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EXCEPTIONALLY SIMPLE SUPER-PDE FOR F(4)

ANDREA SANTI AND DENNIS THE

Abstract. For the largest exceptional simple Lie superalgebraF(4), havingdimension (24|16), we provide
two explicit geometric realizations as supersymmetries, namely as the symmetry superalgebra of super-
PDE systems of second and third order respectively.

1. Introduction

In Kac’s celebrated classification [15], the largest exceptional complex1 simple Lie superalgebra
is F(4) of dimension (24|16) (this is not to be confused with the simple Lie algebra F4 of dimension
52). Similar to the other exceptional simple Lie superalgebras, this Lie superalgebra is traditionally
described by introducing the brackets on its even and odd components and not as the symmetry
superalgebra of some simple algebraic or geometric structure. One of the reasons is that its smallest
non-trivial representation is the adjoint representation [28]. Our main goal is to establish the first
explicit geometric realizations of F(4) as the symmetry superalgebra of certain systems of super-PDE.
This paper can be regarded as accompanying [18], where the analogous taskwas recently carried out
for the exceptional Lie superalgebra G(3).

Our exceptionally simple super-PDE depend on an even scalar function u of several independent
variables {x0, x1, ...} and are explicitly given by:

(1) a 2nd order system, with x0, x1, x2 even, and x3, x4 odd:

u00 = u22(u12)
2 + 2u12u23u24,

u01 =
1
2 (u12)

2, u02 = u22u12 + u23u24, u03 = u12u23, u04 = u12u24,

u11 = 0, u12 = −u34, u13 = 0, u14 = 0.

(1.1)

(2) a 3rd order system, with all x0, x1, x2, x3 odd:

u0ab = uabu123, 1 6 a < b 6 3. (1.2)

Our convention for partial derivatives is that uij = ∂xiuj = ∂xi∂xju, and we also recall that uij =

(−1)|i||j|uji, where |i|, |j| ∈ Z2 are the parities of x
i and xj. Our main result is:

Theorem 1.1. The contact symmetry superalgebra of (1.1) or (1.2) is isomorphic to F(4).

The system (1.1) may not appear to live up to its moniker, but let us express it parametrically. Let
(λ1, λ2|θ1, θ2) be coordinates on the supermanifold C2|2, i.e., λi are even while θi are odd, and let us
group them together into the symbol T = (t1, t2|t3, t4) = (λ1, λ2|θ1, θ2). We define the supersymmetric
cubic form

C(T 3) := λ1(λ2)
2 + 2λ2θ1θ2,

and its derivatives Cb(T
2) := 1

3∂tb (C(T
3)) and Cab(T) :=

1
2∂ta(Cb(T

2)). Then the system (1.1) takes the
compact form

(
u00 u0b
ua0 uab

)
=

(
C(T 3) 3

2Cb(T
2)

3
2Ca(T

2) 3Cab(T)

)
, (1.3)
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where 1 6 a,b 6 4. For varying choices of cubic form C, the formula (1.3) uniformly yields geometric
realizations of the simple Lie algebras Bℓ,Dℓ,G2, F4,E6,E7,E8, as well as the exceptional simple Lie
superalgebra G(3) [31, 18]. We claim that this uniformity remarkably extends also to F(4).

Explicit expressions of the contact symmetries of the systems are also provided – see Table 7 in
the first case and Table 8 in the second case. More precisely, these are generating superfunctions (see
(4.1)) for contact supervector fields that are symmetries of the super-PDE, and the Lie superalgebra
structure is given by the Lagrange bracket (see (4.2)), which is induced on the space of superfunc-
tions from the Lie bracket of supervector fields.

Underlying the super-PDE (1.1) and (1.2) are rich geometric stories that led to their discovery.
For (1.1), the story begins with the first geometric realizations of G2 in 1893 due to Cartan [7] and
Engel [9]. From a modern viewpoint, Engel considered a contact 5-manifold (M5,C) endowed with
a field of twisted cubics V ⊂ P(C), which defines a G2-contact structure (M,C,V). In general, this
geometry has non-trivial local invariants, but the so-called flat model is maximally symmetric, has
symmetry algebra G2, is locally unique, and is equivalent to Engel’s model. Twisted cubics are pro-

jective Legendrian varieties, so their osculation yields affine tangent spaces T̂ℓV ⊂ C that are Lag-
rangian (i.e., maximally isotropic) for the natural conformal symplectic form on C. Hence, the fam-

ily V̂ = {T̂ℓV : ℓ ∈ V} defines a submanifold of the total space of the Lagrange–Grassmann bundle

π : M̃ = LG(C) → M consisting of all Lagrangian subspaces of (M,C). Now, (M,C) and (M̃, C̃) are
locally equivalent to the first and second order jet-spaces J1(C2,C) and J2(C2,C) with their Cartan

distributions, respectively, so V̂ ⊂ M̃ is a coordinate-independent realization of a 2nd order PDE,
which inherits all the symmetries of V. Below, we provide a discussion in Lie-theoretic terms on why
the symmetry algebra has in fact dimension no larger than dim(G2).

Carrying this out for the flat G2-contact structure yields Cartan’s realization of G2 as the algebra
of contact symmetries of

uxx = 1
3u

3
yy, uxy = 1

2u
2
yy. (1.4)

This is (1.3) specialized to T = t ∈ C and C(T 3) = 1
3 t

3.

This geometric construction generalizes to all complex simple Lie algebras that are not of typeA or
C [31]. The adjoint varietyM = G/P is a parabolic homogeneous quotient, which is a complex contact
manifold whose contact distribution C admits a G-invariant field of Legendrian varieties V ⊂ P(C),
and the triple (M,C,V) is the flat G-contact structure. We may osculate in each fibre, obtaining the

2nd order PDE V̂ ⊂ M̃, which is G-invariant by naturality of the construction, and (1.3) is its local
description. (The cubic form C is uncovered from repeated osculations of V at the chosen basepoint,
and V is locally described in terms of it.) In the recent paper [18], a careful analysis at the Lie super-
algebra cohomological level and the osculation construction in terms of the functor of points were
applied to find the G(3)-contact super-PDE system with symmetry superalgebra G(3):

uxx = 1
3u

3
yy + 2uyyuyνuyτ, uxy = 1

2u
2
yy + uyνuyτ,

uxν = uyyuyν, uxτ = uyyuyτ, uντ = −uyy,
(1.5)

where u = u(x,y|ν, τ) : C2|2 → C1|0.

The algebraic starting point in all these cases is a grading on the Lie superalgebra g of contact
type: we have g = g−2 ⊕ . . . ⊕ g2 as a Z-graded Lie superalgebra whose symbol m = g− is the Heis-
enberg superalgebra (i.e., dim(g−2) = (1|0) and the super-skewsymmetric bracket η : Λ2g−1 → g−2 is
non-degenerate). The superalgebra dergr(m) of zero-degree derivations ofm is isomorphic to the con-
formal symplectic-orthogonal superalgebra cspo(g−1) and g0 is a subalgebra. The associated parabolic
subalgebra is p = g>0. More generally, for an arbitraryZ-gradedLie superalgebra g = g−⊕g0⊕g+, the
vanishing of the Spencer cohomology groupsHd,1(m, g) in degrees d > 0 is equivalent to g ∼= pr(m, g0),
where pr(m, g0) is the so-called Tanaka–Weisfeiler prolongation, which is the maximal effective graded
Lie superalgebra extendingm and g0 ⊂ dergr(m). In the classical setting, Kostant’s version of the Bott–
Borel–Weil theorem [16] is available to efficiently assess this vanishing, and the fact that g ∼= pr(m, g0)
implies that the symmetry algebra of the geometric structure under consideration has dimension

bounded by dim(g). In this setting, both V and the osculation V̂ of V described above fibrewise re-
duce the structure algebra to g0, and the vanishing of the above Spencer groups leads to (M,C,V)

and (M,C, V̂) having the same contact symmetry algebra with upper bound dim(g).
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In the super-setting, the analogous vanishing of the Spencer cohomology groups equivalently
characterizes g ∼= pr(m, g0) but Kostant’s result does not hold in general. Cohomology groups have
been known for some irreducible (i.e, depth 1) supergeometries [23] and some distinguished Borel
subalgebras [8], but, for instance, not for the parabolic subalgebras of depth 2 that we consider in this
paper. In [19, Thm.1.1], we showed that the symmetry superalgebra of an associated supergeometry
modelled on the data (m, g0) is bounded by dimpr(m, g0) in the strong sense: the even and odd parts
are respectively bounded by those of the prolongation.

Turning now to g = F(4), there are two inequivalent contact gradings:

(i) the mixed contact grading, having g0 ∼= cosp(4|2;α) ∼= C⊕ osp(4|2;α)with α = 2, and g−1 given
by the unique non-trivial g0-irreducible representation of dimension (6|4).

(ii) the odd contact grading, having g0 ∼= co(7) and g−1
∼= S given by the 8-dimensional spin rep-

resentation of so(7). In this case, g0 is purely even and g−1 is purely odd.

In both cases, we show (see Theorems 3.6 and 3.8) that Hd,1(m, g) = 0 for d > 0, and hence
g ∼= pr(m, g0). This has two implications. First, the geometric structures under consideration are en-
coded by a contact supermanifold equippedwith a structure superalgebra reduced to g0 ⊂ dergr(m) ∼=
cspo(g−1). For the mixed contact case, a field of certain supervarieties V ⊂ P(C) realizes this re-
duction; for the odd contact case, it is accomplished by a conformal supersymmetric quartic tensor
[Q] ∈ Γ(⊙4C∗). Secondly, the maximal symmetry dimension associatedwith either of these structures
is dim(g) = dim(F(4)) = (24|16) and, in each case, there is a flat structure that realizes the symmetry
upper bound. In this article, we do not present our results on the second Spencer cohomology groups
H2(m, g), since they are quite involved and ultimately will deserve a separate work in the framework
of deformations of mixed-contact and odd-contact F(4)-supergeometries.

In §5, for the mixed contact case, we carry out the osculation described above on the flat structure
(M7|4,C,V ⊂ P(C)) to obtain the 2nd order super-PDE system (1.1) and establish g = F(4) as its contact
symmetry superalgebra.

In §6, we consider the odd contact case, which is completely different from the aforementioned
osculation story. Since g−1

∼= S is purely odd, the super-skew form η is symmetric in the classical
sense. The natural variety present here is the null quadric V = {η = 0} ⊂ P(S), but this is also an orbit
of CO(S) = CO(8), so V does not reduce the structure algebra from dergr(m) ∼= co(8) to g0 ∼= co(7).
Instead, the reduction is provided by the conformal class [Q] of a supersymmetric quartic tensor Q,
which, fixing an adapted Witt frame of odd supervector fields on C, is the classical Cayley skew 4-
form (see (6.5) for its explicit expression). It is remarkable that Q arises also as the supersymmetric
counterpart of Freudenthal’s quartic invariant [11, (4.8)], [12, §4.11], or rather its realization in terms
of a contact grading [20, p.155-156], [14]; see Remark 6.11. Recently, the conformal class [Q] of this
quartic was used to realize exceptional simple Lie algebras as symmetries of geometric structures on
contact manifolds and 2nd order PDE [22, 31, 2]. In our odd contact F(4) setting, [Q] is related to a
3rd order super-PDE, a phenomenon that has no parallel in our study [18] of G(3).

Let us sketch here how to connect [Q] to a 3rd order super-PDE. Under the reduction to g0 ∼= co(7),

there is for any point ℓ ∈ V a distinguished η-Lagrangian subspace LℓV ⊂ T̂ℓV. This is a self-dual
plane w.r.t. η (contrasted to Qwhich, in our conventions, is anti self-dual), and this property clearly
persists to the conformal class [η]. The family L(V) := {LℓV : ℓ ∈ V} of all such Lagrangian tangent planes
is an open SO(S)-orbit in LG(S), and again insufficient to enforce a reduction to g0 ∼= co(7). Instead, it
is the flag manifold F(V) := {(ℓ, L) : ℓ ∈ V, L = LℓV} with its incidence condition ℓ ⊂ LℓV that encodes
the g0-reduction, with [Q] canonically determined from F(V) and conversely (see Proposition 6.3 for
the precise statement).

Starting from the geometric data (M1|8,C, [Q]), we may consider the incidence Lagrange-Grassmann

bundle M̃o determined fibrewise by F(V). Since themap ℓ 7→ LℓV is injective, then M̃o is diffeomorphic

to the self-dual Lagrange–Grassmann bundle M̃+ = LG+(C). The Cartan superdistribution C̃ of rank

(6|4) is induced on M̃o as usual (tautologically via the pullback of the self-dual Lagrangian subspaces
LℓV of (M,C)) but, in addition, the pullback of the corresponding lines ℓ ⊂ LℓV distinguishes an

extra subsuperdistribution C̃o ⊂ C̃ of rank (6|1). Slightly finer is a (3|1)-subsuperdistributionD ⊂ C̃o

canonically determined by an appropriate tensorial condition, andwe also establish thatD = D0̄⊕D1̄
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has geometrically distinguished even and oddparts. The passage from (M,C, [Q]) to (M̃o, C̃,D) is akin
to “lifting a geometric structure to a correspondence space” familiar in twistor theory.

We can now motivate the connection to super-PDE. Locally, (M,C) ∼= (J1(C0|4,C1|0),C), and

(M̃o, C̃) ∼= (J2(C0|4,C1|0), C̃), with the latter additionally equipped with the superdistribution D =

D0̄ ⊕ D1̄. The geometric construction of the third order jet space (J3(C0|4,C1|0),C

∧

) consists of the

isotropic subspaces of C̃ of rank (0|4) that are complementary to the vertical superdistribution of

π : M̃o ∼= M̃+ = LG+(C) → M, and we distinguish in there the subsupermanifold Σ of those that
containD1̄. This Σ is a distinguished 3rd order super-PDE, and carrying this out for the flat structure
(M,C, [Q]) yields the remarkable system (1.2).

The structure of the paper is as follows. In §2 we recall the basics of F(4), its parabolic subalgebras
and Z-gradings, give a spinorial description of the odd contact grading of F(4) akin to those used in
supergravity theories and finish with some combinatorial results that are crucial for our cohomolo-
gical computations. Then §3 is devoted to Spencer cohomology, an important ingredient in the proof
that F(4) is the symmetry superalgebra of the two differential equations (1.1) and (1.2) of the paper.
The main results are Theorems 3.6 and 3.8, while some straightforward computations are postponed
to Appendix A. A short resumé of jet-superspaces, including contact vector fields and generating
superfunctions, is provided in §4 for the reader’s convenience. The last two sections are devoted
to deriving (1.1) and (1.2): first we introduce the mixed-contact F(4)-supergeometries and consider
the corresponding osculation construction using the functor of points in §5 and then focus on odd-
contact F(4)-supergeometries and the incidence Lagrange–Grassmann bundle in §6. Themain results
here are Theorem 5.7 and 5.10 in §5 and Theorems 6.7, 6.9, 6.13, 6.15 in §6, together with the explicit
description of the solution superspace of (1.2).

2. Algebraic aspects and parabolic subalgebras of F(4)

2.1. Root systems for F(4). The complex simple Lie superalgebra (shortly, LSA) g = F(4) has dimen-
sion (24|16), with even and odd parts given by

g0̄ = B3 ⊕A1, g1̄ = S⊠C2.

Here, g0̄ is a direct sum of the complex Lie algebras B3 := so(7) and A1 := sp(2), while g1̄ (as a
g0̄-module) is the exterior tensor product of the 8-dimensional spin representation S of B3 and the
standard representation of A1. The somewhat unusual notation sp(2)will be reserved specifically to
the ideal A1 of g0̄ throughout the whole paper, to avoid confusion with other sl(2)-subalgebras.

We fix a Cartan subalgebra h of g, which by definition is a Cartan subalgebra for g0̄, so all are
conjugate. Adopting the root conventions of [10, §2.19], we fix functionals ǫi, δ ∈ h∗ with scalar
products 〈ǫi, ǫj〉 = δij, 〈ǫi, δ〉 = 0, 〈δ, δ〉 = −3. (This scalar product is induced from the Killing form
on F(4), which is non-degenerate.) The F(4) root system ∆ = ∆0̄ ∪ ∆1̄ ⊂ h∗\{0} splits into even and
odd roots given by

∆0̄ : ± δ, ±ǫ1, ±ǫ2, ±ǫ3, ±(ǫ1 ± ǫ2), ±(ǫ1 ± ǫ3), ±(ǫ2 ± ǫ3)

∆1̄ :
1

2
(±δ± ǫ1 ± ǫ2 ± ǫ3)

The Weyl group is generated by reflections Sα w.r.t. even roots α ∈ ∆0̄. Here, Sα(β) = β−
2〈β,α〉
〈α,α〉 α is

the usual reflection formula for any α ∈ ∆0̄, and Sα preserves both ∆0̄ and ∆1̄.

Given a simple root system Π and a simple root α ∈ Π that is odd and isotropic, i.e., α ∈ ∆1̄ and
〈α,α〉 = 0, we define (see [24, 29]) an odd reflection by

Sα(β) =











β+ α, 〈β,α〉 6= 0,

β, 〈β,α〉 = 0; β 6= α,
−α, β = α,

where β ∈ Π. Any odd reflectionmapsΠ to another simple root system that is inequivalent under the
action of the Weyl group; moreover all possible inequivalent simple root systems can be generated
from successively applying odd reflections. These are shown in Table 1, along with corresponding
Dynkin diagrams, Dynkin labels indicating the coefficients of the highest root (w.r.t. the given simple
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root system), and odd reflections indicatedwith reddashed lines. All positive roots are listed in Table
2.

Label Dynkin diagram Simple roots

I

2 3 2 1

α1 α2 α3 α4

α1 = 1
2 (δ− ǫ1 − ǫ2 − ǫ3)

α2 = ǫ3

α3 = ǫ2 − ǫ3

α4 = ǫ1 − ǫ2

II

2 3 2 1

α1 α2 α3 α4

α1 = 1
2 (−δ+ ǫ1 + ǫ2 + ǫ3)

α2 = 1
2 (δ− ǫ1 − ǫ2 + ǫ3)

α3 = ǫ2 − ǫ3

α4 = ǫ1 − ǫ2

III

1 2 2

2

α1 α2 α3

α4

α1 = ǫ1 − ǫ2

α2 = 1
2 (δ− ǫ1 + ǫ2 − ǫ3)

α3 = 1
2 (−δ+ ǫ1 + ǫ2 − ǫ3)

α4 = ǫ3

IV

1

2

3 2
α1

α2
α3 α4

α1 = 1
2 (δ+ ǫ1 − ǫ2 − ǫ3)

α2 = 1
2 (δ− ǫ1 + ǫ2 + ǫ3)

α3 = 1
2 (−δ+ ǫ1 − ǫ2 + ǫ3)

α4 = ǫ2 − ǫ3

V

1 2 3 2

α1 α2 α3 α4

α1 = δ

α2 = 1
2 (−δ+ ǫ1 − ǫ2 − ǫ3)

α3 = ǫ3

α4 = ǫ2 − ǫ3

VI

2 4 3 2

α1 α2 α3 α4

α1 = δ

α2 = 1
2 (−δ− ǫ1 + ǫ2 + ǫ3)

α3 = ǫ1 − ǫ2

α4 = ǫ2 − ǫ3

Table 1. Inequivalent simple root systems for F(4)

∆+
0̄

∆+
1̄

I

α2, α3, α4, α2 +α3, α3 +α4,
2α2 +α3, α2 +α3 +α4,
2α2 +α3 +α4, 2α2 + 2α3 +α4,
2α1 + 3α2 + 2α3 +α4

α1, α1 +α2, α1 +α2 +α3,
α1 + 2α2 +α3, α1 +α2 +α3 +α4,
α1 + 2α2 +α3 +α4, α1 + 2α2 + 2α3 +α4,
α1 + 3α2 + 2α3 +α4

II

α3, α4, α1 +α2, α3 +α4, α1 +α2 +α3,
2α1 + 2α2 +α3, α1 +α2 +α3 +α4,
2α1 + 2α2 +α3 +α4, 2α1 + 2α2 + 2α3 +α4,
α1 + 3α2 + 2α3 +α4

α1, α2, α2 +α3,
α2 +α3 +α4, α1 + 2α2 +α3,
α1 + 2α2 +α3 +α4, α1 + 2α2 + 2α3 +α4,
2α1 + 3α2 + 2α3 +α4

III

α1, α4, α2 +α3, α1 +α2 +α3,
α2 +α3 +α4, α1 + 2α2 +α4, α2 +α3 + 2α4,
α1 +α2 +α3 +α4, α1 +α2 +α3 + 2α4,
α1 + 2α2 + 2α3 + 2α4

α2, α3,
α1 +α2, α2 +α4, α3 +α4,
α1 +α2 +α4, α1 + 2α2 +α3 +α4,
α1 + 2α2 +α3 + 2α4

IV

α4, α1 +α2, α1 +α3, α2 +α4,
α1 +α3 +α4, α2 +α3 +α4, 2α2 + 2α3 +α4,
α1 +α2 + 2α3 +α4, α1 + 2α2 + 3α3 +α4,
α1 + 2α2 + 3α3 + 2α4

α1, α2, α3,
α3 +α4, α1 +α2 +α3,
α2 + 2α3 +α4, α1 +α2 +α3 +α4,
α1 + 2α2 + 2α3 +α4

V

α1, α3, α4, α3 +α4, 2α3 +α4,
α1 + 2α2 +α3, α1 + 2α2 +α3 +α4,
α1 + 2α2 + 2α3 +α4, α1 + 2α2 + 3α3 +α4,
α1 + 2α2 + 3α3 + 2α4

α2, α1 +α2, α2 +α3,
α1 +α2 +α3, α2 +α3 +α4,
α2 + 2α3 +α4, α1 +α2 +α3 +α4,
α1 +α2 + 2α3 +α4

VI

α1, α3, α4, α3 +α4, α1 + 2α2 +α3,
α1 + 2α2 +α3 +α4, α1 + 2α2 + 2α3 +α4,
2α1 + 4α2 + 2α3 +α4, 2α1 + 4α2 + 3α3 +α4,
2α1 + 4α2 + 3α3 + 2α4

α2, α1 +α2, α2 +α3,
α1 +α2 +α3, α2 +α3 +α4,
α1 +α2 +α3 +α4, α1 + 3α2 + 2α3 +α4,
2α1 + 3α2 + 2α3 +α4

Table 2. Positive roots for F(4) w.r.t. simple root systems
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2.2. Parabolic subalgebras. Given a simple root system Π = {αi}
4
i=1 ⊂ h∗, we let {Zi}

4
i=1 ⊂ h be the

dual basis. We specify a subset Ip ⊂ {1, 2, 3, 4} (corresponding to a subset of the set of simple roots),
and define a grading element by Z =

∑

i∈Ip
Zi. This induces a Z-grading

g =
⊕

k∈Z

gk, gk = {x ∈ g : [Z, x] = kx}, (2.1)

of the LSA g, i.e., [gk, gℓ] ⊂ gk+ℓ, for all k, ℓ ∈ Z. In particular, g0 is a sub-LSA, with Z central in g0, and
each gk is a g0-module. The non-degenerate Killing form on F(4) induces a g0-module isomorphism
g−k

∼= g∗k. Let µ = max{k ∈ Z+ : g−k 6= 0} be the depth of the grading, which agrees with the height
of the grading, i.e., µ = max{k ∈ Z+ : gk 6= 0}. The parabolic sub-LSA corresponding to the Z-grading
(2.1) is defined by p = g>0 =

⊕
k>0 gk, and the symbol algebra by m =

⊕
k<0 gk. The symbol algebra is

bracket-generated by g−1 (namely, gk = [g−1, gk+1] for all k 6 −2) and the Z-grading (2.1) is transitive
in the sense of N. Tanaka [30], i.e., if [X, g−1] = 0 for X ∈ p, then X = 0. Letting dergr(m) be the LSA of
the zero degree derivations of m, we then have g0 ⊂ dergr(m) and, by the bracket-generating property,
also dergr(m) ⊂ gl(g−1).

In Table 3, we give details for all (inequivalent) gradings associated to maximal parabolic subal-
gebras p ⊂ g, i.e., those with |Ip| = 1. In this case g0 = CZ⊕ gss0 , with gss0 semisimple ideal. In the first
column, the parabolic is ornamented by a superscript indicating the simple root system from Table
1, and a subscript k ∈ {1, 2, 3, 4} for which Ip = {k}.

Parabolic depth µ dimg0, dimg−1 , ..., dimg−µ gss0 g−1 as g0-module

pI1 2 (22|0, 0|8, 1|0) spin(7) C0|8

pI2 = pII2 3 (10|2, 3|3, 3|3, 1|1) sl(3)⊕ sl(1|1) C3|0 ⊠ C1|1

pI3 = pII3 = pIII2 2 (8|4, 6|4, 2|2) sl(2)⊕ sl(1|2) C2|0 ⊠
∧2(C1|2)

pI4 = pII4 = pIII1 = pIV1 = pV1 1 (12|8, 6|4) osp(2|4) C6|4

pII1 = pIII4 = pIV2 = pVI1 2 (10|6, 4|4, 3|1) sl(1|3)
⊙3(C1|3)

pIII3 = pIV4 = pV4 = pVI4 2 (10|8, 6|4, 1|0) osp(4|2;α) with α = 2 C6|4

pIV3 = pV3 = pVI3 3 (8|4, 4|4, 2|2, 2|0) sl(2)⊕ sl(2|1) C2|0 ⊠
∧2(C2|1)

pV2 2 (14|0, 0|8, 5|0) sl(2)⊕ spin(5) C2|0 ⊠ C0|4

pVI2 4 (12|0, 0|6, 3|0, 0|2, 3|0) sl(2)⊕ sl(3) C2|0 ⊠ C0|3

Table 3. Gradings of F(4) corresponding to maximal parabolics

We make a few remarks concerning the adjoint action of gss0 on g−1, which is always irreducible:

• The representations C0|8 and C0|4 in the description of g−1 in the cases pI1 and pV2 are the spin
representations in dimension 7 and 5 (thought with odd parity). The case pV2 is relevant for
5-dimensional supergravity (see, e.g., [3] and references therein);

• For the only µ = 1 case, g−1 is the unique (up to parity change) irreducible singly atypical
representation of osp(2|4) of dimension (6|4) [10, Table 3.64].

• Finally, we remark that in the case pVI
4 we have gss0

∼= osp(4|2;α) with α = 2, whose smallest
non-trivial irreducible representation is of dimension (6|4). This can be seen using the Cartan
matrix 



2 3 0 0
−1 0 −1 0
0 −2 2 −1
0 0 −1 2


 (2.2)

corresponding to Dynkin diagram VI and removing the last column and row. (We stress
that in our conventions the Cartanmatrix has entries equal to αi(hαj

), where hαj
are coroots

of the simple root system, i is the row index and j the column index.) The resulting 3 × 3
matrix is, upon rescaling of the column corresponding to the odd isotropic root, the Cartan
matrix 


2 1 0
−1 0 −1
0 α 2




of osp(4|2;α) for α = − 2
3 . Since all α’s on the same orbit under the action of the permutation

group S3 generated by α → α−1 and α → −(1 + α) are equivalent, the first claim follows.
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(We recall for the reader’s convenience that the undeformed osp(4|2) corresponds instead
to α = 1,−2,− 1

2 .) According to [32, pg. 917], the unique smallest non-trivial irreducible
representation of osp(4|2;α) for α = 2 is 10-dimensional, so the adjoint action of gss0 on g−1

has to be isomorphic to this representation. In our setting, we have (g−1)0̄
∼= C⊠ ⊙2C2 ⊠ C2

and (g−1)1̄
∼= C2 ⊠C2 ⊠C w.r.t. osp(4|2;α)0̄ ∼= sp(2)⊕ sl(2)⊕ sl(2), which is also in agreement

with [32, pg. 917].

The remainder of our article will focus on contact gradings, i.e., those for which µ = 2 and m is
a supersymmetric analogue of a classical Heisenberg algebra. In particular, these have dim(g−2) =

(1|0), and there are precisely two such cases above:

(i) the grading associated to pVI4 , which we refer to as “mixed contact grading”;
(ii) the grading associated to pI1, which we refer to as “odd contact grading”.

The organization of the (positive) roots are given in Tables 4 and 5 respectively.

k ∆+
0̄
(gk) ∆+

1̄
(gk)

0
α1

α3

α1+2α2+α3

α2

α2+α3

α1+α2

α1+α2+α3

1

α4

α3+α4

α1+2α2 +α3+α4

α1+2α2+2α3+α4

2α1+4α2+2α3+α4

2α1+4α2+3α3+α4

α2 +α3+α4

α1 +α2 +α3+α4

α1+3α2+2α3+α4

2α1+3α2+2α3+α4

2 2α1+4α2+3α3+2α4

Table 4. Mixed contact grading (associated to the parabolic pVI4 )

k ∆+

0̄
(gk) ∆+

1̄
(gk)

0
α2, α3, α4, α2 + α3, α3 + α4,
2α2 + α3, α2 + α3 + α4,
2α2 + α3 + α4, 2α2 + 2α3 + α4,

1

α1, α1 + α2, α1 + α2 + α3,
α1 + 2α2 + α3, α1 + α2 + α3 + α4,
α1 + 2α2 + α3 + α4, α1 + 2α2 + 2α3 + α4,
α1 + 3α2 + 2α3 + α4

2 2α1 + 3α2 + 2α3 + α4

Table 5. Odd contact grading (associated to the parabolic pI1)

We note that the odd contact grading of g = F(4) is consistent with the parity, in the sense that
g0̄ = g−2 ⊕ g0 ⊕ g2 and g1̄ = g−1 ⊕ g1.

In §3 we will be interested in computing some cohomology groups naturally associated to the
mixed and odd contact gradings of g = F(4). Since the classical Bott–Borel–Weil theorem does not
hold in general for Lie superalgebras, the description of g via roots can sometimes be ineffective and
one has to resort to more explicit presentations. This is the case for our odd contact grading, for
which we provide a spinorial presentation (akin to those used in supergravity theories) in the next
subsection.

2.3. A spinorial description of the odd contact grading. Let (V,g) be a 7-dimensional complex
vector space V with a non-degenerate symmetric bilinear form g and (eµ)µ=1,...,7 an orthonormal
basis of V. We identify V with V∗ using g, in particular, Λ2V ∼= Λ2V∗ ∼= so(V) via v ∧ w 7→

(
u 7→

g(v,u)w−g(w,u)v
)
, for all v,w,u ∈ V. We let S ∼= C8 be an irreducible module of the Clifford algebra
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Cℓ(V) ∼= 2C(8) (there are two such modules up to isomorphism, we choose the one for which the
volume vol ∈ Cℓ(V) acts as minus the identity on S) and let σ : so(V) → gl(S) be the spinor represent-
ation of so(V). There is an so(V)-invariant non-degenerate symmetric bilinear form 〈−,−〉 on S that
satisfies 〈v · s, t〉 = −〈s, v · t〉 for all s, t ∈ S, v ∈ V, where · is the Clifford action (see, e.g., [1]).

The Clifford algebra is generated by the image of the map V → Cℓ(V) that sends eµ to Γµ, where
ΓµΓν + ΓνΓµ = −2gµν. We denote by Γµ1···µp

the totally antisymmetric product

Γµ1···µp
:= 1

p!

∑

ρ

(−1)ρΓµρ(1)
· · · Γµρ(p)

,

where (−1)ρ is the sign of a permutation ρ of {1, . . . ,p}. The explicit isomorphism of vector spaces
Λ•V ∼= Cℓ(V) is built out of the maps ΛpV → Cℓ(V) that send eµ1

∧ · · · ∧ eµp
7→ Γµ1...µp

and then
extending linearly. We recall that σ(A) : S → S is half the Clifford action of A ∈ so(V) as a bivector, in
other words σ(eµ ∧ eν) =

1
2Γµν.

We have natural isomorphisms of so(V)-modules

⊙2S ∼= Λ0V⊕Λ3V and Λ2S ∼= Λ1V⊕Λ2V ,

whence End(S) ∼= S ⊗ S ∼=
⊕3

p=0Λ
pV. We may define multivectors ω(p) = ω(p)(s, t) ∈ ΛpV for all

s, t ∈ S accordingly:

ω(p)(s, t) = 1
p! (sΓ

µ1···µpt)Γµ1···µp
∈ ΛpV ,

where the pairing 〈s, t〉 has been denoted simply by st, indices are raised/lowered using gµν, and
Einstein’s summation convention on repeated indices is in force. Clearly

ω(p)(s, t) = (−1)p(p+1)/2ω(p)(t, s) (2.3)

for all s, t ∈ S and 0 6 p 6 7. We will make extensive use of the well-known Fierz Identity:

Proposition 2.1. For all s, t ∈ S, we have

st = 1
8

3
∑

p=0

ω(p)(s, t)

= 1
8

(
st+ (sΓµt)Γµ + 1

2 (sΓ
µνt)Γµν + 1

6 (sΓ
µνρt)Γµνρ

)
,

as endomorphisms of S.

Another useful combinatorial property is ΓµνΓ[p]Γ
µν =

(
7 − (7 − 2p)2

)
Γ[p] for all Γ[p] ∈ ΛpV. A

direct consequence is the following.

Lemma 2.2. The identity (tt)s− (ts)t = 1
3ω

(2)(s, t) · t holds for all s, t ∈ S.

Proof. From the Fierz Identity and (2.3), we have tt = 1
8

(
tt + 1

6 (tΓ
µνρt)Γµνρ

)
for all t ∈ S. The differ-

ence (tt)s − (ts)t− 1
3ω

(2)(s, t) · t is equal to

(tt)s− t(ts) − 1
3
1
2 (sΓ

µνt)Γµνt = (tt)s− 1
8

(
tt+ 1

6 (tΓ
µνρt)Γµνρ

)
s− 1

3
1
2Γµνt(Γµνts)

= 7
8 (tt)s−

1
8
1
6 (tΓ

µνρt)Γµνρs

− 1
6
1
8

(
ΓµνtΓ

µνt + 1
6 (ΓµνtΓ

αβδΓµνt)Γαβδ

)
s

= 7
8 (tt)s−

1
8
1
6 (tΓ

µνρt)Γµνρs−
1
6
1
8

(
42tt − (tΓαβδt)Γαβδ

)
s

= 0 ,

where in the next-to-last step we used that

〈Γµνt, Γ
µνt〉 = −〈t, ΓµνΓµνt〉 = 42〈t, t〉 ,

〈Γµνt, Γ
αβδΓµνt〉 = −〈ΓµνΓ

αβδΓµνt, t〉 = −6〈Γαβδt, t〉 ,

for all s, t ∈ S. �
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The odd contact grading of g = F(4) is of the form g = g−2⊕g−1⊕g0⊕g1⊕g2, with g±2
∼= C, g±1

∼= S

and g0 ∼= so(V)⊕C as so(V)-modules, with the center of g0 spanned by the grading element Z. We fix
a basis 1 of g−2 so that the only non-trivial Lie bracket of the symbol m = g−2 ⊕ g−1 is [s, t] = 〈s, t〉1,
for all s, t ∈ g−1. It is convenient to fix also a basis 1† of g2 and adorn every element of g1 similarly,
i.e., s† ∈ g1 for all s ∈ S.

Proposition 2.3. The non-trivial Lie brackets of the Lie superalgebra g = F(4) are the natural action of g0 on
each graded component of the odd contact grading of g and

[s, t] = 〈s, t〉1 , [s†, t†] = 〈s, t〉1† ,

[s†,1] = s , [1†, s] = s† ,

[s†, t] = 1
3ω

(2)(s, t) − 1
2 〈s, t〉Z , [1†,1] = −Z ,

for all s, t ∈ S. Here ω(2)(s, t) ∈ Λ2V is thought as an element of so(V).

Proof. The proof uses g0-equivariance and the direct computation of the Jacobi identities to determine
the values of the constants involved. The only identity that is not immediate is the one with three
odd elements, which follows from Lemma 2.2 by partial polarization. �

Remark 2.4. Aposteriori, these Lie brackets can bemade explicit in termsof our geometric realization
in terms of generating superfunctions – see Table 8 and Remark 6.10 in §6 .

We conclude this section with an auxiliary but important finer consequence of the Fierz Identity
that will be useful later on. For this purpose, we fix a basis (ǫα)α=1,...,8 of S with 〈ǫα,ǫβ〉 = δαβ and
let (ǫα)α=1,...,8 be the dual basis of S

∗. Clearly ǫ
α = ǫα.

Proposition 2.5. Let ω : S → so(V) be a linear map that satisfies σ(ωs)s = 0 for all s ∈ S. Then ω = 0.

Proof. We write ω = 1
2ωα

µνΓµν ⊗ ǫ
α and start with

0 = 2σ(ωs)s = ωs · s = 1
2ωα

µνΓµνs(ǫ
αs)

= 1
2ω

αµνΓµνs(sǫα) =
1
2
1
8ω

αµνΓµν

(
ss + 1

6 (sΓ
µ1µ2µ3s)Γµ1µ2µ3

)
ǫα ,

which holds for all s ∈ S. Since ⊙2S ∼= Λ0V⊕Λ3V, we may split this equation into

1
2ω

αµνΓµνǫα = 0 , (2.4)

1
2ω

αµνΓµνΓµ1µ2µ3
ǫα = 0 , (2.5)

for any 1 6 µ1 < µ2 < µ3 6 7. To proceed further, we first note that

Γµ1µ2ΓµνΓµ1µ2µ3
= Γµ1µ2Γµν

(
Γµ1µ2

Γµ3
+ gµ2µ3

Γµ1
− gµ1µ3

Γµ2

)

=
(
Γµ1µ2ΓµνΓµ1µ2

)
Γµ3

+ Γµ1µ3
ΓµνΓ

µ1 − Γµ3µ2
ΓµνΓ

µ2

= −2ΓµνΓµ3
− 2Γµ3µ2

ΓµνΓ
µ2 = −2ΓµνΓµ3

− 2
(
Γµ3
Γµ2

+ gµ3µ2

)
ΓµνΓ

µ2

= −4ΓµνΓµ3
− 2Γµ3

(
Γµ2
ΓµνΓ

µ2

)

= −4ΓµνΓµ3
+ 6Γµ3

Γµν .

Hence
0 = 1

2ω
αµνΓµ1µ2ΓµνΓµ1µ2µ3

ǫα = −2ωαµνΓµνΓµ3
ǫα + 3ωαµνΓµ3

Γµνǫα

= −2ωαµνΓµνΓµ3
ǫα =⇒ 1

2ω
αµνΓµνΓµ3

ǫα = 0 ,
(2.6)

where we first used (2.5) and then (2.4). In a completely similar way, we get

1
2ω

αµνΓµνΓµ2µ3
ǫα = 0 , (2.7)

so that, summarizing (2.4)-(2.7), we have 1
2ω

αµνΓµνΘǫα = 0 for allΘ ∈ End(S) ∼=
⊕3

p=0Λ
pV. Taking

Θ = ǫδ ⊗ ǫ
β yields 1

2ωβ
µνΓµνǫδ = 0 for all 1 6 β, δ 6 8, that is, ω = 0. �
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3. The main algebraic result: computation of Spencer cohomology groups

3.1. Basic definitions. We are interested in the Spencer cohomology of g = F(4) for its contact grad-
ings g = g−2 ⊕ · · · ⊕ g2, i.e., the cohomology associated to the Chevalley–Eilenberg complex C•(m, g),
where the symbol m = g−2 ⊕ g−1 acts on g via the adjoint representation. The space of n-cochains
is Cn(m, g) = g ⊗ Λnm∗ for all n > 0, where Λ• is meant in the super-sense, and the differential
∂ : Cn(m, g) → Cn+1(m, g) is explicitly given for n = 0, 1 by the following expressions:

∂ : C0(m, g) → C1(m, g)

∂ϕ(X) = (−1)x|ϕ|[X,ϕ] ,
(3.1)

∂ : C1(m, g) → C2(m, g)

∂ϕ(X, Y) = (−1)x|ϕ|[X,ϕ(Y)] − (−1)y(x+|ϕ|)[Y,ϕ(X)] −ϕ([X, Y]) ,
(3.2)

where x,y denote the parity of elements X, Y of m and |ϕ| the parity of ϕ ∈ Cn(m, g).

Note that the Z-degree in g extends to the space of cochains by declaring that g∗d has degree −d

and that the differential ∂ has the degree zero. In particular, the complex breaks up into the direct of
sum of complexes for each degree and the group

Hn(m, g) =
⊕

d∈Z

Hd,n(m, g) (3.3)

into the direct sum of its homogeneous components. The space Cd,n(m, g) of n-cochains of degree d
has a natural g0-module structure and the same is true for the spaces of cocycles and coboundaries,
as ∂ is g0-equivariant; this implies that any Hd,n(m, g) has a representation of g0 and therefore of the
reductiveLie algebra (g0)0̄. This equivariance is very useful in our arguments, aswewill demonstrate.

We are interested in the group Hd,n(m, g) for n = 0, 1 and d > 0, due to the following classical
result of Tanaka [30], whose proof extends verbatim to the supercase:

Proposition 3.1. Hd,1(m, g) = 0 for d > 0 if and only if g ∼= pr(m, g0).

Above, pr(m, g0) refers to the maximal graded Lie superalgebra that extends m and g0, such that if
X ∈ pr(m, g0) is of non-negative degree and satisfies [X,m] = 0, then X = 0.

3.2. Spencer cohomology of the mixed contact grading. This is the case with associated parabolic
subalgebra p = pVI

4 . Table 6 below recollects the components of the mixed contact grading of g = F(4),
emphasizing their structure as modules for gss0

∼= osp(4|2;α) (with α = 2), together with branchings
w.r.t. the purely even subalgebra (g0)0̄

∼= CZ ⊕ sl(2)⊕ sl(2)⊕ sl(2). In this section, it is convenient to
order the three sl(2)’s in (g0)0̄ in the opposite order of §2.2: w.r.t. the simple root system VI, the first
sl(2) corresponds to the root α3, the second to the root α1 + 2α2 + α3 and the last to the root α1. This
is due to the fact that α1 = δ is the root generating the ideal sp(2) of g0̄, which is more convenient to
have as last.

Graded Components g0 g±1 g±2

C1|0

As g0-module osp(4|2;α) with α = 2 C6|4 C1|0

C⊠ C⊠ C

Even part as (g0)0̄-module sl(2)⊠ C⊠ C C2 ⊠⊙2C2 ⊠ C C⊠ C⊠ C

C⊠ sl(2)⊠ C

C⊠ C⊠ sp(2)

Odd part as (g0)0̄-module C2 ⊠ C2 ⊠ C2 C ⊠C2 ⊠ C2

Dimension 10|8 6|4 1|0

Table 6. Graded components of the mixed contact grading.
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Lemma 3.2.

(i) The centralizer of m in g coincides with the center of m, hence Hd,0(m, g) = 0 for all d > 0;
(ii) The centralizer of (m−1)0̄ in g is given by m−2 ⊕ (m−1)1̄ ⊕ sp(2).

Proof. (i) The ideal of g that is generated by the centralizer of m in p is easily seen to be contained
in p, hence it is trivial by simplicity of g. This proves the first claim, and the claim on cohomology
follows readily fromdefinitions. (ii) Some of the components obtained by restriction of the bracket of
F(4) to the irreducible (g0)0̄-modules of Table 6 are automatically zero, by (g0)0̄-equivariance, parity
and Z-degree. It is a straightforward matter using the root system of F(4) in Table 4 to verify that all
other components have “full rank” – i.e., image as large as permitted by Schur’s lemma, parity and
Z-degree – with the sole exception of the Lie brackets between the irreducible (g0)0̄-components of
g0. This readily implies (ii). �

There is an interesting and very useful relationship between the Spencer groups (3.3) for the Lie
superalgebra g and the classical Spencer groups. Let

0 −→ Kn ı−→ Λnm∗ res−→ Λnm∗
0̄ −→ 0

be the short exact sequence given by the natural restriction map res : Λnm∗ → Λnm∗
0̄
with kernel

K0 = 0 , Kn =
∑

16i6n

Λn−im∗
0̄ ⊗Λ

im∗
1̄ for n > 0 ,

and let

0 −→ g⊗ K• ı−→ C•(m, g)
res−→ C•(m0̄, g) −→ 0 (3.4)

be the associated short exact sequence of differential complexes. With some abuse of notation, we
give the following.

Definition 3.3. The differential complex C•(m1̄, g) = g ⊗ K• is the subcomplex of C•(m, g) given by
C0(m1̄, g) = 0 and the n-cochains, n > 1, that vanish when all entries are in m0̄.

It is not difficult to see that every morphism in the sequence (3.4) is (g0)0̄-equivariant. The as-
sociated long exact sequence in cohomology, together with (i) of Lemma 3.2 and the fact that ∂ is
g0-equivariant gives the following general result.

Proposition 3.4. For all d > 0, there exists a long exact sequence of vector spaces

0 −→ ξdg (m0̄) −→ Hd,1(m1̄, g) −→ Hd,1(m, g) −→ Hd,1(m0̄, g)

where ξdg (m0̄) is the component of degree d of the centralizer of m0̄ in g. The morphisms in the sequence are all
(g0)0̄-equivariant.

Note that the mixed contact grading is compatible with the decomposition

g = g0̄ ⊕ g1̄ =
(
so(7)⊕ sp(2)

)
⊕
(
S⊠ C2

)
;

more precisely it induces the contact grading × on so(7), the ideal sp(2) of g0̄ sits all in

degree zero and the odd part g1̄ has no graded components in degrees ±2. In particular, Z is an
element of so(7), which coincides precisely with the grading element of × , and m0̄ =

(m−1)0̄ ⊕ (m−2)0̄ is the Heisenberg algebra with (m−1)0̄
∼= C2 ⊠ ⊙2C2 and (m−2)0̄

∼= C as sl(2) ⊕ sl(2)-
modules. (Our conventions are consistent with the given ordering of the three copies of sl(2) in
(g0)0̄

∼= CZ ⊕ sl(2) ⊕ sl(2) ⊕ sp(2), namely the simple roots of so(7) are α3, α4 and α1 + 2α2 + α3.)
Since m0̄ ⊂ g0̄ = so(7) ⊕ sp(2) is the symbol of the contact grading of so(7) and sp(2) sits in degree
zero, we can use Kostant’s version of the Bott–Borel–Weil theorem [16] to compute the Lie algebra
cohomology group H1(m0̄, g) as a module for (g0)0̄.
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Now, a direct application of Kostant’s version of the Bott–Borel–Weil theorem tells us that, as
sl(2)⊕ sl(2)-modules:

Hd,1(m0̄, so(7)) ∼=

{

⊙2C2 ⊠⊙4C2 if d = 0

0 for all d > 0

Hd,1(m0̄,C) ∼=

{

C2 ⊠⊙2C2 if d = 1

0 for all d > 0,d 6= 1

Hd,1(m0̄, S) ∼=

{

C2 ⊠⊙3C2 if d = 0

0 for all d > 0

so that, thanks to (3.2), the only non-trivial homogeneous components of H1(m0̄, g) are given by the
following (g0)0̄-modules:

H0,1(m0̄, g)0̄ ∼= ⊙2C2
⊠⊙4C2

⊠ C

H0,1(m0̄, g)1̄ ∼= C2
⊠⊙3C2

⊠ C2

H1,1(m0̄, g)0̄ ∼= C2 ⊠⊙2C2 ⊠ sp(2).

The following is a consequence of the above discussion, Proposition 3.4, Lemma 3.2(ii), and the
immediate fact that the centralizers of m0̄ and (m−1)0̄ coincide for the mixed contact grading.

Proposition 3.5. There exist long exact sequences of (g0)0̄-modules

0 −→ sp(2) −→ H0,1(m1̄, g)0̄ −→ H0,1(m, g)0̄ −→ ⊙2C2 ⊠⊙4C2 ⊠ C

0 −→ H0,1(m1̄, g)1̄ −→ H0,1(m, g)1̄ −→ C2
⊠⊙3C2

⊠C2

0 −→ H1,1(m1̄, g)0̄ −→ H1,1(m, g)0̄ −→ C2
⊠⊙2C2

⊠ sp(2)

0 −→ H1,1(m1̄, g)1̄ −→ H1,1(m, g)1̄ −→ 0

and

0 −→ Hd,1(m1̄, g) −→ Hd,1(m, g) −→ 0

for all d > 1.

To prove our main cohomological result, it is now mostly a matter of determining the groups
Hd,1(m1̄, g) of the complex of Definition 3.3, which is a rather straightforward task.

Theorem 3.6. Let g = g−2 ⊕ · · · ⊕ g2 be the mixed contact grading of g = F(4), with associated parabolic
subalgebra g>0 = pVI4 and Levi factor g0 ∼= CZ⊕ osp(4|2;α), where α = 2. Then Hd,1(m, g) = 0 for all d > 0,
while H0,1(m, g) is an irreducible g0-module of dimension (18|16). In particular g0 is a maximal subalgebra of
the Lie superalgebra dergr(m) ∼= CZ⊕ spo(6|4) of the zero-degree derivations of m.

Proof. If d > 4 then Cd,1(m, g) = 0 just by degree reasons. We will then deal with d = 0, . . . , 4.

We start by showing that Hd,1(m1̄, g) = 0 for d = 1, . . . , 4. The groups in question consist just of
cocyclesϕ ∈ Hom(m1̄, g) (we recall that C0(m1̄, g) = 0 by definition). We first note that 0 = ∂ϕ(X, Y) =
[X,ϕ(Y)] for all X ∈ m0̄ and Y ∈ m1̄, so that ϕ(m1̄) ⊂ m−2 ⊕ m1̄ ⊕ sp(2) thanks to ξg(m0̄) = ξg((m−1)0̄)

and Lemma 3.2. In particular Hd,1(m1̄, g) = 0 for d = 2, 3, 4, so that Hd,1(m, g) = 0 for d = 2, 3, 4 too by
Proposition 3.5.

Let now d = 1 and decompose ϕ = ϕ0̄ + ϕ1̄ into the sum of its even ϕ0̄ : m1̄ → (g0)1̄ and odd
componentsϕ1̄ : m1̄ → (g0)0̄, which are both cocycles. By our discussion aboveϕ takes values in sp(2),
i.e., ϕ0̄ = 0 and ϕ1̄ : m1̄ → sp(2); moreover 0 = ∂ϕ1̄(X, Y) = −[X,ϕ1̄(Y)] − [Y,ϕ1̄(X)] for all X, Y ∈ m1̄,
hence [X,ϕ1̄(Y)] = −[Y,ϕ1̄(X)]. Now m1̄

∼= C ⊠ C2 ⊠ C2, so that the space of cocycles Z1,1(m1̄, g) ∼=

C∗ ⊠ (C2)∗⊠Z1,1(C0|2, sp(2)) as a (g0)0̄-module, where Z1,1(C0|2, sp(2)) is the first prolongation of sp(2)
acting on the purely odd 2-dimensional space C0|2. It is well-known that this prolongation is trivial,
see e.g. [13], so that ϕ1̄ = 0 too and H1,1(m1̄, g) = Z1,1(m1̄, g) = 0. (Recall that B1,1(m1̄, g) = 0 since
C0(m1̄, g) = 0.)

Proposition 3.5 then tells us H1,1(m, g)1̄ = 0 and that there exists a short exact sequence of (g0)0̄-
modules

0 −→ H1,1(m, g)0̄ −→ C2 ⊠⊙2C2 ⊠ sp(2) .
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By irreducibility H1,1(m, g)0̄ either vanishes or it is an irreducible (g0)0̄-module isomorphic to C2 ⊠

⊙2C2 ⊠ sp(2). Interestingly, we may set this dichotomy without any computation, thanks to the fact
that H1,1(m, g) carries a representation of the Lie superalgebra g0 ∼= CZ ⊕ osp(4|2;α), and not just of
its even part (g0)0̄. Since H1,1(m, g) is purely even, the odd part of osp(4|2;α) acts trivially, so does
the whole of osp(4|2;α) (as its even part is generated by the odd one). Therefore H1,1(m, g)0̄ = 0,
concluding the proof of the first claim of the theorem.

It remains to study the case d = 0. By definition, the group H0,1(m, g) is the quotient of the Lie
superalgebra dergr(m) of the zero-degree derivations of m by g0 ∼= CZ⊕ osp(4|2;α). Clearly dergr(m) ∼=

CZ ⊕ spo(6|4) and a simple dimension count shows that dimH0,1(m, g) = (18|16).

A line of arguments close to the one used for Hd,1(m1̄, g) = 0 for d > 0 says H0,1(m1̄, g)1̄ = 0 and
that H0,1(m1̄, g)0̄ ∼=

(
C⊠ sl(2)⊠ C

)
⊕
(
C⊠ C⊠ sp(2)

)
, as endomorphisms of m1̄

∼= C⊠ C2 ⊠ C2 that, in
addition, act trivially on m0̄. Proposition 3.5 then gives two exact sequences

0 −→
(
C⊠ C⊠ sp(2)

)
−→

(
C⊠ sl(2)⊠ C

)
⊕
(
C⊠ C⊠ sp(2)

)
−→

−→ H0,1(m, g)0̄ −→ ⊙2C2
⊠⊙4C2

⊠ C

0 −→ H0,1(m, g)1̄ −→ C2
⊠⊙3C2

⊠ C2

and using (g0)0̄-equivariance and dimension counting we arrive at

H0,1(m, g)0̄ ∼= (⊙2C2 ⊠⊙4C2 ⊠ C)⊕
(
C⊠ sl(2)⊠ C

)
,

H0,1(m, g)1̄ ∼= C2
⊠⊙3C2

⊠ C2 .
(3.5)

Let now M = M0̄ ⊕M1̄ be a non-zero osp(4|2;α)-irreducible submodule of H0,1(m, g). Note that M
cannot be purely even or odd, otherwise osp(4|2;α)1̄would act trivially onM and sowould osp(4|2;α),
contradicting (3.5). ThenM1̄ = H0,1(m, g)1̄, by osp(4|2;α)0̄-irreducibility. It is now a matter of going
through the list of all irreducible osp(4|2;α)-modules that, upon branching to osp(4|2;α)0̄, include
H0,1(m, g)1̄ ∼= C2 ⊠ ⊙3C2 ⊠ C2 and at least one irreducible component of H0,1(m, g)0̄. According to
[32, §5] (with the caution of considering all α’s on the same orbit of α = 2 under the action of the
permutation group S3 generated by α→ α−1 and α→ −(1+ α)), any such module has at least three
irreducible components for osp(4|2;α)0̄. It follows that M = H0,1(m, g), i.e., H0,1(m, g) is irreducible.
In the convention of [32, pag. 195 and eq. (5.6) at pag. 197], our module is labeled by the triple
(p,q, r) = ( 12 ,

3
2 ,

1
2 ) for α = 2 (equivalently for (σ1,σ2,σ3) = (3,−1,−2)).

The claim on the maximality of the embedding CZ⊕ osp(4|2;α) ⊂ CZ⊕ spo(6|4) is clear. �

Corollary 3.7. Let g be as in Theorem 3.6, then g ∼= pr(m, g0).

3.3. Spencer cohomology of the odd contact grading. This is the case with associated parabolic
subalgebra p = pI1, and we use the conventions and results from §2.3. We immediately note that
Hd,0(m, g) = 0 for all d > 0 (the proof of (i) of Lemma 3.2 carries over here unchanged) and that the
reduction of the structure algebra from co(S) to g0 ∼= co(V) (acting via the spinor representation) is
encoded in

H0,1(m, g) = dergr(m)/g0 ∼= co(S)/g0

∼=
(
Λ0V⊕Λ2S

)
/
(
Λ0V⊕Λ2V

)
∼= Λ1V,

which is g0-irreducible. The following main result subsumes the first Spencer cohomology group for
all non-negative degrees.

Theorem 3.8. Let g = g−2⊕· · ·⊕g2 be the odd contact grading of g = F(4), with parabolic subalgebra g>0 = pI1
and Levi factor g0 ∼= co(V). Then Hd,1(m, g) = 0 for all d > 0, whereas H0,1(m, g) ∼= Λ1V as an so(V)-module.
In particular g0 is a maximal subalgebra of the Lie superalgebra dergr(m) ∼= co(S) of the zero-degree derivations
of m.

Proof. Given the preliminary results from §2.3 as Propositions 2.3 and 2.5, the proof goes over rather
straightforwardly. It is therefore postponed to Appendix A. �

Corollary 3.9. Let g be as in Theorem 3.8, then g ∼= pr(m, g0).
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4. Jet-superspaces and contact vector fields

For references on the theory of supermanifolds (superdistributions, superbundle, etc.), we refer
the reader to [17, 21, 19].

Consider a contact supermanifold (M,C), i.e., M is a supermanifold and it is equipped with a
corank (1|0)maximally non-integrable superdistribution. Locally, this means that C = ker(σ), where
σ is an even 1-form onM, and η = dσ|C is a non-degenerate even 2-form on C. Since σ is well-defined
only up to scale, then the conformal class [η] is distinguished, andwe refer to this as a CSpO-structure
on C.

Assuming dimM = (2p + 1|2q), there exist local coordinates (xi,u,ui) onM, 1 6 i 6 p + q, such
that σ = du−

∑

i(dx
i)ui. Here, u has even parity, while both xi and ui have parity denoted by |i| ∈ Z2,

p of which are even and q of which are odd. Letting Dxi := ∂xi + ui∂u, we have C = 〈Dxi ,∂ui
〉 and

observe that dσ =
∑

i dx
i∧dui. (As usual, the exterior product is meant in the super-sense.) Locally,

(M,C) is the first jet-superspace J1(Cp|q,C1|0). For later reference, we will refer to any local frame of
C having the same components as {Dxi ,∂ui

} w.r.t. fdσ for some even invertible superfunction f, as a
CSpO-framing.

The Lagrange–Grassmann bundle π : M̃ →M is the bundle overM whose total space consists of
all Lagrangian subspaces of (C, [η]). This can be made rigorous using the functor of points approach,

in such a way that L is a “super-point” of M̃. We refer the reader to [18] for details. The Lagrange–

Grassmann bundle inherits the tautological superdistribution C̃ given by C̃|L = (π∗)
−1(L), where L is

a Lagrangian subspace of C. Locally, we take bundle-adapted coordinates (xi,u,ui,uij), where uij is

supersymmetric in i, j, i.e., uij = (−1)|i||j|uji, so that L = 〈D̃xi〉, with D̃xi := ∂xi + ui∂u +
∑

j uij∂uj
.

Letting σk := duk −
∑

i(dx
i)uik, we have C̃ = ker(σ,σk) = 〈D̃xi ,∂uij

〉. Locally, (M̃, C̃) is the second

jet-superspace J2(Cp|q,C1|0).

Finally, we define the bundle p : M

∧

→ M̃ with total space consisting of all subspaces in C̃ =

〈D̃xi ,∂uij
〉 that are isotropic (w.r.t. the Levi form of C̃) and complementary in C̃ to the vertical super-

distribution 〈∂uij
〉 of π : M̃→M. The total space inherits a tautological superdistribution C

∧

. Locally,
we take bundle-adapted coordinates (xi,u,ui,uij,uijk), where uijk are supersymmetric in i, j, k, so

that L = 〈D

∧

xi〉, withD

∧

xi := ∂xi +ui∂u+
∑

j uij∂uj
+
∑

j6k uijk∂ujk
. Letting σjk := dujk−

∑

i(dx
i)uijk,

we have C

∧

= ker(σ,σk,σjk) = 〈D

∧

xi ,∂uijk
〉. Locally, (M

∧

,C

∧

) is the third jet-superspace J2(Cp|q,C1|0). The
higher jet-superspaces are similarly constructed, but we will not need them in this paper.

We summarize here the relevant jet-superspaces:

Space Local model Coordinates Cartan superdistribution

M

∧

J3(Cp|q,C1|0) (xi,u,ui,uij,uijk) C

∧

= 〈D

∧

xi ,∂uijk
〉

M̃ J2(Cp|q,C1|0) (xi,u,ui,uij) C̃ = 〈D̃xi ,∂uij
〉

M J1(Cp|q,C1|0) (xi,u,ui) C = 〈Dxi ,∂ui
〉

We recall the following basic definition:

Definition 4.1. Let D be a superdistribution on a supermanifold. Its Cauchy characteristic space is
Ch(D) := {X ∈ Γ(D) : LXD ⊂ D}.

It is not difficult to see that the Cauchy characteristic spaces of the Cartan superdistributions just
defined are trivial.

A contact supervector field on the first jet-superspaceM is a vector field S ∈ X(M) such thatLSC ⊂ C,
and completely similar definitions can be given for supervector fields on higher jet-superspaces. By
naturality of the constructions, any contact supervector field S onM naturally prolongs to a contact
supervector field on a higher jet-superspace. Conversely, any contact vector field on a higher jet-
superspace is projectable over a contact supervector field on M: this is the Lie–Bäcklund theorem,
which arises from expressing vertical superdistributions in a covariant manner (e.g., the derived

superdistribution C̃2 := C̃+[C̃, C̃] = 〈D̃xi ,∂ui
,∂uij

〉 has Ch(C̃2) = 〈∂uij
〉, which is preserved by contact

supervector fields on M̃).
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Letting σ = du −
∑

i(dx
i)ui be as above, any contact vector field S onM is uniquely determined

by a generating superfunction f = ιSσ. Conversely any superfunction on M determines a contact
supervector field. The explicit expression of S = Sf in terms of its generating superfunction f is
given by

Sf = f∂u −

p+q
∑

i=1

(−1)|i|(|f|+1)(∂ui
f)Dxi +

p+q
∑

i=1

(−1)|i||f|(Dxif)∂ui
, (4.1)

and the Lie bracket on supervector fields induces a Lagrange bracket on superfunctions via [Sf,Sg] =

S[f,g]:

[f,g] = f∂ug − (−1)|f||g|g∂uf+
p+q
∑

i=1

(−1)|i||f|(Dxif)∂ui
g −

p+q
∑

i=1

(−1)|g|(|f|+|i|)(Dxig)∂ui
f. (4.2)

The prolongation of Sf to M̃ is then given by

S̃f = Sf +
∑

j6k

hjk∂ujk
, hjk = (−1)(|j|+|k|)|f|D̃xjD̃xkf,

and similarly for the higher jet-superspaces, for instance:

S

∧

f = S̃f +
∑

j6k6ℓ

hjkℓ∂ujkl
, hjkℓ = (−1)(|j|+|k|+|ℓ|)|f|D

∧

xjD

∧

xkD

∧

xℓf.

In this article, we will focus on sub-supermanifolds Σ ⊂ M̃ (for the mixed contact grading) and

Σ ⊂M

∧

(for the odd contact grading). Locally, Σ ⊂ Jk(Cp|q,C1|0) for k = 2 or k = 3 and often it is also
required that Σ is transverse to the projections to the lower jet-superspaces. These are super-PDE on
one dependent even variable u, and many independent variables xi (p of which are even and q of
which are odd). Geometric structures inherited by Σ from the ambient space include:

• a canonical superdistribution CΣ induced from the Cartan superdistribution, more precisely,
the (annihilator of the) pull-back to Σ of the annihilator of the Cartan superdistribution, or,
equivalently, the intersection of the tangent bundle TΣ with the Cartan superdistribution;

• a vertical subsuperdistribution VΣ = TΣ ∩ V ⊂ CΣ. (When Σ ⊂ M̃, V = ker(TM̃→ TM) ⊂ C̃.

When Σ ⊂M

∧

, V = ker(TM

∧

→ TM̃) ⊂ C

∧

.)

We emphasize that VΣ being distinguished is an important feature of the associated contact supergeo-
metry of Σ: it is an artifact of the Lie–Bäcklund theorem.

In §5 and §6, we clarify the geometric origins of the differential equations (1.1) and (1.2), and
establish our main result (Theorem 1.1).

5. The mixed contact grading and related geometric structures

5.1. A supervariety and its osculating sequence. Consider the grading of the LSA g = F(4) associ-
ated to the parabolic pVI4 and grading element Z = Z4. We have g0 = cosp(4|2;α) with α = 2, which
has dimension (10|8) and center z(g0) = 〈Z4〉, and V = g−1 of dimension (6|4) with highest root −α4,
cf. Table 4. Let P(V) = Gr(1|0; 6|4) ∼= P5|4 be the projective superspace associated to the linear super-
manifold V = V0̄⊕V1̄

∼= C6|4, which has underlying topological space P(V0̄)
∼= P5 (see [26, §4.3]). We

equip P(V) with the natural action of the connected Lie supergroup G0 = COSp(4|2;α) ⊂ CSpO(6|4)
generated by g0 ⊂ cspo(6|4).

Let f = gss0
∼= osp(4|2;α) be the semisimple part of g0 and Z1,Z2,Z3 the dual basis of the simple

root system α1, α2, α3 of f, spanning the Cartan subalgebra of f. (Here, we are abusing notation:
these elements are not necessarily dual to the entire simple root system VI of F(4).) Let e−α4

be a
root vector for the root −α4, and consider the topological point o := [e−α4

] ∈ P(V0̄) with stabilizer
subalgebra q ⊂ f, which is parabolic. This can be described via a grading on f, namely f = f−1⊕ f0⊕ f1,
with q = f0 ⊕ f1 and f±1 abelian. This grading arises from the grading element Z3 ∈ h and we refer to
it as the “secondary” grading (compared to the grading of F(4)we started with). In more detail, the
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roots of f are organized as follows:

k ∆0̄(fk) ∆1̄(fk)

1 α3, α1 + 2α2 + α3 α2 + α3, α1 + α2 + α3

0 ±α1 ±α2, ±(α1 + α2)

−1 −α3, −α1 − 2α2 − α3 −α2 − α3, −α1 − α2 − α3

(5.1)

We remark that f0 = C⊕ fss0 , where z(f0) = 〈Z3〉, fss0 ∼= sl(2|1) ∼= osp(2|2), and f−1
∼= C2|2 is irreducible as

an fss0 -representation. Let us concretely express this action in terms of a basis of f−1 consisting of root
vectors adapted to the roots listed in (5.1).

Lemma 5.1. The following statements are true for the representation of fss0
∼= osp(2|2) on f−1

∼= C2|2:

(i) It can be explicitly given by the following 4× 4 matrices:

h10 = [e10, f10] =

( 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

)
, e10 =

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
, f10 =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

)
,

h01 = [e01, f01] = − 1
3

( 2 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 −1

)
, e01 =

(
0 0 c2 0
0 0 0 0
0 0 0 0
0 c1 0 0

)
, f01 =

(
0 0 0 0
0 0 0 c4

c3 0 0 0
0 0 0 0

)
,

e11 = [e10, e01] =

(
0 0 0 −c2
0 0 0 0
0 c1 0 0
0 0 0 0

)
, f11 = [f10, f01] =

(
0 0 0 0
0 0 −c4 0
0 0 0 0
c3 0 0 0

)
.

(5.2)

where c2c3 = − 2
3 and c1c4 =

1
3 . Here, e10, e01, e11, f10, f01, f11 are root vectors for the roots α1,α2,α1+

α2,−α1,−α2,−α1 − α2, respectively, while h10 and h01 are coroots;
(ii) It is isomorphic to the irreducible representation with labels (b, j) = ( 16 ,

1
2 ), in the conventions of [10].

In particular, it is not the defining representation of osp(2|2) (corresponding to (b, j) = (0, 12 ));

Proof. The Cartan matrix
(

2 +3
−1 0

)
of fss0 is obtained by removing the next-to-last and last rows and

columns from the Cartan matrix (2.2) of the VI Dynkin diagram of F(4). By rescaling the column
corresponding to the odd isotropic simple root one gets

(
2 −1
−1 0

)
, which is the standard Cartanmatrix

of fss0
∼= osp(2|2). Let hαi

be coroots of the simple root system VI and eαi
, fαi

the corresponding
positive and negative root vectors, i = 1, . . . , 4. Then the presence of the sl2-triple eα1

,hα1
, fα1

acting
non-trivially only on the odd subspace of f−1 is clear. This gives the first row of (5.2), with h10 = hα1

,
e10 = eα1

, f10 = fα1
. Now, the Cartan matrix (2.2) has entries equal to αi(hαj

), where i is the row
index and j is the column index, so the action of hα2

on f−1 (in terms of a basis of root vectors) is
given by hα2

= diag(2,−1, 2,−1) and we set h01 = − 1
3hα2

. The Serre–Chevalley relations [10, §2.44]
for fss0

∼= osp(2|2) imply that eα2
and fα2

can be rescaled to e01 and f01 so that h01 = [e01, f01]. The
location of the non-trivial entries of e01 is clear from the roots of f−1, e.g., the sum of α2 and −α3 is
not a root, so the first column is trivial, while the sum of α2 and −α1 − 2α2 − α3 is a root, so only the
fourth entry in the second column is non-trivial, etc. Continuing in this manner yields the second
row of matrices in (5.2), with the constraints c2c3 = − 2

3 and c1c4 = 1
3 . The last row of matrices in

(5.2) is then clear. This proves (i).

The irreducible representation with labels (b, j) decomposes w.r.t. osp(2|2)0̄ ∼= so(2) ⊕ sp(2) into
C2

b ⊕C
b+

1
2
⊕C

b−
1
2
, where the subscript is the eigenvalue of a normalized generator h of so(2). In the

case of f−1, we have h = − 1
2h10 − h01 = diag( 23 ,−

1
3 ,

1
6 ,

1
6 ) commuting with sp(2), and (ii) follows. �

Consider the supervariety V ⊂ P(V) defined as the G0-orbit through o = [e−α4
], and its osculating

sequence as in [18, §2.4.4]. This is obtained as follows. Let U(g0) be the universal enveloping algebra
of g0 and Uk(g0) the k-filtrand, k > 0, w.r.t. the usual increasing filtration of U(g0). The natural map
Uk(g0) → V given by t 7→ t · e−α4

is fss0 -equivariant, since fss0 annihilates e−α4
, but is not difficult to see

that its image is, in fact, a q-module.

Definition 5.2. The k-th osculating space T̂ (k)o V ⊂ V of V at o = [e−α4
] is the image of the natural map

Uk(g0) → V.

SinceUk+1(g0) ·o = Uk(g0) ·o+f−1 ·Uk(g0) ·o, we then obtain a q-invariant filtration by successively
applying f−1 to o. We have

o = T̂ (0)o V ⊂ T̂ (1)o V ⊂ T̂ (2)o V ⊂ T̂ (3)o V = V,
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with associated graded vector space gr(V) = N0⊕N1⊕N2⊕N3, whereNk := T̂
(k)
o V / T̂

(k−1)
o V is called

the normal space of degree −k (w.r.t. Z3). The corresponding roots are:

∆0̄(g−1) ∆1̄(g−1) dim

N0 −α4 · (1|0)

N1
−α3 − α4

−α1 − 2α2 − α3 − α4

−α2 − α3 − α4

−α1 − α2 − α3 − α4
(2|2)

N2
−α1 − 2α2 − 2α3 − α4

−2α1 − 4α2 − 2α3 − α4

−α1 − 3α2 − 2α3 − α4

−2α1 − 3α2 − 2α3 − α4
(2|2)

N3 −2α1 − 4α2 − 3α3 − α4 · (1|0)

(5.3)

The natural map Uk(g0) → V induces a surjection Uk(g0) → Nk, which in turn descends to a well-
defined surjection Sk(g0) ∼= Uk(g0)/Uk−1(g0) → Nk. This map still has a kernel. Its restriction to
Sk(f−1), which we denote by ϕk : Sk(f−1) → Nk, is still surjective and also fss0 -equivariant. Hence, as
fss0 -modules,

Nk
∼= Sk(f−1)/ker(ϕk). (5.4)

Via these fss0 -equivariant isomorphisms, gr(V) inherits from the natural product structure on S•(f−1)

a supercommutative, associative Z-graded superalgebra structure Ni ⊗ Nj → Ni+j, which we now
make explicit. For f−1, take the following root vectors:

even part odd part
Root −α3 −α1 − 2α2 − α3 −α2 − α3 −α1 − α2 − α3

Root vector Y1 Y2 Θ1 Θ2

Using (5.3) and the identification (5.4), we have the following representatives of equivalence classes:

k (Nk)0̄ (Nk)1̄

0 1 ·

1
Y1
Y2

Θ1

Θ2

2
Y1Y2 ≡ Θ1Θ2

(Y2)
2

Y2Θ1

Y2Θ2

3 Y1(Y2)
2 ≡ Y2Θ1Θ2 ·

(5.5)

A priori we have Y1Y2 ≡ cΘ1Θ2 in N2, but by rescaling the chosen basis elements of f−1, we have
normalized to c = 1. (Wewill show before Proposition 5.3 that this normalization gives an additional
constraint on the constants c1, . . . , c4 appearing in (5.2).) Beyond this relation, we have the additional
relations

(Y1)
2 = 0, Y1Θ1 = Y1Θ2 = 0, (Y2)

3 = 0, (Y2)
2Θ1 = (Y2)

2Θ2 = 0.

The relations (Θ1)
2 = (Θ2)

2 = 0 and Θ1Θ2 = −Θ2Θ1 are implicit since Θ1,Θ2 are odd.

5.2. Explicit local form of the supervariety. We proceed as in [18, §2.4.3], expressing relevant su-
permanifolds and group actions in terms of the functor of points formalism. Letting A = A0̄ ⊕ A1̄

denote an arbitrary finite-dimensional supercommutative superalgebra, the linear supermanifold V

has associated functor of points given by

A 7→ V(A) := (V⊗ A)0̄ = (V0̄ ⊗ A0̄)⊕ (V1̄ ⊗ A1̄).

For P(V), the functor of points is A 7→ P(V)(A) := P1|0(V ⊗ A), which consists of all free A-modules
in V ⊗ A of rank (1|0). The group G0 is thought of in terms of A 7→ G0(A), where the (set-theoretic)
group G0(A) acts on V(A) by means of even transformations with coefficients in A, and this induces
a corresponding G0-action on P(V). We let V ⊂ P(V) be the G0-orbit through o = [e−α4

]. The formal-
ism is necessary to precisely articulate the notion of exponentiation of infinitesimal transformations
below in order to locally express V.

Let us order the generators in (5.5) as follows:

1, Y1, Y2, Θ1, Θ2,

Y1Y2 ≡ Θ1Θ2, (Y2)
2, Y2Θ1, Y2Θ2, Y1(Y2)

2 ≡ Y2Θ1Θ2.
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Apply each generator to the chosen basepoint e−α4
to get a corresponding basis b = (v0, ..., v9) of

V = g−1. (Note that v3, v4, v7, v8 are odd, and the rest are even.) Since f−1 is abelian, we have that
V ∼= gr(V) as f−1-modules, so the f−1-action can be expressed in the aforementioned basis in terms of
the following supercommuting matrices:

Y1 =




0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0



, Y2 =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0



, Θ1 =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0



, Θ2 =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0



.

Now take parameters λ1, λ2 ∈ A0̄ and θ1, θ2 ∈ A1̄. Exponentiation yields

exp(λ1Y1) = id+λ1Y1, exp(λ2Y2) = id+λ2Y2 +
(λ2)

2

2
(Y2)

2,

exp(θ1Θ1) = id+θ1Θ1, exp(θ2Θ2) = id+θ2Θ2

Wenow compute exp(θ2Θ2) exp(θ1Θ1) exp(λ2Y2) exp(λ1Y1)·e−α4
. Computing products, we obtain the

following expression in right-coordinates for the supervariety V:




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
θ1 0 0 1 0 0 0 0 0 0
θ2 0 0 0 1 0 0 0 0 0

θ1θ2 0 0 −θ2 θ1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 θ1 0 0 0 0 1 0 0
0 0 θ2 0 0 0 0 0 1 0
0 0 θ1θ2 0 0 0 0 −θ2 θ1 1







1 0 0 0 0 0 0 0 0 0
λ1 1 0 0 0 0 0 0 0 0
λ2 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

λ1λ2 λ2 λ1 0 0 1 0 0 0 0
λ2
2
2 0 λ2 0 0 0 1 0 0 0

0 0 0 λ2 0 0 0 1 0 0
0 0 0 0 λ2 0 0 0 1 0

λ1λ
2
2

2
λ2
2
2 λ1λ2 0 0 λ2 λ1 0 0 1







1
0
0
0
0
0
0
0
0
0




=




1
λ1
λ2
θ1
θ2

λ1λ2+θ1θ2

λ2
2
2

λ2θ1
λ2θ2

λ2θ1θ2+
λ1λ

2
2

2




Although legitimate, the local expression obtained here for the supervariety is not convenient for
facilitating our later transition to super-PDE. Namely, b = {v0, ..., v9} is in fact not a CSpO-basis of V,
i.e., a basis w.r.t. which the CSpO-structure [η] is in canonical form. (For example, {Dxi ,∂ui

} from §4
is a CSpO-frame of C w.r.t. η = dσ =

∑

i dx
i ∧ dui.)

In our algebraic setting, the CSpO-structure [η] corresponds to the g0-equivariant bracketΛ
2g−1 →

g−2. Since g−2 is the root space for−2α1−4α2−3α3−2α4, then the roots (5.3) indicate that ηmust be
a linear combination of v0∧v9, v1∧v6, v2∧v5, v3∧v8, v4∧v7. (We remind that η is skew-symmetric in
the super-sense, so the last two entries are in fact symmetric, and that the value of vi ∧ vj on vectors
x,y ∈ g−1 is obtained as insertions from the left x⊗y 7→ ιxιy(v

i∧ vj) followed by the usual sign rule.)
Since f−1 acts trivially on g−2, we impose f−1-invariance of η, i.e. η(Ax,y) + (−1)|A||x|η(x,Ay) = 0, for
all x,y ∈ g−1, A ∈ f−1. This forces η to be a multiple of v0 ∧ v9 − v1 ∧ v6 − v2 ∧ v5 + v3 ∧ v8 − v4 ∧ v7.

Now, using the CSpO-basis b ′ = (v0,−v1,−v2, v3, v4,−v9,−v6,−v5, v8,−v7) instead of the basis b =

(v0, ..., v9), we have the column vector of right-coordinates



1
−λ1
−λ2
θ1
θ2

−
λ1λ

2
2

2 −λ2θ1θ2

−
λ2
2
2

−λ1λ2−θ1θ2
λ2θ2
−λ2θ1




,

which projectivizes to our ℓ ∈ V. Using the canonical isomorphism V ⊗ A ∼= A ⊗ V, we interchange
right-coordinates with left-coordinates via the “sign-rule”, giving the following row vector of left-
coordinates:

(
1, −λ1, −λ2, −θ1, −θ2, −

λ1λ
2
2

2 − λ2θ1θ2, −
λ2
2
2 , −λ1λ2 − θ1θ2, −λ2θ2, λ2θ1

)
. (5.6)

This is our local parametrizationof the supervarietyV ⊂ P(V). Finally, we remark that T̂oV is spanned
by the root spaces associated with N0 ⊕N1 (see (5.3)), so is clearly a Lagrangian subspace of Vw.r.t.

η :
∧2

g−1 → g−2. By G0-invariance of V and since G0 ⊂ CSpO(6|4), we have that T̂ℓV is Lagrangian
for any ℓ ∈ V.
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5.3. Supersymmetric cubic forms and a key identity. The multiplication N1 ⊗ N2 → N3 is a non-
degenerate fss0 -equivariant pairing, and fss0 acts trivially on N3. Distinguishing (the equivalence class
of) the element Y1(Y2)

2 in N3 induces an identification N2
∼= (N1)

∗ as fss0 -modules. Set W = N1 and
(w1,w2,w3,w4) = (Y1, Y2,Θ1,Θ2). The dual basis w.r.t. the product N1 ⊗N2 → N3

∼= C is then given
by

w1 = (Y2)
2, w2 = Y1Y2, w3 = Y2Θ2, w4 = −Y2Θ1. (5.7)

(Again, strictly speaking we refer to equivalence classes on the right-hand sides here.)

The multiplication N1 ⊗ N1 → N2 yields an even fss0 -equivariant map W ⊗W → W∗, which we
dualize as an even, supersymmetric, fss0 -invariant cubic form C ∈ S3W∗, since the algebra structure is
induced from S•(f−1). More precisely,W ⊗W →W∗ is given by u⊗ v 7→ ιuιvC, where ιu and ιv refer
to insertions from the left, and (5.7) indicates that

C = w1(w2)2 − 2w2w3w4 . (5.8)

Writing C = Cabcw
awbwc (Einstein summation convention), the only non-trivial components of C

are C122 = C212 = C221 = 1
3 and C234 = C324 = C342 = −C243 = −C423 = −C432 = − 1

3 . We remark that the
cubic form (5.8) is fss0 -invariant. Using (5.2), we find that

0 = e01 · C = (2c1 − c2)(w
2)2w3,

0 = f01 · C = −2(c3 + c4)w
1w2w4,

so that the constants c1, c2, c3, c4 are finally constrained to (c2, c3, c4) =
(
2c1,−

1
3c1

, 1
3c1

)
.

Proposition 5.3. Any fss0 -invariant, even, supersymmetric cubic forms in S3W∗ and S3W are, respectively,
multiples of

C = w1(w2)2 − 2w2w3w4,

C∗ = w1(w2)
2 −w2w3w4.

Proof. A basis for the even subspace of S3W is

(w1)
3, (w1)

2w2, w1(w2)
2, (w2)

3, w1w3w4, w2w3w4.

A direct computation using (5.2) shows that fss0 -invariance of C∗ forces it to be a multiple of
c2w1(w2)

2 − 2c1w2w3w4, substituting c2 = 2c1 yields the result. The proof for C in S3W∗ is ana-
logous. �

We refer to C∗ as the dual cubic form. Although any multiple of C∗ is also fss0 -invariant, we now pin
down C∗ as we have stated it so that a key cubic form identity holds.

Let A = A0̄ ⊕ A1̄ be any finite-dimensional supercommutative superalgebra and define W(A) :=

(W⊗A)0̄
∼= (A⊗W)0̄, where the isomorphism is induced via the usual “sign rule”. Similarly,W∗(A) :=

(A⊗W∗)0̄. We now extend the definition of C fromW toW(A) using leftA-linearity: for any T ∈W(A),
and using Einstein summation convention below, we write T = tawa = λ1w1 + λ2w2 + θ1w3 + θ2w4,
where λ1, λ2 ∈ A0̄ and θ1, θ2 ∈ A1̄, and define

C(T 3) := tctbtaCabc = λ1(λ2)
2 + 2λ2θ1θ2 . (5.9)

We also use the notation

Cc(T
2) := 1

3∂tc (C(T
3)), Cbc(T) :=

1
2∂tb (Cc(T

2)), (5.10)

so that Cabc = ∂ta(Cbc(T)) and C(T 3) = tcCc(T
2) = tctbCbc(T) = t

ctbtaCabc, as expected.

Given T∗ = t∗aw
a = µ1w

1 + µ2w
2 + φ1w

3 + φ2w
4, with µ1,µ2 ∈ A0̄ and φ1,φ2 ∈ A1̄, we similarly

have

C∗((T∗)3) = µ1(µ2)
2 + µ2φ1φ2

and likewise introduce tensors (C∗)c and (C∗)bc. A straightforward (but slightly tedious) direct check
yields the following key identity for C and C∗:
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Lemma 5.4 (Cubic form identity). We have:

Cb(T
2)Ca(T

2)(C∗)ab(T∗) =
4
27

C(T 3)tct∗c. (5.11)

Alternatively, we can easily confirm the above Lemma in Maple as follows:

restart: with(Physics):

Setup(mathematicalnotation=false):

Setup(anticommutativeprefix={theta,phi}):

t:=[lambda1,lambda2,theta1,theta2]:

ts:=[mu1,mu2,phi1,phi2]:

C:=lambda1*lambda2^2+2*lambda2*theta1*theta2:

Cs:=mu1*mu2^2+mu2*phi1*phi2:

C1:=[seq(1/3*diff(C,t[a]),a=1..4)]:

C1s:=[seq(1/3*diff(Cs,ts[a]),a=1..4)]:

C2s:=Matrix(4,4,(a,b)->1/2*diff(C1s[b],ts[a])):

LHS:=expand(simplify(add(add(C1[b]*C1[a]*C2s[a,b],a=1..4),b=1..4))):

RHS:=expand(4/27*C*add(t[c]*ts[c],c=1..4)):

test:=expand(LHS-RHS);

In our earlier studies [18, 31], the cubic form identity (5.11) played an important role in a PDE sym-
metry calculation. With this algebraic background now in-hand, let us now turn to the geometric
setting.

5.4. An F(4)-invariant 2nd order super-PDE system. Consider a contact supermanifold (M7|4,C).
This is locally equivalent to J1(C3|2,C1|0), so take standard jet coordinates (xi,u,ui) with even co-
ordinates x0, x1, x2,u,u0,u1,u2 and odd coordinates x3, x4,u3,u4. We also use the indices 0 6 i, j, k 6 4,
while 1 6 a,b, c 6 4.

We will endow the rank (6|4) contact superdistribution C with an additional geometric structure
fibrewise invariant under g0 ∼= cosp(4|2;α) for α = 2. By Theorem 3.6, g0 ⊂ cspo(6|4) is a maximal
subalgebra, so such a structure indeed reduces the structure algebra precisely to g0.

The first such structure is a field of supervarieties V ⊂ P(C) from §5.2, locally parametrized w.r.t.
a CSpO-basis as in (5.6). Explicitly, via C(T 3) given in (5.9), we can rewrite (5.6) as

(
1, −ta, − 1

2C(T
3), − 3

2Ca(T
2)
)
,

and use these as components w.r.t. an arbitrary CSpO-frame (X0,Xa,U0,Ua), i.e.,
[
X0 − t

aXa − 1
2C(T

3)U0 − 3
2Ca(T

2)Ua
]
, (5.12)

where brackets denote projectivization.

Definition 5.5.

(i) A mixed-contact F(4)-supergeometry (M7|8,C,V) is a contact supermanifold (M7|4,C) whose
contact superdistribution C of rank (6|4) is additionally equipped with a field of supervariet-
ies V ⊂ P(C) given by the (Zariski closure of the) parametrization (5.12) w.r.t. some CSpO-
frame (X0,Xa,U0,Ua),

(ii) The symmetry superalgebra of (M,C,V) consists of the contact supervector fields preserving
V: inf(M,C,V) = {X ∈ X(M) : LXC ⊂ C, LXV ⊂ V}.

(iii) The flatmixed-contact F(4)-supergeometry is the mixed-contact F(4)-supergeometry determ-
ined by the CSpO-frame Xi = ∂xi + ui∂u,Ui = ∂ui

.

The second structure that gives rise to the g0-reduction is the family of affine tangent spaces along

V, given by V̂ = {T̂ℓV : ℓ ∈ V}. These spaces are Lagrangian, so V̂ ⊂ LG(C). For ℓ ∈ V corresponding

(5.12), T̂ℓV is spanned by itself (5.12) and its derivativesw.r.t. each parameter ta. Taking appropriate

linear combinations, T̂ℓV is then spanned by

X0 + C(T 3)U0 + 3
2Ca(T

2)Ua, Xa + 3
2Ca(T

2)U0 + 3Cab(T)U
b, (5.13)
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where 1 6 a 6 4 and we used the notation from (5.10). While V canonically determines V̂, in fact the
converse is also true:

Proposition 5.6. A mixed-contact F(4)-supergeometry (M,C,V ⊂ P(C)) and (M,C, V̂ ⊂ LG(C)) have the
same contact symmetries.

Proof. Osculating T̂ℓV further yields the second affine tangent space T̂ (2)ℓ V. For example, at ℓ = o, we

have the filtration o ⊂ T̂oV ⊂ T̂ (2)o Vwith associated-gradedvector spaceN0⊕N1⊕N2 from (5.3). W.r.t.

the (conformal) symplectic form η, T̂ (2)o V has orthogonal complement equal to o itself, hence, by G0-

invariance, T̂ (2)ℓ V has η-orthogonal complement equal to ℓ. Consequently, V is canonically determined

from V̂. �

Theorem 5.7. The symmetry superalgebra of any mixed-contact F(4)-supergeometry (M7|4,C,V) has
dim inf(M,C,V) 6 dim F(4) = (24|16).

Proof. Let g = F(4), equipped with the mixed-contact grading. Since V ⊂ P(C) reduces the structure
group from CSpO(6|4) to G0 = COSp(4|2;α) for α = 2, any mixed-contact F(4)-supergeometry is a
filtered G0-structure with symbol m = g−2 ⊕ g−1. From Theorem 3.6, we have Hd,1(m, g) = 0 for all
d > 0, which is equivalent to the Tanaka–Weisfeiler prolongation satisfying pr(m, g0) ∼= g. The claim
then follows from [19, Thm.1.1]. �

Henceforth, we consider the flat mixed-contact F(4)-supergeometry. From §4, Lagrangian sub-

spaces of C are locally of the form Xi + uijUj = ∂xi + ui∂u + uij∂uj
, so (5.13) yields for T̂ℓV the

parametric equations
(
u00 u0b
ua0 uab

)
=

(
C(T 3) 3

2Cb(T
2)

3
2Ca(T

2) 3Cab(T)

)
. (5.14)

Using the explicit expression (5.9) of the cubic form, we can write this out as:

(
uij

)
=




λ1(λ2)
2 + 2λ2θ1θ2

1
2 (λ2)

2 λ1λ2 + θ1θ2 λ2θ2 −λ2θ1
1
2 (λ2)

2 0 λ2 0 0
λ1λ2 + θ1θ2 λ2 λ1 θ2 −θ1

λ2θ2 0 θ2 0 −λ2
−λ2θ1 0 −θ1 λ2 0



.

(We remind the reader that x3, x4,u3,u4 are odd variables.) Eliminating the parameters via
(λ1, λ2, θ1, θ2) = (u22,u12,−u24,u23), we obtain the super-PDE system (1.1).

Let us now turn to the contact symmetries of our super-PDE system. For X = (x1, x2|x3, x4) and
P = (u1,u2|u3,u4), we define C(X3) = x1(x2)2 + 2x2x3x4 and C∗(P3) = u1(u2)

2 + u2u3u4.

Proposition 5.8. The even function

f = u(u− xiui) −
1

2
C(X3)u0 +

1

2
C∗(P3)x0 +

9

4
Cc(X

2)(C∗)c(P2)

generates a contact symmetry of the flat mixed-contact F(4)-supergeometry (M,C,V).

Proof. The same proof appearing in [18, Prop.4.11] works here. That calculation only relied on C

satisfying the key cubic form identity that we have verified in Lemma 5.4. �

It is clear that 1, xi,ui are all generating functions for contact symmetries of (5.14). Using the
Lagrange bracket (4.2), we obtain other symmetries, which we organize in Table 7.

Table 7 applies remarkably uniformly, having appeared in [18, Table 8] as well as [31]. Let us
count dimensions in our current setting. Note that

dim(g±2) = (1|0), dim(g±1) = (6|4), dim(f±1) = (2|2).

Both z(g0) and z(f0) are (1|0)-dimensional, andwhat remains from dim(F(4)) = (24|16) is to verify that
dim(fss0 ) = (4|4). A direct substitution confirms that:
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g2 u(u− xiui) −
1
2C(X

3)u0 +
1
2C

∗(P3)x0 + 9
4Cc(X

2)(C∗)c(P2)

g1 x0(u− xiui) −
1
2C(X

3)

xa(u− xiui) + (−1)|a|
(
3
2 (C

∗)a(P2)x0 + 9
2Cb(X

2)(C∗)ba(P)
)

uu0 −
1
2C

∗(P3)

uua + 3
2Ca(X

2)u0 −
9
2Cab(X)(C

∗)b(P2)

z(g0) Z := 2u− xiui

gss0 f1 xau0 −
3
2 (−1)

|a|(C∗)a(P2)

z(f0) Z0 :=
3
2x

0u0 +
1
2x

cuc

fss0 ψa
b := xaub + (−1)|a|( 13δ

a
bx

cuc − 9(−1)|a||b|Cbc(X)(C
∗)ca(P))

f−1 uax
0 + 3

2Ca(X
2)

g−1 xi,ui

g−2 1

Table 7. Contact symmetries of the flatmixed-contact F(4)-supergeometry and asso-
ciated super-PDE system (the ranges of the indices are 0 6 i 6 4 and 1 6 a,b, c 6 4)

Proposition 5.9. The LSA fss0 = 〈ψa
b〉 is (4|4)-dimensional and is spanned by the even generators

ψ1
1,ψ

3
3,ψ

3
4,ψ

4
3 and the odd generators ψ1

3,ψ
1
4,ψ

2
3,ψ

2
4. Explicitly, we have the following basis:

even generators : 4u1x
1 − 2u2x

2 − u3x
3 − u4x

4, u3x
3 − u4x

4, u4x
3, u3x

4;

odd generators : − u2x
4 + u3x

1, u2x
3 + u4x

1, −2u1x
4 + u3x

2, 2u1x
3 + u4x

2.

Theorem 5.10. The contact symmetry superalgebra of the super-PDE system (1.1) is isomorphic to g = F(4)
and it is spanned by the (24|16) symmetries in Table 7.

Proof. By Theorem 5.7, this is a basis for the symmetry superalgebra. The proof that it is isomorphic
to F(4) follows exactly as in [18, Thm.5.4], using the existence of a symmetry Z = 2u− xiui that acts
like the grading element, i.e., ad(Z)|gr

= r idgr
for all r. �

6. The odd contact grading and related geometric structures

We consider now the odd contact grading of Table 5, which is associated to the parabolic sub-
algebra pI1. We have g0 = z(g0) ⊕ f, where f ∼= B3 and the center z(g0) is spanned by the grading
element Z = Z1. Moreover g−1

∼= S is the 8-dimensional spin representation of f, so we may identify
f ∼= spin(7) and g0 ∼= cspin(7). We remark that g0, g±2 are purely even, while g±1 is purely odd, and
that m = g−2⊕g−1 is an odd Heisenberg algebra with a super-skew (i.e., symmetric) non-degenerate
bracket η : Λ2g−1 → g−2. The algebra of zero-degree derivations of m is co(S), with associated
“contact” group CO(S) = C× · O(S) given by the subgroup of GL(S) preserving the conformal class
[η] := {λη : λ ∈ C×} of η.

We note that g0 ⊂ co(S) is a maximal subalgebra, since so(S) ∼= spin(7)⊕ C7 as irreducible repres-
entations for f ∼= spin(7).

6.1. An explicit presentation of the spin representation S. In this subsection, we exclusively work
in the classical setting. OnV = C7, we fix a basis (e1, e2, e3,R, f3, f2, f1) and define a symmetric bilinear
form g with “anti-diagonal” components gij = δi,8−j in this basis. Then V = E ⊕ CR ⊕ F, with E =

〈e1, e2, e3〉 and F = 〈f3, f2, f1〉 maximally isotropic subspaces, and f ∼= so(V) is given in its standard
representation by matrices of the form

X =




h1 a100 a110 a111 a112 a122 0
b100 h2 a010 a011 a012 0 −a122
b110 b010 h3 a001 0 −a012 −a112

b111 b011 b001 0 −a001 −a011 −a111
b112 b012 0 −b001 −h3 −a010 −a110
b122 0 −b012 −b011 −b010 −h2 −a100
0 −b122 −b112 −b111 −b110 −b100 −h1


 .

The Cartan subalgebra h consists of the diagonal matrices h above, and the simple roots are β1 =

ǫ1 − ǫ2, β2 = ǫ2 − ǫ3, β3 = ǫ3, where ǫi(h) = hi. Focusing on the entries of X given by aijk or bijk
yields root vectors for the roots ±(iβ1 + jβ2 + kβ3), respectively. The fundamental weights of f are
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(λ1, λ2, λ3) = (ǫ1, ǫ1 + ǫ2,
1
2 (ǫ1+ ǫ2 + ǫ3)), and we let Vλ be the irreducible representation with highest

weight λ. For instance S ∼= Vλ3
.

We equip S = Λ•E∗ with the Clifford action by V:

e · φ := −
√
2ιeφ, f ·φ := +

√
2f♭ ∧ φ, R ·φ :=

{

+iφ, φ ∈ ΛevenE∗

−iφ, φ ∈ ΛoddE∗
, (6.1)

where e ∈ E, f ∈ F, φ ∈ S, and ιe is the interior product. In our conventions, the highest weight
vector in S is given by φ = 1 ∈ ΛevenE∗. We identify so(V) ∼= Λ2V as in §2.3 and consider the spinor
representation σ : so(V) → gl(S) on S via

σ(v1 ∧ v2)(φ) :=
1

4

(
v1 · v2 ·φ− v2 · v1 ·φ

)
,

for all v1 ∧ v2 ∈ Λ2V ∼= so(V). Let volE∗ := e1 ∧ e2 ∧ e3. We define the following basis

(φ0, φ1, φ2φ3, ψ0, ψ1, ψ2, ψ3) = (1, e1, e2, e3, −volE∗ , e2 ∧ e3, e3 ∧ e1, e1 ∧ e2) (6.2)

of S and denote the corresponding dual basis elements as usual via raised indices: (φ0, . . . ,ψ3). The
induced action of so(V) on S is given explicitly by the following matrices:




h1+h2+h3
2 −ã111 −ã011 −ã001 0 −ã012 −ã112 −ã122

−b̃111
−h1+h2+h3

2 b̃100 b̃110 ã012 0 ã001 −ã011

−b̃011 ã100
h1−h2+h3

2 b̃010 ã112 −ã001 0 ã111

−b̃001 ã110 ã010
h1+h2−h3

2 ã122 ã011 −ã111 0

0 −b̃012 −b̃112 −b̃122
−h1−h2−h3

2 b̃111 b̃011 b̃001

b̃012 0 −b̃001 b̃011 ã111
h1−h2−h3

2 −ã100 −ã110

b̃112 b̃001 0 −b̃111 ã011 −b̃100
−h1+h2−h3

2 −ã010

b̃122 −b̃011 b̃111 0 ã001 −b̃110 −b̃010
−h1−h2+h3

2




, (6.3)

where the tilded variables are appropriate multiples of their untilded counterparts. (The explicit
factors are not needed in what follows.)

Up to scale, there is a unique so(V)-invariant symmetric bilinear form and (skew) 4-form on S:

η = φ0ψ0 + φ1ψ1 + φ2ψ2 + φ3ψ3, (6.4)

Q = φ0 ∧ φ1 ∧ψ0 ∧ψ1 + φ0 ∧φ2 ∧ψ0 ∧ ψ2 + φ0 ∧φ3 ∧ ψ0 ∧ ψ3

− φ1 ∧φ2 ∧ψ1 ∧ ψ2 − φ1 ∧φ3 ∧ ψ1 ∧ ψ3 − φ2 ∧ φ3 ∧ ψ2 ∧ ψ3 (6.5)

− 2φ0 ∧ ψ1 ∧ ψ2 ∧ ψ3 + 2φ1 ∧φ2 ∧ φ3 ∧ ψ0 .

It follows thatQ is nothing but the Cayley 4-form on S, expressedw.r.t. a spinorial basis that is not or-
thogonal. It is well-known that the stabilizer StabSO(S)(Q) of Q in SO(S) is connected and isomorphic
to Spin(7). (In fact, the stabilizer in GL(S) has two connected components, see [4, 549–550], Spin(7)
and i · Spin(7), but the latter is evidently not contained in SO(S)). We consider the Hodge dual op-
erations on S and S∗ determined by the orientations given by volS = φ0 ∧ . . .∧φ3 ∧ψ0∧ . . .∧ψ3 and,

respectively, volS∗ = vol♭S = φ
0 ∧ . . .∧φ3 ∧ψ0 ∧ . . .∧ψ3, where ♭ : S → S∗ is the musical isomorphism

determined by η. We remark that the spaces of self-dual Λ4
+S

∗ and anti self-dual Λ4
−S

∗ forms are
η-orthogonal and that (Λ4

±S)
♭ = Λ4

±S
∗. Evidently Λ4

±S
∗|Λ4

∓S
= 0.

Lemma 6.1. The Cayley 4-form Q is anti self-dual and the stabilizer StabCO(S)([Q]) of its conformal class [Q]

in CO(S) = C× ·O(S) is isomorphic to CSpin(7) = C× · Spin(7).

Proof. It is easy to see from (6.5) that Q is anti self-dual and Q ∧ ⋆Q = 14 volS∗ , so η(Q,Q) = 14. If
A ∈ O(S) satisfies A · Q = λQ for λ ∈ C×, then λ2η(Q,Q) = η(A · Q,A · Q) = η(Q,Q), so λ = ±1.
If det(A) = −1, then A · Q = λQ is an equality of non-zero 4-forms with opposite duality, which is
not possible. Hence det(A) = 1 and the group StabSO(S)([Q]) has at most two connected components,
corresponding to λ = ±1. The one of the identity is Spin(7). In particular, StabSO(S)([Q]) is contained
in the normalizer of Spin(7) in SO(S). Since any automorphism of Spin(7) is inner, then for any
g ∈ StabSO(S)([Q]) there exists h ∈ Spin(7) such that gtg−1 = hth−1 for all t ∈ Spin(7). In other words
h−1g is in the centralizer of Spin(7) in SO(S), which consists only of ±1 (by Schur’s Lemma, since
Spin(7) acts irreducibly on S). Hence g = ±h and λ = 1, i.e., g ∈ StabSO(S)(Q) ∼= Spin(7). Summing
up, StabCO(S)([Q]) = C× · StabSO(S)([Q]) = C× · StabSO(S)(Q) ∼= C× · Spin(7). �
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We refer to the subgroup G0 := CSpin(7) = C× · Spin(7) of CO(S) as the structure group. Let us
define several objects related to the spin representation S:

(i) The spinor variety V ⊂ P(S) is the Spin(7)-orbit through the isotropic line o = [1] ∈ S.
Concretely, V is the connected, 6-dimensional, null quadric

V =
{

[φ] : η(φ,φ) = 0
}

.

(Since both the spinor variety V and the null quadric are Zariski-closed irreducible subsets
in P(S) and they have the same dimension, they have to coincide.)

(ii) The Lagrangian–Grassmannian LG(S) consists of all η-Lagrangian subspaces of S. Its tan-
gent space is modelled on 4 × 4 skew-symmetric matrices, so dimLG(S) = 6. From [27,
p.189], LG(S) consists of two open SO(S)-orbits (hence two connected components), and is
a single O(S)-orbit. Regarding any L ∈ LG(S) via the Plücker embedding LG(S) →֒ P(Λ4S),
the two open SO(S)-orbits consist of the space LG+(S) of self-dual η-Lagrangian subspaces
(e.g., L = 〈φ0,φ1,φ2,φ3〉) and, respectively, the space LG−(S) of anti self-dual ones (e.g.,
L = 〈ψ0,φ1,φ2,φ3〉).

We emphasize that both V and LG(S) are actually CO(S)-invariant, so they do not enforce the
desired reduction from CO(S) to the structure group G0 = CSpin(7).

The stabilizer subalgebra in f at o = [1] is the parabolic subalgebra f0 of f corresponding to b̃ijk = 0
in (6.3). There is an f0-invariant filtration f = f−2 ⊃ f−1 ⊃ f0 ⊃ f1 ⊃ f2 of f, with filtrands fi =

⊕
j>i fj

written in terms of a compatible grading f = f−2 ⊕ ...⊕ f2:

f−2
∼= Λ2C3 f−1

∼= C3 f0 ∼= gl(3) f1 ∼= (C3)∗ f2 ∼= Λ2(C3)∗

fi ∧ fj R∧ fj ei ∧ fj R∧ ej ei ∧ ej
(1 6 i, j 6 3).

We define Sk = fk · 1 for −2 6 k 6 2, which yields an f0-invariant filtration of S:

S =: S−3 ⊃ S−2 = o⊥ ⊃ S−1 ⊃ S0 = o ⊃ 0 ,

with S−1 = 〈φ0,φ1,φ2,φ3〉 ∈ LG+(S). Trivially extending the filtration to all integers, S becomes a
filtered f-representation, i.e., fi · Sj ⊂ Si+j, for all i, j ∈ Z. Via the transitive action of Spin(7) on the
null quadric, a filtration S = S−3

ℓ V ⊃ S−2
ℓ V = ℓ⊥ ⊃ S−1

ℓ V ⊃ S0ℓV = ℓ ⊃ 0 is then induced at any ℓ ∈ V.

Definition 6.2.

(i) We call T̂ℓV := S−2
ℓ V the affine tangent space to V at ℓ. Geometrically, it is the tangent space to

the cone over V,
(ii) We call LℓV := S−1

ℓ V the (affine) Lagrangian tangent space toV at ℓ. It is a self-dual η-Lagrangian

subspace of T̂ℓV.

We let L(V) := {LℓV : ℓ ∈ V} and note that the map Φ : V → L(V) sending ℓ 7→ LℓV is Spin(7)-
equivariant and surjective by construction. We also introduce the flag manifold given by the incid-
ence relation ℓ ⊂ LℓV:

F(V) = {(ℓ, L) : ℓ ∈ V, L = LℓV} ,

which fibres (bijectively) over V.

Proposition 6.3. Consider the spin representation S of f ∼= spin(7) and the Cayley 4-form Q ∈ Λ4S∗ as in
(6.5). Regarding any L ∈ LG+(S) via the Plücker embedding LG+(S) →֒ P(Λ4

+S), then:

(1) L(V) = LG+(S), the connected component of self-dual η-Lagrangian subspaces in LG(S).
(2) L(V) ( {L ∈ LG(S) : Q|L = 0}.
(3) The unique CSpin(7)-invariant element of P(Λ4S∗) is [Q], which vanishes on all of L(V).
(4) The mapΦ : V → L(V) is a bijection.
(5) Given ℓ = [φ] ∈ V, consider ιφQ and its restriction to ℓ⊥. The subspace of vectors of ℓ⊥ inserting

trivially into ιφQ is LℓV. This distinguishes F(V) from [Q].
(6) The stabilizer of F(V) in CO(S) = C× ·O(S) is CSpin(7). This distinguishes [Q] from F(V).

Proof. We regard any L ∈ LG+(S) via the Plücker embedding LG+(S) →֒ P(Λ4
+S). We first note that

S ∼= Vλ3
and Λ4

+S
∼= V2λ3

, so that the stabilizer subalgebras of the highest weight lines o = [1] ∈ P(S)

and S−1 = [φ0 ∧ φ1 ∧ φ2 ∧ φ3] ∈ P(Λ4
+S) are both equal to the parabolic subalgebra f0 of f. By

construction L(V) = Spin(7) ·S−1 ⊂ LG+(S) is the orbit in P(Λ4
+S) of minimal dimension dim f/f0 = 6,
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in particular it is an irreducible projective variety, i.e., a Zariski-closed irreducible subset in P(Λ4
+S).

Now LG+(S) = SO(S) · S−1 ⊂ P(Λ4
+S) is also Zariski-closed and irreducible of dimension 6, so that

L(V) is also open in LG+(S), and L(V) and LG+(S) must agree. Thus, (1) is proved.

By anti self-duality of the Cayley form Q, we clearly have Q|L = 0 for all L ∈ L(V) = LG+(S). Now,
LG(S) →֒ P(Λ4S) via the Plücker embedding and

Λ4S ∼= Λ4
−S⊕Λ4

+S
∼=
(
C⊕Vλ1

⊕ V2λ1

)
⊕ V2λ3

(6.6)

as decomposition into inequivalent irreducible representations for f. Clearly the kernel of Q in Λ4S

is given by Vλ1
⊕ V2λ1

⊕ V2λ3
. We note that [φ0 ∧ φ2 ∧ φ3 ∧ ψ1] is also a highest weight line, with

weight 2λ1. Thus Q = 0 on this line and L(V) ( {L ∈ LG(S) : Q|L = 0}, proving (2). Claim (3) is also
immediate from (6.6).

The map Φ sends the highest weight line of V →֒ P(S) ∼= P(Vλ3
) to the highest weight line of

L(V) →֒ P(V2λ3
). By Spin(7)-equivariancy of Φ, it must abstractly correspond to the 2nd Veronese

embedding [φ] 7→ [φ2], which is bijective, and so (4) is proved.

Take ℓ = [φ0] ∈ V. By (6.5), the 3-form ιφ0
Q restricted to ℓ⊥ = 〈φ0,φ1,φ2,φ3,ψ1,ψ2,ψ3〉 becomes

just −2ψ1 ∧ ψ2 ∧ ψ3, and we immediately confirm the claim for ℓ = [φ0]. The general result follows
then from Spin(7)-equivariancy and its transitive action on V. This proves (5).

By construction of F(V) and since the LℓV’s are self-dual η-Lagrangian subspaces, we have
CSpin(7) ⊂ StabCO(S)(F(V)) ⊂ C× · SO(S) for the stabilizer of F(V) in CO(S). We then write
StabCO(S)(F(V)) = C× · H, for some closed subgroup H of SO(S) containing Spin(7). On the other
hand F(V) is not SO(S)-stable (e.g., take g ∈ SO(S) that fixes φ0, ψ0, φ1, ψ1 and interchanges φi with
ψi for i = 2, 3, so that g · S−1 6= S−1) and spin(7) is a maximal subalgebra of so(S), hence the con-
nected component of the identity of H coincides with Spin(7). It then follows that H is contained in
the normalizer of Spin(7) in SO(S), which is just Spin(7) itself, cf. the proof of Lemma 6.1. In sum-
mary H = Spin(7), hence StabCO(S)(F(V)) = CSpin(7), and the last claim of (6) follows directly from
(3). �

To locally describe V, we exponentiate the action of f− := f−2⊕ f−1 on 1 ∈ S, so that linear coordin-
ates on f− induce coordinates on an open subset of U ⊂ V. Explicitly, we set ãijk = b̃ij0 = hi = 0
in (6.3), let (b̃111, b̃011, b̃001, b̃012, b̃112, b̃122) = (u23,u31,u12,u01,u02,u03), and then use the matrix expo-
nential on the basis (6.2) to obtain




1 0 0 0 0 0 0 0
−u23 1 0 0 0 0 0 0
−u31 0 1 0 0 0 0 0
−u12 0 0 1 0 0 0 0

u01u23+u02u31+u03u12 −u01 −u02 −u03 1 u23 u31 u12
u01 0 −u12 u31 0 1 0 0
u02 u12 0 −u23 0 0 1 0
u03 −u31 u23 0 0 0 0 1




, (6.7)

where:

(i) the projectivization of the first column of (6.7) describes some ℓ ∈ U (in its right-
coordinates);

(ii) the first four columns of (6.7) describes the Lagrangian tangent space LℓV. Using column
reduction, we obtain:




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 −u01 −u02 −u03

u01 0 −u12 u31
u02 u12 0 −u23

u03 −u31 u23 0


 ,

so {uij} are standard affine coordinates on LG+(S). (The bottom 4× 4 block is skew.)

We further observe for later use that the 2nd-4th columns of (6.7) can also be obtained by applying
the (negatives of the) following derivations to the first column:

∂u23
− u12∂u02

+ u31∂u03
, ∂u31

− u23∂u03
+ u12∂u01

, ∂u12
− u31∂u01

+ u23∂u02
. (6.8)

Remark 6.4. From Proposition 6.3, L(V) = LG+(S) is a connected component of LG(S), so we can-
not hope to produce a 2nd order super-PDE as in the mixed contact case. Naturally, this motivates
looking to higher jets, e.g., for a 3rd order super-PDE, and we will do so below.
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Remark 6.5. We conclude with a brief detour on how triality for so(8) is related to our approach.
Let V̄ = C8 = Ē⊕ F̄ be an isotropic decomposition of the standard representation of so(8) and define
a Clifford action on S̄ = Λ•Ē∗ similar to (6.1), with positive and negative chirality 8-dimensional
irreducible representations S̄+ = ΛevenĒ∗ and S̄− = ΛoddĒ∗. Then:

(a) Fix an isotropic spinor 1 ∈ S̄+. Its Clifford annihilator in V̄ is Ē;
(b) Fix a non-isotropic spinor φ ∈ S̄−, e.g., φ = e1 + e234;
(c) Take the Clifford product of Ē and φ. The image is the distinguished 4-dimensional Lag-

rangian subspace S̄−1
+ = 〈1, e23, e24, e34〉 in S̄+.

Our picture can be restoredwith appropriate identifications f = stabso(8)(φ), V = φ⊥∩ S̄−, S = S̄+ ∼= V̄

(as a representation for f). The Cayley 4-form Q on S is obtained by squaring φ via the isomorphism
⊙2S̄− ∼= Λ0V̄∗ ⊕Λ4

−V̄
∗, with the explicit formula akin to those used in supergravity theories (see also

§2.3). The main advantage of the approach of this section is the fact that the reduction of structure
group is encoded in the Cayley 4-form, which lives naturally on S and does not require the introduc-
tion of auxiliary spaces of spinors for so(8).

6.2. F(4)-supergeometries of odd-contact type. Consider a contact supermanifold (M1|8,C) with
rank (0|8) contact superdistribution C. Suppose that C = ker(σ) for some local defining (even) con-
tact 1-form σ. We say that the collection {ωi, θi}3i=0 of odd 1-forms onM is a local conformal coframe
of C if dσ = λ

∑

iω
i ∧ θi on C for some even invertible superfunction λ. (As usual, ∧ is meant to be

skew in the supersense, i.e., just symmetric in this case.) Given this, we define the following even
supersymmetric 4-tensor on C:

Q = ω0ω1θ0θ1 +ω
0ω2θ0θ2 +ω

0ω3θ0θ3 − 2ω0θ1θ2θ3

−ω1ω2θ1θ2 −ω
1ω3θ1θ3 −ω

2ω3θ2θ3 + 2ω1ω2ω3θ0 ∈ Γ(⊙4C∗), (6.9)

which is modelled on (6.5). (The restriction of the local conformal coframing to C has been omitted
on the r.h.s. for simplicity. We also remark that C is generated by odd supervector fields, soQ is skew
in the classical sense on these generators.)

Definition 6.6.

(i) An odd-contact F(4)-supergeometry (M1|8,C, [Q]) is a contact supermanifold (M1|8,C) whose
contact superdistribution C of rank (0|8) is equipped with a conformal class [Q] of a quartic
tensor Q ∈ Γ(⊙4C∗), which is locally of the form (6.9) for some local conformal coframe of C.

(ii) The symmetry superalgebra of (M,C, [Q]) consists of the contact supervector fields pre-
serving [Q]: inf(M,C, [Q]) = {X ∈ X(M) : LXC ⊂ C, ∃µwith LXQ = µQ on C}.

Theorem 6.7. The symmetry superalgebra of any odd-contact F(4)-supergeometry (M1|8,C, [Q]) has
dim inf(M,C, [Q]) 6 dim F(4) = (24|16).

Proof. Let g = F(4), equipped with the odd-contact grading. Since [Q] reduces the structure group
from CO(8) to G0 = CSpin(7), any odd-contact F(4)-supergeometry is a filtered G0-structure with
symbol m. From Theorem 3.8, we haveHd,1(m, g) = 0 for all d > 0, which is equivalent to the Tanaka–
Weisfeiler prolongation satisfying pr(m, g0) ∼= g. The claim then follows from [19, Thm.1.1]. �

Locally, (M1|8,C) is identified with J1(C0|4,C1|0), for whichwe have standard coordinates (xi,u,ui),
with xi,ui odd for 0 6 i 6 3 and u even, and C = ker(σ) where σ = du −

∑

i(dx
i)ui. Any contact

supervector field is identified with a generating superfunction via (4.1).

Definition 6.8. Define Q as in (6.9) with (ωi, θi) = (dxi,dui). We refer to (M,C, [Q]) so defined as
the flat odd-contact F(4)-supergeometry.

Theorem 6.9. The flat odd-contact F(4)-supergeometry has symmetry superalgebra F(4).

Proof. In Table 8, we give a (24|16)-dimensional space of generating superfunctions that we can dir-
ectly verify being symmetries of (M,C, [Q]). (This is easy for g−2 and g−1, direct but tedious for the
generator of g2, and then all other symmetries are generated by taking the Lagrange bracket (4.2).)
By Theorem 6.7, this is a basis for the symmetry superalgebra. The proof that it is isomorphic to F(4)
follows exactly as in [18, Thm.5.4], using the existence of a symmetry Z = 2u− xiui that acts like the
grading element. �
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g2

u2 + u(u0x
0 + u1x

1 + u2x
2 + u3x

3)

− 2
3u0(u1x

0x1 + u2x
0x2 + u3x

0x3) + 1
3u0x

1x2x3

− 1
3 (u1u2u3x

0 + u1u2x
1x2 + u1u3x

1x3 + u2u3x
2x3)

g1

−(u+ 1
3u1x

1 + 1
3u2x

2 + 1
3u3x

3)x0 + 1
3x

1x2x3,
−(u+ 1

3u0x
0 + 2

3u2x
2 + 2

3u3x
3)x1 − 1

3u2u3x
0,

−(u+ 1
3u0x

0 + 2
3u1x

1 + 2
3u3x

3)x2 − 1
3u3u1x

0,
−(u+ 1

3u0x
0 + 2

3u1x
1 + 2

3u2x
2)x3 − 1

3u1u2x
0,

−(u+ 2
3u1x

1 + 2
3u2x

2 + 2
3u3x

3)u0 +
1
3u1u2u3,

−(u+ 2
3u0x

0 + 1
3u2x

2 + 1
3u3x

3)u1 −
1
3x

2x3u0,
−(u+ 2

3u0x
0 + 1

3u1x
1 + 1

3u3x
3)u2 −

1
3x

3x1u0,
−(u+ 2

3u0x
0 + 1

3u1x
1 + 1

3u2x
2)u3 −

1
3x

1x2u0

g0

x0x1, x0x2, x0x3

u1x
0 + x2x3, u2x

0 + x3x1, u3x
0 + x1x2,

u0x
1 − u2u3, u0x2 − u3u1, u0x3 − u1u2,

u0x
0 − u, u1x

1 + u, u2x
2 + u, u3x

3 + u,
u1x

2, u2x
3, u3x

1,
u1x

3, u3x2, u2x1,
u0u1, u0u2, u0u3

g−1 x0, x1, x2, x3, u0, u1, u2, u3
g−2 1

Table 8. Symmetries of (M,C, [Q]) when (ωi, θi) = (dxi,dui) in (6.9)

We will geometrically reinterpret this structure in the sections to follow.

Remark 6.10. In terms of Table 8, we canmake Proposition 2.3 explicit: 1 = 1 ∈ g−2, while the stated
elements of g2 and g1 in Table 8 are respectively 1† and (x0)†, (x1)†, ..., (u3)†. In the basis {x0, x1, ...,u3}
of g−1, we have:

(
ω(2)(xi,xj)

)
06i,j63

=




0 2x0x1 2x0x2 2x0x3

−2x0x1 0 u3x
0 + x1x2 −u2x

0 − x3x1

−2x0x2 −u3x
0 − x1x2 0 u1x

0 + x2x3

−2x0x3 u2x
0 + x3x1 −u1x

0 − x2x3 0


 ,

(
ω(2)(ui,uj)

)
06i,j63

=




0 2u0u1 2u0u2 2u0u3

−2u0u1 0 x3u0 +u1u2 −x2u0 −u3u1

−2u0u2 −x3u0 −u1u2 0 x1u0 +u2u3

−2u0u3 x2u0 +u3u1 −x1u0 −u2u3 0


 ,

(
ω(2)(xi,uj)

)
06i,j63

=




0 −u1x
0 − x2x3 −u2x

0 + x1x3 −u3x
0 − x1x2

−u0x
1 +u2u3 0 −2u2x

1 −2u3x
1

−u0x
2 −u1u3 −2u1x

2 0 −2u3x
2

−u0x
3 +u1u2 −2u1x

3 −2u2x
3 0




+ 1
2 diag

(
−3u0x

0 −u1x
1 −u2x

2 −u3x
3,−u0x

0 − 3u1x
1 +u2x

2 +u3x
3 ,

−u0x
0 +u1x

1 − 3u2x
2 +u3x

3,−u0x
0 +u1x

1 +u2x
2 − 3u3x

3
)
.

Remark 6.11. The conformal class of the Cayley 4-form Q can be recovered as the supersymmetric
counterpart of Freudenthal’s quartic invariant [11, 12], or its realization [20, 14] in terms of a contact
grading g = g−2 ⊕ ... ⊕ g2 as the symmetric 4-tensor Q(x)1 = (adx)

4
1

†, for x ∈ g−1 and some fixed
non-zero 1 ∈ g−2 and 1† ∈ g2. (If g = G2, then Q is the cubic discriminant, while if g = D4, then Q is
the Cayley hyperdeterminant.) In our F(4) odd-contact setting, given that g−1 is purely odd, we have
for all s1, s2, s3, s4 ∈ g−1

∼= S,

1
6Q(s1, s2, s3, s4)1 = 1

4!

∑

ρ

(−1)ρ[[[[1†, sρ(1)], sρ(2)], sρ(3)], sρ(4)] , (6.10)

where (−1)ρ is the sign of a permutation ρ of {1, . . . , 4}. In fact, the R.H.S. of (6.10) defines a skew
4-form on S, which is proportional to Q due to spin(7)-invariance. Using Proposition 2.3, we then see
that this R.H.S. is equal to 1

4!

∑

ρ(−1)
ρ 1
3η
(
σ(ω(2)(sρ(1), sρ(2)))sρ(3), sρ(4)

)
1, and settle the constant of

proportionality using the explicit expressions of the Lie brackets in terms of generating superfunc-
tions in Remark 6.10.



28 ANDREA SANTI AND DENNIS THE

6.3. A distinguished superdistribution on the incidence Lagrange–Grassmann bundle. Given an
odd-contact F(4)-supergeometry (M1|8,C, [Q]), the following geometric objects are also distinguished:

(i) a null quadric V = {η = 0} ⊂ P(C). (Locally, [η] := [dσ|C], where C = ker(σ).)

(ii) the incidence Lagrange–Grassmann bundle π : M̃o →M determined by the Lagrangian tangent
spaces along V distinguished by (5) of Proposition 6.3, namely

M̃o = {(ℓ, L) : ℓ ∈ V, L = LℓV} ,

where V is as in (i).

A number of observations are in order:

• We emphasize that these notions are defined “pointwise” onM, which is a supermanifold, so
the functor of points approach is required to interpret the definitions rigorously. Concretely,
we shall consider a local frame of odd sections of C that is dual to a conformal coframing, and
keep the dependence on the “points” ofM (i.e, the components w.r.t. the frame, depending
on even and odd coordinates) explicit.

• The notion of a purely odd projective superspace presents subtleties (see the survey papers
[25, 5]): in our case, there are no free A-modules in S ⊗ A of rank (1|0) for any given finite-
dimensional supercommutative superalgebra A = A0̄ ⊕ A1̄, so we shall deal with free A-
modules in S ⊗ A of rank (0|1), i.e., with the Grassmannian of odd lines. This is the same as
the classical projective space of S (regarded as a purely even vector space), allowing us to
transfer the results in the classical setting of §6.1 to the framework of this section.

• By Proposition 6.3, the incidence Lagrange–Grassmann bundle naturally identifies with the

subbundle LG+(C) of the Lagrange–Grassmann bundle π : M̃ = LG(C) → M consisting of
all self-dual planes. However, their symmetry superalgebras are quite different, since, in the
former case, also the incidence relation has to be preserved.

Since we have dimLG(S) = (6|0), then Proposition 6.3(1) indicates that dim M̃o = (7|8). Moreover

M̃o is equipped with the tautological Cartan superdistribution C̃ of rank (6|4). By the incidence

relation, any L in M̃o is a Lagrangian subspace with L = LℓV for a unique ℓ ∈ V, which in turn pulls

back to a (6|1)-subsuperdistribution C̃o of C̃. Explicitly:

C̃o|L = (π∗)
−1(ℓ) ⊂ (π∗)

−1(L) = C̃|L .

Since L = LℓV, then the inclusion C̃ ⊂ (C̃o)2 follows: indeed C̃|L is the pullback of L and this is

generated by taking the bracket of C̃o with (a subdistribution of) the vertical distribution V = 〈∂uij
〉

for π : M̃o →M, see the obervation leading to (6.8).

Definition 6.12. Let (M1|8,C, [Q]) be an odd-contact F(4)-supergeometry. Then we define:

(i) the superdistributionD on M̃o as the subdistribution of C̃o satisfying the tensorial condition

[D, C̃] ⊂ (C̃o)2.

(ii) the symmetry superalgebra of the incidence Lagrange–Grassmann bundle (M̃o, C̃,D) as

inf(M̃o, C̃,D) = {X ∈ X(M̃o) : LXC̃ ⊂ C̃,LXD ⊂ D}.

In supergeometry, the even and odd parts of a superdistribution generally do not have intrinsic
meaning as superdistributions, as the even and odd sections are not sheaves of locally-free modules
(not even for the even superfunctions, see [18, §2.4]). Put differently, passing to the “even part”
of a local frame is not a well-defined global operation, unless the structure group of the principal
bundle of frames is purely even. This can be algebraically seen for the D of Definition 6.12 as we
have outlined in Remark 6.14 below; we will also provide an independent geometric confirmation in
the flat case, which is our main focus from now on.

Wemake this explicit for the flat odd-contact F(4)-supergeometry. In jet-like coordinates (xi,u,ui)

on (M1|8,C), we have η = dσ|C = (dxi ∧ dui)|C and we consider the local conformal frame
(Dx0 , . . . ,Dx3 ,∂u0

, . . . ,∂u3
) of C, where Dxi = ∂xi + ui∂u. Let (xi,u,ui,uij = −uji) be bundle-adapted

coordinates on (M̃o, C̃), so that L = 〈D̃xi〉, with D̃xi := Dxi +
∑

j uij∂uj
.

From (1) and (4) of Proposition 6.3, the (uij)’s can be regarded as locally parametrizing V ⊂ P(C)

in some fibre overM: the ℓ ∈ V for which L = LℓV is obtained by (the projectivization of) the first



EXCEPTIONALLY SIMPLE SUPER-PDE FOR F(4) 29

column of (6.7), thought as components w.r.t. the chosen local conformal frame. This yields the odd
supervector field

Dx0 − u23Dx1 − u31Dx2 − u12Dx3+(u01u23 + u02u31 + u03u12)∂u0
+ u01∂u1

+ u02∂u2
+ u03∂u3

= D̃x0 − u23D̃x1 − u31D̃x2 − u12D̃x3 ,

and, using the definition of C̃o, we then get

C̃o = 〈∂uij
, D̃x0 − u23D̃x1 − u31D̃x2 − u12D̃x3 〉 ,

(C̃o)2 = C̃o ⊕ 〈D̃x1 , D̃x2 , D̃x3 ,∂u1
+ u23∂u0

,∂u2
+ u31∂u0

,∂u3
+ u12∂u0

〉 .

In particular C̃ = 〈D̃xi ,∂uij
〉 ⊂ (C̃o)2. Now the superdistribution D ⊂ C̃o from Definition 6.12 is

defined by the condition [D, C̃] ⊂ (C̃o)2 and, using (6.8), we arrive atD given in (6.11). We compute

its weak derived flag, which has growth (3|1), (3|3), (0|3), (0|1), (1|0), and see that D2 = C̃, D3 = (C̃o)2,

D4 = C̃2 = (C̃o)3, and the full tangent bundle TM̃o = D5 = C̃3 = (C̃o)4.

even odd

D

∂u23
− u12∂u02

+ u31∂u03
,

∂u31
− u23∂u03

+ u12∂u01
,

∂u12
− u31∂u01

+ u23∂u02

D̃x0 − u23D̃x1 − u31D̃x2 − u12D̃x3

D2/D ∂u01
, ∂u02

, ∂u03
D̃x1 , D̃x2 , D̃x3

D3/D2 ∂u1
+ u23∂u0

, ∂u2
+ u31∂u0

, ∂u3
+ u12∂u0

D4/D3 ∂u0

D5/D4 ∂u

(6.11)

Now:

(i) The vertical superdistribution ker(π∗) = 〈∂uij
〉 of π : M̃o →M is distinguished under contact

transformations, so D0̄ := D ∩ ker(π∗) is a distinguished superdistribution.
(ii) The Cauchy characteristic space Ch(D3) = {X ∈ Γ(D3) : LXD

3 ⊂ D3} of D3 is covariantly
defined fromD, soD1̄ := Ch(D

3) is also a distinguished superdistribution.

From (6.11), we explicitly have

D0̄ = 〈∂u23
− u12∂u02

+ u31∂u03
,∂u31

− u23∂u03
+ u12∂u01

,∂u12
− u31∂u01

+ u23∂u02
〉,

D1̄ = 〈D̃x0 − u23D̃x1 − u31D̃x2 − u12D̃x3 〉,

of rank (3|0) and (0|1), respectively. EvidentlyD = D0̄ ⊕D1̄ and C̃o = (D0̄)
2 ⊕D1̄.

Theorem 6.13. Let (M̃o, C̃,D) be the incidence Lagrange–Grassmann bundle associated to the flat odd-contact

F(4)-supergeometry (M,C, [Q]). Then inf(M̃o, C̃,D) ∼= F(4).

Proof. Wegeometrically constructed (M̃o, C̃,D) from the flat (M,C, [Q]), so all symmetries of the latter

(Table 8) are inherited by the former. By Theorem 6.9, F(4) injects into inf(M̃o, C̃,D). Conversely, let

us consider a symmetry X ∈ inf(M̃o, C̃,D). It is contact by definition, so it projects to a contact vector
field S on (M,C), and it satisfies LXD0̄ ⊂ D0̄ and LXD1̄ ⊂ D1̄ thanks to our general considerations.

We claim that X preserves each fiber of π : M̃o → M, which is F(Vx) = {(ℓ, L) : ℓ ∈ Vx, L = Lℓ(Vx)}

over some superpoint x ofM. In fact, the incidence structure is ℓ = π∗D1̄|L ⊂ π∗C̃|L = L, and D1̄ and

C̃ are preserved by X, and so F(Vx) is preserved by S. From (6) of Proposition 6.3, the conformal
class of the Cayley 4-form [Q] is determined from this data, so Smust preserve it and inf(M,C, [Q]) ∼=

inf(M̃o, C̃,D). �

Remark 6.14. The structure considered in Theorem 6.13 is the flat model for the parabolic super-
geometry MI

12 := F(4)/PI12, which fibres overMI
1 := F(4)/PI1. An odd-contact F(4)-supergeometry is

the geometric structure associated with the latter, which gives rise to an instance of the former via
the correspondence space type construction discussed in this section. Abstractly, a |5|-grading with
purely even structure algebra g0 arises from the former – see Table 9.
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k ∆+
0̄
(gk) ∆+

1̄
(gk)

0 α3, α4, α3 + α4

1 α2, α2 + α3, α2 + α3 + α4 α1

2
2α2 + α3,
2α2 + α3 + α4,
2α2 + 2α3 + α4

α1 + α2,
α1 + α2 + α3,
α1 + α2 + α3 + α4,

3
α1 + 2α2 + α3,
α1 + 2α2 + α3 + α4,
α1 + 2α2 + 2α3 + α4

4 α1 + 3α2 + 2α3 + α4

5 2α1 + 3α2 + 2α3 + α4

Table 9. Grading associated to parabolic pI12

6.4. A remarkable 3rd order super-PDE. According to §4, we can construct a further bundle p :M

∧

→
M̃ equipped with a canonical superdistribution C

∧

, and we can now consider its pullbackM

∧

o → M̃o

over the incidence Lagrange–Grassmann bundle M̃o. Specifically, (M̃o, C̃) admits the vertical super-

distribution Ch(C̃2) = 〈∂uij
〉, and the total space ofM

∧

o consists of all subspaces E of C̃ = 〈D̃xi ,∂uij
〉

that are isotropic w.r.t. the Levi form of C̃ and complementary in C̃ to Ch(C̃2). Then C

∧

is obtained

tautologically, by pulling back these subspaces toM

∧

o. Being an open sub-supermanifold of (M

∧

,C

∧

),

the pair (M

∧

o,C

∧

) is locally isomorphic to the 3rd jet-superspace J3(C0|4,C1|0) with standard coordin-

ates (xi,u,ui,uij,uijk), where 0 6 i, j, k 6 3. The aforementioned subspaces of C̃ are of the form

E = 〈D

∧

xi〉, where

D

∧

xi := D̃xi +
∑

j<k

uijk∂ujk
= ∂xi + ui∂u + uij∂uj

+
∑

j<k

uijk∂ujk
. (6.12)

The key point here is that the incidence Lagrange–Grassmann bundle (M̃o, C̃) is enhanced with

the subsuperdistribution D = D0̄ ⊕ D1̄ ⊂ C̃ with covariant even and odd components, as observed

in §6.3 and Theorem 6.13, and this allows us to distinguish a sub-supermanifold Σ ⊂ M

∧

o, i.e., a 3rd

order super-PDE! Namely, we restrict to those isotropic subspaces E of C̃ complementary to Ch(C̃2)

that, in addition, contain D1̄. Explicitly, from E = 〈D

∧

xi〉, we observe that

D

∧

x0 − u23D

∧

x1 − u31D

∧

x2 − u12D

∧

x3

= D̃x0 − u23D̃x1 − u31D̃x2 − u12D̃x3 +
∑

j<k

(u0jk − u23u1jk − u31u2jk − u12u3jk)∂ujk
, (6.13)

so the requirement of containingD1̄ = 〈D̃x0 −u23D̃x1 −u31D̃x2 −u12D̃x3〉 forces the above summation
to vanish. Using the skew-symmetry of the indices of uijk and focusing on the coefficients of ∂ujk

where 0 < j < k, we efficiently arrive at the remarkable super-PDE

u0ab = uabu123, 1 6 a < b 6 3 ,

and re-substitution shows that this is sufficient for vanishing of the summation above.

Theorem 6.15. Consider the sub-supermanifold Σ ⊂ M

∧

o of the 3rd jet-superspace M

∧

o constructed as

above from the incidence Lagrange–Grassmann bundle (M̃o, C̃,D) associated to the flat odd-contact F(4)-

supergeometry (M,C, [Q]). In standard coordinates (xi,u,ui,uij,uijk) of M

∧

o ∼= J3(C0|4,C1|0) (here 0 6

i < j < k 6 3, the independent variables xi are odd and the dependent variable u even), the sub-supermanifold
Σ is given by the 3rd order super-PDE

u0ab = uabu123, 1 6 a < b 6 3, (6.14)

and its contact symmetry superalgebra is isomorphic to F(4).

Proof. The contact symmetry superalgebra of Σ consists of all contact vector fields X ∈ X(M

∧

o) that

are tangent to Σ ⊂ M

∧

o. Since the super-PDE Σ was geometrically constructed from the incidence
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Lagrange–Grassmann bundle (M̃o, C̃,D), all contact symmetries of the latter lift to contact symmet-

ries of Σ ⊂M

∧

o.

Conversely, consider the contact supergeometry of the sub-supermanifoldΣ ⊂M

∧

o given by (6.14),
with induced coordinates (xi,u,ui,uij, t = u123). The vertical bundle V = 〈∂t〉 is distinguished

under contact transformations, and so is the superdistribution D

∧

= C

∧

∩ TΣ induced on Σ from

C

∧

= 〈D

∧

xi ,∂uijk
〉. Explicitly

D

∧

:= 〈D

∧

x0 , D

∧

x1 , D

∧

x2 , D

∧

x3 , ∂t〉 ,

where the D

∧

xi ’s are as in (6.12) with the relations (6.14) imposed. The Cauchy characteristic space

of D

∧

is given by

Ch(D

∧

) = {X ∈ Γ(D

∧

) : LXD

∧

⊂ D

∧

} = 〈D

∧

x0 − u23D

∧

x1 − u31D

∧

x2 − u12D

∧

x3〉
= 〈D̃x0 − u23D̃x1 − u31D̃x2 − u12D̃x3〉,

where we have used (6.13) in the last step. Consequently, Ch(D

∧

) ⊕ V is Frobenius integrable and
invariant under contact transformations.

We define the superdistributionD1̄ of rank (0|1) on M̃o as push-forward of the quotient (Ch(D

∧

)⊕
V)/V . Next, the fibre of Σ → M is distinguished by contact transformations, so its quotient by V is

also distinguished and can be pushed-forward to the superdistribution 〈∂uij
〉 on M̃o of rank (6|0).

We define a superdistribution C̃o = 〈∂uij
〉 ⊕D1̄ of rank (6|1), and D0̄ as the subsuperdistribution of

〈∂uij
〉 such that D := D0̄ ⊕ D1̄ satisfies [D, C̃] ⊂ (C̃o)2. Explicitly, we see that D has the same local

form as in (6.11). Any contact symmetry of Σ ⊂ M

∧

o induces a symmetry of D

∧

, Ch(D

∧

) and V , hence

a symmetry of the incidence Lagrange–Grassmann bundle (M̃o, C̃,D).

In summary, the contact symmetries of Σ ⊂M

∧

o are in bijective correspondence with the symmet-

ries of (M̃o, C̃,D) and Theorem 6.13 implies the desired result. �

Remark 6.16. One can independently confirm that all the generating superfunctions of the symmet-
ries of (M,C, [Q]) (see Table 8) indeed prolong to contact symmetries of the super-PDE (6.14), and
Theorem 6.15 implies that this list is complete.

Finally, let us briefly remark on the solution superspace of our PDE system (6.14). This is intro-
duced via the functor of points, the main rôle being played by even superfunctions which are para-
metrized by elements in the auxiliaryfinite-dimensional supercommutative superalgebraA = A0̄⊕A1̄

(these are the super-points of such a superspace). Concretely, we let u = u(xi) be an even super-
function of the odd coordinates xi, so u is a supersymmetric polynomial in the xi’s with constant
coefficients in A. Differentiating u012 = u12u123 w.r.t. x3, we obtain u3012 = u312u123 + u12u3123 = 0
since u123 is odd, so we obtain the compatibility condition u0123 = 0. Thus,

u = λ+
∑

i<j

λijx
ixj +

∑

i

θix
i +

∑

i<j<k

θijkx
ixjxk,

where the constants λ, λij are even, while θi, θijk are odd. Substitution in (6.14) then forces θ012 =

−(λ12 + θ012x
0)ǫ, θ013 = −(λ13 + θ013x

0)ǫ, θ023 = −(λ23 + θ023x
0)ǫ, with ǫ := u123 = θ123. Using (6.14)

again, we then see that θ012θ123 = u012u123 = u12u123u123 = 0, and similarly θ013θ123 = 0, θ023θ123 = 0.
In summary, we arrive at

θ012 = −λ12ǫ, θ013 = −λ13ǫ, θ023 = −λ23ǫ,

and the solution superspace of (6.14) is (7|5)-dimensional.
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Appendix A. Spencer cohomology for the odd contact grading: proof of Theorem 3.8

We will extensively and tacitly use the spinorial presentation given by Proposition 2.3 and split
the proof into several cases, depending on the degree d > 1. The relevant spaces of cocycles and
coboundaries are Zd,1(m, g) and Bd,1(m, g) respectively.

A.1. Case d = 1.

Proposition A.1. We have B1,1(m, g) = Z1,1(m, g) ∼= S, and hence H1,1(m, g) = 0.

Proof. Note that Z1,1(m, g) includes at least one module isomorphic to S, since B1,1(m, g) = ∂g1. Let
ω+α ∈ Z1,1(m, g), with components ω = ωss +ωZ : g−1 → so(V)⊕CZ and α : g−2 → g−1, and modify
it by a coboundary ∂t† for t ∈ g−1. Then (ω+ α + ∂t†)(1) = α(1) + [1, t†] = α(1) − t. Setting t = α(1)
and relabelling, we may assume that α = 0. Thus, we have for all s ∈ g−1,

0 = ∂ω(1, s) = [1,ωZ(s)Z] = 2ωZ(s)1 ⇒ ωZ(s) = 0,

0 = ∂ω(s, s) = 2[ωss(s), s] − 2ωZ(s)s = 2[ωss(s), s] ,

Thus, ωss = 0 by Proposition 2.5, hence ω = 0 and the results follow.

�

A.2. Case d = 2.

Proposition A.2. We have B2,1(m, g) = Z2,1(m, g) ∼= C, and hence H2,1(m, g) = 0.

Proof. Letω+ α ∈ Z2,1(m, g), where ω : g−1 → g1 and α : g−2 → g0. For any s ∈ g−1,

0 = ∂(ω+ α)(1, s) = [1,ω(s)] + [α(1), s]

so ω = α(1) as endomorphisms of S, and

0 = ∂(ω+ α)(s, s) = 2[ω(s), s] − 〈s, s〉α(1)
= 2

3ω
(2)(ω(s), s) − 〈ω(s), s〉Z− 〈s, s〉ω ,

(A.1)

using Proposition 2.3. Picking s non-isotropic, we see that ω ∈ g0 ∼= so(V)⊕ C.

It is easy to see that we may modify the cocycle by an appropriate coboundary so that ω ∈ so(V).
Writing then ω = 1

2ω
µνΓµν, equation (A.1) becomes

0 = − 2
3ω

(2)(s,ω(s)) − 〈s, s〉ω = − 2
3
1
4ω

µνω(2)(s, Γµνs) −
1
2 (ss)ω

µνΓµν

= − 1
3
1
4ω

µν
(
sΓαβΓµνs

)
Γαβ − 1

2 (ss)ω
µνΓµν

= − 1
3
1
4ω

µν
(
sΓαβµνs

)
Γαβ − 1

3 (ss)ω
µνΓµν ,

where in the last step we used that ΓαβΓµν ≡ Γαβµν + δβµδαν − δαµδβν modulo Λ2V ⊂ Λ2S. Since
⊙2S ∼= Λ0V⊕Λ3V ∼= Λ0V⊕Λ4V, one readily gets ω = 0. �

A.3. Case d = 3.

Lemma A.3. The differential ∂ : C3,1(m, g) → C3,2(m, g) is injective, and hence H3,1(m, g) = 0.

Proof. Let ω + α ∈ Z3,1(m, g), where ω : g−1 → g2 and α : g−2 → g1, and write ω = ω̃1† for some
ω̃ : g−1 → C, and α(1) = t† for some t ∈ S. For all s ∈ g−1, we have

0 = ∂(ω+ α)(1, s) = [1,ω(s)] + [s,α(1)] = ω̃(s)Z+ 1
3ω

(2)(t, s) − 1
2 〈t, s〉Z

0 = ∂(ω+ α)(s, s) = −2[s,ω(s)] − α([s, s]) = 2ω̃(s)s† − 〈s, s〉t†

https://www.cost.eu
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The first equation implies ω̃ = 1
2 t. The second equation then implies 〈t, s〉s† = 〈s, s〉t† for all s ∈ g−1,

so t = 0. Thus, α = 0 and ω = 0 follow, proving our claim. �

A.4. Case d = 4.

Lemma A.4. The differential ∂ : C4,1(m, g) → C4,2(m, g) is injective, and hence H4,1(m, g) = 0.

Proof. Let α ∈ Z4,1(m, g), where α : g−2 → g2. Thus, 0 = ∂α(s, s) = −〈s, s〉α(1) for all s ∈ g−1, so
α(1) = 0 and α = 0. �

A.5. Case d > 5. We have Cd,1(m, g) = 0 for all d > 5 simply by degree reasons.

Corollary A.5. The Spencer cohomology groups Hd,1(m, g) = 0 for all d > 5.
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