
Faculty of Science and Technology
Department of Physics and Technology

Deep Learning Based Automatic Segmentation of Gas Flares in Single
Beam Echo Sounder Data

Teodor Lynghaug Skotnes
STA-3941 Master’s thesis in applied physics and mathematics - December 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
This thesis introduces the first study of instance segmentation applied to gas
flares in single beam echo sounder data. We develop a comprehensive dataset
consisting of 1,414 images, featuring 5,142 segmented objects identified as gas
flare. A key contribution is the adaptation of the Brier score specifically for in-
stance segmentation. Further, we show how to the Weighted Box Fusion (WBF)
algorithm for instance segmentation. Using the newly developed Brier metric
for instance segmentation, as well as the mAP metric, we show that our ensem-
ble models fused with WBF are quantitatively as good as the average human
expert. However, our qualitative analysis identifies critical areas where these
models fall short, indicating the need for further refinement to reach human-
level performance. The thesis concludes by proposing potential improvements
and future research directions. We remark that if implemented, these could
bridge the gap between human and machine-level performance.

Acknowledgements
First of all, I want to thankmymain advisors,Eirik andKnutOla, for their helpful
discussions and dedication in reviewing my thesis. I extend my thanks to Fred,
Miguel, and Phuong for advising me on my project paper on reinforcement
learning a year ago, as well as for agreeing once again to advise me on this
thesis project. Additionally, I thank the experts Marie, Stetzler, Knut Ola, Kaya,
Pavel, Manuel, and Benedicte for providing data.

Finally, I want to thank my close family for their never ending love and sup-
port.

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables xi

List of Abbreviations xv

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement and Objective 2
1.3 Contributions . 5
1.4 Outline . 6

2 Theoretical Background 7
2.1 Machine Learning . 7
2.2 Neural Networks . 9
2.3 Convolutional Neural Networks 10
2.4 Loss Function . 13

2.4.1 Empirical Risk . 15
2.5 Optimization . 16

2.5.1 Optimization Techniques 18
2.6 Regularization . 25
2.7 Object Detection . 31

2.7.1 Approaches to Object Detection 32
2.7.2 YOLOv1 to YOLOv4 35
2.7.3 Non-maximum Suppression 36
2.7.4 From Bounding Box Object Detection to Instance Seg-

mentation . 38

3 Method 41
3.1 Why YOLOv5 . 41

v

vi contents

3.2 YOLOv5 . 42
3.2.1 YOLOv5 Specifics 42
3.2.2 Training . 52
3.2.3 Implementation . 53

3.3 Dataset . 56
3.3.1 Trained Non-Expert Labeling 57
3.3.2 Expert Labeling . 58

3.4 Evaluation Metrics . 58
3.4.1 Mean Average Precision 58
3.4.2 Brier Score . 59

4 Results and Discussions 61
4.1 Results on Non-Expert Data 61
4.2 Results on Experts’ Data using Brier Scores 62
4.3 Results on Experts’ Data Using mAP Scores 64
4.4 Discussion of the Quantitative Results 65

4.4.1 Interpretation of Quantitative Results from Experts . 66
4.4.2 Interpretation of Quantitative Results from Ensembles 72

4.5 Qualitative Analysis . 74

5 Conclusion and Future Work 87
5.1 Improving on the presented results 87
5.2 Uncertainty based direction 89
5.3 Discerning useful flares . 89
5.4 Concluding remarks . 90

Bibliography 91

List of Figures
1.1 Image and caption reproduced from [78]: (a) Echograms (38

kHz) showing flares as manifestation of rising bubbles and
sources of noise (multibeam) and reverberation (fish). This
complicates the identification of free gas fluxes as the interfer-
ence of the different signal sources results in wrong backscat-
tering values for bubbles, which again may result in flux over-
estimations. The image shows the effect of the vessel motion
on the acoustic data, that is, the shape of backscatter signals
of fish (wobbly shape). (b) Echogram (120 kHz) showing the
interference of hydroacoustic signals from bubbles (flares)
and sources of reverberation (fish and plankton). Here, the
plankton layer shows more distinctly because of the higher
frequency used. 3

1.2 Flares encircled in red. On the left is a flare deemed useful
because of its root to the seafloor and strong signal. On the
right is an object unlikely to be a flare, but is included to
illustrate how a flare deemed not useful might look. 4

2.1 Illustration of a FCNN. Every neuron in a layer is connected
to all the preceding neurons. If we set 𝐿 = 4 in the illustration
we get a FCNN with two hidden layers. 11

2.2 Illustration of the convolution operation used in a CNN. . . . 12
2.3 Image from [44], visualizing the smoothing effect of skip con-

nections on the loss surfaces of ResNet-56 [45] with and with-
out skip connections. 22

2.4 Idealized plot of how the error on the training and validation
set might evolve with the number of epochs. 30

vii

viii list of figures

2.5 (a) The input image to some neural network object detection
method. (b) Bounding box object detection methods produce
bounding boxes, an objectness score, and a class for each in-
dividual object. (c) Semantic segmentation involves classify-
ing each pixel in the image, losing the distinction between
different objects. (d) Instance segmentation involves correct
classification of the pixels as well as maintaining the distinc-
tions between objects, combining the methods in (b) and (c). 31

2.6 (a) Demonstration of how to calculate IoU with three exam-
ple calculations. (b) Example of how NMS operates to remove
redundant bounding boxes. 37

2.7 Caption and image reproduced from [7]. YOLACT Architec-
ture: Blue/yellow indicates low/high values in the prototypes,
gray nodes indicate functions that are not trained, and 𝑘 = 4
in this example. We base this architecture off of RetinaNet
[47] using ResNet-101+FPN. 39

3.1 Illustration of the YOLOv5 architecture. 45
3.2 Images reproduced from [36]. The blocks take tensors of size

ℎ×𝑤×𝑐 as input. In the illustrations, 𝑘, 𝑠, and 𝑝 stand for ker-
nel (convolutional filter), stride, and (zero) padding, respec-
tively. For example, the tuple [𝑘3, 𝑠1, 𝑝1, 𝑐512] indicates that
the convolution+batch normalization+SiLU operation uses
filter sizes of 3 × 3 with a stride of 1 and zero padding size of
1, and the number of output channels is 512. 46

3.3 Image and caption reproduced from [59]. Assume that each
grid cell has an area of 1 and note how the equations for
𝑏𝑥 , 𝑏𝑦, 𝑏𝑤 , and 𝑏ℎ have changed from those in equations (3.1)
to (3.4). Bounding boxes with dimension priors and loca-
tion prediction. We predict the width and height of the box
as offsets from cluster centroids. We predict the center coor-
dinates of the box relative to the location of filter application
using a sigmoid function. 47

3.4 Image reproduced from [36]. Illustration of how ground truth
objects are assigned to anchor templates based on the ratios
of height and width. 49

3.5 Images (a) and (b) reproduced from [36]. Illustration on how
ground truth objects are assigned to anchor templates during
training. 50

3.6 16 training images in a batch after applying data augmenta-
tion. Note how the mosaic data augmentation, as shown by
the fusion of 4 cropped images, is applied to every example
in the batch. 54

list of figures ix

3.7 Image and caption reproduced from [70]. Schematic illustra-
tion of NMS/soft-NMS vs. WBF outcomes for an ensemble of
inaccurate predictions. Blue – different models’ predictions,
red – ground truth. 56

3.8 The cruise path shown in (a) and (b) is from the third cruise
to Svalbard, which lasted from 16/10/2016 to 25/10/2016. 57

4.1 Comparison of performance between experts and ensembles
using the mAP metric. For each predictor, the mAP scores at
each threshold are summarized by averaging the mAPs ob-
tained from the experts’ test sets. 70

4.2 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. We observe that the ensemble fails
to replicate the behaviour required by human experts, that
is, segment the object likely to be a flare as a whole, instead
of two parts. However, the ensemble is successful in terms of
predicting the non-expert ground truth. 78

4.3 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. We observe that the ensemble fails
to replicate the behaviour required by both the experts and
the non-expert. However, the ensemble recognizes the unique
situation and gives a low objectness score on the two parts
which should have been segmented as a whole. 79

4.4 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. We observe that the ensemble fails
to give high confidence scores as the human experts would. In
particular, we draw attention to the leftmost flare, which got
a too low score. We attribute this to a lack of data coverage
in the space of training examples where this flare resides. . . 80

4.5 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. The ensemble successfully iden-
tifies the non-expert’s test set ground truth. However, in this
instance, this identification is a significant error in terms of
the expert test sets. From (a), it is clear that the experts al-
most unanimously agree that there are no flares in the image.
The dataset created by the non-expert is full of such labeling
errors, which contribute to the ensemble’s erroneous predic-
tions in this case. 81

4.6 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. The ensemble correctly mimics the
behavior of the experts, albeit with slightly too high confidence. 82

x list of figures

4.7 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. Although the experts make some
predictions that the ensemble does not share, these predic-
tions are of low confidence. Thus, we regard this as a success
for the ensemble. Furthermore, it is notable how the uncer-
tainty associated with the segmentation mask is greater for
the experts than for the ensemble. 83

4.8 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. The ensemble correctly mimics the
behavior of the experts, albeit with slightly less confidence. . 84

4.9 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. The ensemble correctly mimics the
behavior of the experts, albeit with slightly too high confidence. 85

4.10 Visual comparison between Ensemble1 and the experts on
one of the 30 test images. The ensemble successfully iden-
tifies the two flares in the image, notably assigning high epis-
temic uncertainty to the protruding parts of the flares. During
test set benchmarking, we would remove these areas of high
uncertainty, resulting in segmentations that seemingly align
perfectly with those of the experts 86

List of Tables
2.1 Table reproduced from [83]. Common data augmentation meth-

ods in image processing. 28

3.1 The width and height in terms of pixels of the anchor box
templates used. Each tensor/head has 3 anchors associated
with it. 47

3.2 The different ground truth labels the outputs can have based
on whether they were assigned to a ground truth object. For
the objectness scores, we use either the IoU or 1 as the label,
depending on how we want to train the model. IoU is a dy-
namic label that takes on the value of the IoU between the
predicted bounding box and the ground truth bounding box. 51

3.3 Probability of applying different augmentations to training
examples as they are selected into a batch. 53

3.4 Parameter, layer count, and FLOPs comparison of YOLOv5
model variants. Parameters are presented in terms of millions
(M) and FLOPs in billions (B). The number of FLOPs needed
assumes input images of size 320 × 320 × 3. 55

4.1 mAP scores for Ensemble1 to Ensemble4 on the non-expert’s
validation and test sets. The constituent base models of each
ensemble can be found in Tables 4.2 to 4.6. Ensemble1 to
Ensemble4 will be further evaluated on the experts’ datasets. 62

4.2 mAP scores of the YOLOv5 base and ensemble models on the
non-expert’s validation and test sets. The base models use
pretrained weights from the COCO dataset and are trained
using IoU targets for the objectness score. The numbers in
parentheses represent the epoch number, best epoch, and batch
size, respectively. Models with a superscript of (1) or (2) in-
dicate their inclusion in Ensemble1 or Ensemble2, respectively. 63

xi

xii list of tables

4.3 mAP scores of the YOLOv5 base and ensemble models on the
non-expert’s validation and test sets. The base models use
pretrained weights from the COCO dataset and are trained
using IoU targets for the objectness score. The numbers in
parentheses represent the epoch number, best epoch, and batch
size, respectively. Models with a superscript of (1, 2) indicate
their inclusion in Ensemble1 and Ensemble2. 64

4.4 mAP scores of the YOLOv5 base and ensemble models on the
non-expert’s validation and test sets. The base models use
He initialization for the weights and were trained using hard
targets for the objectness score. The numbers in parenthe-
ses represent the epoch number, best epoch, and batch size,
respectively. Models with a superscript of (3) indicate their
inclusion in Ensemble3. 65

4.5 mAP scores of the YOLOv5 base and ensemble models on the
non-expert’s validation and test sets. The base models use
pretrained weights from the COCO dataset and are trained
using hard targets for the objectness score. The numbers in
parentheses represent the epoch number, best epoch, and batch
size, respectively. Models with a superscript of (4) indicate
their inclusion in Ensemble4. 66

4.6 mAP scores of the YOLOv5 base and ensemble models on the
non-expert’s validation and test sets. The base models use He
initialization for the weights and were trained using IoU tar-
gets for the objectness score. The numbers in parentheses rep-
resent the epoch number, best epoch, and batch size, respec-
tively. None of the base models in this table are used in any
of the final ensembles. 67

4.7 Comparison of Brier50 scores for expert and ensemble pre-
dictors on test sets. On the rows are the predictors and on the
columns are the possible test sets. 68

4.8 Ranking the experts and ensembles based on their average
brier50 score. 68

4.9 Comparison of Brier50-95 scores for expert and ensemble
predictors on test sets. On the rows are the predictors and
on the columns are the possible test sets. 69

4.10 Ranking the experts and ensembles based on their average
brier50-95 score. 69

list of tables xiii

4.11 Frequency of flare picking for the experts and non-expert. In
parentheses is the sum of the flares from 0.9 to 1 confidence.
Experts were allowed to give a confidence score between 0.1
and 1, while the non-expert had to use true or false labels.
The data of the experts was collected after the non-expert and
it was decided that we wanted to allow for more informative
labels. 71

List of Abbreviations
AI Artificial Intelligence

AP Average Precision

AT Anchor Template

BCE Binary Cross-Entropy

CIoU Complete Intersection over Union

CNN Convolutional Neural Network

COCO Common Objects in Context

DETR DEtection TRansformer

EMA Exponential Moving Average

FCN Fully Convolutional Network

FCNN fully Connected Neural Network

FN False Negatives

FP False Positive

FPN Feature Pyramid Network

GAN Generative Adversarial Network

GPU Graphics Processing Unit

HSV Hue, Saturation, and Value

xv

xvi LIST OF ABBREVIATIONS

IoU Intersection over Union

KL Kullback–Leibler

mAP Mean Average Precision

ML Machine Learning

MSE Maximum Likelihood Estimator

MSE Mean Square Error

NaN Not a Number

NLL Negative Log-Likelihood

NMS Non-Maximum Suppression

P Precision

PANet Path Aggregation Network

R Recall

RoI Regions of Interest

RPN Region Proposal Network

SGD Stochastic Gradient Descent

SPP Spatial Pyramid Pooling

SSD Single Shot MultiBox Detector

SVM Support Vector Machine

TP True Positive

WBF Weighted Box Fusion

YOLACT You Only Look at Coefficients

YOLO You Only Look Once

1
Introduction
1.1 Context

Accurately monitoring greenhouse gas emissions is essential for evaluating
both current and future climate scenarios, as well as understanding their po-
tential impact on the local environment. Measuring emissions originating from
the seabed, being natural or leakage from human installations is, however,
a considerable challenge. These emissions can have a significant impact not
only the atmospheric carbon budget but also on local biology. Challenges in
constraining these emissions is largely due to the scarcity of comprehensive
and geographically diverse data, making the ocean notoriously under-sampled
compared to the atmosphere. These limitations emphasize the need for innova-
tions that improve and expedite the collection of ocean data that can constrain
these emissions [14, 18].

The main greenhouse gases include carbon dioxide (CO2), methane (CH4) and
nitrous oxide (N2O). The significance of these gases lies in their ability to absorb
and emit radiation within the thermal infrared range. Different greenhouse
gases absorb different wavelengths of infrared radiation. After absorbing the
radiation, they emit it in various directions, with a significant proportion being
redirected back towards the Earth, causing warming of the planet [54].

The greenhouse gas methane is considered to be 32 times more potent than
carbon dioxide, and through natural as well as anthropogenic origins, it is
thought to contribute to the global greenhouse effect by 16%. Methane lasts,

1

2 chapter 1 introduction

on average, a decade in the atmosphere, and although it disperses quicker
than carbon dioxide, its potency makes it a key factor in global warming
[18]. Current estimates of methane emissions and the global methane budget
resulting from marine gas seepages are highly uncertain due to the scarcity of
high quality ocean data [14].

1.2 Problem Statement and Objective

Seabed gas seepage can be observed through hydroacoustic surveys, either
using singlebeam or multibeam echo sounders [78]. Echo sounders operate by
emitting an acoustic signal at a specific frequency directly downward into the
water. When this signal encounters the seafloor or any object in the water col-
umn, it reflects back to the surface where the echo sounder is located, giving us
an echogram. Multibeam echo sounders can capture extensive 3-dimensional
hydroacoustic datasets, however, their economic burden and increased payload
requirements make singlebeam data more commonplace and easy to obtain.
Figure 1.1 illustrates a singlebeam echogram with observed gas seepage, fish, re-
verberations from small organisms, and other noise disturbances. Gas seepages
from the seafloor as observed in hydroacoustic data are often called gas flares1
or simply flares. This terminology will be adopted from here on out.

An important part of the pipeline in studying gas seepage in hydroacoustic data
is the actual detection and segmentation of gas seepages. The key objective
here is to accurately identify flares with high probability and discern which
flares are useful for further gas flow analysis. In single beam echo sounder
data this is of particular importance, as it is possible to quantitatively estimate
the seabed gas flow by relating acoustic backscatter target strength to gas
volume in the water column [78]. In this context, a useful flare is defined as
one that is connected to the seafloor and exhibits strong target strength in
the echogram. Figure 1.2 shows an example of a gas flare with strong target
strength, indicated by the more yellowish-red color on the left, and a flare
that is disconnected from the seafloor, thus deemed not useful, on the right.
Note that it is important to map out both useful and non-useful flares, but
only the useful flares are of interest for segmentation as these are processed
for further analysis by researchers. The segmentation process of gas flares
consists of identifying gas flares in the echograms and then segmenting the
flare by drawing a precise polygon over the gas flare. This process can present a
significant workload, and is typically done by highly skilled researchers, whose
time could be better spent elsewhere.

1. The shape of gas seepages on the echograms often distinctly resembles the flames produced
by gas flaring, hence the name.

1.2 problem statement and objective 3

Figure 1.1: Image and caption reproduced from [78]: (a) Echograms (38 kHz) showing
flares as manifestation of rising bubbles and sources of noise (multibeam)
and reverberation (fish). This complicates the identification of free gas
fluxes as the interference of the different signal sources results in wrong
backscattering values for bubbles, which again may result in flux overesti-
mations. The image shows the effect of the vessel motion on the acoustic
data, that is, the shape of backscatter signals of fish (wobbly shape). (b)
Echogram (120 kHz) showing the interference of hydroacoustic signals
from bubbles (flares) and sources of reverberation (fish and plankton).
Here, the plankton layer shows more distinctly because of the higher fre-
quency used.

In addition to being a significant time sink, the detection and segmentation of
flares can be subject to personal interpretation. Often, it is not clear where one
gas flare ends and another begins. Furthermore, there can be ambiguity regard-

4 chapter 1 introduction

Figure 1.2: Flares encircled in red. On the left is a flare deemed useful because of its
root to the seafloor and strong signal. On the right is an object unlikely
to be a flare, but is included to illustrate how a flare deemed not useful
might look.

ing whether what is observed is actually a gas flare and not an amalgamation
of different objects like marine life and noise, which together might mimic a
flare’s appearance. Disagreement between experts can generate considerable
noise in flare datasets, as shown in [18] and herein.

It is of interest to fully automate flare identification and segmentation at or
beyond human-level accuracy, so as to relieve humans of this task. Additionally,
full automation would simultaneously mitigate noise caused by disagreement
among experts by having a commonmachine standard to refer to. The approach
to automation of segmentation and detection of gas flares in this thesis will be
through instance segmentation. We implement instance segmentation through
the popular one-stage model architecture of YOLOv5 (You Only Look Once)[36].
We outline the reasons why we chose to use YOLOv5 in Chapter 3. Furthermore,
we will ensemble together multiple different YOLOv5 model architectures to
enhance performance. To this end, we adapt Weighted Box Fusion (WBF) [70]
for instance segmentation.

Due to the often subjective nature of segmenting flares, discerning the true

1.3 contributions 5

underlying segmentations (ground truths) needed for accurate benchmarking
performance is challenging. To address this, we have recruited six experts who
have graciously agreed to assist with this project. These experts have done
segmentation on a test data set, enabling us to benchmark the experts against
each other’s work as well as evaluate how the model(s) compare. The objective
of this thesis, then, is to develop a deep learning based automated system for
detecting and segmenting flares, establish methodology for model evaluation,
and use this to compare the performance of the model with that of human
experts.

As mentioned earlier, it is of interest to discern between useful and not useful
flares. However, only the first problem of segmenting flares will be tackled.
Approaches on howone can extend thework in this thesis to allow for discerning
between types of flares will be discussed in Chapter 5. Although this thesis
primarily focuses on the automatic detection and segmentation of methane
seepage, the methodology is more general and can be applied to other types
of gas seepages, such as carbon dioxide, or gas leaks from subsea oil and gas
facilities [33].

1.3 Contributions

The work presented is, to our knowledge, the first application of instance seg-
mentation on marine gas seepage in single beam echo sounder data. We show
how to adapt the Brier score [8] for instance segmentation and demonstrate
that for the problem at hand, ensemble models are better than single models,
and that ensembling models together with WBF is better than ensembling
models together with Non-Maximum Suppression (NMS) [74]. Further, we
show that our ensembled models are largely indistinguishable from the aver-
age human expert in terms of the Brier and Mean Average Precision (mAP)
[74] metrics, and provide evidence of potentially more accurate segmentations.
Despite the strong quantitative performance we still consider our models as
inferior due to a qualitative analysis done. Areas for improvement are identified
and direction for future work is given. We note that with these improvements
it might be possible to bridge the gap between human and machine-level gas
flare segmentation and detection.

As part of the work, a dataset had to be created. Starting with 4,057 images,
1,414 were determined to have flares in them. In these 1,414 images, 5,142
objects identified as flares were segmented. This dataset was created by the
author of this thesis, who can be considered to be a trained non-expert. The
created dataset can serve as a starting point for others who wish to improve
upon it or create a new dataset. Making changes to the dataset should be a

6 chapter 1 introduction

less daunting task than starting from scratch.

1.4 Outline

In Chapter 1, we introduce the context and problem statement, and highlight
the contributions of this thesis. In Chapter 2, we review the fundamentals of
deep learning and provide a brief history of deep learning in object detection,
along with the concepts we deem necessary to understand YOLOv5. Chapter
3 outlines how we came to use YOLOv5. Additionally, the architecture of
YOLOv5, including how we train it, is described in detail. Further, we show how
we adapt WBF for instance segmentation and by extension how we ensemble
models together. This chapter also describes the dataset and the base evaluation
metrics that will be used for evaluating results in Chapter 4. In Chapter 4, we
present our results and explain how to interpret them. We follow this up with
quantitative and qualitative analysis of the results for both the ensembles and
experts. Finally, Chapter 5 concludes the thesis by providing directions for
future work summarizing the results and summarizing the results.

2
Theoretical Background
This chapter assumes the reader has some familiarity with deep learning and
statistics. The chapterwill serve as a review of concepts important for all of deep
learning, as well as concepts more specific for YOLOv5. Detailed mathematical
exposition and precise algorithmic breakdown is largely omitted in favor of
illustrations and descriptive text.

2.1 Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses
on the study and development of algorithms enabling computers to perform
tasks without explicit instructions.

All ML algorithms process some form of data. To allow for an explicit study of
the data, we convert each example in the dataset into vectors 𝒙 ∈ R𝑛. These
vectors could represent images, videos, words, paragraphs, a combination of
the preceding, and so on. Some tasks of interest in ML include:

• Regression: In this setting, the objective is to predict the correct nu-
merical value given the input vector 𝒙. More formally, we aim to learn
a function 𝑓 : R𝑛 → R. The simplest problem in this setting is linear
regression, where one assumes a linear relationship between the indepen-
dent and dependent variables. Examples of regression problems include

7

8 chapter 2 theoretical background

predicting the adult height of a child, house prices, life expectancy, and
stock prices.

• Classification: The classification scenario is much like the regression
setting, except instead of predicting any numerical value, the output is
constrained to a finite number of discrete outputs, called classes, i.e., the
interest lies in learning a function of the form 𝑓 : R𝑛 → {1, . . . , 𝑘}. Here,
𝑘 represents the total number of classes. The output of the function will
typically be one or multiple values between 0 and 1, possibly representing
the output as a discrete probability distribution before applying some
rule to select the class. This rule usually consists of selecting the class
with the highest numerical value.

• Density Estimation: In this scenario, the goal is to learn a good approx-
imation of the underlying distribution that produced the data vectors 𝒙.
More formally, we aim to learn a function 𝑝 : R𝑛 → R, where 𝑝 is either
explicitly a probability distribution or can be interpreted as such. An
example of density estimation using deep learning is the method of Gen-
erative Adversarial Networks (GAN) [24], where one neural network is
trained to discriminate between real and fake examples from the dataset,
and another is trained to generate fake examples. In the ideal scenario,
the generator learns to output examples indistinguishable from the true
underlying distribution, leaving the discriminator with only the option
to guess with a 0.5 probability if the example is fake or not.

• Other Tasks:

– Imputation of missing values: given a 𝒙 with entries missing, learn
to predict those missing entries.

– Denoising: Given some corrupted version of 𝒙, predict the original
𝒙 before the corruption process.

– Machine translation: Translate from one language to another.

– Large language models: Develop models capable of understanding
and generating human-like text.

The list above represents just a small portion of the tasks studied in ML.
Common to all these tasks is either the implicit or explicit modeling of the
underlying probability distribution. If the algorithm aims to perform well on
new examples, i.e., to generalize, it needs to capture the underlying structure
of the data and infer from it [23].

2.2 neural networks 9

Typically, regression, classification, and any problem where there is a distinct
label 𝒚 ∈ R𝑛 associated with 𝒙 are dubbed supervised learning problems. In
these tasks, the objective is to infer 𝒚 based on 𝒙. Tasks where there is no clear
𝒚 associated with each 𝒙 are often categorized as unsupervised learning tasks.
Unsupervised learning tasks include, among others, dimensionality reduction
through autoencoders [3], clustering through deep clustering algorithms [63],
and generative modeling through GANs [24].

Dataset Split and Hyperparameters

In ML, it is commmon to divide the dataset into three parts: a training dataset,
a validation dataset, and a testing dataset. The training dataset is the largest,
followed by the validation, and then the testing dataset. For example, a possible
split could be 80% for training examples, 15% for validation examples, and 5%
for testing examples. Ideally, each set should be large enough to be a good
approximation of the underlying probability distribution that generated the
data.

The training dataset is the primary dataset that the model uses to understand
and learn the underlying patterns. The validation dataset is used to monitor
the model’s performance on independent data during training, as well as to
tune hyperparameters. Hyperparameters are parameters that are not learned
during explicit training but are generally set by a human or found through
methods such as a grid search1. The testing dataset is the final set of examples
used solely to benchmark the model’s performance.

2.2 Neural Networks

Neural networks are a set of algorithms modeled loosely after the human brain,
designed to recognize patterns [1]. The study of all things surrounding (deep)2
neural networks is called deep learning.

The basic building block, which all neural networks use, is the perceptron or
neuron. The perceptron takes as its input other perceptrons, or if it’s the first
layer it takes as its input the examples in the dataset. We associate with each

1. A grid search involves defining a set of possible discrete values for each hyperparameter
individually and then finding the optimal ones by exhaustively trying every combination,
using the validation set for performance evaluation.

2. Neural networks are structured in layers. Neural networks with two or more hidden layers
are conventionally called deep neural networks, but since virtually all neural networks of
interest are more than one hidden layers deep this is sometimes omitted.

10 chapter 2 theoretical background

input to the perceptron, 𝑥 𝑗 ∈ R, 𝑗 = 1, . . . , 𝑑, a weight𝑤 𝑗 ∈ R and a bias term
𝑏 ∈ R:

𝑦 =

𝑑∑︁
𝑗=1

𝑤 𝑗𝑥 𝑗 + 𝑏. (2.1)

Here, 𝑦 is sometimes called the preactivation value, as this value is necessarily
input into a non-linear function 𝑓 called the activation function, outputting
the activation value, 𝑎, giving us the complete perceptron:

𝑎 = 𝑓 (
𝑑∑︁
𝑗=1

𝑤 𝑗𝑥 𝑗 + 𝑏) . (2.2)

We can build neural networks by stringing together these neurons in various
ways. The simplest form a neural network could take is the form of a fully
Connected Neural Network (FCNN). In a FCNN, all neurons in a layer are
connected to all the neurons in the previous layer. A simple illustration of a
FCNN with one input layer, 𝐿 − 2 hidden layers and one output layer is shown
in figure 2.1. As an example, assuming two hidden layers, one input layer
consisting of 𝒙 and an output layer outputting 𝒂, we can write out a four layer
FCNN as:

𝒂 = 𝑓 (𝒙;𝜽) =𝑾3𝜎 (𝑾2𝜎 (𝑾1𝒙 + 𝒃1) + 𝒃2) + 𝒃3, (2.3)

where we have gone over to using matrix notation, assume that all the dimen-
sions of the matrices and vectors align, and the activation function 𝜎 is applied
in an elementwise fashion. 𝑓 is the full function defined by the neural network
with parameters 𝜽 = (𝑾1,𝑾2,𝑾3, 𝒃1, 𝒃2, 𝒃3)

In practice, creating a shallow but wide neural network is not often seen. Rather,
the depth of the neural network seems to be of crucial importance [28]. In
2014, a state-of-the-art neural network in image classification had a depth of
19 layers [69]. In 2015, on the same problem, a state-of-the-art neural network
had 110 layers, but fewer parameters [28].

Neural networks are function approximators. Indeed, the universal function
approximation theorem states that a neural network with one hidden layer
can approximate any continuous function to arbitrary precision provided the
width of the neural net goes to infinity [32]. Similar results can be shown for
neural networks with infinite depth [45].

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) represent another way to connect per-
ceptrons together. Unlike in FCNNs, where every perceptron in every layer

2.3 convolutional neural networks 11

Figure 2.1: Illustration of a FCNN. Every neuron in a layer is connected to all the
preceding neurons. If we set 𝐿 = 4 in the illustration we get a FCNN with
two hidden layers.

is connected to all preceding perceptrons with distinct weights, CNNs utilize
parameter sharing and sparse interactions.

Figure 2.2 illustrates the nature of interaction between perceptrons in terms of
the convolution operation. The convolutional operation consists of performing
an elementwise multiplication between the convolutional filter and the area
to which the filter is applied, followed by summing up the results. The figure
shows a 3×3×1 convolutional filter applied to a 5×5×1 input tensor, padded
with zeros to preserve the width and height. The convolutional operation
applied in this manner induces equivariance to translation; that is, uponmoving
the input, the output will shift in the same manner. This property is useful
as it means that if the CNN learns to detect an object, it will detect it no
matter where it is in the input. For instance, it is known that CNNs applied to
images usually learn edge detectors in the early layers [86]. The same edges
appear practically everywhere in the image, so learning a single3 filter for
detecting them is practical. Additionally, the filters learned, combined with the
convolution operation, can be thought of as doing template matching [27]. To
see this, imagine vectorizing the areas the filters are applied to, as well as the

3. Edges vary in their orientation, so possibly many orientations of edge detection filters are
learned.

12 chapter 2 theoretical background

filter itself, then assume that the areas and the filter are constrained to have the
same Euclidean norm. Now, when the vector defining the area and the filter
are equivalent, the dot product between them is at its maximum, hence giving
the largest possible preactivation value precisely when the area it is applied
to is the same as the filter. This is why edge detection filters visually look like
edges, and why one can visually study the filters applied to the input image
to see what is learned. Beyond the first layer, it is practically impossible to tell
what the filter represents by visually inspecting them, and one has to resort to
other techniques to tell what is learnt [2, 86, 71].

Figure 2.2: Illustration of the convolution operation used in a CNN.

Smaller filters such as 3× 3 and 1× 1 are the standard in CNNs [69], although
occasionally larger filters like 7 × 7 are used in certain parts of the network.
Applying a 3 × 3 × 𝑐 filter twice uses only 18𝑐 parameters and provides a 5 × 5
receptive field⁴, whereas applying a 5×5×𝑐 filter once requires 25𝑐 parameters
for the same receptive field. Here, 𝑐 refers to the number of channels in the
filter. For instance, the input image is usually an RGB image, meaning the filters
applied to this input image have 3 channels. The receptive field of neurons
grows in a hierarchical manner as one progressively moves down the network,
due to the convolution operation. Because of this, we say that CNNs learn
through local spatial hierarchies, which we tend to believe is helpful for solving

4. The receptive field refers to the input neurons that the neuron is a function of. In very
deep CNNs, neurons in later layers can have the entire input image as their receptive field.
Large receptive fields are important for neurons in as they allow the neurons to "reason"
with more information.

2.4 loss function 13

certain problems.

The power of CNNs comes from their ability to effectively utilize (through the
convolution operation) the inherent spatial information embedded in data such
as 2-D images or 3-D videos while being incredibly efficient. As an example
of the efficiency, assume we have an image of width 320 pixels and a height
of 240, and that the CNN applied to it is defined by a single convolution. A
convolution operation with a 3 × 3 filter would reduce the image size to
318 × 238 pixels and would require 318 · 238 · 10 = 756, 840 floating point
operations (9 multiplications and 1 addition per pixel). Implementing the same
transformation (or any transformation for that matter) with an FCNN would
require 318 · 238 · (320 · 240 + 1) = 581, 260, 6884 floating-point operations,
making the CNN 7,680 times more computationally efficient. Additionally, the
CNN requires only storing 9 parameters compared to the 581 million for the
FCNN, making it far more memory efficient.

Another point on the efficiency of CNNs is that the layers using the convolution
operation can take input of any size,whereas something like an FCNNmust have
a fixed-size input. The ability to take input of any size can have implications
for the total amount inference time. Larger inputs can be processed faster than
smaller ones, relatively speaking, thanks to the ability to reuse computations
done by the convolutional layers. For instance, AlexNet [42] takes 1.2 ms, on
a 2014 Graphics Processing Unit (GPU), to output a 1 × 1 grid cell of class
probabilities for a 227 × 227 image. However, for a 500 × 500 image, AlexNet
takes only 22 ms to produce a 10 × 10 grid of class probabilities [51]. This
means it takes just 0.22 ms per grid cell of class probabilities, making the
process more than five times faster per grid cell compared to processing the
smaller image.

2.4 Loss Function

The loss function of a deep learning problem defines the objective andmeasures
the error or discrepancy between what the model predicts and what the true
value should be for those predictions. Generally, the aim is to find the point
that minimizes the loss function⁵.

One of the simplest loss functions is is the Mean Square Error (MSE): 𝐽 (𝜽) =
1
𝑛

∑𝑛
𝑖=1 | |𝒚𝑖 − 𝑓 (𝒙𝑖 ;𝜽) | |2, where 𝑖 denotes an example in the dataset consisting

of 𝑛 pairs (𝒚𝑖, 𝒙𝑖) and 𝑓 (𝒙𝑖 ;𝜽)is the output of the model with parameter 𝜽

5. Pure minimization is not always the goal as we also have to consider the possibility of
overfitting (to the training dataset).

14 chapter 2 theoretical background

and input 𝒙𝑖 . In a classification scenario with 3 classes, 𝒚𝑖 could, for instance,
be one hot encoded, i.e. take on a value of [0, 0, 1], [0, 1, 0] or [1, 0, 0]. If the
value of 𝑓 (𝒙𝑖 ;𝜽) were the same as𝒚𝑖 for all examples, we would achieve a loss
of 0.

MSE is intuitive and easy to define, but that does not mean it should the loss
function of choice in most applications. Borrowing from statistics, if we make
some assumptions about the data,we can get a loss function withmore rigorous
justification.

Suppose we have a dataset of 𝑛 examples 𝐷 = {𝒙1, 𝒙2, . . . , 𝒙𝑛} sampled inde-
pendently from some unknown ground truth probability distribution 𝑝𝑡𝑟𝑢𝑒 (𝒙).
Let 𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙;𝜽) be a parametric family of probability distributions over the
same support as 𝑝𝑡𝑟𝑢𝑒 (𝒙), defined by 𝜽 ∈ 𝚯, where 𝚯 is a subset of finite
Euclidean space. We assume that for some 𝜽 , 𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙;𝜽) = 𝑝𝑡𝑟𝑢𝑒 (𝒙) for all
𝒙. Then, the Maximum Likelihood Estimator (MLE) [9] for 𝜽 is:

𝜽𝑀𝐿 = argmax
𝜽

𝑛∑︁
𝑖=1

log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙𝑖 ;𝜽). (2.4)

If we divide by 𝑛, we can express the estimator in terms of the empirical
distribution of the data, 𝑝𝑡𝑟𝑢𝑒 (𝒙):

𝜽𝑀𝐿 = argmax
𝜽
E𝒙∼𝑝𝑡𝑟𝑢𝑒 log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙;𝜽). (2.5)

Multiplying by -1, we equivalently get:

𝜽𝑀𝐿 = argmin
𝜽

𝐻 (𝑝𝑡𝑟𝑢𝑒, 𝑝𝑚𝑜𝑑𝑒𝑙) = argmin
𝜽
− E𝒙∼𝑝𝑡𝑟𝑢𝑒 log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙;𝜽) . (2.6)

𝐻 (𝑝𝑡𝑟𝑢𝑒, 𝑝𝑚𝑜𝑑𝑒𝑙) is the cross-entropy between 𝑝𝑡𝑟𝑢𝑒 and 𝑝𝑚𝑜𝑑𝑒𝑙 . Because 𝑝𝑡𝑟𝑢𝑒
is not a function of 𝜽 , we can also equivalently minimize the Kullback–Leibler
(KL) divergence, 𝐷𝐾𝐿, between the distributions:

𝜽𝑀𝐿 = argmin
𝜽

𝐷𝐾𝐿 (𝑝𝑡𝑟𝑢𝑒 | |𝑝𝑚𝑜𝑑𝑒𝑙) = argmin
𝜽
E𝒙∼𝑝𝑡𝑟𝑢𝑒

(
log𝑝𝑡𝑟𝑢𝑒 (𝒙)−log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒙;𝜽)

)
.

(2.7)
Therefore, upon optimizing for the MLE for 𝜽 , we see that we also minimize
both the KL divergence and cross-entropy, which are both measures of dissim-
ilarity between distributions. Thus, we can view MLE as trying to make the
model distribution 𝑝𝑚𝑜𝑑𝑒𝑙 more similar to the empirical distribution 𝑝𝑡𝑟𝑢𝑒 . This
provides a view on how overfitting occurs in deep learning - the neural network
defining 𝑝𝑚𝑜𝑑𝑒𝑙 tries to replicate the infinite density found at points defined by
𝑝𝑡𝑟𝑢𝑒 , neglecting to put density on the points around it, which is required for
generalization.

2.4 loss function 15

To adapt the preceding into a loss function for the supervised learning scenario,
we assume that some joint distribution 𝑝𝑡𝑟𝑢𝑒 (𝒙,𝒚), which defines the condi-
tional distribution 𝑝𝑡𝑟𝑢𝑒 (𝒚 |𝒙), generated the data𝐷 = {(𝒙1,𝒚1), (𝒙2,𝒚2), . . . , (𝒙𝑛,𝒚𝑛)}
in an independent manner. We could do the same derivation as above, but
this time for 𝑝𝑚𝑜𝑑𝑒𝑙 (𝒚 |𝒙;𝜽), and we would similarly as before get the MLE
as:

𝜽𝑀𝐿 = argmin
𝜽

𝑛∑︁
𝑖=1

− log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒚𝑖 |𝒙𝑖 ;𝜽), (2.8)

where the loss function, dubbed cross-entropy or Negative Log-Likelihood
(NLL), is:

𝐽 (𝜽) =
𝑛∑︁
𝑖=1

− log𝑝𝑚𝑜𝑑𝑒𝑙 (𝒚𝑖 |𝒙𝑖 ;𝜽) . (2.9)

MLEs have strong theoretical support; under the independent and identically
distributed assumptions, and some regularity conditions, they are consistent
and asymptotically efficient estimators [9]. Meaning that as the sample size
increases,MLEs converge to the true parameter values, and among all consistent
estimators, they achieve the smallest possible variance in the limit.

The NLL loss function requires the assumption of a model distribution. For
classification tasks, one would typically assume a categorical distribution. In
regression problems, a common choice is the multivariate normal distribution
with some mean 𝑓 (𝒙;𝜽), possibly defined by a neural network, and the identity
matrix 𝑰 as the covariance matrix:

𝑝 (𝒚 |𝒙) = N(𝑓 (𝒙;𝜽), 𝑰). (2.10)

Interestingly, using this model distribution recovers the MSE loss function,
providing justification for its use beyond its simplicity.

More complex loss functions that combine NLL with other types of loss func-
tions, as shown in YOLOv5 (to be discussed later), are not at all uncommon in
deep learning.

2.4.1 Empirical Risk

More generally, the loss function we are concerned with minimizing is the
expected generalization error [38], also known as risk, for some loss per example
function 𝐿 :

𝑅(𝜽) = E(𝒙,𝒚)∼𝑝true𝐿(𝒙,𝒚, 𝜽) . (2.11)

This expectation is taken over the true underlying distribution generating the
data,whichwe usually have no access to. Therefore,we aim to approximate this

16 chapter 2 theoretical background

loss function by replacing the true underlying distribution with the empirical
distribution, giving us the empirical risk:

𝑅(𝜽) = E(𝒙,𝒚)∼𝑝true𝐿(𝒙,𝒚, 𝜽). (2.12)

Pure minimization of this loss is prone to overfitting. Indeed, a sufficiently large
neural network can simply memorize the training dataset [87]. Strategies to
help improve generalization and, by the same token, reduce overfitting will be
discussed in the regularization section.

2.5 Optimization

Optimization in deep learning refers to how one finds the parameters which
optimize the performance of the neural network on some metric. In image
classification, the metric might be accuracy, in instance segmentation, it could
be mAP50(defined in Chapter 3), and if no obvious metric is available, the
loss function itself can be considered as the metric. In any case, finding the
parameters which significantly reduce the loss function is involved.

Optimizing the performance of the neural network directly on certain metrics
is not always possible. For instance, in classification, using the 0-1 loss directly
(accruing 0 loss for a correct prediction, 1 for incorrect) is not possible since
the algorithms used in deep learning require useful derivatives (the 0-1 loss
is discontinuous). Moreover, when optimizing for a deep learning problem,
finding a global minimum or, more generally, just pushing the loss as low
as possible is not the deciding factor in determining the desired parameters.
Instead, a common practice is to monitor the performance of the desired metric
on the validation set and halt training when the criteria set by the early stopping
algorithm (discussed later) are met.

Premature stopping due to getting stuck in local minima is believed to be a
non-issue for large neural networks. As the size of the network increases, it
is conjectured that the likelihood of encountering a high-loss local minimum
becomes vanishingly small. Instead, it is believed that most local minima are
close to the global minimum in terms of loss, making the distinction between
the two largely irrelevant. The optimization problems previously believed to
be caused by getting stuck in high-loss local minima are instead thought to
be caused by the abundance of saddle points in combination with high-loss
plateaus [10, 12]

In practice, the first-order method gradient descent and variations on it are
used to incrementally traverse the loss landscape. Second-order methods are
computationally expensive, and directly using a method like Newton’s method

2.5 optimization 17

for optimization is only feasible for small networks [38]. Instead, high-level
approximations are needed to make second-order methods work [75]. One
iteration of gradient descent can be succinctly written as:

𝜽 ← 𝜽 − 𝜖∇𝜽 𝐽 (𝜽), (2.13)

where 𝐽 is a loss function that decomposes as a sum over the 𝑛 examples in
the training dataset:

𝐽 (𝜽) = E(𝒙,𝒚)∼𝑝𝑡𝑟𝑢𝑒𝐿(𝒙,𝒚, 𝜽) =
1
𝑛

𝑛∑︁
𝑖=1

𝐿(𝒙𝑖,𝒚𝑖, 𝜽), (2.14)

and 𝐿 is some per example loss, such as the per example loss defined by NLL:
− log𝑝 (𝒚 |𝒙;𝜽). Additionally, 𝜖 is some small learning rate and −𝜖∇𝜽 𝐽 (𝜽)
indicates the step size and direction taken as determined by the gradient at
the point of 𝜽 .

In practice, computing the gradient using the entire dataset is not ubiquitous.
For datasets with examples in the millions and beyond, the computational
cost of computing the gradient becomes too great to handle. This is espe-
cially true for large language models, which are often said to be "trained
on all the text on the internet." " ’ ’ " ’ "’ ’ ’ ’ Instead, smaller approxima-
tions of the gradient are computed using a minibatch of 𝑛′ ≪ 𝑛 examples
B = {(𝒙1,𝒚1), (𝒙2,𝒚2), . . . , (𝒙𝑛′,𝒚𝑛′)}:

∇𝜽 𝐽 ′(𝜽) =
1
𝑛′
∇𝜽

𝑛′∑︁
𝑖=1

𝐿(𝒙𝑖,𝒚𝑖, 𝜽) . (2.15)

This batch of examples is usually sampled uniformly without replacement
from the full set of examples. Replacing the gradient with the minibatch
approximation in gradient descent is known as Stochastic Gradient Descent
(SGD). Updating once with all the examples in the training dataset using
minibatches is known as one epoch⁶.

The algorithm used to compute the gradients for the parameters in the neural
network is called the backpropagation algorithm [64]. This algorithm stores
the output of the neurons in the forward pass and then computes the gradients
in each neuron, starting with the final loss neuron, in a backward pass. The
significance of this algorithm is in the fact that it stores the preactivation values
in the forward pass and the gradients in the backward pass. This allows one to
effectively use the chain rule of calculus to recursively compute the gradients

6. Some datasets are so large that a full pass over the entire dataset, concluding an epoch, is
not possible before training is stopped [23]. In these scenarios we instead describe training
in terms of update iterations, where one iteration is updating the weights once with SGD

18 chapter 2 theoretical background

of all the preceding neurons of a neuron using only the preactivation value of
that neuron along with the gradients of the neurons in its subsequent layer.
The activation values are used to compute the gradients of weights and biases
as gradients are backpropagated.

The backpropagation algorithm trades memory for compute, as one could imag-
ine recomputing the gradients in the backward pass each time the respective
gradient is needed. This would, however, incur exponential computational cost
with the layer depth as the same values would have to be recomputed over and
over again [23].

2.5.1 Optimization Techniques

There are many techniques used to ease the difficulties associated with opti-
mization in deep learning. Here, we will discuss some of the most common
and widely used optimization techniques in deep learning, which are also used
in YOLOv5.

Momentum and Adaptive Learning Rates

Modifying the gradient descent algorithm is one of the most straightforward
optimization changes one can make.

Momentum-based changes involve incorporating previous update steps to
simulate the real physical phenomenon of momentum, i.e., where a ball can
accumulate speed downhill via gravity but eventually comes to a halt when
faced with sufficient opposing forces. The explicit change we make to equation
(2.13) is to add a term 𝒎, which we can interpret as the momentum of a ball in
a sloped environment with gravity and some viscous fluid providing resistance
to it [23]:

𝜽 ← 𝜽 + 𝛼𝒎, (2.16)

𝒎 ← 𝛼𝒎 − 𝜖∇𝜽 𝐽 ′(𝜽), (2.17)

𝜽 ← 𝜽 +𝒎, (2.18)

where 𝛼 ∈ [0, 1) is used to decay previous additions. The inclusion of equa-
tion (2.16) transforms basic SGD with momentum into SGD with Nesterov
momentum [72]. Nesterov momentum is a slight improvement on the basic
version; it evaluates the gradient after applying the current momentum to
add a correction factor. Momentum can help in traversing large flat regions,
characterized by small but consistent gradients, more quickly than usual. The
inertia gained can also help push through optimization killing saddle points.

2.5 optimization 19

Finally, the preferred path of SGD might be plagued by some type of oscillating
or zigzagging behavior. Adding a momentum term helps smooth out these os-
cillations by accumulating momentum in the relevant direction that decreases
the loss.

The method of adaptive learning rates dynamically adjusts each parameter’s
learning rate during training, based on individual gradient values. For instance,
the AdaGrad algorithm [16] accumulates the square of the gradient in a variable
𝒓 , using this accumulation to adapt each parameter’s learning rate:

𝒓 ← 𝒓 + ∇𝜽 𝐽 ′(𝜽) ⊙ ∇𝜽 𝐽 ′(𝜽), (2.19)

Δ𝜽 ← 𝜖

𝛿 +
√
𝒓
⊙ ∇𝜽 𝐽 ′(𝜽), (2.20)

𝜽 ← 𝜽 + Δ𝜽 . (2.21)

Here, 𝛿 represents a small constant added for numerical stability. The opera-
tions of division, square root, and multiplication, indicated by ⊙, are performed
elementwise. AdaGrad accumulates gradients from the beginning of training,
which often ends up halting training completely, especially in sufficiently non-
convex settings [23].

Another method is ADAM [40], which integrates adaptive learning rates along
with momentum. ADAM deals with AdaGrad’s problem of continual accumu-
lation of past gradients by decaying past accumulation using a parameter
𝛼 ∈ [0, 1), like in equation (2.17). ADAM is known for its robust performance
across various hyperparameter settings [23].

While individually fine-tuned optimizers may perform better in specific scenar-
ios, the two best optimizers, as measured by their popularity, are ADAM and
SGD with some form of momentum [66].

Activation Functions

The choice of activation function matters significantly for the optimization of
the neural network. At least one of the neurons needs to have a non-linear
activation function, or the output of the neural network itself will be a linear
function of the input⁷. This becomes clear for FCNNs from equation (2.3) if one
removes the 𝜎 activation function. The same, of course, holds true for CNNs,
as convolutional operations can be easily cast as matrix multiplications. And
in fact, at lower levels of programming, convolutions are indeed cast as matrix

7. This is a problem as linearmodels are unable, by definition, to capture the highly non-linear
relationships needed to solve the problems found in deep learning.

20 chapter 2 theoretical background

multiplications to harness the power of highly optimized matrix multiplication
routines [88].

Early activation functions commonly used in deep learning include the sigmoid
𝑓 (𝑥) = 1/(1+𝑒−𝑥) and the tanh activation function 𝑓 (𝑥) = (𝑒2𝑥 −1)/(𝑒2𝑥 +1).
These functions saturate,meaning their derivatives approach 0 quickly outside a
small range around 0. This saturation can cause issues with vanishing gradients,
i.e., the gradients become so small that the finite precision of the computer
causes them to be set to 0. If the gradients of enough neurons are set to 0, then
training will be significantly slowed or even halt completely, due to the lack
of backpropagated information [42]. Additionally, the maximum value of the
derivative of the sigmoid is 0.25, and for the tanh we have that 𝑓 ′(𝑥) < 1 for
𝑥 ≠ 1. Thus, when applying the chain rule in the backpropagation algorithm,
even if one achieves maximum or close to maximal derivatives, one will still
get vanishing gradient problems due to the repeated multiplication of factors
less than one.

More commonly used is the ReLU (rectified linear unit) function 𝑓 (𝑥) =

max(0, 𝑥) or ReLU-like activation functions such as leaky ReLU [82] and SiLU
[58]. These activation functions solve the vanishing gradient problems caused
by functions such as the sigmoid and tanh, while holding many other desirable
properties. In particular, we highlight the computational efficiency of ReLU.
This function has only two possible values for its derivative, which we can
determine by the sign of the input. Thus, the only computation we need do is
to recognize the sign of the input, which we do once in the forward pass. Also,
the issue of not being continuous at 0 for the ReLU is not problematic, as we
can assume that the finite precision of the computer was not able to capture
the infinite precision needed for the reals. Hence, when the preactivation fed
into ReLU is 0, we assume it took on some small value 𝜖 instead, where the
sign is determined randomly. The practical implementation of this is, again,
exceedingly cheap.

Batch Normalization

Batch normalization [35] refers to the process of normalizing the output
of a neuron based on the other outputs in the same batch. To implement
batch normalization, assume a batch size of 𝑛, with outputs 𝑥1, 𝑥2, . . . , 𝑥𝑛
from a neuron, and compute the mean 𝜇 and standard deviation 𝜎 of these
outputs:

𝜇 =
1
𝑛

𝑛∑︁
𝑗=1

𝑥 𝑗 , (2.22)

2.5 optimization 21

𝜎 =

√√√
1
𝑛

𝑛∑︁
𝑗=1

(𝑥 𝑗 − 𝜇)2 + 𝜖, (2.23)

where 𝜖 is a small value added for numerical stability. Next, normalize each
activation as follows:

𝑦𝑖 =
𝑥𝑖 − 𝜇
𝜎

. (2.24)

Here, 𝑦𝑖 is the new output of the neuron for the 𝑖th example in the batch.
Finally, multiply and add learnable parameters 𝛼 and 𝛽 to obtain the input for
the next layer:

𝑦′𝑖 = 𝛼𝑦𝑖 + 𝛽. (2.25)

The extra parameters grant the model greater flexibility. They allow the model
to adapt the normalization process for each neuron, compensating for the
possible loss of representational ability when implementing equation (2.24)
[81]. During training, the algorithm maintains running averages of the mean
and standard deviation for each neuron. Once training is complete, these
running averages are used for normalization instead of the batch specific
estimates. This ensures consistent normalization during the inference phase,
regardless of batch size. Batch normalization can be applied either before or
after the activation function, although before is most commonly used. It is also
possible to normalize neuron outputs based on the 𝐿𝑝 norm, with 𝐿1 and 𝐿∞

normalization possibly outperforming regular batch normalization [65].

Batch normalization works by smoothing the highly non-convex loss landscape
of neural networks, thereby mitigating vanishing gradient problems, reducing
sensitivity to hyperparameter settings, and improving the directionality of the
gradient [65]. Finally, normalizing across the batch, as just described, is not
the only method of normalization [81, 42]

Skip connections

Skip connections are a general technique where the input to a layer includes
not only the neurons from the preceding layer but also those from many
previous layers. This technique has been used in many state-of-the-art im-
age classification CNNs over the years [26]. In [28], the first instance of skip
connections was presented, implemented through the addition of an identity
mapping. They conjecture that if an identity mapping is indeed optimal for a
specific layer, then this reformulation helps with learning it⁸. Additionally, the
identity mapping helps in backpropagating the more easily gradient as it passes
unchanged through the identity mapping. They find that the addition of the

8. The reasoning being that learning the weights in a layer needed for an identity mapping
is harder than learning to push the weights to 0.

22 chapter 2 theoretical background

skip connection allows for the training of exceedingly deep neural networks,
more than 1000 layers, which had previously been impossible due to vanishing
gradient problems.

Rather than allowing only one skip connection per input, [34] includes all
previous feature maps as inputs,where the skip connection is now implemented
through the concatenation of the feature maps. The inductive bias⁹ is now that
preserving and reusing features throughout the network can be beneficial for
the learning process. As in [28], they also achieve state-of-the-art performance
in image classification on several datasets.

Skip connections aid optimization, in part, by improving gradient flow through
more direct or shorter pathways and, by the same token, mitigate vanishing
gradients. [44] finds empirically that, much like batch normalization, skip
connections can help in optimization by smoothing the loss landscape. An
example of such smoothing is illustrated in Figure 2.3.

Figure 2.3: Image from [44], visualizing the smoothing effect of skip connections on
the loss surfaces of ResNet-56 [45] with and without skip connections.

Gradient Clipping

Sometimes, instead of vanishing, gradients blow up, caused by the accumu-
lation of large gradients during backpropagation due to repeated additions
of gradients greater than 1. In the loss landscape, we can interpret the areas
where this occurs as being cliff-like structures. Once these cliff structures are
reached, the gradient blows up, resulting in large steps being taken. These
large steps can undo a lot of previous gradient updates, causing significant

9. Inductive biases refer to assumptions baked into a model, which aim to help it generalize
to new data. The convolutional operation used in CNNs introduces inductive biases that
translation equivariance and local spatial hierarchies are helpful for image problems.

2.5 optimization 23

slowdown in training or even making convergence impossible. To mitigate this,
we use the gradient clipping heuristic, with the idea being that the gradient
only tells us the optimal direction, not the step size.

Gradient clipping can be done using element-wise clipping, where we constrain
each value in the gradient to be within some interval [−𝑡, 𝑡]. This method of
clipping can change the direction of the gradient. This, however, is not a
problem, as it is possible to converge even when taking a step in a random
direction at gradient explosions [23]. Another method of gradient clipping is
based on the norm | |𝒈 | | of the gradient 𝒈, i.e., if | |𝒈 | | > 𝑡 then:

𝒈 ← 𝒈𝑡

| |𝒈 | | , (2.26)

where 𝑡 is some threshold value [57]. In practice, both methods of gradient
clipping perform similarly well [23].

Learning Rate Scheduler and Warm-Up

In practice, using a constant learning rate as in equation (2.13) for SGD is not
common. Instead, we decay the learning rate through a specific scheme. One
learning rate scheme involves decaying the learning rate, now denoted as 𝜖𝑘 ,
linearly:

𝜖𝑘 = (1 − 𝑘

𝜏
)𝜖0 +

𝑘

𝜏
𝜖𝜏 , (2.27)

and another learning rate decay scheme is cosine scheduling:

𝜖𝑘 = 𝜖𝜏 +
1
2
(𝜖0 − 𝜖𝜏)

(
1 + cos

(𝑘𝜋
𝜏

))
, (2.28)

where 𝜏 , 𝜖0, and 𝜖𝜏 are hyperparameters. Once 𝑘 = 𝜏 is reached, where 𝑘 can
represent iterations or epochs, it is common to set 𝜖𝑘 to 𝜖𝜏 .

There are also approaches where the learning rate is reset after meeting certain
criteria. For instance, in [52], cosine scheduling is used, but the learning rate
defined by it is periodically reset according to a function based on the epoch
number. They find that this scheduling improves performance on the CIFAR-
10/100 datasets [41].

Learning rate decay allows for faster convergence and can help generalization.
A conventional explanation is that large steps in the beginning help escape
local minima, and small steps help avoid oscillation in latter stages of training.
[85] finds experimentally that an initial large learning rate helps mitigate
memorization of noisy data, and that decay over time assists in learning complex
patterns.

24 chapter 2 theoretical background

Warm-up is another learning rate scheme, which is used at the start of training.
For example, in [28], a constant learning rate of 0.01 is used for the first 500
iterations, before being set to the initial value of 0.1 for the scheduler used
for the rest of the run. It is also possible to gradually ramp up the warm-up
learning rate before employing the original scheduler [25]. In short, warm-up
can reduce convergence times (measured in iterations or epochs) and enhance
performance by stabilizing early training through smaller learning rates.

Pretraining/Weight Initialization

Correct weight initialization is important for training deep neural networks.
[22] shows that the heuristically defined weight initialization of 𝑈 [− 1√

𝑛
, 1√
𝑛
]

for the weights and a zero initialization for the biases, where 𝑈 is the uniform
distribution and 𝑛 is the number of outputs in the previous layer, causes
convergence problems and poor generalization. Instead, they derive a weight
initialization designed to maintain approximate variance of the activation
values and the gradients for all the layers. The result, called Xavier initialization,
is to initialize weights such that their variance follows the rule:

Var(𝑊 𝑖) = 2
𝑛𝑖 + 𝑛𝑖+1

, (2.29)

where𝑊 𝑖 is any of the weights in layer 𝑖 and 𝑛𝑖 is the number of inputs to layer
𝑖. For instance, if one wants to use uniform distributions for the weights, then,
in order to maintain constant variances, the distribution should be:

𝑊 𝑖 ∼ 𝑈 [−
√︂

6
𝑛𝑖 + 𝑛𝑖+1

,

√︂
6

𝑛𝑖 + 𝑛𝑖+1
] . (2.30)

The weight initialization scheme they derived assumed a symmetric activation
function with a unit derivative, i.e., 𝑓 ′(0) = 1. This weight initialization scheme
is appropriate for neural networks where the layers use linear, sigmoid or tanh
activation functions.

[29] derives a weight initialization scheme for the ReLU activation function,
using the ideas of [22], that is, the activation values and gradients should have
constant variances across layers. Their weight initialization rule, called He
initialization, is for the ReLU and ReLU-like activation functions and states that
the variances of the weights𝑊 𝑖 in layer 𝑖 should follow:

Var(𝑊 𝑖) = 2
𝑛𝑖
. (2.31)

In [29], it is demonstrated that a 30-layer deep network using ReLU activation
functions fails to converge when initialized with the Xavier initialization. How-
ever, convergence is achievable and consistent for the network when using He

2.6 regularization 25

initialization. For a uniform distribution, the weight initialization scheme using
He initialization is given by:

𝑊 𝑖 ∼ 𝑈
[
−
√︂

6
𝑛𝑖
,

√︂
6
𝑛𝑖

]
. (2.32)

Weight initialization schemes with constant variances help optimization by
mitigating vanishing gradient problems [22, 29].

Another method of weight initialization is through pretrained weights. Using
pretrained weights is an instance of transfer learning, where model weights
trained on a general problem are repurposed for another [84]. In section 2.3, it
was mentioned that edge detection filters tend to be learned in the early layers
of CNNs. To leverage this, assume we have a CNN trained on one problem, and
now we want to solve another. Using the same architecture as before, we could
initialize the model with the already learned edge detection filters, instead
of starting with random weights. This approach requires only fine-tuning
the weights to the specific problem, rather than learning them from scratch.
Starting with these already learned features can prevent overfitting, especially
when dealing with smaller datasets, as the model is already initialized towards
more general features. One can use pretrained weights for some or all the
layers in the model.

Instead of repurposing the weights used for an entirely different problem, one
could pretrain weights by building shallow neural networks for the proposed
problem. This method, known as greedy supervised pretraining [4], involves
training a shallow neural network,𝐴, and then using the outputs of𝐴 as inputs
to another shallow neural network, 𝐵, during its training. This process can be
repeatedmultiple times, and at the end, all the disjoint shallow neural networks
can be combined and fine-tuned as the final step in the training process.

2.6 Regularization

[23] defines regularization as "anymodificationwemake to a learning algorithm
that is intended to reduce its generalization error but not its training error." Here,
generalization error is defined as the expected error for a new test example,
which is estimated by the empirical performance on the test set.

Regularization can be designed to encode prior knowledge, such as convolu-
tional filters in a CNN (utilizing local spatial information), and constrain the

26 chapter 2 theoretical background

neural network to define simpler models, which reduces its capacity1⁰. Ensem-
ble methods regularize by combining multiple models, which individually may
overfit, but when joined together, smooth out each other’s mistakes.

Some of the most common and widely used regularization techniques, which
are also used in YOLOv5, will be described next.

Choice of Batch Size

Smaller batch sizes can improve generalization error, with batch sizes as small
as 𝑛′ = 1, 2 possibly giving the best performance. Training with such small
batch sizes typically increases the amount of time11 needed for convergence
due to the smaller learning rate required to maintain the stability of the high
variance gradient approximation and the need for more steps [23, 55, 44].

A possible explanation for better generalization with smaller batches is that they
tend to converge to flatter minima, while larger batches tend towards sharp
minima [39]. The intuition here is that the loss in a flat region is insensitive
to small perturbations of its parameters, which is what happens when general
features are learned, whereas a small perturbation on a sharp minimum can
greatly increase the loss, potentially indicating overfitting.

Explicitly Modifying the Loss Function

Perhaps the easiest way to regularize a model is to express towards a simpler
model, which can be done by the loss function explicitly:

𝑱 (𝜽) = 𝑱 (𝜽) + 𝛽Ω(𝜽 ∗) . (2.33)

Here, we have modified the loss function by adding onto it a parameter norm
penalty, Ω(𝜽 ∗), where 𝜽 ∗ is a subset of 𝜽 , and 𝛽 ∈ [0,∞) is a hyperparameter
that weights the contribution of Ω to the loss. Large values of 𝛽 place more
emphasis on fulfilling the objective defined by Ω.

A common form of Ω is the Euclidean or 𝐿2 norm Ω(𝜽 ∗) = 1
2 | |𝜽

∗ | |22. The
𝐿2 norm parameter penalty is also known as weight decay and the gradient
descent update for 𝜽 ∗ with it can be shown to be:

𝜽 ∗ ← (1 − 𝜖𝛽)𝜽 ∗ − 𝜖∇𝜽 ∗ 𝑱 (𝜽 ∗). (2.34)

10. Capacity here refers informally to the breadth of functions the neural network can learn,
as well as how easily it will learn them. High capacity neural networks overfit easily.

11. Low batch sizes typically underutilize the parallel capacity of modern GPUs, leaving
compute resources unused which could have been used to speed up training.

2.6 regularization 27

For a single update, the 𝐿2 regularizer moves 𝜽 ∗ towards 0 by multiplying it
with the shrinking factor (1−𝜖𝛽) before applying the regular update. Over the
course of an entire training run, this slight modification serves to penalize large
weights, encouraging the model to maintain smaller weights, thus leading to
simpler models.

Also of note is 𝐿1 norm regularization, where Ω(𝜽 ∗) = | |𝜽 ∗ | |1 applies a sparse
preference to the weights, i.e., it tends to make some weights exactly 0. This
regularizer can prune away connections between neurons, leading to simpler
models.

Exponential Moving Average Parameters

Exponential Moving Averaging (EMA) of parameters is a general regularization
technique that can be used for inference on the validation set or testing set.
The technique involves keeping a moving average of the parameters during
training. More specifically, after each training step 𝑡 (or at specific intervals),
the EMA parameters 𝜽 𝑡 are updated using the current parameters 𝜽𝑡 of the
training model:

𝜽 𝑡 = 𝜖𝜽𝑡 + (1 − 𝜖)𝜽 𝑡−1, (2.35)

where 𝜖 is a hyperparameter determining the weighing of current parameters.
Values for 𝜖 are usually set close to 0, typically in the multiple-zeros range:
0.001, 0.0001, etc. Models using EMA parameters for inference often generalize
better to new data. The EMA model represent a more stable version of the
trained model, capturing its long term behavior rather than placing possibly
too much influence on the most recent data presented to the model (overfitting)
[36].

Dataset Augmentation

The most effective way to improve model performance is by using more data.
When additional data is not available, applying transformations to the current
dataset to artificially increase its size is a viable option. In fact, data augmen-
tation is an integral part of problems involving image data, as it consistently
improves performance [83]. The data augmentations should generally be sensi-
ble for the problem at hand. For instance, in a problem involving the detection
of boats, flipping the images horizontally is an obvious choice, but vertical
flipping might not be beneficial.

There are various strategies to implementing dataset augmentation to. One
approach is to apply different augmentations independently to the original

28 chapter 2 theoretical background

dataset. For instance, applying one augmentation, like horizontal flipping,
would double the dataset size. Adding a second, independent augmentation,
such as random cropping, to the original dataset and the flipped dataset
would quadruple the dataset size (original, flipped, cropped,cropped+flipped).
Similarly, a third independent augmentation would octuple the dataset.

An alternative approach involves randomly applying augmentations to the
selected images, where each augmentation has been assigned some particular
probability of being selected. This method can introduce a diverse range of
variations without the need for a combinatorial increase in the dataset size.
Additionally, this way of applying data augmentation can be applied to the
images comprising a batch during training itself. This removes the need to
store extra images, and instead only requires some more computation during
training.

Some typical augmentation techniques that might be considered when dealing
with image data are shown in Table 2.1.

Methods Description

Flipping Flip the image horizontally, vertically, or both.
Rotation Rotate the image at an angle.
Scaling Ratio Increase or reduce the image size.
Noise injection Add noise into the image.
Color space Change the image color channels.
Contrast Change the image contrast.
Sharpening Modify the image sharpness.
Translation Move the image horizontally, vertically, or both.
Cropping Crop a sub-region of the image.

Table 2.1: Table reproduced from [83]. Common data augmentation methods in image
processing.

Ensemble Methods

Ensemble methods involve training several different models separately for
a given problem and then having all the models cast a vote for the correct
prediction [19]. This kind of model averaging can be looked at as a "wisdom of
the crowd" approach, where often a few models will make occasional mistakes,
but rarely will everymodelmake the samemistake. In cases where somemodels
make mistakes, the rest of the models will compensate for it. Contrasting
this with a regular method, we see that if a mistake is made, it cannot be
averaged away by other models. The cases where every model makes the same
mistake are rare, making the ensemble approach much less varied than a single

2.6 regularization 29

model.

For a concrete example, consider 𝑛 regression models, each making an error 𝜖𝑖
on examples in the testing set, where 𝜖𝑖 is drawn from some multivariate distri-
bution with mean zero, variances of E(𝜖2𝑖) = 𝑏, and covariances of E(𝜖𝑖𝜖 𝑗) = 𝑣 .
If we average the predictions, the output of the ensemble of models will be
𝐴 = 1

𝑛

∑𝑛
𝑖=1 𝜖𝑖 . Next, the variance of the random variable 𝐴 is:

E

[(
1
𝑛

𝑛∑︁
𝑖=1

𝜖𝑖

)2]
=

1
𝑛2E

[𝑛∑︁
𝑖=1

(
𝜖2𝑖 +

∑︁
𝑗≠𝑖

𝜖𝑖𝜖 𝑗

)]
, (2.36)

=
1
𝑛
𝑏 + 𝑛 − 1

𝑛
𝑣. (2.37)

We see that if the errors have a correlation of 1, then 𝑏 = 𝑣 and the variance of
the averaged random variable is𝑏. In the case where the errors are independent
of each other, the correlation is 0, i.e., 𝑣 = 0, and the variance reduces to 1

𝑛
𝑏.

Therefore, the variance of the ensemble model is at least as low as any of the
individual models, and in the case where they are making independent errors,
the ensemble model has reduced variance.

In practice, by training neural networks with different architectures, random
initializations, random hyperparameters, random selection of minibatches, and
so on, we can induce enough variability so that the neural networks make quasi-
independent errors. The ensemble of many such models should, on average,
be better than any of its parts.

Ensemble methods serve as a way to trade extra computation and memory for
improved prediction accuracy and generalization capabilities.

Early Stopping

Large neural networks are capable of memorizing small datasets [87]. This
occurs when training for too long, resulting in the neural network losing its
ability to generalize. One can effectively monitor the generalization abilities of
the network by logging the performance of the neural network on a validation
set during the training process. Once the error of the model on the validation
set has increased for a certain number of epochs, we can say with high certainty
that the model is overfitting to the training dataset.

The early stopping algorithm halts training when the performance on the
validation set has not improved beyond its best point for 𝑝 number of epochs
(or iterations), where 𝑝 is a hyperparameter called the patience parameter.
Figure 2.4 shows an idealized plot of the training process and where early

30 chapter 2 theoretical background

stopping determines the best stopping point to be. The weights and biases of
the network at the "Stop training" point are saved and selected as the best
parameters.

Early stopping requires no modification of the underlying training process and
only adds a small penalty to the amount of computation and memory needed
— the error on the validation set needs to be periodically computed, and the
best parameters need to be periodically saved as well.

Figure 2.4: Idealized plot of how the error on the training and validation set might
evolve with the number of epochs.

Optimization Techniques as Regularization

Many of the techniques used to aid optimization can also be considered to
have a secondary function as regularization techniques. For instance, batch
normalization involves multiplying and subtracting quantities (the standard
deviation and mean) whose estimates fluctuate during training. These fluctu-
ating estimates introduce noise into the problem, forcing every layer to learn
to be more robust to significant variation in its input and, by extension, making
it more difficult to overfit.

In addition to batch normalization, the specific choice of skip connections,
activation functions, and pretrained weights can also provide regularizing
effects.

2.7 object detection 31

2.7 Object Detection

Object detection deals with how to detect instances of specific visual objects
in digital images. It has numerous applications such as detecting anomalies
in medical images, vision systems for autonomous vehicles, facial recognition
systems, and various fields of automated inspection, among others. In deep
learning, there are three ways of performing object detection: the first is
bounding box object detection; the second is semantic segmentation, where
each pixel in the image is classified into a class; and the third one is instance
segmentation, which is a combination of the preceding two. An example
illustrating the different cases is shown in Figure 2.5.

Figure 2.5: (a) The input image to some neural network object detection method.
(b) Bounding box object detection methods produce bounding boxes,
an objectness score, and a class for each individual object. (c) Seman-
tic segmentation involves classifying each pixel in the image, losing the
distinction between different objects. (d) Instance segmentation involves
correct classification of the pixels as well as maintaining the distinctions
between objects, combining the methods in (b) and (c).

32 chapter 2 theoretical background

2.7.1 Approaches to Object Detection

There are three broad methodologies when it comes to object detection: one-
stage methods, two-stage methods, and transformer-based methods. Briefly,
some early important work on one-stage and two-stage methods will be pre-
sented before touching on transformer-based object detection.

Two-Stage Methods

The first significant breakthrough featuring the use of a neural network for
object detection was a region proposal method combined with a CNN for
feature extraction. The method, called R-CNN, performed significantly better
on the ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013)
[13] than its contemporaries. R-CNN first proposes Regions of Interest (RoI) in
the input image using selective search [76], then these RoIs are rescaled and
fed into a CNN for feature extraction, and finally, these features are input into
linear Support Vector Machines (SVM) trained on individual classes. R-CNN is
a slow method as it can produce several thousand RoIs, each of which has to
be processed by the CNN; furthermore, each output from the CNN has to be
processed by a number of SVMs equal to the number of classes.

In 2015, Fast R-CNN [21] was released, boasting over 200 times faster inference
than R-CNN while also delivering significantly better performance. Here, R-
CNN is improved by allowing input images of any size, made possible by the
fact that the RoIs (still computed by selective search) are now not on the input
image but are projected onto the last feature map of the CNN used for feature
extraction. This reduces the number of forward passes needed for the CNN from
several thousand to just one. This projection of features is possible because of
the translational equivariance property of CNNs discussed in Section 2.3. The
RoIs are then resized using a special case of the Spatial Pyramid Pooling layer
(SPP) [31], called RoIPool, before being input into a FCNN that outputs class
probabilities and also outputs fine-tuned coordinates of the RoIs. Although
the primary purpose of the fine-tuning of the coordinates is more accurate
localization, it also opens up a secondary purpose: the recentered RoI can be
re-fed into the FCNN, which allows it to classify it again with potentially higher
accuracy.

Later that same year, Faster R-CNN [62] was introduced. The main contribution
was the creation of a neural network-based region proposal method called
Region Proposal Networks (RPN) to replace the selective search used in Fast
R-CNN. The RPN takes as its input the last feature map of the feature-extracting
CNN and learns to predict RoIs on it. The RPN uses a set of rectangles, called
anchors, with several predefined scales and aspect ratios as a means of injecting

2.7 object detection 33

prior information. For instance, if the object detection problem involves human
detection, then at least one of the anchor boxes should be taller than it is wide
to easily fit around a standing human. The RPN can be trained with a CNN
independently of the Fast R-CNN or it can be trained jointly [62].

In 2017, another important breakthrough in object detection happened, which
was the the Feature Pyramid Network (FPN) [46]. This new feature introduces
a top-down pyramid structure with lateral (skip) connections from earlier fea-
ture maps to help build high-level semantic feature maps at different scales.
The feature pyramid allows the simultaneous prediction of objects at several
different scales, typically three. This multi scale prediction scheme helps lo-
calization of smaller objects. The addition of the feature pyramid to a Faster
R-CNN architecture allowed for state-of-the-art performance on Microsofts
COCO (Common Objects in Context) dataset [48].

Associated with each RoI prediction from the RPN is a value called the ’object-
ness’ score. This score is a value between 0 and 1, which we can interpret as
the RPN’s confidence that the RoI is localized over an object. The objectness
score is central to many object detection methods, such as YOLOv5, and will
become a common term in the coming chapters.

All the preceding methods are known as two-stage methods because there
is a clear two-step process: first, the RPN proposes potential RoIs with an
objectness score; second, the RoIs are classified and given refined bounding
box coordinates. Although two-stage models are accurate, they can be very
slow, primarily due to the need to wait for the RPN to propose RoIs and the
need to evaluate the RoIs individually (although they can all be evaluated in
parallel with a powerful enough GPU).

One-stage Methods

In contrast to two-stage methods, which are inherently slow due to their
sequential nature, one-stage methods process everything in a single forward
pass. That is, they propose RoIs, assign an objectness score, and classify them
all in one step.

The first one-stage method developed was the YOLO (You Only Look Once)
method in 2015 [61]. Here, instead of proposing regions and objectness scores,
and then classifying them, the regions of interest are simultaneously predicted
with their objectness and class scores. The method can use any CNN as a
backbone12 for feature extraction, such as the well-known ResNets [45] or

12. For some object detection methods there is a clear three part system. The backbone is one

34 chapter 2 theoretical background

AlexNet [42]. To adapt these CNNs to YOLO methods, a final convolutional
layer, termed the YOLO head, outputting an 𝑆 × 𝑆 × (𝐵 ∗ 5 + 𝐶) tensor, is
appended. Here, 𝑆 is the number of grid cells one wants to discretize the input
image into, 𝐵 is the number of bounding boxes associated with each grid cell,
multiplied by 5 to account for the five coordinates associated with a bounding
box: width, height, 𝑥 and 𝑦 coordinates, and an objectness score between 0
and 1 quantifying the likelihood of an object being within the bounding box.
𝐶 is the number of classes predicted for each grid cell. Due to the one-stage
nature of the method, only a single loss function is needed, where the terms
related to bounding box regression, objectness, and classification are combined
through a sum. This is in contrast to two-stage methods, where sometimes the
RPN and the CNN predicting on the RoIs from the RPN are trained disjointly,
meaning two wholly separate loss functions.

Another interesting one-stage method from 2015 was the Single Shot Multi-
Box Detector (SSD) [50], which employs multi-reference and multi-resolution
detection techniques. These distinct techniques end up improving detection
accuracy and speed over YOLO. Unlike YOLO, which predicts only on its last
layer, SSD computes the class and localization of objects at different scales on
various layers of the network. This technique of computing outputs on different
scales is later adopted by newer versions of YOLO, such as YOLOv5.

Transformer-based Methods

Transformer-based object detection methods are not easily classified as either
one-stage or two-stage methods.

The paper "Attention Is All You Need," coined as one of the most influential
papers in deep learning, was the first to introduce the transformer architecture
[77]. Originally designed for machine translation, the transformer’s encoder-
decoder structure, featuring an attention-based mechanism, has proven effec-
tive for a wide range of problems beyond natural language processing, including
image classification and object detection.

In 2020, state-of-the-art performance using transformers for image classification
was first achieved [15]. They showed that when pretrained with increasingly
larger datasets (in the end more than 300 million examples), the performance
of transformers improves, eventually surpassing that of traditional CNNs. The
performance discrepancies at lesser amounts of data can be explained by
noting that transformers lack the inductive biases inherent to CNNs, such as
equivariance to translation and locality. These inductive biases are helpful

the three parts, which serves to compute useful features for the problem at hand.

2.7 object detection 35

for smaller amounts of data, and their omission causes transformers to not
generalize well on small datasets.

The first object DEtection TRansformer (DETR) was also introduced in 2020
and achieved competitive results on the COCO dataset. As of late 2023, DETRs
obtain the best results on the COCO dataset and have demonstrated beating
different YOLO versions in speed and accuracy [53].

2.7.2 YOLOv1 to YOLOv4

Multiple incremental improvements were made to YOLO before YOLOv5 was
created. Here, we will briefly go through some important changes in the differ-
ent versions, which end up being utilized in YOLOv5. Details will be expanded
upon when the YOLOv5 architecture is discussed in the next chapter.

In the 2017 paper on YOLOv2 [59], perhaps the most significantmodification was
the introduction of anchor boxes, as previously seen in Faster R-CNN [62]. As
mentioned, this allows for the injection of prior information via the shapes and
sizes of the anchor boxes, enhancing performance. Additional improvements to
the backbone CNN feature extractor were made. These modifications include
converting the CNN to be fully convolutional, which allows for the processing
of input images of any scale and consequently enables multi-scale training.
Multi-scale training is an essential regularization technique that randomly
scales the input images during training. In YOLOv5, we implement multi-scale
training by scaling images by a factor ranging from 0.5 to 1.5 times their
normal aspect ratio. Batch normalization throughout the network is another
new feature in the updated CNN. Lastly, there is a change in the output. The
class output previously used a categorical distribution over all classes but has
been changed to a binary categorical distribution for the individual classes.
This can particularly help in cases where multiple classes should have high
class scores. For instance, if we have a dog class and a dwarf schnauzer class,
then it is reasonable to put high class score on both of these. In the case where
we use a categorical distribution over all classes, then it is usually the case that
the model will learn to supress the other classes when predicting its prefered
class.

In 2018, YOLOv3 [60] was released with some incremental improvements. As
before, a superior backbone CNN is used, as measured by its performance on
ImageNet. The performance of the backbone CNN architecture on ImageNet
is important because training for classification on ImageNet is used as a pre-
training step before the YOLO head is added for fine tuning to object detection.
This pretraining setup is by many object detection methods, such as the next
version of YOLO to be presented. To improve the detection of medium and

36 chapter 2 theoretical background

smaller objects, which had been a weak point for YOLO, a FPN structure is
included. Also, a modified SPP block in the final layer of the CNN is used to
increase the receptive field, significantly enhancing performance, while barely
increasing the computational load. Finally, the loss function used has been
modified. Previously, MSE, as defined in Section 2.4, was used for the class loss,
but it has been replaced by the cross-entropy loss. As we noted in Section 2.4,
using the MSE for no other reason than it being a simple loss function, is not a
good idea. The fact that MSE is unsuited for object detection was exemplified
by the performance boost in YOLOv3 when swapping to the cross-entropy
loss.

YOLOv1, YOLOv2, and YOLOv3 were all created by the same authors. In 2020,
YOLOv4 [5] was released. Although the authors are different, they adhered to
the same naming protocol, which has since been the norm for all subsequent
significant improvements of YOLO based architectrues on the COCO dataset.
Notable changes in YOLOv4 include a more effective CNN backbone, the
first introduction of the popular mosaic data augmentation technique, the
transition from MSE to the Complete Intersection over Union (CIoU) [89] loss
for bounding box prediction, and finally, the modification of the FPN structure
with bottom-up connections to replicate the Path Aggregation Network (PANet)
[49]feature aggregator. The new PANet structure, like the FPN, allows multi-
scale predictions and is an important structure used in YOLOv5, as it helps in
detecting objects of varying sizes.

2.7.3 Non-maximum Suppression

Due to the often several thousand bounding box predictions that different
object detection networks output, many boxes will detect the same object with
varying accuracy. To clean up the predictions, the post-processing technique
of Non-Maximum Suppression (NMS) [74] or some variation on it, like soft
NMS [6] is commonly used. Additionally, the post-processing technique of
Confluence represents another post-processing technique, which can possibly
be a more robust alternative to NMS or its variations [67].

Before providing a brief description of the NMS algorithm wemust touch on the
concept of Intersection over Union (IoU). IoU measures the extent of overlap
between two shapes and is a fundamental concept in object detection. It is
calculated as the ratio of the intersection of the two shapes to the union of
the two shapes. Figure 2.6a illustrates visually how one computes IoU, and
provides three examples of possible IoU values between objects.

The NMS algorithm begins by filtering out all boxes where the objectness score
is below a certain threshold. Next, the bounding boxes are sorted by their

2.7 object detection 37

associated class score in descending order, and boxes with an Intersection over
Union (IoU) greater than a specified threshold with the box having the highest
class score are removed. The aforementioned pruning of boxes is done in a
class wise manner. Finally, this process is recursively applied to the remaining
bounding boxes until no boxes remain. Figure 2.6b succinctly illustrates how
NMS works in practice.

(a) Illustration of IoU.

(b) Illustration of NMS.

Figure 2.6: (a) Demonstration of how to calculate IoU with three example calculations.
(b) Example of how NMS operates to remove redundant bounding boxes.

38 chapter 2 theoretical background

2.7.4 From Bounding Box Object Detection to Instance
Segmentation

All the previously mentioned methods have been focused on bounding box
object detection. To adapt them to the more complex task of instance segmen-
tation, some modifications are necessary.

In the case of two-stage methods like Faster R-CNN, the changes are rela-
tively straightforward. Mask R-CNN [30] is the first successful example of
adapting Faster R-CNN for instance segmentation. Due to the increased need
for more precise localization, a new pooling method, called RoIAlign, is used.
This method preserves the spatial positions of the features much more effec-
tively than RoIPool, which is particularly important for tasks like instance
segmentation, where keeping the exact spatial layout is crucial. Additionally,
a branch is added that takes the RoI aligned features as input, in parallel
with the existing branches for classification and bounding box regression. This
new branch, which utilize a Fully Convolutional Network (FCN) [51], upscales
the RoIs and converts them into binary pixel masks. Outputting the binary
masks along with the regular output of bounding boxes and classes turns the
two-stage architecture of Faster R-CNN from object detection into instance
segmentation.

Two years after Mask R-CNN, in 2019, YOLACT (You Only Look at Coefficients)
[7] emerged as the first successful example of real-time instance segmenta-
tion, achieving state-of-the-art performance while keeping more than 30 fps.
YOLACT introduces a novelmodification to the conventional architectures found
in YOLO models. Briefly, the modifications made include adding a "Protonet",
which takes as input highest resolution feature maps from a PANet structure
to capture detailed object information. This Protonet effectively acts as an
FCN with deconvolutional [51] layers for upscaling and outputs 𝑘 different
feature maps in the final layer, called "prototypes". These prototypes are key to
constructing detailed instance-specific segmentation masks. In addition to the
regular YOLO head, which predicts a bounding box, objectness score, and class
scores for each anchor, 𝑘 mask scores are also predicted. To predict masks for
the objects that survive NMS, a linear combination of the prototypes is taken,
using the predicted mask scores as coefficients. Then, the predicted bounding
boxes, which are each associated with a set of 𝑘 mask scores, are used to crop
out a linear combination of prototypes. These cropped areas are subsequently
thresholded13 to produce a binary mask of pixels. The architecture used in
YOLACT is illustrated in Figure 2.7.

13. By "thresholded", we mean setting all values below a certain threshold to 0, and all values
above the threshold to 1.

2.7 object detection 39

Figure 2.7: Caption and image reproduced from [7]. YOLACT Architecture: Blue/yellow indicates low/high values in the
prototypes, gray nodes indicate functions that are not trained, and 𝑘 = 4 in this example. We base this architecture
off of RetinaNet [47] using ResNet-101+FPN.

3
Method
3.1 Why YOLOv5

Choosing a model for an instance segmentation problem is hard, with multiple
factors influencing the final selection. Perhaps the two most important factors
are inference speed and accuracy, the latter often gauged using general datasets
such the COCO dataset. Ideally, every model architecture and every possible
hyperparameter configuration would be tested to find the optimal setup for the
specific problem. However, this approach is impractical, though testing a few
different architectures and approaches is feasible. Thus, some criteria must be
established to help the prioritization of models.

The three main criteria for model selection are speed, accuracy, and ease of
implementation and documentation. Although speed is not a critical require-
ment for the automated flare detection program at present, it is anticipated to
be important in the future. Hence, two-stage methods like Faster R-CNN are
deprioritized due to their typically slower inference times. Similarly, we also
reject transformer-based methods due to their data hungry nature, which we
believe we can not accommodate at present time. As a result, we are left with
considering one-stage methods.

Among one-stage methods, the YOLO series stands out. YOLO models are
known for their balance of high accuracy and fast inference times. Additionally,
their conceptual simplicity makes for easier implementation and debugging.
The choice narrows down to the newer YOLO models: YOLOv5 (2020) [36],

41

42 chapter 3 method

YOLOv6 (2022) [43], YOLOv7 (2022) [79], and YOLOv8 (2023) [37]. While
YOLOv6 and YOLOv7 have accompanying papers, YOLOv5 and YOLOv8 do not.
However, despite lacking formal papers, they have active GitHub repositories
providing plenty of information. This is particularly true for YOLOv5, which,
as the oldest, has the most extensive repository, a large community, and nu-
merous contributors. The vast amount of community questions and answers
surrounding the details of YOLOv5 also helps in understanding implementation
details. Furthermore, YOLOv5 offers five pretrained models, along with some
code partially implementing model ensembling. This is considered a big plus
as it is of interest to explore how ensemble methods perform on the problem.
Therefore, with the preceding in mind, YOLOv5 is selected as the model of
choice for this project.

The performance on the COCO dataset is the benchmark of choice for YOLO
models. While the performance on other datasets is interesting, optimizing
performance on the COCO dataset is seen as most crucial. Consequently, each
new iteration of YOLO typically boasts improved performance on the COCO
dataset compared to its predecessors. Although a model’s performance on the
COCO dataset is a strong indicator of its general capabilities, it is not always
true that a model performing better on the COCO dataset will also outperform
on other datasets. One possible way to gauge a model’s general capabilities is
to test its performance across various datasets and average the results. This is
the idea behind the the Roboflow-100 [11] dataset. Curated from over 90,000
public datasets with 60 million public images on the Roboflow Universe web
application [17], Roboflow-100 consists of 100 unique datasets across 7 imagery
domains, totaling 224,714 images and 805 class labels. This dataset is far more
diverse than the COCO dataset, which includes only 80 classes. The paper
presenting the dataset also compares the average performance of YOLOv5 and
YOLOv7 on it [11] . Interestingly, YOLOv5 ends up having, on average, higher
accuracy than YOLOv7. This shows that performance discrepancies on the
COCO dataset do not necessarily hold in general, and further solidifies the
choice of YOLOv5 as the model of choice.

3.2 YOLOv5

3.2.1 YOLOv5 Specifics

Model Architecture

The model architecture of YOLOv5 does not depart significantly from that of
YOLOv4. The architecture is built using a backbone, neck, and head, which is
a common strategy in building object detectors. With this three part system,

3.2 yolov5 43

one can independently swap out any of the parts to create new models.

The backbone portion serves as a feature extractor. The earlier layers of the
backbone contain feature maps with rich spatial information and higher reso-
lution, while the later layers have lower resolution and are high in semantic
information. The neck portion uses a modified PANnet structure and takes as
input feature maps from varying layers, which helps to gather both high-level
semantic and high-resolution spatially rich features. The neck structure not
only refines the features before they are fed into the head part, but also provides
shorter gradient paths for the earlier layers, which helps optimization. Finally,
the head part processes the neck output and applies a single convolution oper-
ation with no activation function to predict the final tensors containing values
that represent the bounding boxes, classes, and objectness scores. Assuming
the input image is of size 640× 640, the output from the head(s) will be three
tensors with dimensions of 80 × 80, 40 × 40, and 20 × 20. To modify YOLOv5
for an instance segmentation method, we incorporate the changes proposed
in YOLACT, as illustrated in Figure 2.7. Specifically, we add a Protonet to the
feature map in the neck with the highest resolution and allow the heads to
predict the mask scores associated with the Prototype feature maps.

The three parts of YOLOv5 are composed of smaller blocks of operations. The
blocks used in YOLOv5 are the Conv, C3, and SPPF blocks. The interaction
between the blocks and the three part system is illustrated in Figure 3.1. Also
shown in the figure is the Concat block, meaning concatenation of feature
maps, and the Upsample block, which performs a 2x upsampling using near-
est neighbor interpolation. Throughout the network, YOLOv5 uses the SiLU
activation function and before every convolutional operation in the model, the
image is padded with (𝑛 − 1)/2 zeros, where 𝑛 is the filter size used.

The blocks used are detailed as follows:

• Conv Block: The Conv block consists of a convolutional operation fol-
lowed by batch normalization and SiLU activation. Each Conv block in
Figure 3.1 followed by a downward arrow signifies that the convolutional
operation is done using filter sizes of 3 × 3 with strides of 21. This holds
for every Conv block except for the very first one in the model, which
uses a 6× 6 filter. Each Conv block followed by an upward arrow is done
using 1 × 1 convolutions with a stride of 1.

• C3 Block: The C3 blocks use cross-stage partial connections [80], which

1. Stride refers to the step size used when applying the filter over an image. A stride of 2
means that the filter is applied to every other pixel of the image, effectively reducing the
width and height of the output by a factor of 2.

44 chapter 3 method

reduce the computational load while providing a regularizing effect. The
C3 block involves taking half the input feature maps and passing them
through a Conv block, while the other half is processed multiple times by
either of two sub-blocks: BottleNeck 1 or BottleNeck 2. The BottleNeck
blocks are constructed using the Conv blocks, with the only difference
between the two sub-blocks being the inclusion of a skip connection
branch. Figure 3.2 illustrates the sub-blocks and their interaction within
the C3 block.

• SPPF Block: The SPPF block uses a modified version of the SPP layer
[31]. Briefly, the SPPF block applies multiple max pooling operations
[42] to increase the receptive field of the final neurons in the backbone.
This block adds very little extra computation needed while increasing
accuracy. Figure 3.2 illustrates the composition of the SPPF block.

The YOLOv5 architecture can be scaled up or down using Figure 3.1 as a
reference. For instance, scaling up the backbone is possible by using more
BottleNeck blocks in the C3 blocks. Additionally, one can add more C3 and
Conv blocks throughout the network, increase the number of connections from
the backbone to the neck, add more output heads, and so on. Finally, the
network can be scaled by varying the number of convolutional filters in a given
layer.

Model Output

The YOLOv5 heads output tensors of shape 𝑛𝑖 × 𝑛𝑖 × 𝑎𝑖 , where each element
contains a list of 5+𝑛𝑐𝑙𝑠 +𝑘 values. Here, 𝑖 is the tensor index (𝑖 = 1, 2, 3), 𝑎𝑖 is
the number of predefined anchor boxes for tensor 𝑖, 𝑛𝑐𝑙𝑠 is the total number of
classes, 𝑘 is the number of prototypes, and 𝑛𝑖 ∈ [𝑛/32, 𝑛/16, 𝑛/8], where 𝑛 is
the width and height of the input image. For the models used in this problem,
we have 𝑛𝑐𝑙𝑠 = 1, 𝑘 = 32, 𝑎𝑖 = 3 and 𝑛 = 320. Note that even though the input
images in this problem are of width 320 and height 240, they are zero-padded
to be of shape 320 × 320 during training. With these settings, the YOLOv5
model will outputs 25,200 bounding boxes and segmentation masks, with most
of these predictions being pruned away by NMS.

Each value in the predicted lists must go through a final set of functions before
they are meaningful. Focusing on a single list in the tensor, four of the values,
𝑡𝑥 , 𝑡𝑦, 𝑡𝑤 , and 𝑡ℎ, are converted to 𝑏𝑥 , 𝑏𝑦, 𝑏𝑤 , and 𝑏ℎ, where the values now
represent the center (𝑥,𝑦) coordinates, width, and height of a bounding box
via the equations:

𝑏𝑥 = (2𝜎 (𝑡𝑥) − 0.5) + 𝑐𝑥 (3.1)

3.2 yolov5 45

Figure 3.1: Illustration of the YOLOv5 architecture.

𝑏𝑦 = (2𝜎 (𝑡𝑦) − 0.5) + 𝑐𝑦 (3.2)

𝑏𝑤 = 4𝑝𝑤𝜎 (𝑡𝑤)2 (3.3)

𝑏ℎ = 4𝑝ℎ𝜎 (𝑡ℎ)2. (3.4)

Here, 𝜎 is the sigmoid function, (𝑐𝑥 , 𝑐𝑦) represents a pixel position on the
original image mapped to the list, and (𝑝𝑤, 𝑝ℎ) are the width and height of
the predefined anchor box mapped to the list. From this point forward, we
occasionally refer to the predefined anchor boxes as Anchor Templates (AT).
Table 3.1 shows the width and height of all the anchor boxes for the 3 output
tensors. The bounding box output is illustrated in Figure 3.3. In the illustration,

46 chapter 3 method

(a) BottleNeck 1 block, used in the C3
blocks in the backbone portion of
YOLOv5.

(b) BottleNeck 2 block, used in the
C3 blocks in the neck portion of
YOLOv5.

(c) SPPF block, used in the C3 blocks in the backbone portion of
YOLOv5.

(d) C3 block with BottleNeck 1, used in the backbone
portion.

Figure 3.2: Images reproduced from [36]. The blocks take tensors of size ℎ ×𝑤 × 𝑐 as input. In the illustrations, 𝑘, 𝑠,
and 𝑝 stand for kernel (convolutional filter), stride, and (zero) padding, respectively. For example, the tuple
[𝑘3, 𝑠1, 𝑝1, 𝑐512] indicates that the convolution+batch normalization+SiLU operation uses filter sizes of
3 × 3 with a stride of 1 and zero padding size of 1, and the number of output channels is 512.

we assume that each side of the grid cell is of length 1 and that the point
(0, 0) is in the top-left corner. Note that the equations used in Figure 3.3 are
different from those defined here. The equations used here allow the center
of the predicted bounding box to hit the center of all the adjacent grid cells.
Additionally, the width and height of the predicted bounding boxes are bounded
from above to be 4 times the size of the predefined anchor box. In previous
versions of YOLO, the predicted size of the bounding box was not bounded,
which occasionally led to runaway gradients, instabilities, NaN (Not a Number)

3.2 yolov5 47

valued loss functions, and even failure to converge.

Anchor box 1 Anchor box 2 Anchor box 3
Tensor/head 1 (116, 90) (156, 198) (373, 326)
Tensor/head 2 (30, 61) (62, 45) (59, 119)
Tensor/head 3 (10, 13) (16, 30) (33, 23)

Table 3.1: The width and height in terms of pixels of the anchor box templates used.
Each tensor/head has 3 anchors associated with it.

Figure 3.3: Image and caption reproduced from [59]. Assume that each grid cell has
an area of 1 and note how the equations for𝑏𝑥 , 𝑏𝑦, 𝑏𝑤 , and𝑏ℎ have changed
from those in equations (3.1) to (3.4). Bounding boxes with dimension
priors and location prediction. We predict the width and height of the
box as offsets from cluster centroids. We predict the center coordinates
of the box relative to the location of filter application using a sigmoid
function.

The values in the list corresponding to the objectness and class scores are fed
through the sigmoid function to be bounded between 0 and 1. Finally, the 32
mask scores associated with the prototypes are fed through the tanh function
to be bounded between -1 and 1. This approach allows the model to learn to
subtract or add specific ratios of the prototype feature maps more easily, a
feature essential for learning to produce the binary masks associated with a
bounding box, which is harder than predicting the bounding box itself.

48 chapter 3 method

Assigning Correct Ground Truths

How ground truth objects are assigned to the outputs of the model is critical for
training efficiency and model accuracy. YOLOv5 differs from previous iterations
of YOLO in that it can assign 3 times as many anchor boxes to the same ground
truth. This change is facilitated by the fact that the center coordinates of the
predicted bounding box in equations (3.1) and (3.2) range from (𝑐𝑥 , 𝑐𝑦) ±
(1.5, 1.5), whereas in previous YOLO models, the range was (𝑐𝑥 , 𝑐𝑦) ± (1, 1).
The extra ±0.5 means that the center of predicted bounding boxes can reach
the center of all adjacent grid cells, instead of just their respective grid cell
boundaries.

Ground truth objects are assigned to anchor templates according to the follow-
ing equations:

𝑟𝑤 = 𝑤𝑔𝑡/𝑤𝑎𝑡 (3.5)

𝑟ℎ = ℎ𝑔𝑡/ℎ𝑎𝑡 (3.6)

𝑟𝑚𝑎𝑥𝑤 = max(𝑟𝑤, 1/𝑟𝑤) (3.7)

𝑟𝑚𝑎𝑥
ℎ

= max(𝑟ℎ, 1/𝑟ℎ) (3.8)

𝑟𝑚𝑎𝑥 = max(𝑟𝑚𝑎𝑥𝑤 , 𝑟𝑚𝑎𝑥
ℎ
) (3.9)

𝑟𝑚𝑎𝑥 < anchor𝑡 = 4. (3.10)

Here, 𝑤𝑔𝑡 , ℎ𝑔𝑡 ,𝑤𝑎𝑡 , and ℎ𝑎𝑡 represent the width and height of the ground
truth boxes and anchor templates, respectively. Thus, an anchor template is
considered a match for a ground truth box if its width and height are each no
more than 4 times and no less than 0.25 of the width and height of the ground
truth box. This is illustrated in Figure 3.4. YOLOv5 allows the assignment
of three different grid cells, each with multiple anchor templates, to a single
ground truth object. The assignment is based on which quadrant of the grid
cell the center of the ground truth bounding box lands in, as illustrated in
Figure 3.5.

Loss Function

The total loss function is the sum of the individual losses associated with
the class, bounding box, objectness, and segmentation mask predictions. If a
specific anchor template is assigned to a ground truth object, then the class,
bounding box, objectness, and segmentation mask predictions associated with
that anchor will contribute to the loss. In cases where a specific anchor template
is not assigned to a ground truth object, only the objectness score will contribute
to the total loss.

3.2 yolov5 49

Figure 3.4: Image reproduced from [36]. Illustration of how ground truth objects are assigned to anchor templates
based on the ratios of height and width.

More specifically, the losses associated with predicted class scores, objectness
scores, and segmentation masks use the Binary Cross-Entropy (BCE) loss:

BCE(𝑝,𝑦) = −𝛿
[
𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)

]
. (3.11)

Here, 𝑝 is a predicted probability, 𝑦 is the ground truth label, and 𝛿 takes on a
value of either 0 or 1, depending on whether the anchor template was assigned
to a ground truth. For the segmentation loss, we crop the predicted and ground
truth segmentation masks based on the ground truth bounding box and then
apply the BCE loss per pixel between the remaining pixels. The labels 𝑦 in
this case are either 0 or 1, depending on the pixel values in the binary ground
truth mask. In cases where the anchor template is not assigned to a ground
truth object, we set 𝑦 = 0 and 𝛿 = 1 for the associated objectness score. The
different cases are given in Table 3.2.

The loss associated with an assigned predicted bounding box is given by the
CIoU loss:

CIoU = (1 − IoU) +
𝑞2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣. (3.12)

Here, IoU is the intersection over union between the predicted bounding box
𝑏 and the ground truth box 𝑏𝑔𝑡 , 𝑞(𝑏,𝑏𝑔𝑡) is the Euclidean distance between
the box centers, and 𝑐 is the diagonal length of the smallest box that can cover
both 𝑏 and 𝑏𝑔𝑡 . The last term in the CIoU loss, 𝑣 , measures the consistency of

50 chapter 3 method

(a) Anchor templates 2 and 3 from 3 different grids are assigned to one ground truth object. Thus, 6 anchor
templates in total are associated with this ground truth object.

(b) Each ground truth object gets assigned to 3 grid cells, except in the case where the center of the ground
truth object is perfectly in the center of a grid cell, in which case only that one grid cell is assigned to the
ground truth object.

Figure 3.5: Images (a) and (b) reproduced from [36]. Illustration on how ground truth objects are assigned to anchor templates during training.

aspect ratios:

𝑣 =
4
𝜋2

(
arctan

𝑤𝑔𝑡

ℎ𝑔𝑡
− arctan

𝑤

ℎ

)2
, (3.13)

3.2 yolov5 51

Type of Output Assigned Not Assigned
y 𝛿 y 𝛿

Class Score 1 1 0 or 1 0
Objectness Score IoU or 1 1 0 1

Segmentation Mask Pixels 1 1 0 or 1 0

Table 3.2: The different ground truth labels the outputs can have based on whether
they were assigned to a ground truth object. For the objectness scores, we
use either the IoU or 1 as the label, depending on how we want to train the
model. IoU is a dynamic label that takes on the value of the IoU between
the predicted bounding box and the ground truth bounding box.

where (𝑤𝑔𝑡 , ℎ𝑔𝑡) and (𝑤,ℎ) are the width and height of the ground truth
and predicted bounding box, respectively. The trade-off parameter 𝛼 is given
by:

𝛼 =
𝑣

(1 − IoU) + 𝑣 . (3.14)

The first term in equation (3.12) trains the model to reduce the overlap area, the
second term trains the model to reduce the distance between box centers, and
the last term, 𝛼𝑣 , trains the model to maintain correct aspect ratios between
boxes.

Now, for update iteration 𝑖 with some batch size 𝑠, the different loss terms can
be written as sums over the number of times a type of output received a ground
truth assignment:

Loss𝑐𝑙𝑠 (𝑖) =
∑︁
𝑖1

𝛼𝑖1BCE𝑐𝑙𝑠 (𝑝𝑖1, 𝑦𝑖1), (3.15)

Loss𝑜 (𝑖) =
∑︁
𝑖2

𝛼𝑖2BCE𝑜 (𝑝𝑖2, 𝑦𝑖2), (3.16)

Loss𝑚𝑎𝑠𝑘 (𝑖) =
∑︁
𝑖3

𝛼𝑖3BCE𝑚𝑎𝑠𝑘 (𝑝𝑖3, 𝑦𝑖3), (3.17)

Loss𝑏𝑜𝑥 (𝑖) =
∑︁
𝑖4

𝛼𝑖4CIoU𝑏𝑜𝑥 (𝑖4). (3.18)

The weights [𝛼𝑖1, 𝛼𝑖2, 𝛼𝑖3, 𝛼𝑖4] are computed based on the batch size, the number
of terms in the respective sum, which head computes the output, and a set of
constants derived empirically on the COCO dataset. The weights are crucial
as they determine the relative influence between the four objectives defined
by the loss terms. By increasing the weight of a loss term, the model tends to
place extra emphasis on learning how to decrease it. If the weight on a loss
term becomes too great, the model may neglect learning the objectives set out
by the rest of the loss terms in favor of decreasing it. Because of the numerous

52 chapter 3 method

ways the weights can change, they will not be elaborated further on, but details
can be found in the YOLOv5 code repository [36].

Finally, the full loss for update iteration 𝑖 is given by:

Loss(𝑖) = Loss𝑐𝑙𝑠 (𝑖) + Loss𝑜 (𝑖) + Loss𝑚𝑎𝑠𝑘 (𝑖) + Loss𝑏𝑜𝑥 (𝑖). (3.19)

3.2.2 Training

All models are trained using the default hyperparameter setup and training
scheme defined in the YOLOv5 repository [36]. The only hyperparameters
that have been changed are the epoch number, which influences training by
affecting the learning rate, and the batch size. The numbers of epochs and
batch sizes used will be presented alongside the performance of the models in
the next chapter.

During training, an exponential moving average of the parameters is kept,
which will be used for inference after training is complete. Multi-scale training
is used as a regularization technique. This technique involves randomly scaling
the training images with bilinear interpolation to be within a range of 0.5 to 1.5
times the original image size. The different scales are drawn from a uniform
distribution. Early stopping is implemented with a patience parameter 𝑝 = 100
epochs.

The optimizer used is SGD with Nesterov momentum of 0.937. The learning
rate is set according to the linear schedule scheme in equation (2.27) with
(𝜖0, 𝜖𝜏) = (0.01, 0.0001), and where 𝜏 is set to be the epoch number. The loss
is modified as in equation (2.33) by adding an 𝐿2 norm weight decay term
to the final loss. Weight decay is applied with 𝛽 = 0.0005 to all parameters
in the network except for those associated with batch normalization and the
bias terms. A gradual warm-up schedule is used for every update iteration
until 3 epochs are completed. This warm-up scheduling is done using linear
interpolation between 0.1 and 0.01 for the bias term learning rate and between
0 and 0.01 for the learning rate of other parameters. Additionally, momentum
is warmed up from 0.8 to 0.937, also using linear interpolation.

As image examples are drawn into batches during training, there is a chance
that augmentation techniques will be applied to them. The possible augmenta-
tions include changes to image hue, saturation, and value (HSV modifications);
image translation; horizontal flipping; changes to image scale; image blurring;
converting the image to grayscale; CLAHE [68]; and mosaic data augmentation
[5]. Mosaic data augmentation involves selecting 4 images at random, resizing

3.2 yolov5 53

and/or cropping them before combining them into a single image. One of
the benefits of mosaic augmentation is that it reduces the variance in batch
normalization statistics due to computing the statistics on 4 different images
each time (normalization is done per feature map in CNNs) [5]. The different
probabilities associated with the data augmentation techniques are given in
Table 3.3. The intensities of each data augmentation are set to the default
values and can be found in [36]. An example of a batch of training examples
after adding data augmentation is shown in Figure 3.6.

Augmentation Probability
Hue change 0.015
Saturation change 0.7
Value change 0.4
Image translation 0.1
Horizontal flipping 0.5
Image scale change 0.5
Image blurring 0.01
Image to grayscale 0.01
CLAHE [68] 0.01
Mosaic 1

Table 3.3: Probability of applying different augmentations to training examples as
they are selected into a batch.

3.2.3 Implementation

The code used for this project builds upon the YOLOv5 GitHub repository
[36]. All experiments were conducted on Google Colaboratory Pro, where the
preferred GPU for training and inference was Nvidia’s Tesla T4 GPU.

Base Models

In the repository, there are 5 pretrained models on the COCO dataset for in-
stance segmentation: YOLOv5N, YOLOv5S, YOLOv5M, YOLOv5L, and YOLOv5X.
The starting architecture used for each model is illustrated in Figure 3.1. How-
ever, the number of repeats for each block (in the backbone) and the number of
channels in a layer are scaled according to individual depth and width multiple
factors, respectively [73, 36]. The layer count, number of trainable parameters,
and the amount of FLOPs required for processing a single image are presented
in Table 3.4.

We can create 5 more unique models by taking the architectures used and

54 chapter 3 method

Figure 3.6: 16 training images in a batch after applying data augmentation. Note how the mosaic data augmen-
tation, as shown by the fusion of 4 cropped images, is applied to every example in the batch.

replacing the pretrained weights with He initialized weights drawn from a
uniform distribution. Furthermore, by using either of the two targets for the
objectness score in Table 3.2, we can obtain an additional 1010 unique models.
Thus, in total, we have 20 unique models that can serve as the voters in the
ensemble model.

3.2 yolov5 55

Model Parameters (M) Layer Count FLOPs (B)
YOLOv5N 1.89 225 6.9
YOLOv5S 7.41 225 25.9
YOLOv5M 21.7 302 70.3
YOLOv5L 47.5 379 147.0
YOLOv5X 88.3 456 264.9

Table 3.4: Parameter, layer count, and FLOPs comparison of YOLOv5 model variants.
Parameters are presented in terms of millions (M) and FLOPs in billions (B).
The number of FLOPs needed assumes input images of size 320 × 320 × 3.

Ensemble Models

We will use either NMS or Weighted Box Fusion (WBF) [70], adapted for
instance segmentation, to fuse together the outputs of the individual models.
WBF is a method for fusing multiple bounding boxes. It works by assigning
boxes to clusters and then computing a fused box for each cluster based on the
average position and shape of the individual boxes,weighted by their objectness
score. New boxes are added to clusters if their IoU with the fused box for that
cluster is above some threshold. Once a new box is added to a cluster, the
fused box is recalculated. These steps are repeated until convergence. The
final objectness scores for the fused boxes are computed as the averages of
the objectness scores within a cluster2. The details of the algorithm can be
found in [70]. A comparison of how WBF fuses outputs compared to NMS is
illustrated in Figure 3.7.

When using NMS, we will pool together all the predicted bounding boxes from
all the models for an image and apply NMS as normal to obtain the final
predictions. Any time NMS is applied in this project, the hyperparameters used
will be 0.0001 and 0.45 for the pruning based on objectness score and IoU,
respectively.

WBF was designed to fuse bounding boxes, but we can modify it for instance
segmentation. First, we apply NMS to the outputs of the individual models
before using WBF on the remaining boxes with an IoU threshold of 0.5 to
compute which predictions cluster together. Next, each predicted binary mask
in a cluster will be weighted by its objectness score before all the masks are
fused by summing them together. The pixels in the fused mask are normalized
to values between 0 and 1 by dividing them by the maximum pixel value. Pixel
values closer to 0 should be removed, as they are the result of low objectness
scores and disagreements between the masks in a cluster. By setting all pixels

2. If the number of boxes in a cluster is fewer than the total number of models used, then
the average will be scaled down accordingly.

56 chapter 3 method

Figure 3.7: Image and caption reproduced from [70]. Schematic illustration of
NMS/soft-NMS vs. WBF outcomes for an ensemble of inaccurate pre-
dictions. Blue – different models’ predictions, red – ground truth.

below some threshold to 0 and all above to 1, the final fused mask is created.
The threshold used for all ensemble models in this project was the fused
objectness score divided by 2. A low flat value such as 0.2 also works, but
through experiments the more dynamic threshold based on objectness score
was found to work best. Finally, every time a mask ends up with a fused
objectness score less than 0.1 it is always removed.

3.3 Dataset

The data were collected from four different cruises to the western Svalbard
margin, with the first trip in 2015 and the last in 2017. An example of a trip
route is shown in Figure 3.8. The data start as raw echogram files before being
processed into image files. We obtain a total of 4,057 grayscale images, each
with a width of 320 pixels and a height of 240 pixels. These images are converted
to RGB for visual clarity by mapping the grayscale values appropriately. Out
of the 4,057 images, 5,142 objects identified as flares were segmented across
1,414 images. Of these, 1,246 images are dedicated to the training set, 138 to
the validation set, and 30 to the test set. The selection of images for the various
sets was done randomly.

3.3 dataset 57

(a) Circled in black is the
area of data collection.

(b) The boat covers a rectangular area by moving back and
forth.

(c) Example of gas flare segmentations in an image from the training dataset.

Figure 3.8: The cruise path shown in (a) and (b) is from the third cruise to Svalbard,which lasted from 16/10/2016 to 25/10/2016.

3.3.1 Trained Non-Expert Labeling

Training, validation, and test dataset were created by the author, who can be
considered a trained non-expert. To train the non-expert, Expert 1 segmented
the first 100 images. These images were carefully studied and used as reference

58 chapter 3 method

for the non-expert. The non-expert then segmented the rest of the dataset,
having Expert 1 available for discussion whenever the non-expert were in
a quandary on how to evaluate a feature in the echogram. Only one class
was used for the problem: gas flare or not. Consequently, the labels can be
considered to indicate 100% confidence that what is segmented is a true gas
flare.

3.3.2 Expert Labeling

We recruit six experts to label the same 30 images as in the non-expert’s
test set. However, instead of giving true or false labels, the experts indicated
a confidence score on what was segmented. The possible confidence levels
ranged from 0.1 to 1 in increments of 0.1, totaling 10 possible confidences.
These labels are more flexible as they can be converted to true or false labels
by thresholding and are also more informative compared to binary labeling,
which tends to group various thresholds of confidence into one (i.e., grouping
together 0.8, 0.9, and 1 confidence all as true).

3.4 Evaluation Metrics

To gauge the performance of the model(s), we need some sort of evaluation
metric. The metric commonly used for instance segmentation is Mean Average
Precision (mAP) [74], which will also be used here. Additionally, we adapt
the Brier score [8] for use with instance segmentation due to the continuous
nature of labeling by the experts, that is, the ability to place confidence scores
between 0 and 1. It is not only of interest to gauge how the model performs on
the expert data but also how the experts evaluate each other. To benchmark the
experts against themselves, we will consider each expert’s ground truth set as
the prediction set and then evaluate it against the sets of the remaining experts
using mAP and Brier scores. However, we cannot directly use the mAP50 metric
on the test set created by the experts because of the soft labels they provide
(values between 0 and 1). We worked around this problem by thresholding the
experts’ predictions into true or false labels. For instance, we can remove all
predictions below 0.8, set all above 0.8 to true, and then compute the mAP as
usual on the resulting test set.

3.4.1 Mean Average Precision

To compute the Average Precision (AP), consider only the ground truths of
one class and set IoU and class score thresholds to values such as 0.5 and 𝛼

3.4 evaluation metrics 59

respectively. Next, remove all predictions with a class score less than 𝛼 for the
specified class. Compute the IoU between the remaining predictions and the
ground truths. A prediction is considered a True Positive (TP) if IoU ≥ 0.5 and
a False Positive (FP) if IoU < 0.5. The total number of False Negatives (FN) is
defined as the total number of ground truths minus the number of TPs. From
these, we can compute Precision (P) and Recall (R) as:

𝑃 =
𝑇𝑃

𝐹𝑃 +𝑇𝑃 (3.20)

𝑅 =
𝑇𝑃

𝐹𝑁 +𝑇𝑃 . (3.21)

Finally, plot (𝑃, 𝑅) for 𝛼 ∈ (0, 1] and compute the area under the curve to
get the AP for one class. Compute the AP for all classes and take the mean
to get mAP50, where 50 indicates that an IoU threshold of 0.5 was used. To
compute mAP50-95, calculate the mAP between 0.5 and 0.95 in increments of
0.05 and take the average. The mAP50-95 places more emphasis on correct
segmentations than mAP50. Thus, we can expect to see lower mAP50-95 than
mAP50 scores. Precision and recall are measures of the model’s accuracy and
its ability to identify ground truths, respectively. There is often a trade-off
between the two. For instance, as we increase recall by using more predictions,
it is often the case that precision falls because of more FPs. The mAP is a
composite measure summarizing the model’s performance on both metrics - a
mAP100 of 1 would indicate perfect predictions. Both mAP50 and mAP50-95
will be used to evaluate model performances.

3.4.2 Brier Score

Another way to benchmark performance on the expert data is to use a metric
that allows for comparisons between predictions and soft labels, such as the
Brier score. We compute the Brier score by assigning predictions to ground
truths if their IoU is greater than a certain threshold, such as 0.5. Then, we
compute the squared error between the experts’ confidence scores and the
model’s objectness scores. We only assign the prediction with the highest IoU to
a ground truth. This is different than with the mAP calculation where we allow
multiple predictions for a ground truth. The Brier score for an IoU threshold
of 0.5 is:

Brier50 =
∑︁
𝑖1

(𝑔𝑖1 − 𝑝𝑖1)2 +
∑︁
𝑖2

𝑔2𝑖2 +
∑︁
𝑖3

𝑝2
𝑖3
. (3.22)

Here, 𝑔 represents ground truth confidence scores, and 𝑝 are the predicted
objectness scores. The first two sums are over the number of ground truths: 𝑖1
is the number of ground truths that received a prediction, and 𝑖2 is the number
of ground truths that did not. The last sum is over all the predictions that

60 chapter 3 method

were not assigned to a ground truth and serves to penalize overprediction,
similar to precision. We will evaluate both the experts and models Brier50 and
Brier50-95.

4
Results and Discussions
In this chapter, we begin by presenting the obtained results. Explanations on
how to read the tables and figures that showcase these results are given when
they show up. This is followed up by a quantitative and qualitative analysis of
the findings, which will conclude the chapter.

4.1 Results on Non-Expert Data

First, we will evaluate the base YOLOv5 models on the non-expert dataset
using the mAP metric. In total, 25 models were trained with results presented
in Tables 4.2 to 4.6. These models were trained using either pretrained weights
or weights initialized with He initialization, and with either hard targets or IoU
targets for the objectness score, as shown in Table 3.2. By hard targets, we mean
labels that are either exactly one or exactly zero. The number of epochs, best
epoch, and batch sizes will also be shown in parentheses next to each model.
The EMA parameters at the best epoch point are the parameters that are used
for evaluating the mAP scores. Additionally, we will denote which models are
selected to be part of an ensemble by the number in the superscripted bracket.
For example, ’YOLOv5N(500, 280, 160)(1) ’ indicates that this model was the
YOLOv5N model trained with an epoch number of 500, the best stopping point
determined by the early stopping algorithm was epoch 280, and that a batch
size of 160 was used. Furthermore, this model will be a part of Ensemble1, as
indicated by the superscript (1).

61

62 chapter 4 results and discussions

Also presented in Tables 4.2 to 4.6 is the performance of the models when
ensembled together using either NMS or WBF fusion. This comparison will
help determine whether NMS or WBF is the superior fusion choice for this
problem. We present the ensembles by first noting which fusion method was
used, followed by denoting which base models are part of the ensemble, in-
dicated in parentheses. For instance, ’WBF ensemble(N+L)’ represents the
ensemble model formed by YOLOv5N and YOLOv5L, where the fusion of masks
is achieved through WBF. Only five combinations of models have been selected
for testing, either with NMS or WBF fusion. The total number of possible com-
binations of models is

∑5
𝑖=1

(5
𝑖

)
= 31. While testing all possible combinations

and summarizing the performance by averaging could be interesting, this ap-
proach has been omitted due to the large amount of training time it would
require.

The final ensemble models, which will be used to evaluate performance on the
experts’ datasets, are shown in Table 4.1. These ensembles all use WBF to fuse
predictions together. Ensemble1 and Ensemble2 were created by selecting the
models with the best performance on the validation and test sets, respectively.
Likewise, Ensemble3 and Ensemble4 consist of the best hard target models,
with and without pretrained weights, respectively

Set: Validation Test
Metrics: mAP50 mAP50-95 mAP50 mAP50-95
Ensemble1 0.828 0.433 0.836 0.438
Ensemble2 0.808 0.42 0.882 0.457
Ensemble3 0.756 0.381 0.762 0.382
Ensemble4 0.788 0.403 0.793 0.419

Table 4.1: mAP scores for Ensemble1 to Ensemble4 on the non-expert’s validation and
test sets. The constituent base models of each ensemble can be found in
Tables 4.2 to 4.6. Ensemble1 to Ensemble4 will be further evaluated on the
experts’ datasets.

4.2 Results on Experts’ Data using Brier Scores

Next, we will evaluate the four ensembles listed in Table 4.1 on the experts’
datasets. In addition to the four ensembles already described, we will also
introduce two more ensemble models: Ensemble1B and Ensemble2B. These
ensembles are based on Ensemble1 and Ensemble2 but with their fused object-
ness scores increased (boosted) by 0.1. This adjustment is due to the fact that
Ensemble1 and Ensemble2 were created with models trained on IoU targets
for the objectness scores. If we interpret the objectness scores as confidence
levels, then the models would appear to be perpetually underconfident, as they

4.2 results on experts’ data using brier scores 63

Pretrained and IoU targets
Set: Validation Test
Metrics: mAP50 mAP50-95 mAP50 mAP50-95
YOLOv5N(500, 280, 160)(1) 0.753 0.355 0.76 0.351
YOLOv5S(500, 224, 98)(1) 0.775 0.347 0.753 0.362
YOLOv5M(500, 96, 68)(1) 0.772 0.359 0.746 0.336
YOLOv5L(500, 205, 68)(2) 0.746 0.353 0.837 0.401
YOLOv5X(500, 150, 60)(1) 0.752 0.342 0.7 0.337
NMS ensemble(N+L) 0.762 0.353 0.826 0.391
NMS ensemble(X+L) 0.772 0.357 0.765 0.375
NMS ensemble(X+L+M+S) 0.783 0.353 0.79 0.38
NMS ensemble(L+M+S+N) 0.781 0.353 0.8 0.38
NMS ensemble(X+L+M+S+N) 0.784 0.353 0.79 0.378
WBF ensemble(N+L) 0.792 0.408 0.844 0.453
WBF ensemble(X+L) 0.792 0.395 0.81 0.42
WBF ensemble(X+L+M+S) 0.814 0.416 0.818 0.427
WBF ensemble(L+M+S+N) 0.813 0.428 0.799 0.429
WBF ensemble(X+L+M+S+N) 0.823 0.429 0.802 0.422

Table 4.2: mAP scores of the YOLOv5 base and ensemble models on the non-expert’s
validation and test sets. The base models use pretrained weights from the
COCO dataset and are trained using IoU targets for the objectness score.
The numbers in parentheses represent the epoch number, best epoch, and
batch size, respectively. Models with a superscript of (1) or (2) indicate
their inclusion in Ensemble1 or Ensemble2, respectively.

almost never encounter labels above 0.9 during training. Therefore, we have
added an extra 0.1 as compensation, to see if a raise in confidence has any
impact on the ensembles’ performances on the experts’ datasets.

We will first evaluate the ensembles on the experts’ datasets using the Brier50
and Brier50-95 scores beforemoving on to themAP scores in the next subsection.
Alongside the ensemble performance, we will also assess the experts on each
other’s datasets. This assessment is done by considering each expert individually
as the predictor and then evaluating their predictions on the datasets of the
remaining five experts. Tables 4.7 and 4.9 present the individual results of
both the experts and the ensembles. In these tables, the predictors are defined
on the rows and the testing sets on the columns. The zeros on the diagonal
indicate that the experts have perfect evaluations on their own sets, as expected.
Additionally, we observe that the performance of the experts is symmetric,
meaning that changing the order of the predictor and the test set does not
influence the results. This symmetry results from our method of assigning
predictions to ground truths when calculating the Brier scores, specifically by
allowing only one prediction per ground truth. Tables 4.8 and 4.10 summarize

64 chapter 4 results and discussions

Pretrained and IoU targets
Set: Validation Test
Metrics: mAP50 mAP50-95 mAP50 mAP50-95
YOLOv5N(90, 89, 160) 0.703 0.308 0.752 0.351
YOLOv5S(90, 85, 98)(1,2) 0.754 0.348 0.802 0.384
YOLOv5M(90, 88, 68)(1,2) 0.758 0.359 0.804 0.376
YOLOv5L(90, 89, 68)(1,2) 0.759 0.36 0.785 0.385
YOLOv5X(90, 68, 60)(1,2) 0.769 0.356 0.82 0.4
NMS ensemble(N+L) 0.769 0.355 0.801 0.385
NMS ensemble(X+L) 0.778 0.361 0.823 0.399
NMS ensemble(X+L+M+S) 0.777 0.36 0.799 0.387
NMS ensemble(L+M+S+N) 0.779 0.36 0.799 0.384
NMS ensemble(X+L+M+S+N) 0.776 0.358 0.806 0.391
WBF ensemble(N+L) 0.779 0.385 0.802 0.414
WBF ensemble(X+L) 0.805 0.411 0.852 0.449
WBF ensemble(X+L+M+S) 0.813 0.418 0.869 0.452
WBF ensemble(L+M+S+N) 0.801 0.417 0.831 0.42
WBF ensemble(X+L+M+S+N) 0.806 0.415 0.847 0.439

Table 4.3: mAP scores of the YOLOv5 base and ensemble models on the non-expert’s
validation and test sets. The base models use pretrained weights from the
COCO dataset and are trained using IoU targets for the objectness score.
The numbers in parentheses represent the epoch number, best epoch, and
batch size, respectively. Models with a superscript of (1, 2) indicate their
inclusion in Ensemble1 and Ensemble2.

and rank the performance of both the experts and ensembles by averaging
across the rows, excluding the experts’ performance on their own sets for these
calculations. Expert2 emerges as the best performing expert, while Ensemble1
stands out as the top ensemble.

4.3 Results on Experts’ Data Using mAP Scores

We now showcase the performance of the experts and ensembles on the test
sets using mAP scores. The mAP scores are computed by first removing all
predictions and ground truths with scores below a certain threshold and setting
all remaining scores to one. Next, we construct tables similar to those in 4.7 and
4.8, but with mAP replacing Brier scores. This process is repeated for threshold
values ranging from 0.1 to 1, at increments of 0.1. For each threshold, the average
mAP is calculated over the datasets of all other experts. These calculations are
performed for both mAP50 and mAP50-95. The resulting average mAP scores
are then plotted in Figure 4.1. Note that it is impossible for the models to

4.4 discussion of the quantitative results 65

Not pretrained and hard targets
Set: Validation Test
Metrics: mAP50 mAP50-95 mAP50 mAP50-95
YOLOv5N(300, 146, 100)(3) 0.7 0.303 0.711 0.316
YOLOv5S(300, 260, 200)(3) 0.677 0.301 0.705 0.318
YOLOv5M(300, 189, 130)(3) 0.702 0.314 0.65 0.307
YOLOv5L(220, 206, 72)(3) 0.716 0.318 0.706 0.33
YOLOv5X(220, 180, 48) 0.686 0.295 0.747 0.332
NMS ensemble(N+L) 0.732 0.321 0.727 0.333
NMS ensemble(X+L) 0.712 0.305 0.726 0.333
NMS ensemble(X+L+M+S) 0.726 0.311 0.721 0.338
NMS ensemble(L+M+S+N) 0.738 0.325 0.703 0.331
NMS ensemble(X+L+M+S+N) 0.729 0.311 0.722 0.337
WBF ensemble(N+L) 0.744 0.359 0.716 0.365
WBF ensemble(X+L) 0.738 0.357 0.759 0.376
WBF ensemble(X+L+M+S) 0.753 0.378 0.749 0.38
WBF ensemble(L+M+S+N) 0.756 0.381 0.762 0.382
WBF ensemble(X+L+M+S+N) 0.75 0.386 0.749 0.378

Table 4.4: mAP scores of the YOLOv5 base and ensemble models on the non-expert’s
validation and test sets. The base models use He initialization for the
weights and were trained using hard targets for the objectness score. The
numbers in parentheses represent the epoch number, best epoch, and batch
size, respectively. Models with a superscript of (3) indicate their inclusion
in Ensemble3.

predict objectness scores of exactly 1. To address this issue, when dealing with
a threshold value of 1, we instead apply a threshold of 0.9 to the models.

In Figure 4.1, we compare individual ensembles against one another and based
on this select three ensembles for further comparison with the experts: En-
semble1, Ensemble3, and Ensemble1B. Ensemble1 is chosen because it has the
best performance according to the average Brier scores, as well as having the
the highest mAP50 on the non-expert validation set. Ensemble3 is selected
for having the highest average mAP50 scores among the ensembles, which is
evident from Figure 4.1a. Ensemble1B is included to emphasize how Ensemble1
shows underconfidence at higher threshold values.

4.4 Discussion of the Quantitative Results

First, we will focus on the performances of the experts, followed by a discussion
on the results of the ensemble models.

66 chapter 4 results and discussions

Pretrained and hard targets
Set: Validation Test
Metrics: mAP50 mAP50-95 mAP50 mAP50-95
YOLOv5N(330, 247, 330)(4) 0.689 0.29 0.733 0.334
YOLOv5S(300, 284, 200)(4) 0.718 0.336 0.715 0.346
YOLOv5M(500, 100, 130)(4) 0.743 0.344 0.696 0.316
YOLOv5L(220, 202, 72)(4) 0.712 0.34 0.756 0.366
YOLOv5X(220, 207, 48)(4) 0.686 0.323 0.698 0.343
NMS ensemble(N+L) 0.719 0.33 0.77 0.363
NMS ensemble(X+L) 0.689 0.316 0.714 0.344
NMS ensemble(X+L+M+S) 0.707 0.318 0.725 0.35
NMS ensemble(L+M+S+N) 0.731 0.333 0.748 0.362
NMS ensemble(X+L+M+S+N) 0.709 0.317 0.725 0.347
WBF ensemble(N+L) 0.747 0.361 0.781 0.4
WBF ensemble(X+L) 0.753 0.38 0.762 0.385
WBF ensemble(X+L+M+S) 0.781 0.401 0.805 0.418
WBF ensemble(L+M+S+N) 0.787 0.406 0.804 0.426
WBF ensemble(X+L+M+S+N) 0.788 0.403 0.793 0.419

Table 4.5: mAP scores of the YOLOv5 base and ensemble models on the non-expert’s
validation and test sets. The base models use pretrained weights from the
COCO dataset and are trained using hard targets for the objectness score.
The numbers in parentheses represent the epoch number, best epoch, and
batch size, respectively. Models with a superscript of (4) indicate their
inclusion in Ensemble4.

4.4.1 Interpretation of Quantitative Results from Experts

Not shown in the previous subsections is the variation in flare-picking frequency
among the experts. This information is now presented in Table 4.11. The data
in Table 4.11 might help explain some of the quantitative differences observed
when evaluating the experts on each other’s datasets.

However, before discussing the results, we must first address Expert5’s perfor-
mance. In both the average Brier scores (Table 4.8 and Table 4.10) and the
average mAP scores (Figure 4.1), Expert5 consistently performed the worst.
This discrepancy in performance was primarily due to a different flare picking
strategy compared to the other experts. Specifically, for certain flare clusters
that other experts would segment individually, Expert5 would segment the
entire cluster as one. Although this situation occurred infrequently, it was
prevalent enough to consistently lower their performance. Furthermore, these
instances typically involved clusters deemed to have high confidences. This
explains why their performance did not improve at higher thresholds, as the
dubious segmentations were never eliminated. One might consider removing

4.4 discussion of the quantitative results 67

Not pretrained and IoU targets
Set: Validation Test
Metrics: mAP50 mAP50-95 mAP50 mAP50-95
YOLOv5N(300, 265, 330) 0.717 0.325 0.783 0.377
YOLOv5S(400, 329, 200) 0.752 0.325 0.758 0.357
YOLOv5M(400, 336, 130) 0.721 0.329 0.741 0.331
YOLOv5L(220, 183, 70) 0.747 0.359 0.772 0.378
YOLOv5X(220, 171, 48) 0.731 0.348 0.792 0.398
NMS ensemble(N+L) 0.761 0.354 0.785 0.376
NMS ensemble(X+L) 0.75 0.357 0.823 0.4
NMS ensemble(X+L+M+S) 0.752 0.345 0.819 0.396
NMS ensemble(X+L+M+S+N) 0.759 0.347 0.821 0.396
NMS ensemble(L+M+S+N) 0.769 0.35 0.793 0.368
WBF ensemble(N+L) 0.772 0.392 0.814 0.428
WBF ensemble(X+L) 0.775 0.398 0.786 0.422
WBF ensemble(X+L+M+S) 0.8 0.416 0.807 0.439
WBF ensemble(L+M+S+N) 0.8 0.407 0.797 0.434
WBF ensemble(X+L+M+S+N) 0.808 0.42 0.801 0.434

Table 4.6: mAP scores of the YOLOv5 base and ensemble models on the non-expert’s
validation and test sets. The base models use He initialization for the
weights and were trained using IoU targets for the objectness score. The
numbers in parentheses represent the epoch number, best epoch, and batch
size, respectively. None of the base models in this table are used in any of
the final ensembles.

Expert5’s data entirely due to these dubious segmentations; however, this would
be a mistake. If we assume that all other experts fail to segment these specific
dubious segmentations made by Expert5, then they would all incur the same
penalty, effectively maintaining the relative difference between the experts.
Also, the remaining predictions by Expert5 are still informative and keeping
them will help contribute to uncovering the absolute ground truth1.

Now, the results in Table 4.8 and 4.10 show that Expert2 was the best in terms of
the Brier score. One could explain this by simply conjecturing that Expert2 was
the superior segmenter, managing to capture the essence of what constitutes
a good segmentation and confidence score for a flare. While possibly true,
another explanation is that the Brier metric, as defined in Subsection 3.4, has a
flaw. If we consider the different frequencies of flare picking, shown in Table 4.11,
it is clear that Expert2 was more conservative in generating segmentations for
flares deemed unlikely to be true flares. Indeed, if we consider the cumulative

1. By ’absolute ground truth’, we refer to a ground truth defined by averaging or otherwise
summarizing across the distribution of predictions from all possible expert labelers.

68 chapter 4 results and discussions

Test set
Expert1 Expert2 Expert3 Expert4 Expert5 Expert6

Pr
ed

ic
to
r

Expert1 0 24.94 35.02 53.3 50.96 76.7
Expert2 24.94 0 36.46 51.88 36.74 64.52
Expert3 35.02 36.46 0 42 68.1 73.48
Expert4 53.3 51.88 42 0 66.56 76.46
Expert5 50.96 36.74 68.1 66.56 0 60.38
Expert6 76.7 64.52 73.48 76.46 60.38 0
Ensemble1 43.27 35.23 43.51 49.43 48.43 73.06
Ensemble2 41.13 41.41 46.39 51.07 51.89 80.59
Ensemble3 49.77 45.94 52.53 54.76 52.80 77.58
Ensemble4 49.37 50.55 53.93 56.02 57.51 83.93
Ensemble1B 50.09 46.45 52.11 55.54 58.18 82.99
Ensemble2B 48.95 52.87 56.11 58.07 60.26 88.19

Table 4.7: Comparison of Brier50 scores for expert and ensemble predictors on test
sets. On the rows are the predictors and on the columns are the possible
test sets.

Predictor Rank Avg. Brier50
1 Expert2 42.908
2 Expert1 48.184
3 Ensemble1 48.222
4 Expert3 51.012
5 Ensemble2 52.008
6 Ensemble3 55.563
7 Expert5 56.548
8 Ensemble1B 57.560
9 Expert4 58.040
10 Ensemble4 58.552
11 Ensemble2B 60.742
12 Expert6 70.308

Table 4.8: Ranking the experts and ensembles based on their average brier50 score.

sum of flares from 0.1 to 0.6 confidence, then Expert2 only segmented 27 flares.
This is 13 less than the expert with the second least low confidence predictions:
Expert2 at 40, who coincidentally is the second best at the average Brier50
score.The problem arises when someone excessively segments low confidence
flares not recognized by other experts, thereby accruing errors. A possible
remedy for this flaw is to use the same procedure as when computing the
average mAP scores in Figure 4.1. That is, removing flare segmentations by
thresholding them away in intervals of 0.1 until one arrives at 1 confidence,
however, this was not tested in the present study. Also of note is how the

4.4 discussion of the quantitative results 69

Test set
Expert1 Expert2 Expert3 Expert4 Expert5 Expert6

Pr
ed

ic
to
r

Expert1 0 76.202 83.348 101.02 102.02 137.19
Expert2 76.202 0 76.432 87.712 68.816 101.08
Expert3 83.348 76.432 0 90.052 102.94 136.17
Expert4 101.02 87.712 90.052 0 108.66 139.69
Expert5 102.02 68.816 102.94 108.66 0 114.92
Expert6 137.19 101.08 136.17 139.69 114.92 0
Ensemble1 84.16 70.16 83.11 91.21 86.62 125.48
Ensemble2 86.58 78.24 88.23 95.36 93.06 134.10
Ensemble3 100.49 86.09 101.82 108.83 97.62 140.84
Ensemble4 103.28 93.43 104.37 111.51 104.87 147.13
Ensemble1B 96.73 85.92 96.33 103.93 101.48 140.59
Ensemble2B 100.37 94.63 103.36 110.04 109.07 148.63

Table 4.9: Comparison of Brier50-95 scores for expert and ensemble predictors on test
sets. On the rows are the predictors and on the columns are the possible
test sets.

Rank Predictor Avg. Brier50-95
1 Expert2 82.0484
2 Ensemble1 90.123
3 Ensemble2 95.928
4 Expert3 97.7884
5 Expert5 99.4712
6 Expert1 99.9560
7 Ensemble1B 104.16
8 Expert4 105.4268
9 Ensemble3 105.95
10 Ensemble4 110.77
11 Ensemble2B 111.02
12 Expert6 125.8100

Table 4.10: Ranking the experts and ensembles based on their average brier50-95
score.

relative rankings change from Table 4.8 to Table 4.10. As mentioned, Brier50-
95 places greater emphasis on correct segmentations than Brier50, meaning
that a relative drop in rankings can be interpreted as being due to poorer
segmentations. ’Correct’ in this context means segmentations that are more
aligned with those of other experts. Thus, if some experts have personal quirks
in how they segment, then the scores of other experts will drop if they cannot
precisely mimic these interpretations of segmentations.

70 chapter 4 results and discussions

(a) (b)

(c) (d)

Figure 4.1: Comparison of performance between experts and ensembles using the mAP metric. For each predictor, the mAP
scores at each threshold are summarized by averaging the mAPs obtained from the experts’ test sets.

Next, we will examine the performances based on the average mAP scores,
as illustrated in Figure 4.1. Here, we might again be able to explain some
of the results by referring to Table 4.11. Generally, the scores of the experts
follow similar trends across each threshold value, albeit with some variations
in rankings. Notably, Expert2 consistently ranks as the best at low threshold
values, only losing the top rank as threshold values exceed 0.5. Particularly
interesting is Expert6’s performance, ranking as the best for thresholds between
0.8 to 1. When examining flare picking frequencies, Expert6 clearly segments
the most flares at higher confidence levels. For instance, at a confidence level
of one, Expert6 segments 44 more flares than Expert2. This might suggest

4.4 discussion of the quantitative results 71

Confidence Expert1 Expert2 Expert3 Expert4 Expert5 Expert6 Non-expert
0.1 0 0 14 18 18 6 0
0.2 3 3 10 15 12 8 0
0.3 7 4 8 14 10 8 0
0.4 1 12 7 19 7 10 0
0.5 21 2 8 16 10 25 0
0.6 8 6 8 30 16 8 0
0.7 9 15 7 16 10 25 0
0.8 9 11 7 20 18 15 0
0.9 11 7 8 12 16 20 0
1 39 19 16 28 22 63 116

Sum 108(50) 79(24) 93(24) 188(40) 139(38) 188(83) 116

Table 4.11: Frequency of flare picking for the experts and non-expert. In parentheses is
the sum of the flares from 0.9 to 1 confidence. Experts were allowed to give
a confidence score between 0.1 and 1, while the non-expert had to use true
or false labels. The data of the experts was collected after the non-expert
and it was decided that we wanted to allow for more informative labels.

that Expert6 effectively segments nearly all flares identified by other experts
at high confidence levels. Moreover, for each confidence 1 label created by
Expert6 that is not recognized by other experts, the scores of these experts
drop due to missing it. This effect is more pronounced given the limited number
of experts, only six, and a test set of only 30 images. With a larger pool of
experts and more test images, such effects would likely be less significant and
more evenly distributed. One asymmetry that arises is the fact that Expert6’s
performance doesn’t seem to drop to the same extent as the other experts. We
might expect to see Expert6’s score drop, perhaps even more than the others,
precisely because they tend to over-segment. This over-segmentation could
result in a high number of false positives when calculating the mAP. If we
again consider the precision and recall measures in the Subsection 3.4 then for
high confidence flares, this over segmentation strategy might be considered
as having a preference for higher recall values than precision. While it is not
the only reason, of course, the oversegmenting of high confidence flares might
help explain Expert6’s strong performance. Also, while we do not consider the
mAP metric to be flawed, it has been suggested that mAP is not a perfect metric
for object detection, despite it being the gold standard [60].

Before moving on to the ensemble results, we once again note the variation
in the number of objects considered by the experts as high confidence flares,
that is, flares from 0.8 to 1, or 0.9 to 1 confidence. It is to be expected that
the number of low-confidence flares will vary greatly, as these are by nature
more subjective, and the interpretation of a correct confidence score is harder
to ascertain. However, we should expect to see agreement on the correct total

72 chapter 4 results and discussions

number of high confidence flares, particularly the ones one would assign more
than 0.8 confidence to. In Table 4.11, we see that Expert2 and Expert3 counted
the same total number of flares from 0.9 to 1 confidence, while Expert4 and
Expert5 counted 40 and 38, respectively. Thus, it might be the case that Expert2
and Expert3, and Expert4 and Expert5, had similar strategies for selecting high
confidence flares. Expert1 and Expert6 determined that there are more high
confidence flares than the rest the of the experts, at 50 and 83 respectively.
It is clear that there is significant variation among the experts regarding the
number of ground truth high confidence flares. These findings highlight the
difficulty in determining an absolute ground truth for gas flares datasets, as
even trained experts will vary in their opinion on what should and shouldn’t be
included. This was also a key result found in [18], where instead of selecting
flares and giving them a confidence score, there were four discrete classes
which flares could fall into. Additionally, it was even found that an expert who
segmented and classified a dataset twice, with the first being months away
from the second, would vary significantly in how they approached the labeling
both times.

The variation between experts presents both a major challenge and a major
motivation for adopting a standardized machine learning algorithm for flare
segmentation: firstly, the subjectivity in the task of segmenting flares can
introduce considerable expert/human-injected bias in training and validation
data sets. This may indeed explain differences between some of the expert and
machine generated results in the present study. Secondly, it shows that labeling
of gas flares need standardization. If datasets are labeled uniquely by different
experts due to personal interpretations, then this also changes the underlying
distribution of the labels. These slight variations in the underlying distributions
of the datasets can affect both local environmental assessments and add noise
to global carbon budget estimates and higher order climate prediction models.
Addressing the effect of ergonomic factors and differences in expert background
can help explain, but also improve consistency between human labelers (see
e.g. [56]). This would also contribute to identify and mitigate noise in training
datasets. Finally, standardization and widespread adoption of an automated
labeling process using deep learning based models, such as the ones introduced
in this thesis, would solve the problem of non-standardized flare labeling. This
of course requires a sufficiently good, unbiased model, which can segment and
detect flares at or beyond human level.

4.4.2 Interpretation of Quantitative Results from
Ensembles

From Tables 4.2 to 4.6, we observe several notable points. The first is that
ensemble models are superior to base models. This superiority is evident from

4.4 discussion of the quantitative results 73

the consistently better mAP50 and mAP50-95 scores on both the validation and
test sets. Although some base models occasionally outperform certain ensemble
models, the general trend indicates that ensembling models improves perfor-
mance. The second observation is that ensembles formed withWBF outperform
those with NMS. Across both metrics and on both sets, WBF ensembles achieve
the highest scores, except for a singular case in Table 4.6, where an NMS ensem-
ble attains the highest mAP50 score on the test set. The final observations are
twofold: pretrained weights are superior to weights initialized by He initializa-
tion, and IoU targets are more effective than hard targets, once again shown by
the mAP scores. Using pretrained weights is not always necessary for problems
involving large datasets. In such scenarios, a model trained with pretrained
weights might not perform any better than one without. However, as noted in
Subsection 2.5.1, pretraining often benefits smaller datasets. The dataset used
for this problem was relatively small, consisting of only 1414 images, which
likely explains a significant portion of the performance differences between
pretrained and non-pretrained models.

Table 4.1 shows the ensembles which we use for comparison with the experts.
Of note are Ensemble1 and Ensemble2, which were crafted for the explicit
purpose of maximizing the mAP50 scores on the validation and test sets, re-
spectively. These two ensembles were created by simply combining the best
base models on the two sets. This type of combination can be considered a form
of hyperparameter tuning, where the hyperparameter represents the specific
combinations of base models. Tuning hyperparameters on the test set is con-
sidered a cardinal sin in deep learning, the reason being that hyperparameter
optimization can be considered a form of overfitting: the hyperparameters
found are fitted to the particular set used to tune them. Thus, if we tune hyper-
parameters on the test set, then the performance found might overestimate the
models actual performance. Fitting hyperparameters on the test set becomes
less of a problem as its size grows, because it will progressively become a
better approximation of the underlying distribution that generated the dataset.
The test set size used in this problem consists of only 30 images; thus, we
can reasonably assume that the remarkably high mAP50 of 0.882 achieved on
the non-expert test set is overstated and will not hold for new non-expert test
examples.

Next, we consider the ensemble performances on the Brier scores. In particular,
it is interesting to note how Ensemble1 achieves the rank of 3 and 2 on the
average Brier50 and Brier50-95 scores, respectively. Ensemble2 also ends up
having good scores in this metric. However, due to the reasons outlined earlier
in this section, we should not place too much emphasis on how well the
ensembles performed here.

We now turn our attention to the average mAP scores, shown in Figure 4.1. But

74 chapter 4 results and discussions

first, we again point out how Ensemble1 and Ensemble2 tend to be underconfi-
dent, as measured by their objectness score, and that Ensemble3 and Ensemble4,
as well as Ensemble1B and Ensemble2B, had changes explicitly made to make
them more confident. Ensemble3 and Ensemble4 do this by training with hard
targets, and Ensemble1B and Ensemble2B have had their scores boosted by
0.1. Now, Figure 4.1a and 4.1b show that Ensemble3 performed the best on the
mAP metric. There is no particular reason why Ensemble3 should outperform
Ensemble4, as the only difference in the training process between them was
having pretrained weights or not. Indeed, Ensemble4 performs about as well
as the other ensembles, which leads us to believe that Ensemble3’s standout
performance from the rest is no more than random luck, and that if we were to
retrain it, it likely would not be the best performer again. Further, we see that
the boosting trick in Ensemble1 B and 2B seems to have had its intended effect,
as for the higher thresholds we can see that they greatly outperform Ensemble1
and Ensemble2, whose performances conversely drop drastically.

Finally, we compare Ensemble1, Ensemble3, and Ensemble1B with the experts
in Figures 4.1c and 4.1d. The qualitative performances of Ensemble3 and En-
semble1B appear to be largely indistinguishable from those of the experts, a
trend that is also observed for Ensemble1 before its score drops at the higher
thresholds. Additionally, we note how the ensembles seem to have more cor-
rect segmentations than the experts, as exemplified by their relative increase
in performance from average mAP50 to average mAP50-95 over the experts.
However, as will be shown in the quantitative analysis, there are considerable
differences between the ensembles and experts, which still make them less
desirable than a human segmenter.

4.5 Qualitative Analysis

Quantifying what constitutes human level performance is hard, and developing
sufficient conditions for exactly what would convey human level performance is
beyond the scope of this thesis. However, we can discuss what some necessary
conditions are and note that if one refines these necessary conditions enough,
then one will likely find conditions which can be considered sufficient.

We consider achieving performance at or beyond what the average human
expert can do on some quantitative metric, such as the average Brier and
average mAP used in this thesis, as a necessary condition for human level
performance. Based on the results shown in Subsection 4.2 and 4.3, we con-
sider this condition to be fulfilled or close to being fulfilled. However, despite
performing quantitatively well on the chosen metrics, the models still perform
noticeably worse in a qualitative manner; therefore, we do not yet consider

4.5 qualitative analysis 75

them good enough to replace human experts. Thus, we add achieving human
level qualitative performance as another necessary condition.

The qualitative analysis is done by comparing images from the test set for
an ensemble model together with the experts. More specifically, we will use
Ensemble1 as the ensemble of choice, which consists of eight models in total. In
Subsection 3.2.3, it was described how the model outputs were fused together
using WBF. Because we are doing a purely visual comparison, it is now not
necessary to prune away pixels with high uncertainty in the predictedmask, like
how we would normally do when evaluating on a test set. This will allow us to
visually assess the epistemic uncertainty2 in mask segmentations. Additionally,
since multiple objectness scores contribute to the fused objectness score, we
will calculate and display its standard deviation in the figures. These standard
deviations, indicated in parentheses next to the fused scores, represent the
epistemic uncertainty associated with the objectness scores.

To allow for a succinct comparison with the experts, we will summarize the
ground truths from the experts by using WBF instead of presenting them one by
one. The discussion of ensemble outputs above will then also apply to the fused
predictions by the experts. In [70], it is noted that fusing predictions of an expert
panel in this way can lead to more accurate ground truth labels. Additionally,
it also gives us access to ground truth uncertainties, which can be of interest if
one wants to benchmark the performance of uncertainty estimation methods,
such as Bayesian deep learning. Finally, we also include the non-expert ground
truth for each presented image, which may help in understanding the rationale
behind the ensemble model’s predictions. Four images where the ensemble fails
qualitatively are shown and described first, followed by five images considered
as successes.

The first figure, Figure 4.2, displays an echogram depicting two disjoint objects
that, according to the experts’ fused ground truth shown in Figure 4.2a, likely
form a single flare. However, the ensemble fails to recognize this, as it was
not trained on expert ground truth sets but on the non-expert’s data. In terms
of predicting on the the non-expert test set labels, the ensemble’s behavior is
actually appropriate. This accuracy in reflecting the non-expert ground truth
is to be expected, given its exceedingly high mAP50 score of 0.828 on the
validation set, as shown in Table 4.1.

In Figure 4.3, the second example is presentedwhere the ensemble qualitatively

2. In deep learning, we consider two types of uncertainty: epistemic (model) uncertainty and
aleatoric (data) uncertainty [20]. Briefly, if we can reduce the uncertainty by gathering
more data, then it is epistemic. Conversely, if the uncertainty cannot be reduced with more
data and is simply some sort of inherent randomness to the problem, then it is aleatoric.

76 chapter 4 results and discussions

fails, this time in regards to both the experts’ and the non-expert’s ground truth.
In the image, there is one object that can be confidently identified as a flare. This
particular flare is distinctively unique in its form, and among the 1414 images
comprising the test data, no other flares resemble it. The flare’s uniqueness lies
in its strong signal at the bottom, which weakens abruptly yet extends quite
far upwards. The ensemble’s failure to accurately segment this flare can be
attributed to a lack of similar data in the dataset – with more examples of this
type of flare, the ensemble might have succeeded in correctly segmenting it.
Interestingly, the ensemble does recognize the flare’s unique nature, assigning
relatively low objectness scores to the two parts.

In Figure 4.4, the third comparison is presented, showing an area with lots
of obvious flare activity, recognized by both the experts and the non-expert.
We particularly highlight the leftmost flare, which is uniquely thin and tall.
While humans can easily discern this as a true flare, the ensemble fails to do
so. Similar to the situation in Figure 4.3, we attribute this failure to a lack of
data coverage — the dataset contains exceedingly few thin and long flares.
The ensemble performs better with the other tall flares in the picture, which
has thicker roots and other characteristics commonly found in the dataset, as
reflected in the higher objectness score it receives. Additionally, it is noteworthy
that the ensemble demonstrates more underconfidence in its predictions for
most of the 100% confidence flares in the image compared to the experts. This
tendency towards underconfidence is a notable weakness of the ensemble when
compared to human judgments.

The final example of qualitative failure by the ensemble is presented in Fig-
ure 4.5. This example is included to emphasize the presence of what may be
considered labeling errors in the dataset created by the non-expert. As illus-
trated in Figure 4.5c, three objects are identified as flares and assigned a 100%
confidence score by the non-expert. However, a comparison with the experts’
assessment in Figure 4.5a reveals an extremely low probability of actual flares
being present in the image. While the ensemble model accurately captures the
non-expert ground truth, in this instance, it leads to a significant misjudgment.
The training dataset contains a relatively high prevalence of such labeling
errors, and it is likely that rectifying these errors could substantially improve
the ensemble’s performance on the experts’ test sets.

Generally speaking, it is interesting to note how the ensemble not only identi-
fies many high confidence objects but also recognizes many of the same low
confidence objects as the experts. This is achieved without having been explic-
itly trained on low confidence labels, such as those provided by the experts.
This ability arises precisely because we are ensembling models together. As
mentioned, the training dataset contains considerable noise. Because of this,
models may sometimes segment objects that are extremely unlikely to be flares,

4.5 qualitative analysis 77

but assign them high objectness scores. However, the likelihood that all of the
base models will learn the same incorrect predictions is exceedingly low. These
erroneous predictions are averaged out in the ensemble model, resulting in
very low confidence predictions. In this way, the ensemble is able to pick out
a clear signal from all the noise, that is, the objects most likely to be actual
flares.

We end this chapter by showcasing examples where the ensemble’s performance
is considered qualitatively on par with the experts. These are given in Figures
4.6 to 4.10, where a short description is given for each.

78 chapter 4 results and discussions

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.2: Visual comparison between Ensemble1 and the experts on one of the 30 test images. We observe that the ensemble
fails to replicate the behaviour required by human experts, that is, segment the object likely to be a flare as a whole,
instead of two parts. However, the ensemble is successful in terms of predicting the non-expert ground truth.

4.5 qualitative analysis 79

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.3: Visual comparison between Ensemble1 and the experts on one of the 30 test images. We observe that the ensemble
fails to replicate the behaviour required by both the experts and the non-expert. However, the ensemble recognizes
the unique situation and gives a low objectness score on the two parts which should have been segmented as a
whole.

80 chapter 4 results and discussions

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.4: Visual comparison between Ensemble1 and the experts on one of the 30 test images. We observe that the ensemble
fails to give high confidence scores as the human experts would. In particular, we draw attention to the leftmost
flare, which got a too low score. We attribute this to a lack of data coverage in the space of training examples
where this flare resides.

4.5 qualitative analysis 81

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.5: Visual comparison between Ensemble1 and the experts on one of the 30 test images. The ensemble successfully
identifies the non-expert’s test set ground truth. However, in this instance, this identification is a significant error
in terms of the expert test sets. From (a), it is clear that the experts almost unanimously agree that there are no
flares in the image. The dataset created by the non-expert is full of such labeling errors, which contribute to the
ensemble’s erroneous predictions in this case.

82 chapter 4 results and discussions

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.6: Visual comparison between Ensemble1 and the experts on one of the 30 test images. The ensemble correctly mimics
the behavior of the experts, albeit with slightly too high confidence.

4.5 qualitative analysis 83

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.7: Visual comparison between Ensemble1 and the experts on one of the 30 test images. Although the experts make
some predictions that the ensemble does not share, these predictions are of low confidence. Thus, we regard this
as a success for the ensemble. Furthermore, it is notable how the uncertainty associated with the segmentation
mask is greater for the experts than for the ensemble.

84 chapter 4 results and discussions

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.8: Visual comparison between Ensemble1 and the experts on one of the 30 test images. The ensemble correctly mimics
the behavior of the experts, albeit with slightly less confidence.

4.5 qualitative analysis 85

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.9: Visual comparison between Ensemble1 and the experts on one of the 30 test images. The ensemble correctly mimics
the behavior of the experts, albeit with slightly too high confidence.

86 chapter 4 results and discussions

(a) The experts’ ground truth labels after fusing them with WBF. (b) Ensemble1’s predictions.

(c) The ground truth on the non-expert test set.

Figure 4.10: Visual comparison between Ensemble1 and the experts on one of the 30 test images. The ensemble successfully
identifies the two flares in the image, notably assigning high epistemic uncertainty to the protruding parts of the
flares. During test set benchmarking, we would remove these areas of high uncertainty, resulting in segmentations
that seemingly align perfectly with those of the experts

5
Conclusion and Future
Work

5.1 Improving on the presented results

There are areas of obvious improvement, which, if implemented, will likely
improve or significantly improve on the results already shown in this thesis.
The first and most obvious one is improving upon the dataset used. It is clear
from the results presented in Chapter 4 that there is a significant amount
of noise in the training dataset labels, which adversely affects the model’s
output. While ensemble models help mitigate this issue, directly reducing
label noise by having an expert redo the dataset could lead to more substantial
improvements. Furthermore, an upgrade to the dataset could involve collecting
new labels. Transitioning from the hard labels used by the non-expert to the
soft labels used by experts could be particularly beneficial. Soft labels, which
provide a spectrum of certainty rather than binary classifications, are especially
useful in the challenging task of segmenting flares. They offer the model richer
information about the varying confidence levels associated with flare signals.
Furthermore, they offer a more straightforward approach to labeling: when
in doubt, it is easy to precisely reflect the degree of doubt in the label, rather
than being limited to a binary true or false label. In the training process,
these labels could be used as targets for either the objectness score or for the
class scores. This approach gains relevance considering that the class scores
in this thesis were not a primary focus, as the model was dealing with only

87

88 chapter 5 conclusion and future work

one class and thus learned to always predict it correctly. Giving the class
scores actually useful targets during training is therefore interesting. Future
work could explore the implications of using soft labels on model training and
performance, potentially leading to more accurate flare detection. Also, we
remark on the exceedingly high mAP50 found on the non-expert’s validation
and test set, even in the face of noisy labels, which leads us to believe that
the same performance can be replicated on datasets from other labelers. The
strong quantitative performance indicates that the ensemble is able to replicate
the behavior of the human who produced its training set, a point we confirm
to qualitatively in Section 4.5.

In Section 4.5, we also highlight a data coverage issue. The remedy for this
issue is simple: collect more data. Expanding the dataset is also expected
to enhance the overall performance of the models by providing a more com-
prehensive training base. Additionally, the test datasets used consist of only
30 images each; this is a very small number and does not well represent the
underlying probability distribution of the data, potentially biasing the results
either negatively or positively. Therefore, we see it as crucial to recruit more
experts and use a larger test set to increase the certainty and robustness of our
findings.

We have only used one model architecture for this problem, namely the YOLOv5
architecture. It would be interesting to try out other architectures to see how
they perform in comparison. Additionally, ensembling more diverse architec-
tures than just different scales of YOLOv5 might lead to further improvements.
In this regard, architectures from both two-stage and transformer-based meth-
ods are worth exploring. Furthermore, more one-stage architectures, such as
YOLOv7 and YOLOv8, also represent potential alternatives to test.

Finally, we did not do an extensive hyperparameter search for the problem,
opting instead to use the default hyperparameters for YOLOv5 as found in
[36]. An extensive search, using methods such as grid search or genetic fitness
algorithms [36], could further improve the results shown in Tables 4.1 to 4.6.
In particular, we note the different hyperparameters associated with the data
augmentation techniques used, shown in Table 3.3. Of note is the the mosaic
data augmentation, which is always applied to every example during training.
It is clear that this augmentation will significantly affect training due to always
being applied. While it is a good form of augmentation [5], it might not be
appropriate for the problem at hand, especially to the degree which it is used
here. Developing new data augmentations techniques specifically for the task
being addressed represents another direction for future research.

5.2 uncertainty based direction 89

5.2 Uncertainty based direction

A promising direction for advancing the present work involves further develop-
ment of the uncertainty estimates associatedwith the model’s output. Currently,
our model quantifies only the epistemic uncertainty in the objectness score
and the pixels in the segmentation mask. By employing Bayesian deep learning
techniques, we could not only refine these epistemic uncertainty estimates
but also acquire estimates of aleatoric uncertainty. Improving on the uncer-
tainty estimates of the model is useful, as it would allow for a more symbiotic
relationship between the humans and machine when it comes to detecting
and segmenting flares. The deep learning based method would handle the
bulk of the work, identifying and segmenting obvious flares, while instances
marked by high uncertainty estimates would signal the need for expert hu-
man review. Furthermore, we show how to obtain ground truth uncertainties
on segmentation masks and confidence scores on the experts’ predictions in
Section 4.5. It is uncommon to have good ground truths on uncertainties in
deep learning, but through this method we could obtain quantities which we
could use to benchmark the performances of the Bayesian based deep learning
model.

5.3 Discerning useful flares

As mentioned in the introduction, there are two goals of interest for researchers:
detecting whether the flare is useful or not, and if useful, segment it. As a recap,
a useful flare is a flare which has roots to the seafloor, or more specifically, it
has a strong target strength (more reddish color in the echogram) in the 5 to
10 meter layer above the seafloor. We show an illustration of a useful or not
flare in Figure 1.2. In this thesis we focused on the detection of flares part,
but now consider ways to incorporate a distinction between the two types of
flares.

We first consider the simplest method to discern between types of flares:
calculating the average pixel value of the flare in the 5 to 10 meter layer and
comparing it with a threshold. If the average is sufficiently high, it indicates
that the target strength is high, suggesting the presence of useful data in the
5 to 10 meter layer. However, there are edge cases where this method might
fail, such as when a fish or other disturbance enters the 5 to 10 meter layer of
the flare, resulting in a falsely high average pixel value. To address this, we
could implement additional checks following the average pixel value check.
One such check could involve analyzing the average variation of neighboring
pixels within the 5 to 10 meter layer of the flare. In instances of disturbances,
like a fish, there would likely be higher variation among the pixels. Oppositely,

90 chapter 5 conclusion and future work

a pure flare is expected to exhibit smoother transitions between pixels.

Another approach to differentiating between flare types involves explicitly
labeling the flares as either useful or not useful and then training the model to
predict the correct class in addition to performing segmentations. An alternative
variation involves a post-processing check, similar to the method described in
the previous paragraph, but in this case, the check is learned by a smaller CNN.
The input to this CNNwould exclusively be the data from the 5 to 10 meter layer
of the flare, where detecting and segmenting the flare is learned by another
model. Due to its smaller scope, this CNN could be relatively lightweight and
require significantly less inference time compared to the larger flare detection
and segmentation network. Of the two deep learning based methods, this
post-processing CNN appears to be the better option. It allows us to directly
inject the knowledge that only the 5 to 10 meter layer of the flare contains
relevant information for determining its usefulness, which a model trained to
simultaneously output classes and segmentations cannot know. Because we
have seen that interpreting and labeling data is highly subjective, we would
need to be extra careful in the case where we collect data on useful versus not
useful flares.

5.4 Concluding remarks

To our knowledge, this thesis presents the first work on instance segmentation
for gas flares in single beam echosounder data. To this end, we have created
a dataset consisting of 1,414 images, with 5,142 objects identified as flares and
segmented. We demonstrate how to adapt the Brier score and WBF for use
in instance segmentation. A quantitative analysis is performed on ensemble
models using the Brier and mAP metrics, where we find that the ensemble
models perform as well as the average human expert. However, our qualita-
tive analysis uncovers remaining challenges with the ensemble models that
need improvement to achieve human-level performance. Finally, we detail
potential directions and improvements for the current work and note that, if
implemented, these could bridge the gap between human and machine-level
performance.

Bibliography
[1] Ethem Alpaydin. Introduction to Machine Learning. 3rd ed. MIT Press,

2014. isbn: 9780262028189.
[2] Sebastian Bach et al. “On Pixel-Wise Explanations for Non-Linear Clas-

sifier Decisions by Layer-Wise Relevance Propagation.” In: PLOS ONE
10.7 (July 2015), pp. 1–46. doi: 10.1371/journal.pone.0130140. url:
https://doi.org/10.1371/journal.pone.0130140.

[3] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. 2021. arXiv:
2003.05991 [cs.LG].

[4] Yoshua Bengio et al. “Greedy Layer-Wise Training of Deep Networks.”
In: Proceedings of the 19th International Conference on Neural Information
Processing Systems. NIPS’06. Canada: MIT Press, 2006, pp. 153–160.

[5] Alexey Bochkovskiy,Chien-YaoWang,andHong-YuanMark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934
[cs.CV].

[6] Navaneeth Bodla et al. Soft-NMS – Improving Object Detection With One
Line of Code. 2017. arXiv: 1704.04503 [cs.CV].

[7] Daniel Bolya et al. YOLACT: Real-time Instance Segmentation. 2019. arXiv:
1904.02689 [cs.CV].

[8] GLENN W. BRIER. “VERIFICATION OF FORECASTS EXPRESSED IN
TERMSOF PROBABILITY.” In:MonthlyWeather Review 78.1 (1950), pp. 1–
3. doi: https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>
2.0.CO;2. url: https://journals.ametsoc.org/view/journals/mwre/
78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml.

[9] George Casella and Roger L. Berger. Statistical Inference. 2nd ed. Pacific
Grove: Duxbury Press, 2002.

[10] Anna Choromanska et al. The Loss Surfaces of Multilayer Networks. 2015.
arXiv: 1412.0233 [cs.LG].

[11] Floriana Ciaglia et al. Roboflow 100: A Rich, Multi-Domain Object Detec-
tion Benchmark. 2022. arXiv: 2211.13523 [cs.CV].

[12] Yann Dauphin et al. Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization. 2014. arXiv: 1406.2572
[cs.LG].

91

https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1704.04503
https://arxiv.org/abs/1904.02689
https://doi.org/https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml
https://arxiv.org/abs/1412.0233
https://arxiv.org/abs/2211.13523
https://arxiv.org/abs/1406.2572
https://arxiv.org/abs/1406.2572

92 BIBLIOGRAPHY

[13] J. Deng et al. “ImageNet: A large-scale hierarchical image database.” In:
2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
Miami, FL, USA, 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[14] K. O. Dølven. “Methane in the Arctic Ocean: Legal and Scientific Aspects
of Seabed Seepage.” Doctoral dissertation. UiT The Arctic University of
Norway, 2023. url: https://munin.uit.no/handle/10037/24357.

[15] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV].

[16] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization.” In: Journal
of Machine Learning Research 12.61 (2011), pp. 2121–2159. url: http :
//jmlr.org/papers/v12/duchi11a.html.

[17] B. Dwyer, J. Nelson, J. Solawetz, et al. Roboflow (Version 1.0). https:
//roboflow.com. Computer Vision Software. 2022.

[18] J. Friedrich. “Seasonal Variability of Methane Seep Distribution and
Intensity Offshore Western Svalbard at the Edge and Outside the Gas
Hydrate Stability Zone.” Master’s Thesis. MA thesis. Kiel University,
2021.

[19] M.A. Ganaie et al. “Ensemble deep learning: A review.” In: Engineering
Applications of Artificial Intelligence 115 (Oct. 2022), p. 105151. issn: 0952-
1976. doi: 10.1016/j.engappai.2022.105151. url: http://dx.doi.
org/10.1016/j.engappai.2022.105151.

[20] Jakob Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks.
2022. arXiv: 2107.03342 [cs.LG].

[21] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].
[22] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of

training deep feedforward neural networks.” In: International Confer-
ence on Artificial Intelligence and Statistics. 2010. url: https://api.
semanticscholar.org/CorpusID:5575601.

[23] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. Cambridge, MA, USA: MIT Press,
2016.

[24] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

[25] Priya Goyal et al. Accurate, Large Minibatch SGD: Training ImageNet in
1 Hour. 2018. arXiv: 1706.02677 [cs.CV].

[26] Moritz Hardt and Tengyu Ma. Identity Matters in Deep Learning. 2018.
arXiv: 1611.04231 [cs.LG].

[27] Nazanin Sadat Hashemi et al. Template Matching Advances and Applica-
tions in Image Analysis. 2016. arXiv: 1610.07231 [cs.CV].

[28] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV].

https://doi.org/10.1109/CVPR.2009.5206848
https://munin.uit.no/handle/10037/24357
https://arxiv.org/abs/2010.11929
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://roboflow.com
https://roboflow.com
https://doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1016/j.engappai.2022.105151
https://arxiv.org/abs/2107.03342
https://arxiv.org/abs/1504.08083
https://api.semanticscholar.org/CorpusID:5575601
https://api.semanticscholar.org/CorpusID:5575601
http://www.deeplearningbook.org
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1611.04231
https://arxiv.org/abs/1610.07231
https://arxiv.org/abs/1512.03385

BIBLIOGRAPHY 93

[29] Kaiming He et al. Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification. 2015. arXiv: 1502.01852
[cs.CV].

[30] Kaiming He et al. Mask R-CNN. 2018. arXiv: 1703.06870 [cs.CV].
[31] Kaiming He et al. “Spatial Pyramid Pooling in Deep Convolutional Net-

works for Visual Recognition.” In: Lecture Notes in Computer Science.
Springer International Publishing, 2014,pp. 346–361. isbn: 9783319105789.
doi: 10.1007/978-3-319-10578-9_23. url: http://dx.doi.org/10.
1007/978-3-319-10578-9_23.

[32] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
feedforward networks are universal approximators.” In: Neural Networks
2.5 (1989), pp. 359–366. issn: 0893-6080. doi: https://doi.org/10.
1016/0893-6080(89)90020-8. url: https://www.sciencedirect.com/
science/article/pii/0893608089900208.

[33] Shuyu Hu et al. “Underwater gas leak detection using an autonomous
underwater vehicle (robotic fish).” In: Process Safety and Environmental
Protection 167 (2022), pp. 89–96. issn: 0957-5820. doi: https://doi.
org/10.1016/j.psep.2022.09.002. url: https://www.sciencedirect.
com/science/article/pii/S0957582022007662.

[34] Gao Huang et al. Densely Connected Convolutional Networks. 2018. arXiv:
1608.06993 [cs.CV].

[35] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. 2015. arXiv:
1502.03167 [cs.LG].

[36] Glenn Jocher. YOLOv5 by Ultralytics. Version 7.0. May 2020. doi: 10.
5281/zenodo.3908559. url: https://github.com/ultralytics/yolov5.

[37] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics.
Version 8.0.0. Jan. 2023. url: https : / / github . com / ultralytics /
ultralytics.

[38] Rohan Kashyap. A survey of deep learning optimizers – first and second
order methods. 2023. arXiv: 2211.15596 [cs.LG].

[39] Nitish Shirish Keskar et al. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. 2017. arXiv: 1609.04836 [cs.LG].

[40] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv: 1412.6980 [cs.LG].

[41] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Tech. rep. 2009.

[42] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks.” In: Advances
in Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25.
Curran Associates, Inc., 2012. url: https://proceedings.neurips.cc/
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-
Paper.pdf.

https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1703.06870
https://doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/https://doi.org/10.1016/j.psep.2022.09.002
https://doi.org/https://doi.org/10.1016/j.psep.2022.09.002
https://www.sciencedirect.com/science/article/pii/S0957582022007662
https://www.sciencedirect.com/science/article/pii/S0957582022007662
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1502.03167
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://arxiv.org/abs/2211.15596
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

94 BIBLIOGRAPHY

[43] Chuyi Li et al. YOLOv6: A Single-Stage Object Detection Framework for
Industrial Applications. 2022. arXiv: 2209.02976 [cs.CV].

[44] Hao Li et al. Visualizing the Loss Landscape of Neural Nets. 2018. arXiv:
1712.09913 [cs.LG].

[45] Hongzhou Lin and Stefanie Jegelka. ResNet with one-neuron hidden
layers is a Universal Approximator. 2018. arXiv: 1806.10909 [cs.LG].

[46] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection. 2017.
arXiv: 1612.03144 [cs.CV].

[47] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2018. arXiv:
1708.02002 [cs.CV].

[48] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2015.
arXiv: 1405.0312 [cs.CV].

[49] Shu Liu et al. Path Aggregation Network for Instance Segmentation. 2018.
arXiv: 1803.01534 [cs.CV].

[50] Wei Liu et al. “SSD: Single Shot MultiBox Detector.” In: Lecture Notes
in Computer Science. Springer International Publishing, 2016, pp. 21–37.
isbn: 9783319464480. doi: 10.1007/978- 3- 319- 46448- 0_2. url:
http://dx.doi.org/10.1007/978-3-319-46448-0_2.

[51] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional
Networks for Semantic Segmentation. 2015. arXiv: 1411.4038 [cs.CV].

[52] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent
with Warm Restarts. 2017. arXiv: 1608.03983 [cs.LG].

[53] Wenyu Lv et al. DETRs Beat YOLOs on Real-time Object Detection. 2023.
arXiv: 2304.08069 [cs.CV].

[54] M. E. Mann. Greenhouse Gas. https://www.britannica.com/science/
greenhouse-gas. Accessed: December 6, 2023. 2023.

[55] Dominic Masters and Carlo Luschi. Revisiting Small Batch Training for
Deep Neural Networks. 2018. arXiv: 1804.07612 [cs.LG].

[56] D. McKay and A. Kvammen. “Auroral classification ergonomics and the
implications for machine learning.” In: Geoscientific Instrumentation,
Methods and Data Systems 9.2 (2020), pp. 267–273. doi: 10.5194/gi-9-
267-2020. url: https://gi.copernicus.org/articles/9/267/2020/.

[57] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training Recurrent Neural Networks. 2013. arXiv: 1211.5063 [cs.LG].

[58] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Acti-
vation Functions. 2017. arXiv: 1710.05941 [cs.NE].

[59] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016.
arXiv: 1612.08242 [cs.CV].

[60] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
2018. arXiv: 1804.02767 [cs.CV].

[61] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object
Detection. 2016. arXiv: 1506.02640 [cs.CV].

[62] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. 2016. arXiv: 1506.01497 [cs.CV].

https://arxiv.org/abs/2209.02976
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1806.10909
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1803.01534
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/2304.08069
https://www.britannica.com/science/greenhouse-gas
https://www.britannica.com/science/greenhouse-gas
https://arxiv.org/abs/1804.07612
https://doi.org/10.5194/gi-9-267-2020
https://doi.org/10.5194/gi-9-267-2020
https://gi.copernicus.org/articles/9/267/2020/
https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.01497

BIBLIOGRAPHY 95

[63] Yazhou Ren et al. Deep Clustering: A Comprehensive Survey. 2022. arXiv:
2210.04142 [cs.LG].

[64] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learn-
ing representations by back-propagating errors.” In: Nature 323.6088
(Oct. 1986), pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0. url:
https://doi.org/10.1038/323533a0.

[65] Shibani Santurkar et al. How Does Batch Normalization Help Optimiza-
tion? 2019. arXiv: 1805.11604 [stat.ML].

[66] Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending
through a Crowded Valley - Benchmarking Deep Learning Optimizers. 2021.
arXiv: 2007.01547 [cs.LG].

[67] Andrew Shepley, Greg Falzon, and Paul Kwan. Confluence: A Robust
Non-IoU Alternative to Non-Maxima Suppression in Object Detection. 2022.
arXiv: 2012.00257 [cs.CV].

[68] Manu Siddhartha and Avik Santra. COVIDLite: A depth-wise separable
deep neural network with white balance and CLAHE for detection of COVID-
19. 2020. arXiv: 2006.13873 [eess.IV].

[69] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[70] Roman Solovyev, Weimin Wang, and Tatiana Gabruseva. “Weighted
boxes fusion: Ensembling boxes from different object detection models.”
In: Image and Vision Computing 107 (Mar. 2021), p. 104117. issn: 0262-
8856. doi: 10.1016/j.imavis.2021.104117. url: http://dx.doi.org/
10.1016/j.imavis.2021.104117.

[71] Jost Tobias Springenberg et al. Striving for Simplicity: The All Convolu-
tional Net. 2015. arXiv: 1412.6806 [cs.LG].

[72] Ilya Sutskever et al. “On the Importance of Initialization andMomentum
in Deep Learning.” In: Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28. ICML’13.
Atlanta, GA, USA: JMLR.org, 2013, III–1139–III–1147.

[73] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and
Efficient Object Detection. 2020. arXiv: 1911.09070 [cs.CV].

[74] Juan Terven and Diana Cordova-Esparza. A Comprehensive Review of
YOLO: From YOLOv1 and Beyond. 2023. arXiv: 2304.00501 [cs.CV].

[75] Y Tian, Y Zhang, and H Zhang. “Recent Advances in Stochastic Gradient
Descent in Deep Learning.” In: Mathematics 11.3 (2023), p. 682. doi:
10.3390/math11030682. url: https://doi.org/10.3390/math11030682.

[76] J.R.R. Uijlings et al. “Selective Search for Object Recognition.” In: In-
ternational Journal of Computer Vision (2013). doi: 10.1007/s11263-013-
0620-5. url: http://www.huppelen.nl/publications/selectiveSearchDraft.
pdf.

[77] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL].

https://arxiv.org/abs/2210.04142
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/2007.01547
https://arxiv.org/abs/2012.00257
https://arxiv.org/abs/2006.13873
https://arxiv.org/abs/1409.1556
https://doi.org/10.1016/j.imavis.2021.104117
http://dx.doi.org/10.1016/j.imavis.2021.104117
http://dx.doi.org/10.1016/j.imavis.2021.104117
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/2304.00501
https://doi.org/10.3390/math11030682
https://doi.org/10.3390/math11030682
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

96 BIBLIOGRAPHY

[78] M. Veloso et al. “A new methodology for quantifying bubble flow rates
in deep water using splitbeam echosounders: Examples from the Arctic
offshore NW-Svalbard.” In: Limnology and Oceanography: Methods 13.6
(2015), pp. 267–287.

[79] Chien-YaoWang,Alexey Bochkovskiy,andHong-YuanMark Liao. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object de-
tectors. 2022. arXiv: 2207.02696 [cs.CV].

[80] Chien-Yao Wang et al. CSPNet: A New Backbone that can Enhance Learn-
ing Capability of CNN. 2019. arXiv: 1911.11929 [cs.CV].

[81] YuxinWu andKaimingHe. GroupNormalization. 2018. arXiv: 1803.08494
[cs.CV].

[82] Bing Xu et al. Empirical Evaluation of Rectified Activations in Convolutional
Network. 2015. arXiv: 1505.00853 [cs.LG].

[83] Suorong Yang et al. Image Data Augmentation for Deep Learning: A
Survey. 2023. arXiv: 2204.08610 [cs.CV].

[84] Jason Yosinski et al.How transferable are features in deep neural networks?
2014. arXiv: 1411.1792 [cs.LG].

[85] Kaichao You et al. How Does Learning Rate Decay Help Modern Neural
Networks? 2019. arXiv: 1908.01878 [cs.LG].

[86] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Con-
volutional Networks. 2013. arXiv: 1311.2901 [cs.CV].

[87] Chiyuan Zhang et al. Understanding deep learning requires rethinking
generalization. 2017. arXiv: 1611.03530 [cs.LG].

[88] Huaqing Zhang et al. Compiler-Level Matrix Multiplication Optimization
for Deep Learning. 2019. arXiv: 1909.10616 [cs.LG].

[89] Zhaohui Zheng et al. Distance-IoU Loss: Faster and Better Learning for
Bounding Box Regression. 2019. arXiv: 1911.08287 [cs.CV].

https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/1911.11929
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/2204.08610
https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1908.01878
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1909.10616
https://arxiv.org/abs/1911.08287

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Context
	1.2 Problem Statement and Objective
	1.3 Contributions
	1.4 Outline

	2 Theoretical Background
	2.1 Machine Learning
	2.2 Neural Networks
	2.3 Convolutional Neural Networks
	2.4 Loss Function
	2.4.1 Empirical Risk

	2.5 Optimization
	2.5.1 Optimization Techniques

	2.6 Regularization
	2.7 Object Detection
	2.7.1 Approaches to Object Detection
	2.7.2 YOLOv1 to YOLOv4
	2.7.3 Non-maximum Suppression
	2.7.4 From Bounding Box Object Detection to Instance Segmentation

	3 Method
	3.1 Why YOLOv5
	3.2 YOLOv5
	3.2.1 YOLOv5 Specifics
	3.2.2 Training
	3.2.3 Implementation

	3.3 Dataset
	3.3.1 Trained Non-Expert Labeling
	3.3.2 Expert Labeling

	3.4 Evaluation Metrics
	3.4.1 Mean Average Precision
	3.4.2 Brier Score

	4 Results and Discussions
	4.1 Results on Non-Expert Data
	4.2 Results on Experts' Data using Brier Scores
	4.3 Results on Experts' Data Using mAP Scores
	4.4 Discussion of the Quantitative Results
	4.4.1 Interpretation of Quantitative Results from Experts
	4.4.2 Interpretation of Quantitative Results from Ensembles

	4.5 Qualitative Analysis

	5 Conclusion and Future Work
	5.1 Improving on the presented results
	5.2 Uncertainty based direction
	5.3 Discerning useful flares
	5.4 Concluding remarks

	Bibliography

