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ODES WHOSE SYMMETRY GROUPS ARE NOT FIBER-PRESERVING

BORIS KRUGLIKOV
†
AND EIVIND SCHNEIDER

‡

Abstract. We observe that, up to conjugation, a majority of symmetric higher order ODEs

(ordinary differential equations) and ODE systems have only fiber-preserving point symmetries.

By exploiting Lie’s classification of Lie algebras of vector fields, we describe all the exceptions

to this in the case of scalar ODEs and systems of ODEs on a pair of functions.

The scalar ODEs whose symmetry algebra is not fiber preserving can be expressed via absolute

and relative scalar differential invariants, while a similar description for ODE systems requires

us to also invoke conditional differential invariants and vector-valued relative invariants to deal

with singular orbits of the action.

Investigating prolongations of the actions, we observe some interesting relations between

different realizations of Lie algebras. We also note that it may happen that the prolongation of a

finite-dimensional Lie algebra acting on a differential equation never becomes free. An example

of an underdetermined ODE system for which this phenomenon occurs shows limitations of the

method of moving frames.

Keywords. Point symmetries, contact transformations, differential invariants, relative invari-

ants, conditional invariants.

Contents

Introduction 2

1. Scalar ODEs 5

1.1. Recollection on differential invariants 6

1.2. ODEs with essentially contact symmetries 8

1.3. ODEs with essentially point symmetries 10

2. Systems of ODEs whose symmetries are not fiber preserving 12

2.1. A strategy for listing all invariant systems 13
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2 BORIS KRUGLIKOV AND EIVIND SCHNEIDER

Introduction

It is well known that among the most symmetric scalar ODEs of order n > 2 only the equation

y′′′ = 0 has an irreducible contact symmetry algebra, which is1 sp(4). For every n > 3 the

ordinary differential equation y(n) = 0 has the symmetry algebra gl(2)⋉ Sn−1
C
2 of dim = n+ 4

with generators embedded as fiber-preserving vector fields on the fiber bundle J0 = C
2(x, y) →

C
1(x), see for example [23, Chapt. 6].

There are indeed ODEs with non-point symmetries. Consider, for instance, the following two

equations (from this moment on we use the jet-notation yn instead of y(n) for the derivative):

(i) y4 = 3y23/y2, (ii) y4 = 3y23/y2 + y23/y
2
2 .

Then (i) has (three) contact non-point symmetries but is trivializable, while (ii) has (only one)

contact non-point symmetry and is not even linearizable (this follows from the Lie algebra struc-

ture of its symmetry sol(2) ⋉ C
3 because it does not contain a four-dimensional Abelian subal-

gebra). However the Legendre transform (x, y, y1) 7→ (−y1, y − xy1, x) maps these into resp. (i)

y4 = 0, (ii) y4 = y23 which have only fiber-preserving point transformations as contact symmetries.

Let us call a subalgebra of the Lie algebra of contact vector fields on J1 = C
3(x, y, y1) es-

sentially fiber-preserving if it is conjugate by a contact transformation to (the prolongation of)

a subalgebra of point transformations preserving the foliation {x = const}. Similarly, call a

subalgebra of the Lie algebra of contact vector fields on J1 essentially point if it is conjugate to

(the prolongation of) a subalgebra of vector fields on J0 = C
2(x, y) (we exclude from those the

essentially fiber-preserving ones). Finally, the rest will be called essentially contact algebras.

Thus the question: To what extent is it true that higher order ODEs have essentially point

and even essentially fiber-preserving Lie algebras of symmetries? Clearly y3 = 0 is an exception.

Among ODEs of order n > 3 with submaximal symmetry dimension (equal to n+ 2 for n 6= 5, 7

and n + 3 for n = 5, 7) all have essentially fiber-preserving point symmetries but with three

exceptions for n = 4, 5, 7, see [23, p.205-206]:

L4[y] = 3y2y4 − 5y23 = 0, L5[y] = 9y22y5 − 45y2y3y4 + 40y33 = 0,

L7[y] = 10y33y7 − 70y23y4y6 − 49y23y
2
5 + 280y3y

2
4y5 − 175y44 = 0.

The first two have point symmetry algebras aff(2) and sl(3) respectively, while the last one has

sp(4) as a contact symmetry algebra.

It turns out that there are many more scalar ODEs of order greater than two with essentially

contact and essentially point symmetry algebras, yet they are minor among all ODEs possessing

nontrivial infinitesimal symmetries.

In this paper we describe all those exceptions, basing on the original ideas of Sophus Lie.

Namely we compute the algebras R of relative differential invariants with respect to the smallest

irreducible Lie algebra (1) of contact vector fields on J1 and with respect to the smallest primitive

Lie algebra (2) of vector fields on J0. This yields all algebraic equations with essentially contact

and respectively essentially point symmetry algebras. To cover analytic equations with essentially

contact or point symmetries we describe the field of absolute differential invariants, and we also

find the singular equations (consisting of singular orbits of the action). This is done in §1. Let

us note that the results of this section to a certain extent are known; this is due to the works of

Lie with notable later contributions, see [20, 23, 5, 29]. We however make some specifications of

global nature on algebraic equations and the algebra of relative invariants, which appear to be

new. We will make some historical remarks in the Conclusion section.

1We work exclusively over C; some facts remain true over R but the classification is longer. We use the simplified

notation sp(4) = sp(4,C), gl(2) = gl(2,C), etc.
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In the case of ODE systems the situation is more complicated. We consider in detail the

case of pairs of ODEs. Here the list of possible Lie algebras is larger, and the tools of scalar

relative and absolute invariants is no longer sufficient. Indeed, any such ODE system is given

by two differential constraints, possibly of different orders, and invariance of the locus does not

imply that each of the two corresponding differential equations can be chosen such that they

are invariant by themselves. In §2 we first formulate the strategy of how to find the invariant

ODE systems. Then we describe all algebraic and analytic equations with essentially point (not

fiber-preserving) symmetry algebras. The essentially point Lie algebras are in this case the Lie

algebras of point symmetries that preserve either no foliation or a 1-dimensional foliation but no

2-dimensional foliation.

Lie algebra g Invariant condition Scalar invariants g-inv. ODE system E

so(3)⋉C
3

Ref: §2.2

Th. 6, 7

A = 〈I2, I3a,∇〉
{F = 0, G = 0}

F,G ∈ A

Σ: R1 = 0
AΣ = 〈J4,∇Σ〉

{F = 0, R1 = 0}

F ∈ AΣ

Q2 {Q2 = 0, R1 = 0}

Π: R2 = 0 AΠ = 〈K3,∇Π〉
{F = 0, R2 = 0}

F ∈ AΠ

y2 = 0, z2 = 0 {y2 = 0, z2 = 0}

so(4)

Ref: §2.3

Th. 8, 9

A = 〈I2, I3a,∇〉
{F = 0, G = 0}

F,G ∈ A

Σ: R1 = 0
AΣ = 〈J4,∇Σ〉

{F = 0, R1 = 0}

F ∈ AΣ

Q2 {Q2 = 0, R1 = 0}

Π: R2 = 0 AΠ = 〈K3,∇Π〉
{F = 0, R2 = 0}

F ∈ AΠ

y2 = y1(1 +
2y1z1
e
x )

z2 = z1(1 +
2y1z1
e
x )

{
y2
y1

= 1 + 2y1z1
e
x = z2

z1

}

sp(4)

Ref: §2.4

Th. 10, 11

A = 〈I4, I5a,∇〉
{F = 0, G = 0}

F,G ∈ A

Σ: R1 = 0

AΣ = 〈J8,∇Σ〉
{F = 0, R1 = 0}

F ∈ AΣ

Q2 {Q2 = 0, R1 = 0}

Q6 {Q6 = 0, R1 = 0}

Π: R3 = 0
AΠ = 〈K5,K6,∇Π〉

{F = 0, R3 = 0}

F ∈ AΠ

P4 {P4 = 0, R3 = 0}

y2 = 0, z2 = 0 {y2 = 0, z2 = 0}

Table 1. Algebraic determined ODE systems with finite-dimensional primitive

Lie algebras of symmetries. Notations: Ii – absolute differential invariants; Ji, Ki

– conditional absolute differential invariants; Ri – relative differential invariants;

Qi, Pi – conditional relative differential invariants; A – algebra of rational absolute

differential invariants with given generators; AΣ – conditional relative invariants

on the underdetermined ODE Σ.
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Our main results about ODE systems are contained in §2.2-2.7, and summarized in Table 1 and

Table 2. They are novel and provide new interesting classes of ODE systems. These systems,

expressed in terms of invariants, are summarized in theorems at the end of each subsection,

following the manner in which Lie often presented his results [21]. In each subsection we use

repeated notation, like Ri for relative invariants, Ij for absolute invariants etc. These quantities

keep the same meaning within the actual subsection but change when we pass to the next one;

this allows us to keep the same strategy of exposition, while avoiding to introduce complicated

notations.

Lie algebra g Invariant condition Scalar invariants g-inv. ODE system E

Lie16

Ref: §2.5

Th. 12, 13

A = 〈I2, I3a,∇〉
{F = 0, G = 0}

F,G ∈ A

Σ: R1 = 0
AΣ = 〈J4,∇Σ〉

{F = 0, R1 = 0}

F ∈ AΣ

R2 {R2 = 0, R1 = 0}

Π: R2 = 0 AΠ = 〈K2,∇〉
{F = 0, R2 = 0}

F ∈ AΠ

Lie27

Ref: §2.6

Th. 14, 15

A = 〈I3, I4a, I4b,∇〉
{F = 0, G = 0}

F,G ∈ A

Σ: R1 = 0

AΣ = 〈J6,∇Σ〉
{F = 0, R1 = 0}

F ∈ AΣ

Q1 {Q1 = 0, R1 = 0}

Q4 {Q4 = 0, R1 = 0}

Πa : R2a = 0

AΠa
= 〈K5,∇a〉

{F = 0, R2a = 0}

F ∈ AΠa

R2b {R2b = 0, R2a = 0}

P4 {P4 = 0, R2a = 0}

Πb : R2b = 0

AΠb
= 〈L5,∇b〉

{F = 0, R2b = 0}

F ∈ AΠb

(R2a) ({R2a = 0, R2b = 0})

T4 {T4 = 0, R2b = 0}

Lie29

Ref: §2.7

Th. 16, 17

A = 〈I3, I4a,∇〉
{F = 0, G = 0}

F,G ∈ A

Σ: R2 = 0
AΣ = 〈J3,∇Σ〉

{F = 0, R2 = 0}

F ∈ AΣ

Q2 {Q2 = 0, R2 = 0}

Table 2. Algebraic determined ODE systems that have finite-dimensional Lie

algebras of symmetries that preserve a 1-dimensional foliation.

Let us also note that the observation we made about the most symmetric ODEs above extends

to ODE systems (for simplicity restrict to systems of equations of the same order). Indeed,

the maximally symmetric system of order n in m dependent variables yαn = 0 (α = 1, . . . ,m;

m > 1) has fiber-preserving symmetry
(
sl(2) ⊕ gl(m)

)
⋉
(
Sn−1

C
2 ⊗ C

m) for n > 2 and has

essentially point symmetry algebra sl(m + 2) for n = 2; the symmetry algebra has dimension

dmax = m(m+n+2δn,2)+3. Submaximally symmetric ODE systems with symmetry dimension

dsubmax = dmax−2 were computed in [16]: they are either linear Wylczynski type yαn = yαn−r with
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symmetry
(
C ⊕ gl(m)

)
⋉
(
C
n ⊗ C

m) or in the case of pairs of ODEs (m = 2) the C-class-type

with two different cases:

{2y1y3 = 3y22 , 2y1z3 = 3y2z2} and {y3 = z22 , z3 = 0}.

Abstractly the symmetry algebras are, respectively, (C⊕sl(2)⊕sl(2))⋉(C2⊗C
2) and the graded

Lie algebra gl(2)0⊕ (C⊕C
3)1⊕ (C3)2, where we indicate the grading and the sl(2) module type.

All those symmetry algebras with submaximal dimension are fiber preserving.

Our work is based on the realization of Lie algebras by vector fields, and we make several

observations related to this at the end of the paper. The choice of setup is important when

classifying infinitesimal actions (local, semi-global, etc) as well as when classifying invariant

differential equations (algebraic, analytic, etc). In §3 we show, using different realizations of

sl(2), how the choice of realization and coordinate chart affects the order and other properties of

generators for the absolute and relative differential invariants. We also show, on an example of

sp(4), that different realizations can be related by a jet-prolongation and a projection, and that

this can be interpreted as a twistor correspondence.

We observe that the prolongation of certain Lie algebra actions on an (underdetermined)

differential equation of infinite type never achieves freeness, something that is impossible without

a differential constraint (see [1]). This demonstrates limitations of the method of moving frames

even for finite-dimensional Lie groups. Finally we will justify the claim that the set of ODEs

(scalar or systems) with symmetry algebras that are not essentially fiber-preserving is meager

by briefly discussing the moduli space of invariant ODEs with symmetry.

We conclude in §4 with an overview of the main results and discuss possible generalizations.

In appendix A we explain the conditions for the symmetry algebra of a scalar ODE or an ODE

system to be finite-dimensional, which justifies our usage of the classification of finite dimensional

Lie algebras of vector fields in the plane and in the space. Appendix B is devoted to a brief review

of the Sophus Lie classification relevant for our purposes.

1. Scalar ODEs

We start by summarizing the required concepts and setting the notations, cf. [17, 23].

Let J i = J i(C) be the space of jets of (local) functions C(x) → C(y), and let x, y0, . . . , yi be

the induced coordinates on J i (we identify y = y0). Let πi denote the projection J i → C and let

πj,i denote the projection J j → J i for j > i. A scalar ODE of order k can be identified with a

submanifold

E = {F (x, y, . . . , yk) = 0} ⊂ Jk

defined by a (local) analytic function2 F ∈ O(Jk) with Fyk
6≡ 0. This implies that in the

neighborhood of a generic point in Jk where Fyk
is not equal to zero, the equations are normal,

implying that yk can be expressed locally in terms of a function on Jk−1.

An (infinitesimal) symmetry of E is a vector field on Jk tangent to E , which preserves the

Cartan distribution on Jk. The latter is spanned by D(k)
x = ∂x +

k∑

i=1

yi∂yi−1
and ∂yk . By the

Lie-Bäcklund theorem all vector fields preserving the Cartan distribution on Jk are prolongations

of contact vector fields on J1. Thus, every symmetry of E is a contact vector field X satisfying

the condition X(k)(F )|E = 0, where X(k) denotes the prolongation of X to Jk. It is a point

symmetry if X preserves the fibers of π1,0 and fiber-preserving if it also respects the fibers of π0

2Here and throughout the paper we use O(J
k
) to denote the ring of (local) analytic functions on J

k
. Alterna-

tively, one may use it for meromorphic functions on J
k
in all our statements.
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C2 = sp(4)

sl(2)⋉ heis(3) p1(C2) = gl(2)⋉ heis(3)

A2 = sl(3)

saff(2) p1(A2) = aff(2)

Figure 1. Diagram of inclusions of the irreducible contact and primitive point

Lie algebras of vector fields in C
2.

(and hence π1 = π0 ◦ π1,0); as in the introduction we use the word “essential” to signify these

properties after a possible conjugation by a local contact diffeomorphism.

A Lie algebra of contact vector fields is called irreducible if there exists no invariant foliation

by Legendrian curves; this is equivalent to nonexistence of an invariant subdistribution in the

contact distribution. Otherwise it is called reducible. Since a line distribution can be locally

rectified, the reducible case corresponds to esentially point and fiber-preserving Lie algebras.

A Lie algebra of vector fields on J0 is called imprimitive if it preserves a 1-dimensional foliation

on J0 and it is called primitive otherwise. Thus the imprimitive case corresponds to essentially

fiber-preserving Lie algebras.

Our main question in this section is: Which ODEs have (i) essentially contact, or (ii) essentially

point Lie algebras of symmetries? In both cases we refer to the full symmetry algebra.

• Finite-dimensional irreducible Lie algebras of contact vector fields on J1 ≃ C
3 were

classified by Lie [20], see also [23, Table 4]. There are only three such algebras up to local contact

transformations, and they all contain the 6-dimensional Lie subalgebra

〈∂x, ∂y, x∂y + ∂y1 , x
2∂y + 2x∂y1 ,−x∂x + y1∂y1 , 2y1∂x + y21∂y〉 (1)

abstractly isomorphic to sl(2)⋉ heis(3), a maximal subalgebra in the parabolic p1 ⊂ sp(4).

• Finite-dimensional primitive Lie algebras of point vector fields on C
2 were classified

by Lie [21, p.124], see also [23, Table 2]. There are only three such algebras up to local point

transformations, and they all contain the 5-dimensional Lie subalgebra saff(2) = sl(2)⋉C
2 given

by

〈∂x, ∂y, x∂y,−x∂x + y∂y, y∂x〉. (2)

The Lie algebras (1) and (2) will be treated in 1.2 and 1.3 respectively.

Remark 1. In Figure 1 the Lie algebras are labelled by their abstract Lie algebra structure. It

is important to keep in mind that they are not only abstract Lie algebras, but realizations as

Lie algebras of vector fields on C
3 and C

2, respectively. The specific realization is important, as

we indicate in §3.1. However, some realizations may become equivalent after prolongation as we

demonstrate in §3.2.

1.1. Recollection on differential invariants. Let g be a Lie algebra of point or contact vector

fields. The g-orbit through θ ∈ Jk is the set of all points obtained by the flow of vector fields in

g. (This is equivalent to the orbit of the corresponding connected Lie pseudogroup.) The space

Jk is partitioned into g-orbits, and any g-invariant ODE of order k is a union of g-orbits in Jk.

Definition 1. A differential invariant of order k is a function on Jk which is constant on g-orbits.
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Under sufficiently general conditions, which are satisfied for all the Lie algebras of vector fields

that we consider in this paper, the g-orbits in general position in Jk can be separated by rational

differential invariants of order k, see [19]. These conditions are that the corresponding Lie pseu-

dogroup G is transitive on J0 (or J1 for contact transformations) and that the diffeomorphism

subgroups Gk
a are algebraic for every k ≥ i and every point a ∈ J i (i = 0 or i = 1). When these

conditions hold, the orbits in Jk can be identified with orbits of the algebraic group Gk
a on the

fibers of Jk → J i (i = 0 or i = 1), and it follows from Rosenlicht’s theorem that the latter orbits

are separated by rational invariants. It is thus sufficient to consider differential invariants whose

restriction to fibers of Jk → J i are rational. We will refer to such differential invariants using

the adjective “rational” and point out that this “rationality” property of differential invariants is

preserved under point and contact transformations, respectively. All the Lie algebras we consider

act transitively, and for all of them the stabilizer of a point in J i (i = 0 or i = 1) integrates to

an algebraic Lie group.

For finite-dimensional Lie algebras, the number of independent differential invariants of order k

will grow without bound as k increases, but the field of rational differential invariants is finitely

generated as a differential field: There exists an invariant derivation acting on the space of

invariants.

Differential invariants computed in this paper are usually found by solving the system

X(k)(I) = 0, X ∈ g.

Similarly, the derivation is found by solving the system

[X(∞), fDx] = 0, X ∈ g,

where f is a function on J i for some i and Dx = ∂x +

∞∑

i=1

yi∂yi−1
is the total derivative operator.

Definition 2. A relative differential invariant is a function on Jk with g-invariant zero locus.

Relative differential invariants can be found by solving the system

X(k)(R) = λ(X)R, X ∈ g,

where λ ∈ g
∗ ⊗ F(J∞) is called the weight of R. Here by F(J∞) = ∪jF(J

j) we mean the

appropriate algebra of functions on the space of jets. We choose rational functions in higher jets

yk (k > 0) for absolute invariants I (some other choices: analytic/smooth in the complex/real

cases, respectively) and polynomial ones for relative invariants R, so that λ ∈ g
∗ ⊗ P(J∞).

To facilitate computations we used Maple. Often, the results of pdsolve are not rational func-

tions. They may not even be invariant (that is, not constant on orbits, see Remark 5). However,

they can still be used to generate a transcendence basis for the field of rational invariants. Having

a transcendence basis is in general not sufficient for generating the whole field of differential in-

variants. But in the cases we consider one can show that the field generated by the transcendence

basis has no algebraic field extensions within the field of rational invariants.

An approach due to Sophus Lie to find fundamental relative invariants of Lie group actions is

as follows. An effective action of a finite-dimensional Lie group is eventually free (see [24] or [1]).

In fact, for an (effective) Lie group G freeness of the action is attained on Js where s = dimG−2,

except for particular actions of Sol(2)⋉C
k where a pseudo-stabilization effect happens (see page

202 and 1.7b of Table 5 [23]) in which case s = dimG− 1. The Lie determinant is the evaluation

of a volume form on Js on the prolonged vector fields X
(s)
t , where {Xt}

dimG
t=1 is a basis of the

Lie algebra of vector fields corresponding to the G-action; in the case of pseudo-stabilization
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this is not a scalar, but a 1-form proportional to the differential of an absolute invariant. The

irreducible factors of this algebraic (in higher jets) expression are relative invariants Rj.

The following theorem is a slightly improved version of [23, Theorem 6.36].

Theorem 1 (Sophus Lie). For an algebraic Lie group action, an invariant ODE E = {F = 0} ⊂

Jk is either given by fundamental relative invariants Rj = 0 or can be expressed through absolute

differential invariants F = f(I1, . . . , Ir), where I1, . . . , Ir are generators for the field of rational

absolute differential invariants of order k.

The function f is rational or analytic (meromorphic), depending on the setup.

1.2. ODEs with essentially contact symmetries. From the discussion above, we obtain

the following description for ODEs of order greater than 2. The restriction on the order is

made in order to avoid ODEs having infinite-dimensional Lie algebras of contact symmetries (see

Appendix A).

Proposition 1. Assume that the Lie algebra of contact symmetries of a scalar ODE of order

k > 2 is irreducible. Then it contains a Lie subalgebra g that, up to a local contact transformation,

is given by (1).

Absolute differential invariants of the action of g on J∞ are generated (in Lie-Tresse sense

[19]) by one differential invariant and one invariant derivation (see also [23, Table 5 #4.1]). They

can be given in terms of the relative differential invariants, the simplest of which are

R3 = y3, R5 = 3y3y5 − 5y24 ,

R6 = 9y23y6 − 45y3y4y5 + 40y34 , R7 = 9y33y7 − 63y23y4y6 + 105y3y
2
4y5 − 35y44 ,

R8 = 9y43y8 − 84y33y4y7+ 210y23y
2
4y6 − 105y23y4y

2
5 + 210y3y

3
4y5 − 280y54 .

The space of weights is one-dimensional and is generated by the cocycle λ(X) = −LX(α)/α,

where α = dx. Note that λ(X5) = 1 for the 5th basis element X
(∞)
5 = −x∂x +

∑

nyn∂yn of g,

and so a relative invariant has weight wλ (or simply w ∈ N) if the number of differentiations by

x in each its monomial is w. Denote the space of relative invariants of weight w by Rw. Weights

of the above invariants Rn are w = 3, 8, 12, 16, 20, respectively (subscript n denotes the order).

Theorem 2. The field of rational absolute differential invariants is generated by the differential

invariant I5 =
R3

5

R8
3

and the invariant derivation ∇ =
R5

R3
3

Dx.

With these data one can generate additional algebraically independent invariants, one in each

order > 5. For example, we have the following invariant of order 6:

∇(I5)

I5
=

9y23y6 − 45y3y4y5 + 40y34

y43
.

The rational absolute differential invariants separate g-orbits in general position in Jk. In this

sense, generic scalar ODE of order k is given by a function of absolute invariants:

f(I5,∇(I5), . . . ,∇
k−5(I5)) = 0. (3)

The function f in (3) is either rational or analytic, depending on the setup.

The g-action is transitive on J2. On J3 there is one 4-dimensional orbit S3 = {R3 = 0}, and

its complement is a 5-dimensional orbit. For k ≥ 4 the orbits in Jk are 6-dimensional outside the

set Sk = π−1
k,3(S

3). The only invariant ODE lying inside Sk is the one given by R3 = 0 together

with its total derivatives. Outside Sk, invariant ODEs are given by (3).
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Corollary 1. Up to a contact transformation every scalar ODE of order greater than 2 with

essentially contact symmetry algebra is either R3 = 0 or is given by formula (3).

In particular, there is only one ODE of order 3 with essentially contact symmetry algebra,

namely y3 = 0, while there are no such ODEs of order 4. A connected component of a fifth-order

ODE f(I5) = 0 is given by I5 = c for some c ∈ C, with Zariski closure R3
5 = cR8

3, and the constant

c can be normalized to either 0 or 1 by rescaling y. Therefore, up to contact equivalence, there

are only three (connected) ODEs of order 3, 4, 5 with essentially contact symmetry algebra:

y3 = 0, 3y3y5 − 5y24 = 0, (3y3y5 − 5y24)
3 = y83. (4)

Their full symmetry algebras are sp(4), gl(2) ⋉ heis(3) = p1 ⊂ sp(4) and sl(2) ⋉ heis(3) ⊂ p1,

respectively.

Remark 2. This discussion also shows that the description of ODEs with essentially contact

symmetry algebra in Corollary 1 is not minimal: it contains several contact-equivalent ODEs.

To get algebraic invariant equations in simpler terms, we now describe relative differential

invariants of Lie algebra (1).

Theorem 3. The graded algebra R = ⊕w>0R
w of relative differential invariants wrt g is gen-

erated by R3, R5 and the relative invariant derivation ∇w = y3Dx −
w
3 y4 : Rw → Rw+4 in

the following sense: any R ∈ R is a polynomial combination of R3, R5 and their invariant

derivations, possibly divided by a power of R3.

The term “graded algebra” above means that Rw are vector spaces and Rw1 · Rw2 ⊂ Rw1+w2 ,

but only homogeneous elements of R are relative invariants. The algebra R is filtered by the

jet-order, and for the filtrand Rn of order ≤ n invariants we have: Rn = ⊕w>0R
w
n .

Proof. The Lie determinant of g, obtained from the 6 × 6 matrix having the coefficients of the

4th prolongation of a basis in g as entries, is equal to 36y33 . Starting from order 4 the action is

free in a Zariski-open set and there is a bijection between absolute and relative invariants, one

generator in each order.

Any absolute differential invariant is a rational function of the basic one and its invariant

derivatives, but due to stabilization of singularities (see [19]) the generators for absolute differ-

ential invariants can be chosen to have a power of R3 as denominator. �

The relative invariant derivation can be expressed through the absolute invariant derivation

∇w(R) =
R

4+w/3
3

R5
∇

(

R

R
w/3
3

)

and the above invariants are generated from R3, R5:

∇3R3 = 0, ∇8R5 =
1
3R6, ∇12R6 = R7 − 5R2

5, ∇16R7 = R8 −
7
3R5R6.

Remark 3. We can relate these relative invariants to the differential operators from Introduction:

(i) R5 = L4(y1); (ii) R6 = L5(y1); (iii) L7(y) =
1

9
(10R7 − 49R2

5).

If we require the equation E to be algebraic, then f in (3) is rational, and the Zariski closure

of the ODE is given by a polynomial equation. Hence we conclude:

Corollary 2. The irreducible algebraic ODEs with essential contact symmetry are given by the

homogeneous elements of R.
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We can effectively describe elements of R. For instance, let us derive all invariant ODEs of

order n = 5. Relative invariants of weight w = 3s + 8t have the form
∑

−t/3<i≤s/8

ciR
s−8i
3 R3i+t

5 .

This factorizes into a product of terms of type R3, R5 and R3
5 − cR

8
3 (and c 6= 0 normalizes to

c = 1). This yields the already observed invariant ODEs (4).

For higher order ODEs the situation is more complicated. The above normalization is due to

the PID property for polynomials in one variable. This property fails for polynomials with more

variables, and for any n > 5 a generic polynomial in Rw
n is irreducible. In particular, there are

infinitely many non-equivalent ODEs of orders n > 5 with essentially contact symmetry.

For instance, let us construct relative invariants using homogeneous combinations of R3, R5

and R6:
∑

3r+8s+12t=w

CrstR
r
3R

s
5R

t
6.

These combinations can factorize with a power of R3 as one of the factors. For example, we have

64R3
5 + 45R2

6 = 9R3R
′
6,

where the second factor is a relative invariant of weight w = 21

R′
6 = 45y33y

2
6 − 450y23y4y5y6 + 192y23y

3
5 + 400y3y

3
4y6 + 165y3y

2
4y

2
5 − 400y44y5

and it is the numerator of the absolute invariant

64I5 + 5

(
∇(I5)

I5

)2

.

The invariant R′
6 is not generated algebraically by R3, R5 and R6, but it appears via localization

(division by R3). This is precisely what we observed in Theorem 3.

1.3. ODEs with essentially point symmetries. In this section we consider ODEs whose

Lie algebra of symmetries is essentially point (and not essentially fiber-preserving). From the

discussion in §1.1 we obtain the following description for ODEs of order at least 2. Again, the

restriction on the order is to assure finite-dimensionality of the symmetry algebra.

Proposition 2. Assume that the symmetry algebra of a scalar ODE of order k ≥ 2 is point and

primitive. Then it contains a Lie subalgebra g that, up to a local point transformation, is given

by formula (2).

Generators for the field of rational absolute differential invariants with respect to g can be

given in terms of the relative differential invariants (see also [23, Table 5 #2.1]). The simplest

of those are:

R2 = y2, R4 = 3y2y4 − 5y23 ,

R5 = 9y22y5 − 45y2y3y4 + 40y33 , R6 = 9y32y6 − 63y22y3y5 + 105y2y
2
3y4 − 35y43 ,

R7 = 9y42y7 − 84y32y3y6 + 210y22y
2
3y5− 105y22y3y

2
4 + 210y2y

3
3y4 − 280y53 .

The space of weights is again one-dimensional but now it is generated by the cocycle λ(X) =
1

2
LX(β)/β, where β = dx ∧ dy. Note that λ(X4) = 1 for the 4th basis element X4 = −x∂x +
∑

(n+1)yn∂yn of g, and so a relative invariant has weight wλ (or simply w ∈ N) if the number

of differentiations by x plus the number of y in each its monomial is w. The space of relative

invariants with this weight w will be denoted by Rw. The weights of the above relative invariants

Rn are 3, 8, 12, 16, 20, respectively (index n is the order).
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Theorem 4. The field of rational absolute differential invariants is generated by the differential

invariant I4 =
R3

4

R8
2

and the invariant derivation ∇ =
R4

R3
2

Dx.

The g-action is transitive on J1. On J2 there is one 3-dimensional orbit S2 = {R2 = 0}, and

its complement is a 4-dimensional orbit. For any k ≥ 3 the orbits in Jk are 5-dimensional outside

the set Sk = π−1
k,2(S

2). The only invariant ODE lying inside Sk is the one given by the equation

R2 = 0 and its total derivatives. Outside Sk, invariant ODEs are given by

f(I4,∇(I4), . . . ,∇
k−4(I4)) = 0. (5)

Again, the function f is either rational or analytic, depending on the setup.

Corollary 3. Up to a point transformation every ODE of order greater than 1 with essentially

point symmetry algebra is either R2 = 0 or is given by (5).

Similar to §1.2 we conclude that the only 2nd order ODE with essentially point symmetry

algebra is trivializable, namely y2 = 0, while there are no such ODE of order 3. Furthermore, all

connected ODEs of order 2, 3, 4 with essentially point symmetry algebra are equivalent to one of

the following:

y2 = 0, 3y2y4 − 5y23 = 0, (3y2y4 − 5y23)
3 = y82. (6)

Their full symmetry algebras are sl(3), aff(2) and saff(2), respectively.

To get the algebraic invariant equations in simpler terms, we now describe relative differential

invariants of Lie algebra (2).

Theorem 5. The algebra R = ⊕k>0R
k of relative differential invariants wrt g is generated by

R2, R4 and the relative invariant derivation ∇w = y2Dx −
w
3 y3 : Rw → Rw+4 in the following

sense: any R ∈ R is a polynomial combination of R2, R4 and their invariant derivations, possibly

divided by a power of R2.

The proof is similar to that of Theorem 3 and is therefore omitted.

The relative invariant derivation can be related to the absolute invariant derivation

∇w(R) =
R

4+w/3
2

R4
∇

(

R

R
w/3
2

)

and the above relative invariants are generated from R2, R4 in the following way:

∇3R2 = 0, ∇8R4 =
1
3R5, ∇12R5 = R6 − 5R2

4, ∇16R6 = R7 −
7
3R4R5.

Corollary 4. Algebraic ODEs with essential point symmetry are given by homogeneous elements

of R.

Such ODEs can be effectively described as above. Again, up to order 4 there are finitely many

non-equivalent ODEs with essentially point symmetry algebra: actually only R2 = 0, R4 = 0

and R3
4−R

8
2 = 0, corresponding to equations (6). Starting from order 5 there are infinitely many

non-equivalent ODEs with essentially point symmetry.

Remark 4. The similarity between computations in this and the previous section has a concep-

tual explanation. The contact vector fields in (1) preserve the distribution 〈∂y〉 transversal to

the contact distribution. Hence the projection along it is a homomorphism from Lie algebra (1)

to (2) with one-dimensional kernel: wipe out every occurrence of ∂y in the first Lie algebra and

then change y1 to y. This decreases the order by 1 and is compatible with prolongations, see [5,

Sect. 6.2-6.3]. Thus the algebra R of Theorem 3 will pass to that of Theorem 4.
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2. Systems of ODEs whose symmetries are not fiber preserving

In this section we turn to systems of ordinary differential equations on two functions of one

variable. We use the notation J i = J i(C,C2) for the space of jets of a pair of functions on C.

Coordinates (x, y, z) on J0 = C× C
2 induce coordinates

(
x, {yi}

k
i=0, {zj}

k
j=0

)
on Jk.

By a (determined) system of ODEs of orders (k, l), k ≥ l, we mean a system given by two

functions F ∈ O(Jk), G ∈ O(J l) with the property
∣
∣
∣
∣

Fyk
Fzk

Gyl
Gzl

∣
∣
∣
∣
6= 0.

Such a pair defines a (k + l + 1)-dimensional submanifold

E = {F = 0, G = 0,Dx(G) = 0, . . . ,Dk−l
x (G) = 0} ⊂ Jk. (7)

A symmetry of E is a vector field on Jk tangent to E , which preserves the Cartan distribution.

The latter is spanned by ∂yk , ∂zk and D(k)
x = ∂x +

k∑

i=1

(

yi∂zi−1
+ yi∂zi−1

)

. By the Lie-Bäcklund

theorem all vector fields preserving the Cartan distribution on Jk are prolongations of point

fields on J0(C,C2), though this is not true for mixed jets3.

A vector field X on J0 is a point symmetry of E if X(k)(F )|E = 0 and X(l)(G)|E = 0. The

latter condition implies X(l+i)(Di
xG)|E = 0 for i = 1, . . . , k − l. The point symmetries make up

a Lie algebra.

If k, l ≥ 2 this Lie algebra is always finite-dimensional, while if l = 1 additional conditions

must be satisfied for it to be finite-dimensional (see Appendix A for details). Since we are relying

on the classification of finite-dimensional Lie algebras of vector fields, our description of invariant

ODE systems is complete only under these conditions.

We split the finite-dimensional Lie algebras of point vector fields into two classes: those that

preserve a 2-dimensional foliation in C
3 and those that don’t. The significance of the first class

is that its members are conjugate by point transformations to Lie algebras of vector fields that

preserve the fibers of J0. The second class can be further split into two classes:

• The primitive Lie algebras of vector fields on C
3 preserve no foliation and were classified

by Lie in [21, Chapt. 7]. There are only 8 primitive Lie algebras, and they all have one of the

following three as a Lie subalgebra:

◦ 〈∂x, ∂y, ∂z, x∂y + y∂x, x∂z + z∂x, y∂z − z∂y〉, (8)

◦ 〈∂y, ∂z , 2∂x + y∂y + z∂z, y∂y − z∂z, 2y∂x + y2∂y − e
x∂z, 2z∂x − e

x∂y + z2∂z〉, (9)

◦ 〈∂x, ∂y − z∂x, ∂z + y∂x, y∂z, z∂y , y∂y − z∂z, 2x∂x + y∂y + z∂z,

xy∂x + y2∂y + (yz + x)∂z, xz∂x + (yz − x)∂y + z2∂z, x(x∂x + y∂y + z∂z)〉. (10)

Figure 2 shows a diagram of inclusions between the eight primitive Lie algebras.

The Lie algebra (8) preserves the Minkowski metric −dx2 + dy2 + dz2 while (9) preserves the

metric dx2 + 4e−xdydz. Both of these metrics have constant curvature and the algebras are

isomorphic to so(3)⋉C
3 and so(4), respectively. The Lie algebra (10) is the projectivization of

the linear sp(4)-action on C
4(t, x, y, z) with the symplectic form dt∧ dx+ dy ∧ dz. It can also be

described as the the Lie algebra of symmetries of the scalar ODE u′′′ = 0. However, this is not

directly obvious from the coordinate expression since the contact distribution preserved by (10)

3In the space of jets of mixed order J
k,l

, k > l, with coordinates
(

x, {yi}
k
i=0, {zj}

l
j=0

)

an analog of the Lie-

Bäcklund theorem [2] allows prolongations of parameter-dependent contact vector fields, but for the sake of sim-

plicity we do not consider those in this paper.
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sl(4) sp(4)irr

gl(3)⋉C
3

sl(3) ⋉C
3

co(3)⋉C
3

so(4) sp(4)cont so(3) ⋉C
3

Figure 2. Diagram of inclusions of the primitive Lie algebras of vector fields on

C
3. The maximal elements are collected on the top, while the minimal elements

are collected on the bottom. Of these eight Lie algebras, only 2 share the same Lie

algebra structure. To distinguish them, we denote them here by sp(4)irr (preserves

no distribution) and sp(4)cont (preserves the contact distribution).

is given by the 1-form dx−zdy+ydz (i.e. not the standard coordinates on J1). In §3.2 we explain

how this action is related to a different sp(4)-action on C
3 through a twistor correspondence.

• The Lie algebras preserving a 1-dimensional foliation, but no 2-dimensional foli-

ation are contained among the Lie algebras listed by Lie in [21, Chapt. 8, §41-§44]. They all

contain a Lie subalgebra which is locally equivalent to one of the following three Lie algebras of

vector fields:

◦ 〈∂x, ∂y + x∂z, x∂y +
1
2x

2∂z, x∂x − y∂y, y∂x +
1
2y

2∂z, ∂z〉, (11)

◦ 〈∂x, ∂y, x∂y + ∂z, x∂x − y∂y − 2z∂z , y∂x − z
2∂z, x∂x + y∂y,

x2∂x + xy∂y + (y − xz)∂z , xy∂x + y2∂y + z(y − xz)∂z〉, (12)

◦ 〈∂x, ∂y, x∂y, x∂x − y∂y, y∂x, x∂x + y∂y + ∂z ,

x2∂x + xy∂y +
3
2x∂z, xy∂x + y2∂y +

3
2y∂z〉. (13)

In Appendix B we will explain why only these three Lie algebras, which we refer to as Lie16, Lie

27 and Lie29, remained from Lie’s list of 21 items.

The Lie algebra (11) is 6-dimensional and projects to the 5-dimensional Lie algebra of area-

preserving vector fields on C
2; abstractly it is isomorphic to sl(2)⋉heis(3). The Lie algebras (12)

and (13) are 8-dimensional and project to the sl(3)-action on C
2. Considering all three cases as

fiber-preserving transformations on the bundle C
2(x, y) × C(z) → C

2(x, y), we observe that the

second Lie algebra preserves a projective structure on the fibers, while the first and last of those

preserve a metric structure on the fibers, see [27].

Our goal is to describe the systems of ODEs that have finite-dimensional symmetry algebras

that do not preserve a 2-dimensional foliation. These ODEs are all invariant under one of the

six Lie algebras listed above (in suitable local coordinates). We analyse these cases, one by one,

in sections 2.2 to 2.7. The results are summarized in Tables 1 and 2 in the introduction.

2.1. A strategy for listing all invariant systems. The analysis of §1 for scalar ODEs was

relatively simple due to the fact that any scalar ODE of order k is a submanifold in Jk of

codimension 1. Therefore it is given by a function of rational absolute differential invariants

or by a scalar (polynomial) relative differential invariant. While generic systems of ODEs can
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gl(3)⋉
h⊕

k=0

Sk
C2

sl(3)1 ⋉

h⊕

k=0

Sk
C2 ((gl(2)⋉C

2)⊕ C)⋉

h⊕

k=0

Sk
C2

(gl(2)⋉C
2)⋉

a

h⊕

k=0

Sk
C2 ((sl(2)⋉C

2)⊕ C)⋉

h⊕

k=0

Sk
C2

gl(2)⋉ heis(3) (sl(2) ⋉C
2)⋉

h⊕

k=0

Sk
C2 gl(3)

sl(2) ⋉ heis(3) sl(3)2 sl(3)1

a= 2h
3

h=3

a=2

Figure 3. Diagram of inclusions for the Lie algebras listed in Proposition 6. All

inclusions hold for any fixed h ≥ 1, except for the one that is marked. Different

subscripts of sl(3) refer to different realizations of the Lie algebra, subscript a

under semidirect product encodes the action of z(gl(2)), while C2 means (C2)∗.

be given by two functions of absolute differential invariants, finding the remaining (singular)

invariant determined systems requires significantly more effort.

Let g be a Lie algebra of point symmetries of an ODE system of the form (7). If F and

G are of the same order k = l, then it is possible that the system cannot be defined as the

locus of two scalar relative or absolute differential invariants. Indeed, there exist linear systems4

{F = 0, G = 0} ⊂ Jk of codimension 2 for which

X(k)(F ) = λ1(X)F + λ2(X)G, X(k)(G) = µ1(X)F + µ2(X)G, X ∈ g,

and

(
λ1 λ2
µ1 µ2

)

∈ g
∗ ⊗ gl(2,P(J∞)) is a genuine matrix-valued cocycle.

If F and G have different orders k > l, then G is either a function of absolute invariants, or

a relative invariant. This is because the vanishing of X(k)(G) = X(l)(G) on E is independent of

the vanishing of F . In that case, F is a conditional relative invariant or a function of conditional

absolute differential invariants, defined as follows (see related definitions in [3, p. 453] and [30,

Def. 4]).

Definition 3. A function f on Jk is a conditional absolute/relative differential invariant of order

k (with respect to the invariant differential equation given by the function G of order l ≤ k) if f

is an absolute/relative invariant of the g-action on {G = 0, ...,Dk−l
x G = 0} ⊂ Jk.

In some cases the conditional invariants can be interpreted as restrictions of invariants on Jk

while in other cases they can not. The following two Lie algebra actions on the plane C
2(x, y)

illustrate this phenomenon:

4For instance, such is the Liouville invariant of scalar ODEs with cubic dependence on the first derivative

(projective connections) that is responsible for their trivialization by a point transformation, see [18].



ODES WHOSE SYMMETRY GROUPS ARE NOT FIBER-PRESERVING 15

• The Lie algebra 〈x∂x〉 has invariant I = y. The singular set where the orbit dimension

drops is given by Σ = {x = 0}, and (the restriction of) I separates orbits on Σ. The

(Zariski) closure of each 1-dimensional orbit contains a 0-dimensional orbit.

• The Lie algebra 〈y∂x〉 has the same absolute invariant I. However, on the singular set

Σ = {y = 0}, where the orbit dimension drops, the orbits are separated by the conditional

invariant J = x. All 1-dimensional orbits are closed.

Our procedure for finding invariant systems of ODEs consists of the following steps:

(1) Find generators I1, . . . , Ir and ∇ for the field of rational differential invariants. The field

separates orbits in J i \ Si, where Si ⊂ J i is a g-invariant Zariski-closed subset which by

[19] stabilizes at some order m: for i > m we have Si = π−1
i,m(Sm). For generic invariant

systems of type (7), the functions F and G can be expressed through rational absolute

invariants.

Let E ⊂ Jk be a system of type (7). If E∩Sk 6= ∅, then we can split the system into two

components: E∩Sk and E \(E∩Sk). Both components are invariant. The first component

is not in general a determined system, but it may contain invariant determined systems

of lower order.

(2) Determine the singular sets Si. These sets contain the orbits in J i where the orbit

dimension drops, but they may be larger. This is due to the fact that the closures of two

(or more) orbits may intersect in the same orbit of lower dimension. In such a situation,

the rational absolute differential invariants clearly take the same value on these orbits,

and these orbits can therefore not be separated by the absolute invariants.

Let X1, . . . ,Xq be a basis of vector fields in the Lie algebra g. Let r be the dimension of

a generic g-orbit in J i, meaning that the dimension of the subspace 〈X
(i)
1 |θ, . . . ,X

(i)
q |θ〉 ⊂

TθJ
i is r for a point θ ∈ J i in general position. The set where the orbit dimension

drops is given by the simultaneous vanishing of all determinants of r × r-minors of the

q × (dim J i)-matrix defined by these q prolonged vector fields. Note that even though

this set in principle is easy to find, it can be quite complicated. In the following, we

will skip most of the details regarding such computations and instead summarize the

results. Computations were often done with the help Maple and, in particular, the

PolynomialIdeals package in addition to the DifferentialGeometry package.

In all the cases we consider, the set Si can, for sufficiently large i, be chosen such

that it has codimension 1. In this case, it can be given by a product of scalar relative

invariants. In particular, we have Si = {R1 · · ·Rq = 0} for i ≥ m for some relative

differential invariants R1, . . . , Rq.

(3) For each of the relative invariants R1, . . . , Rq defining Sm, consider the invariant under-

determined ODE Σi
j ⊂ J

i given by Rj = 0 and its total derivatives. Repeat steps (1) and

(2) on each of these, i.e. find conditional absolute and relative invariants. Any connected

component of a determined system inside Si must also be contained inside Σi
j for some j.

(4) The remaining determined systems, where F and G are necessarily of the same order

k = l, are submanifolds of Sk of codimension 2 in Jk. In the cases we consider, they can

be quickly singled out by analyzing the orbits on J i in detail for small i.

2.2. Poincaré transformations on 3-dimensional Minkowski space. Consider Lie algebra

(8) of vector fields preserving the flat metric, and denote it by g. Real signature (2, 1) is equivalent

to the Euclidean signature (3, 0) over C; the former choice makes the zero locus of the first relative
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invariant R1 real. This and other lower order relative differential invariants are

R1 = y21 + z21 − 1,

R2 = (y21 − 1)z22 − 2y1z1y2z2 + (z21 − 1)y22 ,

R3a = z2y3 − y2z3,

R3b = R1Dx(R2)− 3Dx(R1)R2.

The weight λ of any relative invariant satisfies5 λ(X4) = −wy1 and λ(X5) = −wz1 for some w,

and is proportional the divergence of the prolonged vector fields with respect to the volume form

dx ∧ dy ∧ dz ∧ dy1 ∧ dz1 on J1. In particular, the relative invariant R1 has weight w = 2, while

R2 and R3a have weights w = 6, and R3b has weight w = 9.

Theorem 6. The field of absolute differential invariants is generated by the differential invariants

I2 =
R2

R3
1

, I3a =
R3a

R3
1

and the invariant derivation ∇ =
R3b

R5
1

Dx.

Proof. It is straight-forward to verify that the indicated set is invariant, and since the invari-

ants are rational it is suffices to do this on infinitesimal level, that is X(3)(I2) = X(3)(I3a) = 0,

[X(∞),∇] = 0 ∀ X ∈ g. We also compute that this set generates 2k−3 algebraically independent

rational invariants in each order k ≥ 2. To show that there exists no invariant field extension

of rational differential invariants note that the invariants ∇r(I2),∇
r−1(I3a) are linear when re-

stricted to fibers of Jk+1 → Jk for k ≥ 3. Thus it is enough to demonstrate the claim for the

field of differential invariants of order 3, where it is a direct computation. �

Remark 5. Solving the system [X(∞),∇] = 0 for ∇ = fDx gives a simpler solution f = R
−1/2
1 ,

however such ∇ is not invariant because the transformation (x, y, z) 7→ (−x,−y, z), which lies in

the flow of x∂y + y∂x, maps R
−1/2
1 Dx to −R

−1/2
1 Dx.

The generators in Theorem 6 are well-known. The invariant I2 is the square of the curvature,

I3a/I2 is proportional to the torsion, but differentiation by the natural parameter is not an

invariant derivation, as we have just noted.

Now, let us make a detailed analysis of orbits on Jk for small k. The action is transitive on

J0. On J1 there are two orbits: S1 = {R1 = 0} and its complement. On J2 generic orbits

have dimension 6 (codimension 1). There are two 5-dimensional orbits, whose Zariski closures

are {y2 = 0, z2 = 0} and {R1 = 0,Dx(R1) = 0}, respectively. The intersection of these two sets

is the unique 4-dimensional orbit {R1 = 0,Dx(R1) = 0, z1y2 − y1z2 = 0}. All three orbits of

dimension less than 6 lie inside the subset {R2 = 0} ⊂ J2, so we set S2 = {R2 = 0}. For k > 2

all orbits lying outside Sk = π−1
k,2(S

2) are 6-dimensional. Any system of ODEs that is not strictly

contained in S∞ is given by functions of rational absolute differential invariants.

Lemma 1. Let E ⊂ Jk be a g-invariant determined ODE system of type (7), given by functions

F ∈ O(Jk), G ∈ O(J l) of orders k and l ≤ k. Then, if F and G are not functions of rational

absolute differential invariants, there are three possibilities:

• G = R1, l = 1 and k ≥ 2,

• G = R2, l = 2 and k ≥ 3,

• F = y2, G = z2 and k = l = 2.

Note that the third case is determined by looking for a subset {F = 0, G = 0} which lies

strictly inside {R2 = 0} ⊂ J2. Since the equation {F = 0, G = 0} ⊂ J2 has codimension 2, it

5Here and below we use the basis Xi as in the defining formula of g, and indicate only the nontrivial λ(Xi).
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consists of orbits of dimension 5 or less. From the above analysis, we know there is only one

determined system of this type: {y2 = 0, z2 = 0}.

The cases when G = R1 and G = R2 must been considered separately. Since the generators

we found for absolute invariants vanish or diverge under these conditions, we must compute

conditional differential invariants. Notice that we have R2 = (y22 + z22)R1 − (Dx(R1)/2)
2. This

implies that the equation R2 = 0 is a differential consequence of R1 = 0 and, in particular, does

not give a determined system when added to the equation R1 = 0.

Consider the subset

Σk = {R1 = 0,Dx(R1) = 0, . . . ,Dk−1
x (R1) = 0} ⊂ π−1

k,1(S
1) ⊂ Jk.

Since R1 is a relative invariant, this set is preserved by g, and we consider the g-action on Σk.

The action is transitive on Σ1. On Σ2, there is one singular orbit given by the vanishing of the

conditional relative invariant Q2 = z1y2 − y1z2. (On Σ3 the vanishing of Q2 is equivalent to the

vanishing of R3a.) This gives the determined system {R1 = 0,Dx(R1) = 0, Q2 = 0} which is

exactly the 4-dimensional orbit in J2 described above. The g-action is transitive on Σ3\{Q2 = 0}.

It follows that orbits are 6-dimensional on Σk \ {Q2 = 0} for k ≥ 3. The manifold Σ4 ⊂ J4 is 7-

dimensional, so there is one algebraically independent conditional absolute differential invariant

of order 4. Then there is one additional independent invariant of each higher order. The first

takes the form

J4 =
4Q2D

2
x(Q2)− 7Dx(Q2) + 4Q4

2

Q3
2

.

We also have the conditional invariant derivation

∇Σ =
Dx(J4)

Q2
Dx

which, together with J4, generates all conditional absolute differential invariants on Σk.

Next, we consider the subset

Πk = {R2 = 0,Dx(R2) = 0, . . . ,Dk−2
x (R2) = 0} ⊂ Jk.

There is one 6-dimensional orbit on Π2. The orbit dimension drops on the union of {y2 = 0, z2 =

0} and {R1 = 0,Dx(R1) = 0}. The first of these contains a determined invariant system. On

Π3, we have the following conditional absolute invariant and invariant derivation:

K3 =
(R1y3 −

3
2Dx(R1))y

2
2

(y21z2 − y1y2z1 − z2)
3 , ∇Π =

R1y3 −
3
2Dx(R1)

y2R
2
1

Dx.

They generate all conditional absolute invariants on Πk.

Remark 6. The algebraic subsets Πk are reducible for k ≥ 3. For example, Π3 has 3 irreducible 7-

dimensional components. Two of these components are {y2 = 0, z2 = 0} and {R1 = 0,Dx(R1) =

0, y21z2−y1y2z1−z2 = 0}. The first of these is a determined ODE system, while all ODE systems

lying inside the latter set was considered in the paragraph concerning Σk. Thus we are mainly

concerned with the remaining irreducible component, and it is here that K3 separates generic

orbits.

By collecting the results of the above computations, we obtain the following statement which

gives a description of the invariant ODE systems.

Theorem 7. Let E ⊂ Jk be a g-invariant determined ODE system of type (7), given by functions

F ∈ O(Jk), G ∈ O(J l) of orders k and l ≤ k. Then, either F and G can be expressed through

rational absolute differential invariants or the system takes one of the following forms:
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• G = R1 and either F = Q2 or F is a function of the conditional absolute invariants,

which are generated by ∇Σ and J4.

• G = R2 and F is a function of the conditional absolute invariants, which are generated

by ∇Π and K3.

• G = y2 and F = z2.

Some of these differential equations have well-known geometric interpretations. The equation

R1 = 0 gives null curves, while the system y2 = 0, z2 = 0 gives geodesics in Minkowski space.

The intersection of these, which can also be given by R1 = 0, Q2 = 0, has null geodesics as

solutions. Finally, R2 = 0 is the condition for vanishing of curvature κ of the curve (R2 is the

numerator of κ2), but in non-Euclidean signature this does not mean the curve is a straight line.

2.3. Isometry algebra of a metric of constant nonzero curvature. Consider Lie algebra

(9) of Killing vectors for a space form of nonzero curvature. Investigation of orbits for this Lie

algebra, which we denote by g, is completely analogous to that of (8), therefore we omit the

proofs.

We will express the absolute differential invariants through the following relative invariants:

R1 = ex + 4y1z1,

R2 = (z1 − z2)(y1 − y2)R
2
1 − (3(y1z1 − y1z2 − y2z1)

2 + y21z
2
1 − 2y21z

2
2 − 2z21y

2
2)R1

+ 4y1z1(y1z1 − y1z2 − y2z1)
2,

R3a = ((z1 − z2)y3 − (y1 − y2)z3 + y1z2 − y2z1) e
2x +

(

(2y1y3 − 3y22)z
2
1 − (2z1z3 − 3z22)y

2
1

)

ex,

R3b = ex/2(R1Dx(R2)− 3Dx(R1)R2).

The weight λ of each of these relative invariants satisfies

λ(X3) = w, λ(X5) = w(y0 − 2y1), λ(X6) = w(z0 − 2z1),

for some integer w. For R1, R2, R3a, R3b, we have w = 2, w = 6, w = 6, w = 9, respectively.

Theorem 8. The field of absolute differential invariants is generated by the differential invariants

I2 =
R2

R3
1

, I3a =
R3a

R3
1

and the invariant derivation ∇ =
ex/2R3b

R5
1

Dx.

The description of orbits on Jk for small k follows that of the previous Lie algebra, step by

step.6 The action is transitive on J0. On J1, there are two orbits: S1 = {R1 = 0} and its

complement. On J2 there is one 4-dimensional orbit, namely {R1 = 0,Dx(R1) = 0, z1y2−y1z2 =

0}, and two 5-dimensional orbits. The Zariski closures of the latter ones are

{y2 − y1(1 + 2e−xy1z1) = 0, z2 − z1(1 + 2e−xy1z1) = 0} and {R1 = 0,Dx(R1) = 0}.

The intersection of these two sets is the unique 4-dimensional orbit. The orbits in general position

are 6-dimensional. All three orbits of dimension less than 6 lie inside the subset {R2 = 0} ⊂ J2.

Set S2 = {R1R2 = 0}. For k > 2, all orbits lying outside Sk = π−1
k,2(S

2) are 6-dimensional.

Consider the g-invariant subset

Σk = {R1 = 0,Dx(R1) = 0, . . . ,Dk−1
x (R1) = 0} ⊂ Jk.

There is a conditional relative invariant Q2 = z1y2−y1z2. The vanishing of Q2 on Σ2 is equivalent

to the vanishing of R3a|Σ2 and gives exactly the set on Σ2 where the orbit dimension drops (down

6This can be explained by the fact that both Lie algebras preserve a metric of constant curvature. Due to

transitivity of g on J
0
, the differential invariants of order k are in one-to-one correspondence with the invariants

of the prolonged action on J
k
of the stabilizer of a point in J

0
, which is so(3) in both cases.
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to 4). The g-action is transitive on Σ3 \ {Q2}. Thus orbits are 6-dimensional on Σk \ {Q2} for

k ≥ 3.

The conditional absolute invariants on Σk are generated by

J4 =
ex
(

4Q2D
2
x(Q2)− 7Dx(Q2)

2 + 2Q2Dx(Q2)
)

Q3
2

− 16e−xQ2

and the invariant derivation

∇Σ =
Dx(J4)

Q2
exDx.

Consider now the g-invariant underdetermined ODE

Πk = {R2 = 0,Dx(R2) = 0, . . . ,Dk−2
x (R2) = 0} ⊂ Jk.

The orbit dimension on Π2 drops on the union of the subset

{y2 − y1(1 + 2e−xy1z1) = 0, z2 − z1(1 + 2e−xy1z1) = 0} ∪ {R1 = 0,Dx(R1) = 0},

and the complement of this subset is a 6-dimensional orbit. The first of these components is a

determined system, while the second component is the intersection of Π2 with Σ2.

We have a third-order conditional absolute differential invariant

K3 =
1

(4y1z1 + ex)(2y21z1 + ex(y1 − y2))
2

(

(y1 − y2)(y1 − 3y2 + 2y3)e
3x +

(
(8z1 − 4z2)y

3
1

+(4(3z2 − 5z1)y2 + 4y3(z1 + z2))y
2
1 − 4(3y22z2 + y2y3z1)y1 + 12y32z1

)
e2x + 12y31z

2
1(y1 − 2y2)e

x
)

and the conditional invariant derivation ∇Π =
ex

R1
Dx(K3)Dx. These generate the conditional

differential invariants. Notice that Πk is in general reducible. But similar to what was explained

in Remark 6, most of the ODE systems contained in the irreducible components have already been

considered in the discussion concerning Σk, and the remaining ones are given by the conditional

differential invariants.

Theorem 9. Let E ⊂ Jk be a g-invariant determined ODE system of type (7), given by functions

F ∈ O(Jk), G ∈ O(J l) of orders k and l ≤ k. Then, either F and G can be expressed through

rational absolute differential invariants or the system takes one of the following forms:

• G = R1 and either F = Q2 or F is a function of the conditional absolute invariants

which are generated by ∇Σ and J4.

• G = R2 and F is a function of the conditional absolute invariants which are generated

by ∇Π and K3.

• G = y2 − y1(1 + 2e−xy1z1) and F = z2 − z1(1 + 2e−xy1z1).

Note that the last system {G = 0, F = 0} is point-equivalent to {y2 = 0, z2 = 0}. As in

§2.2 solutions of this system are the geodesics of the metric preserved by g. Again, R1 = 0

gives exactly the null curves. The solutions of the determined system R1 = 0, Q2 = 0 are null

geodesics. And R2 = 0 expresses zero square curvature of a curve in a space form.
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2.4. A 3D action of sp(4). Let now g denote Lie algebra (10). The first relative invariants g

are the following:

R1 = yz1 − zy1 + 1

R3 = z2y3 − y2z3

R4 = 3R2
1Dx(R3)

2 + 4R1R3(4R1(y3z4 − z3y4) + 3Dx(R1)Dx(R3))

− 4R2
3

(

16R1(yz3 − zy3)− 15Dx(R1)
2 + 24R1(y1z2 − z1y2)

)

R5a = 2R1R3(z2y5 − y2z5)− 3R1Dx(R3)
2 + 4R2

3(yz3 − zy3 + z1y2 − y1z2)

+ 2R3 (3R1(z3y4 − y3z4)−Dx(R1)Dx(R3))

R5b = R1R3Dx(R4)−
(
R3Dx(R1) +

5
2R1Dx(R3)

)
R4.

The weight lattice in this case is two-dimensional, and given by

λ(X2) = w1z1, λ(X3) = −w1y1, λ(X7) = −w2,

λ(X8) = (w1 − w2)y − w1xy1, λ(X9) = (w1 −w2)z − w1xz1, λ(X10) = −w2x.

For invariants R1, R3, R4, R5a, R5b the weights (w1, w2) are (1, 0), (6, 8), (16, 20), (15, 20), (24, 30).

Theorem 10. The field of absolute differential invariants is generated by I4 =
R2

4

R2
1R

5
3

, I5a =

R4R5a

R1R
5
3

and the invariant derivation ∇ =
R5b

R1R
4
3

Dx.

Remark 7. Although the derivation R
1/2
1 R

−1/4
3 Dx commutes with the prolonged action of g,

it is not invariant since it changes sign under the transformation (x, y, z) 7→ (−x,−y, z). The

multivalued functions
R4

R1R
5/2
3

and
R5a

R
5/2
3

are infinitesimally invariant, but they change sign under

the transformation (x, y, z) 7→ (ix, iy, z). Both of these transformations belong to the flow of

x∂x + y∂y, which is contained in our Lie algebra of vector fields.

We analyse the orbits on Jk for low k. On J1, the orbits are S1 = {R1 = 0} and its

complement. On J2, there is one 7-dimensional orbit. The set on which the orbit-dimension

drops is S2 = {R1 = 0} ∪ {y2 = 0, z2 = 0}. The set on which the orbit-dimension is ≤ 5 is

{R1 = 0,Dx(R1) = 0} ∪ {y2 = 0, z2 = 0}. The two irreducible components of S2 intersect in the

unique 4-dimensional orbit {R1 = 0,Dx(R1) = 0, z1y2−y1z2 = 0}. Thus we have two determined

systems on J2, similar to the previous cases.

On J3 there is one 9-dimensional orbit. The set on which the orbit-dimension drops is S3 =

{R1R3 = 0}. The radical polynomial ideal of the set of orbits with dim ≤ 7 contains the element

z2R1, hence there are no determined systems of codimension 2 in J3.

The space J4 is 11-dimensional, and generic orbits are 10-dimensional. The set of points where

the orbit dimension is less than or equal to 9 is not easy to describe precisely. However, it can

be checked that its radical ideal contains the polynomial R1R3. Thus we set S4 = π−1
4,3(S

3), and

in general Sk = π−1
k,3(S

3) for k ≥ 4. All orbits outside Sk are 10-dimensional for k ≥ 4.

Let Σk denote the underdetermined system given by R1 = 0:

Σk = {R1 = 0,Dx(R1) = 0, . . . ,Dk−1
x (R1) = 0} ⊂ π−1

k,1(S
1) ⊂ Jk.

The g-action is transitive on Σ1. On Σ2 there is one 5-dimensional orbit and one 4-dimensional

orbit. The latter is given by the vanishing of Q2 = z1y2 − y1z2. (On Σ3, the vanishing of
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Q2 is equivalent to that of R3|Σ3 .) The set Σ3 consists of one 6-dimensional orbit, one 5-

dimensional orbit, whose Zariski closure is given by Q2 = 0, and one 4-dimensional orbit given

by Q2 = 0,Dx(Q2) = 0.

On Σ4 there is no invariant submanifold of codimension 1 given by additional constraints of

order 4. The same goes for Σ5. On Σ6, there is one 9-dimensional orbit. The orbit dimension

drops exactly on the set Q2Q6 = 0, where Q6 is given by

Q6 = 10Q3
2D

4
x(Q2)− 70Q2

2Dx(Q2)D
3
x(Q2) +

(

16Q4
2 + 280Q2Dx(Q2)

2
)

D2
x(Q2)

− 49Q2
2D

2
x(Q2)

2 − 175Dx(Q2)
4 − 20Q3

2Dx(Q2)
2 + 9Q6

2.

On Σ7 the complement of (the Zariski closure of) {Q2Q6 = 0} is a 10-dimensional orbit, and on

Σk for k ≥ 8 the complement of {Q2Q6 = 0} consists of 10-dimensional orbits. The conditional

absolute invariants are generated by

J8 =
Q2

8

Q5
6

, ∇Σ =
Q2

2 (2Q6Dx(Q8)− 5Q8Dx(Q6))

Q4
6

Dx,

where Q8 is given by

Q8 = 40Q2
2Q6D

2
x(Q6)− 45Q2

2Dx(Q6)
2 + 40Q2Dx(Q2)Q6Dx(Q6)

−
(

32Q3
2 + 224Q2D

2
x(Q2)− 160Dx(Q2)

2
)

Q2
6.

The absolute invariant

∇Σ(J8) =
Q2

2Q8 (2Q6Dx(Q8)− 5Q8Dx(Q6))
2

Q10
6

is of degree 2 when restricted to a fiber of J9 → J8. Due to the factor Q8, there is no algebraic

extension of the field 〈J8,∇Σ(J8)〉 of rational conditional invariants that contains an invariant of

lower degree on this fiber. On the other hand, ∇Σ(∇Σ(J8)) is linear on the fibers of J10 → J9.

Thus, there is no nontrivial extension of the field generated by J8 and ∇Σ inside the field of

rational conditional absolute invariants.

Now consider the g-action on

Πk = {R3 = 0,Dx(R3) = 0, . . . ,Dk−3
x (R3) = 0} ⊂ π−1

k,3(S
3) ⊂ Jk.

There is one 8-dimensional orbit on the complement of {y2 = 0, z2 = 0} ∪ {R1 = 0, R3 = 0} in

Π3. The set Π4 consists of two irreducible 9-dimensional components:

{y2 = 0, z2 = 0}, {R3 = 0,Dx(R3) = 0, z3y4 − y3z4 = 0}.

The first of these was discussed above. In order to avoid this component (and higher-order

analogues), we use coordinates x, y, y1, . . . , yk, z, z1, z2 on Πk and replace in our formulas all

occurrences of zi for i ≥ 3 using z3 = y3z2/y2 and its derivatives.

There is a conditional relative invariant of order 4:

P4 = (3z2z4 − 4z23)R
2
1 − 6z2 (z3Dx(R1) + 3z2(y1z2 − y2z1))R1 + 9z22Dx(R1)

2.

Orbits are 9-dimensional on the complement of P4 = 0 in Π4 \{y2 = 0}. Also on Π5 \{y2 = 0},

the orbits are 9-dimensional on the complement of P4. The two conditional absolute invariants
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on Πk are generated by the conditional absolute invariants

K5 =
z62R

6
1(9y

2
2y5 − 45y2y3y4 + 40y33)

2

y62P
3
4

,

K6 =
z42R

3
1

y42P
2
4

(

(9y32y6 − 72y22y3y5 − 45y22y
2
4 + 300y2y

2
3y4 − 200y43)R1

+ (27y32y5 − 135y22y3y4 + 120y2y
3
3)Dx(R1)

)

,

and the conditional invariant derivation

∇Π = Dx(K5)
−1Dx.

Theorem 11. Let E ⊂ Jk be a g-invariant determined ODE system as in (7), given by functions

F ∈ O(Jk), G ∈ O(J l) of orders k and l ≤ k. Then, either F and G can be expressed through

rational absolute differential invariants or the system takes one of the following forms:

• G = R1 and F = Q2, F = Q6 or F is a function of the conditional absolute invariants

which are generated by J8 and ∇Σ.

• G = R3 and F = P4 or F is a function of the conditional absolute invariants which are

generated by K5, K6 and ∇Π.

• G = y2 and F = z2.

The equation R1 = 0 describes Legendrian curves, while R3 = 0 describes curves lying in a

plane; and the system {y2 = 0, z2 = 0} gives indeed all straight lines in C
3.

2.5. Foliation-preserving algebra Lie16. For Lie algebra g defined by (11), the functions

R1 = z1 − y, R2 = y2, R3a = (z2 − y1)y3 − y2z3

are relative differential invariants. The weight λ of any of these is of the form

λ(X4) = −w, λ(X5) = −wy1,

with w equal to 1, 3 and 6, respectively. By computations similar to above we get:

Theorem 12. The field of rational absolute differential invariants is generated by I2 = R2/R
3
1,

I3a = R3a/R
6
1 and ∇ = R−1

1 Dx.

The g-action is transitive on J0. On J1 there is one open 5-dimensional orbit and one 4-

dimensional orbit given by S1 = {R1 = 0}. On J2 orbits in general position are 6-dimensional.

The orbit-dimension drops on the set S2 = {R1R2 = 0}. Its irreducible components intersect

in the 4-dimensional orbit {R1 = 0,Dx(R1) = 0, R2 = 0}. It is clear that g-orbits on Jk are

6-dimensional outside the subset Sk = π−1
k,2(S

2).

Let us restrict to the underdetermined ODE

Σk = {R1 = 0,Dx(R1) = 0, . . . ,Dk−1
x (R1) = 0} ⊂ Jk.

The action is transitive on Σ1. On Σ2 there is one open 5-dimensional orbit and one 4-dimensional

orbit, separated by the vanishing of R2. This gives the first invariant determined system: {R1 =

0,Dx(R1) = 0, R2 = 0}. On Σ3 there is one 6-dimensional orbit, one 5-dimensional orbit (whose

Zariski closure is given by R2 = 0) and one 4-dimensional orbit, given by R2 = 0 and Dx(R2) = 0.

On Σ4 generic orbits are 6-dimensional, and the orbit dimension drops on the set given by R2 = 0.

The conditional absolute invariants on Σk are generated by

J4 =
(3y2y4 − 5y23)

3

y82
, ∇Σ =

3y2y4 − 5y23

y32
Dx.
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Notice that J4 is equal to the restriction of (3I2(∇
2(I2)− 3I3a)− 5∇(I2)

2 − 9I32 )
3/I82 to Σ4.

Thus this can be viewed as an actual absolute invariant, not only conditional. One can also

rewrite ∇Σ in this way, but then one needs to use R1 in addition.

Now we restrict to

Πk = {R2 = 0,Dx(R2) = 0, . . . ,Dk−2
x (R2) = 0} ⊂ Jk.

Generic orbits in Πk are 5-dimensional for every k, and the dimension drops only when both

R1 = 0 and Dx(R1) = 0. The conditional absolute invariants on Πk are generated by ∇ and

K2 =
Dx(R1)

R2
1

.

Theorem 13. Let E ⊂ Jk be a g-invariant determined ODE system as in (7), given by functions

F ∈ O(Jk), G ∈ O(J l) of orders k and l ≤ k. Then, either F and G can be expressed through

rational absolute differential invariants or the system takes one of the following forms:

• G = R1 and either F = R2 or F is a function of the conditional absolute invariants

generated by J4 and ∇Σ.

• G = R2 and F is a function of the conditional absolute invariants which are generated

by K2 and ∇.

Remark 8. A consequence of choosing coordinates so that the 1-dimensional invariant foliation

(given by x = const, y = const) is tangent to the fibers of J0 in our split coordinates (given by

x = const) is that it can not be given by equations of the form y = ỹ(x), z = z̃(x). However, after

applying the point transformation (x, y, z) 7→ (z, y, x), the 1-dimensional leaves can be given by

y = const and z = const and they are thus solutions to the system y1 = 0, z1 = 0. Thus, in

addition to the systems described in the theorem above, there is one additional determined system

of order 1 if the 1-dimensional foliation is not tangent to the fibers x = const. This phenomenon

occurs also for the next two Lie algebras we consider (Lie27 preserves two 1-dimensional foliations,

one of which is not tangent to x = const). See also the discussion in §3.1.

2.6. Foliation-preserving algebra Lie27. Consider Lie algebra (12) and denote it by g. The

following are the first relative differential invariants:

R1 = y1 − z,

R2a = y2,

R2b = z1y2 + (z − y1)z2 − 2z21 ,

R3 = R1 (R2bDx(R2a)−R2aDx(R2b)) + 3R2aR2b(Dx(R1)−R2a)),

R4a = R2
1

(

3R2aD
2
x(R2a)− 4Dx(R2a)

2
)

− 3R2
2a

(

3R2
2a − 6R2aDx(R1) + 2R1Dx(R2a)

)

,

R4b = R1R2aDx(R3)−R
2
1R2aR2bD

2
x(R2a)−

(
8
3R1Dx(R2a) + 4Dx(R1)R2a − 4R2

2a

)

R3

+ 4
3R

2
1R2bDx(R2a)

2 + 2R1R
2
2aR2bDx(R2a)− 3R3

2aR2b (2Dx(R1)−R2a) .

The weight λ of these relative invariants satisfies

λ(X4) = 3w1 − 2w2, λ(X5) = (3w1 − 2w2 + w3)z − w3y1, λ(X6) = −w1,

λ(X7) = −w2x, λ(X8) = ((3w1 − 2w2 + w3)z − w3y1)x− (3w1 −w2)y

where (w1, w2, w3) are equal to (0, 1, 1), (1, 3, 3), (2, 6, 3), (4, 12, 8), (4, 12, 10) and (6, 18, 13),

respectively.
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Theorem 14. The field of rational differential invariants is generated by the invariants I3 =

R3
3

(R2aR2b)
4 , I4a =

R2
4a

R3R
4
2a

, I4b =
R2

4bR
8
2a

R5
4a

and the invariant derivation ∇ =
R1R2aR2b

R3
Dx.

The action is transitive on J0. The space J1 consists of one 5-dimensional orbit. The sub-

manifold S1 = {R1 = 0} is exactly the set of points where the orbit dimension drops. On

J2 there is one open 7-dimensional orbit. The orbits of lower dimension unite in the subset

S2 = {R1R2aR2b = 0}. It can easily be verified that the subset in J3 where the orbit dimension

drops is contained in S3 = π−1
3,2(S

2), and it follows that orbits in Jk for k ≥ 3 are 8-dimensional

outside the subset Sk = π−1
k,2(S

2).

Now let us restrict to the subset

Σk = {R1 = 0,Dx(R1) = 0, . . . ,Dk−1
x (R1) = 0} ⊂ Jk.

On Σ1 there are two orbits, separated by the vanishing of the conditional relative invariant

Q1 = z1. In Σ2 the complement of Q1 = 0 consists of a 5-dimensional orbit. Notice that

R2a|Σ2 = Q1. In Σ3 the complement of {Q1 = 0} consists of a 6-dimensional orbit. On Σ4,

we have a new conditional relative invariant Q4 = 9z21z4 − 45z1z2z3 + 40z32 . The complement of

{Q1Q4 = 0} is a 7-dimensional orbit. In Σ5, the complement of {Q1Q4 = 0} is an 8-dimensional

orbit. In Σk for k ≥ 6, the complement of {Q1Q4 = 0} consists of 8-dimensional orbits. Using

the notation

Q6 = 2Q1Q4

(

Q1D
2
x(Q4) +Dx(Q1)Dx(Q4)

)

− 7
3Q

2
1Dx(Q4)

2 −
(

9Q1D
2
x(Q1)− 7Dx(Q1)

2
)

Q2
4,

we get the following generators for the conditional absolute invariants:

J6 =
Q3

6

Q8
4

, ∇Σ =
Q1Q6

Q3
4

Dx.

Next, consider the subset

Πk
a = {R2a = 0,Dx(R2a) = 0, . . . ,Dk−2

x (R2a) = 0} ⊂ Jk.

On Π2
a there is an open 6-dimensional orbit. The orbit dimension drops on the subset {R1R2b =

0}. On Π3
a the open orbit is 7-dimensional, and the orbit dimension drops on the subset of

{R1R2b = 0}. On Π4
a there is a conditional relative invariant:

P4 = 3R2bz4 + 4R1z
2
3 + 6z2

(

4z1z3 − 3z22

)

.

The complement of {R1R2bP4 = 0} is an 8-dimensional open orbit. Furthermore, each orbit on

the complement of {R1R2bP4 = 0} in Πk
a is 8-dimensional, for every k ≥ 4. The following is a

conditional relative invariant on Π5
a:

P5 =
(

9z22z5 − 45z2z3z4 + 40z33

)

R3
1 +

(

36z2z1(z1z5 − 5z2z4 + 10z23)− 90z3(z
2
1z4 + z32)

)

R2
1

+
(

18z31(2z1z5 − 25z2z4) + 90z22z1(14z1z3 − 9z22)
)

R1 − 180z31

(

z21z4 − 4z1z2z3 + 3z32

)

The conditional absolute invariants are generated by

K5 =
P 2
5

(R1P4)
3 , ∇a =

R2bP5

(R1P4)
2Dx.

Consider now the subset

Πk
b = {R2b = 0,Dx(R2b) = 0, . . . ,Dk−2

x (R2b) = 0} ⊂ Jk.

On Π2
b there is an open 6-dimensional orbit. The orbit dimension drops on the subset {R1R2a =

0}. All ODE systems in the subset given by {R1R2a = 0} are already considered.
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The set Π3
b is reducible and consists of two 7-dimensional irreducible components:

{R1 = 0, z1 = 0}, {R2a = 0,Dx(R2a) = 0, z2y3 − y2z3 + 2z1z3 − 3z22 = 0}.

The first component is defined by equations of lower order and hence was already treated. In

order to avoid this subset (and its higher-order analogues), we use coordinates x, y, y1, z, z1, . . . , zk
on Πk

b by replacing yi for i ≥ 2 using the formula y2 = (2z21 + (y1 − z)z2)/z1 and its derivatives.

On Π3
b \{z1 = 0} the open orbit is 7-dimensional, and the orbit dimension drops on the subset

{R1R2a = 0}. On Π4
b \ {z1 = 0} there is a conditional relative invariant:

T4 = 3z21(R1z2 + 2z21)z4 − 4R1z
2
1z

2
3 − 6z1z2(R1z2 + 6z21)z3 + 9z32(R1z2 + 4z21).

The complement of R1R2aT4 = 0 is an 8-dimensional open orbit. Furthermore, each orbit on the

complement of R1R2aT4 = 0 in Πk
b \ {z1 = 0} for every k ≥ 4 is 8-dimensional. If we let

T5 = 3R1 (Dx(R1) + z1) z
2
1Dx(T4)− z

2
1

(

10R1D
2
x(R1) + 3Dx(R1)

2 − 5z1Dx(R1)− 28z21

)

T4,

then the conditional absolute invariants are generated by

L5 =
T 2
5

(R1T4)
3 , ∇b =

z21R2aT5

(R1T4)
2Dx.

Theorem 15. Let E ⊂ Jk be a g-invariant determined ODE system as in (7), given by functions

F ∈ O(Jk), G ∈ O(J l) of orders k and l ≤ k. Then, either F and G can be expressed through

rational absolute differential invariants or the system takes one of the following forms:

• G = R1 and F = Q1, F = Q4 or F is a function of the conditional absolute invariants

which are generated by J6 and ∇Σ.

• G = R2a and F = R2b, F = P4 or F is a function of the conditional absolute invariants

which are generated by K5 and ∇a.

• G = R2b and F = R2a, F = T4 or F is a function of the conditional absolute invariants

which are generated by L5 and ∇b.

2.7. Foliation-preserving algebra Lie29. For Lie algebra (13), which we in this section de-

note by g, the first relative differential invariants are

R2 = y2,

R3 = (3(2z21 + 3z2)y3 − 9y2z3 − 2z1y2(2z
2
1 + 9z2))e

2z ,

R4a = (3y2y4 − 5y23 − 4z1y2y3 + 4y22(z
2
1 + 3z2))e

4z/3.

The weight λ of these relative invariants satisfies

λ(X4) = −w, λ(X5) = −wy1, λ(X6) = −w/3, λ(X7) = −wx, λ(X8) = −wxy1,

where w is equal to 3, 6 and 8, respectively.

Theorem 16. The field of absolute differential invariants is generated by the differential invari-

ants I3 =
R3

R2
2

, I4a =
R3

4a

R8
2

and the invariant derivation ∇ = e2z/3
R4a

R3
2

Dx.

The Lie algebra g is transitive on J1. There is only one orbit. On J2 there is one 7-dimensional

orbit. Its complement S2 = {R2 = 0} consists of orbits of lower dimension. On J3 generic orbits

are 8-dimensional. The subset on which the orbit dimension drops is π−1
3,2(S

2). In a similar way,

the orbits on Jk are 8-dimensional outside the set π−1
k,2(S

2) for k > 3.
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Thus, the invariant determined systems that are not given by absolute invariants lie inside the

subset

Σk = {R2 = 0,Dx(R2) = 0, . . . ,Dk−2
x (R2) = 0} ⊂ Jk.

On Σ2, there is one 6-dimensional orbit and one 5-dimensional orbit. The latter is given by the

additional constraint Q2 = 3z2 + 2z21 . Also for k > 2 the generic orbits in Σk are 6-dimensional

in the complement of {Q2 = 0}. The conditional absolute invariants are generated by

J3 =
(9z3 + 36z1z2 + 16z31)

2

Q3
2

, ∇Σ =
9z3 + 36z1z2 + 16z31

Q2
2

Dx.

Theorem 17. Let E ⊂ Jk be a g-invariant determined ODE system as in (7), given by functions

F ∈ O(Jk), G ∈ O(J l) of orders k and l ≤ k. Then, either F and G can be expressed through

rational absolute differential invariants or the system takes one of the following forms:

• G = R2 and F = Q2 or F is a function of the conditional absolute invariants which are

generated by J3 and ∇Σ.

3. Miscellaneous results

The discussion and results of this section are closely related to the results of §1 and §2. In

§3.1 we discuss some subtleties related to our computations that one should be aware of when

interpreting the results. In §3.2 we point out a correspondence between the two sp(4) realizations

on C
3 that can be understood either through twistor correspondence or jet-prolongation. §3.3

focuses on a particular underdetermined PDE from §2.4 where the sp(4) action never becomes

free. Lastly, in §3.4 we sketch an argument explaining that the space of ODE systems with

essentially point (or essentially contact) symmetry algebras is small compared to the space of all

ODE systems admitting infinitesimal symmetries.

3.1. Variation on sl(2) realizations. In this section we show by examples how different re-

alizations of a given abstract Lie algebra can have significantly different invariant differential

equations. Consider the following five realizations of sl(2):

g1 = 〈y∂x, x∂x − y∂y, x∂y〉,

g2 = 〈∂x, x∂x − y∂y, x
2∂x − 2xy∂y〉,

g3 = 〈∂x, x∂x − ∂y, x
2∂x − 2x∂y〉,

g4 = 〈∂x, x∂x − y∂y, x
2∂x − (2xy + 1)∂y〉,

g5 = 〈∂x + ∂y, x∂x + y∂y, x
2∂x + y2∂y, 〉.

The first three Lie algebras of vector fields are locally equivalent. The Lie algebra g1 is the

standard linear sl(2)-representation. It is transitive on the complement of the 0-dimensional orbit

{(0, 0)} in J0 and preserves the one 1-dimensional distribution 〈x∂x + y∂y〉. The Lie algebra g2

has one 1-dimensional orbit, given by y = 0, and one 2-dimensional orbit on J0. The Lie algebra

g3 is transitive. Both g2 and g3 preserve one 1-dimensional distribution, given by 〈∂y〉.

The Lie algebras g4 and g5 are also locally equivalent to each other, and not locally equivalent

to the previous Lie algebras. The first one is transitive, and the second has a singular orbit y = x

and is transitive in the complement. They have two invariant 1-dimensional distributions: g4
preserves the line distributions 〈∂y〉, 〈∂x + y2∂y〉, while g5 preserves 〈∂y〉, 〈∂x〉.

Table 3 gives generators for the field of rational differential invariants for each of these five Lie

algebras, expressed in terms of relative differential invariants. It also shows the Lie determinant,
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up to a constant factor. It clearly illustrates some subtleties regarding the existence of first-order

relative invariants, and the algebraic type of the absolute invariants.

Observation: Several properties, such as the number of first-order relative differ-

ential invariants, the algebraic type (rational/polynomial) of absolute differential

invariants, and the order of the basic invariant derivations, are sensitive to the

choice of global realization as a Lie algebra of vector fields, meaning that they

may differ for locally equivalent realizations. Furthermore, the number of first-

order invariant ODEs is reliant on the way we split the coordinates in J0 into

“dependent” and “independent” ones.

Relative invariants Lie determinant Absolute invariants

g1
R1 = xy1 − y

R2 = y2
R2

1 A1 =

〈
R2

R3
1

,
1

R1
Dx

〉

g2
R0 = y

R2 = 2yy2 − 3y21
R2

0 A2 =

〈
R2

R4
0

,
1

R0
Dx

〉

g3 1 A3 =
〈

(2y2 − y
2
1)e

−2y, e−yDx

〉

g4
R1 = y1 − y

2

R2 = y2 − 6yy1 + 4y3
R1 A4 =

〈

R2
2

R3
1

,
R2

R2
1

Dx

〉

g5
R0 = y − x R1 = y1
R2 = (y − x)y2 − 2y1(y1 + 1)

R2
0R1 A5 =

〈

R2
2

R3
1

,
R0R2

R2
1

Dx

〉

Table 3. Examples showing how the absolute and relative differential invariants

can depend on the specific realization of a Lie algebra.

The first-order relative invariant for Lie algebra g1 corresponds to the invariant 1-dimensional

distribution: the ODE xy1 = y has solutions y = Cx, which are integral manifolds away from

the singularity (0, 0). For the Lie algebras g2 and g3, the integral manifolds of the invariant

distributions are given by x = C. These are not described by a function y = y(x), hence they

are not solutions of first-order ODEs in normal form. This is an example of how a first-order

relative invariant can be removed by a point transformation, as we discussed at the end of §2.5.

The singular g2-orbit y = 0 is given by the vanishing of the Lie determinant, while in the case of

g3 this is moved to infinity. The singular g1-orbit has codimension 2, and is therefore not given

by a scalar condition. Actually, it is the singularity of the invariant distribution.

For Lie algebras g4, g5 we have already rectified one invariant distribution to be vertical, so

it is invisible through a relative invariant. The other distribution is specified by vanishing of the

Lie determinant: y1 = y2 or y1 = 0 respectively. The singular orbit is moved to infinity for g4
and is given by an order 0 factor of the Lie determinant in the case of g5.

3.2. Prolongation-projection via twistor correspondence. The primitive sl(2)⋉C
3-reali-

zation preserving the Minkowski metric, which we studied in §2.2, can be extended to an sp(4)-

realization by adding the remaining symmetries of the invariant differential equation y21+z
2
1−1 =

0. In addition to (8), the four remaining generators of this sp(4)-realization are

x∂x + y∂y + z∂z , (x2 + y2 + z2)∂x + 2xy∂y + 2xz∂z, (14)

2xy∂x + (x2 + y2 − z2)∂y + 2yz∂z , 2xz∂x + 2yz∂y + (x2 − y2 + z2)∂z. (15)
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This sp(4)-realization is different from the one studied in §2.4. Indeed, this one is irreducible,

while that of (10) preserves the contact structure dx− zdy + ydz = 0 (see Figure 2).

Proposition 3. Two non-equivalent realizations of C2 = sp(4) in C
3, corresponding to the flag

manifolds C2/P1 and C2/P2, are equivalent after a lift of the action to C
4. This lift can be

interpreted both as twistor correspondence and jet-prolongation.

Twistor correspondences generalizing Penrose’s ideas were introduced to parabolic geometries

by A. Čap in [4], but the relation to jet formalism discussed here is novel.

Proof. Changing the contact structure to its Darboux normal form dy − y1dx, in a new space

J1(C) = C
3(x, y, y1), results in an equivalent realization g of (10). Prolonging this Lie algebra of

vector fields to J2(C) = C
4(x, y, y1, y2) we get the contact symmetry algebra of the trivial ODE

E = {y3 = 0} ⊂ J3. In fact, this prolonged Lie algebra ĝ preserves the following splitting of the

rank 2 distribution on E ≃ J2: ∆ = 〈DE
x = ∂x + y1∂y + y2∂y1〉 ⊕ 〈∂y2〉.

Projection along ∂y2 sends us back to J1, while the projection along DE
x transforms this ĝ into

a primitive Lie algebra of vector fields in 3D. Indeed, the first integrals are I0 = y0−xy1+
1
2x

2y2,

I1 = y1−xy2, I2 = y2, so passing from (x, y, y1, y2) to new coordinates (x, y, z, q) := (I0, I1, I2, x)

we get a Lie algebra projectable along ∂q. The resulting Lie algebra g̃ on M3 = C
3(x, y, z) is the

Lie algebra of conformal Killing vectors for the Lorentzian metric g = dy2−2dxdz, and changing

coordinates to have the normal form dx2 − dy2 − dz2 we get the equivalent Lie algebra of vector

fields given by (8)-(14)-(15). Conversely g̃ lifts to the bundle of scales for the conformal structure

[g] to give ĝ.

It turns out that we can identify (after completion) J1 with C2/P1, J
2 with C2/P1,2 and M3

with C2/P2, where C2 = Sp(4) and Pσ are parabolic subgroups marked by crosses on the Dynkin

diagrams below. The three realizations of C2 on generalized flag manifolds C2/Pσ as discussed

above, are conveniently related by the following double fibration: The arrows are projections

× ×

× ×

corresponding to the inclusions P1 ←֓ P12 →֒ P2. This twistor correspondence represents the

above jet-picture with prolongations and lifts. �

3.3. An underdetermined ODE with non-free sp(4)-symmetry. In §2.4 we saw that the

Lie algebra of vector fields (10) does not become free on the underdetermined ODE given by

R3 = z2y3 − y2z3 = 0. More precisely, we have the following statement.

Theorem 18. Consider the action of the Lie algebra g = sp(4) of vector fields (10) prolonged

to Jk(C,C2). All orbits contained in the invariant subset

Πk = {R3 = 0,Dx(R3) = 0, . . . ,Dk−3
x (R3) = 0} ⊂ Jk(C,C2)

have dimension less than or equal to 9 for every k ≥ 3.

Proof. The stabilizer of a point θ ∈ Πk for k ≥ 4 is 1-dimensional. This 1-dimensional Lie

subalgebra depends on θ2 = πk,2(θ) and is spanned by

U = α(αX1 + y2X2 + z2X3 + βX7) + z22X4 − y
2
2X5 + y2z2X6 + β(z2X8 − y2X9 + βX10),

where α and β are given by

α = x(y1z2 − z1y2) + zy2 − yz2, β = z1y2 − y1z2,
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and X1, . . . ,X10 are the basis elements as expressed in (10), in the order they appear there.

Let us give a non-computational explanation of this fact. The equation R3 = 0 describes

plane curves γ ⊂ P
2 ⊂ P

3 (above we used an affine chart C
3(x, y, z) ⊂ P

3, with a plane P
2 =

{ax + by + cz = d} and y = y(x), z = z(x)), where P
3 = Sp(4)/P1 is the homogeneous

representation with the stabilizer of a plane being the first parabolic subgroup. The action

of Sp(4) is the projectivization of the standard linear action on the symplectic C
4, and P1 is

the stabilizer of a line ℓ (for which the plane P
2 is the projectivization of the skew-orthogonal

complement ℓ⊥). Note that this gives p1 = Lie(P1) a filtration, with the corresponding grading

of g = sp(4) as follows:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2
︸ ︷︷ ︸

p1

.

The reductive part g0 = gl(2) acts on ℓ⊥/ℓ ≃ C
2 in the standard way, and the nilradical g1⊕g2 =

heis(3) = C
2
⋉ C maps ℓ⊥ → ℓ so that g1 = (ℓ⊥/ℓ)∗ ≃ C

2 and g2 acts trivially on ℓ⊥. This

1-dimensional space is generated by the vector U above, which depends only on θ2 ≡ ℓ. �

Since the set Πk is meager in Jk(C,C2), these computations are consistent with Theorem

7.1 in [1, Th. 7.1] which states that the prolonged action becomes free on a comeager subset

of Jk(C,C2) for sufficiently large k. However, this example shows that the computation of

conditional absolute invariants on Πk will involve a Lie algebra of vector fields that does not

become free after prolongation. One consequence of this is that the method of moving frames

(see [10]) can not be applied directly for finding conditional differential invariants in this case.

Notice that the dimension of Πk grows without bound with k, making this example significantly

different from Example 3 of [1], where the lack of freeness is a simple observation. More generally,

the action of the Lie algebra so(n)⋉C
n of the motion group, or a larger Lie algebra like aff(n)

or sl(n+ 1), on the space of (unparametrized) straight lines in C
n, given by the equation {yj2 =

0 : 1 ≤ j ≤ n − 1} ⊂ J2(C,Cn−1) is non-free for n ≥ 2 by dimensional reasons. These reasons

are absent in the above example, where the prolonged underdetermined equation Π∞ is infinite-

dimensional.

We can also get a determined equation by imposing some sp(4) invariant constraint from

Theorem 11: Take for example the determined ODE system defined by R3 = 0 and ∇i
Π(K6) =

Ψ(K5,K6,∇Π(K6), . . . ,∇
i−1
Π (K6)). To conclude:

Corollary 5. There exist g-invariant (determined) ODE systems (depending on numeric and

functional parameters) with arbitrary large but finite dimension, on which the action is not free.

We point out that this phenomenon is observed multiple times in our computations. For

the Lie algebra action (11), which we treated in §2.5, the orbits on the underdetermined ODE

Πk ⊂ Jk(C,C2) have dimension less than or equal to 5 for every k even though the Lie algebra is 6-

dimensional. For the 8-dimensional Lie algebra (13), treated in §2.7, the orbits on Σk ⊂ Jk(C,C2)

have dimension ≤ 6 for every k.

3.4. Moduli of ODEs with infinitesimal symmetries. This section is somewhat speculative,

so we will be slightly vague and only sketch the ideas here. They can be rigorously justified, but

we omit it for the sake of brevity. An illustrating example is given at the end of the section.

Consider the set of all kth-order (determined) algebraic ODE systems in m independent vari-

ables. This means they can be defined by m independent equations F1 = 0, . . . , Fm = 0, where

Fi are polynomials of some degree ≤ p on fibers Jk → J j . Here j = 0 or j = 1 depending on

whether one considers point or contact symmetries. This space of ODE systems is parametrized
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by a fixed number of functions fi in O(J
0) or O(J1), respectively. (The number of functions can

be computed from the numbers m, k and p.)

We consider the systems up to equivalence under the action of a pseudogroup G, where G is

either the contact pseudogroup Contloc(J
1) in the scalar (m = 1) higher order (n > 2) case or

the point pseudogroup Diff loc(J
0) in general. We fix m in what follows.

For fixed k, p letMk
p denote the subset of all such ODE systems having at least one non-trivial

infinitesimal symmetry. EveryMk
p can be considered as the solution space of a PDE system on

functions fi. Let M = ∪k,pM
k
p. The moduli space M/G of invariant ODE systems can be

understood as the solution space of the quotient equation of this (possibly disconnected) PDE

system. The setM/G has complicated non-Hausdorff topology. Nevertheless, consider now the

subset M′ ⊂ M of ODE systems with essentially contact or essentially point symmetries and

the corresponding quotientM′/G.

Theorem 19. The subsetM′ ⊂M is meager, and moreover M′/G ⊂M/G is non-separable.

Proof. Fix numbers k, p. If the symmetry algebra g of an ODE system is contact irreducible or

primitive, consider a subalgebra h that does not possess these properties. Such h always exists,

for instance a maximal Abelian subalgebra will work. The set of ODE systems invariant with

respect to h is much larger: i-jets of those form an algebraic variety with g-invariant equations

being a proper Zariski closed subset for large i. Also, the G-action on a representative ODE

system with g-symmetry yields a smaller and lower-dimensional set compared to that with h-

symmetry: the orbit is larger if the isotropy is smaller. Now uniting these singular orbits over

k, p proves both statements. �

One can also restrict to subsetM(l) of ODEs with symmetry algebra of dimension at least l,

and the above statement holds true when replacing M with M(l). Let us briefly indicate the

idea for the case m = 1 and m = 2. The proof holds literally for l = 1, 2, 3, 4 as a non-irreducible,

non-primitive subalgebra of such dimension exists. For l in the intermediate range 5 to 15 the

claim is based on the following observation: a common subalgebra (for instance 〈∂x, ∂y〉) allows

both irreducible/primitive as well as the opposite extensions. The latter however are less rigid

and hence carry more parameters (here we do not restrict order of the equation, or restrict it

by a sufficiently large number). For l > 15 the claim is trivially true because there are no such

irreducible/primitive Lie algebras of vector fields in 2- or 3-spaces.

Example: Consider the space of ODEs defined by equations of the form

y2 = f(x, y).

The vector field X = a(x, y)∂x + b(x, y)∂y is a point symmetry if and only if

X(2) (y2 − f(x, y))
∣
∣
∣
y2=f(x,y)

= 0.

The left-hand-side is a cubic polynomial in y1 whose vanishing is equivalent to the vanishing of

its four coefficients. The system obtained in this way can be written

axx = 2bxy − 3fay, ayy = 0,

bxx = fxa+ 2fax + fyb− fby, byy = 2axy.
(16)

Since system (16) is overdetermined, there exist compatibility conditions. If all of them are

satisfied (for some class of functions f), we get a finite type system with 8-dimensional solution

space. When the compatibility conditions are not satisfied, we get more constraints on (a, b), and

thus the dimension of the solution space shrinks. Prolonging (16) to the 4-jets and eliminating
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derivatives of a, b of orders 2, 3 and 4, we get the following two constraints :

ayfyy = 0, 2fyyax + fyyby + fxyya+ fyyyb = 0. (17)

These compatibility conditions are satisfied if and only if f is a solution to

fyy = 0. (18)

Then by the Lie-Liouville criterion the equation is trivializable, i.e. point equivalent to y2 = 0.

If we assume fyy 6≡ 0, then ay = 0 and thus axy = 0. The equation ay = 0 together with

equations 1, 2 and 4 of (16) implies that a = a(x), b = b(x) + (12a
′(x) + c)y. Then the second

equation of (17) reduces to the derivative of the remaining equation of (16). It follows that the

ODE has ≤ 6 independent symmetries and further compatibility analysis reduces this number

to at most 2 (it is a known fact that symmetry algebras of second-order scalar ODEs can have

dimension 0, 1, 2, 3 or 8).

Alternatively, compute the k-th prolongation of (16) and eliminate axx, ayy, bxx, byy and higher-

order derivatives to obtain a linear system of equations on a, b, ax, ay, bx, by, axy, bxy with coeffi-

cients depending on the (k + 1)-jet of f . The rank of this sequence of systems will stabilize at

some integer r ≤ 8. If y2 = f(x, y) has symmetries, then r ≤ 7. Imposing this condition on r

puts constraints on f , which for our particular class of ODEs defines the set M of symmetric

ODEs. The first of such constraints is (where we denote fnm = ∂nx∂
m
y f)

(3f02f13 − 2f12f03)f
2
05 + (f12f

2
04 − (3f02f14 + f03f13)f04 − f02f03f15 + 2f203f14)f05

+ 2f02f
2
04f15 − (2f02f13f06 − f12f03f06 + f203f15)f04 + f02f03f14f06 = 0.

4. Conclusion

In this paper we demonstrated that scalar ODEs and ODE systems (in two unknowns) with the

symmetry algebra being essentially contact or essentially point are special among all symmetric

differential equations, and we listed them all via (absolute, relative or conditional) differential

invariants. This follows the general approach of Sophus Lie [20, 21], and for scalar ODEs was

already considered in [29]. Our approach is more of a global nature. In particular we distinguish

between algebraic and analytic ODEs, though the generating invariants can always be chosen

rational in higher jets. For systems (pairs of ODEs) our results are entirely new.

Thus the main bulk of ODEs with infinitesimal symmetries constitute equations having essen-

tially fiber-preserving symmetries, in particular their equivalence problem can be studied with

respect to fibre-preserving transformations of variables. This indeed already attracted an interest

for scalar ODEs in lower orders, see for instance [15, 14, 12].

A generalization of our results to ODE systems with more dependent variables is possible: one

needs a classification of primitive Lie algebras of vector fields, and this is indeed available. In

[25] J. Page continued Lie’s program and classified primitive Lie algebras of vector fields in four

dimensions. There is also a classification of primitive pairs (g, h) of Lie algebras, such that h is

a maximal subalgebra of g, due to Morozov and Dynkin [22, 9]. This leads to a classification of

primitive actions on spaces of any dimension, see [13, 8].

The procedure in §2.1 can be applied for differential equations with more dependent and/or

independent variables with some modifications (it can work for PDEs as well). We already

noticed an increase in complexity when passing from scalar ODEs to pairs of ODEs. More

complexity issues come in higher dimensions: one can encounter vector relative invariants with

values in non-trivial bundles and conditional-conditional invariants, etc.

One can also approach the classification in the real case. Already Sophus Lie started this pro-

gram, and there exist several versions of his real classification, see e.g. [11]. The list of primitive
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Lie algebras of vector fields in real plane is indeed longer than that in complex plane. The real

classification of irreducible Lie algebras of contact vector fields was attained too, together with

computation of fundamental differential invariants, see [5]. However the complete classification

in the real case is considerably more complicated, as one also encounters continuous parameters

and more branching. Moreover a possible generalization to real smooth case can be only attained

locally near generic/regular points, so some singular equations will not be covered.

Appendix A. Finite-dimensionality of symmetry algebra

In this section we work over R. Indeed, working over C in the main bulk of this paper was

important for classification issues, but otherwise one can consider the real case. The purpose of

this appendix is to give a criterion for finite-dimensionality of the symmetry algebra of an ODE

system (we restrict to the scalar case and pairs of equations). This justifies our application of

the classification of finite-dimensional Lie algebras of vector fields in 2 and 3 dimensions. We

prove the following propositions7:

Proposition 4. (1) The Lie algebra of point symmetries of a scalar ODE of order ≥ 2 is

finite-dimensional. (2) The Lie algebra of contact symmetries of a scalar ODE of order > 2 is

finite-dimensional.

Proposition 5. The Lie algebra of (point) symmetries of a system of 2 ODEs (with 2 indepen-

dent variables) of orders (k, l), k ≥ l ≥ 1, is finite-dimensional provided that either l > 1 holds

or that l = 1, k > 1 and condition (19) holds for the differential equation of order 1.

The conditions of Propositions 4 and 5 are satisfied for all equations arising in our paper, except

for the systems given by 2 equations of first order. Specifically, let us mention that in the case of

ODE systems, the case l = 1 is realized for special cases given by the relative invariant R1 = 0,

and the first part of condition (19) holds for R1 of §2.2 and §2.3, while the second part of this

condition holds for R1 of §2.4, §2.5 and §2.6. On the other hand, the system R1 = 0, Q1 = 0 from

§2.6 and the system y1 = 0, z1 = 0 appearing in Remark 8 has infinite-dimensional symmetry

algebra.

Proof. Let us start with scalar ODEs of principal type, i.e. of the form yn = f(x, y, y1, . . . , yn−1),

and assume n > 1 (all scalar ODEs of order n = 1 are locally equivalent and have infinite-

dimensional symmetry algebra). Geometrically this equation E can be identified with the space

Jn−1(R) ≃ R
n+1 equipped with rank 2 distribution ∆ spanned by

DE
x = ∂x + y1∂y + y2∂y1 + · · · + yn−1∂yn−2

+ f∂yn−1
and ∂yn−1

.

The splitting ∆ = 〈DE
x〉 ⊕ 〈∂yn−1

〉 encodes consideration of (E ,∆) modulo point transformations

for n = 2 and contact transformations for n ≥ 3. The weak derived flag of this nonholonomic

distribution ∆1 = ∆, ∆i = [∆,∆i−1] is filtered and the associated graded space m =
∑

g−i,

g−i = ∆i/∆i−1, is naturally a graded nilpotent Lie algebra, called the symbol of the distribution

or its Carnot algebra, cf. [2]. For the above ∆ it is

m = g−n ⊕ · · · ⊕ g−1 with dim g−n = · · · = dim g−2 = 1, dim g−1 = 2.

The Lie algebra structure on m is unique of so-called Goursat type. The split condition is

equivalent to reduction of der0(m), which is gl(2,R) for n = 2 and a Borel (3D) subalgebra

b ⊂ gl(2,R) for n > 2, to g0 = R⊕ R (rescalings of the two directions).

7Proposition 4 is well-known, see for example [26]. Finite-dimensionality of the symmetry algebra of systems

of ODEs of the same order is proven for example in [6], see also the discussion and references in [23, p.206]. We

are unaware of a similar proof for systems of ODEs of different orders; in addition our proof differs from loc.cit.
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The maximal graded Lie algebra g with g≤0 = m ⊕ g0, such that g≥0 acts effectively on m,

is called the Tanaka prolongation g = pr(m, g0), see [28]. (In the case m is fundamental, i.e.

generated by g−1, the effectiveness is equivalent to [v, g−1] = 0, v ∈ gk, k ≥ 0 ⇒ v = 0.)

The Tanaka prolongation of the above algebra is finite-dimensional by a general criterion from

[28]. Actually it is equal to g = g−2⊕· · ·⊕g2 ≃ sl(3,R) for n = 2, g = g−3⊕· · ·⊕g3 ≃ sp(4,R) for

n = 3 and g = g−n⊕· · ·⊕g1 ≃ gl(2,R)⋉R
n for n ≥ 4. By [28] the maximal symmetry dimension

of (E ,∆) (with splitting reduction of the structure group) is bounded by dim g. Therefore the

symmetry dimension of n-th order scalar ODE is bounded by 8 for n = 2, by 10 for n = 3 and

by n + 4 for n ≥ 4. Moreover the existence of the grading element implies uniqueness of the

maximal symmetry model.

Similarly for systems of pairs of ODEs of orders k ≥ l > 1

yk = f(x, y, . . . , yk−1, z, . . . , zl−1), zl = h(x, y, . . . , yl, z, . . . , zl−1)

considered as submanifolds E ⊂ Jk (the second equation being prolonged k − l times) the

geometry with respect to point transformations is encoded8 via the filtration of TE = ∆k:

∆k−i = dπ−1
k,i−1(〈dπk,i−1D

E
x〉), i = 1, . . . , k − 1, where DE

x is the total derivative on the equation.

This distribution is split into horizontal and vertical parts as follows:

∆k−i = 〈D
E
x〉 ⊕ (〈∂yj , ∂zj 〉

k−1
j=i ∩ TE).

The corresponding Carnot algebra (for k 6= l it is not fundamental) equals

m = g−k ⊕ · · · ⊕ g−l ⊕ · · · ⊕ g−1 with

dim g−k = · · · = dim gl−k−1 = 2, dim gl−k = · · · = dim g−2 = 1, dim g−1 = 2 for k > l;

dim g−k = · · · = dim g−2 = 2, dim g−1 = 3 for k = l.

Reduction of the structure group corresponds to g0 = R ⊕ gl(2,R) for k = l and g0 = R ⊕ b ⊂

R ⊕ gl(2,R) for k > l. The Tanaka prolongation g = pr(m, g0) is again finite-dimensional for

l > 1, moreover it can be explicitly computed and the symmetry dimension is as follows, cf.

[7, 16]:

dim g =







9 +

(
k + 1

2

)

+ 3δk,l for k ≥ l = 2;

5 + l +

[
k + l − 2

l − 1

](

k −
l − 1

2

[
k − 1

l − 1

])

+ δk,l for k ≥ l > 2.

This gives an effective bound on the symmetry dimension of systems of pairs of ODEs.

When l = 1 the situation is different. If k = 1 the equation has infinite-dimensional sym-

metry algebra. So consider the case k > 1 with E given by yk = f(x, y, y1, . . . , yk−1, z),

z1 = h(x, y, y1, z). In this case the distribution on the equation has rank 2 (as in the scalar

case), namely

∆ = 〈DE
x〉 ⊕ 〈∂yk−1

〉, where DE
x = ∂x + y1∂y + · · ·+ f∂yk−1

+ h∂z .

The distribution is completely nonholonomic if either

hy1y1 6= 0 or J := hxy1 + hhy1z + y1hy y1 − hy − hzhy1 6= 0. (19)

The symbol of the distribution is

m = g−k−1 ⊕ · · · ⊕ g−1 with dim g−k−1 = · · · = dim g−2 = 1, dim g−1 = 2. (20)

8Using embedding in the mixed jet-space, the encoded geometry is different [2, 7]: the Carnot algebra m

associated to the split distribution ∆ = 〈D
E
x 〉 ⊕ 〈∂yk−1

, ∂zl−1
〉 and its weak derived flag has graded components

with dim g−k = · · · = dim g−l−1 = 1, dim g−l = · · · = dim g−2 = 2, dim g−1 = 3.
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However depending on which condition holds in (19) the Carnot algebra structure changes. In

the first case hy1y1 6= 0 the distribution is of finite type, g0 = R ⊕ R and the next prolongation

vanishes. Thus the symmetry dimension is bounded by dim g = k + 4.

In the case hy1y1 = 0 but J 6= 0 we write h = h0 + h1y1, where hi = hi(x, y, z). Then

J = h1x +h0h1z −h0y−h1h0z 6= 0 is the condition that 1-form α = dz−h0dx−h1dy in J0 = R
3

is contact. In this case the Carnot structure (20) is of infinite type, but the structure reduction

b 7→ g0 = R ⊕ R makes the prolongation g = pr(m, g0) finite-dimensional, hence the symmetry

dimension is bounded by dim g = k + 5.

Finally, if hy1y1 = 0 and J = 0, then the above 1-form α determines an integrable distribution,

which by a point transformation is equivalent to the second equation being z1 = 0. In this case

the symmetry can be infinite-dimensional, explicitly this happens when fz = 0. �

Remark 9. From the end of the proof we see that the only candidates for systems with infinite-

dimensional symmetry algebra are (equivalent to) the system

yk = f(x, y, y1, . . . , yk−1), z1 = 0.

This system has infinite-dimensional symmetry subalgebra {Z(z)∂z}, and quotient by the cor-

responding foliation reduces the problem of essential point symmetries to that for scalar ODEs,

which we discussed in Section 1.

Appendix B. Lie algebras of vector fields on C
3
preserving a 1-dimensional

foliation

In [21] Lie listed all Lie algebras of vector fields in C
3 that preserve a 1-dimensional foliation

ϕ(x, y, z) = const, ψ(x, y, z) = const,

while not preserving any 2-dimensional foliation of the form

Ω(ϕ(x, y, z), ψ(x, y, z)) = const.

The list consists of 21 entries (some of these are families of Lie algebras) that are numbered from

13 to 33. See Satz 3 in Section 44 of [21] for the main statement. In this subsection, we will refer

to these entries by [Lie13] to [Lie33], respectively. These Lie algebras are the finite-dimensional

Lie algebras of vector fields on C
2 × C that project to one of the three primitive Lie algebras of

vector fields on C
2.

All the Lie algebras in Lie’s list contain one of the following as a Lie subalgebra ([Lie14],

[Lie13], [Lie16])9:

〈∂x, ∂y, x∂y, y∂x, x∂x − y∂y〉,

〈∂x, ∂y, x∂y + ∂z, y∂x − z
2∂z, x∂x − y∂y − 2z∂z〉,

〈∂x, ∂y + x∂z, x∂y +
1
2x

2∂z, x∂x − y∂y, y∂x +
1
2y

2∂z, ∂z〉.

However, the first two of these actually preserves the 2-dimensional foliation z = const, and so do

the Lie algebras [Lie15], [Lie19], [Lie20], [Lie21], [Lie22], [Lie26], [Lie28] and [Lie33]. Removing

these from our consideration, we are left with 11 remaining families of Lie algebras. Note that

the families [Lie17], [Lie18], [Lie23], [Lie25], [Lie30] and [Lie32] all contain elements xiyj∂z for

i+j ≤ h for some non-negative integer h, and they preserve the 2-dimensional foliation z = const

if and only if h = 0.

9[Lie14] is identical with (2).
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Proposition 6. The finite-dimensional Lie algebras of vector fields in C
3 preserving a 1-dimen-

sional foliation and no 2-dimension foliation are the following: [Lie16], [Lie24], [Lie27], [Lie29],

[Lie31], [Lie17]h≥1, [Lie18]h≥1, [Lie23]h≥1,a, [Lie25]h≥1, [Lie30]h≥1, [Lie32]h≥1.

We have the inclusions [Lie17]h ⊂ [Lie17]h+1, [Lie18]h ⊂ [Lie18]h+1, [Lie23]a,h ⊂ [Lie23]a,h+1,

[Lie25]h ⊂ [Lie25]h+1, while similar inclusions do not hold for [Lie30]h+1 and [Lie32]h+1. How-

ever, from the coordinate expressions in [21] one can easily verify that [Lie17]h=1 is contained

in [Lie18]h, [Lie23]a,h, [Lie25]h, [Lie30]h and [Lie32]h for any h ≥ 1 and any a. Furthermore, it

is apparent that [Lie24] contains [Lie16]. This makes it clear that all of the Lie algebras from

Proposition 6 contain as subalgebras either [Lie16], [Lie17]h=1, [Lie27], [Lie29] or [Lie31]. These

five Lie algebra realizations are given (respectively) by

〈∂x, ∂y + x∂z, x∂y +
1
2x

2∂z, x∂x − y∂y, y∂x +
1
2y

2∂z, ∂z〉,

〈∂x, ∂y, x∂y, x∂x − y∂y, y∂x, ∂z , x∂z, y∂z〉,

〈∂x, ∂y, x∂y + ∂z, x∂x − y∂y − 2z∂z , y∂x − z
2∂z, x∂x + y∂y,

x2∂x + xy∂y + (y − xz)∂z , xy∂x + y2∂y + z(y − xz)∂z〉,

〈∂x, ∂y, x∂y, x∂x − y∂y, y∂x, x∂x + y∂y + ∂z, x
2∂x + xy∂y +

3
2x∂z, xy∂x + y2∂y +

3
2y∂z〉,

〈∂x, ∂y, x∂y, x∂x − y∂y, y∂x, x∂x + y∂y, ∂z, x
2∂x + xy∂y + x∂z, xy∂x + y2∂y + y∂z〉.

Here, we have changed coordinates for the last Lie algebra [Lie31] in order to avoid the singular

orbit z = 0, and after this coordinate change it is clear that it contains the fourth one [Lie29].

The coordinate transformation z 7→ z − xy/2 takes the first Lie algebra [Lie16] to

〈∂x −
1
2y∂z, ∂y +

1
2x∂z, x∂y, x∂x − y∂y, y∂x, ∂z〉

which is obviously a Lie subalgebra of the second one [Lie17]h=1.

[Lie32]h

[Lie30]h [Lie25]h

[Lie23]a,h [Lie18]h

[Lie24] [Lie17]h [Lie31]

[Lie16] [Lie27] [Lie29]

a= 2h
3

h=3

a=2

Figure 4. Diagram of inclusions for the Lie algebras listed in Proposition 6. All

inclusions hold for any fixed h ≥ 1, except for the one that is marked.

Thus, every Lie algebra that preserves a 1-dimensional foliation and no 2-dimensional foliation

contains a Lie subalgebra which is locally equivalent to [Lie16], [Lie27] or [Lie29], corresponding

to (11), (12) and (13), respectively. Notice that [Lie16] (abstractly sl(2) ⋉ heis(3)) does not

embed into [Lie27] or [Lie29] (abstractly sl(3)). Moreover, [Lie27] and [Lie29] are clearly different

realizations of sl(3) since [Lie27] preserves a contact distribution, while [Lie29] does not. Figure

4 shows a more comprehensive tree of inclusions of these Lie algebras. We note also that [Lie16]
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embeds into the realization of sp(4) that we considered in §2. However, since the last one is

primitive while the first one is not, we separated them in our treatment.

Remark 10. To finish the proof of Proposition 6, one must also verify that none of the Lie

algebras listed preserve a 2-dimensional foliation. Since they all contain either [Lie16], [Lie27]

or [Lie29], it is sufficient to verify that these three do not preserve a 2-dimensional foliation.

We skip the details, but note that the Lie algebras [Lie16] and [Lie27] both preserve a contact

structure, given by the contact forms dz−ydx and dy−zdx, respectively. The Lie algebra [Lie29]

preserve no 2-dimensional distribution.
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Hradec Králové and was receiving full support from the Czech Science Foundation (GAČR no.
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