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ON UNIQUENESS OF SUBMAXIMALLY SYMMETRIC
PARABOLIC GEOMETRIES

DENNIS THE

ABSTRACT. Among (regular, normal) parabolic geometries of type (G, P), there is a locally unique
maximally symmetric structure and it has symmetry dimension dim(G). The symmetry gap prob-
lem concerns the determination of the next realizable (submaximal) symmetry dimension. When
G is a complex or split-real simple Lie group of rank at least three or when (G, P) = (G2, P2), we
establish a local uniqueness result for submaximally symmetric structures of type (G, P).

1. INTRODUCTION

For a given (local) differential geometric structure, our interest here will be on the dimension
of its Lie algebra of infinitesimal symmetries. Many types of structures (e.g. Riemannian metrics
on manifolds of fixed dimension) admit a finite maximal symmetry dimension 9%, and there is
broad interest to (locally) classify all such maximally symmetric structures. Letting & denote the
next possible realizable (submaximal) symmetry dimension, there is often a significant gap arising
between 9T and &. The symmetry gap problem refers to the determination of & and in doing so the
task of exhibiting (local) models realizing this submaximal symmetry dimension. With this goal
in mind, one can make a detailed case-by-case study of the PDE determining the symmetry vector
fields for a given structure, but in many situations such a direct investigation using analytic tools
becomes cumbersome. Our approach here is to draw upon strong algebraic tools that are present for
an important broad class of structures that admit an equivalent reformulation as Cartan geometries.

Parabolic geometries [6] admit such a reformulation — they are a diverse and interesting class of
geometries whose underlying structures include conformal, projective, CR, 2nd order ODE systems,
and many classes of generic distributions, e.g. (2,3, 5)-distributions. Their description as parabolic
geometries (see §2.1]) gives a solution to the equivalence problem for such structures in the sense
of Elie Cartan. Briefly, such a geometric structure on M (henceforth, always assumed connected)
admits a categorically equivalent description as a (regular, normal) Cartan geometry (G — M, w)
of type (G, P), where G is a semisimple Lie group and P is a parabolic subgroup. (For more details
on the passage from M to the “upstairs” Cartan perspective, we refer the reader to [6] [4].) The
Cartan connection w provides a canonical coframing on G and its symmetry algebra inf(G,w) is
isomorphic to the symmetry algebra of the underlying structure on M. We have 9 = dim(G) for
such structures, and there is a (locally) unique maximally symmetric model, namely the flat model
(G - G/P,wq) of type (G, P), where wg is the Maurer—Cartan form of G. Any Cartan geometry
of type (G, P) can be viewed as a curved version of this flat model, and our starting point is to
take the (normalized) Cartan geometry as the basic input to the problem.

Substantial progress was made on the symmetry gap problem for parabolic geometries in [16].
In that joint work with Kruglikov, we proved that & < 4 for any (G, P) in terms of a universal
(algebraically-defined) upper bound . Moreover, when G is complex or split-real simple:

(i) 4 can be efficiently calculated via Dynkin diagram combinatorics, and
(ii) & = U almost always, with some exceptions when rank(G) = 2.

We uniformly proved & = i by exhibiting a particular homogeneous structure, encoded “Cartan-
theoretically” by what we refer to here as an algebraic model (f;g,p) (see §2.4). We remark that
for more general real forms, the determination of 4{ and sharpness of & < 4l is still largely open,
although numerous interesting cases have been resolved — see for example [9] [13] [14] [15].
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Not addressed in [16] was the broader classification problem for submaximally symmetric struc-
tures, and our goal in this article is to resolve this. In order to formulate our main result, we briefly
recall some notions here. (Precise definitions will be given later.) For any (regular, normal) para-
bolic geometry, there is a fundamental quantity called harmonic curvature kg : G — Ha(pi,g)",
which completely obstructs local equivalence to the flat model. The codomain of x; is a filtrand of
a certain Lie algebra homology group, which is a completely reducible P-representation, so only the
action on it by the (reductive) Levi factor Gg & P is relevant. Consider a Go-irrep V.S Ha(p,g).
We say that (G — M,w) is of type (G, P,V) if it is of type (G, P) and im(ky) € V, and let Gy
be the maximal symmetry dimension among regular, normal parabolic geometries of type (G, P, V)
with K £ 0. We can now formulate our main resultt]:

Theorem 1.1. Let G be a complex or split-real simple Lie group, P < G a parabolic subgroup,
and Gy its Levi factor. Let (G — M,w) be a regular, normal parabolic geometry of type (G, P,V),
where V. € Hy(py,g)' is a Go-irrep. Suppose that dim(inf(G,w)) = Sy, and rank(G) = 3 or
(G, P) = (Ga, P2). Then the geometry is locally homogeneous about any u € G with kg (u) # 0. The
corresponding algebraic model (f;g,p) with dimf = Sy is (up to P-equivalences §f — Ad,f, Ype P):
(1) complex case: unique.
(2) split-real case: one of at most two possibilities. Uniqueness holds if and only if there exists
go € Go such that gy - g = —¢g, where ¢pg €'V is a lowest weight vector.

Our result is constructive (see §3.4)): over C, the distinguished algebraic model (f; g, p) encoding
the corresponding submaximally symmetric geometry is what we refer to here as the canonical
curved model of type (g,p, V), which has curvature kK = ¢ (interpreted as a harmonic 2-cochain).
The Lie algebra f arises as a filtered deformation of a graded subalgebra a := a®® < g (see §2.2),
namely f = a as vector subspaces, but with bracket [-,-]; := [-,-] = &(:,-), where [-,-] is the bracket
on g (restricted to a). This is the same abstract model used in [16]. In the split-real setting, the
second possibility is f = a with kK = —¢y.

For fixed (G, P), Theorem [[I] can be used to deduce the analogous classification of all submax-
imally symmetric structures, i.e. kg is not constrained to a specific V. See §4 for some examples.

We now give numerous examples illustrating that one cannot in general weaken the hypotheses
of Theorem [[LT] and expect such a uniform conclusion.

Non-uniqueness over C can occur if we do not require V < Ha(p,,g)! to be Gg-irreducible:

Example 1.2. A Legendrian contact geometry (over F =R or C) is a contact manifold (M*"1 C)
with contact distribution endowed with a splitting C = € @ F into Legendrian subbundles. (Second
order ODE is the n = 1 case.) Such a structure underlies a parabolic geometry of type (SL(n +
2,F), Pint1), g0 = F2xsl(n,F), and for n > 2 we have an go-irreducible decomposition Ha(p+,g)t =
T1®T2®W. From [16, Table 11], we have &1, = &1, = Gw = n?+4. The corresponding canonical
curved models are inequivalent.

If one weakens the complex / split-real assumptions, varying phenomena can occur:

Example 1.3. Real hypersurfaces in C* having positive-definite Levi form yield 5D (integrable)
CR geometries, which are specific real forms of complex Legendrian contact geometries (Example
[.2) when n = 2. They underlie regular, normal parabolic geometries of type (G,Py3), where
G = SU(1,3) (not split-real), and the complexification of kK would take values only in W Qg C.
We have 9 = 15, while it is known that G = L = 7, with infinitely many inequivalent submaximally
symmetric models; see |8 Table 8 (D.7)]. In the Levi-indefinite case, G = SU(2,2) (again, not split-
real), M = 15, and there is a unique local model realizing & = Y = 8; see [8, Table 7 (N.8)].

Now suppose rank(G) = 2. In contrast to local uniqueness in the (G, P») case (both over C and
R, see §3.2)), there is a 1-parameter family of submaximally symmetric models in the (Go, P;) case:

Example 1.4. A (2,3,5)-geometry is a 5-manifold M equipped with a rank 2 distribution D having
generic growth under the Lie bracket, i.e. rank([D,D]) = 3 and rank([D, [D,D]]) = 5. Locally, any

1See §3.1 for our subscript notation for parabolics in the complex or split-real setting.
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such D admits a Monge normal form: there exist local coordinates (x,y,p,q,z) and a function
f=flz,y,p,q,2) with foq # 0 such that D is spanned by the vector fields

Oqy Oz + DOy + qdp + f0..

Such a structure underlies a parabolic geometry of type (Ga, P1), so M = 14, with f = ¢* realizing
maximal symmetry. Here, & = = 7 in either the complex or real case. Over C, a well-known list
of submazimally symmetric models is given by f = q¢™ (for m # —1,0, %, %, 1,2) and f =log(q).

Other rank two cases include 3-dimensional conformal geometry, i.e. type (Bz, P), and the
contact geometry of scalar 3rd order ODE, i.e. type (B, P12). Submaximally symmetric models
are non-unique for both — in the former case see the classification in [12], while in the latter case
they are given by 4" + ky' + y = 0, where k is constant. The rank two case of 2nd order ODE
exhibits several exceptional phenomena:

Example 1.5. Scalar 2nd order ODE y" = f(x,y,y') (up to point transformations) underlie
(SLs, P12) geometries, for which M = 8 and & = 3 < U = 4. Locally, one has a 3-manifold
M with coordinates (z,y,p) and split contact distribution C = € ® F on M with

E =0z +poy+ f(x,y,p)0p), F ={0p). (1.1)

We have dim(Gy) = 2, and Gy corresponds to arbitrary rescalings along € and F. We have
Ho(py,9)! =Ly ® Lo, with each LL; being a 1-dim Go-irrep. The components of Ky along Ly and
Lo correspond to the well-known Tresse relative invariants Iy and Ia = fpppp. For Iy, we refer to
16l eqn (5.8)] and replace (t,x,p) there with (z,y,p). Two submazimally symmetric models are:
(i) y' = exp(y'): symmetries are f = {0y, 0y, 20y + (y — )0y — Opy. We have I} = €3 and
Iy = eP both nonvanishing. Thus, kg is not concentrated in a single irreducible component.
(ii) y" = (zy’ —y)3: symmetries are f = {xdy + Op, 0y — YOy — 2p0p, YO — P*0py. The evaluation
map ev, : f — T,M is surjective except along the singular set ¥ = {y = pz}, so neighbour-
hoods of 01 € ¥ and oy ¢ X (endowed with restricted geometric structures) are not locally
equivalent. We have Iy = 72(px — y) and Iz = 0, so Ky vanishes along X.

A priori, we cannot exclude the possibility of similar limiting singular behavior as in Example
[LB(ii) for submaximally symmetric structures occurring in geometries with rank(G) > 3, so we
always work near a point where kp is nonvanishing. Constraining ourselves to the hypotheses of
Theorem [Tl ultimately leads to a classification problem for homogeneous structures.

We note that Cartan reduction is a general method for classifying (homogeneous) geometric
structures. (See for example [7] for a recent application.) While this is a powerful, systematic
method, it is typically applied on a case-by-case basis, and for any given structure it takes a
substantial amount of effort to set up the correct structure equations (via the Cartan equivalence
method, for instance). Moreover, its implementation can be extremely cumbersome to do by-hand
(often being done in a symbolic algebra system such as Maple or Mathematica), and normalizations
generally proceed in an ad-hoc manner. In principle, it can be used to analyze submaximally
symmetric structures, but in practice it is not a feasible method to arrive at the claimed generality
of Theorem [T Our approach will be to proceed in a uniform manner by taking the Cartan-
geometric viewpoint as the basic input, and make efficient use of representation theory.

Let us briefly outline our article. In §2] we recall relevant background from parabolic geometries
and our earlier work on symmetry gaps, and formulate the notion of an algebraic model (f;g,p)
encoding any homogeneous parabolic geometry. In §3] we recall Kostant’s theorem, define the ca-
nonical curved model, and formulate the algebraic model classification problem (Problem [B.3]). We
then solve it, first for (G2, P») geometries (§3.2]), and then the general rank(G) > 3 case (§3.4). We
conclude in §4] with concrete examples of submaximally symmetric structures, which are asserted
to be unique (over C) from Theorem [I.1]

Conventions: The base manifold M is always assumed to be connected. We work in the smooth
and holomorphic categories when referring to real and complex geometries, respectively. For simple
roots, we use the same ordering as in LiE [19].
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2. PARABOLIC GEOMETRIES AND ALGEBRAIC MODELS

We begin by reviewing background from parabolic geometries and symmetry gaps — see [6l [16]
for more details.

2.1. Parabolic geometries. Let G be a real or complex semisimple Lie group, P < G a parabolic
subgroup, and p < g be their Lie algebras. Then g admits a natural P-invariant (decreasing)
filtration g = g7 o ... o g¥ (we put g' = g for i < —v, g* = 0 for i > v), g! = p, is the nilradical
of g° = p, and [g%, g’] = g**/ for all i, j € Z. There always exists grading element Z € g whose adz-
eigenvalues Vj € Z (degrees) and eigenspaces g; := {z € g : adz(z) = jz} (Vj € Z) endow g with the
structure of a graded Lie algebra g = g_, @®...@g, compatible with the filtration, i.e. [g;, g;] < gi+;
and g' ~ i 8j. The associated-graded Lie algebra gr(g) is defined by gr;(g) := g'/giTL. Given
Z as above, we identify gr;(g) = g; as go-modules, and if z € g’, we denote by gr;(z) € g; the
projection to its leading part. We have Z € 3(go) (centre of gg), p = go @ p+, and the Killing form
on g identifies (g/p)* = p; as P-modules. Finally, letting Gy = {g € P : Ady(gi) < gi, Vi} be the
Levi subgroup (with Lie algebra gg), and P, = exp(p4+) < P, we have P =~ Gy X P;.

A parabolic geometry is a Cartan geometry (G — M,w) of type (G, P), i.e. a (right) principal
P-bundle G — M with a Cartan connection w € Ql(g ,9):

(i) wy : TyG — g is a linear isomorphism Yu € G;
(ii) w is P-equivariant: Rjw = Ad,-1 0w, Vp e P;
(iii) w(Ca) = A, VA € p, where (4 is the fundamental vertical vector field corresponding to A.
The curvature of w is K = dw + $[w,w] € Q%(G,g) (which is P-equivariant and horizontal, i.e.

K(Ca,-) = 0), or equivalently we have the curvature function  : G — A*(g/p)* @ g given by
k(z,y) = K(w (z),w (y)). The geometry is flat if K = 0, which characterizes local equivalence
to the flat model (G — G/P,w¢), where wg is the (left-invariant) Maurer-Cartan form on G. Via
the Killing form, the codomain of x identifies (as a P-module) with Cy(p4,g) := /\2 pr ®g. These
are 2-chains in the complex (C,(p4,g), 0*) with 0* the Lie algebra homology differential. We say
that (G — M,w) is normal if 0*x = 0 and it is regular if x(g’, g/) < g"*7*! for any 4, j. Equivalently,
if we naturally extend the filtration on g to a filtration on /\2 py ® g, then we have s € ker(0*)?.
This is the subspace of ker(d*) c /\2 p+ ® g on which Z acts with positive eigenvalues (degrees).
There is a well-known equivalence of categories between regular, normal parabolic geometries and
underlying geometric structures on M (see [6] for details).

For any regular, normal parabolic geometry, a key invariant is its harmonic curvature kg : G —

Hs(py,g) = 1;2((2:)), given by kg = k mod im(0*), and this P-equivariant function is a complete

obstruction to flatness. Moreover, Hy(p, g) is a completely reducible p-representation, i.e. p-acts
trivially. As go-modules, g/p =~ g_, and C*(g_, g) := /\k g* ®g yields a complex (C*(g_, g),0) with
respect to the standard Lie algebra cohomology differential 0, for which we have the (go-invariant)
algebraic Hodge decomposition:

C*(g_,9) = im(0) @ ker(O) @ im(0*), (2.1)

where [] = 00* + 0%0 is the (go-equivariant) algebraic Laplacian, with ker([J) = ker(d) n ker(0*).

Then Ha(pi,g) = lfg((g:)) ~ ker([]) = 1:5((5)) ~ H?%(g_,g) as go-modules, which may be efficiently

computed via Kostant’s theorem (§3.1)). By regularity, £y has image in the subspace Ha(p,g)! <
Hy(py,g) on which Z acts with positive eigenvalues. This corresponds to some go-submodule
H?%(g_,g) < H*(g—,9) under the above identification.

Finally, by [6, Thm.3.1.12], if x has lowest non-trivial degree s > 0, then its leading part gr (k) is
harmonic and coincides with the degree s component of Ky # 0. In particular, k7 being a complete
obstruction to flatness follows from this.

2.2. Symmetry and Tanaka prolongation. Two (regular, normal) parabolic geometries of type
(G, P) are equivalent if there is a principal bundle isomorphism that pulls back one Cartan con-
nection to the other, and an automorphism is a self-equivalence. A Cartan geometry (G - M,w)
is (locally) homogeneous if there is a Lie group acting by (local) automorphisms whose projection
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to M yields a (locally) transitive action on M. Infinitesimally, the symmetry algebra is
inf(G,w) = {€ € X(G)" : Lew =0}, (2.2)

where X(G)" are the P-invariant vector fields on G.

Let us now summarize how to equivalently view inf(G,w) in a more algebraic manner [2, [5 [16].
Fix any v € G. Then w,, : T,G — g restricts to a linear injection on inf(G,w). Letting f = f(u) :=
wy(inf(G,w)), the Lie bracket on inf(G,w) transfers to the bracket on f given by

[z, y]; = [2,y] = ku(z,y), Va,yef. (2.3)
The P-invariant filtration on g induces a filtration on f via ' := f n g°. By regularity, x(g’,g’) <
gt it so [f,§]; < fn g™ = §1, and (f,[,];) becomes a filtered Lie algebra (generally not a
Lie subalgebra of g). By regularity, the associated-graded s := gr(f), defined by s; := f//f*1 is
identified as a graded subalgebra of g (via 5; — fi/g't! < g?/g'*! =~ g;). The filtrand {* < g° = p
satisfies the important algebraic condition {* - x = 0, which implies {* - k7 = 0. Since p, acts
trivially on Ha(py,g), then f* -k = 0 always, so so- kg = 0, i.e. 59 is contained in the annihilator
ap := ann(kg(u)) < go.

Now define the following (extrinsic) Tanaka prolongation algebra a? as in [16]:

Definition 2.1 (Extrinsic Tanaka prolongation). Let ay  go be a Lie subalgebra. Extend this
to a Z-graded Lie subalgebra a < g by defining a_ = g_ and ap = {X € g : [X,9-1] € ax_1}
for k > 0. Denote a = @, a; by pr®(g_,ap). When ¢ lies in some go-representation, we write
a? := prd(g_, ann(¢)).

The constraint s9 € ag propagates via Tanaka prolongation to the higher levels. More precisely,
the following important inclusion holds:

s(u) € a®# W Vyeg. (2.4)
Otherwise put, the symmetry algebra f is a constrained filtered sub-deformation of a™# | i.e.

(i) f is a filtered deformation of the graded subspace s(u) € a®# (), and
(i) f is constrained: e.g. it is a filtered subspace of g and satisfies (2.3]) for some x.

The inclusion (Z4]) was established in [16, Thm.2.4.6] on the open dense set of so-called regular
points, i.e. those u € G on which dims;(u) are locally constant functions Vi, and was generalized
to all points in [I7, Thm.3.3]. If the given geometry is not flat, then kg (u) # 0 at some u € G, so
Z ¢ ann(kg(u)) by the regularity assumption on x, and hence dim(inf(G,w)) = dim(s) < dim(g).
Thus, the flat model is locally the unique maximally symmetric geometry. Defining

S := max{dim(inf(G,w)) : (§ — M,w) regular, normal of type (G, P) and xkp # 0}, (2.5)
U= max{dim(a®) : 0 # p € H2(g_,9)}, (2.6)

equation (24)) immediately implies
S < U < dim(g). (2.7)

A (regular, normal) geometry with dim(inf(G,w)) = & is submaximally symmetric. A priori, it
should not be assumed that these are locally homogeneous, particularly if & < .

Definition 2.2. Let O € Hy(p1,g)" be a Go-invariant subset. Let
S = max{dim(inf(G,w)) : (G — M,w) regular, normal of type (G, P), im(kp) < O, kg # 0},
o := max{dim(a®) : 0 # ¢ € O}.

Lemma 2.3. For regular, normal parabolic geometries of type (G,P), and O < Hs(pi,9)! a

Go-invariant subset, suppose that Sp = Up. Then any (G — M,w) with im(kg) € O and
dim(inf(G,w)) = Yo is locally homogeneous near any u € G with ki (u) # 0.

Proof. Fix u € G with sy (u) # 0. By @4), dim(s(u)) = dim(a®#®) < $lp. By hypothesis,
dim(s(u)) = dim(inf(G,w)) = Yo, so @4) implies s(u) = a*#®). Hence, s_(u) = g_, which
implies local homogeneity by Lie’s third theorem. g
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2.3. Homogeneous parabolic geometries. Let (G — M, w) be homogeneous with respect to the
Lie group F. Fix u € G, and let F© c F be the stabilizer of 0 = m(u) € M. Given any fo e F°, we
have fo-u = u-u(fp) for some Lie group homomorphism ¢ : F — P. This defines a right FY-action
on F'x Pvia (f,p)- fo = (ffo,¢(f )p) and we let F x go P be the collection of all FO-orbits (f,p).
Letting § and ° be the Lie algebras of F' and FV respectively, we have [6, Prop.1.5.15]:

(1) G — M is equivalent to the associated bundle F' x po P — F/F°.
(2) Any F-invariant Cartan connection w € Q'(F x po P, g) of type (g, P) is completely determ-
ined by the following;:

Definition 2.4. An algebraic Cartan connection of type (g, P) on (f, F°) is a linear map @ : f — g
with:

(C1) wljo =1/, where /' : * — p is the differential of v : F* — P.

(C2) Ad,(jyow =woAdy, Vfe FO. Infinitesimally:

[@(z), @w(y)] = @([z,y];), Vzei, Vyef, (C2)

where [-,-]; and [-,-] are the Lie brackets on § and g respectively. If FO is connected, then
(C2) and (C2)) are equivalent.
(C3) w induces a vector space isomorphism §/f° = g/p.

Indeed, given w as above, we obtain w by factoring @' € Q'(F x P, g) given by
S(p(X,Y) = Adyaw(X) +Y, (X,Y)eTyF x T,P,

The basepoint change u +— f - u leaves (¢, w) unchanged, but a fibrewise change u — w - p induces
(t,@) = (Ady-101,Ad,-1 0 w).

Define (z,y) := [w(z), w(y)] — @([z,y];), so & € A*(§/°)* ® g by (C2). The curvature of w
corresponds to k € A?(g/p)* ® g given by k(z,y) = #(w (z), @ (y)). The notions of regularity
and normality of x are immediately specialized to this algebraic setting, as is the quotient object
ky = k mod im(0*) € Ha(p,,g)t

2.4. Algebraic models. Note that (C3) and (C2)) forces ker(w) < §° to be an ideal in f. The
F-action on F/F9 can always assumed to be infinitesimally effective, i.e. {0 does not contain any
non-trivial ideals of § (hence, ker(w) = 0). (Otherwise, we may without loss of generality quotient
both F' and F° by the corresponding normal subgroup.) Consequently, we assume that @ : f — g
is injective and identify f with its image in g. This motivates the following definition.

Definition 2.5. An algebraic model (f;g,p) is a Lie algebra (f,[-,];) such that:

(M1) § < g is a vector subspace with inherited filtration §* := § N g° such that s = gr(f) satisfies
S_=g_.

(M2) {° inserts trivially into &(z,y) = [z,y] — [z,y];, so identify & € A2(F/0)* @ g with & €
N'(g/p)* ®g.

(M3) k is regular and normal, i.e. k € ker(d%)*.

The result below immediately follows from the general theory recalled in §2.2] but it is instructive
to give proofs directly following from Definition above.

Proposition 2.6. Let (f;g,p) be an algebraic model. Then

(1) (f,[-,-];) is a filtered Lie algebra. (In general, f is not a Lie subalgebra of g.)

k=0, ie [z,k(z,y)] — k([z,z],y) — k(x,[2,y]) =0, Va,y € f and Vz € {°.
2) 0 0,V dVzef
(3) s € a"H, where kg := k mod im(0*).

Proof. For (1), if z € f* and y € #, then k(z,y) € gt*7+! by regularity of , i.e. [[M3)] so (1) implies

[z,y]; € g"™7. But f is a Lie algebra, so [z,y]s € f n g"™7 = §**7 and [, F]; < f**. For (2), we use
the Jacobi identity and the fact that x vanishes under {’-insertions by [[M2)] Namely, let =,y € |
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and z € . Then

0= [[x’y]fa Z]f + [[y’ Z]fax]f + [[Zax]f’y]f

= [[x’y] - l{(x,y)az]f + [[y,Z],x]f + [[Z?x]ay]f
= [[x’y]az] - [H(J?,y),Z] + [[y’ Z],,I] - K([y’ Z],,I) + [[z,x],y] - K([Z’x]’y)

= [Za ’{(x’y)] - l{([ya Z]’x) - Ii([Z,,I],y)-

Finally, we prove (3). Since 0* is P-equivariant and f° < p = g°, then {° - im(0*) < im(0*), so
(2) implies {° - Ky = 0, which factors to s - Ky = 0 by complete reducibility of Ha(p,,g). Letting
a := a"# this means 59 S ag = ann(ky). By regularity, s < g is a graded Lie subalgebra, so for
any k > 0, [sx,0-1] = [$k,5-1] € 5k—1. Inductively, we have s < a; for all k£ > 0. O

Importantly, we note that the set of algebraic models of type (g, p):
e admits a P-action via § — Ad,f for any p € P. All algebraic models in the same P-orbit
are to be regarded as equivalent, so we must always account for this redundancy.
e is partially ordered: declare that f < § if and only if § is a Lie subalgebra of f. We will
focus on maximal elements f. (We view non-maximal elements as non-optimal descriptions
of the same geometric structure.)

Remark 2.7. Conversely, by [16, Lemma 4.1.4], to each algebraic model (f;g,p), there exists a
locally homogeneous geometry (G — M, w) of type (G, P) with inf(G,w) containing a subalgebra
isomorphic to f. If f is maximal with respect to the partial order defined above, then inf(G,w) = f.

Since gr(f) = s, we may view f € g as a graph over s € g. Namely, choosing some graded
subspace s+ C g so that g = s @ s+ (in fact, 5= < p since g_ < s by hypothesis), we can write

14
f= @ {z+0(z):zes) (2.8)
i=—v
for some unique linear map 0 : s — s+ of positive degree, i.e. if z € s;, then ?(x) € s+ n g+, We
refer to 0 as the deformation map and d(x) as the tail of x.

Lemma 2.8. Let T € fo with s and s+ being adp-invariant. Then T -0 =0, i.e. adpod = doadyp.

Proof. Given x € s, we have z + 0(z) € f and [T,z + d(z)]; € f. By [M2)| [T,z + d(z)]; =
[T,z +0(x)] = [T, x] +[T,0(x)]. But [T,x] € s and [T,0(z)] € s= ng""! since d has positive degree,
so by uniqueness of 9, we have [T,9(z)] = o([T, x]). O

3. THE CANONICAL CURVED MODEL AND LOCAL UNIQUENESS

We focus on proving Theorem [[.T]in the complex case. The arguments in the split-real case are
almost exactly the same, and potentially differ only in the final step of §3.4l This is described at
the end of §3l

3.1. Kostant’s theorem and the canonical curved model. Let G be a complex semisimple
Lie group, h = g a Cartan subalgebra with ¢ := dim(h) = rank(g), A < h* the associated root
system, g, the root space for « € A, AT < A the positive roots relative to a choice of simple root
system {o;}¢_;, and {Z;}{_, < b its dual basis, i.e. Z;(aj) = a;(Z;) = 6;;. If € < g is an h-invariant
subspace, we write A(€) := {a € A : g, < €}, and AT(€) := A(€) n AT. A parabolic subgroup
P c G with Lie algebra p — g is encoded by a subset I, < {1,...,/¢}, with associated grading
element Z := Zielp Z;, and p = g>0 = @,;>( 9 relative to it. On the Dynkin diagram of g, we
put crosses at nodes corresponding to I,, and refer to P using subscripts, e.g. if I, = {4, j}, then
P = P, ;, etc. (In our convention, the Borel subalgebra has crosses on all Dynkin diagram nodes.)

The Killing form of g induces a non-degenerate pairing {-,-) on h*. Letting ¥ := <§%> be the
coroot of v € A, we have the Cartan matrix ¢ = (¢;;) with ¢;; := {a;, ;). The fundamental
weights {\; }521 are defined by ()\;, 04]\-’> = 0,5, and these satisfy a; = Z§:1 ¢ijA;. Corresponding to
a; is the simple reflection o; defined by o;(z) = z —(x, o) >, and the Weyl group W is the group
generated by all simple reflections.
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Kostant’s theorem [I1] yields an efficient go-module description of Ha(p,,g) = H?(g_,g): it is
the direct sum of go-irreps V,,, each of multiplicity one, and having lowest weight y = —w e A,
where:

(1) A is the highest weight of a simple ideal of g;

(2) w= (jk) := 05 001, € WP(2) is a length 2 word of the Hasse diagram W? < . Concretely
for our purposes here, this is equivalent to: j € I, and either: (i) k € I, or (ii) ¢ < 0.

(3) e refers to the affine action of W on weights: letting p := Zle Ai, we have

p=—-wel=—-wA+p)+p=—we0+w(-\). (3.1)

Via the go-module isomorphism H?(g_,g) = ker((]) from (2.1)), a representative lowest weight
vector ¢g € V,, < ker((J) < A2(g,)* Rgx /\2 P4+ ® g is given in terms of root vectors e, by:

B0 1= €a; A €q(ay) @ Ew(—A)- (3.2)
To interpret ¢p as a 2-cochain, we identify e, and €o;(a)) as the dual elements (e_aj)* and
(e—o;(ay))* via the Killing form. (Here, we fix root vectors yielding a basis on g/p.)
For O = V,\{0}, define 4, := {p and &, := Sp. By [16, Prop.3.1.1], we have
dim(a?) < dim(a®), V¢ e V,\{0}, (3.3)

with equality precisely when the projectivizations [¢] and [¢p] lie in the same Go-orbit in P(V,,).
Hence, Y, = dim(a®). Concerning realizability of this upper bound, we have:

Definition 3.1. Use notations as above with G simple. Suppose w € WP(2) satisfies w(—\) € A~
and Z(p) > 0. The canonical curved model of type (g,p,V,) is the algebraic model (f;g9,p) given

by defining f := a0 as a vector subspace of g, equipped with the filtration inherited from g, and
deformed bracket [-,-]; := [-,-] — ¢o(-, ).

By [16, Lemma 4.1.1], (f,[-,-];) is indeed a Lie algebra, and clearly dim(f) = (,. The filtration
on f is inherited: ' :=f n gi. Since ¢g € ker([]) = ker(d) N ker(0*), then k = ¢y is clearly normal,
and Z(u) > 0 guarantees regularity. Thus, (f;g,p) is an algebraic model, which is clearly maximal
with respect to the aforementioned partial order.

Proposition 3.2. Use notations as above with G simple. Suppose that rank(G) = 2, and exclude
G = Ay and (G, P) = (Ba, 1), (B2, P12). Then w(—\) € A~ for any we WP(2). For = —w e\
with Z(p) > 0, the canonical curved model of type (g,9,V,) exists, and so &, = ,. Moreover,
any reqular, normal parabolic geometry (G — M,w) of type (G, P,V,) with dim(inf(G,w)) = &, is
locally homogeneous about any v € G with kg (u) # 0.

Proof. This follows from [16, Lemma 4.1.2] and local homogeneity follows from Lemma 2.3 g

Under the hypotheses of Proposition B2, our problem of classifying submaximally symmetric
models relative to V,, becomes that of classifying algebraic models (f; g,p) with 0 # kg € V,, and
dim(f) = 4,. From Proposition 26, s = gr(f) € a®#. The equality dim(f) = £, = dim(a%)
forces s = a"F with [kg] = go - [¢o] for some gy € Gy. Using the induced Gy-action on §, we may
henceforth assume that [kz7] = [¢o], and so (f, [+, -];) satisfies

s = gr(f) = a%. (3.4)

In summary, to establish Theorem [[.1] it suffices to answer the following question:

Problem 3.3. When rank(G) > 3 or (G, P) = (G2, P»), classify algebraic models (f;g,p) with
0 # kg € V,, satisfying (8.4]), up to the action by the residual subgroup Stab([¢g]) x Py < P.)

Over C, we will show that the canonical curved model is the unique solution to Problem B3l
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3.2. The (G2, P») case. We first answer Problem B3lin the (G, P) = (G2, P») case. For Ga, recall:

=21 — A\ Al =2
c%o , (C@'j):(_23 31), {al ! 2 , { ! a1+ az, . (3.5)

a9 = —3A1 + 2\ Aoy = 301 + 209

Let {Z;, Z2} be the dual basis to the simple roots {a, ae}. The highest weight is A = Ao = 31 +2as.
The root diagram is given in Figure[Il Let e, be a root vector for the root oo € A.

FIGURE 1. G5 root diagram with grading associated to P

We have Z = Z5, which induces the grading g = g_2® ... ® go. Moreover,
w = (21) e WP(2),

90 = {Z, hay, €ars €—ay) = gly, p=—we\=—T\ +4X = =201 + a2,
9-1=0-a DI-a1—as 7 _4
2 = (3.6)
DI—201—as D I-301—as; H (g*ag) = O$< R

¢0 = eag A 60{1+0¢2 ® 6730{170!27
a=g-®@ap, a =<Z1+2Z22)Dg-a,-

g-—2 = 0-301—202>

Let us now classify algebraic models (f;g,p) with gr(f) = a. Let T € §* with gry(T) = Z; + 2Z,.
Since (Z; + 2Z3)(a) # 0 for all @ € A(p, ), we use the P,-action to normalize to T' = Z; + 2Z5 € {°.

Defining at = (Zs) ® go, ® g+, let 0 € a* ® a® be the associated deformation map (of positive
degree). The decomposition g = a@®at is adr-invariant, so 7 -9 = 0 by Lemma 28] i.e. 0 is a sum
of weight vectors for weights that are multiples of 1 = —2a; + as. The weights of a* and a' agree,
and they are both:

0, w1, a9, a1+, 201+ay, 3a1+ay, 3o+ 2as. (3.7)

Since p has coefficients with respect to {a1, as} of opposite sign, there is no sum of two weights in
B0) that is: (i) a multiple of u, and (ii) has positive degree. Thus, @ = 0, and f = a as filtered
subspaces of g.

Now consider curvature x € ker(0*)! < /\2 pyr ®g. Since T - k = 0 by Proposition 2.6, then we
are interested in weights o (of 2-cochains) that are multiples of p:

o=ru=a+p+~, where «,f€A(py) aredistinct, yeAu{0}, r=>=1. (3.8)

(We have r > 1 since regularity and the final statement in §.Tlimply Z(o) > Z(u) > 1.) Recall that
A = A2 = 3aq +2ag and note that —A <y <o =ru. Then -3 < Z1(—\) < Zi(0) = rZ1(pn) = —2r,
and so r < 3. However, Z(u) = Zo(n) = 1 and o has integer coefficients in the simple root basis, so
the only possibility is 7 = 1. Since H%(g_, g) = V. is a go-irrep, then x must be a nonzero multiple
of ¢o. Use Adexp(1z) to rescale over C so that £ = ¢, so we obtain the canonical curved model.

Over R, we may rescale to K = +¢g. Let us study the action by Gy = GL(2,R) more concretely.
Let {z,y} be the standard basis of R?, and {w, n} the dual basis. Then g_; =~ S®R? as Gp-modules
and we can identify

3 ,.2 2 .3
(e—a27 €_ai1—ag) €—2a1—as> e—3a1—a2) = (1’ YUY, XY, Y )
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We regard ¢q as a multiple of w3 A w?n® y3. Hence, A = diag(a,b) € Gy acts as ¢g — a "b?¢pg, so
taking (a,b) = (—1,1) induces ¢g — —¢@p. Again, we obtain the canonical curved model.

The underlying structures for regular, normal parabolic geometries of type (Gg, P») are called
Ga-contact geometries. See [I8] for kg and a coordinate realization of a submaximally symmetric
structure given in [I8, Table 8]. By uniqueness proved above, this corresponds to the canonical
curved model. We have shown:

Proposition 3.4. There is a locally unique (complex or real) Ga-contact geometry that is submax-
imally symmetric (& =T7) about any point where harmonic curvature is nonvanishing.

3.3. Preparation for the general case and the twistor simplification. The rank(G) > 3
case for Problem [3.3]is treated in a similar spirit to the (Gg, Py) case, but will require some further

preparations. We will need more details about y# = —w e X and gr(f) = a®. First, observe that for
w = (jk), we have —w ¢ 0 = o + 0j(c) by B.I) and B2). If X = Zle riAi, then ([B.) becomes:
p=—=X+(rj + 1oy + (1 + 1) (o — cpjoj). (3.9)

Second, from [I6, Thm. 3.3.3], gr(f) = a?® is the Tanaka prolongation of:
ann(dg) =ker(p)® PH 9, < go. (3.10)
€A (go,<0)
This is the direct sum of ker(u) := {h € h : u(h) = 0} and root spaces for the roots

A(gO,SO) = {a € A(go) : ZJH((X) < 0}, (311)
where Z;, 1= >, I Z; is a secondary grading with respect to the set
Jy = {ie{l, I\ : {p, 0" ) # 0}. (3.12)

In [16], the weight p was encoded on a Dynkin diagram by inscribing over corresponding nodes the
coefficients of —p with respect to {)\;}. The set J,, corresponds to uncrossed nodes with a nonzero
coefficient.

Example 3.5. Consider (G,P) = (FEs,Ps). Here, Z = Zg, A\ = Xg, w = (87) € WP(2), and
go = C@® E;. Applying Kostant’s theorem, we find that

, o 0 0 o0 1 1 —4
Hi(g—,9) =V, = o o

é

with p = —X¢ — A7 + 4Xg, and so J, = {6,7}. (Also, Z(p) = 1.) See [16], §3.3] for more examples.

According to [3], any parabolic geometry can be lifted to a correspondence space, and conversely a
parabolic geometry may be descended to a twistor space if a suitable curvature condition is satisfied.
(The latter amounts to viewing the given geometry of type (G, Q) as a geometry of type (G, P),
where Q < P < G.) These are categorical constructions, so symmetries are naturally mapped
to symmetries. We will not recall here the general theory developed in [3], but only summarize
various results from [16, §3.5] in order to emphasize a “twistor simplification” (BI3]) relevant for
our purposes. The main reason for doing so is to assert (BIT), which facilitates the classification
of filtered sub-deformations of a® in §3.41

Under the assumption kg € V,,, one may always descend to a minimal twistor space. Concretely,
if p = —we\, where w = (jk) € W9(2), then [I6, Prop.3.5.1 & Cor.3.5.2] indicates that we may
instead view a given (G, Q) geometry as a (G, P) geometry, where

P, if cjp <0
p={' REE=5 (3.13)
Pjj, ifcjp=0.

In [16, Thm.3.5.4], we showed that the Lie algebra structure of a® is unchanged with respect to
the above change of parabolics, in spite of the grading change, cf. [16, Example 3.5.5].

Normality of the geometry is preserved in passing to a correspondence or twistor space, but a
priori regularity is not.
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Example 3.6. For regular, normal geometries of type (Ga, P3), we have X\ = Ay and Z = Z3. Then
w = (21) € WP(2) yields p = —TA\1 +4X 2 = =203 + a2, so Z(u) = 1. Viewed on the correspondence
space as a (G2, P12) geometry, which has grading element Z:= 21+ 725, the corresponding harmonic
curvature would take values in a module with degree 2(,u) = —1, i.e. reqularity is not preserved.

Despite regularity not being preserved when passing upwards to a correspondence space, let us
consider the passage downwards to the minimal twistor space. In the simple setting, preservation
of regularity upon such descent can be observed a posteriori through the tables compiled in [16),
Appendix C]. We now give a uniform proof of this:

Lemma 3.7. Let g be a complex simple Lie algebra of rank(g) = 2 with highest weight A\, q C g
a parabolic subalgebra. Fix w = (jk) € W%2) and u = —w e A\. Define q < p < g, where the
{7}, ay <0
{j7 k}? Ckj = 0.
corresponding to q,p respectively. If we have Z(u) > 0, then Z(u) > 0.

Proof. From (B3.9]), we have Z;(u) = Zs(—\) < 0 for any s # j, k. (Recall that all coefficients of A in
the simple root basis are positive.) We have j € I;. Suppose that (i) cjr = 0 (hence, k € Iy), or (ii)
cjk <0 and k ¢ Ig. In either case, 0 < Z(p) = Z(p) + Zpp\ (1} (1), where Zy i ny 2= Yier (k) Zso

parabolic subalgebra p is defined by Iy > I, = Let Z,Z be the grading elements

so Z(p) > 0 since Zy\ ey (p) <O.
From §3.1] it remains to consider the case c;; < 0 and k € I;. Then

0 <Z(p) = Z() + Zi(p) + Zpp i,y (1) (3.14)
From (3.9)), note that
Zk(ﬂ) = Zk(—)\) + 7+ 1. (315)

If r), = 0, then Zp(u) < —1+0+1=0. As above, Z(x) > 0 and we are done. So let us suppose
that rp > 0. We can examine all such possibilities from knowledge of the well-known highest roots
of simple Lie algebras:

Aé(€> 1) Bé(£>3) 03(522) Dg(€>4) FEe¢ | E7| Eg | Fy | Go
A+ Ay Ao 21 Ao A | A1 | A | A1 | Ag

If g is not type A or C, then from (B.I0), we have ri = 1, and it is well-known that Zj yields a

contact grading on g. So Zg(A\) = 2, Zx(p) = —2+1+1 = 0 from @IH), and Z(u) > 0 follows from

(3.I4). For the type A and C cases, we show that Z(x) > 0 independent of the hypothesis on Z(j):

(1) Type C: We have rp, =2, k = 1, and j = 2. Since A = 2\; = 2a3 + ... + 2 ;_1 + Ay, then

from B3), we have Z(p) = Zj(u) = Zj(=A\) +r;j+ 1 — (rp + Degy = =2+ 0+ 1—3cg; > 2.

(2) Type A: We have 1, = 1 and using a Dynkin diagram symmetry, we may assume k = 1, so

j =2. Since A = a1 + ... + oy, we have Z(p) = Zj(p) = Z;j(=X) +rj + 1 — (rp + gy =
14041 -2 =2.

(3.16)

0

Now, because of [16, Prop.3.4.7] (see also [16, Defn 3.4.1]), the “twistor simplification” implies
that after moving to the larger parabolic subgroup indicated in (3.I3]) and the corresponding grad-

ing, we get aﬁo = (. Combining this with (8.4]), we obtain:
ft=o. (3.17)
3.4. Proof of the main theorem. Let us turn now to the proof of Theorem [I.11

Lemma 3.8. Let g be a complex simple Lie algebra with £ := rank(g) = 3 and X its highest root.
Let w = (jk) € WP(2) such that . = —w e X satisfies Z(p) > 0. Then:

(MU1) p = Zle m;q; has coefficients m; of opposite sign. More precisely, m; < 0, Vi # j, k, and

either mj > 0 or my, > 0.
(MU2) 3Hy € ker(p) with f(Ho) # 0 for all f = a + 8 with (a, f) € R :== AT x (AT U {0}).



12 D. THE

Proof. From (33), p = —A mod {a;, a}. Since g is simple, then all coefficients of A with respect
to the basis of simple roots {a;}¢_, are strictly positive. Since £ > 3, then m; = Z;(u) = Z;(—=\) < 0
for all i # j,k. At least one of m; = Z;(u) or my, = Zy(p) must be positive, since Z(p) > 0 by
hypothesis.

Fix any (o, 8) € R, and f = a+ 3 > 0, so by the first claim, x is not a multiple of f. Thus, ker(u)
and ker(f) are distinct hyperplanes in h. Their sum must be b, while II; := ker(u) n ker(f) is a
hyperplane in ker(p). Since AT is finite, the finite union | J (a,B)eR I1, 3 has non-empty complement
in ker() (being the finite intersection of open sets b\ Il g). Picking Hy in this (open) complement
completes the proof. O

Assume the hypotheses of Lemma B8 From the previous subsections, we have reduced our
submaximal symmetry classification problem to studying algebraic models (f; g,p) with

im(kp) €V, s=gr(f) =a® =:q, (3.18)

where ¢g € V, is given by ([B.2]). We will classify these up to the action of Stab([¢o]) x Py < P.
Moreover, we may assume the twistor simplification, which implies that f' = 0, where we have
moved to the grading associated with the larger parabolic subgroup indicated in (B13]).

Step 1: Using the Pj-action, normalize § so that Hy € j°.

As in Lemma[3.8] fix Hy € ker(u1) < ann(¢g) < a. Let H € {* < g with leading part gro(H) = Ho,
so H = Hy+ Hy, where H, := 0(Hy) € py. If Hy # 0, let 0 # H, := gr,(H,) € g, for some
minimal r» > 1. Let us normalize H via the P,-action. Letting X € g,, we have:

Adexp(X)(H) = exp(adx)(H) =H+ [X, H] +...=Hyo+ H, — [Ho,X] + ..., (3.19)
where the dots indicate terms of degree > r. Fixing root vectors e, € g, we have H, =
2i0eA(g,) Cata- By [(MU2)|in Lemma B8, a(Ho) # 0 Vo € A™, so defining X := 2i0eA(g) ﬁea,
we have H, — [Ho, X] = 0. Redefining Adexp(x)(f) as § and Adegpyx)(H) as H, the latter has
H, with leading part of degree r + 1. Inductively, we may normalize H,; = ?(Hp) = 0, and so

H = Hyebhn{ Since a(Hg) # 0 for all a € A(p,), the P,-part of the structure group has been
completely reduced.

Step 2: Observe that ker(u) <

Fix any 0 # H}, € ker(u) < b, so H}, € a. Write H' = H + H, € f with H, = 0(H}) € p; = g'.
By [(M2)| from Definition 2.5 we have:
[HO’H/]f = [HOaH/] = [HO’H(/) + er] = [HO’er] EPr N f = fl = Oa (320)

where the twistor simplification was invoked for the last equality. Since [((MU2)|implies a(Hy) # 0
for all & € A(p; ), then necessarily H', = 0. Thus, ker(u) < f°.

Step 3: Show that f = a as subspaces of g.

Recall J,, from 3IZ) and the secondary grading Z,. From (FI0), we have g = a @ a’ where
a=g_®ay, where ag=ker(u)® @ Oy
v€A(go,<0)

o i=ker(u)" @ go+ Dgs, where goyi= @D oy,
¥€A(go,+)

(3.21)

and ker(u)* is a 1-dimensional complement to ker(u) inside h. Both a and a' are h-invariant, so
in particular they are invariant under ker(y). Defining the associated deformation map 9 : a — a*,
Lemma 2.8 implies that H -0 = 0, VH € ker(u) < §°, so 0 lies in the direct sum of weight spaces of
a* ® a for weights that are multiples of s.

Note A~ < A(a), so let « € AT and examine d(e_,). From (BI0), we have g_, < a, and the

weights of e* , ® a’ are of the form « + v, where v € A*(at) U {0}. These all have non-negative
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coefficients in the simple root basis. By these weights cannot be multiples of p. Hence,
0(e_q) =0, i.e. e_o € f. (This argument is very similar to the (G2, P») case from §3.2))

For our Step 3 claim, it suffices to consider a € A*(a) = AT (go,) and show that d(e,) = 0,
Vo€ At (go). First recall that w = (jk) € WP(2) as in Lemma[3.8 We claim that we may assume

Zi(u) >0, Zy(p) = Zs(—N) <0, s,k (3.22)

Via the twistor simplification, we have either: (a) I, = {j}, hence Z;(x) = Z(pn) > 0; or (b)
I, = {j, k} with ¢jp =0, hence 0 < Z(u) = Z;j(1) + Zi (1), so either Z;(u) > 0 or Zy(p) > 0. Since
cjk = 0, then swap j, k if necessary to assume that Z;(p) > 0. Since £ > 3, (3.9)) implies the rest of
B.22).
Since 0 has positive degree, then d(e,) € py, so let us consider a weight v — « for v € A(py)
corresponding to a possible term e, ® e, in 0. Using J,,, we have two cases:
(1) Ju\{k} # &: Since Zj(a) = 0, then Zj(y — ) = Zj(v) > 0, while for any i € J,\{k}, we
have Z;(v — a) = Z;(y) > 0. By (822]), v — « cannot be a multiple of .
(2) Ju\{k} = &: Since ¢ > 3, fix any s # j,k and note that cj,, ¢, cxj < 0 (by standard
properties of Cartan matrices). By definition of J,, we have {u,ay) = 0. Recalling that
ri = 0 for all 4, (3.9]) implies:

0={—p,a))=rs— (rj + 1ejs — (1 + 1)(crs — cjcjs) =rs = 0. (3.23)

Hence, rs = 0, ¢js = cs = 0, i.e. every s # j,k is not connected in the Dynkin diagram to
either j or k. Since g is simple (with rank(g) > 3), its Dynkin diagram is connected, so this
is a contradiction, i.e. this case is vacuous.

We conclude that d(e,) = 0, Yo € At (gop), and hence @ = 0. Thus, f = a as subspaces of g.

Step 4: Study curvature &

By [(M3)] and Proposition 6] we have x € ker(0*)! A?ps®gand {2k = 0. Since ker(u) < §°,
then & is valued in the direct sum of weight spaces of ker(0*)! for weights o = ru = a + 3+~ with
a, € A(py) and v € A U {0}. For the same reasons there (regularity and the final statement in
§2.1), we again have r > 1. Let us show that » < 1. Write the highest weight of g as A = >, n;ay,
where n; > 0 for all ¢ since g is simple. Since —A\ is the lowest root of g, then —A <« < ¢. Thus,
for any i # j, k,

—ni = Zi(=\) < Zi(y) < Zi(0) = rZi(p) = —rny, (3.24)

where the last equality follows from (B.9]). Since n; > 0, then r < 1 follows. Thus, » = 1 and so
k has weight 0 = p. The multiplicity of u (lowest weight) is the same as that occurring in the
go-irrep V,, i.e. multiplicity one, by Kostant’s theorem. Under the identification with harmonic
2-cochains, x must be a nonzero multiple of ¢g. Using Adeyp(;z), we may do a complex rescaling to
arrange k = ¢g. Thus, we have obtained the canonical curved model.

Working with split-real geometries, we similarly arrive at x being a nonzero multiple of ¢g using
almost exactly the same arguments as in the complex case. The only part that differs concerns the
use of [16, Prop.3.1.1] to assert (3.3) and the subsequent statement characterizing equality there.
A key ingredient for that Proposition is that O = Gy - [¢o] is the unique closed Gy-orbit in
P(V,), and this orbit is of minimal dimension. This is a well-known result in the complex setting,
and the result remains true in the split-real setting — see [20, Cor.1]. All other arguments in [16),
Prop.3.1.1] and this section are exactly the same to arrive to x being a nonzero multiple of ¢g.

Finally, a real scaling using Adeyp(;z) normalizes £ = +¢o. The algebraic models are P-equivalent
if and only if there exists gy € G such that gg - 9 = —¢g. The proof of Theorem [[.T] is complete.

4. EXAMPLES

In this final section, we apply Theorem [[.1] and give concrete examples of submaximally sym-
metric parabolic geometries, expressed as underlying geometric structures. Implicit here are known
equivalences of categories, in particular the parabolic geometry types (G, P) associated to given
structures. We do not provide details here, but instead refer the reader to [6].
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We will use the following notation. Let E;; denote the standard square matrix (of size to be
specified) with a 1 in the (i, 7)-position and 0 elsewhere. We continue to use A for the highest
weight of g, and ¢¢ for a lowest weight vector of a gg-irreducible submodule of H %(g,, g), obtained
via Kostant’s theorem (§3.1).

4.1. Projective structures. On a manifold M"™, two torsion-free affine connections are equivalent
if and only if they admit the same unparametrized geodesics, and an equivalence class [V] is called a
projective structure. These well-known structures underlie geometries of type (G, P) = (A,, Py), for
which 9t = (n+1)2—1, and harmonic curvature corresponds to the projective Weyl curvature. Here,

Go = GL(n,F) (for F = R or C) realized as matrices of the form A = (det(éo)_l £0> € Mat, ;1 (F),

where Ay € GL(n,F). In [16], we found that & = (n — 1)? + 4 for n > 3, realized in particular by
the Egorov projective structure [10], [16 (5.11)]. We can now assert:

Corollary 4.1. Let n = 3, and (M™,[V]) a submazimally symmetric projective structure with
non-vanishing projective Weyl curvature at x € M. Then about x, (M"™,[V]) is locally equivalent
to the Egorov projective structure (in either the real or complex settings).

Proof. Using Theorem [T}, we immediately conclude the result over F = C, so consider F = R. Using
w = (12) e WP(2) and A = A\ + )\, we obtain ¢y = €q; A €qytas®€—ao—..—an, = F12 A E13Q Ept1.2,
where E;; € Mat,1(R). Letting A = diag(ai,...,ant1) € Go where a1 = (az- capy1) Y, we get

2

Ay = C”C;—ZB“%. Since n = 3, then setting as = ... = a, = 1 and a1 = a1 = —1, we get
2

A - ¢og = —¢p. Invoking Theorem [T now gives the result. 0

Remark 4.2. Over R, some attention should be given to the choice of Lie group G. Choosing
G = A, := SL(n + 1,R) with Gy as above, the induced Gy-action on g_; is v — Bwv, where
B = Rydet(Ry), so det(B) = det(Ro)""!, which is always positive when n is odd. In these cases,
one is in fact working with oriented manifolds. In the unoriented setting, one could work with
G = PGL(n+1,R) (i.e. GL(n +1,R) modulo its centre Z(GL(n +1,R)), used as in [6, Prop.4.1.5])
or use G = S/E(n + 1,R) := {R € Mat,+1(R) : det(R) = £1} when n is odd.

4.2. 2nd order ODE systems. Any system &' = F'(t,2/,47), 1 < i < m of 2nd order ODE in
m > 2 dependent variables (viewed up to point transformations) admits an equivalent description
as a (regular, normal) parabolic geometry of type (Ap11,P12) = (PGL(n + 1,F), P12). (In [6,
§4.4.3], these are formulated as generalized path geometries. When m > 3 (or m = 1), these can all
be locally realized as 2nd order ODE systems, while for m = 2, we additionally have the constraint
that #y vanishes in degree +1.) We have 9t = (m +2)% — 1, locally uniquely realized by the trivial
ODE &' = ... = &™ = 0. Here,

ap 0 0
Go = {( 81 az 0 > : Ap € GL(m,F), a; € IF'X} mod Z(GL(n + 1,F)), (4.1)
0

and harmonic curvature decomposes into two components: Fels curvature (degree +3) and Fels
torsion (degree +2). Referring to [I7, §5.3 and §5.4], we have (using A = Ai + Appq1 and Ej; €
Mat,,+2(FF) and notation &,, {4, from §3.1)):
e w = (21) (“Segré branch”, i.e. vanishing Fels torsion): p; := —w e A = 4\ — 33 — Ay
has Z(p1) = +3, and &,,, = 8, = m? + 5, realized in the Segré branch by:

it=..=""1=0 "= ()3 (4.2)

e w = (12) (“projective branch”, i.e. vanishing Fels curvature): ps := —w e A = 4\ — Ay —
A3 — Amt1 has Z(p2) = +2 and &, = &, = m? + 4, realized in the projective branch by
the geodesic equations of the Egorov projective structure:

=22t i%E 1<i<m. (4.3)
Using the point transformation (¢, 2!, %2, ..., ™) = (2!, ¢t + %(m1)2x2, 22, ..., 2™) given in [1],
a simpler alternative model to (3] is

=22 =..=i"=0. (4.4)



ON UNIQUENESS OF SUBMAXIMALLY SYMMETRIC PARABOLIC GEOMETRIES 15

(All ODE in the projective branch are geodesic equations for some projective structure, and
Theorem [A.]] asserts the classification of submaximal symmetry models in this branch.)

Uniqueness of the submaximally symmetric ODE (£.2)) and (£4)) was recently asserted in [I,
Theorems 2 & 3] without proof. Applying our Theorem [T we obtain:

Corollary 4.3. Let m = 2. QOver F = R or C, suppose that a given 2nd order ODE system
3= Fi(t,2?,47), 1 < i < m is submazimally symmetric, i.e. it has point symmetry algebra of
dimension & = m? + 5. Then the system has vanishing Fels torsion everywhere, and about any
point where Fels curvature is non-vanishing, the system is locally point equivalent to (£2]).

Within the projective branch (i.e. vanishing Fels curvature), about any point where Fels torsion
is non-vanishing, any submazimally symmetric system (realizing &, = m? + 4) is locally point

equivalent to (4.4).

Proof. Note that we have 4l = max{l,,,4l,,} = 4,, = m?*+5and & = S, = m?+5. Since & = 4,
then local homogeneity follows from Lemma 2.3l Write ¢ = ¢1 + ¢ for ¢1 € V,,, and ¢9 € V,,,
where V,; are the go-irreducible submodules of H i(g_, g) corresponding to Fels curvature and Fels
torsion respectively. We have a® c a®2, which has maximal dimension W, = m? + 4 when ¢y # 0.
By (24) and the symmetry dimension being m? + 5, the Fels torsion must vanish everywhere.

We now invoke Theorem [[LIl Using w = (21) € W¥P(2), we find that ¢g = €ny, A €aytay @

€ ag——ami1 = F23 A E13® Epya3. For A = diag(ay, ..., amy2) € Go, we get A - ¢g = 2722 ¢,

3
Setting a1 = ... = apy1 = 1 and a0 = —1, we get A - ¢pg = —¢g, so uniqueness now follows
from Theorem [LTl Our final statement reformulates Corollary [4.1] via the correspondence space
construction (§3.3]). O

We remark that in [I6], we used G = SL(m + 2,R) instead of G = PGL(m + 2,R). This small
change does not affect & and 4, but the notion of point equivalence is slightly restricted with the

former, as we now explain. Consider A = (0 az 0 > € Gy with ajasdet(4g) = 1. The ODE

structure is modelled on g_;, which is split into the direct sum of (FE91) (corresponding to the line
field spanned by the total derivative D; := 0y + 2°0,: + F"'0;:) and (Esa, ..., Eyy2,2) (corresponding
to (0;:)). On g_1, A induces:

(6,v) = (ct,Bov), c=%2,  By= Aga;" . (4.5)

ai’
But then det(By) = det(Ap)a, ™ = T}”“ = —7z. When m is even, the signs of ¢ and det(By) are
aligned, and the point transformation (t,z") — (—t,2") would not be an admissible equivalence.
If we consider G = SL(m + 2,R), then for m > 3, setting a; = 1 for i # 3,4 except a3 = a4 = —1
yields A - ¢g = —¢g. When m = 2, we have A - ¢y = “L32H1 ¢y = a%qﬁo, and no A € G exists with
3 3

A-¢g = —¢o. In this case, & = 0, §j = +4> would be inequivalent submaximally symmetric models.

4.3. Conformal structures. Given a smooth manifold M" with n > 3 and a metric g of signature
(p,q), welet [g] := {\g|\: M — R" smooth}, and refer to (M™, [g]) as a conformal structure. This
admits an equivalent description as a parabolic geometry of type (G, P) = (SO(p + 1,9 + 1), P1),
where P; is the stabilizer of a null line in RPTL4T1 5o M = (";2) Restrict now to n > 4. See
[9] for & in the Riemannian / Lorentzian cases, which are exceptional. In non-Riemannian / non-
Lorentzian signatures, [16, §5.1] indicates & = ("51) + 6, realized by [g], with g given by the direct
product of a flat Euclidean metric of signature (p — 2,q — 2) and the (2, 2)-metric

(2,2)

Gpp = v dw? + dwdz + dydz. (4.6)

Restrict now to the split-real form, so [p — ¢q| < 1. We view g € Mat, 2(R) as matrices that are
skew with respect to the anti-diagonal, and let GGy consist of block diagonal matrices with blocks
(A, C, A1) with A > 0 and C € SO(p, q), and so the Gg-action on g_1 is given by x +— A~"'Cz. In
particular, any scalar product on g_; is only positively rescaled, so any conformal structure [¢g] and
its “negative” [—g] are inequivalent. Together with Theorem [[.T] we deduce:
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Corollary 4.4. Let n =p+q >4 and |p—q| < 1. Suppose that a conformal structure of signature
(p, q) is submazimally symmetric, i.e. its conformal symmetry algebra has dimension & = (";1) +6.
Then about any point where the Weyl curvature is non-vanishing, the structure is locally conformally
equivalent to one of the two models [g] or [—g] described above.

The split-signature assumption |p — ¢| < 1 may likely be relaxed so that the same conclusion
would hold in general non-Riemannian / non-Lorentzian signatures, but this would require a more
careful investigation into related real forms, which is beyond our scope here. For the more subtle
conformal Riemannian and Lorentzian cases, finding the complete local classification of submax-
imally symmetric models is an open problem. (See [9] for known models.)

4.4. Parabolic contact structures. Generalizing §3.2] parabolic contact structures of type (G, P)
(or “G-contact structures’) are underlying structures for (regular, normal) geometries of types:

(Ag,Pl,g), {> 2, (Bg,PQ), {> 3, (Cg,Pl), > 2, (Dg,PQ), L= 4,
(Ee, P»), (E7,P1), (Es,FR), (Fy,P1), (Go,P).

As shown in [18], these structures all admit descriptions (possibly passing to a correspondence
space) in terms of differential equations. The cases (Ag, P 2) and (Cq, Py) are classical, and cor-
respond to scalar 2nd order ODE (up to point transformations) and scalar 3rd order ODE (up to
contact transformations). These are exceptions: they admit non-unique submaximally symmetric
structures with & = 3 and & = 5 symmetries respectively. For all other cases, explicit submax-
imally symmetric structures (with respect to a given Go-irrep V of H2(g_,g)) were given in [I8]
§4.2]. Over C, these are locally unique by Theorem [[11

(4.7)
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