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Abstract

Explainable AI (XAI) is a rapidly evolving field that aims to improve transparency and trustworthiness

of AI systems to humans. One of the unsolved challenges in XAI is estimating the performance of these

explanation methods for neural networks, which has resulted in numerous competing metrics with little

to no indication of which one is to be preferred. In this paper, to identify the most reliable evaluation

method in a given explainability context, we propose MetaQuantus—a simple yet powerful framework that

meta-evaluates two complementary performance characteristics of an evaluation method: its resilience to

noise and reactivity to randomness. We demonstrate the effectiveness of our framework through a series

of experiments, targeting various open questions in XAI, such as the selection of explanation methods

and optimisation of hyperparameters of a given metric. We release our work under an open-source

license1 to serve as a development tool for XAI researchers and Machine Learning (ML) practitioners to

verify and benchmark newly constructed metrics (i.e., “estimators” of explanation quality). With this

work, we provide clear and theoretically-grounded guidance for building reliable evaluation methods,

thus facilitating standardisation and reproducibility in the field of XAI.

1 Introduction

Since Explainable AI (XAI) is intended to increase trust and transparency in AI systems, it is necessary to

evaluate the performance of proposed explanation methods to ensure their reliability. Apart from simpler

or well-understood data domains where critical input features are known and models are interpretable (e.g.,

linear functions and shallow decision trees), in the context of more complex Machine Learning (ML) models

such as neural networks (NNs), there is generally an absence of ground truth labels for explanations [1].

This makes it difficult to evaluate the performance of explanation methods since the exact outcomes of

explanations oftentimes remain unknown and thus unverifiable [2]. Without consensus around how to define

the quality or “correctness” of an explanation method, a variety of evaluation methods have been proposed.

These efforts most commonly involve (i) measuring the extent to which desirable properties are fulfilled,

e.g., through faithfulness or robustness analysis [3, 4, 5], (ii) generating well-defined, synthetic settings

where explanation labels are simulated [6, 7] or, (iii) evaluating explanations based on visual alignment with

a human prior [8]. Most relevant to our work is the first category of evaluation techniques or “metrics”

whose goal is to estimate the quality of attribution-based explanations. We henceforth refer to these XAI

evaluation methods as “quality estimators”, or simply “estimators”.

1Code released at the GitHub repository: https://github.com/annahedstroem/MetaQuantus.
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Figure 1: An illustration of the Problem of Meta-Evaluation through three phases: (i) Modeling, (ii) Explaining and

(iii) Evaluating. (i) A ResNet9 model [18] is trained to classify digits from 0 to 9 on Customised-MNIST dataset [19]

(i.e., MNIST digits pasted on randomly sampled CIFAR-10 backgrounds). (ii) To understand the model’s prediction,

we use several explanation methods including Gradient [20, 21], Integrated Gradients [4] and GradientShap [22],

which are distinguished by their respective colours. (iii) To evaluate the quality of the explanations, we apply

different estimators of faithfulness such as Faithfulness Correlation (FC) [23] and Pixel-Flipping (PF) [24], which

return a correlation coefficient and an AUC score, respectively. However, since the scores vary depending on the

estimator, both in range and direction, with lower or higher scores indicating more faithful explanations, interpreting

the resulting faithfulness scores remains difficult for the practitioner.

The abundance of explanation methods and an ever-growing number of quality estimators, combined with

little guidance on how to use them, have caused confusion within the XAI and ML communities. Strong

assertions of which explanation methods work and not [9, 10], followed by rebuttals [11, 12, 13], are ever-

present. To answer the question of “which explanation method to use for a given task”, we must first be able

to define and measure the relevant qualities that an explanation method should fulfil. While preliminary

efforts exist to address this issue [14, 15, 16, 17], to the best of our knowledge, there is currently no

comprehensive solution that thoroughly evaluates the various estimators used to compare, select and reject

different explanation methods in XAI. Previous efforts at addressing this issue have been limited in scope

and do not provide a thorough theoretical motivation. With this work, we aim to fill this critical yet largely

neglected research gap.

In this work, we propose a solution to the problem of “meta-evaluation” in XAI, which we define as the

process of evaluating the evaluation method (i.e., “quality estimator”) itself. This problem arises as we select

and quantitatively compare explanation methods for a given model, dataset and task. As illustrated in Figure

1, we can apply various estimators to compare the explanation methods’ faithfulness, which measures how

closely the explanations align with the predictive behaviour of the model (the experimental details are

described in Appendix A.4). However, the estimators rank the same explanation methods differently, e.g.,

the Gradient method [20, 21] is both ranked the highest (R=1) and the lowest (R=3) depending on the

estimator used. With a disagreement about which explanation method is superior [25] coupled with little

to no guidance on how to identify a high-quality estimator [26], practitioners may unknowingly choose an

inferior quality estimator which ultimately results in a selection of an explanation method that presents a

less faithful explanation to the end user.

To tackle the issue of explanation method selection, we propose a simple yet comprehensive framework

called MetaQuantus, which primary purpose is to provide an objective, independent view of the estimator’s

performance by meta-evaluating it against two failure modes: resilience to noise (NR) and reactivity to

adversary (AR). Similar to how software systems undergo vulnerability- and penetration tests before getting
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deployed in a larger system, we apply this framework to stress test the estimators. If vulnerabilities in the

quality estimator are discovered, e.g., high sensitivity to noise in input or low reactivity to randomness,

appropriate actions can be taken to improve the estimators. The contribution of this work is three-fold.

• First, we provide a clear argument for why performance evaluation of XAI methods is challenging

(Section 2.2) including which variables in the evaluation process are verifiable vs. unverifiable.

• Second, based on these findings, we propose a framework to meta-evaluate quality estimators’ perfor-

mance (Section 3), with sound theoretical underpinning and wide applicability across various data-,

models-, explanation methods- and metric domains.

• Third, we experimentally demonstrate that the meta-evaluation framework can solve a variety of

XAI-related tasks, e.g., selecting a metric in a given category of explanation quality and optimising

a metric’s hyperparameters. We conduct a series of experiments on a variety of SOTA explanation

methods, datasets and models and consequently, generate novel insights into the behaviour of the

estimators (Section 6).

We find it important to point out that we have no interest in developing yet another evaluation procedure

or presenting an additional view of explanation quality. The real need in our community lies in developing

standardised tools to validate the quality estimators that already exist. It is surprising to us that very little

effort has so far been directed towards this important area of analysing the behaviour of estimators. With this

work, we hope to provide more clarity and guidance on how to effectively evaluate explanation methods and

moreover, help with the selection process of choosing a quality estimator in a given explainability context.

1.1 Related Works

Despite much activity towards the development of estimators to assess explanation quality, e.g., [24, 4, 23,

27, 28, 29], limited attention has thus far been given to evaluating the estimators themselves. Only recently,

increased attention has been raised on the intricacies that come with XAI evaluation, for example, the

contributions of [14, 30, 17] emphasise the difficulty that comes with parameterising estimators. Another

issue with evaluation was brought to light by [31, 25], which revealed that explanations frequently disagree

in their ranking of features. Additionally, several independent research groups were able to identify empirical

“confounders” [11, 32, 12, 13] affecting the well-adopted Model Parameter Randomisation test [9]. From

these publications, it seems worryingly “easy to get it wrong” when it comes to evaluating explainable

methods empirically. There still remains a lot of ambiguity when it comes to determining what makes up a

good or bad evaluation metric [26].

Within the scope of evaluating quality estimators, preliminary efforts exist but a unified effort is required.

Since there is little to no consensus on how to determine the true value of a metric—when new metrics are

introduced, they are oftentimes assessed based on single perspectives such as by randomisation experiments

[28, 29] or ranking consistency [17]. All of these mentioned works are undoubtedly steps in the right direction,

but what is missing is a broader, more comprehensive framing of what an evaluation method ought to fulfil.

With this work, we aim to fill this gap.

2 Preliminaries

In the following, we derive a mathematical definition of the evaluation problem in XAI by outlining the key

elements required to perform quality estimation on a given explanation method. In the succeeding section, we

discuss the Challenge of Unverifiability (CoU) which explains why meta-evaluation is theoretically difficult.

All notation used throughout this paper can be found in the Appendix A.7.
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2.1 The Evaluation Problem

Consider a supervised classification problem2 where we have a black-box model f parameterised by θ that

has been trained on a given training dataset Xtr = {(x1, y1), . . . , (xN , yN )} to map an input x ∈ RD to an

output class y ∈ {1, . . . , C}, with a trained functional mapping such as:

f(x; θ) = ŷ, (1)

More generally, we can define the model function f : X 7→ Y that maps inputs from the instance space X to

predictions in the label space Y with x ∈ X and ŷ ∈ Y. Let F denote the function space such that f ∈ F. To

quantitatively estimate the performance of model f , we compute the prediction error on a given test dataset

Xte where there exists a label y for each prediction ŷ. To understand the reasoning of the model f behind

a certain prediction ŷ, we can apply one of the many proposed local explanation methods [8, 33, 4, 34, 19]

as follows:

Φ(x, f, ŷ;λ) = ê, (2)

where Φ : RD × F × Y 7→ RD is an explanation function that is parameterised by λ and which distributes

attributions to each individual feature in x according to its importance, typically visualised in an explanation

map ê ∈ RD. Let E denote the space of possible explanations such that Φ ∈ E.

Similar to how we compute the prediction error to estimate the performance of a model f , to evaluate the

quality of the explanation function Φ, we compute the explanation error, requiring a ground truth explanation

e. These labels are, however, generally not available for complex ML models and in particular NNs, since

their inner workings are considered unknown [35, 36, 2]. Therefore, XAI researchers and ML practitioners

must resort to indirect approaches to estimate the quality of a given explanation, e.g., by measuring the

explanation’s relative fulfilment of certain human-defined properties. Recent work by [1] has proposed

to group these properties of explanation quality into six categories; (a) faithfulness, (b) robustness, (c)

localisation, (d) randomisation, (e) complexity and (f) axiomatic metrics which provide a natural framework

to compare and analyse explanation quality. A summary of these explanation categories can be found in

Appendix A.2 (see Equations 11-15).

We provide a generalised notation for quality estimation of attribution-based explanation methods as follows.

Let Ψτ : E× RD × F× Y 7→ R be a quality estimator that is parameterised by τ and takes one explanation

and returns one scalar value (“quality estimate”) to indicate the quality of the explanation. The evaluation

of an explanation, i.e., quality estimation, can be written as follows:

Ψ(Φ,x, f, ŷ; τ) = q̂, (3)

where Ψ represents the quality estimator and the whole space of possible estimators is denoted Ψ ∈ O.

Mathematical descriptions of such estimators can be found in Appendix (see Equations A.3).

2.2 The Challenge of Unverifiability

The goal of quantitative evaluation is to provide an objective measure of the quality of an explanation.

However, due to missing ground truth, the quantitative assessment of neural network explanations remains

non-trivial. To clarify where this difficulty arises, we represent the process of XAI evaluation as a directed

acyclic graph (DAG), as seen in Figure 2. Here, each node represents a random variable and the edges

represent the relationships between the variables, with uncertainty of a parent node propagating to its child

node. We separate the nodes between verifiable- and unverifiable spaces. The verifiable spaces are spaces

where ground truth labels are available, i.e., 
 ∈ {{X}, {F}, {X,F}} and the unverifiable spaces include

spaces where there is an absence of labels, i.e., U ∈ {{E}, {O}, {E,O}}.
As indicated by the direction of the arrows, a key observation is that in XAI evaluation there exists a

conditional dependency between the variables of modelling, explaining and evaluating (the explanations).

2Since classification tasks are commonly encountered in the XAI community, it is chosen to illustrate the Evaluation
Problem. However, as discussed in Appendix A.1.1, our statements also apply to other prediction scenarios.
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Figure 2: A visual representation of the conditional dependencies between variables in XAI evaluation. The infor-

mation flows from modelling to explaining and evaluating the explanations, i.e., Ψ ◦Φ ◦ f , which is indicated by the

direction of the arrows in the directed acyclic graph (DAG). The colours indicate if the spaces have verifiable (black)

or unverifiable outcomes (red).

This further means that since the evaluation function is applied to the results of the unverifiable explanation

function, the evaluation outcome also renders unverifiable. We refer to this phenomenon as the Challenge of

Unverifiability. Another key observation is that we cannot determine the accuracy or validity of an estimator

(i.e., whether it actually measures the intended quality) since such assessment requires access to ground truth

labels. However, as reliability analysis does not depend on the availability of ground truth labels, it is still

possible to study the reliability of an estimator, which refers to its overall consistency (“does this estimator

produce similar results under consistent conditions?”). This can be achieved by repeatedly measuring the

evaluation outcomes that result from fixing the unverifiable parameters and functions and only varying

the elements of the verifiable spaces. In the following, we will use the distinction between verifiable- and

unverifiable spaces to systematically and controllably measure the performance of quality estimators.

3 A Meta-Evaluation Framework

While the Challenge of Unverifiability makes meta-evaluation of quality estimators challenging, it is still

possible to study the performance characteristics of an estimator through the lens of reliability. To this

end, we developed a three-step framework, which is a higher-level evaluation scheme that examines quality

estimators that have themselves been used to evaluate a particular explanation method.

3.1 Defining Failure Modes

Without ground truth information, we cannot validate or optimise the quality estimators against what we

want them to fulfil, but we can instead articulate edge-case scenarios or behaviours that we do not want

them to exhibit. For this purpose, we formulate failure modes which are described in the following.

Failure Mode 1 (Noise Resilience). A quality estimator should be resilient to minor perturbations of its

input parameters.

Similar to the robustness property of explanation functions and specifically Lipschitz Continuity [37, 5,

38], where small changes in the input should only lead to small changes in the explanation, noise resilience

(NR) evaluates the extent to which a quality estimator is robust towards minor perturbations of its inputs.

Following our general perturbation Definition 3 in Appendix A.2, we define a minor perturbation PM
 of any

verifiable space 
 as follows:

Definition 1 (Minor Perturbation). Let P
(ω) be a perturbation function of ω ∈ 
, ŷ = f(x; θ) be the

original prediction of the network and y′ be the prediction after the perturbation. Then P
(ω) is minor

PM
 , if ∀ ŷ, y′ ∈ {{f(PMX (x); θ)}, {f(x;PMF (θ))}, {f(PMX (x);PMF (θ))}}, ∃ ε ∈ R ε� 1 such that:

||ŷ − y′||p ≤ ε

For classification, we employ L1-norm with p = 1, thus, Definition 1 states that the predicted label y′ stays

unchanged after the perturbation, i.e., ŷ ≈ y′. Similar to works by [14, 30, 17], we measure the vulnerability

5
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Figure 3: An illustration of minor versus disruptive perturbation in the different spaces (left: X, right: F) for a

classification task. The direction of the arrows shows how the respective perturbations are realised, where blue and

red colours indicate a minor- or disruptive perturbation, respectively. The minor perturbation keeps the decision

boundary intact, either by perturbing a sample xM (left) or perturbing the model itself fD (right). The disruptive

perturbation implies that the decision boundary is crossed either through a sample xD (left) or model fD (right).

of quality estimators to variations or “minor confounds” in the estimator. However, in contrast to these

aforementioned works, we only perturb in the verifiable space by means of measuring the change in the

model decision on a sample before and after perturbation, and thus we can control and directly measure

the strength of the perturbation. Accordingly, to quantitatively examine Failure Mode 1, we expose the

estimator to perturbations with small or minor impacts. Complementary to testing an estimator’s resilience

to noise, we also formulate a second failure mode to test whether a quality estimator produces a significant

change when exposed to disruptive perturbation, i.e., randomisation to any of its inputs.

Failure Mode 2 (Adversary Reactivity). A quality estimator should be reactive to disruptive perturbations

of its input parameters.

Previous research has noted that the estimators’ scores should be conceivably different when produced for

a random explanation [28] or a randomly initialised model [29]. Our approach is similar in that it also

seeks to disrupt the explanation process. However, since we can control the perturbation strength in the

verifiable spaces, we can make more well-grounded claims about the expected outcomes of a perturbation.

Theoretically, we define disruptive perturbations PD
 contrary to Definition 1.

Definition 2 (Disruptive Perturbation). P
(ω) be a perturbation function of ω ∈ 
, ŷ = f(x; θ) be the

original prediction of the network and y′ be the prediction after the perturbation. Then P
(ω) is disruptive

PD
 , if ∀ ŷ, y′ ∈ {{f(PDX (x); θ)}, {f(x;PDF (θ))}, {f(PDX (x);PDF (θ))}} ∃ ε ∈ R, ε� 1 such that:

||ŷ − y′||p > ε.

In a classification context, Definition 2 implies a change in the predicted class label. Figure 3 illustrates the

main difference between minor and disruptive perturbations, which is that the decision boundary remains

uncrossed or crossed, respectively. In Appendix A.1.1, we expand the Definitions 1 and 2 to other problem

settings such as multi-label classification and also discuss how adversarial attacks relate to these definitions.

Using Definitions 1 or 2, we can generate perturbed quality estimates q′ by applying a minor or disruptive

perturbation on the verifiable spaces in the input, model, or input- and model spaces simultaneously:

q̂ ∈ { Ψ(Φ,PtX(x), f, ŷ), Ψ(Φ,x,PtF(θ), ŷ)), Ψ(Φ,PtX(x),PtF(θ), ŷ)) }, (4)

where the superscript of the perturbation function, t ∈ {M,D} indicates the perturbation strength. For

simplicity, we omit the hyperparameters τ, λ from Equation 4. By repeating this perturbation (Equation 4)

multiple times, we gather sets of perturbed estimates for meta-evaluation analysis. In the next section, we

provide a detailed description of how this analysis is performed.

3.2 Formulating Consistency Criteria

To determine whether a quality estimator appropriately circumvented a failure mode, we can measure the

similarity of its quality estimates before and after the perturbation. After a minor perturbation, when testing
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for noise resilience, we would expect that the scores are similarly distributed. Conversely, for disruptive

perturbations, when testing for reactivity to adversary, we would anticipate a large response to information

annihilation of the explanation process by means of scores being dis-similarly distributed. We formalise this

idea in our Intra-Consistency (IAC) criterion as follows:

IAC =
1

K

K∑
k=1

d(q̂, q′k), (5)

where q̂ refers to unperturbed estimates and q′k ∈ RN , k = (1, . . . ,K) is a set of perturbed quality estimates,

replicated K times for N test samples (see Equation 4) such that Q = [q′1, . . . , q
′
K ] ∈ RN×K . Here, d refers

to a statistical significance measure d : RN × RN 7→ R that takes a set of unperturbed- and perturbed

estimates and returns a p-value. A high p-value indicates that q̂ and q′k are similarly distributed and a

low p-value value means that the estimates are differently distributed. Accordingly, Equation 5 returns the

average p-value across all perturbed samples over K perturbations, with IAC ∈ [0, 1]. Since the nominal

values of quality estimators can vary and often have little to no semantic meaning, we use the non-parametric

Wilcoxon signed-rank test [39] which does not carry strong assumptions about the data distribution, only

about its ranking. In addition to the intra-consistency analysis, we also measure whether quality estimators

exhibit consistent behaviour in terms of ranking. This type of inter-consistency analysis is commonly used

in Explainable AI research [15, 16, 1, 17] and complements the aforementioned by involving more than one

explanation method. Let Q̄ ∈ RN×L denote a matrix for the unperturbed estimates q̂ for L explanation

methods and Q̄′ ∈ RN×L be a matrix for the perturbed estimates q′k, which are both averaged over K

perturbations. We formulate the Inter-Consistency (IEC) criterion as follows:

IEC =
1

N × L

N∑
i=1

L∑
j=1

U ti,j (6)

where U ti,j ∈ [0, 1] are entries of a binary ranking agreement matrix U that takes quality estimates from

Q̄ and Q̄′ and populates the entries according to the interpretation of ranking. Here, IEC = 1 indicates

perfect ranking consistency and IEC = 0 the absence of it, where IEC ∈ [0, 1]. The perturbation strength

is indicated in the superscript t ∈ {M,D}. The interpretation of ranking is different depending on the

perturbation strength, i.e., minor or disruptive. For minor perturbations, we measure if the quality estimator

ranks different explanation methods similarly. We define UM for minor perturbations with entries such as:

UMi,j =

{
1 r̄Mj = r̄j

0 otherwise,
(7)

where r̄M = r(Q̄M
i,: ) with Q̄M := Q̄′ and r̄ = r(Q̄i,:) are ranking vectors given a ranking measure r : RL 7→ RL

that takes each row in Q̄M
i,: and Q̄i,:, respectively and sorts the values in descending order. Each entry r̄Mj ∈ N

corresponds to integers indicating their relative rank. For example, suppose we have one sample x, three

explanation methods and their corresponding quality estimates, such as Q̄M
i,: = [0.76, 0.86, 0.66]. Then the

results obtained from applying r would be r̄M = [2, 1, 3]. An optimally-performing estimator would provide

the same rankings for r̄M as r̄ for all N inputs, resulting in IEC = 1. However, as discussed in Section 6,

the reality is that many estimators often conflict with the optimal.

For disruptive perturbations, we interpret ranking consistency differently. Here, as explained in-depth in

Appendix A.1.2, we measure how consistently the quality estimator ranks estimates from Q̄ higher than

Q̄D := Q̄′. We define UD for disruptive perturbations with entries such as:

UDi,j =

{
1 Q̄Di,j < Q̄i,j

0 otherwise,
(8)

where the quality estimates Q̄Di,j are generated for an explanation with respect to the same class as the one

predicted for the unperturbed estimate Q̄i,j . For some estimators, e.g., in the robustness category, lower

values are considered better than higher values, for which we invert the comparison symbol in Equation 8.
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Figure 4: Meta-evaluation of quality estimators is performed in three steps: (i) Perturbing, (ii) Scoring and (iii)

Integrating. (i) First, a minor or disruptive perturbation is induced depending on the failure mode, i.e., PM

 for NR

and PD

 for AR. (ii) Second, the estimator’s intra- and inter-consistency are calculated to assess each performance

dimension. The IAC score captures the extent that the estimator produces similar or dis-similar scores with respect

to q̂ and q′k, which is illustrated through the distribution plots, where for NR and AR, the score distributions are

overlapping and non-overlapping, respectively. The IEC score expresses ranking consistency. NR measures how

consistently the estimator ranks different explanation methods and AR calculates how consistently the perturbed

scores are lower than the unperturbed scores. (iii) In the final step, we integrate the previous steps and produce an

MC score that summarises the estimator’s performance: its resilience to noise and reactivity to adversary.

3.3 Quantifying Meta-Consistency

To conclude the framework, we want to characterise the performance of a quality estimator with a single

Meta-Consistency (MC) score. To capture both the estimator’s resilience to noise (NR) and its reactiveness

to adversary (AR), we average over the two criteria for both failure modes:

MC =

(
1

|m∗|

)
m∗Tm where m =


IACNR

IACAR

IECNR

IECAR

 (9)

and m∗ = 14 represents an optimally performing quality estimator as defined by the all-one indicator

vector. A good quality estimator should produce an MC score close to 1 as higher values indicate better

performance on the tested criteria3, where MC ∈ [0, 1]. An estimator that demonstrates a balance of resilience

against minor perturbations and reactiveness towards disruptive perturbations—as evidenced through its

score distribution and ranking of different explanation methods—would achieve high meta-consistency scores

with our framework. Our proposed score has the advantage of being both concise and comprehensive, as

it provides a summary of the performance characteristics of an estimator while also taking into account

multiple criteria. For a full overview of the framework, please see Figure 4.

4 Practical Evaluation

Within the framework of meta-evaluation, it is necessary to generate perturbed quality estimates for analysis.

To accomplish this, we developed a series of practical tests. The methodology behind these tests is simple

and thus easily extensible through the tests made available in the repository. First, the space in which

perturbations will be applied is selected, with options being either the input or the model. Second, based on

3When computing intra-consistency scores for AR, we apply reverse scoring, i.e., 1 − IACAR, so that all elements in the
meta-evaluation vector (Equation 9) can be interpreted in the same way, i.e., that higher values are better.
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the chosen space, an appropriate type of noise is defined. To ensure that the perturbations are meaningful

and relevant to the task at hand, the noise type should be chosen contextually with respect to the data

domain. For example, when perturbing the input space for images, we define a test as follows:

Input Perturbation Test (IPT). Apply i.i.d additive uniform noise such that x̂i = x + δi with δi ∼
U(α, β) where for noise resilience, x̂i fulfills Definition 1 and for adversary reactivity, x̂i fulfills Definition 2

where α, β have to be chosen according to the data domain and respective failure mode (e.g., set α =

−0.001, β = 0.001 for NR and α = 0.0, β = 1.0 for AR). To maintain the statistics of the data distribution,

we clip α, β to the maximum and the minimum value of the test set, respectively. Moreover, when perturbing

the model space, to maintain the variance of the network, we follow an established methodology by [19] and

scale the learned weights θ of the model f as follows:

Model Perturbation Test (MPT). Apply multiplicative Gaussian noise to all weights of the network,

i.e., θ̂i = θ · νi with νi ∼ N (µ,Σ) where µ = 1 and for noise resilience, θ̂i fulfills Definition 1 and for

adversary reactivity, θ̂i fulfills Definition 2

where for Σ to be consistent with either Definition 1 or 2, it is set based on the specific context of the model

and task being considered (e.g., Σ = 0.001 for NR and Σ = 2.0 for AR). Third, to collect sets of perturbed

quality estimates for intra- and inter-consistency analysis, we repeat the process of perturbation (as outlined

in IPT and MPT) and subsequent evaluation (using Equation 4) under K runs. Finally, we compute the MC

score. For sanity-checking experiments of the tests, see Appendix A.5. Moreover, as a third testing scenario,

it is theoretically possible to perturb both the input- and model spaces simultaneously, i.e., PX(x),PF(θ) as

well as their respective latent spaces. This we leave for future work.

5 Experimental Setup

In this section, we give a brief account of the experimental setup, including the datasets, models, explanation

methods and estimators used in this work. Further details can be found in Appendix A.4.

In our experiments, we benchmark five different categories of explanation quality and within each cate-

gory, we have selected two estimators as follows: Complexity (CO) [23], Sparseness (SP) [40], Faithfulness

Correlation (FC) [23], Pixel-Flipping (PF) [24], Max-Sensitivity (MS) [38], Local Lipschitz Estimate (LLE)

[37], Pointing-Game (PG) [41], Relevance Mass Accuracy (RMA) [7], Model Parameter Randomisation Test

(MPR) [9] and Random Logit (RL) [10]. Each estimator evaluates explanations from a popular category

of post-hoc attribution methods, including both gradient-based- and model-agnostic techniques: Gradient

[20, 21], Saliency [20], GradCAM [34], Integrated Gradients [4], Input×Gradient [42], Occlusion [33] and

GradientSHAP [22] from which we generate explanations with respect to a sample’s predicted class. For

comparability, we normalise the explanations by dividing the attribution map by the square root of its aver-

age second-moment estimate [13]. The mathematical definitions of the estimators are described in Appendix

A.3. For metric implementations, we use the Quantus library [1].

We use four image classification datasets for our experiments: MNIST [43], fMNIST [44], customised-MNIST

(i.e., cMINST) [19] and ILSVRC-15 (i.e., ImageNet) [45] and use different black-box NNs, including architec-

tures such as LeNets [46] and ResNets [18] which contributes to the robustness of our experimental findings.

6 Results

Many open questions remain in the field of XAI. In this section, we show how meta-evaluation can help

bring clarity to a subset of those problems such as (i) estimator selection, (ii) optimising hyperparameters of

an estimator and (iii) evaluating the category convergence, i.e., the extent that estimators within the same

category of explanation quality measure the same concept. We prioritise the topic of metric selection in the

main manuscript and provide a detailed analysis and discussion of the experiments addressing questions (ii)

and (iii) in Appendix A.6. Instructions for how to reproduce the experiments can be found in the repository.
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Table 1: Benchmarking results for MNIST dataset, aggregated over 3 iterations with K = 5. IPT results are in grey

rows and MPT results are in white rows. The symbol MC denotes the averages of the MC scores over IPT and MPT.

The top-performing MC- or MC method in each explanation category, which outperforms the bottom-performing

method by at least 2 standard deviations, is underlined. Higher values are preferred for all scoring criteria.

Category Estimator MC (↑) MC (↑) IACNR (↑) IACAR (↑) IECNR (↑) IECAR (↑)

Complexity

Sparseness 0.558 ± 0.028
0.640 ± 0.043 0.209 ± 0.040 0.946 ± 0.086 0.837 ± 0.002 0.569 ± 0.046

0.929 ± 0.063 0.053 ± 0.014 0.840 ± 0.005 0.084 ± 0.001 0.476 ± 0.013

Complexity 0.521 ± 0.003
0.541 ± 0.007 0.009 ± 0.013 1.000 ± 0.000 1.000 ± 0.000 0.156 ± 0.014

0.500 ± 0.000 0.167 ± 0.000 0.833 ± 0.000 1.000 ± 0.000 0.000 ± 0.000

Faithfulness

Faithfulness Corr. 0.540 ± 0.015
0.537 ± 0.003 0.477 ± 0.032 0.900 ± 0.023 0.190 ± 0.003 0.579 ± 0.008

0.543 ± 0.026 0.500 ± 0.107 0.890 ± 0.005 0.190 ± 0.002 0.594 ± 0.005

Pixel-Flipping 0.626 ± 0.039
0.609 ± 0.039 0.547 ± 0.139 0.963 ± 0.034 0.299 ± 0.001 0.626 ± 0.046

0.644 ± 0.038 0.485 ± 0.141 1.000 ± 0.000 0.294 ± 0.006 0.796 ± 0.006

Localisation

Pointing-Game 0.586 ± 0.010
0.672 ± 0.020 0.977 ± 0.005 0.607 ± 0.075 0.996 ± 0.000 0.108 ± 0.012

0.500 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000

Relevance Rank Acc. 0.552 ± 0.015
0.613 ± 0.022 0.258 ± 0.062 0.793 ± 0.023 0.846 ± 0.001 0.553 ± 0.032

0.491 ± 0.007 0.940 ± 0.019 0.071 ± 0.019 0.902 ± 0.003 0.051 ± 0.000

Randomisation

Random Logit 0.666 ± 0.004
0.712 ± 0.008 0.360 ± 0.041 0.969 ± 0.010 0.937 ± 0.003 0.581 ± 0.006

0.620 ± 0.000 0.186 ± 0.000 0.874 ± 0.000 0.860 ± 0.000 0.562 ± 0.000

Model Param. Rand. 0.583 ± 0.007
0.624 ± 0.005 0.264 ± 0.019 0.959 ± 0.000 0.764 ± 0.002 0.510 ± 0.001

0.542 ± 0.010 0.250 ± 0.065 0.806 ± 0.028 0.647 ± 0.003 0.463 ± 0.004

Robustness

Max-Sensitivity 0.649 ± 0.007
0.754 ± 0.002 0.547 ± 0.064 0.938 ± 0.033 0.804 ± 0.001 0.726 ± 0.038

0.545 ± 0.012 0.361 ± 0.053 1.000 ± 0.000 0.806 ± 0.005 0.011 ± 0.001

Local Lipschitz Est. 0.741 ± 0.030
0.726 ± 0.026 0.484 ± 0.091 0.935 ± 0.088 0.736 ± 0.002 0.750 ± 0.034

0.756 ± 0.034 0.519 ± 0.118 0.974 ± 0.017 0.740 ± 0.005 0.789 ± 0.006

6.1 Benchmarking

As a first example, we will demonstrate how meta-evaluation can be used to select a certain quality es-

timator for a given category of explanation quality. To this end, we set up a benchmarking experiment,

where we take two popular estimators from five different explanation quality categories and evaluate six

explanation methods L ={Gradient, Saliency, GradCAM, Integrated Gradients, Occlusion, GradientShap}
using MetaQuantus. Since the choice of L has a minimal influence on the MC scores (see experiments in

Appendix A.5.2), we omit results from other tested sets of explanation methods in the main manuscript.

6.2 Comparison of Estimators

The results are summarised in Table 1. The grey rows indicate the results from the Input Perturbation Test

and the white rows show the results from the Model Perturbation Test. A more detailed discussion of the

results, including additional datasets, can be found in Appendix A.6.3. From Table 1, we can observe that

no tested estimator performs optimally, i.e., ∀ MC < 1. From column MC, which displays the averaged

MC scores (over IPT and MPT) we note that Sparseness, Pixel-Flipping, Pointing-Game, Random Logit

and Local Lipschitz Estimate are the best-performing estimators in their respective category. From Figure

5 (right), we can observe that this comparison of MC scores is consistent across the tested datasets, which

contributes to the generalisability of our findings. We further discuss the consistency of each estimator’s

rank (top or bottom) in Appendix A.6.4.

6.3 Comparison of Categories

The meta-evaluation framework can moreover be applied to gain insights into the performance characteristics

of different estimators on a category-by-category basis. For this purpose, we represent the entries of the

meta-evaluation vector as coordinates on a 2D plane and visualise the results as an area graph (see Figure

6). By inspecting the coloured areas of the respective estimators in terms of their size and shape, we can

deduce the overall performance of both failure modes. Here, larger coloured areas imply better performance

on the different scoring criteria and the grey area indicates the area of an optimally performing quality
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Figure 5: Left: A visualisation of the benchmarking results (Table 1), in particular IAC and IEC scores for noise

resilience (x-axes) and adverse reactivity (y-axes). The colours indicate the estimator and the symbols show the test

type, i.e., IPT and MPT, respectively. Right: A comparison of averaged meta-consistency performance for different

quality estimators using MPT and IPT, aggregated over 3 iterations with K = 5, across different models {LeNet,

ResNet} and datasets {MNIST, fMNIST, cMNIST}. Higher values are preferred.

estimator, i.e., m∗ = 14. Each column of estimators represents a category of explanation quality, from left

to right: Complexity, Faithfulness, Localisation, Randomisation and Robustness, which colour scheme we

apply consistently across all figures.

As seen in Figure 6 (third column), the localisation estimators exhibit a notable deficiency in terms of

adversary reactivity on the Input Perturbation Test. A low IPT score for adversary reactivity means that the

estimators are insensitive to disruptive input perturbations, as evidenced by similar score distributions (low

IAC) and an inability to rank disruptively perturbed explanations lower than unperturbed explanations (low

IEC). Based on the definitions of these estimators (described in Equations 20-21), which include the Pointing-

Game method [41], which evaluates explanations by verifying that the highest attributed feature intersects

with a given segmentation mask and the Relevance Mass Accuracy method [7], which calculates the amount

of explainable mass intersecting with the segmentation mask—we would expect that these estimators perform

well on this test since disrupted input usually leads to scattered attributions. It may seem counterintuitive

that these estimators lack reactivity to disruption, however, we posit that the reason for the poor reactivity

to adversary is the estimators’ inherent dependency on the segmentation mask. If the segmentation mask

(relative to the object of interest, or the input) is large enough, high localisation scores are attainable

irrespective of the “quality” of the explanation [47]. This finding is further validated by the increase in MC

scores for cMNIST dataset, which has a smaller bounding box compared to MNIST and fMNIST (see details

in Appendix A.4), where disruption evidently has an effect, as evidenced by higher AR scores, depicted in

Figure 5 (right). Practitioners should be aware of this category’s reliance (or oversensitivity) on segmentation

masks where relying solely or too heavily on this category in XAI evaluation may not be advisable.

The highest overall scores are obtained by the robustness and randomisation categories, which can be ob-

served by their respective areas in Figure 6. One potential explanation for this is that the estimators in these

categories already include some element of stochasticity in their metric definitions (see Equations 18-19 and

22-23, respectively) which may make them more resilient as well as reactive to perturbations. For example,

both robustness estimators, i.e., Max-Sensitivity [38] and Local Lipschitz Estimate [37] rely on Monte Carlo

sampling-based approximation where explanation methods are evaluated by examining their response to

minor perturbation of the input, aggregated over multiple runs. In the randomisation category, the Model

Parameter Randomisation Test [9] evaluates explanations by increasingly perturbing the model weights and

Random Logit [10] evaluates explanations by a random selection of an explanation of a non-target class.

The complexity category has the lowest overall MC scores, which includes estimators such as Sparseness [40]

and Complexity [23] that evaluate explanations by calculating their Gini coefficient and Shannon entropy,

respectively. Given the simplicity of these calculations, this outcome is not surprising.

Another notable category of poor performance that is picked up by the meta-evaluation tests is faithfulness.

Our results, which show a lack of resilience to noise in the ranking of explanation methods (low IEC),

corroborate previous studies [14, 30, 17] that found that faithfulness metrics may rank explanation methods
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Figure 6: A graphical representation of the benchmarking results (Table 1), aggregated over 3 iterations with K =

5. Each column corresponds to a category of explanation quality, from left to right: Complexity, Faithfulness,

Localisation, Randomisation and Robustness. The grey area indicates the area of an optimally performing estimator,

i.e., m∗ = 14. The MC score (indicated in brackets) is averaged over MPT and IPT. Higher values are preferred.

inconsistently when subjected to perturbation, such as changing the masking pixel strategy from, for example,

“uniform” to “black”. This trend is particularly evident in Figure 5 (left), where the points belonging to the

faithfulness category have notably lower IEC scores compared to the other categories of explanation quality.

A possible explanation is their well-documented sensitivity to parameterisation [15, 1, 17].

While certain estimator categories, such as faithfulness, may present challenges such as parameterisation, it

is not advisable to disregard their evaluation. Compared to categories such as complexity which are well-

defined and simple to calculate, they may not offer as much information as categories such as faithfulness,

which can provide important insights into how the explanation- and model functions are related. Relying

on only one category to estimate explanation quality is therefore not recommended. This is especially true

since an explanation function may trade one category of explanation quality over another [23], for example,

an explanation that is faithful may be too complex for the user to understand. Therefore, to avoid arriving

at incomplete or incorrect conclusions about which explanation methods work (and not), it is of utmost

importance for practitioners to approach evaluation through multiple definitions of explanation quality.

7 Conclusion

When we neither understand the general behaviour of the explanation methods nor the metrics that we

apply to estimate their quality, we are bound to make mistakes. This problem in XAI is exacerbated by the

fact that different estimators within the same category of explanation quality may rank the same explanation

method differently [31, 25]. Without an understanding of the performance characteristics of the estimators

we employ, we risk presenting inferior explanation methods to the end user.

To address the problem of meta-evaluation, we propose a novel framework for identifying reliable metrics for

XAI evaluation. We circumvent the Challenge of Unverifiability by evaluating the estimators through the

lens of reliability—through perturbing the verifiable variables of XAI evaluation and thereafter analysing the

estimator’s outcomes under different failure modes, we can get an objective and independent characterisation

of its performance. We show, in a series of experiments, how to use the framework for metric selection and

for systematic evaluation of the strengths and weaknesses of individual metrics as well as general categories

of explanation quality. Our findings show that (i) localisation estimators demonstrate a deficiency in terms

of adversary reactivity, possibly due to their dependency on the segmentation mask and moreover that

(ii) faithfulness category is inconsistent in its ranking and that (iii) randomisation and robustness are the
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highest-performing categories. It is advised that practitioners in the field of XAI take into account the

limitations of various estimator categories and exercise caution when relying heavily on certain categories.

Evaluating the intrinsic value or “validity” of a quality estimator is, however, still an open and important

question to consider. It is essential to keep in mind that the reliability of an estimator does not necessarily

imply any intrinsic validity, e.g., an estimator’s theoretical soundness [13]. Moreover, since most explanation

methods and metrics have been developed for the task of image classification, our experiments are limited

to this application. To fully demonstrate the generalisability of MetaQuantus, we plan to extend our experi-

ments more broadly in the sciences and medicine and to include other data domains such as tabular, textual

and time series data in the future. This will require additional work to ensure that the metrics themselves

support these data domains, which will be addressed in upcoming publications.
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A Appendix

In this section, we include all the necessary details and information to support the claims and results presented

in the main paper. In Section A.1, we present theoretical considerations for the meta-evaluation framework.

In Sections A.2 and A.3, we outline the mathematical definitions of explanation quality, for categories and

estimators, respectively. In Section A.4, we describe the experimental setup and in the following Section

A.5, we describe the experiments that were performed to sanity-check the framework. In Section A.6, we

provide supplementary results, in terms of additional applications and supporting experiments. We provide

a notation table at the end in Section A.7.

Broader Impact Statement

This research is important since we raise awareness and address the need for more reliable evaluation methods

in the Explainable AI (XAI) community. In the XAI community, the evaluation of explanation methods

has often been neglected or clouded by the ambiguity that an absence of ground truth labels entails—yet

to foster sustainable progress in the field over time it is necessary to systematically define and evaluate the

methods used to measure the quality of explanations. This research takes the first step towards this goal by

developing practical, quantifiable tools for reliable evaluation. Without careful examination of the quality

of explanations, the deployment of potentially beneficial machine learning algorithms may be hindered,

preventing the full potential of AI from being realised in important areas such as healthcare, education,

finance and policy.

A.1 Theoretical Considerations

This section discusses the concept of minor and disruptive perturbations in the context of multi-label clas-

sification and regression tasks in XAI. It also addresses the potential vulnerability of the framework to

adversarial attacks and the motivation for the calculation of the IEC scoring criterion for disruptive pertur-

bations.

A.1.1 Minor and Disruptive Perturbations

Multi-label classification In this work, given the popularity of image classification tasks in XAI, we

focused mostly on this application. In this application, the definitions of minor and disruptive perturbations

(as given in Definitions 1 and 2) apply to ŷ and y′ which represent the predicted classes for true and perturbed

samples, respectively. However, our definitions can be easily extended to other types of classification tasks,

such as multi-label classification. In this case, for a multi-label classification problem with C classes, the

definitions of minor and disruptive perturbations (as given in Definitions 1 and 2) would apply to binary

prediction vectors ŷ ∈ RC and y′ ∈ RC , rather than single classes. The distance between the two vectors

can be denoted using the ||| · |||n notation.

Regression As is the case with many explanation methods [48], the extension to the regression problem

in XAI is not straightforward. Given y and y′ as real-valued prediction outcomes, we would need to adjust

Definitions 1 and 2 to encompass a derivation of a proper boundary ε. We leave the task of adapting the

meta-evaluation framework to regression problems to future work.

Adversarial attacks Adversarial attacks are techniques used to manipulate or deceive models [49] or their

explanations [50] by introducing perturbations to the input data that are imperceptible to humans but results

in an incorrect prediction by the model. To adversarially attack Definition 1, it is theoretically possible to

define a perturbation that maximises the strength of the perturbation, while still remaining consistent with

Definition 1, i.e., ||ŷ − y′||p > ε. In the same vein, to attack Definition 2, it is theoretically possible to
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define a perturbation that minimises the strength of the perturbation, while still remaining consistent with

Definition 2, i.e., ||ŷ−y′||p ≤ ε. While it may be a theoretical possibility to attack the framework through the

definitions, performing such attacks would not serve any practical purpose. This is because it contradicts the

purpose of the framework, which is to assist practitioners in selecting and developing reliable XAI methods.

A.1.2 Motivation for IECAR calculation

Contrary to the calculation of the inter-consistency criterion for minor perturbations, i.e., IECNR, we cannot

motivate IECAR based on ranking consistency with respect to explanation methods, as disruptive pertur-

bations implicate a change in the estimator score. While the expectation of changed rankings as a result of

disruptive perturbations may appear intuitive, the imposed change on the quality estimators could theoret-

ically lead to a symmetrical change across explanation method scores, which preserves the ranking across

explanation methods. Since the behaviour of the explanation functions under disruptive perturbations lies

in the unverifiable spaces U, we cannot exclude the possibility of a symmetrical response. Accordingly, for

the calculation of IECAR, we relax the theoretical assumptions to a ranking comparison based on scores (as

defined in Equation 7) which remain in the verifiable spaces 
.

The assumption for the calculation of the IEC score with respect to disruptive perturbation is motivated

by the scenario of an ideal estimator, which is expected to be able to assess the true performance of an

explanation method, denoted qtrue. In the ideal scenario, the real performance varies only slightly, i.e.,

qtrue
j ± ε would therefore define an upper estimation bound qtrue

j ≈ qmax
j for each explanation method

j ∈ [1, . . . , L]4. All estimates Q̄Di,j resulting from the AR scenario should differ from the unperturbed quality

estimate Q̄Di,j 6= Q̄∗i,j . In the idealised scenario qtrue
j ≈ qmax

j , we argue that Q̄∗i,j ≈ qtrue
j and Q̄Di,j < Q̄∗i,j ,

leading to Equation 8. Note, however, that in practice quality estimates are subject to larger variations which

means that the assumption qtrue
j ≈ qmax

j and Equation 8 might not always hold. Therefore, in practice, we

do not expect IECAR ≈ 1, which aligns with our results in Table 1. Nonetheless, further research on the

inter-consistency criterion under disruptive perturbations is subject to future work.

A.2 Explanation Quality: Category Definitions

In the main paper, we described how a lack of explanation ground truth labels has led to a diverse set of

interpretations of explanation quality. In the following, we provide a brief summary of the most established

categories of explanation quality, grouped into six categories; (a) faithfulness, (b) robustness, (c) localisation,

(d) randomisation, (e) complexity and (f) axiomatic metrics [1]. To establish a mathematical ground for

each category, we present a summarising equation. This means that all the nuances that typically exist

within a category of explanation quality is not considered. For completeness, we, therefore, provide the

exact mathematical descriptions of each of the individual estimators used in this work in Appendix A.3.

Since many explanation categories do rely on perturbation, we define a general perturbation function on any

real-valued space S ⊆ RN , N ∈ N in the following.

Definition 3 (Perturbation). Let PS(s; η) : S 7→ S be a perturbation function of s ∈ S with parameters

η ∈ R such that ∀ŝ ∈ S, ŝ 6= s:

PS(s; η) = ŝ. (10)

For simplicity, we also write PS(s) =: PS(s; η), which is used in the main paper.

Faithfulness [5, 3, 24, 23, 27] quantifies the extent that explanations follow the predictive behaviour of

the model, asserting that more important features affect model decisions more strongly. Given f , x, y′ and

ê, the change in the model output f(x) is measured as the input features of x are manipulated based on their

attribution in ê. The input manipulation is defined as a perturbation function PX(x,M) with x ∈ X where

4Here, we present general theoretical considerations, but the specific claims for each metric would require individual proofs.
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M is the number of input features that are perturbed. Since f denotes a trained model with parameters θ,

for brevity, we denote f(x; θ) as f(x) where possible.

ΨF(Φ, f,x,M) = |(f(x)− f(PX(x,M))|. (11)

Robustness [5, 37, 38, 2] measures the stability of the explanation function with respect to small changes

in the input, requiring that those small perturbations in the input space ||PX(x)−x||p < ε, e.g., under an `p
norm constraint upper bounded by some positive constant ε, lead to only slight changes in the explanation

||ê−Φ(PX(x), f, ŷ)|| < ε assuming that the model output approximately stayed the same f(x) ≈ f(PX(x)).

ΨRO(Φ, f,x, ŷ,P) = ||ê− Φ(PX(x), f, ŷ;λ)|| ≤ ε. (12)

Localisation [51, 47, 41, 17, 29] tests if the explainable evidence is centred around a region of interest,

which may be defined around an object by a bounding box, a segmentation mask or a cell within a grid. It

requires an additional segmentation mask sgt ∈ RD, mostly a binary mask of the input sgti ∈ {0, 1}, serving

as a simulation or “proxy” of ground truth. While many variations exist, the goodness of ê can be defined

by, e.g., their intersection divided by their union.

ΨL(ê, sgt) =
ê ∩ sgt

ê ∪ sgt
. (13)

Randomisation [9, 10] measures the extent explanations deteriorate as randomness is introduced to the

evaluation. For example, [9] measure the change in explanation as model parameters θ are increasingly

randomised, requiring large perturbations in the parameter space of the model, i.e., PF(θ) � ε to result in

large changes in the explanation, i.e., ||ê− Φ(x,PF(θ), ŷ;λ)|| � ε.

ΨRA(Φ, f,x, ŷ, ε) = ||ê− Φ(x,PF(θ), ŷ;λ)|| � ε. (14)

Complexity [40, 23, 27] captures the conciseness of explanations, i.e., only a few features should be

selected to explain a model prediction. The notion of complexity differs in how it is empirically interpreted,

e.g., by computing the Shannon entropy of attribution map [23]. Alternatively, [40] quantifies complexity

by calculating the Gini Index of the absolute value of the attribution vector ê where D is the length of the

attribution vector.

ΨC(ê) =

∑D
i=1(2i−D − 1)êi

D
∑D
i=1 êi

. (15)

Axiomatic [4, 27] metrics gauges to what extent an explanation fulfil some axiomatic properties such as

completeness [4] and non—sensitivity [27]. Due to the ambiguity that arises when empirically evaluating

metrics in this category, we do not study this category in detail.

A.3 Explanation Quality: Estimator Definitions

Within each of the five categories of explanation quality used in this work; (a) faithfulness, (b) robust-

ness, (c) localisation, (d) randomisation and (e) complexity, we selected two estimators per category in our

experiments.

Faithfulness Correlation (FC) [23] is defined in the following:

ΨFC = corr
S∈|S|⊆d

(∑
i∈S

Φ(x, f, ŷ;λ)i, f(x)− f
(
x[xs=xs]

))
, (16)
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where |S| ⊆ D is a subset of indices of a sample x, x is the chosen baseline value and x[xs=xs] is, therefore,

the masked input, with indices chosen randomly. Since f denotes a trained model with parameters θ, for

brevity, we denote f(x; θ) as f(x) where possible. Higher values indicate that the explanation method’s

assignment of attribution is correlated with the behaviour of the model and hence is preferred.

Pixel-Flipping (PF) [24] returns a curve of prediction scores over an iterative set of pixel replacements,

which are sorted in descending order by the highest relevant pixel in the explanation Φ(x, f, ŷ;λ). To return

one evaluation score per input sample, we calculate the area under the curve (AUC) as follows:

ΨPF =

n∑
i=1

(ŷi + ŷi+1) · pi+1 − pi
2

(17)

where n is the number of discrete perturbation steps, pi and pi+1 are the x-values for the ith and (i + 1)th

perturbation steps and ŷi and ŷi+1 are the prediction values. For faithful explanations, a steep degradation

of prediction scores is expected when attributions are iteratively replaced in descending order. Therefore, a

lower value of AUC is indicative of better performance.

Max-Sensitivity (MS) [38] measures the maximum sensitivity of an explanation using a Monte Carlo

sampling-based approximation. It is defined as follows:

ΨMC = max
x+δ∈Nε(x)≤ ε

[
‖Φ(x, f, ŷ;λ)− Φ(x+ δ, f, ŷ;λ)‖

‖x‖

]
, (18)

where ε defines the radius of a discrete, finite-sample neighborhood around each input sample x. This

neighborhood, denoted as Nε (x), includes all samples in the set X that are within a distance of ε from x.

A lower MS score is indicative of more robustness.

Local Lipschitz Estimate (LLE) [37] works similarly to the Max-Sensitivity (MS) method and estimates

the Lipschitz constant of the explanation, which is a measure of how much the explanation changes with

respect to the input under slight perturbation, defined as δ. The LLE method is defined as follows:

ΨLLE = max
x+δ∈Nε(x)≤ ε

‖Φ(x, f, ŷ;λ)− Φ(x+ δ, f, ŷ;λ)‖2
‖x− (x+ δ)‖2

, (19)

where lower values indicate less change with respect to the change in input, which is desirable.

Pointing-Game (PG) [41] captures whether the feature of maximal attribution lies on the ground truth

mask, which is a binary mask indicating the true features that contribute to the model’s output. It is defined

as follows:

ΨPG =

{
1 if arg maxi Φi(x, f, ŷ;λ) ∈ sgt

0 otherwise
(20)

where Φi(x, f, ŷ;λ) represents the ith input feature of highest atttribution and sgt ∈ RD denotes the binary

ground truth mask.

Relevance Mass Accuracy (RMA) [7] quantifies the fraction of the sum of the attribution that inter-

sects with the ground truth mask over the full explanation sum. It is defined as follows:

ΨRMA =

∑D
i=1 Φi(x, f, ŷ;λ) · sgt,i∑D

i=1 Φi(x, f, ŷ;λ)
, (21)

where Φi(x, f, ŷ;λ) is the attribution of the ith input feature and sgt,i is the value of the ith element in the

ground truth mask.
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Model Parameter Randomisation Test (MPR) [9] measures the correlation between an explanation

from a randomly parameterised model f(x;PF(θ; v)) = f̂ and the original model f for each separate layer

v of the network. To generate one quality estimate per sample, we calculate the average of the correlation

coefficients over all the layers in the network, denoted V :

ΨMPR =
1

V

V∑
v=1

corr(Φv(x, f, ŷ;λ),Φv(x, f̂ , ŷ;λ)), (22)

where Φv(x, f, ŷ;λ) is the explanation generated by the original model f for layer v and Φv(x, f̂ , ŷ;λ) is the

explanation generated by the randomly parameterised model f̂ for layer v. The correlation between the two

explanations is calculated for each layer and then averaged over all layers to generate the MPR score, where

a lower correlation coefficient is desired.

Random Logit (RL) method proposed by [10] is originally defined using the structural similarity index

(SSIM) over the explanation of the ground truth label and an explanation of non-target class y′. However,

to make it comparable with the MPR metric, the SSIM calculation is replaced with the Spearman Rank

Correlation Coefficient as follows:

ΨRL = corr(Φ(x, f, ŷ;λ),Φ(x, f, y′;λ)), (23)

where Φ(x, f, ŷ;λ) is the explanation generated for the prediction ŷ and Φ(x, f, y′;λ) is the explanation

generated for a non-target class y′. Lower values indicate that the explanations are not correlated which is

desirable.

Sparseness (SP) [40] is a method for evaluating the sparsity of explanations and is defined as the Gini

index of the explanation. It is calculated by summing the product of the ranks of the input features and

their attributions and dividing by the sum of the attribution as follows:

ΨSP =

∑D
i=1(2i−D − 1) · êi
D(D − 1)

∑D
i=1 êi

, (24)

a higher sparseness score indicates lower complexity of the explanation ê, which is desirable.

Complexity (CO) [23] is defined using the Shannon entropy calculation which measures the amount

of uncertainty or randomness in the explanation map. It is calculated by summing the product of the

probabilities of the attributions and the logarithm of the probabilities of the attributions:

ΨCO = Ei [− ln (PΦ)] = −
D∑
i=1

PΦ(i) ln (PΦ(i))

with PΦ(i) =
|Φi(x, f, ŷ;λ)|∑
j∈[d] |Φj(x, f, ŷ;λ)|

;PΦ = {PΦ(1), . . . ,PΦ(d)} ,
(25)

where | · | denotes the absolute value, PΦ(i) denotes the fractional contribution of feature xi to the total

quantity of the attribution. A higher entropy indicates a higher level of uncertainty or randomness, i.e., a

higher complexity. A uniformly distributed attribution would have the highest possible complexity score.

A.4 Experimental Setup

In this section, we describe the experimental setup more in detail, which includes the datasets, models,

explanation methods and estimators used in this work. We keep this section short since most of the methods

in the following have been widely discussed in previous works. For more details, we refer the reader to

the respective original publications. The experiments can be reproduced following the instructions in the

repository (https://github.com/annahedstroem/MetaQuantus).
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Datasets We use four image classification datasets in the experiments— MNIST[43], fMNIST [44], cMINST

(customised-MNIST) [19] and ILSVRC-15 (ImageNet) [45]. For MNIST and fMNIST, we randomly sample

1024 test samples. We also randomly sampled 384 test samples from cMINST (customised-MNIST) [19]

which consists of MNIST digits displayed on uniformly sampled CIFAR-10 [52] backgrounds. To under-

stand the real impact of State-of-the-art (SOTA), we also perform our some experiments on ILSVRC-15

(ImageNet) [45], using 206 randomly selected test samples.

We have chosen these datasets based on the availability of segmentation masks, since the estimators within

the localisation category require such masks for computation. The bounding boxes for these datasets are

designed to enclose the object of interest. For cMNIST, the bounding box covers 25% of the input and for

MNIST and fMNIST, they cover approximately 35% (but up to 64%) of the input features. For ImageNet,

the bounding boxes vary in size depending on the class of interest.

Models The experiments are performed using different neural network models, including architectures such

as LeNets [46] and ResNets [18] which contributes to the robustness of our findings. For MNIST and fMNIST,

we train LeNets to an accuracy of 98.14% and 87.44% respectively. For the cMNIST dataset, a ResNet-9 is

trained to an accuracy of 98.09%. The training of all models is performed in a similar fashion; employing

SGD optimisation with a standard cross-entropy loss, an initial learning rate of 0.001 and momentum of

0.9. All models are trained for 20 epochs each. For ILSVRC-15 [45], we use the ResNet-18 model with

pre-trained weights given the ImageNet dataset, accessible via PyTorch [53].

Explanation methods We employ explanation methods from a widely used category of post-hoc attri-

bution methods, both gradient-based and model-agnostic techniques, i.e., Gradient [20, 21], Saliency [20],

GradCAM [34], Integrated Gradients [4], Input×Gradient [42], Occlusion [33] and GradientSHAP [22].

In all experiments, we generate explanations for a sample’s predicted class ŷ. Whereas certain estimators such

as the Saliency explanation ignore the signs of the explanations, we refrain from taking their absolute values,

to preserve the explainable evidence in the attribution. For comparability, we normalise the explanations

prior to the evaluation analysis using the square root of its average second-moment estimate [13], which is

defined as follows:
êh,w(

1
HW

∑
h′,w′ ê2

h′,w′

)1/2
, (26)

where êh,w is the value of the explanation map at pixel location (h, w) and H, W denote the height and

width, respectively5.

Estimators We select the most established metrics within each of the five categories of explanation quality:

Complexity (CO) [23], Sparseness (SP) [40], Faithfulness Correlation (FC) [23], Pixel-Flipping (PF) [24],

Max-Sensitivity (MS) [38], Local Lipschitz Estimate (LLE) [37], Pointing-Game (PG) [41], Relevance Mass

Accuracy (RMA) [7], Model Parameter Randomisation Test (MPR) [9] and Random Logit (RL) [10]. We

have defined each of the individual metrics mathematically in Appendix A.3.

Parameterisation For the initialisation of the different estimators, we mostly followed the recommen-

dations as stated in the respective original publications. However, to make the metrics within a certain

explanation category as comparable as possible, alterations to certain hyperparameters were made. When

applying Pixel-Flipping [24] on image datasets, it generally becomes computationally infeasible to iterate over

one pixel at a time. Therefore, we iterate over 2∗w
D where D is the dimensions of the input and w and h are the

width and height of the image, respectively (which are assumed to be the same). We also use this same value

to choose the subset size for Faithfulness Correlation [23]. For both faithfulness metrics, as the replacement

5This normalisation ensures that each score in the attribution map has an average squared distance to zero that is equal to
one. Since this operation does not normalise the attributions into a fixed range, it is not meant for visualisations, rather it is
meant to preserve a quantity that is useful for the comparison of distances between different explanation methods.
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strategy for masked pixels, we use uniform sampling where we set the lower and higher bounds to the mini-

mum and the maximum value of the test set, respectively. For the robustness metrics, which both are based

on Monte Carlo sampling-based approximation, we let it run for 10 iterations. In the randomisation category,

for comparability, we use the Spearman’s Rank Correlation Coefficient to calculate the similarity between the

original explanation and the explanation subject to randomisation. A full overview of the parameterisation

of the metrics can be found in the GitHub repository https://github.com/annahedstroem/MetaQuantus.

Hardware All experiments were computed on GPUs where we used NVIDIA A100-PCIE 40GB for the

toy datasets and NVIDIA A100-PCIE 80GB for ImageNet dataset.

A.5 Sanity-Checks of the Meta-Evaluation Framework

In this section, we conduct two sanity-checking experiments. In the first experiment, we create and meta-

evaluate adversarial estimators to demonstrate the usability of the framework in practice and highlight how

the two failure modes act complementary. In the second experiment, we examine the extent that the choice

of L, i.e., the set of explanation methods, may influence the MC score.

A.5.1 Adversarial Estimators

To sanity-check the meta-evaluation framework, we created adversarial quality estimators that were intended

to perform poorly in a specific failure mode and thus, should indisputably fail the corresponding part of the

testing scenarios of IPT and MPT. Specifically, we created an adversarial quality estimator that, independent

of its given model, data and explanations, returns scores that are always the same (i.e., using deterministic

sampling6). As such, this estimator should ultimately fail the reactivity to adversary tests (i.e., IACAR and

IECAR) since those tests expect a response to disruption. We denote this estimator Ψ=. We create a second

adversarial quality estimator that, independent of its inputs, returns scores that are drawn from a different

probability distribution (i.e., using stochastic sampling7). In this setup, we expect poor performance on

the noise resilience tests (i.e., IACNR and IECNR) since these tests check that the quality estimates remain

relatively unchanged after perturbation. We denote this adversarial estimator Ψ6=.

Table 2 summarises the outcome of this exercise, which includes the four score elements IACNR, IACAR,

IECNR and IECAR, aggregated for 5 iterations with K = 10 for the two tests, IPT and MPT. The expectation

of the test outcome is indicated by the value in brackets after the display of the actual score, including the

standard deviation. Here, a value of 0 indicates that the test should fail8 and any other value indicates

the desired outcome of the test to be successful. From Table 2, we note that both estimators, Ψ6= and

Ψ= produced scores that align with the expected value. Since estimator Ψ 6=, relies on stochastic sampling,

the scores are approximate, nevertheless, the scores and expectation are close and the standard deviation

is small, indicating that the sanity checks results are stable. Overall, we can observe that the expectation

aligns with the empirical reality across the different test settings. Therefore, we conclude the sanity-checking

experiment to be passed.

Another important insight that can be drawn from Table 2 is that the two failure modes complement each

other in determining the performance of an estimator. For an estimator that is provably bad, i.e., returns

scores that are completely unrelated to the model, data and explanation methods (such as demonstrated by

Ψ 6= and Ψ=), at least one of the failure modes (AR or NR) will reveal that the estimator is failing. To fully

assess the performance of an estimator, both failure modes are therefore necessary.

6We assemble this adversarial estimator by repeatedly returning the same scores for q′ as one set of uniformly sampled
scores q̂ ∼ U(α, β) with α = 0 and β = 1.

7Here, we sample from a normal distribution N (µ, σ2) with σ2 = 1 but with different means for the unperturbed- and the
perturbed estimates, respectively. For the unperturbed estimates q̂, we sample µ from a wide range, i.e., µ ∈ [−100000,−1]
and for the perturbed estimates q′, we set a narrow range with µ ∈ [0, 1].

8The exception is the expected value of the inter-consistency score, IECNR, for estimator Ψ 6= is not 0.0 but 0.25. This is
because, for an estimator that assigns attributions randomly, i.e., independent of the explanation method, the likelihood of the
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Table 2: The sanity-check exercise results show aggregated scores including std, over 5 iterations with K = 5. The

direction of the arrow, i.e., ↑ indicates if a higher value is better. The expectation of the test outcome is indicated

by the value in brackets, after the display of the actual score.

Test Estimator IACNR (↑) IACAR (↑) IECNR (↑) IECAR (↑)

IPT Ψ 6= 0.015 ± 0.023 (0.00) 0.983 ± 0.011 (1.00) 0.248 ± 0.004 (0.25) 0.0 ± 0.0 (0.00)
Ψ= 1.0 ± 0.0 (1.00) 0.0 ± 0.0 (0.00) 1.0 ± 0.0 (1.00) 0.0 ± 0.0 (0.00)

MPT Ψ6= 0.014 ± 0.010 (0.00) 0.973 ± 0.019 (1.00) 0.248 ± 0.003 (0.25) 0.0 ± 0.0 (0.00)
Ψ= 1.0 ± 0.0 (1.00) 0.0 ± 0.0 (0.00) 1.0 ± 0.0 (1.00) 0.0 ± 0.0 (0.00)

A.5.2 Dependency on L

The meta-evaluation framework is intentionally designed to take into account the set of explanation methods

given in the setup. For example, in the inter-consistency criterion (IEC) for noise resilience, we compute the

estimator’s ability to rank different explanation methods consistently when exposed to minor perturbations.

The resulting MC score of a quality estimator will, therefore, to a certain extent, be dependent on the choice

of L: both in terms of its cardinality and how similar the explanation functions are.

To understand how the performance of our quality estimator may vary depending on the choice of L, we

conducted an experiment where we computed the MC score while enumerating various choices of L. In this

experiment, we vary both the cardinality of L, by choosing values of {2, 3, 4} and the methods included in

the set. We selected both model-agnostic explanation methods such as Occlusion [33] as well as gradient-

based techniques such as GradCAM [34], Integrated Gradients [4] etc. For the sets of 2 explanation meth-

ods we included: {Gradient, Occlusion}, {Gradient, Input×Gradient}, {Gradient, Saliency}, {Gradient,

Input×Gradient}. For sets with 3 methods: {Gradient, GradCAM, GradientSHAP}, {Gradient, Saliency,

Integrated Gradients} and for 4 methods: {Gradient, Saliency, Input×Gradient, GradCAM }, {Gradient,

Saliency, Occlusion, GradCAM }.
In Figure 7, we show the aggregate values for different explanation sets across the datasets separately. Here,

the error bars indicate the standard deviations. By comparing the MC scores category by category, we can

observe that the error bars from the respective metric do generally not overlap. This means that the choice

of L has limited influence on the MC score, suggesting the measure’s stability.

Figure 7: Comparison of averaged meta-consistency performance for different quality estimators using MPT and IPT,

aggregated over 3 iterations with K = 5, across models {LeNet, ResNet} and different datasets {MNIST, fMNIST,

cMNIST} with error bars showing the standard deviation.

A.6 Supplementary Experiments

In the following section, we present additional experiments conducted in the scope of this work. First, we

demonstrate that MetaQuantus can be used for additional applications in Explainable AI. Here, we include

two demonstrations, first, we show how the MC score can be employed as a target variable for optimising

the hyperparameters of a metric and second, we demonstrate how the framework can be used to analyse

condition r̄Mj = r̄?j is 1
L

.
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category convergence. At the end of this section, we discuss supplementary results for the benchmarking

experiment which includes an additional analysis of ranking consistency.

A.6.1 Application — Hyperparameter Optimisation

It is practically well-known and increasingly publicly recognised [54, 14, 30, 55] how difficult it can be to

tune the hyperparameters in the explainability domain. Unlike in traditional machine learning, in XAI, we

generally do not have a target variable to optimise against. As an additional experiment, we, therefore,

investigated how the meta-evaluation framework can be useful in solving the task of selecting the best set of

hyperparameters for a given metric. For this, we choose a metric with relatively many parameters, that is

Faithfulness Correlation [23] and performed a grid-search on these using ImageNet. By exploring combina-

tions of three baseline strategies = [’Black’, ’Uniform’, ’Mean’] and four subset sizes = [28, 52, 102, 128], we

created 12 hyperparameter settings9. We determined the performance of each of the metric’s parameterisa-

tion by storing the meta-evaluation vector m and the MC score at each run. The objective of this exercise is

to determine the hyperparameter setting that optimises the performance of the estimator, i.e., its resilience

to noise and reactivity to adversary.

From Figure 8 (left), we can observe that P11 has the highest meta-consistency score and as such, we

recommend the associated parameter setting of “mean” as the replacement strategy with 102 features as

the subset size. In contrast to previous works that found a relatively large difference in evaluation outcomes

between different parameterisations of faithfulness metrics [15, 14, 17, 1], we detect, that with the MC score—

which provides a more comprehensive picture of the estimator’s performance—there is not a considerable

variability, as depicted by the similarity in IAC and IEC scores over P1 to P12.

A.6.2 Application — Category Convergence

The question of whether evaluation metrics within the same category are measuring the same underlying

concept has been of significant interest to the community [15, 16]. Based on the observed similarity of esti-

mator shapes in Figure 5—that the estimators within the same category typically have a higher resemblance

in area shapes compared to estimators outside of their categories—we sought to employ the meta-evaluation

framework to investigate whether metrics within a category exhibit a greater level of correlation than those

Figure 8: Left: The results of using the meta-evaluation framework to optimize the hyperparameters of FC [23] metric

across 12 parameterisations (P1-P12) on ImageNet dataset, averaged over 3 iterations with K = 3. The parameter

setting P11 demonstrated the highest scores with small standard deviation and thus is selected as the parameter

setting. Right: The results from comparing the correlation coefficients between the meta-evaluation vector scores for

estimators within the same category versus those outside of the category, suggesting that the estimators of the same

category have more resemble with respect to its performance characteristics compared to estimators outside.

9The parameters were combined in the following 12 settings: P1: [’Black’, 28], P2: [’Black’, 52], P3: [’Black’, 102], P4:
[’Black’, 128], P5: [’Uniform’, 28], P6: [’Uniform’, 52], P7: [’Uniform’, 102], P8: [’Uniform’, 128], P9: [’Mean’, 28], P10: [’Mean’,
52], P11: [’Mean’, 102], P12: [’Mean’, 128].
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outside of the category. To address this question, often referred to as “convergent validity”, the prevalent

technique has been to measure intra-correlation, which simply involves correlating the scores of different

estimators within the same category. This approach, however, has limitations, as it disregards the aspect of

ranking consistency (IEC) and may not account for the fact that scores from different estimators may have

vastly different scales and interpretations, which may skew the results.

We improve upon the current methodology proposed in [15, 16] by calculating the correlation coefficient on

the meta-evaluation vector m of different estimators, within- and outside of their category as produced in

the benchmarking exercise. This approach is advantageous as it: (i) yields scores in a normalised range [0, 1]

and (ii) provides a more comprehensive view of the estimator’s performance characteristics by incorporating

multiple failure modes and criteria.

Figure 8 (right) presents the results of this experiment, averaged over all estimators as described in A.4.

Here, we can observe that the estimator’s performance characteristics are more similar within a category, as

seen in the higher correlation coefficient (Spearman Rank Correlation Coefficient) across all datasets. These

observations contrast previous works by [15, 16] that found a low correlation coefficient (for faithfulness

estimators in particular). We posit that this difference can be explained by the fact that the meta-evaluation

framework considers multiple failure modes and criteria of what a quality estimator should fulfil and not

only one, e.g., ranking consistency [17] and as such, give a more comprehensive answer. However, from

the error bars in Figure 8, we also observe, that the correlation coefficients are greatly varying within each

group. Further research is thus necessary to fully understand the extent to which estimators of the same

explanation quality category measure the same underlying concept.

A.6.3 Supplementary Results — Benchmarking

In the following, similar to Table 1, we present the results of the Input Perturbation Test and the Model

Perturbation Test for the fMNIST and cMNIST datasets in Tables 3 and 4, respectively. Tables 3 and 4 can

be found at the end of this Section. The grey rows indicate the results from the Input Perturbation Test and

the white rows show the results from the Model Perturbation Test. The results are consistent with those

presented in the main manuscript, both in terms of individual score criteria and top-performing estimators

in each category.

Similar to Figure 6, we also represent Tables 3 and 4 as area graphs. With an exception of slightly higher

localisation scores for cMNIST dataset (as explained in the main paper), the results as demonstrated in

Figures 9-10 are completely consistent with those findings presented in the main paper. Recall that, larger

coloured areas imply better performance on the different scoring criteria and the grey area indicates the

area of an optimally performing quality estimator, i.e., m∗ = 14. Each column of estimators represents a

category of explanation quality, from left to right: Complexity, Faithfulness, Localisation, Randomisation

and Robustness.

Similar to Figure 5, we also visualise the results (as shown in Table 3-4) as scatter plots for fMNIST and

cMNIST datasets in Figure 11. In the main paper, we identified that the faithfulness category (blue points)

had particularly lower ranking consistency (IEC), which is also evident in these supplementary plots. From

Figure 11, we can moreover observe how the estimators’ scores on the respective failure modes are related.

Figure 11 shows that a higher resilience to noise does not necessarily imply more reactivity to adversary and

vice versa—the performance characteristics of the estimators are more complex than that.

A.6.4 Supplementary Results — Ranking Consistency

In the main paper, we presented the average MC scores for each dataset in Figure 5, which showed con-

sistency across tested datasets, with the best-performing estimator in each category of explanation quality

remaining consistent across datasets. To further explore this consistency, we considered a margin of error

of 2 standard deviations applied to the MC scores and re-calculated the within-category ranking for each

individual estimator in each category and visualised the results in Figure 12.
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Figure 9: A graphical representation of the benchmarking results (Table 3), aggregated over 3 iterations with K =

5. Each column corresponds to a category of explanation quality, from left to right: Complexity, Faithfulness,

Localisation, Randomisation and Robustness. The grey area indicates the area of an optimally performing estimator,

i.e., m∗ = 14. The MC score (indicated in brackets) is averaged over MPT and IPT. Higher values are preferred.

Figure 10: A graphical representation of the benchmarking results (Table 4), aggregated over 3 iterations with

K = 5. Each column corresponds to a category of explanation quality, from left to right: Complexity, Faithfulness,

Localisation, Randomisation and Robustness. The grey area indicates the area of an optimally performing estimator,

i.e., m∗ = 14. The MC score (indicated in brackets) is averaged over MPT and IPT. Higher values are preferred.

Figure 12 showcase the distribution of the frequency with which the different estimators within each category

were ranked as the highest or the lowest, respectively. The colour scheme used is in line with previous figures,

where larger fractions indicate more frequent ”wins”. From Figure 12, we infer that for MPT there are few

instances where the best-performing estimator is ranked second, indicating stability in the results. On the

other hand, for IPT, the difference between the best- and worst-performing estimator is smaller, where we

often observe that the rankings are reversed. Since the MC scores reported in the main paper are computed

by averaging over both MPT and IPT, a variability in rankings is possible. It is important for practitioners

of MetaQauantus to be aware of the possible variability in rankings, by means of exercising caution when

drawing conclusions about the relative performance of individual metrics.
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Figure 11: A supplementary visualisation of the benchmarking results (Table 3-4), in particular IAC and IEC scores

for noise resilience (x-axes) and adverse reactivity (y-axes). The colours indicate the estimator and the symbols

demonstrate the test: IPT and MPT, respectively. Higher values are preferred.

(a) Model Perturbation Test (b) Input Perturbation Test

Figure 12: A supplementary visualisation of the benchmarking results (Tables 1, 3 and 4) showing the distribution

of top rankings within each category of explanation quality. For the MPT tests there is little variability in rankings,

but for IPT test it is higher.

Table 3: Benchmarking results for fMNIST dataset, aggregated over 3 iterations with K = 5. IPT results are in grey

rows and MPT results are in white rows. The symbol MC denotes the averages of the MC scores over IPT and MPT.

The top-performing MC- or MC method in each explanation category, which outperforms the bottom-performing

method by at least 2 standard deviations, is underlined. Higher values are preferred for all scoring criteria.

Category Estimator MC (↑) MC (↑) IACNR (↑) IACAR (↑) IECNR (↑) IECAR (↑)

Complexity

Sparseness 0.536 ± 0.011
0.596 ± 0.012 0.145 ± 0.039 0.915 ± 0.045 0.831 ± 0.004 0.492 ± 0.082

0.475 ± 0.010 0.917 ± 0.036 0.070 ± 0.003 0.832 ± 0.003 0.083 ± 0.001

Complexity 0.516 ± 0.007
0.532 ± 0.014 0.050 ± 0.047 0.990 ± 0.027 0.999 ± 0.000 0.086 ± 0.028

0.500 ± 0.000 0.167 ± 0.000 0.833 ± 0.000 1.000 ± 0.000 0.000 ± 0.000

Faithfulness

Faithfulness Corr. 0.530 ± 0.021
0.524 ± 0.021 0.527 ± 0.030 0.857 ± 0.072 0.198 ± 0.008 0.515 ± 0.004

0.536 ± 0.021 0.448 ± 0.087 0.994 ± 0.003 0.196 ± 0.004 0.504 ± 0.002

Pixel-Flipping 0.530 ± 0.021
0.573 ± 0.025 0.447 ± 0.050 0.958 ± 0.088 0.329 ± 0.002 0.558 ± 0.032

0.649 ± 0.018 0.453 ± 0.073 1.000 ± 0.000 0.324 ± 0.001 0.817 ± 0.003

Localisation

Pointing-Game 0.583 ± 0.005
0.666 ± 0.009 0.950 ± 0.025 0.634 ± 0.032 0.995 ± 0.001 0.084 ± 0.018

0.500 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000

Relevance Rank Acc. 0.538 ± 0.023
0.587 ± 0.024 0.231 ± 0.102 0.806 ± 0.056 0.850 ± 0.007 0.460 ± 0.048

0.490 ± 0.022 0.944 ± 0.034 0.067 ± 0.067 0.894 ± 0.003 0.055 ± 0.003

Randomisation

Random Logit 0.689 ± 0.005
0.717 ± 0.010 0.234 ± 0.039 1.000 ± 0.000 0.955 ± 0.005 0.680 ± 0.005

0.660 ± 0.000 0.062 ± 0.000 1.000 ± 0.000 0.902 ± 0.000 0.677 ± 0.000

Model Param. Rand. 0.570 ± 0.010
0.622 ± 0.010 0.355 ± 0.042 0.925 ± 0.000 0.755 ± 0.005 0.451 ± 0.000

0.518 ± 0.010 0.098 ± 0.008 0.902 ± 0.045 0.657 ± 0.004 0.414 ± 0.001

Robustness

Max-Sensitivity 0.639 ± 0.036
0.699 ± 0.037 0.515 ± 0.097 0.961 ± 0.021 0.816 ± 0.007 0.501 ± 0.058

0.580 ± 0.035 0.504 ± 0.141 1.000 ± 0.000 0.811 ± 0.002 0.004 ± 0.000

Local Lipschitz Est. 0.710 ± 0.022
0.696 ± 0.038 0.538 ± 0.139 0.979 ± 0.033 0.775 ± 0.005 0.492 ± 0.092

0.724 ± 0.006 0.567 ± 0.037 0.896 ± 0.024 0.774 ± 0.001 0.661 ± 0.006
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Table 4: Benchmarking results for cMNIST dataset, aggregated over 3 iterations with K = 5. IPT results are in

grey rows and MPT results are in white rows. The symbol MC denotes the averages of the MC scores over IPT

and MPT. The top-performing MC- or MC method in each explanation category, Higher values are preferred for all

scoring criteria.

Category Estimator MC (↑) MC (↑) IACNR (↑) IACAR (↑) IECNR (↑) IECAR (↑)

Complexity

Sparseness 0.616 ± 0.015
0.706 ± 0.013 0.352 ± 0.061 0.989 ± 0.017 0.814 ± 0.001 0.670 ± 0.016

0.525 ± 0.018 0.626 ± 0.099 0.313 ± 0.028 0.830 ± 0.005 0.333 ± 0.006

Complexity 0.541 ± 0.018
0.565 ± 0.024 0.056 ± 0.084 1.000 ± 0.000 0.996 ± 0.001 0.209 ± 0.013

0.518 ± 0.013 0.062 ± 0.010 0.928 ± 0.047 1.000 ± 0.000 0.080 ± 0.005

Faithfulness

Faithfulness Corr. 0.562 ± 0.014
0.563 ± 0.017 0.508 ± 0.061 0.939 ± 0.017 0.182 ± 0.004 0.622 ± 0.005

0.562 ± 0.010 0.490 ± 0.031 0.934 ± 0.018 0.188 ± 0.008 0.634 ± 0.012

Pixel-Flipping 0.604 ± 0.016
0.586 ± 0.022 0.565 ± 0.040 0.965 ± 0.022 0.287 ± 0.005 0.526 ± 0.080

0.621 ± 0.010 0.495 ± 0.037 0.995 ± 0.001 0.295 ± 0.012 0.701 ± 0.002

Localisation

Pointing-Game 0.687 ± 0.006
0.873 ± 0.010 0.967 ± 0.000 1.000 ± 0.000 0.997 ± 0.000 0.527 ± 0.040

0.502 ± 0.001 0.995 ± 0.003 0.013 ± 0.003 0.999 ± 0.001 0.001 ± 0.000

Relevance Rank Acc. 0.621 ± 0.011
0.856 ± 0.020 0.751 ± 0.008 0.358 ± 0.055 1.000 ± 0.000 0.791 ± 0.012

0.491 ± 0.014 0.640 ± 0.028 0.306 ± 0.032 0.796 ± 0.003 0.223 ± 0.005

Randomisation

Random Logit 0.713 ± 0.005
0.723 ± 0.010 0.530 ± 0.065 0.894 ± 0.026 0.881 ± 0.007 0.586 ± 0.012

0.703 ± 0.000 0.410 ± 0.000 0.884 ± 0.000 0.913 ± 0.000 0.606 ± 0.000

Model Param. Rand. 0.657 ± 0.009
0.673 ± 0.003 0.490 ± 0.006 1.000 ± 0.000 0.814 ± 0.005 0.387 ± 0.000

0.641 ± 0.016 0.417 ± 0.058 1.000 ± 0.000 0.804 ± 0.005 0.344 ± 0.004

Robustness

Max-Sensitivity 0.637 ± 0.030
0.690 ± 0.035 0.494 ± 0.069 0.972 ± 0.045 0.687 ± 0.004 0.606 ± 0.050

0.583 ± 0.024 0.582 ± 0.079 0.992 ± 0.002 0.680 ± 0.019 0.080 ± 0.002

Local Lipschitz Est. 0.697 ± 0.020
0.689 ± 0.026 0.548 ± 0.077 0.971 ± 0.049 0.628 ± 0.007 0.609 ± 0.042

0.706 ± 0.014 0.508 ± 0.047 0.999 ± 0.000 0.630 ± 0.007 0.685 ± 0.005

A.7 Notation Table

Preliminaries

f A black-box model function that maps input x to output y

θ The parameters of the model function f

Xtr The training dataset on which the model f is trained

Xte The test dataset on which the model f is evaluated

x An input in the instance space X

y An output class in the label space Y

ŷ A prediction made by the model f

C The number of output classes

N The number of test samples

D The dimension of the input

X The instance space

Y The label space

F The function space of all models

Φ An explanation function that maps x, f , and ŷ to an explanation map ê

λ The parameter of the explanation function Φ

ê The explanation map produced by Φ

E The space of possible explanations

Ψ A quality estimation function that takes ê and returns a scalar q̂ to indicate its quality

τ The parameter of the quality estimation function Ψ

q̂ A quality estimate made by the estimator Ψ


 The verifiable spaces of the estimator’s Ψ input parameters 
 ∈ {{X}, {F}, {X,F}}
U The unverifiable spaces of the estimator’s Ψ input parameters U ∈ {{E}, {O}, {E,O}}
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NR The first failure mode, noise resilience

AR The second failure mode, adversary reactivity

y′ A prediction after perturbation on the input, model or both input and model spaces

ε A threshold ε ∈ R for determining the type of perturbation

t The perturbation strength t ∈ {M,D}
P
(ω) A perturbation function of the verifiable spaces ω ∈ 


PM
X A minor perturbation function of the input space X

PM
F A minor perturbation function of the function space F

PD
X A disruptive perturbation function of the input space X

PD
F A disruptive perturbation function of the function space F

K The number of perturbations

L The set of explanation methods

q̂ The unperturbed quality estimates q̂ ∈ RN

q′k The perturbed quality estimates, replicated K times for N test samples

d A statistical significance function that takes q̂ and q′k and returns a p-value

r A ranking function that takes nominal values and returns rankings in descending order

Q A matrix of all perturbed samples over K perturbations

Q̄ A matrix for the unperturbed estimates q̂ for L explanation methods, averaged over K

Q̄′ A matrix for the perturbed estimates q′k for L explanation methods, averaged over K

Q̄M A matrix for the perturbed estimates under minor perturbation

Q̄D A matrix for the perturbed estimates under disruptive perturbation

U A binary ranking agreement matrix that takes quality estimates from Q̄ and Q̄′ and populates

the entries according to the interpretation of ranking

UM A binary ranking agreement matrix with perturbed estimates under minor perturbation

UD A binary ranking agreement matrix with perturbed estimates under disruptive perturbation

m A meta-consistency vector containing the IAC and IAC scores for both failure modes

m∗ An optimally performing quality estimator Ψ as defined by the all-one vector 14

IAC The intra-consistency scoring criterion, where IAC ∈ [0, 1]

IEC The inter-consistency scoring criterion, where IEC ∈ [0, 1]

MC The meta-consistency score, where MC ∈ [0, 1]

Practical Evaluation

U The uniform distribution with parameters α, β

α The lower bound of the uniform distribution U(α, β)

β The upper bound of the uniform distribution U(α, β)

δi Additive uniform noise applied to input space such that x̂i = x+ δi

N The normal distribution with parameters µ,Σ

µ The mean of the normal distribution N (µ,Σ)

Σ The variance of the normal distribution N (µ,Σ)

νi Multiplicative Gaussian noise applied applied to model parameters such that θ̂i = θ · νi
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