11 folders (each folder unique to
1 colonoscopy video) with the number of images in each folder varying.

b) Dataset 2b -

Later over the course of the project, some histopathological findings were ob-
tained for the biopsies conducted for certain videos, based on which time-
stamp-based labels were provided for the histopathological findings found in
certain time-segments of the colonoscopy videos.

Based on these time stamps, the videos were first trimmed down to only those
segments of the original videos where there were findings observed. Then,
frames of videos were extracted from these video segments at the rate of 50
fps (which was the frame rate of the original video), hence ensuring that all
the frames with findings were extracted. This formed Dataset 2b.

Table 6.2 gives a description of Dataset 2b and the findings found in it. Each
video had its own folder, where the image frames containing its findings were
extracted to. However, there was an extremely large variation between the
number of frames extracted for each folder/video.
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Table 6.2: Dataset 2b

c) Dataset 2c -

Finally, towards the end of the project, the final list of time-stamp-based histopatho-
logical findings for some more videos was provided, based on which Dataset 2c
was created.

Some of the videos from Dataset 2a and Dataset 2b were also used here, while
there were some new videos. These videos were split into their individual
frames at a rate of 10 frames per second, and then divided into different cate-
gories/folders mentioned in the table 6.3.

The Video + Category name in table 6.3 consists of 2 main components. The
first part (which is the term starting with ‘ERAIend’) refers to the video name
from which those frames were extracted. The remainder of the term, i.e. the
Category name, is the actual histopathological findingmentioned by themedical
professionals who provided the time-stamp-based labels. Each colonoscopy
video can have different segments of the video where different findings are
seen, which is why sometimes there are multiple categories for the same video.
Also, the same finding can be found multiple times in the same colonoscopy
video - like the 2 different time stamps where Villous Mucosa were observed in
the video ERAIend021, which is why at least initially when extracting the video
frames, they are each given a different Video + Category name.

However, these labels were only a textual description of the findings seen in
different segments of the colonoscopy videos. These were not bounding-box-
based labels. So, this dataset could not be used for the object-detection task
or training. Instead, it was used to get an insight into the functioning of the
image clustering model.
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Table 6.3: Dataset 2c

6.2 Object detection model implementation

6.2.1 Training and evaluation on Dataset 1

After the dataset preparation was completed, the training and testing of the
object detection models could take place, for which Dataset 1 would be used
first, in a manner similar to that described in Figure 5.3.

YOLOv5[44] andYOLOv8[58, 19] come inmultiplemodel sizes - nano (YOLOv5n/
YOLOv8n), small (YOLOv5s/ YOLOv8s),medium (YOLOv5m/ YOLOv8m), large
((YOLOv5l/ YOLOv8l) and extra large (YOLOv5x/ YOLOv8x), with the model
size and hence the number of parameters and training time increasing from
nano to extra-large. Each of these models was trained with Dataset 1’s training
dataset, along with its validation dataset being used for validating the trained
model after every epoch of training.

Since there were a large number of datasets to train and test the model on
over the course of this project, and also because there were a high number
of parameters and hyperparameters associated with the YOLOv8 and YOLOv5
models that could be altered and fine-tuned in order to improve the model’s
performance, it was necessary to set the same standard number of training
epochs for each training experiment, which was 100 here. Another reason why
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the number of epochs for training was set as 100 was to minimise overfitting.
One final reason for choosing this as the number of training epochs is the high
training time associated with training the models - especially the models with
a high number of parameters.

After training was complete, Dataset 1’s test dataset was used to generate eval-
uation results in the form of a Confusion Matrix as well as Mean Average
Precision (mAP) values.

6.2.2 Training and evaluation on colour-channel separated
and recombined datasets

After Dataset 1, it was the turn of its daughter datasets Dataset 1-R, Dataset 1-G,
Dataset 1-B, Dataset 1-RG, Dataset 1-GB, Dataset 1-RB that were obtained after
the colour channel separation and recombination, to be used for training and
evaluation of the object detection model.

This time, only the YOLOv8x model was used, with the training and evaluation
taking place the same way as done on Dataset 1, as mentioned in section 6.2.1.
The samemetrics as thatmentioned in section 6.2.1 were used for the evaluation
of these models too. The number of epochs for training was also set as 100, for
the same reasons as before.

6.3 DL-based image clustering model
implementation

Finally, the DL-based image clustering model was implemented on Dataset 2’s
daughter datasets - Dataset 2a, Dataset 2b and Dataset 2c.

6.3.1 Image clustering on Dataset 2a

Dataset 2a came with no findings or labels associated with the videos in it,
and no way of knowing how many clusters to segregate the images in the
dataset into. After a bit of trial and error, it was decided to cluster the images
in each folder of Dataset 2a into 48 different clusters each. Using a number
of clusters that was too small had the potential to group together multiple
different potential findings into the same clusters, while using a number of
clusters that was too high had the potential of creating clusters that did not
have similar images together.
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The clustering pipeline seen in Figure 5.5 was implemented on each folder of
Dataset 2a separately, with the VGG-16 model pre-trained on ImageNet [34]
being used for the feature-extraction part of the pipeline to create the feature
vector.

In order to assess the quality and performance of this clustering pipeline, the re-
sulting clusters for each individual video were shared with the group of medical
professionals in the field of colonoscopy and IBD in the HMT Group associated
with the project, for their feedback and input, which was documented and will
be discussed in the next chapter.

6.3.2 Image clustering on Dataset 2b

Since Dataset 2b came with time-stamp-based histopathological findings and
the image frames were extracted only for the video segments where there were
findings present, it helped ensure that this dataset had much fewer percentage
of images with no finding present, compared to Dataset 2a.

Table 6.4: Template to label the findings (Provided by Camilla Wijkström, Ersta En-
doskopienhet, Sweden)

The template seen in Table 6.4 was used as a guiding tool to label the findings
obtained in the videos, although some videos had findings or labels not seen
in this table. However, most labels were based on this table. Assuming that 2
different types of findings did not appear on the video simultaneously, there
could be 21 different categories that the potential findings could have. So, it
was decided to cluster Dataset 2b into 23 different clusters (21 clusters for the
21 categories of potential findings, and 2 extra clusters - 1 for the frames where
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there is white light, and 1 for the frames where this is motion blur). The VGG-
16 model pre-trained on ImageNet was again used as the feature extractor in
order to generate the feature vector for the images in the dataset.

The clustering pipeline of Figure 5.5 was again run here for each individual
folder in Dataset 2b. After the 23 clusters for each video’s folder were generated,
the resulting clusters were again shared with the team of medical professionals
for their assessment and comments, which were documented and mentioned
in the next chapter.

6.3.3 Image clustering on Dataset 2c

Dataset 2c is very similar toDataset 2b in terms of the time-stamp-based histopatho-
logical findings based on which the dataset is generated. However, a different
approach to the clustering and evaluation of results was done this time.

Dataset 2c was obtained from 11 individual videos, with 12 different categories
of findings in it, as seen in Table 6.3 and Table 6.5.

Table 6.5: Unique categories in Dataset 2c used to set the number of clusters

In order to settle on these 12 different numbers of categories, the images with
‘Villous Mucosa’ present in videos ‘ERAIend021’ and ‘ERAIend023’ were con-
sidered to be the same category/potential cluster. Similarly, the images with
‘Surface Architecture : Hyperplastic/ Serrated Mucosa’ in videos ‘ERAIend025’,
‘ERAIend036’ and ‘ERAIend039’ were considered to be the same category/po-
tential cluster. The same was done for the images with ‘Mild Active Inflamma-
tion’ present in videos ‘ERAIend028’, ‘ERAIend030’ and ‘ERAIend32’.
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For this implementation of the clustering pipeline of Figure 5.5, the VGG-19
model pre-trained on ImageNet was used. Moreover, all the images from each
individual category of Dataset 2cwere combined together into a common folder,
and then the clustering pipeline was run on this folder of all images. The
clustering pipeline was run to generate 12 clusters - corresponding to the 12
different categories of findings, as mentioned in table 6.5.

Moreover, since this time there were proper time-stamp-based labels for each
frame in the dataset, there was no need to rely on the manual assessment
and feedback done by the team of medical professionals, and instead, some
numerical metrics were generated based on the clusters generated, which is
discussed in the next chapter.





7
Results and Discussion
7.1 Results

7.1.1 For Object Detection with Dataset 1

Dataset 1 was first used to train, validate and test various YOLOv5 and YOLOv8
models. Figure 7.1 shows a plot of the mAP50-95 values on the test dataset
given by the various-sized YOLOv8 and YOLOv5 models, against the time taken
to train these models.

Figure 7.1: YOLOv8 vs YOLOv5 models’ comparison on Dataset 1

61
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Tables 7.1 and 7.2 meanwhile also show the performance metrics of the YOLOv5
and YOLOv8 models respectively on the test dataset, while also mentioning
their training time for 100 epochs. The mAP50-95 value on these tables and
plot are calculated for the Bounding Box that was predicted by the trained
model, while the inference time is the time taken by the trained model to do
inference for each image in the test dataset.

For testing the dataset and creating thesemetrics, the images in the test datasets
were resized to 640*640 pixels, and the default parameters of the YOLOv8/YOLOv5
models were used. These default parameters included the parameter object
confidence threshold for detection, which will henceforth be referred to as the
confidence threshold. The confidence threshold’s default value for this figure
and these tables was 0.001.

Table 7.1: YOLOv5 models’ performance metrics with Dataset 1

Table 7.2: YOLOv8 models’ performance metrics with Dataset 1

Figure 7.2 shows the plot-based results of training and validating a YOLOv8x
model with Dataset 1, more commonly referred to by the term learning curves.
The training losses of the model after every epoch of training are represented
by train/box_loss, train/cls_loss and train/dfl_loss; while the validation losses
of the model on the validation split of Dataset 1 are represented by val/box_loss,
val/cls_loss and val/dfl_loss. The evaluation metrics of the model on the vali-
dation dataset after every epoch are also included in this figure.
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Figure 7.2: YOLOv8x model’s learning curve, with Dataset 1

Figure 7.3 shows the mAP50-95 values for different-sized YOLOv8models when
trained with Dataset 1’s training split, and then tested on its testing split, while
setting the confidence threshold for detections as 0.9. Setting this parameter
so high means that the model only gives those objects as detections which
have a confidence score of a value equal to or over 0.9, hence ensuring very
accurate predictions for the object’s class, and minimising mis-detection or
wrong detections of objects. The x-axis marks the training time of these models
for 100 epochs of training.

The corresponding performance metrics are mentioned in table 7.3. Figure
7.4 meanwhile shows the confusion matrices for the YOLOv8x and YOLOv8l
models tested on the test split of Dataset 1, with the confidence threshold set
as 0.9.

Figure 7.3: YOLOv8 models’ comparison while training and testing on Dataset 1, with
confidence threshold set as 0.9 for predictions
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Table 7.3: YOLOv8 models’ performance metrics on test split of Dataset 1, with confi-
dence threshold set as 0.9

(a) Confusion matrix for YOLOv8x (b) Confusion matrix for YOLOv8l

Figure 7.4: Comparison of YOLOv8x and YOLOv8l models’ confusion matrices on test
split of Dataset 1, with confidence threshold set as 0.9 for predictions

7.1.2 For Object Detection with colour-channel separation
and recombination

Figure 7.5 and Table 7.4 show the performance of the YOLOv8x models that
were trained, validated and tested on the different datasets created after colour
channel separation and recombination - Dataset 1-R, Dataset 1-G, Dataset 1-B,
Dataset 1-RG, Dataset 1-GB, Dataset 1-RB. Each of these datasets had the same
sets of images in their training, validation and test splits, as stated earlier.
Also, the confidence threshold for detection was set at 0.9 here for all these
results.

The improvement in the object detection task by colour-channel separation
and recombination was also easy to notice when observing the confusion ma-
trices given by the YOLOv8x models trained and tested on these datasets, with
confidence threshold set as 0.9 for detections. These confusion matrices are



7.1 results 65

Figure 7.5: Comparison of YOLOv8x models trained and tested on different colour-
channel datasets (with the confidence threshold for testing set at 0.9)

Table 7.4: YOLOv8x models’ performance metrics on different datasets (with confi-
dence threshold set as 0.9 for testing)

included in figures 7.6 and 7.7. The confusion matrices and normalised confu-
sion matrices show true positives (i.e. when the predicted label for an object
and its original/ground truth label is the same) along their main diagonal. The
confusion matrices also have each count numerically mentioned, as well as a
representation in the form of a heat map.

Finally, figure 7.8 shows the comparison of the predictions generated by the
YOLOv8x model for different datasets. None of the images had the image name
in the white text on the top-left corner, originally. Figure 7.8a shows the ground
truth images with the respective target bounding box and target class labels.
Figure 7.8b shows the bounding box predictions along with the class prediction
for the object in the bounding box and the confidence score for it, generated
by a YOLOv8x model that was trained on Dataset 1 and then tested on images
from Dataset 1, with the confidence threshold set as 0.9. Figure 7.8c meanwhile
shows the bounding box predictions along with the class prediction and the
confidence score for it, generated by a YOLOv8x model that was trained on
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(a) Confusion matrix (for Dataset 1) (b) Normalised confusion matrix (for Dataset 1)

(c) Confusion matrix (for Dataset 1-R) (d) Normalised confusion matrix (for Dataset 1-R)

(e) Confusion matrix (for Dataset 1-G) (f) Normalised confusion matrix (for Dataset 1-G)

(g) Confusion matrix (for Dataset 1-B) (h) Normalised confusion matrix (for Dataset 1-B)

Figure 7.6: Confusion matrices for YOLOV8x model trained and tested on different
colour channel datasets (with confidence threshold 0.9) - part I
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(a) Confusion matrix (for Dataset 1-RG) (b) Normalised confusion matrix (for Dataset 1-RG)

(c) Confusion matrix (for Dataset 1-RB) (d) Normalised confusion matrix (for Dataset 1-RB)

(e) Confusion matrix (for Dataset 1-GB) (f) Normalised confusion matrix (for Dataset 1-GB)

Figure 7.7: Confusion matrices for YOLOv8x model trained and tested on different
colour channel datasets (with confidence threshold 0.9) - part II
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(a) Ground Truth (b) Dataset 1 prediction (c) Dataset 1-B prediction

Figure 7.8: Comparison of predictions of YOLOv8x model that was trained and tested
on Dataset 1 and Dataset 1-B for the same set of images, with confidence
threshold 0.9

Dataset 1-B and then tested on the same set of test images, but from Dataset
1-B, with the confidence threshold again set as 0.9.

7.1.3 For DL-based Image Clustering Task

1. Image clustering on Dataset 2a

Given the high number of images in this dataset which totalled 45778 total
images, it was impractical to assess the clustering results on the entire dataset
in the limited time frame of this project, especially because there were 48
different clusters that each video’s frames were clustered into. However, some
clusters were analysed to assess the performance of the clustering model, which
are highlighted here-

• ERAI004 - Table 7.5 shows an assessment of the clusters observed for this
video.
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Table 7.5: Dataset 2a (Video ERAI004) clustering assessment

• ERAI006 - Not all clusters were thoroughly assessed for this video. How-
ever, there were some interesting findings observed in some clusters, as
seen in Table 7.6.

The 48 clusters generated were numbered from 0-47, based on which the
‘Cluster number’ is mentioned in this table.

Table 7.6: Dataset 2a (Video ERAI006) clustering assessment
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• Rest of the videos - The patterns and observations seen in some other
clusters in the remainder of the videos are encapsulated in Table 7.7.

Table 7.7: Dataset 2a (other videos) clustering assessment

2. Image clustering on Dataset 2b

Just like Dataset 2a, with even Dataset 2b it was difficult to completely assess
the clustering results because of the high number of video frames in it which
totalled 108,214 total images.

Each video’s frames were clustered into 23 separate clusters, making the
assessment of the quality of clustering even more difficult. However, it was
possible to provide an assessment of some videos and clusters, which have
been summed up in the tables below for different videos of the dataset.

The clusters here were indexed from 0-22. The column titled ‘Frame number’
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refers to the particular video frame/frames to which the observation mentioned
in that row of that table pertains to.

• ERAI006 - According to the histopathological findings associated with
Dataset 2b seen in table 6.2, Video ERAI006 had the finding ‘Low grade
dysplasia in a tubulous adenoma (polypoid lesion)’. The assessment for
the clusters obtained from video ERAI006 is seen in Table 7.8.

Table 7.8: Dataset 2b (Video ERAI006) clustering assessment
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• ERAI028 - The histopathological findings associated with this video ac-
cording to Table 6.2 is ‘Mild inflammatory activity’. The assessment of
the clusters seen with this dataset is summed up in Table 7.9.

Table 7.9: Dataset 2b (Video ERAI028) clustering assessment
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• ERAI010 - The histopathological findings associated with this video ac-
cording to Table 6.2 is ‘Low grade dysplasia in a minimal tubulous ade-
noma’. The assessment of the clusters seen with this dataset is summed
up in Table 7.10.

Table 7.10: Dataset 2b (Video ERAI010) clustering assessment

• ERAI005 - This video had only 114 video frames extracted having the
findings ‘Hyperplastic plaque, Irregular crypts’ according to Table 6.2.

On clustering the frames of this video into 23 clusters, these were the
observations:
i) 13 clusters had the finding ‘Irregular crypts with chromo’,
ii) 8 clusters had the finding ‘Granulate mucosa with chromo’,
iii) 2 clusters had just a singular image each.
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• ERAI020 - This video had 29050 video frames which was a very large
number of frames to visually assess and note patterns for. The histopatho-
logical findings associatedwith this video according to table 6.2 is ‘Chronic
inflammation, extended postinflammatory findings, villous structure-almost
looking like small bowel mucosa. Paneth cell metaplasia/hyperplasia and
crypt bifurcation.’ The assessment of the clusters seen with this dataset
is summed up in Table 7.11.

Table 7.11: Dataset 2b (Video ERAI020) clustering assessment

• Rest of the videos -

1. ERAI003: This video had the histopathological findings ‘Flat hyperplas-
tic mucosa, no dysplasia’ in 450 total video frames, according to table
6.2. In the resulting clusters, ‘Hyperplastic polyp and biopsy forceps’ was
seen in clusters 2, 5, 6, 10, 11, 12, 13, 15, 16 and 18.
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2. ERAI030: This video had ‘Chronic active inflammation with crypt in-
flammation’ as the histopathological findings, according to table 6.2. In
the resultant clusters, Inflammation (in white light) was seen in clusters:
3, 7, 9, 12 and 16; while Inflammation (in NBI) was seen in clusters 5 and
8.

3. Image clustering on Dataset 2c

Dataset 2c came with proper time-stamp-based labels for the video frames,
which is why it was easier to assess the performance of the clustering system
on it, since there was no need to rely on the observations of a team of different
medical professionals for their assessment of the clustering results. Tables 7.12
and 7.13 together provide an assessment of the results of the image clustering
system when Dataset 2c is clustered into 12 different clusters.

Table 7.12: Assessment of clustering Dataset 2c into 12 clusters - Part 1
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Table 7.13: Assessment of clustering Dataset 2c into 12 clusters - Part 2

The idea behind using 12 as the number of clusters was to try to cluster the
video frames into the same number of clusters as there are unique categories
of findings (which was 12 for Dataset 2c, as seen in Table 6.5).
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The column titled ‘Video + Category name’ refers to the column of the same
name in Table 6.3, where Dataset 2c is described. In the tables 7.12 and 7.13
the ‘Cluster count’ refers to the number of video frames of that category in
that cluster, while the ‘Parent count’ refers to the number of images of that
category in the Parent Dataset, i.e. Dataset 2c. The ‘Comparison’ column shows
what percentage of a category from the ‘Parent Dataset’ is in that cluster. So for
example, the first category in cluster 1 is ‘ERAIend021 - Villous Mucosa 1’. The
‘Cluster Count’ of 2 here means that there are 2 video frames of this category
in this cluster, while the ‘Parent Count’ of 92 means that there are a total of
92 video frames of the category ‘ERAIend021 - Villous Mucosa 1’ in the ‘Parent
Dataset’ i.e. Dataset 2c. The comparison value of 2.17% means that 2.17% of
‘ERAIend021 - Villous Mucosa 1’ from Dataset 2c are in cluster 1.

7.2 Discussion

7.2.1 For Object Detection with Dataset 1

The results observed for the Object detection task with Dataset 1 were very
promising.

Figure 7.1 shows that the model that took the least amount of time for training
on Dataset 1 was YOLOv8n (Nano), which took 0.958 hours to finish training
for 100 epochs. Meanwhile, YOLOv8x (Extra Large) took the highest training
time of 4.949 hours for 100 epochs of training. However, this was also the
best-performing model, in terms of the mAP50-95 value on the test split of the
dataset. YOLOv8x also took the highest inference time per image of 8.7 ms.
The YOLOv5n (nano) model took the least inference time per image, but it was
also the worst performing of these models in terms of mAP50-95 value.

It was also seen that the nano model of YOLOv5 was worse performing than
the nano model of YOLOv8, in terms of the mAP50-95 value. The same trend
was observed for the other sized models of YOLOv5 and YOLOv8. This leads to
the conclusion that YOLOv8 was a much better-performing model in terms of
mAP50-95 values than YOLOv5. This was why for the other experiments asso-
ciated with the Object Detection Task including those with the colour-channel
separated and recombined datasets, YOLOv8x was the model used for compar-
ison.

From the numerical results seen in tables 7.1 and 7.2, it was observed that
when all YOLOv8 and YOLOv5 models were trained with the same dataset for
a standard number of training epochs (which was 100, here) and then tested
on the same test dataset with the default testing parameters, the YOLOv8x
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model was the best performing one in terms of the mAP50-95 value, which was
0.868 for it. But if there is a need to find a balance between high mAP50-95
value, low training time for the model, and low inference time for prediction
on test images, then YOLOv8l is a more suitable option. It offers a mAP50-95
value of 0.867 while having a training time that was 40.59% less than that of
the YOLOv8x model, while also having an inference time that was 36.7% less
than that of the YOLOv8x model.

Figure 7.2 shows the plot-based results of training and validating a YOLOv8x
model with Dataset 1, more commonly referred to by the term learning curves.
It is observed that the validation loss, represented by val/box_loss, val/cls_loss
and val/dfl_loss, seem to be approaching a plateau. Moreover, the metrics like
precision, recall andmAP50 also seem to have reached a plateau too and are not
giving any significant improvement with an increase in the number of epochs.
The mAP50-95 value seems to be improving with the number of epochs, so
there is a potential to make the model further improve with respect to this
evaluation metric, with further training over a larger number of epochs. Based
on the graphs here, it can be concluded that underfitting is certainly not an issue
with the model here. A similar trend in the plateauing of these metrics and loss
values was seen in most other models’ training with different datasets.

From Table 7.3 and the confusion matrices in Figure 7.4, it was observed that if
the need is formore accurate class predictions, YOLOv8x is a better choice for
amodel than YOLOv8l. When the confidence threshold parameterwas set as 0.9
for testing in order to get highly accurate predictions, the YOLOv8x model gives
more correct predictions of class labels than the YOLOv8l model in 5 out of the
7 classes in Dataset 1, as seen in the confusion matrices. The YOLOv8x model
consistently gave a higher number of accurate predictions than the YOLOv8l
model across all classes except Dysplasia (Biopsy) where both models had the
same number of accurate predictions, and Inflammation (Polyp), where the
YOLOv8l model was more accurate.

In Table 7.3, a muchmore significant difference in the performance of the differ-
ent sizedmodels was seen, especially between the worst performing (YOLOv8n)
and best performing (YOLOv8x) model, in terms of the mAP50-95 values. The
performance of the YOLOv8s and YOLOv8m models were very close, and this
was also the case for the YOLOv8l and YOLOv8x models, with the YOLOv8l
model being just slightly better in terms of the mAP50 value,while the YOLOv8x
model was slightly better in terms of the mAP50-95 value. However, the dif-
ference between the performance of the YOLOv8x and YOLOv8l models was
more noticeable when analysing their confusion matrices, as seen in Figure 7.4
and discussed earlier.

Hence, for testing the performance of the colour channel separation and re-
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combination pipeline with the object detection model, the YOLOv8x model was
chosen to be the one to train and test these models on.

7.2.2 For Object Detection with colour-channel separation
and recombination

The promising results observed on training the object detection models with
Dataset 1 were further improved, when the datasets formed after colour chan-
nel separation and recombination were used.

From Table 7.4 and Figure 7.5, it was seen that when the object detection model
(more specifically, YOLOv8x) was trained and tested on the datasets produced
after colour channel separation and recombination of the RGB images, just
having the Blue-channel images of the original RGB images in the dataset
was enough to significantly improve the performance of the YOLOv8x model
on the test datasets, when the confidence threshold was 0.9. With Dataset 1-B
(which had only the blue channel images), the mAP50-95 value increased to
0.828, when compared to the value of mAP50-95 value of 0.78 given by the
same model on the same set of test images, but when trained and tested with
Dataset 1 which had RGB images. This was an improvement of 6.15%. It was
onlyDataset 1-RGwhich gave a decrease in the mAP50-95 value, as seen in Table
7.4. This made sense, since Dataset 1-RG did not have the blue channel of the
original RGB images, the same channel which was responsible for producing
the best results.

Moreover, observing the confusion matrices in figures 7.6 and 7.7, it was seen
that the colour channel separation and recombination was contributing towards
producing much more accurate predictions (except in the case of Dataset 1-RG)
across most classes, with Dataset 1-B outperforming every other dataset in
terms of the number of accurate predictions for all classes except one, as seen
in Figures 7.6g and 7.6h.

From subfigures 7.6a and 7.7a it was seen that even when it comes to the
worst performing dataset (Dataset 1-RG), it gave more accurate predictions
than Dataset 1 for 1 class - ‘Inflammation (Polyp)’. However, Dataset 1 gave
much more accurate predictions across all other classes when compared to
Dataset 1-RG.

Finally, figure 7.8 shows a visual comparison between the predictions made
by the YOLOv8x model that was trained and tested on images from Dataset 1,
and the YOLOv8x model that was trained and tested on images from Dataset
1-B (for the confidence threshold set as 0.9). It was seen that for Image ‘AI-1-
4_70550.jpg’, the model trained and tested on Dataset 1 gave a lower confidence
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score (0.9) than the model trained and tested on Dataset 1-B, which gave a
confidence score of 1.0 . Also in the case of Image ‘AI-1-4_70562.jpg’, the model
trained and tested on Dataset 1 did not detect any object and hence gave no
predictions, while the model trained and tested with Dataset 1-B that had just
the blue channel of the image, was able to detect the object present and give
the correct prediction for it. This demonstrates the superiority of the YOLOv8x
model that was trained and tested with just the blue channel of the original
RGB images.

7.2.3 For DL-based Image Clustering Task

On Dataset 2a

Table 7.5 where the assessment of the clusters observed for the video ERAI004
are mentioned, shows that there were 17 low-quality clusters with no noticeable
observations. However, the clustering model was effective in clustering into
separate clusters the images that were visually distinguishable and different
from the rest of the video. The observation of ‘Outside patient’ refers to the
frames of the video that were captured when the endoscope was outside the pa-
tient, and so were visually much different than the rest of the images. Similarly
there is a separate cluster for ‘Bubbles and stool’ that was visually dissimilar
to the other clusters since stool and bubbles had different visual features. The
model was also successful in finding clusters with possible abnormalities as well
as actual abnormalities and hyperplasia. Finally, the low-quality clusters only
formed a minority (35.41%) of all the 48 clusters generated by the clustering
model, hence signifying the model’s effectiveness.

The assessment for video ERAI006 was mentioned in Table 7.6. The doctor
reviewing these clustering results gave an additional comment that it appeared
that the clustering seemed mostly based on colours at that point in time. This
was justified, since DL models tend to extract visual features of an image, which
includes colour. It was also observed that some clusters showed a tendency to
have several consecutive frames in the same cluster. This can be explained by
the fact that consecutive frames in a colonoscopy video tended to show the
same visual features and looked very similar visually if the endoscope was not
moving too much. Hence, based on the visual similarity of consecutive frames,
the model had a tendency to cluster them together. A positive pattern observed
here was that just like in video ERAI004, the model tended to cluster the blurry
video frames into a separate cluster.

The assessment for some of the clusters in the other videos in this dataset was
summed up in Table 7.7. From these observations, it was again noticeable that
the image clustering system worked well in clustering out visually different
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images, like the ‘Video ERAI020, cluster 7’ where all video frames were from
outside the body. Similarly, the clustering system was also able to cluster out
video frames where NBI was used, which can be explained by how NBI creates
different lighting conditions and hence results in visually different images than
those in the rest of the colonoscopy video.

On Dataset 2b

The assessment for the clusters observed for video ERAI006 in this dataset
was seen in Table 7.8. It was promising to see the clustering model being
able to cluster the video frames having lesions into separate clusters. It was
also noticeable that the lesions with NBI formed 3 separate clusters, while the
lesions with Indigo were also forming different clusters. This also supports the
observation seen from the clustering results on Dataset 2a, that the clustering
model tends to separate out video frames into clusters on the basis of colour,
since NBI and Indigo both add a distinct colour to the video frames. There
were also a few clusters with blurred images, which can be explained by the
fact that there was motion blur while moving the endoscope to conduct the
colonoscopy, and so there are a lot of video frames that are blurry because of
it. Moreover, since in Dataset 2b all the videos’ frames were extracted at the
original frame rate of 50 fps, there were a lot more blurry images than that
seen in the previous dataset, Dataset 2b, where a lower frame rate was used
for video frame extraction.

Table 7.9 mentions the assessment of the clusters for video ERAI028 in this
dataset. The clustering system was able to create separate clusters of the video
frames that had inflammation as a finding in them. It was also able to create
separate clusters for the video frames where instruments appeared, which have
much different visual features than the rest of the colorectal tract.

From Table 7.10 which shows the assessment of clustering results on video
ERAI010, it was seen that there were some clusters with possibly neoplastic
lesions, while some with non-neoplastic lesions and 1 cluster with neoplastic
lesion. So the clustering of lesions or potential lesions into separate clusters
showed promise, again. Moreover, there were separate clusters where instru-
ments appeared, sometimes also with lesions in them. This was natural, since
sometimes during colonoscopies, instruments are used to conduct biopsies on
lesions, which is why in some video frames instruments and a lesion can appear
together. The video frames with Indigo also formed a separate set of clusters,
since the indigo dye gave the video frames a distinguishable colour that was
different from the rest of the video frames.
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For video ERAI005, the observation of the resulting clusters showed how clus-
tering just a small number of frames especially into a relatively high number
(23) of clusters was not very productive. Since the histopathological findings
for this video had just 2 separate findings (as seen in Table 6.2), in the cluster-
ing results there were mostly 2 different kinds of clusters observed - each with
1 type of finding. At least the ability of the clustering system to separate out
the 2 different types of findings into different clusters was promising.

The clustering results for video ERAI020 are mentioned in Table 7.11. The results
obtained here were really promising, whichmight be because the original video
had a very large number of findings which could have visually distinguishable
features that the clustering systemmight have been able to use in order to better
separate the video frames into clusters with common findings in them. There
were 1-2 separate clusters for each of these observations- ‘Blood’, ‘Dysplastic
plaque’, ‘Chronic inflammation’ and ‘Mucosa with chronic inflammation’. The
ability of the clustering system to create separate clusters for each of these
findings was really useful. Moreover, there was a separate cluster for video
frames that were blurry. Similarly, there was an individual cluster each for the
video frames that appeared red coloured, those that appeared blue coloured,
and those that appeared green coloured. However, there were 12 clusters where
no pattern was observed and which showed no promising observations in them.
This was to be expected, when there were so many video frames for this video.
However, there is a possibility that these clusters with nothing in common could
possibly have a few findings in them that were just mixed up with other frames
with no-findings. This would be a potentially negative aspect of this clustering
system.

Finally, for video ERAI030, the fact that the clustering system created different
clusters for images with NBI and different clusters for images with white light
for the same finding of Inflammation again demonstrates the clustering sys-
tem’s ability to distinguish between white light and NBI video frames, because
of the different visual characteristics the video frames having these tend to
display.

On Dataset 2c

The clustering results for this dataset were analysed numerically rather than
visually, and these results are mentioned in Tables 7.12 and 7.13.

There were a few promising results/clusters seen here. For cluster 2 (in Table
7.12), there were only ‘Mild Active Inflammation’ video frames, and there were
frames of 2 different videos having this same finding that was clustered together
here. Similarly, in cluster 9 (seen in Table 7.13), there were only video frames of
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1 finding - ‘Blurred Vascularity’. Cluster 4 had a majority (85.8%) of its images
being of just 1 finding - ‘ERAIend038 - Normal Vascularity’, while a few other
images made up the rest of the cluster.

However, some other clusters had a mixture of findings in them and did not
show an ability to distinguish between the different findings in the dataset.
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Future Work
Despite the promising results obtained over the course of this project, there
is significant scope for further exploring this topic of deep learning in pre-
cancerous lesion detection of chronic IBD patients undergoing surveillance
colonoscopies, and improving on the results obtained in this project.

The most promising outcome of this project was the improvement in the perfor-
mance of the object detection model YOLOv8 when colour channel separation
and recombination was done on the original dataset’s images. This approach
can also be applied and explored across other fields of medical research when
working with data similar to the one used in this thesis. There is also a scope to
explore whether this approach also works as effectively on other colonoscopy
datasets, and with other object detection models.

The Object Detection models that were trained over the course of this project
can be tested on a different test dataset having images of the same classes as
Dataset 1, but which come from a different source. This will help determine
how well the models trained here generalise across other datasets with the
same classes of findings in them.

Dataset 1 (as seen in table 5.1) that was used in this project had an imbalanced
number of images across different classes. In future works, more images from
all classes can be collected in order to make this a more balanced dataset, when
it comes to the number of images in each class. Moreover, DL-based techniques
like Generative Adversarial Network (GAN) [121] can be used to artificially
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synthesise additional images for these classes, hence significantly increasing
the size of the dataset while also solving any potential class-imbalance problems
associated with the original dataset.

Dataset 2was initially supposed to come with bounding-box annotations for the
findings in it, but those annotations could not be generated before or over the
course of this project. So, another scope for future work is to create a bounding
box annotations based version of Dataset 2. This new dataset can be used to
explore the performance of object detection models, as was the initial intention
of this project.

Since Dataset 2 got time-stamp-based labels of histopathological findings for
many of its videos by the end of this project, these labels can now be used to
train Image Classification models with Dataset 2.

There is also scope for doing a clinical studywhere the improved colour-channel
separation and recombination based object detection system can be integrated
with the endoscopy systems currently in use to create a Computer-Aided Di-
agnosis (CAD) tool, to see if this helps improve the detection of precancerous
lesions. Seeing the implementation and potential improvement to precancer-
ous lesion detection provided by this CAD tool during live colonoscopies will
give an important evaluation of the real-life performance of this system, and
its potential benefits and fallacies.

Finally, when it comes to the image-clustering system, even this system can be
further improved. Instead of using a VGG-16 or VGG-19 model that was pre-
trained on the ImageNet dataset as was done in this project, the VGG-16 or VGG-
19 model can be pre-trained with a dataset of colonoscopy video frames with
pre-cancerous lesions/findings in them. There is a potential for a DL model that
has been trained on a dataset of precancerous lesions detection/classification to
extract more useful features in the clustering pipeline, than a DL model that has
just been trained on a generic image classification dataset like ImageNet. An
additional thing that can be tried in this regard is using a DLmodel that has been
pre-trained on ImageNet and then further training it on a precancerous-lesion
dataset, hence making use of transfer learning. Other clustering approaches
based on Deep Learning can also be explored for this system.

One last thing that can be explored when it comes to the image-clustering
system is the colour-channel separation and recombination pipeline mentioned
in this thesis, to see if that helps the DL model extract more useful features
and hence help form better clusters.
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Conclusion
The work done over the course of this project helps increase the understanding
of how deep learning can be used to help precancerous lesion detection in
chronic IBD patients undergoing surveillance colonoscopies.

The object detection system that was experimented with in this project showed
how an object detection model like YOLOv8x that uses the blue channel of the
original RGB images of a dataset of precancerous findings can give significantly
better performance than a model that uses the RGB channels of the images
for training and prediction. The improvement in performance of the object
detection system associated with using just the blue channel of the images has
significant implications not just in future systems associated with colonoscopies,
but also those associated with other forms of medical research.

This thesis also provides a comparison of the performance of the different-sized
YOLOv5 and YOLOv8 models when trained for the same number of epochs on
the same dataset. It was seen that the YOLOv8x (extra large) model was the
best-performing model, while YOLOv5n (nano) was the worst-performing one.
It was also seen that the YOLOv8 models were all better performing than their
YOLOv5 counterparts.

It was noted that the colour channel separation and recombination of the orig-
inal RGB images in the dataset gave an improvement in the performance of
the object-detection model in all cases but one - Dataset 1-RG, where the blue
channel was missing. This makes sense, since the dataset having just the blue
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channel of the images, Dataset 1-B, was the best-performing one. So removing
the data stored in the blue channel of the original RGB images had the potential
to lead to a worse-performing model, as was observed here.

Dataset 1 that was used in this thesis for the object detection task had a few
issues associated with it, which contributed to the models trained in this project
not being ideal for clinical applications in its current state. The first issue is the
class imbalance problem with this dataset, where a few classes had a very high
number of instances in the dataset, while a few classes had a very few number
of instances in the same dataset. Secondly, the test dataset on which the object
detection models were testedwas split from Dataset 1,whichwas also the source
for the training and validation datasets for these models. This led to the testing
and training splits of Dataset 1 being visually similar, hence resulting in models
that potentially over-fitted on Dataset 1, giving excellent performance metrics
on the test dataset, but having an increased risk of not generalising well for
generating predictions on images from other datasets that are visually different
than Dataset 1. Dataset 1 also happens to be an older dataset from 2021, and
current endoscopy systems used for conducting colonoscopies generate images
of much higher resolution than the images in Dataset 1, which is another reason
why the models trained with this dataset are not ideal for clinical applications
in their current form.

The DL-based image clustering system’s results on the other hand were a bit
more of a mixed bag. This system was able to cluster the video frames into
separate clusters of visually distinguishable video frames, like the ones where
there were instruments, the ones from outside the patient, or the ones con-
taining stool. Moreover, video frames in which NBI was used instead of white
light also tended to get segregated into separate clusters. Video frames with
motion blur also tended to form separate clusters in most cases. When this
system was applied on Dataset 2b which had video frames of only findings,
the system’s ability to group the precancerous findings into clusters was seen.
However, the qualitative form of assessment done on these clustering results as
well as the inability to analyse patterns observed in each individual cluster of
all the clusters is a potential negative when it comes to the assessment of the
clustering system. This was attempted to be rectified by using Dataset 2c where
a numerical approach towards analysing the clustering results was done. With
Dataset 2c, it was seen that a better approach to creating clusters of findings
in a dataset is to run the clustering system on a single folder with each video’s
frames, so that similar findings from different videos can be potentially sepa-
rated out into the same cluster by the DL-based clustering system. This ability
of the system was noticed with Dataset 2c when it came to findings like ‘Mild
Active Inflammation’ and ‘Blurred Vascularity’.

Despite these positive results, it was observed that the DL-based clustering
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system’s performance in grouping together video frames with the same findings
into the same cluster was erratic and unreliable. With Dataset 2a and Dataset
2b, it was seen that the system often showed a tendency to create clusters of
frames showing the same colour or visual characteristics. It was also observed
that the system had a tendency to group together consecutive frames of a
video into the same cluster. With Dataset 2c, it was seen that despite a few
clusters succeeding in having similar findings together, most clusters had a
mixed number of different findings.

However, despite these downfalls, this project helped provide an important
insight into the potential for using DL in the field of precancerous lesion detec-
tion in chronic IBD patients - both with a supervised learning based approach
that uses object detection, and an unsupervised learning based approach for
image clustering. This will act as the foundation for further research into this
topic which has the potential for significantly improving the current systems
in place for detecting precancerous lesions during surveillance colonoscopies
of IBD patients.





Bibliography
[1] 2018 Turing Award. Jan. 9, 2024. url: https://awards.acm.org/

about/2018-turing (visited on 01/09/2024).
[2] Hervé Abdi and Lynne J Williams. “Principal component analysis.”

In: Wiley interdisciplinary reviews: computational statistics 2.4 (2010),
pp. 433–459.

[3] About the functionality of DFL_loss · Issue 4219 · ultralytics/ultralytics.
Jan. 4, 2024. url: https://github.com/ultralytics/ultralytics/
issues/4219 (visited on 01/04/2024).

[4] Ahsan Adeel, Mandar Gogate, and Amir Hussain. “Contextual deep
learning-based audio-visual switching for speech enhancement in real-
world environments.” In: Information Fusion 59 (2020), pp. 163–170.

[5] Fahim Irfan Alam et al. “Conditional random field and deep feature
learning for hyperspectral image classification.” In: IEEE Transactions
on Geoscience and Remote Sensing 57.3 (2018), pp. 1612–1628.

[6] Elie Aljalbout et al. “Clustering with deep learning: Taxonomy and new
methods.” In: arXiv preprint arXiv:1801.07648 (2018).

[7] Laith Alzubaidi et al. “Review of deep learning: Concepts, CNN archi-
tectures, challenges, applications, future directions.” In: Journal of big
Data 8 (2021), pp. 1–74.

[8] Vito Annese et al. “European evidence based consensus for endoscopy
in inflammatory bowel disease.” In: Journal of Crohn’s and Colitis 7.12
(2013), pp. 982–1018.

[9] Diego Ardila et al. “End-to-end lung cancer screeningwith three-dimensional
deep learning on low-dose chest computed tomography.” In: Nature
medicine 25.6 (2019), pp. 954–961.

[10] Are class and box losses calculated the same in YoloV8 and YoloV5? · Issue
2789 · ultralytics/ultralytics. Jan. 3, 2024. url: https://github.com/
ultralytics/ultralytics/issues/2789 (visited on 01/03/2024).

[11] A Asuntha and Andy Srinivasan. “Deep learning for lung Cancer de-
tection and classification.” In: Multimedia Tools and Applications 79
(2020), pp. 7731–7762.

[12] Binary Cross Entropy: Where To Use Log Loss In Model Monitoring -
Arize AI. Jan. 3, 2024. url: https://arize.com/blog-course/binary-
cross-entropy-log-loss/ (visited on 01/03/2024).

91

https://awards.acm.org/about/2018-turing
https://awards.acm.org/about/2018-turing
https://github.com/ultralytics/ultralytics/issues/4219
https://github.com/ultralytics/ultralytics/issues/4219
https://github.com/ultralytics/ultralytics/issues/2789
https://github.com/ultralytics/ultralytics/issues/2789
https://arize.com/blog-course/binary-cross-entropy-log-loss/
https://arize.com/blog-course/binary-cross-entropy-log-loss/


92 BIBLIOGRAPHY

[13] Chris M Bishop. “Neural networks and their applications.” In: Review
of scientific instruments 65.6 (1994), pp. 1803–1832.

[14] Alexey Bochkovskiy,Chien-YaoWang, andHong-YuanMark Liao. “Yolov4:
Optimal speed and accuracy of object detection.” In: arXiv preprint
arXiv:2004.10934 (2020).

[15] Gaudenz Boesch. VGG Very Deep Convolutional Networks (VGGNet) -
What you need to know - viso.ai. Oct. 7, 2021. url: https://viso.ai/
deep-learning/vgg-very-deep-convolutional-networks/ (visited on
12/09/2023).

[16] Aurélien Bour et al. “Automatic colon polyp classification using convo-
lutional neural network: a case study at Basque country.” In: 2019 IEEE
International Symposium on Signal Processing and Information Technol-
ogy (ISSPIT). IEEE. 2019, pp. 1–5.

[17] Alison T Brenner, Michael Dougherty, and Daniel S Reuland. “Colorec-
tal cancer screening in average risk patients.” In: Medical Clinics 101.4
(2017), pp. 755–767.

[18] Hermann Brenner et al. “Risk of progression of advanced adenomas to
colorectal cancer by age and sex: estimates based on 840 149 screening
colonoscopies.” In: Gut 56.11 (2007), pp. 1585–1589.

[19] Brief summary of YOLOv8 model structure · Issue 189 · ultralytics/ul-
tralytics. Jan. 2, 2024. url: https : / / github . com / ultralytics /
ultralytics/issues/189 (visited on 01/02/2024).

[20] Jason Brownlee. How to choose loss functions when Training Deep Learn-
ing Neural Networks. Aug. 2020. url: https://machinelearningmastery.
com/how-to-choose-loss-functions-when-training-deep-learning-
neural-networks/.

[21] Anna M Buchner. “The role of chromoendoscopy in evaluating colorec-
tal dysplasia.” In: Gastroenterology & Hepatology 13.6 (2017), p. 336.

[22] Mathilde Caron et al. “Deep Clustering for Unsupervised Learning of Vi-
sual Features.” In: Proceedings of the European Conference on Computer
Vision (ECCV). Sept. 2018.

[23] Mathilde Caron et al. “Deep clustering for unsupervised learning of
visual features.” In: Proceedings of the European conference on computer
vision (ECCV). 2018, pp. 132–149.

[24] Antoni Castells. “Choosing the optimal method in programmatic col-
orectal cancer screening: current evidence and controversies.” In: Ther-
apeutic advances in gastroenterology 8.4 (2015), pp. 221–233.

[25] Hongming Chen et al. “The rise of deep learning in drug discovery.”
In: Drug discovery today 23.6 (2018), pp. 1241–1250.

[26] Colorectal Cancer Awareness Month 2022 – IARC. Feb. 6, 2023. url:
https://www.iarc.who.int/featured- news/colorectal- cancer-
awareness-month-2022/ (visited on 02/06/2023).

https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://github.com/ultralytics/ultralytics/issues/189
https://github.com/ultralytics/ultralytics/issues/189
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://www.iarc.who.int/featured-news/colorectal-cancer-awareness-month-2022/
https://www.iarc.who.int/featured-news/colorectal-cancer-awareness-month-2022/


BIBLIOGRAPHY 93

[27] Colorectal cancer statistics | WCRF International. Feb. 6, 2023. url:
https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/
(visited on 02/06/2023).

[28] PhilomenaMColucci, Steven H Yale, and Christopher J Rall. “Colorectal
polyps.” In: Clinical medicine & research 1.3 (2003), pp. 261–262.

[29] Vincenza Conteduca et al. “Precancerous colorectal lesions.” In: Inter-
national journal of oncology 43.4 (2013), pp. 973–984.

[30] Solemane Coulibaly et al. “Deep neural networks with transfer learning
in millet crop images.” In: Computers in industry 108 (2019), pp. 115–
120.

[31] Angel Alfonso Cruz-Roa et al. “A deep learning architecture for image
representation, visual interpretability and automated basal-cell carci-
noma cancer detection.” In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2013: 16th International Conference,Nagoya,
Japan, September 22-26, 2013, Proceedings, Part II 16. Springer. 2013,
pp. 403–410.

[32] CSP-DarkNet. Dec. 12, 2023. url: https://huggingface.co/docs/
timm/models/csp-darknet (visited on 12/12/2023).

[33] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. “Super-
vised learning.” In: Machine learning techniques for multimedia: case
studies on organization and retrieval (2008), pp. 21–49.

[34] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database.”
In: CVPR09. 2009.

[35] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transform-
ers for language understanding.” In: arXiv preprint arXiv:1810.04805
(2018).

[36] Mehwish Dildar et al. “Skin cancer detection: a review using deep
learning techniques.” In: International journal of environmental research
and public health 18.10 (2021), p. 5479.

[37] Geoff Easton. “Critical realism in case study research.” In: Industrial
marketing management 39.1 (2010), pp. 118–128.

[38] Endoscopy Campus - Polyp Classification: NICE. Mar. 30, 2023. url:
https://www.endoscopy- campus.com/en/classifications/polyp-
classification-nice/ (visited on 03/30/2023).

[39] Rasool Fakoor et al. “Using deep learning to enhance cancer diagnosis
and classification.” In: Proceedings of the international conference on
machine learning. Vol. 28. ACM New York, NY, USA. 2013, pp. 3937–
3949.

[40] Claudio Fiocchi. “Inflammatory bowel disease: etiology and pathogen-
esis.” In: Gastroenterology 115.1 (1998), pp. 182–205.

[41] Gabe Flomo. How to cluster images based on visual similarity | by Gabe
Flomo | Towards Data Science. Oct. 13, 2020. url: https://towardsdatascience.
com/how-to-cluster-images-based-on-visual-similarity-cd6e7209fe34
(visited on 10/07/2023).

https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/
https://huggingface.co/docs/timm/models/csp-darknet
https://huggingface.co/docs/timm/models/csp-darknet
https://www.endoscopy-campus.com/en/classifications/polyp-classification-nice/
https://www.endoscopy-campus.com/en/classifications/polyp-classification-nice/
https://towardsdatascience.com/how-to-cluster-images-based-on-visual-similarity-cd6e7209fe34
https://towardsdatascience.com/how-to-cluster-images-based-on-visual-similarity-cd6e7209fe34


94 BIBLIOGRAPHY

[42] Alexander L. Fradkov. “Early History of Machine Learning.” In: IFAC-
PapersOnLine 53.2 (2020). 21st IFAC World Congress, pp. 1385–1390.
issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2020.
12.1888. url: https://www.sciencedirect.com/science/article/
pii/S2405896320325027.

[43] Ross Girshick. “Fast r-cnn.” In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1440–1448.

[44] GitHub - ultralytics/yolov5: YOLOv5 in PyTorch > ONNX > CoreML >
TFLite. Oct. 5, 2023. url: https://github.com/ultralytics/yolov5
(visited on 10/05/2023).

[45] glenn-jocher (Glenn Jocher). Dec. 6, 2001. url: https://github.com/
glenn-jocher (visited on 12/12/2023).

[46] Ian Goodfellow et al. “Generative adversarial networks.” In: Commu-
nications of the ACM 63.11 (2020), pp. 139–144.

[47] Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing
Ltd, 2017.

[48] Rachit Kumar Gupta, Jatinder Manhas, et al. “Improved classification
of cancerous histopathology images using color channel separation
and deep learning.” In: Journal of Multimedia Information System 8.3
(2021), pp. 175–182.

[49] Anne Håkansson. “Portal of research methods and methodologies for
research projects and degree projects.” In: The 2013 World Congress in
Computer Science,Computer Engineering, and Applied ComputingWORLD-
COMP 2013; Las Vegas, Nevada, USA, 22-25 July. CSREA Press USA. 2013,
pp. 67–73.

[50] Asmaa Halbouni et al. “Machine learning and deep learning approaches
for cybersecurity: A review.” In: IEEE Access 10 (2022), pp. 19572–
19585.

[51] Karin Hammarberg,Maggie Kirkman, and Sheryl de Lacey. “Qualitative
research methods: when to use them and how to judge them.” In:
Human reproduction 31.3 (2016), pp. 498–501.

[52] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means
clustering algorithm.” In: Journal of the royal statistical society. series c
(applied statistics) 28.1 (1979), pp. 100–108.

[53] Kaiming He et al. “Deep residual learning for image recognition.” In:
Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016, pp. 770–778.

[54] Roberta Heale andAlison Twycross. “What is a case study?” In: Evidence-
Based Nursing 21.1 (2018), pp. 7–8. issn: 1367-6539. doi: 10.1136/eb-
2017-102845. eprint: https://ebn.bmj.com/content/21/1/7.full.
pdf. url: https://ebn.bmj.com/content/21/1/7.

[55] Dan Hendrycks and Kevin Gimpel. “Gaussian error linear units (gelus).”
In: arXiv preprint arXiv:1606.08415 (2016).

https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1888
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1888
https://www.sciencedirect.com/science/article/pii/S2405896320325027
https://www.sciencedirect.com/science/article/pii/S2405896320325027
https://github.com/ultralytics/yolov5
https://github.com/glenn-jocher
https://github.com/glenn-jocher
https://doi.org/10.1136/eb-2017-102845
https://doi.org/10.1136/eb-2017-102845
https://ebn.bmj.com/content/21/1/7.full.pdf
https://ebn.bmj.com/content/21/1/7.full.pdf
https://ebn.bmj.com/content/21/1/7


BIBLIOGRAPHY 95

[56] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning
algorithm for deep belief nets.” In: Neural computation 18.7 (2006),
pp. 1527–1554.

[57] YaoshiangHo and SamuelWookey. “The real-world-weight cross-entropy
loss function: Modeling the costs of mislabeling.” In: IEEE access 8
(2019), pp. 4806–4813.

[58] Home - Ultralytics YOLOv8 Docs. May 2, 2023. url: https://docs.
ultralytics.com/ (visited on 05/02/2023).

[59] How is confidence calculated by YOLOv8? · Issue 4149 · ultralytics/ul-
tralytics. Dec. 13, 2023. url: https : / / github . com / ultralytics /
ultralytics/issues/4149 (visited on 12/13/2023).

[60] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift.” In:
International conference on machine learning. pmlr. 2015, pp. 448–456.

[61] Irritable bowel syndrome (IBS) | NHS inform. May 2, 2023. url: https:
//www.nhsinform.scot/illnesses-and-conditions/stomach-liver-
and-gastrointestinal-tract/irritable-bowel-syndrome-ibs (vis-
ited on 05/02/2023).

[62] Humayun Irshad, Ludovic Roux, andDaniel Racoceanu. “Multi-channels
statistical and morphological features based mitosis detection in breast
cancer histopathology.” In: 2013 35th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE.
2013, pp. 6091–6094.

[63] A G Ivakhnenko and V G Lapa. Cybernetics and forecasting techniques.
Modern analytic and computational methods in science and mathemat-
ics. Trans. from the Russian, Kiev, Naukova Dumka, 1965. New York,
NY: North-Holland, 1967. url: https://cds.cern.ch/record/209675.

[64] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. “Artificial neural
networks: A tutorial.” In: Computer 29.3 (1996), pp. 31–44.

[65] Debesh Jha et al. “A comprehensive study on colorectal polyp seg-
mentation with ResUNet++, conditional random field and test-time
augmentation.” In: IEEE journal of biomedical and health informatics
25.6 (2021), pp. 2029–2040.

[66] Debesh Jha et al. “Kvasir-seg: A segmented polyp dataset.” In: Multi-
Media Modeling: 26th International Conference, MMM 2020, Daejeon,
South Korea, January 5–8, 2020, Proceedings, Part II 26. Springer. 2020,
pp. 451–462.

[67] Debesh Jha et al. “Real-time polyp detection, localization and segmen-
tation in colonoscopy using deep learning.” In: Ieee Access 9 (2021),
pp. 40496–40510.

[68] Debesh Jha et al. “Resunet++: An advanced architecture for medi-
cal image segmentation.” In: 2019 IEEE International Symposium on
Multimedia (ISM). IEEE. 2019, pp. 225–2255.

https://docs.ultralytics.com/
https://docs.ultralytics.com/
https://github.com/ultralytics/ultralytics/issues/4149
https://github.com/ultralytics/ultralytics/issues/4149
https://www.nhsinform.scot/illnesses-and-conditions/stomach-liver-and-gastrointestinal-tract/irritable-bowel-syndrome-ibs
https://www.nhsinform.scot/illnesses-and-conditions/stomach-liver-and-gastrointestinal-tract/irritable-bowel-syndrome-ibs
https://www.nhsinform.scot/illnesses-and-conditions/stomach-liver-and-gastrointestinal-tract/irritable-bowel-syndrome-ibs
https://cds.cern.ch/record/209675


96 BIBLIOGRAPHY

[69] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics. Ver-
sion 8.0.0. https://orcid.org/0000-0001-5950-6979 (Glenn Jocher),
https://orcid.org/0000-0002-7603-6750 (Ayush Chaurasia), https:
//orcid.org/0000-0003-3783-7069 (Jing Qiu). Jan. 10, 2023. url:
https://github.com/ultralytics/ultralytics.

[70] K means Clustering - Introduction - GeeksforGeeks. May 2, 2017. url:
https://www.geeksforgeeks.org/k-means-clustering-introduction/
(visited on 01/03/2024).

[71] Md Rezaul Karim et al. “Deep learning-based clustering approaches for
bioinformatics.” In: Briefings in bioinformatics 22.1 (2021), pp. 393–415.

[72] Ralf Kiesslich et al. “Methylene blue-aided chromoendoscopy for the
detection of intraepithelial neoplasia and colon cancer in ulcerative
colitis.” In: Gastroenterology 124.4 (2003), pp. 880–888.

[73] Yoon Ji Kim et al. “RGB Channel Superposition Algorithm with Ace-
towhite Mask Images in a Cervical Cancer Classification Deep Learning
Model.” In: Sensors 22.9 (2022), p. 3564.

[74] Georgia Koppe, Andreas Meyer-Lindenberg, and Daniel Durstewitz.
“Deep learning for small and big data in psychiatry.” In: Neuropsy-
chopharmacology 46.1 (2021), pp. 176–190.

[75] Anders Krogh. “What are artificial neural networks?” In: Nature biotech-
nology 26.2 (2008), pp. 195–197.

[76] K Kuznetsov, R Lambert, and J-F Rey. “Narrow-band imaging: potential
and limitations.” In: Endoscopy 38.01 (2006), pp. 76–81.

[77] Roberto Labianca and Barbara Merelli. “Screening and diagnosis for
colorectal cancer: present and future.” In: Tumori Journal 96.6 (2010),
pp. 889–901.

[78] Lily L Lai et al. “Separation of color channels from conventional colonoscopy
images improves deep neural network detection of polyps.” In: Journal
of Biomedical Optics 26.1 (2021), pp. 015001–015001.

[79] Peter Laszlo Lakatos and Laszlo Lakatos. “Risk for colorectal cancer
in ulcerative colitis: changes, causes and management strategies.” In:
World journal of gastroenterology: WJG 14.25 (2008), p. 3937.

[80] R Lambert. “The Paris endoscopic classification of superficial neoplastic
lesions: esophagus, stomach, and colon: November 30 to December 1,
2002.” In: Gastrointest Endosc 58 (2003), S3–S43.

[81] Y. Lecun et al. “Gradient-based learning applied to document recog-
nition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi:
10.1109/5.726791.

[82] Jeonghun Lee et al. “Risk factors of missed colorectal lesions after
colonoscopy.” In: Medicine 96.27 (2017).

[83] Ji Young Lee et al. “Real-time detection of colon polyps during colonoscopy
using deep learning: systematic validation with four independent datasets.”
In: Scientific reports 10.1 (2020), p. 8379.

https://orcid.org/0000-0001-5950-6979
https://orcid.org/0000-0002-7603-6750
https://orcid.org/0000-0003-3783-7069
https://orcid.org/0000-0003-3783-7069
https://github.com/ultralytics/ultralytics
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://doi.org/10.1109/5.726791


BIBLIOGRAPHY 97

[84] Sid Lee. Precancerous conditions of the colon or rectum | Canadian Can-
cer Society. May 31, 2023. url: https : / / cancer . ca / en / cancer -
information/cancer-types/colorectal/what-is-colorectal-cancer/
precancerous-conditions (visited on 05/31/2023).

[85] Barbara Leggett and Vicki Whitehall. “Role of the serrated pathway
in colorectal cancer pathogenesis.” In: Gastroenterology 138.6 (2010),
pp. 2088–2100.

[86] Joel S Levine and Dennis J Ahnen. “Adenomatous polyps of the colon.”
In: New England Journal of Medicine 355.24 (2006), pp. 2551–2557.

[87] Kaidong Li et al. “Colonoscopy polyp detection and classification: Dataset
creation and comparative evaluations.” In: Plos one 16.8 (2021), e0255809.

[88] Xiang Li et al. “Generalized focal loss: Learning qualified and dis-
tributed bounding boxes for dense object detection.” In: Advances in
Neural Information Processing Systems 33 (2020), pp. 21002–21012.

[89] Yi Li et al. “Medical image fusion method by deep learning.” In: Inter-
national Journal of Cognitive Computing in Engineering 2 (2021), pp. 21–
29.

[90] Ming Liu, Jue Jiang, and Zenan Wang. “Colonic polyp detection in
endoscopic videos with single shot detection based deep convolutional
neural network.” In: IEEE Access 7 (2019), pp. 75058–75066.

[91] Sebastien Jean Mambou et al. “Breast cancer detection using infrared
thermal imaging and a deep learning model.” In: Sensors 18.9 (2018),
p. 2799.

[92] Michael A Manfredi et al. “Electronic chromoendoscopy.” In: Gastroin-
testinal endoscopy 81.2 (2015), pp. 249–261.

[93] Olle Mannheimer. Artificial Intelligence for improved detection of dysplas-
tic lesions in inflammatory bowel disease. Degree Project. Gothenburg,
Sweden, 2021.

[94] Mohammed A Al-Masni et al. “Simultaneous detection and classifica-
tion of breast masses in digital mammograms via a deep learning YOLO-
based CAD system.” In: Computer methods and programs in biomedicine
157 (2018), pp. 85–94.

[95] Martino Mezzapesa et al. “Serrated colorectal lesions: an up-to-date
review from histological pattern to molecular pathogenesis.” In: Inter-
national Journal of Molecular Sciences 23.8 (2022), p. 4461.

[96] Erxue Min et al. “A survey of clustering with deep learning: From
the perspective of network architecture.” In: IEEE Access 6 (2018),
pp. 39501–39514.

[97] P1 Munkholm. “The incidence and prevalence of colorectal cancer in in-
flammatory bowel disease.” In: Alimentary pharmacology & therapeutics
18 (2003), pp. 1–5.

[98] KSV Muralidhar. Learning Curve to identify Overfitting and Underfitting
in Machine Learning | by KSVMuralidhar | Towards Data Science. July 7,
2023. url: https://towardsdatascience.com/learning-curve-to-

https://cancer.ca/en/cancer-information/cancer-types/colorectal/what-is-colorectal-cancer/precancerous-conditions
https://cancer.ca/en/cancer-information/cancer-types/colorectal/what-is-colorectal-cancer/precancerous-conditions
https://cancer.ca/en/cancer-information/cancer-types/colorectal/what-is-colorectal-cancer/precancerous-conditions
https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-problems-133177f38df5
https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-problems-133177f38df5
https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-problems-133177f38df5


98 BIBLIOGRAPHY

identify- overfitting- underfitting- problems- 133177f38df5 (vis-
ited on 01/05/2024).

[99] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. “Columbia object
image library (coil-20).” In: (1996).

[100] William SNoble. “What is a support vectormachine?” In: Nature biotech-
nology 24.12 (2006), pp. 1565–1567.

[101] Keiron O’Shea and Ryan Nash. “An introduction to convolutional neural
networks.” In: arXiv preprint arXiv:1511.08458 (2015).

[102] Niall O’Mahony et al. “Deep learning vs. traditional computer vision.”
In: Advances in Computer Vision: Proceedings of the 2019 Computer Vision
Conference (CVC), Volume 1 1. Springer. 2020, pp. 128–144.

[103] Overfitting vs Underfitting in Machine Learning [Differences]. Jan. 5,
2024. url: https://www.v7labs.com/blog/overfitting-vs-underfitting
(visited on 01/05/2024).

[104] Ishak Pacal and Dervis Karaboga. “A robust real-time deep learning
based automatic polyp detection system.” In: Computers in Biology and
Medicine 134 (2021), p. 104519.

[105] Bo Pang, Erik Nijkamp, and Ying Nian Wu. “Deep learning with ten-
sorflow: A review.” In: Journal of Educational and Behavioral Statistics
45.2 (2020), pp. 227–248.

[106] Participants in the Paris Workshop. “The Paris endoscopic classifica-
tion of superficial neoplastic lesions: esophagus, stomach, and colon:
November 30 to December 1, 2002.” In: Gastrointestinal Endoscopy 58.6,
Supplement (2003), S3–S43. issn: 0016-5107. doi: https://doi.org/
10.1016/S0016-5107(03)02159-X. url: https://www.sciencedirect.
com/science/article/pii/S001651070302159X.

[107] Christophe Pere. What are loss functions? June 2020. url: https :
//towardsdatascience.com/what-is-loss-function-1e2605aeb904.

[108] Joanna Picot et al. “Virtual chromoendoscopy for the real-time assess-
ment of colorectal polyps in vivo: a systematic review and economic
evaluation.” In: Health Technology Assessment 21.79 (2017).

[109] Anand B Pithadia and Sunita Jain. “Treatment of inflammatory bowel
disease (IBD).” In: Pharmacological Reports 63.3 (2011), pp. 629–642.

[110] Principal Component Analysis(PCA) - GeeksforGeeks. July 7, 2018. url:
https://www.geeksforgeeks.org/principal- component- analysis-
pca/ (visited on 01/03/2024).

[111] RangeKing (Range King). Dec. 8, 2023. url: https://github.com/
RangeKing (visited on 12/08/2023).

[112] Jillella Sai Charan Reddy et al. “Real time Automatic Polyp Detection
in White light Endoscopy videos using a combination of YOLO and
DeepSORT.” In: 2022 1st International Conference on the Paradigm Shifts
in Communication, Embedded Systems, Machine Learning and Signal
Processing (PCEMS). IEEE. 2022, pp. 104–106.

https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-problems-133177f38df5
https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-problems-133177f38df5
https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-problems-133177f38df5
https://towardsdatascience.com/learning-curve-to-identify-overfitting-underfitting-problems-133177f38df5
https://www.v7labs.com/blog/overfitting-vs-underfitting
https://doi.org/https://doi.org/10.1016/S0016-5107(03)02159-X
https://doi.org/https://doi.org/10.1016/S0016-5107(03)02159-X
https://www.sciencedirect.com/science/article/pii/S001651070302159X
https://www.sciencedirect.com/science/article/pii/S001651070302159X
https://towardsdatascience.com/what-is-loss-function-1e2605aeb904
https://towardsdatascience.com/what-is-loss-function-1e2605aeb904
https://www.geeksforgeeks.org/principal-component-analysis-pca/
https://www.geeksforgeeks.org/principal-component-analysis-pca/
https://github.com/RangeKing
https://github.com/RangeKing


BIBLIOGRAPHY 99

[113] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2016.

[114] Joseph Redmon et al. “You only look once: Unified, real-time object
detection.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 779–788.

[115] Florian Rieder and Claudio Fiocchi. “Intestinal fibrosis in IBD—a dy-
namic, multifactorial process.” In: Nature reviews Gastroenterology &
hepatology 6.4 (2009), pp. 228–235.

[116] MD Rutter et al. “Pancolonic indigo carmine dye spraying for the de-
tection of dysplasia in ulcerative colitis.” In: Gut 53.2 (2004), pp. 256–
260.

[117] Sameer D Saini, Hyungjin Myra Kim, and Philip Schoenfeld. “Incidence
of advanced adenomas at surveillance colonoscopy in patients with a
personal history of colon adenomas: a meta-analysis and systematic
review.” In: Gastrointestinal endoscopy 64.4 (2006), pp. 614–626.

[118] Fayez Sandouk, Feras Al Jerf, and MHD Al-Halabi. “Precancerous le-
sions in colorectal cancer.” In: Gastroenterology Research and Practice
2013 (2013).

[119] Claudio Filipi Gonçalves Dos Santos and João Paulo Papa. “Avoiding
overfitting: A survey on regularizationmethods for convolutional neural
networks.” In: ACM Computing Surveys (CSUR) 54.10s (2022), pp. 1–25.

[120] Iqbal H Sarker. “Deep learning: a comprehensive overview on tech-
niques, taxonomy, applications and research directions.” In: SN Com-
puter Science 2.6 (2021), p. 420.

[121] Pooyan Sedigh, Rasoul Sadeghian, and Mehdi Tale Masouleh. “Gen-
erating synthetic medical images by using GAN to improve CNN per-
formance in skin cancer classification.” In: 2019 7th International Con-
ference on Robotics and Mechatronics (ICRoM). IEEE. 2019, pp. 497–
502.

[122] sergiuwaxmann (Sergiu Waxmann). Dec. 11, 2001. url: https : / /
github.com/sergiuwaxmann (visited on 12/12/2023).

[123] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation func-
tions in neural networks.” In: Towards Data Sci 6.12 (2017), pp. 310–
316.

[124] Li Shen et al. “Deep learning to improve breast cancer detection on
screening mammography.” In: Scientific reports 9.1 (2019), p. 12495.

[125] Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data
augmentation for deep learning.” In: Journal of big data 6.1 (2019),
pp. 1–48.

[126] Juan Silva et al. “Toward embedded detection of polyps in wce images
for early diagnosis of colorectal cancer.” In: International journal of
computer assisted radiology and surgery 9 (2014), pp. 283–293.

https://github.com/sergiuwaxmann
https://github.com/sergiuwaxmann


100 BIBLIOGRAPHY

[127] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition.” In: arXiv preprint arXiv:1409.1556
(2014).

[128] Elizabeth A Sturgiss and Alexander M Clark. “Using critical realism
in primary care research: an overview of methods.” In: Family Practice
37.1 (Dec. 2019), pp. 143–145. issn: 1460-2229. doi: 10.1093/fampra/
cmz084. eprint: https://academic.oup.com/fampra/article-pdf/37/
1 / 143 / 32525913 / cmz084 . pdf. url: https : / / doi . org / 10 . 1093 /
fampra/cmz084.

[129] Venkataraman Subramanian et al. “Meta-analysis: the diagnostic yield
of chromoendoscopy for detecting dysplasia in patients with colonic in-
flammatory bowel disease.” In: Alimentary pharmacology & therapeutics
33.3 (2011), pp. 304–312.

[130] Christian Szegedy et al. “Going deeper with convolutions.” In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 1–9.

[131] Christian Szegedy et al. “Rethinking the inception architecture for com-
puter vision.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 2818–2826.

[132] Bilal Taha, Naoufel Werghi, and Jorge Dias. “Automatic polyp detection
in endoscopy videos: A survey.” In: 2017 13th IASTED International Con-
ference on Biomedical Engineering (BioMed). 2017, pp. 233–240. doi:
10.2316/P.2017.852-031.

[133] Nima Tajbakhsh, Suryakanth R. Gurudu, and Jianming Liang. “Auto-
mated Polyp Detection in Colonoscopy Videos Using Shape and Context
Information.” In: IEEE Transactions on Medical Imaging 35.2 (2016),
pp. 630–644. doi: 10.1109/TMI.2015.2487997.

[134] Nicholas J Talley and Robin Spiller. “Irritable bowel syndrome: a little
understood organic bowel disease?” In: The Lancet 360.9332 (2002),
pp. 555–564.

[135] Chuanqi Tan et al. “A survey on deep transfer learning.” In: Artificial
Neural Networks and Machine Learning–ICANN 2018: 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7,
2018, Proceedings, Part III 27. Springer. 2018, pp. 270–279.

[136] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for
convolutional neural networks.” In: International conference on machine
learning. PMLR. 2019, pp. 6105–6114.

[137] Shinji Tanaka and Yasushi Sano. “Aim to unify the narrow band imaging
(NBI) magnifying classification for colorectal tumors: current status
in Japan from a summary of the consensus symposium in the 79th
Annual Meeting of the Japan Gastroenterological Endoscopy Society.”
In: Digestive Endoscopy 23 (2011), pp. 131–139.

[138] Keras Team. VGG16 and VGG19. Dec. 6, 2023. url: https://keras.
io/api/applications/vgg/ (visited on 12/07/2023).

https://doi.org/10.1093/fampra/cmz084
https://doi.org/10.1093/fampra/cmz084
https://academic.oup.com/fampra/article-pdf/37/1/143/32525913/cmz084.pdf
https://academic.oup.com/fampra/article-pdf/37/1/143/32525913/cmz084.pdf
https://doi.org/10.1093/fampra/cmz084
https://doi.org/10.1093/fampra/cmz084
https://doi.org/10.2316/P.2017.852-031
https://doi.org/10.1109/TMI.2015.2487997
https://keras.io/api/applications/vgg/
https://keras.io/api/applications/vgg/


BIBLIOGRAPHY 101

[139] Juan Terven and Diana Cordova-Esparza. “A comprehensive review
of YOLO: From YOLOv1 to YOLOv8 and beyond.” In: arXiv preprint
arXiv:2304.00501 (2023).

[140] Haiman Tian, Shu-Ching Chen, and Mei-Ling Shyu. “Evolutionary pro-
gramming based deep learning feature selection and network construc-
tion for visual data classification.” In: Information systems frontiers 22
(2020), pp. 1053–1066.

[141] Suramya Tomar. “Converting video formats with FFmpeg.” In: Linux
journal 2006.146 (2006), p. 10.

[142] Dai Quoc Tran et al. “Damage-map estimation using UAV images and
deep learning algorithms for disaster management system.” In: Remote
Sensing 12.24 (2020), p. 4169.

[143] Transfer Learning - AI Wiki. Jan. 9, 2024. url: https : / / machine -
learning.paperspace.com/wiki/transfer-learning (visited on 01/09/2024).

[144] John K Triantafillidis, Georgios Nasioulas, and Paris A Kosmidis. “Col-
orectal cancer and inflammatory bowel disease: epidemiology, risk fac-
tors, mechanisms of carcinogenesis and prevention strategies.” In: An-
ticancer research 29.7 (2009), pp. 2727–2737.

[145] Alexander Meining Ulm and Thomas Rösch. “Paris Classification Early
Cancer.” In: ().

[146] Ultralytics. Architecture Summary - Ultralytics YOLOv8 Docs. Dec. 12,
2023. url: https : / / docs . ultralytics . com / yolov5 / tutorials /
architecture_description/#conclusion (visited on 12/12/2023).

[147] Ultralytics. YOLO Performance Metrics - Ultralytics YOLOv8 Docs. Dec. 12,
2023. url: https://docs.ultralytics.com/guides/yolo-performance-
metrics/#connect-and-collaborate (visited on 12/13/2023).

[148] Alfred Ultsch. “Self-organizing neural networks for visualisation and
classification.” In: Information and Classification: Concepts, Methods and
Applications Proceedings of the 16th Annual Conference of the “Gesellschaft
für Klassifikation eV” University of Dortmund, April 1–3, 1992. Springer.
1993, pp. 307–313.

[149] Understanding Neurons in Deep Learning | Nick McCullum. May 31,
2023. url: https://www.nickmccullum.com/python-deep-learning/
understanding-neurons-deep-learning/ (visited on 05/31/2023).

[150] Jesper E Van Engelen and Holger H Hoos. “A survey on semi-supervised
learning.” In: Machine learning 109.2 (2020), pp. 373–440.

[151] Shyam Varadarajulu et al. “GI endoscopes.” In: Gastrointestinal en-
doscopy 74.1 (2011), pp. 1–6.

[152] Paul Voigt and Axel Von dem Bussche. “The eu general data protec-
tion regulation (gdpr).” In: A Practical Guide, 1st Ed., Cham: Springer
International Publishing 10.3152676 (2017), pp. 10–5555.

[153] Chien-Yao Wang et al. “CSPNet: A new backbone that can enhance
learning capability of CNN.” In: Proceedings of the IEEE/CVF conference

https://machine-learning.paperspace.com/wiki/transfer-learning
https://machine-learning.paperspace.com/wiki/transfer-learning
https://docs.ultralytics.com/yolov5/tutorials/architecture_description/#conclusion
https://docs.ultralytics.com/yolov5/tutorials/architecture_description/#conclusion
https://docs.ultralytics.com/guides/yolo-performance-metrics/#connect-and-collaborate
https://docs.ultralytics.com/guides/yolo-performance-metrics/#connect-and-collaborate
https://www.nickmccullum.com/python-deep-learning/understanding-neurons-deep-learning/
https://www.nickmccullum.com/python-deep-learning/understanding-neurons-deep-learning/


102 BIBLIOGRAPHY

on computer vision and pattern recognition workshops. 2020, pp. 390–
391.

[154] DeLiang Wang and Jitong Chen. “Supervised speech separation based
on deep learning: An overview.” In: IEEE/ACM Transactions on Audio,
Speech, and Language Processing 26.10 (2018), pp. 1702–1726.

[155] Fei Wang et al. “Residual Attention Network for Image Classification.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). July 2017.

[156] Jan Wehkamp et al. “Inflammatory bowel disease: Crohn’s disease and
ulcerative colitis.” In: Deutsches Ärzteblatt International 113.5 (2016),
p. 72.

[157] What Are the Risk Factors for Colorectal Cancer? | CDC. Feb. 6, 2023.
url: https://www.cdc.gov/cancer/colorectal/basic_info/risk_
factors.htm (visited on 02/06/2023).

[158] What Is Colorectal Cancer? | CDC. May 1, 2023. url: https://www.
cdc . gov / cancer / colorectal / basic _ info / what - is - colorectal -
cancer.htm (visited on 05/01/2023).

[159] What is confidence threshold · Issue 9679 · ultralytics/yolov5. Dec. 13,
2023. url: https://github.com/ultralytics/yolov5/issues/9679
(visited on 12/13/2023).

[160] What is the YOLO Darknet TXT Annotation Format? Oct. 2, 2023. url:
https : / / roboflow . com / formats / yolo - darknet - txt (visited on
10/02/2023).

[161] Wikipedia contributors. Deep learning — Wikipedia, The Free Ency-
clopedia. [Online; accessed 9-January-2024]. 2024. url: https : / /
en . wikipedia . org / w / index . php ? title = Deep _ learning & oldid =
1193884121.

[162] Yang Xin et al. “Machine learning and deep learning methods for cy-
bersecurity.” In: Ieee access 6 (2018), pp. 35365–35381.

[163] Jianwei Yang, Devi Parikh, and Dhruv Batra. “Joint Unsupervised Learn-
ing of Deep Representations and Image Clusters.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2016.

[164] Tom Young et al. “Recent trends in deep learning based natural lan-
guage processing.” In: ieee Computational intelligenCe magazine 13.3
(2018), pp. 55–75.

[165] Lequan Yu et al. “Integrating online and offline three-dimensional deep
learning for automated polyp detection in colonoscopy videos.” In: IEEE
journal of biomedical and health informatics 21.1 (2016), pp. 65–75.

[166] Shifeng Zhang et al. “Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection.” In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. 2020, pp. 9759–9768.

https://www.cdc.gov/cancer/colorectal/basic_info/risk_factors.htm
https://www.cdc.gov/cancer/colorectal/basic_info/risk_factors.htm
https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm
https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm
https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm
https://github.com/ultralytics/yolov5/issues/9679
https://roboflow.com/formats/yolo-darknet-txt
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=1193884121
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=1193884121
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=1193884121


BIBLIOGRAPHY 103

[167] Shifeng Zhang et al. “Single-shot refinement neural network for object
detection.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 4203–4212.

[168] Zhong-Qiu Zhao et al. “Object detection with deep learning: A review.”
In: IEEE transactions on neural networks and learning systems 30.11
(2019), pp. 3212–3232.

[169] Zhaohui Zheng et al. “Distance-IoU loss: Faster and better learning for
bounding box regression.” In: Proceedings of the AAAI conference on
artificial intelligence. Vol. 34. 07. 2020, pp. 12993–13000.








