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ON UNIQUENESS OF SUBMAXIMALLY SYMMETRIC

PARABOLIC GEOMETRIES

DENNIS THE

Abstract. Among (regular, normal) parabolic geometries of type pG,P q, there is a locally unique
maximally symmetric structure and it has symmetry dimension dimpGq. The symmetry gap prob-
lem concerns the determination of the next realizable (submaximal) symmetry dimension. When
G is a complex or split-real simple Lie group of rank at least three or when pG,P q “ pG2, P2q, we
establish a local uniqueness result for submaximally symmetric structures of type pG,P q.

1. Introduction

For a given (local) differential geometric structure, our interest here will be on the dimension
of its Lie algebra of infinitesimal symmetries. Many types of structures (e.g. Riemannian metrics
on manifolds of fixed dimension) admit a finite maximal symmetry dimension M, and there is
broad interest to (locally) classify all such maximally symmetric structures. Letting S denote the
next possible realizable (submaximal) symmetry dimension, there is often a significant gap arising
between M and S. The symmetry gap problem refers to the determination of S and in doing so the
task of exhibiting (local) models realizing this submaximal symmetry dimension. With this goal
in mind, one can make a detailed case-by-case study of the PDE determining the symmetry vector
fields for a given structure, but in many situations such a direct investigation using analytic tools
becomes cumbersome. Our approach here is to draw upon strong algebraic tools that are present for
an important broad class of structures that admit an equivalent reformulation as Cartan geometries.

Parabolic geometries [6] admit such a reformulation – they are a diverse and interesting class of
geometries whose underlying structures include conformal, projective, CR, 2nd order ODE systems,
and many classes of generic distributions, e.g. p2, 3, 5q-distributions. Their description as parabolic
geometries (see §2.1) gives a solution to the equivalence problem for such structures in the sense

of Élie Cartan. Briefly, such a geometric structure on M (henceforth, always assumed connected)
admits a categorically equivalent description as a (regular, normal) Cartan geometry pG Ñ M,ωq
of type pG,P q, where G is a semisimple Lie group and P is a parabolic subgroup. (For more details
on the passage from M to the “upstairs” Cartan perspective, we refer the reader to [6, 4].) The
Cartan connection ω provides a canonical coframing on G and its symmetry algebra infpG, ωq is
isomorphic to the symmetry algebra of the underlying structure on M . We have M “ dimpGq for
such structures, and there is a (locally) unique maximally symmetric model, namely the flat model
pG Ñ G{P, ωGq of type pG,P q, where ωG is the Maurer–Cartan form of G. Any Cartan geometry
of type pG,P q can be viewed as a curved version of this flat model, and our starting point is to
take the (normalized) Cartan geometry as the basic input to the problem.

Substantial progress was made on the symmetry gap problem for parabolic geometries in [16].
In that joint work with Kruglikov, we proved that S ď U for any pG,P q in terms of a universal
(algebraically-defined) upper bound U. Moreover, when G is complex or split-real simple:

(i) U can be efficiently calculated via Dynkin diagram combinatorics, and
(ii) S “ U almost always, with some exceptions when rankpGq “ 2.

We uniformly proved S “ U by exhibiting a particular homogeneous structure, encoded “Cartan-
theoretically” by what we refer to here as an algebraic model pf; g, pq (see §2.4). We remark that
for more general real forms, the determination of U and sharpness of S ď U is still largely open,
although numerous interesting cases have been resolved – see for example [9, 13, 14, 15].
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Not addressed in [16] was the broader classification problem for submaximally symmetric struc-
tures, and our goal in this article is to resolve this. In order to formulate our main result, we briefly
recall some notions here. (Precise definitions will be given later.) For any (regular, normal) para-
bolic geometry, there is a fundamental quantity called harmonic curvature κH : G Ñ H2pp`, gq1,
which completely obstructs local equivalence to the flat model. The codomain of κH is a filtrand of
a certain Lie algebra homology group, which is a completely reducible P -representation, so only the
action on it by the (reductive) Levi factor G0 Ĺ P is relevant. Consider a G0-irrep V Ď H2pp`, gq1.
We say that pG Ñ M,ωq is of type pG,P,Vq if it is of type pG,P q and impκHq Ď V, and let SV

be the maximal symmetry dimension among regular, normal parabolic geometries of type pG,P,Vq
with κH ı 0. We can now formulate our main result1:

Theorem 1.1. Let G be a complex or split-real simple Lie group, P Ĺ G a parabolic subgroup,
and G0 its Levi factor. Let pG Ñ M,ωq be a regular, normal parabolic geometry of type pG,P,Vq,
where V Ď H2pp`, gq1 is a G0-irrep. Suppose that dimpinfpG, ωqq “ SV, and rankpGq ě 3 or
pG,P q “ pG2, P2q. Then the geometry is locally homogeneous about any u P G with κHpuq ‰ 0. The
corresponding algebraic model pf; g, pq with dim f “ SV is (up to P -equivalences f ÞÑ Adpf, @p P P ):

(1) complex case: unique.
(2) split-real case: one of at most two possibilities. Uniqueness holds if and only if there exists

g0 P G0 such that g0 ¨ φ0 “ ´φ0, where φ0 P V is a lowest weight vector.

Our result is constructive (see §3.4): over C, the distinguished algebraic model pf; g, pq encoding
the corresponding submaximally symmetric geometry is what we refer to here as the canonical
curved model of type pg, p,Vq, which has curvature κ “ φ0 (interpreted as a harmonic 2-cochain).
The Lie algebra f arises as a filtered deformation of a graded subalgebra a :“ aφ0 Ď g (see §2.2),
namely f “ a as vector subspaces, but with bracket r¨, ¨sf :“ r¨, ¨s ´ κp¨, ¨q, where r¨, ¨s is the bracket
on g (restricted to a). This is the same abstract model used in [16]. In the split-real setting, the
second possibility is f “ a with κ “ ´φ0.

For fixed pG,P q, Theorem 1.1 can be used to deduce the analogous classification of all submax-
imally symmetric structures, i.e. κH is not constrained to a specific V. See §4 for some examples.

We now give numerous examples illustrating that one cannot in general weaken the hypotheses
of Theorem 1.1 and expect such a uniform conclusion.

Non-uniqueness over C can occur if we do not require V Ď H2pp`, gq1 to be G0-irreducible:

Example 1.2. A Legendrian contact geometry (over F “ R or C) is a contact manifold pM2n`1, Cq
with contact distribution endowed with a splitting C “ E ‘ F into Legendrian subbundles. (Second
order ODE is the n “ 1 case.) Such a structure underlies a parabolic geometry of type pSLpn `
2,Fq, P1,n`1q, g0 – F

2ˆslpn,Fq, and for n ě 2 we have an g0-irreducible decomposition H2pp`, gq1 –
T1‘T2‘W. From [16, Table 11], we have ST1

“ ST2
“ SW “ n2`4. The corresponding canonical

curved models are inequivalent.

If one weakens the complex / split-real assumptions, varying phenomena can occur:

Example 1.3. Real hypersurfaces in C
3 having positive-definite Levi form yield 5D (integrable)

CR geometries, which are specific real forms of complex Legendrian contact geometries (Example
1.2) when n “ 2. They underlie regular, normal parabolic geometries of type pG,P1,3q, where
G “ SUp1, 3q (not split-real), and the complexification of κH would take values only in W bR C.
We have M “ 15, while it is known that S “ U “ 7, with infinitely many inequivalent submaximally
symmetric models; see [8, Table 8 (D.7)]. In the Levi-indefinite case, G “ SUp2, 2q (again, not split-
real), M “ 15, and there is a unique local model realizing S “ U “ 8; see [8, Table 7 (N.8)].

Now suppose rankpGq “ 2. In contrast to local uniqueness in the pG2, P2q case (both over C and
R, see §3.2), there is a 1-parameter family of submaximally symmetric models in the pG2, P1q case:

Example 1.4. A p2, 3, 5q-geometry is a 5-manifold M equipped with a rank 2 distribution D having
generic growth under the Lie bracket, i.e. rankprD,Dsq “ 3 and rankprD, rD,Dssq “ 5. Locally, any

1See §3.1 for our subscript notation for parabolics in the complex or split-real setting.
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such D admits a Monge normal form: there exist local coordinates px, y, p, q, zq and a function
f “ fpx, y, p, q, zq with fqq ‰ 0 such that D is spanned by the vector fields

Bq, Bx ` pBy ` qBp ` fBz.

Such a structure underlies a parabolic geometry of type pG2, P1q, so M “ 14, with f “ q2 realizing
maximal symmetry. Here, S “ U “ 7 in either the complex or real case. Over C, a well-known list
of submaximally symmetric models is given by f “ qm (for m ‰ ´1, 0, 1

3
, 2
3
, 1, 2) and f “ logpqq.

Other rank two cases include 3-dimensional conformal geometry, i.e. type pB2, P1q, and the
contact geometry of scalar 3rd order ODE, i.e. type pB2, P1,2q. Submaximally symmetric models
are non-unique for both – in the former case see the classification in [12], while in the latter case
they are given by y3 ` ky1 ` y “ 0, where k is constant. The rank two case of 2nd order ODE
exhibits several exceptional phenomena:

Example 1.5. Scalar 2nd order ODE y2 “ fpx, y, y1q (up to point transformations) underlie
pSL3, P1,2q geometries, for which M “ 8 and S “ 3 ă U “ 4. Locally, one has a 3-manifold
M with coordinates px, y, pq and split contact distribution C “ E ‘ F on M with

E “ xBx ` pBy ` fpx, y, pqBpy, F “ xBpy. (1.1)

We have dimpG0q “ 2, and G0 corresponds to arbitrary rescalings along E and F . We have
H2pp`, gq1 – L1 ‘ L2, with each Li being a 1-dim G0-irrep. The components of κH along L1 and
L2 correspond to the well-known Tresse relative invariants I1 and I2 “ fpppp. For I1, we refer to
[16, eqn (5.8)] and replace pt, x, pq there with px, y, pq. Two submaximally symmetric models are:

(i) y2 “ exppy1q: symmetries are f “ xBx, By, xBx ` py ´ xqBy ´ Bpy. We have I1 “ e3p and
I2 “ ep both nonvanishing. Thus, κH is not concentrated in a single irreducible component.

(ii) y2 “ pxy1 ´yq3: symmetries are f “ xxBy ` Bp, xBx ´yBy ´2pBp, yBx ´p2Bpy. The evaluation
map evo : f Ñ ToM is surjective except along the singular set Σ “ ty “ pxu, so neighbour-
hoods of o1 P Σ and o2 R Σ (endowed with restricted geometric structures) are not locally
equivalent. We have I1 “ 72ppx ´ yq and I2 “ 0, so κH vanishes along Σ.

A priori, we cannot exclude the possibility of similar limiting singular behavior as in Example
1.5(ii) for submaximally symmetric structures occurring in geometries with rankpGq ě 3, so we
always work near a point where κH is nonvanishing. Constraining ourselves to the hypotheses of
Theorem 1.1 ultimately leads to a classification problem for homogeneous structures.

We note that Cartan reduction is a general method for classifying (homogeneous) geometric
structures. (See for example [7] for a recent application.) While this is a powerful, systematic
method, it is typically applied on a case-by-case basis, and for any given structure it takes a
substantial amount of effort to set up the correct structure equations (via the Cartan equivalence
method, for instance). Moreover, its implementation can be extremely cumbersome to do by-hand
(often being done in a symbolic algebra system such as Maple or Mathematica), and normalizations
generally proceed in an ad-hoc manner. In principle, it can be used to analyze submaximally
symmetric structures, but in practice it is not a feasible method to arrive at the claimed generality
of Theorem 1.1. Our approach will be to proceed in a uniform manner by taking the Cartan-
geometric viewpoint as the basic input, and make efficient use of representation theory.

Let us briefly outline our article. In §2, we recall relevant background from parabolic geometries
and our earlier work on symmetry gaps, and formulate the notion of an algebraic model pf; g, pq
encoding any homogeneous parabolic geometry. In §3, we recall Kostant’s theorem, define the ca-
nonical curved model, and formulate the algebraic model classification problem (Problem 3.3). We
then solve it, first for pG2, P2q geometries (§3.2), and then the general rankpGq ě 3 case (§3.4). We
conclude in §4 with concrete examples of submaximally symmetric structures, which are asserted
to be unique (over C) from Theorem 1.1.

Conventions: The base manifold M is always assumed to be connected. We work in the smooth
and holomorphic categories when referring to real and complex geometries, respectively. For simple
roots, we use the same ordering as in LiE [19].
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2. Parabolic geometries and algebraic models

We begin by reviewing background from parabolic geometries and symmetry gaps – see [6, 16]
for more details.

2.1. Parabolic geometries. Let G be a real or complex semisimple Lie group, P Ă G a parabolic
subgroup, and p Ă g be their Lie algebras. Then g admits a natural P -invariant (decreasing)
filtration g “ g´ν Ą ... Ą gν (we put gi “ g for i ă ´ν, gi “ 0 for i ą ν), g1 “ p` is the nilradical
of g0 “ p, and rgi, gjs Ă gi`j for all i, j P Z. There always exists grading element Z P g whose adZ-
eigenvalues @j P Z (degrees) and eigenspaces gj :“ tx P g : adZpxq “ jxu (@j P Z) endow g with the
structure of a graded Lie algebra g “ g´ν ‘ . . .‘gν compatible with the filtration, i.e. rgi, gjs Ă gi`j

and gi –
Àν

j“i gj. The associated-graded Lie algebra grpgq is defined by gripgq :“ gi{gi`1. Given

Z as above, we identify gripgq – gi as g0-modules, and if x P gi, we denote by gripxq P gi the
projection to its leading part. We have Z P zpg0q (centre of g0), p “ g0 ‘ p`, and the Killing form
on g identifies pg{pq˚ – p` as P -modules. Finally, letting G0 “ tg P P : Adgpgiq Ă gi, @iu be the
Levi subgroup (with Lie algebra g0), and P` “ exppp`q ď P , we have P – G0 ˙ P`.

A parabolic geometry is a Cartan geometry pG Ñ M,ωq of type pG,P q, i.e. a (right) principal
P -bundle G Ñ M with a Cartan connection ω P Ω1pG, gq:

(i) ωu : TuG Ñ g is a linear isomorphism @u P G;
(ii) ω is P -equivariant: R˚

pω “ Adp´1 ˝ ω, @p P P ;
(iii) ωpζAq “ A, @A P p, where ζA is the fundamental vertical vector field corresponding to A.

The curvature of ω is K “ dω ` 1
2

rω, ωs P Ω2pG, gq (which is P -equivariant and horizontal, i.e.

KpζA, ¨q “ 0), or equivalently we have the curvature function κ : G Ñ
Ź2pg{pq˚ b g given by

κpx, yq “ Kpω´1pxq, ω´1pyqq. The geometry is flat if K “ 0, which characterizes local equivalence
to the flat model pG Ñ G{P, ωGq, where ωG is the (left-invariant) Maurer–Cartan form on G. Via

the Killing form, the codomain of κ identifies (as a P -module) with C2pp`, gq :“
Ź2 p` b g. These

are 2-chains in the complex pC‚pp`, gq, B˚q with B˚ the Lie algebra homology differential. We say
that pG Ñ M,ωq is normal if B˚κ “ 0 and it is regular if κpgi, gjq Ă gi`j`1 for any i, j. Equivalently,

if we naturally extend the filtration on g to a filtration on
Ź2 p` b g, then we have κ P kerpB˚q1.

This is the subspace of kerpB˚q Ă
Ź2 p` b g on which Z acts with positive eigenvalues (degrees).

There is a well-known equivalence of categories between regular, normal parabolic geometries and
underlying geometric structures on M (see [6] for details).

For any regular, normal parabolic geometry, a key invariant is its harmonic curvature κH : G Ñ

H2pp`, gq :“ kerpB˚q
impB˚q , given by κH “ κ mod impB˚q, and this P -equivariant function is a complete

obstruction to flatness. Moreover, H2pp`, gq is a completely reducible p-representation, i.e. p`-acts

trivially. As g0-modules, g{p – g´, and Ckpg´, gq :“
Źk g˚

´ bg yields a complex pC‚pg´, gq, Bq with
respect to the standard Lie algebra cohomology differential B, for which we have the (g0-invariant)
algebraic Hodge decomposition:

Ckpg´, gq – impBq ‘ kerplq ‘ impB˚q, (2.1)

where l “ BB˚ ` B˚B is the (g0-equivariant) algebraic Laplacian, with kerplq “ kerpBq X kerpB˚q.

Then H2pp`, gq “ kerpB˚q
impB˚q – kerplq – kerpBq

impBq – H2pg´, gq as g0-modules, which may be efficiently

computed via Kostant’s theorem (§3.1). By regularity, κH has image in the subspace H2pp`, gq1 Ď
H2pp`, gq on which Z acts with positive eigenvalues. This corresponds to some g0-submodule
H2

`pg´, gq Ď H2pg´, gq under the above identification.
Finally, by [6, Thm.3.1.12], if κ has lowest non-trivial degree s ą 0, then its leading part grspκq is

harmonic and coincides with the degree s component of κH ‰ 0. In particular, κH being a complete
obstruction to flatness follows from this.

2.2. Symmetry and Tanaka prolongation. Two (regular, normal) parabolic geometries of type
pG,P q are equivalent if there is a principal bundle isomorphism that pulls back one Cartan con-

nection to the other, and an automorphism is a self-equivalence. A Cartan geometry pG
π

Ñ M,ωq
is (locally) homogeneous if there is a Lie group acting by (local) automorphisms whose projection
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to M yields a (locally) transitive action on M . Infinitesimally, the symmetry algebra is

infpG, ωq “ tξ P XpGqP : Lξω “ 0u, (2.2)

where XpGqP are the P -invariant vector fields on G.
Let us now summarize how to equivalently view infpG, ωq in a more algebraic manner [2, 5, 16].

Fix any u P G. Then ωu : TuG Ñ g restricts to a linear injection on infpG, ωq. Letting f “ fpuq :“
ωupinfpG, ωqq, the Lie bracket on infpG, ωq transfers to the bracket on f given by

rx, ysf “ rx, ys ´ κupx, yq, @x, y P f. (2.3)

The P -invariant filtration on g induces a filtration on f via fi :“ f X gi. By regularity, κpgi, gjq Ă
gi`j`1, so rfi, fjsf Ă f X gi`j “ fi`j, and pf, r¨, ¨sfq becomes a filtered Lie algebra (generally not a
Lie subalgebra of g). By regularity, the associated-graded s :“ grpfq, defined by si :“ fi{fi`1 is
identified as a graded subalgebra of g (via si ãÑ fi{gi`1 Ď gi{gi`1 – gi). The filtrand f0 Ď g0 “ p

satisfies the important algebraic condition f0 ¨ κ “ 0, which implies f0 ¨ κH “ 0. Since p` acts
trivially on H2pp`, gq, then f1 ¨ κH “ 0 always, so s0 ¨ κH “ 0, i.e. s0 is contained in the annihilator
a0 :“ annpκHpuqq Ď g0.

Now define the following (extrinsic) Tanaka prolongation algebra aφ as in [16]:

Definition 2.1 (Extrinsic Tanaka prolongation). Let a0 Ď g0 be a Lie subalgebra. Extend this
to a Z-graded Lie subalgebra a Ď g by defining a´ “ g´ and ak “ tX P gk : rX, g´1s Ď ak´1u
for k ą 0. Denote a “

À
k ak by prgpg´, a0q. When φ lies in some g0-representation, we write

aφ :“ prgpg´, annpφqq.

The constraint s0 Ď a0 propagates via Tanaka prolongation to the higher levels. More precisely,
the following important inclusion holds:

spuq Ď aκH puq, @u P G. (2.4)

Otherwise put, the symmetry algebra f is a constrained filtered sub-deformation of aκH , i.e.

(i) f is a filtered deformation of the graded subspace spuq Ď aκH puq, and
(ii) f is constrained: e.g. it is a filtered subspace of g and satisfies (2.3) for some κ.

The inclusion (2.4) was established in [16, Thm.2.4.6] on the open dense set of so-called regular
points, i.e. those u P G on which dim sipuq are locally constant functions @i, and was generalized
to all points in [17, Thm.3.3]. If the given geometry is not flat, then κHpuq ‰ 0 at some u P G, so
Z R annpκHpuqq by the regularity assumption on κ, and hence dimpinfpG, ωqq “ dimpsq ă dimpgq.
Thus, the flat model is locally the unique maximally symmetric geometry. Defining

S :“ maxtdimpinfpG, ωqq : pG Ñ M,ωq regular, normal of type pG,P q and κH ı 0u, (2.5)

U :“ maxtdimpaφq : 0 ‰ φ P H2
`pg´, gqu, (2.6)

equation (2.4) immediately implies

S ď U ă dimpgq. (2.7)

A (regular, normal) geometry with dimpinfpG, ωqq “ S is submaximally symmetric. A priori, it
should not be assumed that these are locally homogeneous, particularly if S ă U.

Definition 2.2. Let O Ď H2pp`, gq1 be a G0-invariant subset. Let

SO :“ maxtdimpinfpG, ωqq : pG Ñ M,ωq regular, normal of type pG,P q, impκHq Ď O, κH ı 0u,

UO :“ maxtdimpaφq : 0 ‰ φ P Ou.

Lemma 2.3. For regular, normal parabolic geometries of type pG,P q, and O Ď H2pp`, gq1 a
G0-invariant subset, suppose that SO “ UO. Then any pG Ñ M,ωq with impκHq Ď O and
dimpinfpG, ωqq “ UO is locally homogeneous near any u P G with κHpuq ‰ 0.

Proof. Fix u P G with κHpuq ‰ 0. By (2.4), dimpspuqq “ dimpaκH puqq ď UO. By hypothesis,

dimpspuqq “ dimpinfpG, ωqq “ UO, so (2.4) implies spuq “ aκH puq. Hence, s´puq “ g´, which
implies local homogeneity by Lie’s third theorem. �
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2.3. Homogeneous parabolic geometries. Let pG Ñ M,ωq be homogeneous with respect to the
Lie group F . Fix u P G, and let F 0 Ă F be the stabilizer of o “ πpuq P M . Given any f0 P F 0, we
have f0 ¨u “ u ¨ ιpf0q for some Lie group homomorphism ι : F 0 Ñ P . This defines a right F 0-action

on F ˆP via pf, pq ¨ f0 “ pff0, ιpf
´1
0 qpq and we let F ˆF 0 P be the collection of all F 0-orbits pf, pq.

Letting f and f0 be the Lie algebras of F and F 0 respectively, we have [6, Prop.1.5.15]:

(1) G Ñ M is equivalent to the associated bundle F ˆF 0 P Ñ F {F 0.
(2) Any F -invariant Cartan connection ω P Ω1pF ˆF 0 P, gq of type pg, P q is completely determ-

ined by the following:

Definition 2.4. An algebraic Cartan connection of type pg, P q on pf, F 0q is a linear map ̟ : f Ñ g

with:

(C1) ̟|f0 “ ι1, where ι1 : f0 Ñ p is the differential of ι : F 0 Ñ P .

(C2) Adιpfq ˝ ̟ “ ̟ ˝ Adf , @f P F 0. Infinitesimally:

r̟pxq,̟pyqs “ ̟prx, ysfq, @x P f0, @y P f, (C2’)

where r¨, ¨sf and r¨, ¨s are the Lie brackets on f and g respectively. If F 0 is connected, then
pC2q and (C2’) are equivalent.

(C3) ̟ induces a vector space isomorphism f{f0 – g{p.

Indeed, given ̟ as above, we obtain ω by factoring ω̂1 P Ω1pF ˆ P, gq given by

ω̂pf,pqpX,Y q “ Adp´1̟pXq ` Y, pX,Y q P TfF ˆ TpP.

The basepoint change u ÞÑ f ¨ u leaves pι,̟q unchanged, but a fibrewise change u ÞÑ u ¨ p induces
pι,̟q ÞÑ pAdp´1 ˝ ι,Adp´1 ˝ ̟q.

Define κ̃px, yq :“ r̟pxq,̟pyqs ´ ̟prx, ysfq, so κ̃ P
Ź2pf{f0q˚ b g by (C2’). The curvature of ω

corresponds to κ P
Ź2pg{pq˚ b g given by κpx, yq “ κ̃p̟´1pxq,̟´1pyqq. The notions of regularity

and normality of κ are immediately specialized to this algebraic setting, as is the quotient object
κH “ κ mod impB˚q P H2pp`, gq1.

2.4. Algebraic models. Note that pC3q and (C2’) forces kerp̟q Ă f0 to be an ideal in f. The
F -action on F {F 0 can always assumed to be infinitesimally effective, i.e. f0 does not contain any
non-trivial ideals of f (hence, kerp̟q “ 0). (Otherwise, we may without loss of generality quotient
both F and F 0 by the corresponding normal subgroup.) Consequently, we assume that ̟ : f Ñ g

is injective and identify f with its image in g. This motivates the following definition.

Definition 2.5. An algebraic model pf; g, pq is a Lie algebra pf, r¨, ¨sfq such that:

(M1) f Ď g is a vector subspace with inherited filtration fi :“ f X gi such that s “ grpfq satisfies
s´ “ g´.

(M2) f0 inserts trivially into κ̃px, yq “ rx, ys ´ rx, ysf, so identify κ̃ P
Ź2pf{f0q˚ b g with κ PŹ2pg{pq˚ b g.

(M3) κ is regular and normal, i.e. κ P kerpB˚q1.

The result below immediately follows from the general theory recalled in §2.2, but it is instructive
to give proofs directly following from Definition 2.5 above.

Proposition 2.6. Let pf; g, pq be an algebraic model. Then

(1) pf, r¨, ¨sfq is a filtered Lie algebra. (In general, f is not a Lie subalgebra of g.)
(2) f0 ¨ κ “ 0, i.e. rz, κpx, yqs ´ κprz, xs, yq ´ κpx, rz, ysq “ 0, @x, y P f and @z P f0.
(3) s Ď aκH , where κH :“ κ mod impB˚q.

Proof. For (1), if x P fi and y P fj, then κpx, yq P gi`j`1 by regularity of κ, i.e. (M3), so (1) implies
rx, ysf P gi`j. But f is a Lie algebra, so rx, ysf P f X gi`j “ fi`j and rfi, fjsf Ă fi`j. For (2), we use
the Jacobi identity and the fact that κ vanishes under f0-insertions by (M2). Namely, let x, y P f
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and z P f0. Then

0 “ rrx, ysf, zsf ` rry, zsf, xsf ` rrz, xsf, ysf

“ rrx, ys ´ κpx, yq, zsf ` rry, zs, xsf ` rrz, xs, ysf

“ rrx, ys, zs ´ rκpx, yq, zs ` rry, zs, xs ´ κpry, zs, xq ` rrz, xs, ys ´ κprz, xs, yq

“ rz, κpx, yqs ´ κpry, zs, xq ´ κprz, xs, yq.

Finally, we prove (3). Since B˚ is P -equivariant and f0 Ď p “ g0, then f0 ¨ impB˚q Ď impB˚q, so
(2) implies f0 ¨ κH “ 0, which factors to s0 ¨ κH “ 0 by complete reducibility of H2pp`, gq. Letting
a :“ aκH , this means s0 Ď a0 “ annpκHq. By regularity, s Ď g is a graded Lie subalgebra, so for
any k ą 0, rsk, g´1s “ rsk, s´1s Ď sk´1. Inductively, we have sk Ď ak for all k ą 0. �

Importantly, we note that the set of algebraic models of type pg, pq:

‚ admits a P -action via f ÞÑ Adpf for any p P P . All algebraic models in the same P -orbit
are to be regarded as equivalent, so we must always account for this redundancy.

‚ is partially ordered: declare that f ď f1 if and only if f is a Lie subalgebra of f1. We will
focus on maximal elements f. (We view non-maximal elements as non-optimal descriptions
of the same geometric structure.)

Remark 2.7. Conversely, by [16, Lemma 4.1.4], to each algebraic model pf; g, pq, there exists a
locally homogeneous geometry pG Ñ M,ωq of type pG,P q with infpG, ωq containing a subalgebra
isomorphic to f. If f is maximal with respect to the partial order defined above, then infpG, ωq – f.

Since grpfq “ s, we may view f Ď g as a graph over s Ď g. Namely, choosing some graded
subspace sK Ď g so that g “ s ‘ sK (in fact, sK Ď p since g´ Ď s by hypothesis), we can write

f “
νà

i“´ν

tx ` dpxq : x P siu (2.8)

for some unique linear map d : s Ñ sK of positive degree, i.e. if x P si, then dpxq P sK X gi`1. We
refer to d as the deformation map and dpxq as the tail of x.

Lemma 2.8. Let T P f0 with s and sK being adT -invariant. Then T ¨ d “ 0, i.e. adT ˝ d “ d ˝ adT .

Proof. Given x P s, we have x ` dpxq P f and rT, x ` dpxqsf P f. By (M2), rT, x ` dpxqsf “
rT, x`dpxqs “ rT, xs`rT, dpxqs. But rT, xs P s and rT, dpxqs P sK Xgi`1 since d has positive degree,
so by uniqueness of d, we have rT, dpxqs “ dprT, xsq. �

3. The canonical curved model and local uniqueness

We focus on proving Theorem 1.1 in the complex case. The arguments in the split-real case are
almost exactly the same, and potentially differ only in the final step of §3.4. This is described at
the end of §3.

3.1. Kostant’s theorem and the canonical curved model. Let G be a complex semisimple
Lie group, h Ă g a Cartan subalgebra with ℓ :“ dimphq “ rankpgq, ∆ Ă h˚ the associated root
system, gα the root space for α P ∆, ∆` Ă ∆ the positive roots relative to a choice of simple root
system tαiu

ℓ
i“1, and tZiu

ℓ
i“1 Ă h its dual basis, i.e. Zipαjq “ αjpZiq “ δij . If k Ď g is an h-invariant

subspace, we write ∆pkq :“ tα P ∆ : gα Ď ku, and ∆`pkq :“ ∆pkq X ∆`. A parabolic subgroup
P Ă G with Lie algebra p Ă g is encoded by a subset Ip Ď t1, . . . , ℓu, with associated grading
element Z :“

ř
iPIp

Zi, and p “ gě0 “
À

iě0 gi relative to it. On the Dynkin diagram of g, we

put crosses at nodes corresponding to Ip, and refer to P using subscripts, e.g. if Ip “ ti, ju, then
P “ Pi,j , etc. (In our convention, the Borel subalgebra has crosses on all Dynkin diagram nodes.)

The Killing form of g induces a non-degenerate pairing x¨, ¨y on h˚. Letting α_ :“ 2α
xα,αy be the

coroot of α P ∆, we have the Cartan matrix c “ pcijq with cij :“ xαi, α
_
j y. The fundamental

weights tλjuℓj“1 are defined by xλi, α
_
j y “ δij , and these satisfy αi “

řℓ
j“1 cijλj. Corresponding to

αj is the simple reflection σj defined by σjpxq “ x´ xx, α_
j yαj , and the Weyl group W is the group

generated by all simple reflections.
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Kostant’s theorem [11] yields an efficient g0-module description of H2pp`, gq – H2pg´, gq: it is
the direct sum of g0-irreps Vµ, each of multiplicity one, and having lowest weight µ “ ´w ‚ λ,
where:

(1) λ is the highest weight of a simple ideal of g;
(2) w “ pjkq :“ σj ˝ σk P W pp2q is a length 2 word of the Hasse diagram W p Ă W . Concretely

for our purposes here, this is equivalent to: j P Ip and either: (i) k P Ip, or (ii) cjk ă 0.

(3) ‚ refers to the affine action of W on weights: letting ρ :“
řℓ

i“1 λi, we have

µ “ ´w ‚ λ “ ´wpλ ` ρq ` ρ “ ´w ‚ 0 ` wp´λq. (3.1)

Via the g0-module isomorphism H2pg´, gq – kerplq from (2.1), a representative lowest weight

vector φ0 P Vµ Ă kerplq Ă
Ź2pg´q˚ b g –

Ź2 p` b g is given in terms of root vectors eγ by:

φ0 :“ eαj
^ eσjpαkq b ewp´λq. (3.2)

To interpret φ0 as a 2-cochain, we identify eαj
and eσjpαkq as the dual elements pe´αj

q˚ and

pe´σjpαkqq
˚ via the Killing form. (Here, we fix root vectors yielding a basis on g{p.)

For O “ Vµzt0u, define Uµ :“ UO and Sµ :“ SO. By [16, Prop.3.1.1], we have

dimpaφq ď dimpaφ0q, @φ P Vµzt0u, (3.3)

with equality precisely when the projectivizations rφs and rφ0s lie in the same G0-orbit in PpVµq.
Hence, Uµ “ dimpaφ0q. Concerning realizability of this upper bound, we have:

Definition 3.1. Use notations as above with G simple. Suppose w P W pp2q satisfies wp´λq P ∆´

and Zpµq ą 0. The canonical curved model of type pg, p,Vµq is the algebraic model pf; g, pq given

by defining f :“ aφ0 as a vector subspace of g, equipped with the filtration inherited from g, and
deformed bracket r¨, ¨sf :“ r¨, ¨s ´ φ0p¨, ¨q.

By [16, Lemma 4.1.1], pf, r¨, ¨sfq is indeed a Lie algebra, and clearly dimpfq “ Uµ. The filtration
on f is inherited: fi :“ f X gi. Since φ0 P kerplq “ kerpBq X kerpB˚q, then κ “ φ0 is clearly normal,
and Zpµq ą 0 guarantees regularity. Thus, pf; g, pq is an algebraic model, which is clearly maximal
with respect to the aforementioned partial order.

Proposition 3.2. Use notations as above with G simple. Suppose that rankpGq ě 2, and exclude
G “ A2 and pG,P q “ pB2, P1q, pB2, P1,2q. Then wp´λq P ∆´ for any w P W pp2q. For µ “ ´w ‚ λ

with Zpµq ą 0, the canonical curved model of type pg, p,Vµq exists, and so Sµ “ Uµ. Moreover,
any regular, normal parabolic geometry pG Ñ M,ωq of type pG,P,Vµq with dimpinfpG, ωqq “ Sµ is
locally homogeneous about any u P G with κHpuq ‰ 0.

Proof. This follows from [16, Lemma 4.1.2] and local homogeneity follows from Lemma 2.3. �

Under the hypotheses of Proposition 3.2, our problem of classifying submaximally symmetric
models relative to Vµ becomes that of classifying algebraic models pf; g, pq with 0 ‰ κH P Vµ and

dimpfq “ Uµ. From Proposition 2.6, s “ grpfq Ď aκH . The equality dimpfq “ Uµ “ dimpaφ0q
forces s “ aκH with rκH s “ g0 ¨ rφ0s for some g0 P G0. Using the induced G0-action on f, we may
henceforth assume that rκH s “ rφ0s, and so pf, r¨, ¨sfq satisfies

s “ grpfq “ aφ0 . (3.4)

In summary, to establish Theorem 1.1, it suffices to answer the following question:

Problem 3.3. When rankpGq ě 3 or pG,P q “ pG2, P2q, classify algebraic models pf; g, pq with
0 ‰ κH P Vµ satisfying (3.4), up to the action by the residual subgroup Stabprφ0sq ˙ P` ď P .)

Over C, we will show that the canonical curved model is the unique solution to Problem 3.3.
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3.2. The pG2, P2q case. We first answer Problem 3.3 in the pG,P q “ pG2, P2q case. For G2, recall:

, pcijq “
`

2 ´1
´3 2

˘
,

#
α1 “ 2λ1 ´ λ2,

α2 “ ´3λ1 ` 2λ2

,

#
λ1 “ 2α1 ` α2,

λ2 “ 3α1 ` 2α2

. (3.5)

Let tZ1,Z2u be the dual basis to the simple roots tα1, α2u. The highest weight is λ “ λ2 “ 3α1`2α2.
The root diagram is given in Figure 1. Let eα be a root vector for the root α P ∆.

α2

α1

g2:

g1:

g0:

g´1:

g´2:

Figure 1. G2 root diagram with grading associated to P2

We have Z “ Z2, which induces the grading g “ g´2 ‘ ... ‘ g2. Moreover,

g0 “ xZ, hα1
, eα1

, e´α1
y – gl2,

g´1 “ g´α2
‘ g´α1´α2

‘ g´2α1´α2
‘ g´3α1´α2

,

g´2 “ g´3α1´2α2
,

w “ p21q P W pp2q,

µ “ ´w ‚ λ “ ´7λ1 ` 4λ2 “ ´2α1 ` α2,

H2pg´, gq “
7 ´4

,

φ0 “ eα2
^ eα1`α2

b e´3α1´α2
,

a “ g´ ‘ a0, a0 “ xZ1 ` 2Z2y ‘ g´α1
.

(3.6)

Let us now classify algebraic models pf; g, pq with grpfq “ a. Let T P f0 with gr0pT q “ Z1 ` 2Z2.
Since pZ1 ` 2Z2qpαq ‰ 0 for all α P ∆pp`q, we use the P`-action to normalize to T “ Z1 ` 2Z2 P f0.

Defining aK “ xZ2y ‘ gα1
‘ g`, let d P a˚ b aK be the associated deformation map (of positive

degree). The decomposition g “ a ‘ aK is adT -invariant, so T ¨ d “ 0 by Lemma 2.8, i.e. d is a sum
of weight vectors for weights that are multiples of µ “ ´2α1 `α2. The weights of a

˚ and aK agree,
and they are both:

0, α1, α2, α1 ` α2, 2α1 ` α2, 3α1 ` α2, 3α1 ` 2α2. (3.7)

Since µ has coefficients with respect to tα1, α2u of opposite sign, there is no sum of two weights in
(3.7) that is: (i) a multiple of µ, and (ii) has positive degree. Thus, d “ 0, and f “ a as filtered
subspaces of g.

Now consider curvature κ P kerpB˚q1 Ă
Ź2 p` b g. Since T ¨ κ “ 0 by Proposition 2.6, then we

are interested in weights σ (of 2-cochains) that are multiples of µ:

σ “ rµ “ α ` β ` γ, where α, β P ∆pp`q are distinct, γ P ∆ Y t0u, r ě 1. (3.8)

(We have r ě 1 since regularity and the final statement in §2.1 imply Zpσq ě Zpµq ě 1.) Recall that
λ “ λ2 “ 3α1 `2α2 and note that ´λ ď γ ă σ “ rµ. Then ´3 ď Z1p´λq ď Z1pσq “ rZ1pµq “ ´2r,
and so r ď 3

2
. However, Zpµq “ Z2pµq “ 1 and σ has integer coefficients in the simple root basis, so

the only possibility is r “ 1. Since H2pg´, gq – Vµ is a g0-irrep, then κ must be a nonzero multiple
of φ0. Use AdexpptZq to rescale over C so that κ “ φ0, so we obtain the canonical curved model.

Over R, we may rescale to κ “ ˘φ0. Let us study the action by G0 – GLp2,Rq more concretely.
Let tx, yu be the standard basis of R2, and tω, ηu the dual basis. Then g´1 – S3

R
2 as G0-modules

and we can identify

pe´α2
, e´α1´α2

, e´2α1´α2
, e´3α1´α2

q “ px3, x2y, xy2, y3q.
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We regard φ0 as a multiple of ω3 ^ ω2η b y3. Hence, A “ diagpa, bq P G0 acts as φ0 ÞÑ a´5b2φ0, so
taking pa, bq “ p´1, 1q induces φ0 ÞÑ ´φ0. Again, we obtain the canonical curved model.

The underlying structures for regular, normal parabolic geometries of type pG2, P2q are called
G2-contact geometries. See [18] for κH and a coordinate realization of a submaximally symmetric
structure given in [18, Table 8]. By uniqueness proved above, this corresponds to the canonical
curved model. We have shown:

Proposition 3.4. There is a locally unique (complex or real) G2-contact geometry that is submax-
imally symmetric (S “ 7) about any point where harmonic curvature is nonvanishing.

3.3. Preparation for the general case and the twistor simplification. The rankpGq ě 3
case for Problem 3.3 is treated in a similar spirit to the pG2, P2q case, but will require some further
preparations. We will need more details about µ “ ´w ‚ λ and grpfq “ aφ0 . First, observe that for

w “ pjkq, we have ´w ‚ 0 “ αj ` σjpαkq by (3.1) and (3.2). If λ “
řℓ

i“1 riλi, then (3.1) becomes:

µ “ ´λ ` prj ` 1qαj ` prk ` 1qpαk ´ ckjαjq. (3.9)

Second, from [16, Thm. 3.3.3], grpfq “ aφ0 is the Tanaka prolongation of:

annpφ0q “ kerpµq ‘
à

γP∆pg0,ď0q

gγ Ă g0. (3.10)

This is the direct sum of kerpµq :“ th P h : µphq “ 0u and root spaces for the roots

∆pg0,ď0q :“ tα P ∆pg0q : ZJµpαq ď 0u, (3.11)

where ZJµ :“
ř

iPJµ
Zi is a secondary grading with respect to the set

Jµ :“ ti P t1, ..., ℓuzIp : xµ, α_
i y ‰ 0u. (3.12)

In [16], the weight µ was encoded on a Dynkin diagram by inscribing over corresponding nodes the
coefficients of ´µ with respect to tλiu. The set Jµ corresponds to uncrossed nodes with a nonzero
coefficient.

Example 3.5. Consider pG,P q “ pE8, P8q. Here, Z “ Z8, λ “ λ8, w “ p87q P W pp2q, and
g0 – C ‘ E7. Applying Kostant’s theorem, we find that

H2
`pg´, gq – Vµ “

0

0

0 0 0 1 1 ´4

with µ “ ´λ6 ´ λ7 ` 4λ8, and so Jµ “ t6, 7u. (Also, Zpµq “ 1.) See [16, §3.3] for more examples.

According to [3], any parabolic geometry can be lifted to a correspondence space, and conversely a
parabolic geometry may be descended to a twistor space if a suitable curvature condition is satisfied.
(The latter amounts to viewing the given geometry of type pG,Qq as a geometry of type pG,P q,
where Q Ă P Ă G.) These are categorical constructions, so symmetries are naturally mapped
to symmetries. We will not recall here the general theory developed in [3], but only summarize
various results from [16, §3.5] in order to emphasize a “twistor simplification” (3.13) relevant for
our purposes. The main reason for doing so is to assert (3.17), which facilitates the classification
of filtered sub-deformations of aφ0 in §3.4.

Under the assumption κH P Vµ, one may always descend to a minimal twistor space. Concretely,
if µ “ ´w ‚ λ, where w “ pjkq P W qp2q, then [16, Prop.3.5.1 & Cor.3.5.2] indicates that we may
instead view a given pG,Qq geometry as a pG,P q geometry, where

P “

#
Pj , if cjk ă 0;

Pj,k, if cjk “ 0.
(3.13)

In [16, Thm.3.5.4], we showed that the Lie algebra structure of aφ0 is unchanged with respect to
the above change of parabolics, in spite of the grading change, cf. [16, Example 3.5.5].

Normality of the geometry is preserved in passing to a correspondence or twistor space, but a
priori regularity is not.
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Example 3.6. For regular, normal geometries of type pG2, P2q, we have λ “ λ2 and Z “ Z2. Then
w “ p21q P W pp2q yields µ “ ´7λ1 ` 4λ2 “ ´2α1 `α2, so Zpµq “ 1. Viewed on the correspondence

space as a pG2, P1,2q geometry, which has grading element rZ :“ Z1`Z2, the corresponding harmonic

curvature would take values in a module with degree rZpµq “ ´1, i.e. regularity is not preserved.

Despite regularity not being preserved when passing upwards to a correspondence space, let us
consider the passage downwards to the minimal twistor space. In the simple setting, preservation
of regularity upon such descent can be observed a posteriori through the tables compiled in [16,
Appendix C]. We now give a uniform proof of this:

Lemma 3.7. Let g be a complex simple Lie algebra of rankpgq ě 2 with highest weight λ, q Ă g

a parabolic subalgebra. Fix w “ pjkq P W qp2q and µ “ ´w ‚ λ. Define q Ă p Ă g, where the

parabolic subalgebra p is defined by Iq Ą Ip “

#
tju, ckj ă 0;

tj, ku, ckj “ 0.
Let Z, Z̄ be the grading elements

corresponding to q, p respectively. If we have Zpµq ą 0, then Z̄pµq ą 0.

Proof. From (3.9), we have Zspµq “ Zsp´λq ă 0 for any s ‰ j, k. (Recall that all coefficients of λ in
the simple root basis are positive.) We have j P Iq. Suppose that (i) cjk “ 0 (hence, k P Iq), or (ii)
cjk ă 0 and k R Iq. In either case, 0 ă Zpµq “ Z̄pµq ` ZIqztj,kupµq, where ZIqztj,ku :“

ř
sPIqztj,ku Zs,

so Z̄pµq ą 0 since ZIqztj,kupµq ă 0.
From §3.1, it remains to consider the case cjk ă 0 and k P Iq. Then

0 ă Zpµq “ Z̄pµq ` Zkpµq ` ZIqztj,kupµq (3.14)

From (3.9), note that

Zkpµq “ Zkp´λq ` rk ` 1. (3.15)

If rk “ 0, then Zkpµq ď ´1 ` 0 ` 1 “ 0. As above, Z̄pµq ą 0 and we are done. So let us suppose
that rk ą 0. We can examine all such possibilities from knowledge of the well-known highest roots
of simple Lie algebras:

Aℓ pℓ ě 1q Bℓ pℓ ě 3q Cℓ pℓ ě 2q Dℓ pℓ ě 4q E6 E7 E8 F4 G2

λ1 ` λℓ λ2 2λ1 λ2 λ2 λ1 λ8 λ1 λ2

(3.16)

If g is not type A or C, then from (3.16), we have rk “ 1, and it is well-known that Zk yields a
contact grading on g. So Zkpλq “ 2, Zkpµq “ ´2`1`1 “ 0 from (3.15), and Z̄pµq ą 0 follows from
(3.14). For the type A and C cases, we show that Z̄pµq ą 0 independent of the hypothesis on Zpµq:

(1) Type C: We have rk “ 2, k “ 1, and j “ 2. Since λ “ 2λ1 “ 2α1 ` ... ` 2λℓ´1 ` λℓ, then
from (3.9), we have Z̄pµq “ Zjpµq “ Zjp´λq ` rj ` 1 ´ prk ` 1qckj ě ´2 ` 0 ` 1 ´ 3ckj ě 2.

(2) Type A: We have rk “ 1 and using a Dynkin diagram symmetry, we may assume k “ 1, so
j “ 2. Since λ “ α1 ` ... ` αℓ, we have Z̄pµq “ Zjpµq “ Zjp´λq ` rj ` 1 ´ prk ` 1qckj ě
´1 ` 0 ` 1 ´ 2ckj “ 2.

�

Now, because of [16, Prop.3.4.7] (see also [16, Defn 3.4.1]), the “twistor simplification” implies
that after moving to the larger parabolic subgroup indicated in (3.13) and the corresponding grad-

ing, we get aφ0

` “ 0. Combining this with (3.4), we obtain:

f1 “ 0. (3.17)

3.4. Proof of the main theorem. Let us turn now to the proof of Theorem 1.1.

Lemma 3.8. Let g be a complex simple Lie algebra with ℓ :“ rankpgq ě 3 and λ its highest root.
Let w “ pjkq P W pp2q such that µ “ ´w ‚ λ satisfies Zpµq ą 0. Then:

(MU1) µ “
řℓ

i“1 miαi has coefficients mi of opposite sign. More precisely, mi ă 0, @i ‰ j, k, and
either mj ą 0 or mk ą 0.

(MU2) DH0 P kerpµq with fpH0q ‰ 0 for all f “ α ` β with pα, βq P R :“ ∆` ˆ p∆` Y t0uq.
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Proof. From (3.9), µ ” ´λ mod tαj , αku. Since g is simple, then all coefficients of λ with respect

to the basis of simple roots tαiu
ℓ
i“1 are strictly positive. Since ℓ ě 3, then mi “ Zipµq “ Zip´λq ă 0

for all i ‰ j, k. At least one of mj “ Zjpµq or mk “ Zkpµq must be positive, since Zpµq ą 0 by
hypothesis.

Fix any pα, βq P R, and f “ α`β ą 0, so by the first claim, µ is not a multiple of f . Thus, kerpµq
and kerpfq are distinct hyperplanes in h. Their sum must be h, while Πf :“ kerpµq X kerpfq is a
hyperplane in kerpµq. Since ∆` is finite, the finite union

Ť
pα,βqPR Πα`β has non-empty complement

in kerpµq (being the finite intersection of open sets h zΠα`β). Picking H0 in this (open) complement
completes the proof. �

Assume the hypotheses of Lemma 3.8. From the previous subsections, we have reduced our
submaximal symmetry classification problem to studying algebraic models pf; g, pq with

impκHq Ď Vµ, s “ grpfq “ aφ0 “: a, (3.18)

where φ0 P Vµ is given by (3.2). We will classify these up to the action of Stabprφ0sq ˙ P` ď P .
Moreover, we may assume the twistor simplification, which implies that f1 “ 0, where we have
moved to the grading associated with the larger parabolic subgroup indicated in (3.13).

Step 1: Using the P`-action, normalize f so that H0 P f0.

As in Lemma 3.8, fix H0 P kerpµq Ă annpφ0q Ă a. Let H P f0 Ă g with leading part gr0pHq “ H0,
so H “ H0 ` H`, where H` :“ dpH0q P p`. If H` ‰ 0, let 0 ‰ Hr :“ grrpH`q P gr for some
minimal r ě 1. Let us normalize H via the P`-action. Letting X P gr, we have:

AdexppXqpHq “ exppadXqpHq “ H ` rX,Hs ` . . . “ H0 ` Hr ´ rH0,Xs ` . . . , (3.19)

where the dots indicate terms of degree ą r. Fixing root vectors eα P gα, we have Hr “ř
αP∆pgrq cαeα. By (MU2) in Lemma 3.8, αpH0q ‰ 0 @α P ∆`, so defining X :“

ř
αP∆pgrq

cα
αpH0qeα,

we have Hr ´ rH0,Xs “ 0. Redefining AdexppXqpfq as f and AdexppXqpHq as H, the latter has
H` with leading part of degree r ` 1. Inductively, we may normalize H` “ dpH0q “ 0, and so
H “ H0 P h X f0. Since αpH0q ‰ 0 for all α P ∆pp`q, the P`-part of the structure group has been
completely reduced.

Step 2: Observe that kerpµq Ă f0

Fix any 0 ‰ H 1
0 P kerpµq Ă h, so H 1

0 P a. Write H 1 “ H 1
0 ` H 1

` P f with H 1
` “ dpH 1

0q P p` “ g1.
By (M2) from Definition 2.5, we have:

rH0,H
1sf “ rH0,H

1s “ rH0,H
1
0 ` H 1

`s “ rH0,H
1
`s P p` X f “ f1 “ 0, (3.20)

where the twistor simplification was invoked for the last equality. Since (MU2) implies αpH0q ‰ 0
for all α P ∆pp`q, then necessarily H 1

` “ 0. Thus, kerpµq Ă f0.

Step 3: Show that f “ a as subspaces of g.

Recall Jµ from (3.12) and the secondary grading ZJµ. From (3.10), we have g “ a ‘ aK where

a “ g´ ‘ a0, where a0 “ kerpµq ‘
à

γP∆pg0,ď0q

gγ ,

aK :“ kerpµqK ‘ g0,` ‘ g`, where g0,` :“
à

γP∆pg0,`q

gγ ,
(3.21)

and kerpµqK is a 1-dimensional complement to kerpµq inside h. Both a and aK are h-invariant, so
in particular they are invariant under kerpµq. Defining the associated deformation map d : a Ñ aK,
Lemma 2.8 implies that H ¨ d “ 0, @H P kerpµq Ă f0, so d lies in the direct sum of weight spaces of
a˚ b aK for weights that are multiples of µ.

Note ∆´ Ă ∆paq, so let α P ∆` and examine dpe´αq. From (3.10), we have g´α Ă a, and the
weights of e˚

´α b aK are of the form α ` γ, where γ P ∆`paKq Y t0u. These all have non-negative
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coefficients in the simple root basis. By (MU1), these weights cannot be multiples of µ. Hence,
dpe´αq “ 0, i.e. e´α P f. (This argument is very similar to the pG2, P2q case from §3.2.)

For our Step 3 claim, it suffices to consider α P ∆`paq “ ∆`pg0,0q and show that dpeαq “ 0,
@α P ∆`pg0,0q. First recall that w “ pjkq P W pp2q as in Lemma 3.8. We claim that we may assume

Zjpµq ą 0, Zspµq “ Zsp´λq ă 0, s ‰ j, k. (3.22)

Via the twistor simplification, we have either: (a) Ip “ tju, hence Zjpµq “ Zpµq ą 0; or (b)
Ip “ tj, ku with cjk “ 0, hence 0 ă Zpµq “ Zjpµq ` Zkpµq, so either Zjpµq ą 0 or Zkpµq ą 0. Since
cjk “ 0, then swap j, k if necessary to assume that Zjpµq ą 0. Since ℓ ě 3, (3.9) implies the rest of
(3.22).

Since d has positive degree, then dpeαq P p`, so let us consider a weight γ ´ α for γ P ∆pp`q
corresponding to a possible term e˚

α b eγ in d. Using Jµ, we have two cases:

(1) Jµztku ‰ H: Since Zjpαq “ 0, then Zjpγ ´ αq “ Zjpγq ą 0, while for any i P Jµztku, we
have Zipγ ´ αq “ Zipγq ą 0. By (3.22), γ ´ α cannot be a multiple of µ.

(2) Jµztku “ H: Since ℓ ě 3, fix any s ‰ j, k and note that cjs, cks, ckj ď 0 (by standard
properties of Cartan matrices). By definition of Jµ, we have xµ, α_

s y “ 0. Recalling that
ri ě 0 for all i, (3.9) implies:

0 “ x´µ, α_
s y “ rs ´ prj ` 1qcjs ´ prk ` 1qpcks ´ ckjcjsq ě rs ě 0. (3.23)

Hence, rs “ 0, cjs “ cks “ 0, i.e. every s ‰ j, k is not connected in the Dynkin diagram to
either j or k. Since g is simple (with rankpgq ě 3), its Dynkin diagram is connected, so this
is a contradiction, i.e. this case is vacuous.

We conclude that dpeαq “ 0, @α P ∆`pg0,0q, and hence d “ 0. Thus, f “ a as subspaces of g.

Step 4: Study curvature κ

By (M3) and Proposition 2.6, we have κ P kerpB˚q1 Ă
Ź2 p` bg and f0 ¨κ “ 0. Since kerpµq Ă f0,

then κ is valued in the direct sum of weight spaces of kerpB˚q1 for weights σ “ rµ “ α`β ` γ with
α, β P ∆pp`q and γ P ∆ Y t0u. For the same reasons there (regularity and the final statement in
§2.1), we again have r ě 1. Let us show that r ď 1. Write the highest weight of g as λ “

ř
i niαi,

where ni ą 0 for all i since g is simple. Since ´λ is the lowest root of g, then ´λ ď γ ă σ. Thus,
for any i ‰ j, k,

´ni “ Zip´λq ď Zipγq ď Zipσq “ rZipµq “ ´rni, (3.24)

where the last equality follows from (3.9). Since ni ą 0, then r ď 1 follows. Thus, r “ 1 and so
κ has weight σ “ µ. The multiplicity of µ (lowest weight) is the same as that occurring in the
g0-irrep Vµ, i.e. multiplicity one, by Kostant’s theorem. Under the identification with harmonic
2-cochains, κ must be a nonzero multiple of φ0. Using AdexpptZq, we may do a complex rescaling to
arrange κ “ φ0. Thus, we have obtained the canonical curved model.

Working with split-real geometries, we similarly arrive at κ being a nonzero multiple of φ0 using
almost exactly the same arguments as in the complex case. The only part that differs concerns the
use of [16, Prop.3.1.1] to assert (3.3) and the subsequent statement characterizing equality there.
A key ingredient for that Proposition is that O “ G0 ¨ rφ0s is the unique closed G0-orbit in

PpVµq, and this orbit is of minimal dimension. This is a well-known result in the complex setting,
and the result remains true in the split-real setting – see [20, Cor.1]. All other arguments in [16,
Prop.3.1.1] and this section are exactly the same to arrive to κ being a nonzero multiple of φ0.

Finally, a real scaling using AdexpptZq normalizes κ “ ˘φ0. The algebraic models are P -equivalent
if and only if there exists g0 P G0 such that g0 ¨ φ0 “ ´φ0. The proof of Theorem 1.1 is complete.

4. Examples

In this final section, we apply Theorem 1.1 and give concrete examples of submaximally sym-
metric parabolic geometries, expressed as underlying geometric structures. Implicit here are known
equivalences of categories, in particular the parabolic geometry types pG,P q associated to given
structures. We do not provide details here, but instead refer the reader to [6].
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We will use the following notation. Let Eij denote the standard square matrix (of size to be
specified) with a 1 in the pi, jq-position and 0 elsewhere. We continue to use λ for the highest
weight of g, and φ0 for a lowest weight vector of a g0-irreducible submodule of H2

`pg´, gq, obtained
via Kostant’s theorem (§3.1).

4.1. Projective structures. On a manifold Mn, two torsion-free affine connections are equivalent
if and only if they admit the same unparametrized geodesics, and an equivalence class r∇s is called a
projective structure. These well-known structures underlie geometries of type pG,P q “ pAn, P1q, for
whichM “ pn`1q2´1, and harmonic curvature corresponds to the projective Weyl curvature. Here,

G0 – GLpn,Fq (for F “ R or C) realized as matrices of the form A “
´

detpA0q´1 0
0 A0

¯
P Matn`1pFq,

where A0 P GLpn,Fq. In [16], we found that S “ pn ´ 1q2 ` 4 for n ě 3, realized in particular by
the Egorov projective structure [10], [16, (5.11)]. We can now assert:

Corollary 4.1. Let n ě 3, and pMn, r∇sq a submaximally symmetric projective structure with
non-vanishing projective Weyl curvature at x P M . Then about x, pMn, r∇sq is locally equivalent
to the Egorov projective structure (in either the real or complex settings).

Proof. Using Theorem 1.1, we immediately conclude the result over F “ C, so consider F “ R. Using
w “ p12q P W pp2q and λ “ λ1`λn, we obtain φ0 “ eα1

^eα1`α2
be´α2´...´αn “ E12 ^E13bEn`1,2,

where Eij P Matn`1pRq. Letting A “ diagpa1, ..., an`1q P G0 where a1 “ pa2 ¨ ¨ ¨ an`1q´1, we get

A ¨ φ0 “
a2
1
an`1

a2
2
a3

φ0. Since n ě 3, then setting a2 “ ... “ an “ 1 and a1 “ an`1 “ ´1, we get

A ¨ φ0 “ ´φ0. Invoking Theorem 1.1 now gives the result. �

Remark 4.2. Over R, some attention should be given to the choice of Lie group G. Choosing
G “ An :“ SLpn ` 1,Rq with G0 as above, the induced G0-action on g´1 is v ÞÑ Bv, where
B “ R0 detpR0q, so detpBq “ detpR0qn`1, which is always positive when n is odd. In these cases,
one is in fact working with oriented manifolds. In the unoriented setting, one could work with
G “ PGLpn`1,Rq (i.e. GLpn`1,Rq modulo its centre ZpGLpn`1,Rqq, used as in [6, Prop.4.1.5])

or use G “ xSLpn ` 1,Rq :“ tR P Matn`1pRq : detpRq “ ˘1u when n is odd.

4.2. 2nd order ODE systems. Any system :xi “ F ipt, xj , 9xjq, 1 ď i ď m of 2nd order ODE in
m ě 2 dependent variables (viewed up to point transformations) admits an equivalent description
as a (regular, normal) parabolic geometry of type pAm`1, P1,2q “ pPGLpn ` 1,Fq, P1,2q. (In [6,
§4.4.3], these are formulated as generalized path geometries. When m ě 3 (or m “ 1), these can all
be locally realized as 2nd order ODE systems, while for m “ 2, we additionally have the constraint
that κH vanishes in degree `1.) We have M “ pm` 2q2 ´ 1, locally uniquely realized by the trivial
ODE :x1 “ ... “ :xm “ 0. Here,

G0 “

"ˆ
a1 0 0
0 a2 0
0 0 A0

˙
: A0 P GLpm,Fq, ai P F

ˆ

*
mod ZpGLpn ` 1,Fqq, (4.1)

and harmonic curvature decomposes into two components: Fels curvature (degree +3) and Fels
torsion (degree +2). Referring to [17, §5.3 and §5.4], we have (using λ “ λ1 ` λm`1 and Eij P
Matm`2pFq and notation Sµ, Uµ from §3.1):

‚ w “ p21q (“Segré branch”, i.e. vanishing Fels torsion): µ1 :“ ´w ‚ λ “ 4λ2 ´ 3λ3 ´ λm`1

has Zpµ1q “ `3, and Sµ1
“ Uµ1

“ m2 ` 5, realized in the Segré branch by:

:x1 “ ... “ :xm´1 “ 0, :xm “ p 9x1q3. (4.2)

‚ w “ p12q (“projective branch”, i.e. vanishing Fels curvature): µ2 :“ ´w ‚ λ “ 4λ1 ´ λ2 ´
λ3 ´ λm`1 has Zpµ2q “ `2 and Sµ2

“ Uµ2
“ m2 ` 4, realized in the projective branch by

the geodesic equations of the Egorov projective structure:

:xi “ 2x1 9x1 9x2 9xi, 1 ď i ď m. (4.3)

Using the point transformation pt̃, x̃1, x̃2, ..., x̃mq “ px1, t` 1
2
px1q2x2, x2, ..., xmq given in [1],

a simpler alternative model to (4.3) is

:x1 “ x2, :x2 “ ... “ :xm “ 0. (4.4)
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(All ODE in the projective branch are geodesic equations for some projective structure, and
Theorem 4.1 asserts the classification of submaximal symmetry models in this branch.)

Uniqueness of the submaximally symmetric ODE (4.2) and (4.4) was recently asserted in [1,
Theorems 2 & 3] without proof. Applying our Theorem 1.1, we obtain:

Corollary 4.3. Let m ě 2. Over F “ R or C, suppose that a given 2nd order ODE system
:xi “ F ipt, xj , 9xjq, 1 ď i ď m is submaximally symmetric, i.e. it has point symmetry algebra of
dimension S “ m2 ` 5. Then the system has vanishing Fels torsion everywhere, and about any
point where Fels curvature is non-vanishing, the system is locally point equivalent to (4.2).

Within the projective branch (i.e. vanishing Fels curvature), about any point where Fels torsion
is non-vanishing, any submaximally symmetric system (realizing Sµ2

“ m2 ` 4) is locally point
equivalent to (4.4).

Proof. Note that we have U “ maxtUµ1
,Uµ2

u “ Uµ1
“ m2`5 and S “ Sµ1

“ m2`5. Since S “ U,
then local homogeneity follows from Lemma 2.3. Write φ “ φ1 ` φ2 for φ1 P Vµ1

and φ2 P Vµ2
,

where Vµi
are the g0-irreducible submodules of H2

`pg´, gq corresponding to Fels curvature and Fels

torsion respectively. We have aφ Ă aφ2 , which has maximal dimension Uµ2
“ m2 ` 4 when φ2 ‰ 0.

By (2.4) and the symmetry dimension being m2 ` 5, the Fels torsion must vanish everywhere.
We now invoke Theorem 1.1. Using w “ p21q P W pp2q, we find that φ0 “ eα2

^ eα1`α2
b

e´α3´...´αm`1
“ E23 ^ E13 b Em`2,3. For A “ diagpa1, ..., am`2q P G0, we get A ¨ φ0 “ a1a2am`2

a3
3

φ0.

Setting a1 “ ... “ am`1 “ 1 and am`2 “ ´1, we get A ¨ φ0 “ ´φ0, so uniqueness now follows
from Theorem 1.1. Our final statement reformulates Corollary 4.1 via the correspondence space
construction (§3.3). �

We remark that in [16], we used G “ SLpm ` 2,Rq instead of G “ PGLpm ` 2,Rq. This small
change does not affect S and U, but the notion of point equivalence is slightly restricted with the

former, as we now explain. Consider A “

ˆ
a1 0 0
0 a2 0
0 0 A0

˙
P G0 with a1a2 detpA0q “ 1. The ODE

structure is modelled on g´1, which is split into the direct sum of xE21y (corresponding to the line
field spanned by the total derivative Dt :“ Bt ` 9xiBxi `F iB 9xi) and xE32, ..., Em`2,2y (corresponding
to xB 9xiy). On g´1, A induces:

pℓ, vq ÞÑ pcℓ,B0vq , c “ a2
a1
, B0 “ A0a

´1
2 . (4.5)

But then detpB0q “ detpA0qa´m
2 “ 1

a1a
m`1

2

“ c

am`2

2

. When m is even, the signs of c and detpB0q are

aligned, and the point transformation pt, xiq ÞÑ p´t, xiq would not be an admissible equivalence.
If we consider G “ SLpm` 2,Rq, then for m ě 3, setting ai “ 1 for i ‰ 3, 4 except a3 “ a4 “ ´1

yields A ¨ φ0 “ ´φ0. When m “ 2, we have A ¨ φ0 “ a1a2a4
a3
3

φ0 “ 1
a4
3

φ0, and no A P G0 exists with

A ¨φ0 “ ´φ0. In this case, :x “ 0, :y “ ˘ 9x3 would be inequivalent submaximally symmetric models.

4.3. Conformal structures. Given a smooth manifold Mn with n ě 3 and a metric g of signature
pp, qq, we let rgs :“ tλg |λ : M Ñ R

` smoothu, and refer to pMn, rgsq as a conformal structure. This
admits an equivalent description as a parabolic geometry of type pG,P q “ pSOpp ` 1, q ` 1q, P1q,
where P1 is the stabilizer of a null line in R

p`1,q`1, so M “
`
n`2
2

˘
. Restrict now to n ě 4. See

[9] for S in the Riemannian / Lorentzian cases, which are exceptional. In non-Riemannian / non-

Lorentzian signatures, [16, §5.1] indicates S “
`
n´1
2

˘
`6, realized by rgs, with g given by the direct

product of a flat Euclidean metric of signature pp ´ 2, q ´ 2q and the p2, 2q-metric

gp2,2q
pp “ y2dw2 ` dwdx ` dydz. (4.6)

Restrict now to the split-real form, so |p ´ q| ď 1. We view g Ă Matn`2pRq as matrices that are
skew with respect to the anti-diagonal, and let G0 consist of block diagonal matrices with blocks
pλ,C, λ´1q with λ ą 0 and C P SOpp, qq, and so the G0-action on g´1 is given by x ÞÑ λ´1Cx. In
particular, any scalar product on g´1 is only positively rescaled, so any conformal structure rgs and
its “negative” r´gs are inequivalent. Together with Theorem 1.1, we deduce:
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Corollary 4.4. Let n “ p` q ě 4 and |p´ q| ď 1. Suppose that a conformal structure of signature

pp, qq is submaximally symmetric, i.e. its conformal symmetry algebra has dimension S “
`
n´1
2

˘
`6.

Then about any point where the Weyl curvature is non-vanishing, the structure is locally conformally
equivalent to one of the two models rgs or r´gs described above.

The split-signature assumption |p ´ q| ď 1 may likely be relaxed so that the same conclusion
would hold in general non-Riemannian / non-Lorentzian signatures, but this would require a more
careful investigation into related real forms, which is beyond our scope here. For the more subtle
conformal Riemannian and Lorentzian cases, finding the complete local classification of submax-
imally symmetric models is an open problem. (See [9] for known models.)

4.4. Parabolic contact structures. Generalizing §3.2, parabolic contact structures of type pG,P q
(or “G-contact structures”) are underlying structures for (regular, normal) geometries of types:

pAℓ, P1,ℓq, ℓ ě 2, pBℓ, P2q, ℓ ě 3, pCℓ, P1q, ℓ ě 2, pDℓ, P2q, ℓ ě 4,

pE6, P2q, pE7, P1q, pE8, P8q, pF4, P1q, pG2, P2q.
(4.7)

As shown in [18], these structures all admit descriptions (possibly passing to a correspondence
space) in terms of differential equations. The cases pA2, P1,2q and pC2, P1q are classical, and cor-
respond to scalar 2nd order ODE (up to point transformations) and scalar 3rd order ODE (up to
contact transformations). These are exceptions: they admit non-unique submaximally symmetric
structures with S “ 3 and S “ 5 symmetries respectively. For all other cases, explicit submax-
imally symmetric structures (with respect to a given G0-irrep V of H2

`pg´, gq) were given in [18,
§4.2]. Over C, these are locally unique by Theorem 1.1.
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