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Abstract 1 

Climatic warming has been hypothesized to accelerate organic matter decomposition by soil 2 

microorganisms and thereby enhance carbon release to the atmosphere. However, the long-term 3 

consequences of soil warming on belowground biota interactions are poorly understood. Here we 4 

investigate how geothermal warming by 6 °C for more than 50 years affects soil microbiota. Using 5 

metatranscriptomics we obtained comprehensive profiles of the prokaryotic, eukaryotic and viral 6 

players of the soil microbial food web. When compared to ambient soil temperature conditions, we 7 

found pronounced differences in taxa abundances within and between trophic modules of the soil 8 

food web. Specifically, we observed a ‘trophic downgrading’ at elevated temperature, with soil fauna 9 

decreasing in abundance, while predatory bacteria and viruses became relatively more abundant. 10 

We propose that the drivers for this shift are previously observed decreases in microbial biomass 11 

and soil organic carbon, and the increase in soil bulk density (decrease in soil porosity) at elevated 12 

temperature. We conclude that a trophic downgrading may have important implications for soil 13 

carbon sequestration and nutrient dynamics in a warming world. 14 

Main text 15 

The majority of soil organic carbon (SOC) is found in arctic and subarctic regions, where low soil 16 

temperatures constrain mineralization and are considered the most important abiotic driver of 17 

carbon (C) release to the atmosphere (Conant et al. 2011; Crowther et al., 2016). Microbially driven 18 

processes are responsible for most of the SOC mineralisation (Nielsen et al., 2011). Warmer 19 

conditions promote microbial activity, leading to the prediction that global warming will accelerate 20 

SOC decomposition and enhance C release to the atmosphere (Jenkinson et al., 1991; Melillo et al., 21 

2017).  22 

Traditionally, fast mineralization of easily degradable C has been considered primarily bacterial, 23 

while slow mineralization of recalcitrant substrates was considered to be dominated by fungi (Hunt 24 

et al., 1987; Wardle et al., 2004). In addition, the involvement of higher-trophic level taxa in 25 

controlling mineralization rates has been evident for decades (Coleman et al., 1977; Wardle et al., 26 

1998; Cragg and Bardgett, 2001). However, due to the high spatial heterogeneity of the soil 27 

environment and temporal variation in the community composition and activity, many aspects of 28 

decomposition pathways remain unresolved (Nielsen et al., 2011; Kramer et al., 2016; Naylor et al., 29 

2020). Modern molecular biology techniques have allowed higher resolution and precision, and 30 

recent studies have shed light on some of the complex dynamics of soil food webs (Thakur and 31 

Geisen, 2019; Sokol et al., 2022). For example, Pausch et al. (2016) found fungi, not bacteria, to be 32 

predominantly involved in utilizing easily degradable root exudates in arable soils, thus violating the 33 
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assumption mentioned above. Likewise, ‘protists’ have been demonstrated to act on multiple 34 

trophic levels, feeding on both fungi and bacteria, but also on other ‘protists’ and even nematodes 35 

(Geisen, 2016; Hünninghaus et al., 2017). Similarly, the influence of predatory bacteria on microbial 36 

food web dynamics has recently received more attention (Petters et al., 2021; Hungate et al. 2021). 37 

Finally, interactions between viruses and specific microbial processes in soil have been 38 

demonstrated (Starr et al., 2019; Lee et al., 2021), however, the role of viruses and trophic 39 

regulation in soil mineralization processes remains unresolved.  40 

In this study we applied metatranscriptomics to analyse the small-subunit ribosomal RNA (SSU rRNA) 41 

and viral RNA for a broad simultaneous and unbiased analysis of the soil microbial food web (Urich 42 

et al., 2008), including, bacteria, archaea, fungi, ‘protists’, Metazoa and viruses. We studied a 43 

grassland ecosystem in Iceland where geothermal activity has consistently warmed the soil for more 44 

than 50 years, forming natural soil temperature gradients (the ‘ForHot’ site, see Sigurdsson et al. 45 

2016 and supplement S1). We have compared non-heated (denoted Long-Term Warming Ambient 46 

soil Temperature; LTW-AT) and +6 °C above ambient temperature (Long-Term Warming Elevated soil 47 

Temperature; LTW-ET) soil conditions in four replicate soil samples collected at the peak of the 48 

growing season in July 2016 (Séneca et al., 2021; Söllinger et al., 2022 and supplement S1).  49 

The composition of belowground (micro-)biota differed significantly between LTW-AT and LTW-ET 50 

(PERMANOVA, p = 0.02, R2 = 0.3; Fig. 1a), a pattern also seen in the virome (PERMANOVA, p = 0.03, 51 

R2 = 0.3, Fig. 1b). Furthermore, the estimated viral load was strongly correlated with microbial 52 

biomass (microbial carbon per g soil; p < 0.01, Pearson's r = 0.94 and when LTW-AT2 was excluded as 53 

an outlier; Pearson's r = 0.75, p = 0.05; Fig. 1c–d). We identified mainly RNA viruses, while a minor 54 

viral fraction was DNA viruses, such as bacteriophages (Caudovirales; supplement S2 and Fig. 2a). 55 

The reported virome composition was strikingly similar to the few available metatranscriptomics 56 

studies on soil viromes (Starr et al., 2019), however the obtained annotations may be biased by the 57 

still limited annotated public virome databases. The total amount of extracted RNA was on average 58 

3.0 ± 3.2 µg per g dry weight soil, but the amount of total RNA and microbial biomass was not 59 

significantly different between LTW-AT and LTW-ET likely due to large individual sample variation 60 

(Fig. 1a–c), although a difference have been observed previously (with larger sample sets; Söllinger 61 

et al.,2022; Walker et al., 2018). Likewise, the relative abundances of the main domains (i.e., 62 

bacteria, archaea and eukaryotes) did not significantly differ between LTW-AT and LTW-ET (p > 0.1, 63 

supplement S3).  64 

Within the domains, in contrast, several taxa did exhibit significantly different relative abundances 65 

between LTW-AT and LTW-ET (Fig. 1e–f, supplement S4). Within bacteria, the Chloroflexi were 66 
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significantly less relative abundant in the warmed soils, while Planctomycetes, Verrucomicrobia and 67 

especially Deltaproteobacteria were relatively more abundant. In addition, the root associated 68 

fungal class Archaeorhizomycetes had a higher relative abundance under heated conditions. Some 69 

differences in the relative abundance of both bacteria and fungi may be attributable to the response 70 

of plants to warming; plants may increase their investment in symbiotic associations (e.g., 71 

mycorrhizae) in response to increased resource competition (Kim et al., 2015; Trap et al., 2016). In 72 

accordance, an increased uptake of root exudates (13C-labeled) was observed for arbuscular 73 

mycorrhizal fungi under elevated temperature conditions (Verbrigghe et al., 2022b). Furthermore, 74 

biochemical differences in the litter of the dominant grass species (Agrostis capillaris; more 75 

secondary metabolites; phenolic acids and terpenes, Gargallo-garriga et al., 2017) at LTW-ET may 76 

have favoured members of the bacterial phylum Verrucomicrobia e.g., ‘Chthoniobacterales’, which 77 

were recently reported as the primary contributor to phenolic acids degradation in microbiomes of 78 

lichens (Cernava et al., 2017). 79 

The significant taxonomic differences between LTW-AT and LTW-ET reflected relative differences in 80 

the abundance within and between trophic modules of the soil food web (Fig. 2a–b). Generally, the 81 

larger Metazoa (e.g., Insecta, Haplotaxida, Collembola, Protura and Rotifera) had a higher relative 82 

abundance at LTW-AT, although this pattern was only significant for the Rotifera (p < 0.05) and a 83 

trend was seen for the bacterial-feeding nematodes (p < 0.1). On the contrary, the smallest 84 

predators, the bacterivorous bacteria, had a significantly higher relative abundance at LTW-ET. 85 

Additionally, several of the most abundant viruses (of both pro- and eukaryotic hosts) had a 86 

significantly higher relative abundance at LTW-ET (Fig. 2a).  87 

The composition of bacterivores can strongly affect microbially-mediated processes, such as 88 

nitrogen (N) mineralization. For example, up to 20–40% less N was released during nematode 89 

grazing than during ciliate grazing (Trap et al., 2016). A recent study based on the same 90 

metatranscriptomes as used here reported an increase in the expression of genes for the 91 

degradation of N-rich polymers, especially those in microbial necromass, suggesting that the 92 

recycling of microbial residues is a key process at LTW-ET (Séneca et al., 2021). Together with a 93 

previously reported increased rate of mass-specific growth at LTW-ET (Walker et al., 2018; Marañon-94 

Jiménez et al., 2018) and our findings, one might speculate that the shift towards dominance of 95 

small-sized organisms and predators at LTW-ET has shifted mineralisation pathways towards the 96 

recycling of organic-N.  97 

The consistent heating for at least 50 years has resulted in a depleted SOC stock at LTW-ET (up to 98 

27% SOC depletion compared to LTW-AT; Walker et al., 2018; Verbrigghe et al., 2022a) and the 99 
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stability of soil aggregates has subsequently decreased, increasing bulk density and decreasing soil 100 

porosity at LTW-ET (Verbrigghe et al., 2022a). We propose that the differences in the relative 101 

abundances of the trophic modules is driven by both reductions in resource availability (microbial 102 

biomass and amount of SOC, Verbrigghe et al., 2022a) and physical constraints of the environment 103 

(lower porosity, Verbrigghe et al., 2022a), parameters which could all be related to the variation in 104 

community composition (Person’s corr. coefficient > 0.5) although the effect was not statistically 105 

significant likely given the limited number of samples (n=8, supplement S5).  106 

A smaller community size (suggested by less total extracted RNA and reduced microbial biomass; 107 

here non-significant, but previously reported up to 30% reduced; Walker et al., 2018; Verbrigghe et 108 

al., 2022b) would be consistent with the strong substrate depletion at LTW-ET. In addition, following 109 

the fundamental relationship between metabolic rate and temperature an increased metabolic 110 

demand is expected for the organisms at LTW-ET (Brown et al., 2004). This was seen at community 111 

scale (Walker et al., 2018; Séneca et al., 2021) and clearly evident from the mRNA transcripts pools 112 

of the microbiota, especially for bacteria (Söllinger et al., 2022), where a down-regulation of the 113 

cellular machinery for the biosynthesis of proteins (fewer ribosomes) was pointing to a direct 114 

physiological response by the microbiota. For larger organisms, however, this development towards 115 

less biomass and higher metabolic demand may lead to starvation (Rall et al., 2010). In accordance, 116 

Holmstrup et al. (2018) found that Collembola species with smaller body masses became more 117 

abundant at LTW-ET than at LTW-AT. The same authors found that the total biomass of mesofauna 118 

declined at LTW-ET compared to LTW-AT (with seasonal variation, Thakur et al. 2023). These findings 119 

are consistent with global patterns of Collembola density (increasing with latitude; Potapov et al., 120 

2023) and a recent study demonstrating how several microarthropods developed smaller bodies due 121 

to climate change (increased warming and altered precipitation, Yin et al., 2020). 122 

Besides basal resource availability (i.e., SOC and/or microbial biomass), the physical properties of the 123 

soil matrix can influence the abundance and mobility of soil organisms (Rutherford and Yuma, 1992; 124 

Adl, 2007). The role of physical constraints of the soil environment in shaping the microbial 125 

community and as regulators of trophic interactions has recently received a renewed scientific focus 126 

(Erktan et al., 2020). Soil pore size as a main driver for assembly has been shown for collembola 127 

(Heisler and Kaiser, 1995) and nematodes in microcosm experiments (Rønn et al., 1995), and 128 

agricultural field studies (Jiang et al., 2018), as well as on a global scale (van den Hoogen et al., 129 

2019), while Andriuzzi and Wall (2018) found nematode body shape and mass to be correlated with 130 

soil pore size and SOC availability, respectively, in a grassland soil.  131 
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Also, similar soil structure effects have been reported for bacteria: Sessitsch et al. (2001) found that 132 

particle size had a larger effect on bacterial composition than substrate amendments with various 133 

organic materials, and suggested an indirect effect of the physical environment via trophic 134 

interactions, i.e. that ‘protist’ grazing determined the bacterial composition in larger pores. Elliott et 135 

al. (1980) studied the interplay between the trophic interactions of nematodes, ‘protists’, bacteria 136 

and pore size and demonstrated that ‘protists’ allocated resources up the food chain to nematodes 137 

by feeding on bacteria living in pores that were inaccessible to nematodes. Similarly, a recent 138 

metatranscriptomic study (Petters et al., 2021) reported predatory ‘myxobacteria’ to be the 139 

dominant micropredators in fine-textured mineral soils and suggested that the smaller pores 140 

restricted access of the larger micropredators (‘protists’ and nematodes), yielding an advantage for 141 

the – much smaller – bacterial predators. In the present study, these same ‘myxobacteria’ were 142 

significantly more abundant at LTW-ET compared to LTW-AT (Fig. 2a), consistent with the increased 143 

soil bulk density (supplement S5), suggesting that a similar dynamic is occurring in the soil food web 144 

at LTW-ET.  145 

In summary, this study found that the soil food web under elevated temperatures was dominated by 146 

smaller sized organisms; such trophic downgrading may have important implications for carbon 147 

sequestration and nutrient dynamics in warming subarctic and arctic soils. We found strong 148 

indications that differences in resource availability (e.g., amount of carbon content and microbial 149 

biomass), quality (e.g., plant chemistry and changes in the ratio of plant versus microbial 150 

necromass), inter-species competition (e.g., abundance of myxobacteria), as well as an increased 151 

viral load (the consequences of which remain unknown) shaped the microbial community at 152 

elevated temperatures.  153 
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Figure 1 Soil (micro-)biota community similarity and composition under ambient and elevated 329 

temperatures. Non-metric multi-dimensional scaling (NMDS) ordination of the (micro-)biota community 330 

profiles (stress = 0.05, i.e. how well the (dis)similarity between samples are represented in 2-dimentional 331 

space; ≤ 0.05 is considered a very good fit, Clarke and Ainsworth, 1993) (a) and the viral community 332 

composition (stress = 0.06) (b) for long-term warming ambient soil temperature (LTW-AT; blue) and long-term 333 

warming elevated soil temperature (LTW-ET; red). Dots are scaled to the total RNA extract of the given sample 334 

[ranging from 0.9 to 10.7 µg RNA g-1 dry weight (DW) soil]. Total microbial carbon concentration (c), scaled 335 

viral transcripts (d), and the relative abundances of the most dominant taxa in each domain shown for 336 

individual samples (e) and summarised for each temperature (f). In (e) and (f) the bacteria are depicted at the 337 

phylum level (Proteobacteria at the class level; bacterial phyla and Proteobacteria classes with low abundances 338 

are grouped together as “other Bacteria”), fungi are depicted at the class level (classes with low abundances 339 

are grouped together as “other Fungi”), and ‘protists’ and Metazoa are depicted at the phylum level (phyla 340 

with low abundances are grouped together as “other Eukaryota”). *, p <0.05; **, p <0.01; +, p <0.1 (t-test). 341 
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 343 

 344 

Figure 2 Microbial food-web structure. (a) The log2-fold change in relative abundance to temperature 345 

condition (ambient; blue, elevated; red) for assumed predatorial groups from each domain (see supplement 346 

S1). Eukaryota: shown at super-kingdom or phylum level (with mean relative abundance >0.05%), Rz.: Rhizaria; 347 

Nematoda are summarised by feeding mode (see supplement S1). Prokaryota: only bacterivorous bacteria are 348 

shown. Viruses: the three most abundant pro- and eukaryotic viruses are shown (based on their relative 349 

abundance within the mRNA datasets). (b) Structure of the soil food web under ambient (blue) and elevated 350 

(red) temperatures; arrow sizes indicate the amount of difference with increased temperature. The relative 351 

abundances of taxa are normalized to the size of the bacterial pool for each temperature. **, p < 0.01; *, p < 352 

0.05; +, p < 0.1 (t-test).  353 


