
Multi-Agent Reinforcement Learning for
Structured Symbolic Music Generation

Shayan Dadman1[0000−0003−1970−5353] and Bernt Arild
Bremdal1[0000−0002−0042−3949]

Department of Computer Science, Arctic University of Tromsø, Lodve Langesgate 2,
8514 Narvik, Norway shayan.dadman@uit.no

Abstract. Generating structured music using deep learning methods
with symbolic representation is a challenging task due to the complex
relationships between musical elements that define a musical composi-
tion. Symbolic representation of music, such as MIDI or sheet music,
can help overcome some of these challenges by encoding the music in
a format that allows manipulation and analysis. However, the symbolic
representation of music still requires interpretation and understanding
of musical concepts and theory. In this paper, we propose an approach
that utilizes Multi-Agent Systems (MAS) and Reinforcement Learning
(RL) for symbolic music generation. Our model primarily focuses on mu-
sic structure. It operates at a higher level of abstraction, enabling it to
capture longer-term musical structure and dependency. We utilize RL as
a learning paradigm and the human user as a musical expert to facilitate
the agent’s learning of global dependency and musical characteristics.
We show how the RL agent can learn and adapt to the user’s preferences
and musical style. Furthermore, we present and discuss the potential of
our approach for agent learning and adaptation and distributed problem-
solving in the field of music generation.

Keywords: Adaptive learning · distributed problem solving · deep learn-
ing (DL) · deep Q-network (DQN) · multi-agent systems (MAS) · rein-
forcement learning (RL) · music generation.

1 Introduction

Music has a clear, well-defined structure that provides the foundation for creat-
ing a piece. It can sound disorganized, disjointed, and lacking musical coherence
without a clear structure. The structure challenge in symbolic music generation
involves generating a musical piece that follows the rules of music theory while
maintaining a coherent structure throughout the piece. These rules can include
adhering to a consistent key signature, following chord progressions, and main-
taining a steady rhythm and tempo. Additionally, the generated piece must have
a clear structure that captures the listener’s attention. This requires creating a
sense of tension and release throughout the piece, as well as varying the melody,
harmony, and rhythm to add contrast and variety.



2 Shayan Dadman and Bernt Arild Bremdal

Deep learning models can address the structure challenge in symbolic mu-
sic generation in various ways, as highlighted by [3]. Models such as MusicVAE
[17], Music Transformer [8], and MuseGAN [5] generate music that is musically
coherent and stylistically consistent with the input dataset. In some cases, the
music generated by these programs can be tedious or repetitive, particularly in
longer pieces where there is a lack of variation over time. These note-based mod-
els struggle to capture the complexity of musical expressions, such as rhythm,
dynamics, and articulation, as they focus primarily on the immediate context of
the preceding notes [20]. Furthermore, the optimization objective of these mod-
els is often based on minimizing a loss function that measures the discrepancy
between the generated music and the training data.

In contrast, reinforcement learning (RL) models learn through an iterative
trial and error process, providing flexibility and adaptability to changes in the
task or environment. RL-Tuner [9] utilizes two DQN and two RNN models to
generate melodies using user-defined constraints. Later, [13] proposed an ex-
tension to RL-Tuner that uses the Latent Dirichlet Allocation (LDA) called
RE-RLTuner. [12] used LSTM RNN to compose melody and chords, where the
agent’s objective is to find a suitable combination of sequences. RL-Duet [11] can
generate melodic and harmonic parts in an online accompaniment framework us-
ing actor-critic with a generalized advantage estimator (GAE). RL-Chord [10]
is a melody harmonization system using RL and conditional LSTM (CLSTM)
to generate chord progression. [1] proposed a method using RL and LSTM to
compose Guzheng music. They first trained the LSTM model on MIDI examples
and optimized it by introducing the Guzheng playing techniques using the DQN
algorithm. Nevertheless, despite the RL advantage in music generation, defining
a reward function for musical structure remains challenging [3]. Therefore, the
generated music by RL models may still lack coherency and structure.

Another potential approach to addressing symbolic music generation is using
multi-agent systems (MAS) in combination with reinforcement learning (RL)
[3]. MAS are systems composed of multiple agents that interact with each other
to achieve a common goal [19]. Similar to how musicians in a band collaborate
and coordinate, agents in MAS architecture can work together, each focusing on
specific aspects of the musical structure. Despite its potential, MAS has limita-
tions, including the challenge of coordinating multiple agents, which can lead to
high computational complexity and difficulties in balancing agents’ autonomy
with system coherence. By utilizing RL in MAS, the agents learn by trial and
error, thereby refining their behaviors through interaction with the environment.
This approach allows the agents to adapt to the musical context and each other,
resulting in more harmonious and engaging compositions.

Smith and Garnett [18] propose a musical agent with adaptive resonance
theory (ART) and reinforcement learning (RL) to generate monophonic melody.
ART is similar to Self-Organizing Maps (SOMs), used to classify and categorize
the data vectors. Improvagent [2] is a musical agent that utilizes Sarsa rein-
forcement learning algorithm. Given the inputs, the agent computes a set of
features like onset, pitch, and rhythm. It considers the features as the states of



Title Suppressed Due to Excessive Length 3

the environment and clusters them using the k-nearest neighbors algorithm with
Euclidean distance.

Moreover, we can incorporate human expertise and creativity into the music
generation process through MAS. Communication between agents and a human
agent allows for guidance on the overall direction of the music generation, while
RL agents handle the low-level details of generating individual musical elements.
Indeed, by orchestrating agents similar to musicians in a band and facilitating
communication with a human agent, MAS can capture and model the complex
interactions and dependencies between musical elements.

Here, we propose a model based on MAS to tackle the structure challenge
of symbolic music generation. Our model works directly with musical patterns.
It operates at a higher level of abstraction than note-based models. The idea is
to capture long-term musical structure and dependency by learning to identify
and manipulate patterns. In this manner, the model can generate more complex
and interesting musical pieces. Besides, our model utilizes MAS architecture by
incorporating RL deep Q-network (DQN) as a learning paradigm and the human
agent as a musical expert. Through interaction with the environment, the RL
agent receives input and feedback for the generated music from the music-related
reward functions and the human agent. This allows the RL agent to learn and
adapt to the user’s preferences and musical style. Furthermore, we introduce a
method utilizing the DQN replay buffer as the MAS communication method.
This method represents a collaborative learning process, allowing the agents
to coordinate their actions more effectively and achieve better results. Indeed,
this framework offers interactivity, flexibility, and adaptability throughout the
generation process.

2 Background

Growing Hierarchical Self-Organizing Maps (GHSOM) is an unsuper-
vised machine learning algorithm that learns to represent high-dimensional input
data in a lower-dimensional space [4]. GHSOM is useful for clustering and vi-
sualization of data and able to grow a hierarchical structure of self-organizing
maps (SOMs). It can capture the input data’s local and global structure by
recursively splitting a SOM into smaller SOMs. At each level of the hierarchy,
GHSOM learns a codebook of prototype vectors representing the input data
through a process known as competitive learning.

Recurrent Neural Networks (RNNs) are a class of neural networks that
can process sequential data by allowing information to persist over time. De-
spite their usefulness, RNNs can suffer from the vanishing and exploding gradient
problem. This limits their ability to capture long-term dependencies in sequential
data. Long Short-Term Memory (LSTM) is a type of RNN that effectively ad-
dresses this problem with gating mechanisms, consisting of three sigmoidal units
and one hyperbolic tangent unit, that selectively update, forget, and output in-



4 Shayan Dadman and Bernt Arild Bremdal

formation. By using a cell state as "memory," LSTMs can effectively capture
long-term dependencies in sequential data.

Reinforcement Learning (RL) is a machine learning subfield that teaches
agents to make decisions based on rewards and punishments. The agent interacts
with an environment, learns from feedback, and adapts its behavior to achieve
a specific goal. The agent’s objective is to maximize its cumulative reward over
time by learning a policy that maps states to actions. RL algorithms can be
value-based or policy-based. Value-based methods aim to learn the optimal value
function, and policy-based methods aim to learn the optimal policy directly.
Additionally, there are hybrid approaches, such as deep Q-networks (DQN) [14],
which combine Q-learning with deep neural networks to approximate the Q-
value function and handle large and continuous state spaces. RL is useful in
developing autonomous agents that can learn from experience, improve their
decision-making processes, and optimize their behavior over time.

Dimensionality Reduction is a technique that involves reducing the number
of features or variables in a dataset while maintaining as much information as
possible. This is typically achieved by projecting high-dimensional data onto a
lower-dimensional space. There are two main categories of dimensionality re-
duction techniques: linear and nonlinear. Linear techniques, such as Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA), are com-
monly used for datasets with a linear structure. Nonlinear techniques, such as t-
Distributed Stochastic Neighbor Embedding (t-SNE), UMAP (Uniform Manifold
Approximation and Projection), and ISOMAP (Isometric Feature Mapping), are
used when the underlying structure of the data is nonlinear.

For music, [6] and [15] performed a comparative analysis between PCA, t-
SNE, ISOMAP, and SOMs methods using extracted meaningful features from
music and textural sound data. They observed that t-SNE performs much better
in preserving the local structure of the original data and keeping the distinct
sub-groups separated in visualization.

3 System Design

In Section 1, we presented the approaches for symbolic music generation using
RL algorithms. RL algorithms are designed to adjust the behavior of a single
agent and learn based on the rewards received from the environment. One of the
main challenges of RL is the trade-off between exploration and exploitation. Be-
sides, defining a suitable reward function that addresses musical characteristics
according to human user preferences is hard. We address these challenges in our
model by using MAS architecture and involving the human user in the agents’
learning process and providing information about the system’s goals.

In the following, we explain different aspects of our model. We first explain
the data processing approach and then continue with training and generation



Title Suppressed Due to Excessive Length 5

Fig. 1. The architecture of the proposed model

processes. Figure 1 illustrates the components of our model and depicts the train-
ing and generation processes. Overall, our model involves a perceiving agent, a
generative (decision-making) agent, and a human agent (user). The perceiving
agent organizes and processes the inputs and passes them to the generative
agent. The generative agent carries out the system’s output by considering the
previous and current state. Indeed, the perceiving agent provides the generative
agent with a better understanding of the environment by encoding the inputs in
a higher level of abstraction. In this manner, the generative agent concentrates
more on its action improvement. The user evaluates the model’s output and pro-
vides new inputs to guide the generations. User feedback enables the generative
agent to adapt and learn the user’s preferences, introduce novelty and creativity,
and navigate through complex environments such as music structure. Further-
more, the perceiving agent observes the changes in the environment, such as the
human feedback given to the RL agent to provide input according to the related
musical context.

3.1 Data Processing

Symbolic representation of music refers to the process of encoding musical infor-
mation using a set of symbols, typically in the form of a digital score or MIDI
file. Each musical event is represented in this format by a combination of symbols
that encode its pitch, duration, timing, and other relevant attributes.

Here, we consider Clean MIDI subset of the Lakh MIDI dataset [16]. This
subset consists of 45,129 MIDI files that have been filtered and cleaned to remove
any duplicates, corrupt files, or files that do not meet specific quality standards.
These quality standards include having a minimum number of tracks, a mini-
mum duration, and being free of obvious errors such as missing or extraneous
notes. We process each MIDI example to identify and maintain only melodic
tracks. We identify the short and long patterns within the melodic tracks using



6 Shayan Dadman and Bernt Arild Bremdal

the similarity matrix, similar to [1] approach. We mark and segment the melodic
tracks based on identified patterns and extract each segment as a separate MIDI
file. We also maintain the order of segments in original melodic tracks. We ex-
tract relevant musical features as a feature vector for each extracted segment.
The musical features include pitch, duration, velocity, tempo, time signature,
instrumentation, dynamics, articulation, and expression. After creating the fea-
ture vectors, we normalize them so that each feature is scaled to the same range.
We use t-SNE to reduce the dimensionality of the feature vectors before passing
them to GHSOM for training.

3.2 Perceiving Agent - GHSOM and LSTM

GHSOM We follow the instructions given by [4] to implement the model and
train it after processing and preparing the training examples as described in
Section 3.1. Furthermore, to define the model parameter, we utilize the t-SNE
algorithm. In particular, we use t-SNE to determine the number of levels in the
GHSOM hierarchy, the size of the maps at each level, and the learning rate and
neighborhood function parameters.

To determine the number of levels in the GHSOM hierarchy, we use t-SNE to
visualize and inspect the resulting clusters or patterns in the data. The number
of levels in the GHSOM hierarchy can be chosen to correspond to the level of
abstraction suggested by the t-SNE visualization. To determine the size of the
maps at each level, we use t-SNE to estimate the local density of the data in the
lower-dimensional space. In GHSOM, maps at each level should be large enough
to capture the local structure of the data but not so large as to lose the resolution
needed to distinguish between neighboring clusters. The size of the maps can
be chosen based on the local density estimated from the t-SNE visualization.
We choose the learning rate and neighborhood function parameters using the
identified clusters or patterns in the data by t-SNE. These parameters maintain
balance in the exploration of the high-dimensional space with the exploitation
of the clusters or patterns suggested by the t-SNE visualization.

Note that we use t-SNE as a tool for exploration and interpretation rather
than as a definitive guide to the GHSOM parameter selection.

LSTM Following the same order of the segments in the original melodic track,
we use the trained GHSOM to label each segment with the corresponding cluster
number. In this manner, we create a vector of numbers and prepare the training
examples for the LSTM model. Essentially, we train the LSTM model to capture
the temporal dependencies to predict the next token. The model architecture
includes an LSTM layer with 128 units with a 0.2 drop-out rate followed by a
densely connected layer to carry out the predictions. We used ELU (Exponential
Linear Unit) as an activation function for the LSTM layer and softmax for the
dense layer, and Adam as an optimizer to minimize the cross-entropy function.



Title Suppressed Due to Excessive Length 7

3.3 Generative Agent - Optimization with RL

Model Architecture While the GHSOM captures the topological structure
and the LSTM model learns the dependency among segments from the original
melodic tracks, the model may get stuck with a specific order of segments and
need help to explore new variations. We use Reinforcement Learning DQN al-
gorithm to further optimize the model’s performance. DQN [14] is a model-free
RL algorithm that uses Q-learning to learn optimal policies. It maximizes the
total reward at the end of each epoch by selecting policies based on a minibatch
of random samples from the LSTM model. The main network generates actions,
and the target network produces a stable target to compute the loss of the se-
lected action. At each time step, the agent generates an action, at, following a
policy, π, and based on the current state, st. The environment then generates a
reward, rt+1, and a new state, st+1. This process continues until a satisfactory
result is achieved.

We train the main network, to approximate the optimal action-value function
Q(st, at). Q(st, at) represents the expected cumulative reward for taking action,
at, in state, st, and following the optimal policy after that. The input to the
network is the current state, st, and the output is a vector of Q-values for each
possible action, at, in that state. During training, the network is updated using
a variant of the Q-learning algorithm that minimizes the difference between the
predicted Q-values and the true Q-values obtained from the Bellman equation.
The target network is a separate copy of the main network that is used to
generate the target Q-values used in the Q-learning update. The target network
is not updated during the Q-learning update step but is periodically updated
to match the weights of the main network. This helps to stabilize the training
process by preventing the Q-values from oscillating or diverging during training.
During the training process, the agent predict a sequence of tokens, where it
learns the structure and capture the transitions between the segments. Therefore,
the model parameters are updated after generating a complete sequence rather
than a single token.

Moreover, to encourage the model to explore action space, we use NoisyNet
[7]. NoisyNet addresses the exploration-exploitation tradeoff by adding noise to
the weights of the neural network used to estimate the Q-values or policy. The
noise is added in a way that preserves the differentiability of the network. In
this manner, it can still be trained using gradient descent. The main advan-
tage of NoisyNet is that it provides a principled way of balancing exploration
and exploitation without requiring additional exploration noise to be added to
the actions. We use Python and Tensorflow library with Keras to implement
functionalities and agents.

Reward Definition We define the reward policy based on three criteria:

– rground_truth: Ground truth reward based on the original melodic tracks
– rstructure: Sequence structure reward based on manual rules
– rhil: Human feedback reward



8 Shayan Dadman and Bernt Arild Bremdal

The ground truth reward, rground_truth, evaluates the generated sequence
based on the original melodic tracks. As described in Section 3.1, each melodic
track in the dataset are segmented based on the variation of patterns. We mea-
sure the gap between the model’s output and the ground truth using the negative
log-likelihood (NLL) loss. NLL penalizes the model for assigning a low proba-
bility to the observed data and rewards it for assigning a high probability to
the observed data. The objective is to decrease the loss as the agent continues
learning.

The sequence structure reward, rstructure, is proposed to evaluate the transi-
tion between the segments within the generated sequence. The main objective is
to prevent the model from sudden transitions that are relatively quick or com-
pletely irrelevant. To do so, we train a smaller GHSOM model using only the
vector of segments within each melodic track. Then we use the topological latent
space of GHSOM to assess the transitions based on the closeness of the segment
at step t to the t-1 segment within the predicted sequence. To measure the
closeness, we use Euclidean (L2) distance. Given the calculated distance, the
definition of the reward is

rstructure(d) =

{
−1, if d > threshold

1, if d < threshold
(1)

where the threshold is an experimental value calculated by taking a percent-
age of the average distance between all of the data points.

The human feedback reward, rhil, incorporates the human-in-the-loop (HIL).
The basic idea behind HIL is to use feedback from a human expert to shape the
reward function of the reinforcement learning agent. The user provides feedback
in the form of evaluations of the agent’s actions, which are then used to adjust
the reward function to better align with the user’s preferences. Specifically, the
reward function is augmented with a term that captures the feedback from the
user. The user provides explicit evaluations of the generation with +1 as positive
reward and -1 as negative reward. The human feedback reward is as follows:

rhill(st, at) = w ∗ e(st, at) (2)

where w is a weight that controls the influence of the expert evaluations on
the reward function, and e(st, at) is the expert evaluation of the agent’s action
in state st and action at.

The instant reward rt for the action to be taken at time t is

rt = α ∗ rground_truth
t + β ∗ rstructuret + γ ∗ rhilt (3)

where α, β, and γ are the weight factors that are experimental values. They
controls the impact of each reward function in guiding the agents behavior and
can be adjusted during training.



Title Suppressed Due to Excessive Length 9

3.4 Agents Communication

Communication is an essential aspect of MAS, as agents need to exchange in-
formation and coordinate their actions. Various communication methods have
been proposed and implemented in MAS, ranging from message-passing and ne-
gotiation protocols to the use of shared memory spaces [19]. Our communication
method uses the DQN replay buffer that stores the agent’s experiences as tu-
ples (state, action, reward, next state) that stabilizes and improves the learning
process. By extending the replay buffer to serve as a communication repository,
agents can access a shared replay buffer to not only learn from their experiences
but also benefit from the experiences of other agents. This collaborative learning
process allows the agents to coordinate their actions more effectively and achieve
better results in complex environments.

3.5 Generation

During the generation process, the input of the model consists of the outputs in
the previous step and the human inputs. In the first step, the perceiving agent
processes the given input as described in Section 3.1. Then it uses GHSOM to
identify the input cluster within the GHSOM latent space. Using the output of
GHSOM, it creates the input vector for the generative agent to generate the
next sequence of tokens. At this stage, the system provides the human user with
the generated sequence for evaluation. It incorporates the evaluations obtained
from the human user and other reward functions using Equation 3 to guide
the generative agent. To generate content, the system takes the tokens in the
generated sequence and uses the GHSOM latent space to randomly sample the
corresponding cluster of segments. Figure 1 illustreates the generation process
of the system.

4 Discussion

Here, we proposed an approach that works directly with musical patterns to
capture long-term dependency between musical elements. This approach can
capture the common patterns and structures that define a musical style and
provide the RL agent with a more structured and meaningful input. In this
manner, the agent obtains a better understanding of dependency among musical
elements and the overall flow of the music. Consequently, the agent can generate
new pieces of music by combining, manipulating, and rearranging the patterns
creatively.

In our approach, the agent can also learn from the human user’s feedback
to generate music. In this way, the generated music is more aligned with the
user’s preferences. As an expert, the human user can provide valuable feedback
on the quality and guide the desired structure, style, and emotional content of
the music. The human user also provides input throughout the interaction. The
given input can include examples of music in a particular structure or style.



10 Shayan Dadman and Bernt Arild Bremdal

The agent uses the input to improve the quality of generated music and adjusts
its behavior regarding musical style and structure. Similarly, it can generate a
complete piece based on that input.

MAS architecture allows modularity and the use of various computational
methods. It promotes distributed problem solving, which is solving complex
problems by breaking them down into smaller, more manageable sub-problems
that can be solved by multiple agents working together. Our system consists
of three agents: perceiving, generative, and human agents. The perceiving and
generative agents use the replay buffer as a communication repository to coordi-
nate their actions collaboratively. During their interaction, both agents carefully
observe the feedback from the human and use it to improve their performance.
The generative agent learns and adapts to the user’s preferences based on the
feedback received, while the perceiving agent uses the feedback to provide rel-
evant input to the generative agent. The perceiving agent interacts with the
replay buffer by grouping and selecting the experiences based on their similarity
to human feedback.

Additionally, we can incorporate human expertise and preferences into the
communication process by observing and providing feedback on the experiences
stored in the shared replay buffer. We can add human feedback as metadata in
the replay buffer. This input could be suggestions for alternative actions, ad-
ditional context information, or other guidance based on human feedback. In
this manner, the human agent can guide the agents to focus on specific expe-
riences or suggest alternative actions. Additionally, we can access the agents’
evaluations and suggestions in the shared replay buffer to better understand the
MAS’s current state, decision process, and performance.

One approach to creating an interactive interface for human agents to interact
with MAS is the use of PureData (PD) and Open Sound Control (OSC). PD’s
visual programming environment ensures that interaction is intuitive and user-
friendly, while OSC facilitates efficient communication between the PD interface
and the Python-based MAS. This approach enables real-time adjustments and
feedback integration. Additionally, we can integrate PD with a Digital Audio
Workstation (DAW) to enhance the user experience further.

We can expand the system by introducing several RL agents with diverse be-
haviors, each assigned to a specific task, such as melody, harmony, and rhythm
generation. Nonetheless, adding more RL agents introduces challenges in ef-
fectively coordinating them as system complexity rises. Indeed, maintaining a
shared replay buffer for many agents can lead to increased memory and com-
putational requirements. We can explore techniques such as data compression,
prioritized experience replay, and hierarchical organization of agents to optimize
the system for several agents. Data compression techniques can help reduce the
replay buffer’s memory footprint, while prioritized experience replay can enhance
the learning process by focusing on the most informative experiences. Hierarchi-
cal organization of agents, where a group of specialized agents works under a
higher-level coordinating agent, can simplify the complexity of managing multi-
ple agents and their interactions. However, these optimizations might introduce



Title Suppressed Due to Excessive Length 11

trade-offs in system performance, learning speed, and resource consumption. The
replay buffer communication is also limited in its applicability in heterogeneous
MAS. This poses a challenge to managing possible conflicts and the agent’s
ability to negotiate or compromise to find a mutually acceptable solution.

One strategy is to train agents to learn from the actions of other agents in
their local environment using decentralized training. It can lead to robust and
adaptive agents, as each agent can learn from its own experiences and adapt to
environmental changes. We can integrate decentralized learning with a shared
replay buffer to form a hybrid approach for MAS. This approach combines de-
centralized learning’s scalability, robustness, and flexibility with shared replay
buffer’s enhanced coordination, knowledge transfer, and human-agent interac-
tion, resulting in more effective learning and collaboration among diverse agents.
Consequently, the integrated approach can lead to improved overall performance,
alignment with human preferences, and efficient achievement of shared goals in
complex multi-agent environments.

5 Conclusion

In this study, we discussed the current approaches in symbolic music generation
and their shortcomings. Notably, we emphasized the challenges involved with
these models to address musical structure. Mainly, these models struggle to gen-
erate innovative and expressive music with long-term structure. In a way, the
note-based approach of these models limits their ability to capture the complex-
ity of musical expressions, such as rhythm, dynamics, and articulation. On the
other hand, reinforcement learning models offer more flexibility and adaptability
but face challenges in navigating complex environments and definition of music
related reward functions.

To alleviate these challenges, we proposed an approach based on multi-agent
systems and reinforcement learning algorithms that works directly with musical
patterns. The proposed approach particularly improves the agent’s adaptability
to human preferences and learning of musical elements dependency to capture
the structure and overall flow of the music. Additionally, we discussed that the
modularity of MAS architecture allows for distributed problem-solving by uti-
lizing multiple agents, each specializing in specific musical tasks. However, chal-
lenges exist in programming agents to coordinate effectively, particularly when
introducing a diverse range of agents. Therefore, we discussed how combina-
tion of decentralized training and replay buffer could be a suitable strategy to
alleviate this challenge. Overall, the proposed model represents an interactive,
adaptable, and flexible framework for music generation.

References

1. Chen, S., Zhong, Y., Du, R.: Automatic composition of guzheng (chinese zither)
music using long short-term memory network (lstm) and reinforcement learning
(rl). Scientific Reports 12(1), 15829 (2022)



12 Shayan Dadman and Bernt Arild Bremdal

2. Collins, N.: Reinforcement learning for live musical agents. In: ICMC (2008)
3. Dadman, S., Bremdal, B.A., Bang, B., Dalmo, R.: Toward interactive music gen-

eration: A position paper. IEEE Access 10, 125679–125695 (2022)
4. Dittenbach, M., Merkl, D., Rauber, A.: The growing hierarchical self-organizing

map. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspec-
tives for the New Millennium. vol. 6, pp. 15–19. IEEE (2000)

5. Dong, H.W., Hsiao, W.Y., Yang, L.C., Yang, Y.H.: Musegan: Multi-track sequential
generative adversarial networks for symbolic music generation and accompaniment.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

6. Dupont, S., Ravet, T., Picard-Limpens, C., Frisson, C.: Nonlinear dimensionality
reduction approaches applied to music and textural sounds. In: 2013 IEEE Inter-
national Conference on Multimedia and Expo (ICME). pp. 1–6. IEEE (2013)

7. Fortunato, M., Azar, M.G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih,
V., Munos, R., Hassabis, D., Pietquin, O., et al.: Noisy networks for exploration.
arXiv preprint arXiv:1706.10295 (2017)

8. Huang, C.Z.A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C.,
Dai, A.M., Hoffman, M.D., Dinculescu, M., Eck, D.: Music transformer. arXiv
preprint arXiv:1809.04281 (2018)

9. Jaques, N., Gu, S., Turner, R.E., Eck, D.: Tuning recurrent neural networks with
reinforcement learning (2017)

10. Ji, S., Yang, X., Luo, J., Li, J.: Rl-chord: Clstm-based melody harmonization using
deep reinforcement learning. IEEE Transactions on Neural Networks and Learning
Systems (2023)

11. Jiang, N., Jin, S., Duan, Z., Zhang, C.: Rl-duet: Online music accompaniment gen-
eration using deep reinforcement learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 34, pp. 710–718 (2020)

12. Kumar, H., Ravindran, B.: Polyphonic music composition with lstm neural net-
works and reinforcement learning. arXiv preprint arXiv:1902.01973 (2019)

13. Liu, H., Xie, X., Ruzi, R., Wang, L., Yan, N.: Re-rltuner: A topic-based music gen-
eration method. In: 2021 IEEE International Conference on Real-time Computing
and Robotics (RCAR). pp. 1139–1142. IEEE (2021)

14. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

15. Pál, T., Várkonyi, D.T.: Comparison of dimensionality reduction techniques on
audio signals. In: ITAT. pp. 161–168 (2020)

16. Raffel, C.: The lakh midi dataset v1.0. https://colinraffel.com/projects/lmd/
(2016)

17. Roberts, A., Engel, J., Raffel, C., Hawthorne, C., Eck, D.: A hierarchical latent
vector model for learning long-term structure in music. In: International conference
on machine learning. pp. 4364–4373. PMLR (2018)

18. Smith, B.D., Garnett, G.E.: Reinforcement learning and the creative, automated
music improviser. In: International Conference on Evolutionary and Biologically
Inspired Music and Art. pp. 223–234. Springer (2012)

19. Wooldridge, M.J.: An introduction to multiagent systems. Wiley, Chichester, 2nd
ed. edn. (2009)

20. Wu, S.L., Yang, Y.H.: Musemorphose: Full-song and fine-grained music style trans-
fer with one transformer vae. arXiv preprint arXiv:2105.04090 (2021)

https://colinraffel.com/projects/lmd/

	Multi-Agent Reinforcement Learning for Structured Symbolic Music Generation

