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Learning-assisted inversion for solving nonlinear
inverse scattering problem

Kuiwen Xu, Zemin Qian, Yu Zhong, Jiangtao Su, Haijun Gao, and Wenjun Li

Abstract—Solving inverse scattering problems (ISPs) is chal-
lenging because of its intrinsic ill-posedness and the nonlinearity.
When dealing with high nonlinear ISPs, i.e., those the scatterers
with high contrast and/or electrically large size, the nonlinear-
ity would be increased significantly. The traditional iterative
nonlinear inversion methods converge slowly and take lots of
computation time, even maybe trapped into local wrong solution.
To alleviate the above challenges, a learning-assisted inversion
approach termed as learning-assisted (LA) inversion method
(LAIM) with advanced generative adversarial network (GAN) in
virtue of a new recently established contraction integral equation
for inversion (CIE-I) is proposed to solve the highly nonlinear
ISPs with low computational cost. The preliminary profiles
composed of only small amount of low-frequency components
can be got efficiently by the Fourier bases expansion with CIE-
I based inversion method (FBE-CIE-I). The physically exacted
information can be taken as the input of the neural network to
recover super-resolution image with more high-frequency com-
ponents. A weighted loss function composed of the adversarial
loss, mean absolute percentage error (MAPE) and structural
similarity (SSIM) are used under pix2pix GAN framework. In
addition, self-attention module is utilized at the end of generator
network to capture the physical distance information between
two pixels and enhance the inversion accuracy of the feature
scatterers. In order to further improve the inversion efficiency,
data-driven method (DDM) is used to achieve real-time imaging
by cascading U-net and Pix2pix GAN, where U-net is used to
replace FBE-CIE-I in LAIM. Compared with the other learning-
assisted inversion, both synthetic and experimental examples have
validated the merits of the proposed LAIM and DDM.

Index Terms—inverse scattering, highly nonlinear, pix2pix
GAN, structural similarity (SSIM), self-attention, real-time imag-
ing.

I. INTRODUCTION

ELECTROMAGNETIC inverse scattering problems (ISPs)
aims to recover the location, geometric shape and con-

stitutive parameters of unknown objects within a bounded
domain of interest (DoI) through measured scattering field
data. It has a wide range of applications in remote sensing [1],
medical imaging [2]–[5], through-wall imaging [6], [7] and
other fields [8]–[11]. The full-wave inversion aims to minimize
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the mismatches between the synthetic data and the measured
field data with model-based optimization.

However, owing to limited measurement data, it is well
known that solving ISPs is difficulty and challenging due to
the large number of unknowns, ill-posedness, and nonlinearity
[12]. The nonlinearity with respect to the unknown constitutive
parameters in the domain of interest (DoI) is due to multiple
scattering effects inside the DoI.

The traditional model-based inversion methods are usually
divided into two types, i.e., linear inversion and nonlinear itera-
tive method. The linear inversion methods usually are based on
the Born approximation (BA) [13], which can quickly recon-
struct the physically constitutive information of the scatterers,
but they are only suitable for the weak scatterers. For medium
scatterers, nonlinear iterative inversion should be used, such
as contrast source inversion method (CSI) [14], [15], subspace
optimization method (SOM) [16], [17], distorted Born iteration
method (DBIM) [18], and Newton-type methods [19]. In
order to find the global minima extremes, some stochastic
methods are also applied to solving the nonlinear ISPs [20]–
[23], such as particle swarm optimization (PSO), covariance
matrix adaptaion evolutionary strategy (CMA-ES), evolution-
ary programming (EP) and differential evolution algorithm
(DEA). However, these methods come at the high computa-
tional resources. All of the above-mentioned methods, which
are modeled by the Lippmann-Schwinger integral equation
(LSIE), strongly depend on the initial guess to obtain the
global solution and easily fall into the local solution, especially
in the case of the strong scatterers with high contrast and/or
electrically large size. For example, these methods could only
reconstruct the test bench example of “Austria” profile with
relative permittivity being smaller than 2.5. Therefore, for
problems that cannot be successfully tackled by the traditional
nonlinear inversion approaches based on LSIE, herein we refer
to them as the highly nonlinear problems. With the increase
of the relative permittivity of the “Austria” profile, the ISPs
become highly nonlinear, as mentioned in [24]. For this kind
of problems, different inversion models are needed, such as
the one proposed in [25]–[27], where the maximum of the
retrievable relative permittivity of “Austria” profile could be
4.5. However, the inversion usually takes three round optimiza-
tions with several hundreds or even more than 1000 iterations
altogether, which takes much more computational cost than the
medium nonlinear problems. Therefore, in order to tradeoff
between the inversion capability and imaging efficiency, the
inversion approach to efficiently solve the high nonlinear ISPs
is significantly demanded.

Recently, machine learning is applied into the electro-
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magnetic imaging to accelerate the inversion, [28]–[35]. The 
learning-based inversion methods can be generally divided 
into three types [28], [29]. The first o ne i s d irectly retrieve 
the scatterers with the measured field d ata ( i.e., black-box 
method), which need to fully learn the governing physics 
of the inversion. In [30], the measured scattered field is 
fed into the convolutional neural network (CNN) to recover 
physical information of the scatterer. The second one is 
follow the conventional iterative inversion to minimize the 
loss function, whereas replace some key operators (usually 
with the large amount of computations, i.e., gradient) with 
the neural networks to accelerate the inversion [31]. In [32], 
the inversion method is divided into three stages. Firstly, 
an initial guess of the contrast source can be obtained via 
some deterministic method. Then, a U-net network is used 
to obtain a better estimate of the contrast source with more 
high-frequency components. Finally, an iterative method such 
as SOM is used to achieve imaging by taking the obtained 
contrast source in the second step as the initialization. The 
third one is denoted as physics-inspired learning approach 
by incorporating domain knowledge and prior knowledge of 
physics into the networks, which typically decouples the full-
wave inversion into a two-step reconstruction [33]–[35]. For 
example, a rough reconstruction by fast imaging methods like 
backpropagation (BP) can be obtained by the measured field 
data. Then a U-net network is employed to further enhance 
the quality of image [34], [35]. Besides, GAN is also used 
to improve the performance of the network by adversarial 
training in the electromagnetic forward computation and in-
verse problems [36], [37]. Although the existing learning-
based inversion methods have achieved some success in terms 
of computational speed and imaging quality, they are suitable 
for solving the ISPs with moderate scatterers whereas still 
encounter large difficulty for solving h ighly nonlinear ISPs.

Inspired by the work in [38], to trade off the inversion ability 
for strong scatterers and the computational costs, a learning-
assisted fast inversion approach by use of the new physical 
model, i.e., CIE-I, is utilized to solve the highly nonlinear 
ISPs. It decouples the full-wave inversion into a two-step 
reconstruction. Different from [38], the preliminary profile can 
be efficiently obtained by the Fourier bases expansion of CIE-
I inversion (FBE-CIE-I) method with only a small number of 
low-frequency components [24]. Both fast convergence and 
strong capability could be kept via the FBE-CIE-I, then the 
super-resolution image with high-frequency components can 
be learned from the input preliminary image via advanced 
pix2pix GAN.

Herein, a weighted loss function composed of the adver-
sarial loss, the mean absolute percentage error (MAPE) and 
structural similarity (SSIM) are used under the pix2pix GAN 
framework. In addition, self-attention module is utilized to fur-
ther enhance the inversion accuracy of the unknown scatterers. 
With low-computational cost, the excellent performance of the 
proposed LAIM in term of inversion accuracy, generalization 
ability and stability can be achieved. As the first s tep i n the 
LAIM utilizes the iterative inversion, the efficiency c ould be 
restricted especially for three-dimensional (3D) ISPs. In order 
to further speed up the inversion procedure, a cascaded neural

network is used to achieve real-time imaging, in which a data-
driven method (DDM) with a U-net network replaces the FBE-
CIE-I inversion method. However, the retrieved errors in the
computation of the first step may propagate to the second step.
Compared to the proposed LAIM, the inversion accuracy of
the cascaded neural network named as DDM is slightly worse
than the proposed single-network method named as LAIM.
The contributions of the work can be summarized as follows:

1) A learning-assisted inversion approach under the CIE-
I model is proposed to solve highly nonlinear ISPs.
The proposed method achieves the tradeoff between the
inversion ability for solving highly nonlinear ISPs and the
computational cost. To some extent, the proposed LAIM
method can achieve fast and accurate imaging for high
contrast ISPs.

2) On the learning type method, the proposed PIM is es-
tablished on physical model of CIE-I. The first step is
to get the reconstruction profile via the Fourier bases
expansion of CIE-I inversion (FBE-CIE-I) with proper
regularized parameters after a small number of iterations.
The physical information with low-frequency components
can be well extracted by the first step with exactly low
computation cost (e.g., less than 2 s). And the high-
frequency components of the profile could be retrieved
well almost in real-time by use of the proposed advanced
GAN with redesigned loss function and self-attention
module for the scatterers inside the domain of interest.
The reasons behind these could be attributed to two fold1)
The measured scattering field data could be transformed
into the preliminary imaging of the relative permittivity
by use of the powerful FBE-CIE-I with only small
number of low-frequency components. The normalized
physical dimension is achieved with small computation
cost. 2) The image-to-image transformation is achieved
via the advanced pix2pix GAN, in which the redesigned
loss function is redesigned in terms of the network,
the shape, and the quantitative value of the relative
permittivity. Besides, self-attention module is used for the
regularization of the physical equations and mimicking
the multiple scattering effect in the modeling.

3) Compared to other methods based on the neural network,
such as the data-driven method (DDM) directly with the
input of the measured scattered fields for the U-net and
the methods in [38], the numerical examples validate
that the proposed method has better inversion accuracy,
robustness, and the stability. Although DDM could almost
achieve real-time imaging, it could only solve nonlinear
ISPs with medium contrast. Whereas the LAIM could
also work when dealing with highly nonlinear problems.
The difference between the DDM and LAIM is the first
step, in which the U-net is used to implement function
of the FBE-CIE-I. Owing to that the data-driven U-
net depends on the dataset supplied by FBE-CIE-I, the
stability and inversion accuracy of DDM is not as good
as the LAIM.



3

Fig. 1. Configuration of inverse scattering problems. The transmitting
antennas illuminates the DoI D where a unknown scatterer is located, and the
scattered field is collected by the receiving antennas. Here, the transmitting
antennas and the receiving antennas are placed along a circular boundary S.

II. FORMULATION OF THE PROBLEM

In this paper, a two-dimensional (2-D) ISPs with transverse-
magnetic (TM) polarization is considered and time-harmonic
field is assumed with e−iωt(ω is the angular frequency). The 2-
D configuration of ISPs is shown in Fig. 1. Unknown scatterers
are located in the DoI D under a free-space homogeneous
background which the permittivity, permeability and the wave
number are ε0, µ0 and k0 = ω

√
µ0ε0, respectively. In the

measurement domain S, Ni transmitting antennas and Nr
receiving antennas are placed uniformly along a circular line
to collect the scattered fields. The transmitting antennas are
located at rp with p = 1, 2, ..., Ni to illuminate the DoI
in sequence, and the scattering field data is collected by the
receiving antennas located at rq with q = 1, 2, ..., Nr. The ISPs
aim to reconstruct the constitutive parameters of the unknown
targets given a set of Nr ×Ni scattering data.

A. Forward Problem Modeling

In the forward problem, it is to get the scattered field from
the known scatterers and given incident fields. In the following,
the 2-D Lippmann-Schwinger integral equation (LSIE) is used
to build the formulas. The total fields Etp(r) in the DoI and
the scattered field Esp(r) on the measurement domain can be
expressed by the following two equations,

Etp(r) = Eip(r) + k2
0

∫
D

G(r, r′)Ip(r
′)dr′, r ∈ D (1)

Esp(r) = k2
0

∫
D

G(r, r′)Ip(r
′)dr′, r ∈ S (2)

where (1) and (2) are the field equation and the data equation.
Etp(r) and Eip(r) denote the total electric field and incident
field at r in the D by the pth incidence, respectively. G(r, r′)
is the Green function for 2-D TM case in free space, i.e.,

G(r, r′) = i
4H

1
0 (k0 |r− r′|), where H1

0 (k0 |r− r′|) is the
first-kind zeroth-order Hankel function.

The contrast source is defined as Ip(r) = χ(r)Etp(r), r ∈ D
with χ(r) = εr(r) − 1, where εr is the permittivity of D. In
[26], the contraction integral (CIE-I) is proposed to reduce the
nonlinearity of the ISPs. Both sides of (1) are multiplied by the
modified contrast function R(r) = β(r)χ(r)[β(r)χ(r)+1]−1.
Then, we can get the contraction integral equation,

β(r)Ip(r) = R(r)[β(r)Ip(r) + Eip(r)+∫
D

G(r, r′)Ip(r
′)dr′], r ∈ D

(3)

β(r) is a constant which has a positive real part and non-
negative imaginary part.

Herein, the rectangular DoI is chosen to numerically im-
plement the method of moments (MoM) with the pulse basis
function and the delta testing function used to discretize the
D into M = M1 ×M2 rectangle subunits. The numbers of
subunits along the x- and y-axes are M1 and M2. The centers
of subunits are located at r1, r2, ..., rM. When the subunits
are small enough, the relative permittivity is equivalent to a
constant in each subunit. For the pth incidence, the above
equations can be written as discrete form,

¯̄βĪp = diag(R̄) · [ ¯̄βĪp + Ēip + ¯̄GD · Īp], (4)

Ēsp = ¯̄GS · Īp, (5)

where R̄ =
¯̄βχ̄

¯̄βχ̄+1
, the Green’s function ¯̄GD maps the induced

current to the scattered fields in the DoI, and ¯̄GS represents
the mapping between the induced current in the DoI and the
scattered fields of the measurement domain S. (4) and (5) can
be denoted as the object equation and data equation.

Here, we use H to denote the operator of forward mod-
eling and the scattered field can be expressed as Esp by
Esp = H(εr, E

i
p). The inverse problem which retrieves the

permittivity of the unknown scatterer can be regarded as an
model-based optimization process,

min : f(εr) =

Ni∑
p=1

∥∥H(εr, E
i
p)− Esp

∥∥2
+ λΥ(εr) (6)

where Υ(εr) is a regularization term, and λ is a weighting
parameter to balance the data fitting term and the regular-
ization term. In the nonlinear inversion methods, to alleviate
the ill-posedness and serious nonlinearity, the cost function
is composed of two terms, in which (4) is utilized as a
regularization term to stabilize the data equation (5) [14].

B. FBE-CIE-I

In the twofold subspace optimization method (TSOM) [16],
the induced current is divided into deterministic part of current
(DPIC) and ambiguous part of current (APIC). DPIC can
be obtained by the spectrum analysis of the operator ¯̄GS in
advance and APIC can be obtained via the two-step CG opti-
mization. However, as the nonlinearity of ISPs increases, the
proportion of DPIC appears to be very small, even negligible,
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which has been verified i n [32]. Herein, as d iscussed i n [24], 
the Fourier bases-expansion on the induced current coupled 
with CIE-I (denoted as FBE-CIE-I) is used to extract the low-
frequency components then these feature map are taken into 
the neural network. The role of neural network is to learn 
the high-frequency components according to the physically 
retrieved low-frequency components. Herein, the FBE-CIE-I 
will be introduced briefly as following [24].

In FBE-CIE-I, the induced current can be expanded by the 
discrete Fourier bases,

Īp = vec{IDFT(¯̄γp)} (7)

where ¯̄γp is 2D Fourier coefficients tensor, with the zero
elements corresponding to the high-frequency Fourier com-
ponents, the nonzero elements are corresponding to the low-
frequency Fourier components. Tensor ¯̄γp contains four non-
zero blocks of size M2

F in the four corners, where M0 =
4 × M2

F . The inverse discrete Fourier transform (IDFT) is
performed by the 2-D FFT algorithm and vec{} denotes as the
vectorization operator. For convenience, 2-D discrete inverse
Fourier transform is denoted as F ∗T , mapping a sparse set of
Fourier coefficients ᾱp to the induced current subspace in C2

space. The contrast source could be stated as in operator form

Īp = F ∗T (ᾱp) (8)

The residual of data equation (5) and object equation (4) of
the CIE-I modeling can be defined as

∆fie
p = Ēsp − ¯̄GS · F ∗T (ᾱp) (9)

and

∆cur
p = ¯̄R · (Ēip + ¯̄GD ·F ∗T (ᾱp))− ( ¯̄β− ¯̄R · ¯̄β) ·F ∗T (ᾱp) (10)

Then, the cost function is defined as

f(ᾱ1, ᾱ2, . . . , ᾱp,
¯̄R) =

Ni∑
p=1

{
‖∆fie

p ‖2

‖Ēsp‖2
+
‖∆cur

p ‖2

‖Ēip‖2
} (11)

In the inversion, the CSI-type method is utilized to minimize
the cost function (11) by alternately updating the contrast
source and the modified contrast function via the conjugate
gradient method and the least square method, respectively.
Different from the inversion in [24], one round optimization
would be implemented only and small number of Fourier bases
are utilized for the expansion of the contrast source. Therefore,
the number of unknowns (e..g, the contrast source) can be
reduced significantly and the corresponding computation cost
for the inversion can be lowered greatly.

The detailed procedure of the one-round FBE-CIE-I inver-
sion method is summarized as follows:

1) n=0: Initialize the unknown parameters, ¯̄R = 0, ᾱp,n = 0
with the dimensions of M0×1. According to the descrip-
tion in [24], a large value of β and a small number of
low-frequency Fourier coefficients should be chosen.

2) Update ᾱp: ᾱp,n = ᾱp,n−1 +dp,nv̄p,n where dp,n denotes
the step length of the nth iteration and v̄p,n denotes the
conjugate gradient direction of the nth iteration.

3) Update the contrast source Īp,n and calculate the total
field Ētp,n.

4) Update the modified contrast function ¯̄Rn by the least
square method.

5) Update the contrast function: ¯̄χn =
¯̄Rn

¯̄β− ¯̄β ¯̄Rn

6) Set the termination condition of iteration. If it is sat-
isfied, the iteration would be stopped. Otherwise, set
n = n + 1 and go to Step 2, and the termination
conditions of the iteration are set as follows: δ2D =√

1
Ni

(∑Ni

p=1
‖ᾱp,n−ᾱp,n−1‖2
‖ᾱp,n−1‖2

)
< K, where K is a con-

stant, i.e., 0.02.

C. Proposed LAIM and DDM

Herein, a two-step learning inversion method (named as
LAIM) based on the CIE-I are proposed to alleviate the
challenge between the capability of high-nonlinear inversion
problems and the large computational burden. The proposed
LAIM is divided into the following two steps as depicted in
Fig. 2,

1) The preliminary images with the low-frequency compo-
nents are efficiently retrieved with the inversion method
by the FBE-CIE-I.

2) The super-resolution imaging with large amount of the
high-frequency components can be well got by the ad-
vanced pix2pix GAN.

However, to further improve the inversion efficiency, a U-net
network is used to replace the FBE-CIE-I to speed up the
first-step procedure and a cascaded neural network (named as
DDM) is finally constructed to achieve the real-time imaging.
The architecture of the proposed LAIM and DDM are shown
in Fig. 2.

Fig. 2. Architecture of the proposed LAIM and DDM. The LAIM consists of
two procedures, i.e., FBE-CIE-I and pix2pix GAN, and the DDM is composed
of two cascaded network, i.e., U-net and pix2pix GAN.

III. NETWORK STRUCTURE

A. Pix2pix Generative Adversarial Network

The architecture of the pix2pix GAN model is shown in
Fig. 3(a). As shown, the preliminary image which serves as
the input of the self-attention assisted pix2pix GAN model is
reconstructed by the FBE-CIE-I method in LAIM or a U-net
network in DDM.

The pix2pix GAN model is divided into the generator
network and the discriminator network. The generator network
has a similar network structure as the U-net network which
has a skip connection between contraction path and expansion
path. The GAN mechanism is based on a two-player game.



5

Fig. 3. (a) The pix2pix GAN architecture which is composed of discriminator network (D) and generator network (G) is used to reconstruct high resolution
image. (b) The U-net architecture used in DDM.

The purpose of the generator network is to generate image
which is similar to the target, while the purpose of the dis-
criminator network is to identify the fake data generated by the
generator network. The two restrict each other and eventually
generate data so close to the target that the discriminator
network can’t recognize it. The real training dataset is taken as
the input of the discriminator network together with these fake
results. By doing so, the discriminator network will output a
set of numbers between zero and one to determine whether
the input image is real or fake.

In addition, a self-attention layer is added at the end of
the generator network to improve the performance of the
network. Due to the limitation of the size of the convolutional
kernel, the traditional convolutional network can only capture
the information association of the local area. However, self-
attention obtains the corresponding weight (which is denoted
as the global feature.) according to the relationship between
any two pixels in the image.

In natural language processing (NLP), self-attention is used
to capture the relationship between any two words in a
sentence. Similarly in image processing, the main idea of
self-attention module is to build an attention map containing
the relationship between any two points. Attention map is
used to extract features between any two pixels in the image,

such as the distance between two points. The input of self-
attention layer obtains f(x), g(x) and h(x) through three 1×1
convolution layers. After transpose, f(x) is multiplied with g(x)
and normalized to obtain attention map. The obtained attention
map matrix contains the weight information between every
two pixels. By updating convolution layer parameters during
training process, attention map can learn the relationship
between any two pixels. Then, we can get the output of the
self-attention layer by multiplying h(x) and attention map.
The details of the self-attention module can be seen in [39].
It is well known that the nonlinearity in inverse scattering
depends on the multiple scattering effects of DoI, where the
induced current at each pixel produces a scattered field at other
pixel that depends on the distance between the two pixels.
Therefore, self-attention could be used to capture the physical
distance information between two pixels and better learn the
multiple scattering process.

In conventional pix2pix GAN model, the loss function of
the generator network is usually used as,

Lg = Ladv + λ · L1 (12)

where λ is the weight of the L1, Ladv is adversarial loss
which is designed to deceive the discriminator network. The
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adversarial loss Ladv can be expressed as,

Ladv =
1

2
‖D(x, ŷ)− 1‖22 (13)

where D(x, ŷ) represents the output of the discriminator
network when the inputs are x and ŷ. x and ŷ denote the input
and output of the generator network, respectively, and ‖ · ‖2
denotes the L2 norm. L1 loss aims to make the reconstructed
image being similar to the target image, which can be denoted
as

L1 =
1

M1 ∗M2

M1∑
i=1

M2∑
j=1

|ŷi,j − yi,j |. (14)

Herein, we replace L1 in the loss function with the relative
loss LMAPE , which is defined as

LMAPE =
1

M1 ∗M2

M1∑
i=1

M2∑
j=1

∣∣∣∣ ŷi,j − yi,jyi,j

∣∣∣∣ . (15)

In addition, the SSIM index that measures the perceptual
distance of two images considering the similarity of lumi-
nance, contrast and structure information, which could be
formed as

LSSIM = 1− SSIM(ŷ, y)

= 1− (2µŷµy + C1)(2σŷy + C2)

(µ2
ŷ + µ2

y + C1)(σ2
ŷ + σ2

y + C2)

(16)

where µŷ and µy denote the mean of ŷ and y, σŷ and σy denote
the standard deviation of ŷ and y, σŷy is the covariance of ŷ
and y. C1 and C2 are two constant parameters to avoid zero in
the denominator. The mean and standard deviation reflect the
luminance and contrast of the two images, respectively, while
the covariance compares the structure information between
them.

Although both Ladv and LSSIM aim to generate images
with similar features, the features they collected are different.
The Ladv aims to generate images with similar features to
the target image, which are collected by convolution kernel
and contain some information such as edges and gradients.
However, the LSSIM measures the perceptual distance of two
images by considering the similarity of luminance, contrast
and structure information. Therefore, the pix2pix GAN and
SSIM is combined together to make the generated image have
more similar features with the target one. The modified loss
function of the generator network is formulated as,

LG = Ladv + λ1 · LMAPE + λ2 · LSSIM (17)

where λ1 and λ2 are the weights of the LMAPE and LSSIM. And
to better verify the validity of the proposed loss function, the
numerical simulation with these two different loss functions,
i.e., LG and Lg are compared.

The loss function of discriminator network is denoted as

LD =
1

2
‖D(x, ŷ)‖22 +

1

2
‖D(x, y)− 1‖22 (18)

Since generator network and discriminator network are opti-
mized alternatively, the parameter tensor of one network is
fixed when the other one is updated. The two neural networks

would be trained in an adversarial way until reaching a Nash-
equilibrium (namely a balance between the generator network
and the discriminator network).

B. U-net Convolutional Neural Network

In DDM, the FBE-CIE-I is replaced with a U-net network
to achieve the first step and the U-net network is cascaded
with the pix2pix GAN to achieve real-time imaging. The input
of the U-net network is the measured scattered fields. We
extract the real and imaginary parts of the scattered field and
concatenate them into a Nr × 2Ni real-value matrix, where
the left and right part of the input are corresponding to the
real and imaginary part of the scattered field, as depicted
in Fig. 2. The target is the corresponding retrieved results
by the FBE-CIE-I with the same hyperparameter setting in
LAIM. The detail configuration of the U-net is depicted in
Fig. 3(b) [40], [41]. It is composed of a contracting path
and an expansive path. The contracting path follows a typical
convolutional network structure, which consists of repeated
convolutions, rectified linear unit (ReLU), batch normalization
and several max pooling operations with a step of 2. Expansive
path is similar to contracting path, but max pooling operation
is replaced by up-convolution to up-sample the feature map.
In addition, the size of the convolution kernels at the first two
convolution layers of the contraction path is 5×5 to reduce the
size of the feature map when the size of the other convolution
kernels is 3×3.

Fig. 4. Self-attention architecture. f(x), g(x), h(x) are the results of linear
transformation and channel compression of the feature maps,

⊗
denotes

matrix multiplication.

IV. NUMERICAL SIMULATION

In this section, several synthetic and experimental examples
are used to verify the validity of the proposed methods in
Section III. Firstly, we compare the performance of LAIM
using the proposed loss LG and self-attention module (denoted
as ‘self-attention pix2pix+LG’) with the one only using the
conventional loss function Lg (denoted as ‘pix2pix+Lg’) and
the one using both the conventional loss Lg and self-attention
module (denoted as ‘self-attention pix2pix+Lg’). Besides,
some other typed learning-based inversion methods are also
listed to validate the merits of the proposed LAIM, DDM and
in the following.
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A. Numerical Setup

In all of the numerical tests, the size of the DoI is 2× 2m2

and it is discretized into 64×64 pixels in the forward problem.
The center of DoI is taken as the origin of the model. The
number of transmitting and receiving antennas is 20 and 40
respectively, which are located uniformly over a circle S with
radius of 3.75m. The operating frequency is set as 400 MHz.
For each incidence, we calculate the scattered field using the
MoM. The scattered field used in the training stage is always
noiseless for all examples.

The handwritten digits in Mixed National Institute of S-
tandards and Technology database (MNIST) are used as the
training data for all synthetic examples. We randomly selected
8000 images from MNIST as the training data set, 1000 im-
ages as the validation data set and 1000 images for the testing
data set. The relative permittivity is randomly distributed to
[1, 3] with a minimum interval of 0.01 in the training set. In
the training, to get the labels, the FBE-CIE-I is used to get the
rough images with the the termination condition of K=0.02.
MF and β were set as 5 and 6, respectively. The average
computational time cost is about two seconds in FBE-CIE-I.
The hyperparameters in the neural network are set as follows:
the learning rates of D and G are set as 0.0002, batchsize
is set as 16 and the maximum number of iterative epochs in
the training is set as 50. In the training, in order to balance
the value of Ladv , LMAPE and LSSIM and keep the loss value
almost in the same quantitative level, λ1, λ2 are set as 100 and
20. In addition, the samples used for neural network testing
was added with 10% white Gaussian noise.

All network training and testing are operated on a server
with Inter(R) Core(TM) i7-8700K CPU, 32G RAM, and
GeForce RTX2080Ti GPU using PyTorch framework. In order
to evaluate the image quality quantitatively, the error evalua-
tion function is designed as follows:

RMAPE =
1

M

M1∑
i=1

M2∑
j=1

∣∣εi,j − εtruei,j

∣∣∣∣εtrue
i,j

∣∣ (19)

B. Numerical Tests

In the first example, MNIST and Letter data set with the
relative permittivity between 1 and 3 were used to compare
the inversion performance of the different inversions by the
proposed LAIM. The reconstruction results of Test#1 to
Test#4 are shown in Fig. 5. It can be observed that in the
first step, the rough profile can be well got by the FBE-CIE-I,
although the retrieval permittivity value is lower than the true
value. With the good profile as the input of the network, all
the three methods can obtain the pretty good reconstruction
results.

Then, in order to test the generalization capabilities of
the methods, several MNIST and Letter examples with the
relative permittivity distributed between 3 and 3.5 were used
to test in example 2. The corresponding reconstruction results
are shown in Fig. 6. From the results in Fig. 5 and Fig.
6, by use of the attention mechanism, better reconstruction
profiles can be obtained and the best retrieval results with

Fig. 5. Four representative examples with relative permittivity between 1
and 3. Test#1 to Test#3 are handwritten numerals “0”, “9”, “2” which are
rotated. Test#4 is the letter “D”.

TABLE I
Average error of the three methods in Example 1 and Example 2.

Example 1 Example 2

pix2pix+Lg 3.24% 10.18%

self-attention pix2pix+Lg 2.99% 9.87%

self-attention pix2pix+LG 2.66% 7.82%

more accurate relative permittivity can be achieved by ‘self-
attention pix2pix+LG’. The average errors of the example 1
and example 2 are summarized in Table I. According to the
reconstruction profiles and quantitative results, it is found that
all the compared three methods can almost achieve imaging
well in both two examples, while the reconstructed errors
by use of the ‘self-attention pix2pix+LG’ are slightly lower
than others, which confirms the effectiveness of self-attention
mechanism and the proposed weighted loss function.

Fig. 6. Four representative examples with relative permittivity between 3 and
3.5 which is out of training set. Test#5, Test#7 and Test#8 are handwritten
numerals “9”, “6”, “2” which are rotated. Test#6 is the letter “U”.

In the third example, the benchmark testing profile, i.e.,
“Austria”, which is much more challenging than the previously
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TABLE II
The error of “Austria” test under different relative permittivity

εr = 2 εr = 3 εr = 3.5 εr = 3.7

pix2pix+Lg 4.88% 17.0% 18.06% 26.17%

self-attention pix2pix+Lg 4.55% 14.9% 16.93% 24.58%

self-attention pix2pix+LG 4.06% 9.56% 13.32% 16.57%

mentioned examples, is used for testing. Here, the reconstruct-
ed results of “Austria” with relative permittivity of 2, 3, 3.5,
3.7 are depicted in Fig. 7, and the corresponding reconstruction
errors, i.e., RMAPE, of four tests are summarized in Table II.
Through the comparison of visual imaging profiles and quan-
titative error, it is found that the proposed LAIM with ‘self-
attention pix2pix+LG’ exhibits better generalization ability and
stability. And the retrieval highest relative permittivity can be
up to 3.7, which exhibits the strong inversion ability against
solving highly nonlinear ISPs. It is believe that the capability
for solving high nonlinear ISPs will be further improved with
more diversity training samples.

Fig. 7. Reconstruction results for “Austria” profile with different relative
permittivity. (a) εr = 2, (b) εr = 3, (c) εr = 3.5, (d) εr = 3.7.

Next, ‘self-attention pix2pix+LG’ in frame of the pix2pix
GAN is used for the comparison of the proposed LAIM and
DDM. To highlight the merits of the proposed method, the
modified contrast scheme by the contrast (MCSC) proposed
in [38] is used for comparison under the same training data
sets. MCSC method is also divided into two steps. In the first
step, it uses SOM based on CIE model to obtain preliminary
images by only two iterations. And in the second step, the
U-net network is used to recover the high-resolution images.

Four representative tests are depicted in Fig. 8. To quanti-
tatively compare the computational efficiency and accuracy of
the above three methods, 100 examples are randomly selected
from testing set for reconstruction to obtain the average
computational time and average inversion error, which are
listed in Table III. It can be easily found that the proposed
LAIM has much better performance than both the DDM and
the MCSC in term of the reconstruction accuracy. Whereas,
among them, the computational cost of the proposed LAIM is
much higher than DDM and MCSC. To tradeoff the computa-

TABLE III
Average reconstruction time and errors of the proposed LAIM, DDM and

MCSC

LAIM DDM MCSC

Average computational time 2.28s 0.08s 0.15s

Average error 2.66% 5.07% 6.96%

tional cost and reconstruction accuracy, the proposed DDM is
used to achieve the almost real-time imaging while keep the
better reconstruction performance than MCSC. Therefore, the
proposed LAIM and DDM have their own merits compared to
each other in terms of the inversion time and reconstruction
accuracy.

To verify the performance of the proposed LAIM under
different noise level, the test bench examples of “Austria”
profile with the relative permittivity of 3.5 under 10%, 20%
and 30% Gaussian noise level are tested, respectively. The
corresponding reconstruction images are shown in Fig. 9. It
can be seen that the proposed LAIM has good stability and
robustness against noise.

Fig. 8. (a) Ground Truth. Four representative tests with relative permittivity
between 1 and 3 to compare the performance of (b) MCSC, (c) DDM and
(d) LAIM.

Fig. 9. Reconstruction results of “Austria” profiles with the relative permit-
tivity of 3.5 under (a) 10%, (b) 20% and (c) 30% white Gaussian noises.
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C. Experimental Tests

We also tested the “FoamDielExt” experimental data mea-
sured by the Institute Fresnel. As shown in the Fig .10(a), the
“FoamDielExt” consists of a foam cylinder with the diameter
of 80mm and a plastic cylinder with the diameter of 31mm
in the DoI of 20cm × 20cm. The relative permittivity of the
foam and plastic are 1.45 ± 0.15 and 3 ± 0.3, respectively. 8
transmitters and 241 receives are used to collect the scattered
field at the frequencies from 2 to 10 GHz with a step of 1 GHz.
The source-object centre and object centre-receiver distances
are 1.67m. More details can be found in [42].

Fig. 10. Test on “FoamDielExt” profiles. (a) Ground Truth. Reconstruction
results by FBE-CIE-I at (b) 3 GHz (c) 6 GHz. Reconstruction results of the
first step in DDM at (d) 3 GHz (e) 6 GHz.

Fig. 11. Reconstruction results using 3 GHz training data set at (a) 3 GHz
(b) 6 GHz. And (c) reconstruction results using 4 GHz training data set at 6
GHz.

In this example, we randomly add a circle on MNIST data
set(denoted as “MNIST+Circle”) to supply the more diversity
of the samples in the training set and the relative permittivity
of the profiles are set between 1.5 and 3.3. Fig. 10(b) and (c)
represent the preliminary reconstruction results by the FBE-
CIE-I at 3 GHz and 6 GHz and the good rough profiles
with low-frequency components can be got. Fig. 10(d) and (e)
depict the retrieval results of the U-net network in DDM. After
carefully comparison in Fig. 10, although the reconstructed
profiles at 3 GHz by both of two methods are kept in the same

TABLE IV
Reconstruction errors using 3 GHz data set by four methods at (a) 3 GHz

(b) 6 GHz and Reconstruction errors using 4 GHz data set by four methods
at (c) 6 GHz.

(a) (b) (c)

pix2pix+Lg 3.44% 3.67% 2.98%

self-attention pix2pix+Lg 2.98% 3.59% 2.68%

self-attention pix2pix+Lfull 2.52% 2.97% 2.21%

DDM 3.01% 4.84% 5.02%

level, the retrieved results at 6 GHz by U-net look deformed
in which the position of the target is a litter misplaced.
After the preliminary rough profiles, then they are used as
the input of the pix2pix GAN to get the final reconstructed
profiles with more high-frequency components. Firstly, the
data set generated with the “MNIST+Circle” operating at 3
GHz is used to train the network, the final reconstructed results
by ‘pix2pix+Lg’, ‘self-attention pix2pix+Lg’, ‘self-attention
pix2pix+LG’ and DDM are shown in Fig. 11(a) and (b). The
quantitative errors are also listed in Table IV. It is concluded
that LAIM with the ‘self-attention pix2pix+LG’ achieves much
better image quality in the experimental data compared to the
other methods. It indicates that the proposed loss function
and the attention mechanism under the frame of the pix2pix
GAN works well when dealing with highly nonlinear ISPs.
The proposed DDM can recover the image well at the 3 GHz,
but it almost fails in restoring the profiles at the 6 GHz due
to the distorted result in the first step.

Then, to verify whether improving the frequency of the
training data set can help enhance the imaging quality, the data
set at 4 GHz is used to train the network. The reconstruction
results at 6 GHz are shown in Fig. 11(c). From both the
reconstructed profiles and the quantitative results in Table IV,
it is validated that the reconstructed methods using higher
frequency, i.e., 4 GHz data set, have better performance than
those with lower frequency (e.g., 3 GHz) data set. It is prob-
ably owing to that the more high-frequency components are
incorporated into the training data sets at the higher frequency
being closed to the test one. Through the experimental tests,
it is found that we can achieve better imaging performance
by reasonably improving the frequency of the training sets to
solve the high-frequency ISPs to some extents.

In summary, the proposed method are tested on the three
examples including the MNIST and Letter digits, the “Austria”
profile and the Fresnel experimental data. All the results
verify the effectiveness of the proposed weighted loss function
and the self-attention mechanism to enhance the quality of
reconstructions when dealing with highly nonlinear ISPs. In
virtue of low-computation inversion of the FBE-CIE-I with
only some amount of low-frequency components, LAIM can
quickly recover the image well (about 2s). Also, to fulfill the
real-time imaging, the DDM is also proposed to accelerate
the inversion and could tradeoff the compromise between
performance and speed.
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D. Discussions on the inversion capability
According to the above results, highly nonlinear ISPs in-

cluding both the imaging scatterers with higher contrast and
electrically large size (operating on the higher frequency prob-
lems) have been intensively discussed via the numerical results
from synthetic and experimental examples, respectively. The
proposed LAIM could well reconstruct the highly nonlinear
ISPs in almost real-time scenario, which has much faster
speed and lower computational cost compared to the traditional
iterative methods.

However, the generalization ability and stability to solve
highly nonlinear ISPs is not as good as the conventional
iterative methods [24]. For example, in the case of strong
scatterers (i.e., Austria profile at 400 MHz ), the proposed PIM
can achieve the reconstruction well at the relative permittivity
of 3.7, which is less than 4.5 in [24]. In our view, the
disadvantage of the generalization ability is the an universal
problems for the learning-based methods, which is owing to
the limitation of the training set. A feasible way to improve
the inversion capability is to adaptively change the range of
the training data set according to the problem solved. So,
if ISPs with higher contrast need to be solved, the training
set with higher contrast should be also supplied accordingly,
more high-frequency components and/or features should be
extracted to characterize the more difficulty ISPs.

For example, owing to that the relative permittivity of the
scatterers in the training set is ranged between 1 and 3, the
maximum retrieval value is 3.7. If we set the range of relative
permittivity as 3 to 4 (e.g., small range with higher contrast),
the maximum reconstructed value could be larger than 4. The
reconstructed profiles are depicted as Fig. 12. It can be seen
clearly that ring and cylinder still have good reconstructed
shapes and relative permittivity. It is known that, the test bench
example Austria profile with the relative permittivity of 4.5 is
a challenging case even by use of the conventional advanced
methods based on CIE-I [27]. Although the top part of the
reconstructed Austria looks a little deformed, the retrieved
results is satisfied in terms of the entire shape and the relative
permittivity. However, owing to physical limit of the FBE-
CIE-I, if the features with small number of high-frequency
components could not successfully exacted in the first step,
then maybe the inversion on the more higher contrast of ISPs
(e.g., Austria example) would be restricted. Therefore, the
inversion capability of the proposed LAIM is limited by two
main factors: 1) the physical model guiding in the network,
and 2) the range of the training data set. We should tradeoff
between the capability and the stability by use of the proposed
method according to the application.

V. CONCLUSION

In this paper, a learning-assisted imaging approach named
as LAIM by use of the pix2pix GAN are proposed to solve
highly nonlinear ISPs. The rough image information composed
of a few low-frequency components can be easily exacted by
the FBE-CIE-I with quite low computational cost. Then the
preliminary image can be taken as the input of the pix2pix
GAN. The pix2pix architecture with self-attention in the gen-
erator network are used for inversion. In addition, a weighted

Fig. 12. Reconstructed profiles with εr = 4.5 when the relative permittivity
of the training set is between 3 and 4.

loss function which consists of the adversarial loss, MAPE
and SSIM is utilized to effectively reduce artifacts of the
reconstructions and thereby enhance the imaging quality. Good
generalization capability and stability has also been validated
by both numerical and experimental examples even for the
challenging highly nonlinear cases. In addition, to tradeoff the
compromise between the computational cost and the inversion
accuracy, a U-net network is used to replace the iterative FBE-
CIE-I and the DDM constructed by a cascaded neural network
is used to fulfill the inversion in real time. Because the results
obtained by U-net in the first step is inferior to the one by
FBE-CIE-I, the reconstruction performance of DDM is slightly
degraded, which maybe more suitable for the reconstruction of
the moderate contrast scatterers. Consequently, the proposed
LAIM can well reconstruct strong scatterers quickly, whereas
the proposed DDM can achieve real-time imaging and its
reconstruction accuracy is not as good as the LAIM. According
to the different application scenarios, both of two proposed
methods can show their respective merits well.
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