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Background: Cervical cancer is a preventable disease, despite being one of the most common types of female 
cancers worldwide. Integrating existing programs for cervical cancer screening with personalized risk prediction 
algorithms can improve population-level cancer prevention by enabling more targeted screening and contrive 
preventive healthcare innovations. While algorithms developed for cervical cancer risk prediction have shown 
promising performance in internal validation on more homogeneous populations, their ability to generalize to 
external populations remains to be assessed.

Methods: To address this gap, we perform a cross-population comparative study of personalized prediction 
algorithms for more personalized cervical cancer screening. Using data from the Norwegian and Estonian 
populations, the algorithms are validated on internal and external datasets to study their potential biases and 
limitations when applied to different populations. We evaluate the algorithms in predicting progression from 
low-grade precancerous cervical lesions, simulating a clinically relevant application of more personalized risk 
stratification.

Results: As expected, our numerical experiments show that algorithm performance varies depending on the 
population. However, some algorithms show strong generalization capacity across different data sources. Using 
Kaplan-Meier estimates, we demonstrate the strengths and limitations of the algorithms in detecting cancer 
progression over time by comparing to the trends observed from data. We assess their overall discrimination 
performance in personalized risk predictions by analyzing the accuracy and confidence in individual risk 
estimates.

Discussion and Conclusion: This study examines the effectiveness of personalized prediction algorithms across 
different populations. Our results demonstrate the potential for generalizing risk prediction algorithms to external 
populations. These findings highlight the importance of considering population diversity when developing risk 
prediction algorithms.

1. Introduction

Cervical cancer gradually develops from precursor lesions in a pro-

cess that is usually initiated with a persistent infection with human 
Papillomavirus (HPV), [13]. The time to cancer development may take 
up to several years, and offers an opportunity to detect and treat the 
disease before becoming invasive. To promote early detection and to fa-

cilitate treatment, national programs for population-level cervical can-
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cer prevention have been established in European countries, [1,10,11]. 
These programs follow national guidelines in recommending routine 
examination at regular intervals for early detection of cervical cancer 
development. Although successful in reducing cancer mortality, the cur-

rent guidelines and recommendations for cervical cancer screening does 
not fully capture the heterogeneity of the individual risk. That is, the 
full target population is currently screened at regular time intervals to 
protect the sub-population of high risk individuals. As a consequence, 

https://doi.org/10.1016/j.ijmedinf.2023.105297

Received 29 September 2023; Received in revised form 11 October 2023; Accepted 12 November 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijmedinf
mailto:sela@kreftregisteret.no
https://doi.org/10.1016/j.ijmedinf.2023.105297
https://doi.org/10.1016/j.ijmedinf.2023.105297
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmedinf.2023.105297&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Medical Informatics 181 (2024) 105297

2

S. Elvatun, D. Knoors, M. Nygård et al.

regular screening of the entire target population will, for instance, lead 
to a high number of excessive exams and various financial costs, [2,12].

Turning to more personalized prevention strategies, the screening 
guidelines and recommendations are adapted to the individual need. 
Potentially, middle-aged women with a series of only normal results 
could be recommended less frequent screening, as they are at consider-

able lower risk than younger women with a history of several abnormal 
results. However, a challenge here is to identify the women who would 
benefit from closer follow-up and more intensive screening as well as 
those that can be recommended less frequent screening without com-

promising their protection. For instance, women detected with low 
grade cell changes can either progress to more severe cell changes, or 
the cell changes will regress back to a normal state, [15].

To provide women with low grade changes more informed recom-

mendations, prediction algorithms for the individual risk of cervical 
cancer development can act as decision support. Previous studies, such 
as [6,7,9], have presented data-driven methods for individual risk pre-

diction of cervical cancer development but have not specifically ad-

dressed their application to managing low grade results. Moreover, 
these studies have not conducted an external validation of their algo-

rithms, assessing their ability to generalize across populations.

National screening programs for population-level cervical cancer 
prevention are established in Norway and Estonia. To administer the 
cervical cancer screening programs according to the national guide-

lines, the health authorities routinely collect information about the 
exam types (cytology, histology and HPV) and the corresponding exam 
results (normal, low grade, high grade and cancer) at each visit. Exam 
results are determined according to standardized guidelines by trained 
professionals via microscopic analysis of screening tests (cytology and 
HPV) or biopsy (histology). In Appendix A, Table 1, we compare distri-

butional characteristics of the population-level datasets from Estonian 
and Norwegian cervical cancer screening programs. Although differing 
in size, the datasets have similar statistics. Routine screening in both 
populations produces a strong imbalance towards normal exam results 
and the number of exams per individual is typically scarce. The avail-

ability of the population-level dataset creates an opportunity to study 
data-driven approaches to more personalized cervical cancer preven-

tion. Moreover, the similarities between the datasets suggest a potential 
for prediction algorithms to generalise across different populations.

To assess the ability of prediction algorithms to generalize across 
populations, we conduct a cross-population study of prediction algo-

rithms for cervical cancer development. We evaluate the algorithms 
internally on data from the Norwegian cervical cancer screening pop-

ulation and use data from the Estonian population in the external 
validation. The algorithms are evaluated based on their ability to de-

tect progression from low grade changes in a comparative study. We 
propose adjustments of the algorithms in [6,7,9] to improve their time-

varying risk estimates, and compare their confidence and correctness 
in risk predictions, and their ability to detect more severe cell changes 
over time.

2. Methods

To predict the individual risk of a woman developing cervical can-

cer, we utilise historical data from her previous exams. The information 
that is available from each exam is the routinely collected data in 
population-level cervical cancer screening, namely the age, the exam 
type (cytology, histology and HPV) and the corresponding exam result 
(normal, low grade, high grade and cancer).

In our application, we are interested in predicting the risk of disease 
progression after having detected a low grade result. This means that we 
consider only women with at least one low grade result in our analyses. 
Moreover, we assume that each woman has previously had at least three 
exams (including one low grade) to provide the prediction algorithms 
with a minimum amount of input information.

2.1. Prediction algorithms

We consider in total four prediction algorithms. Comparing multiple 
algorithms also allows for evaluating whether the results from cross-

population comparisons are algorithm-specific. Two of these algorithms 
are based on variants of a hidden Markov model (HMM) based on [14]

and [9]. The third algorithm is an extension of a matrix factorization 
(MF) approach [7]. The fourth algorithm is based on recurrent neural 
networks (RNN), which are commonly applied in sequence modeling 
but may be unsuited for the irregularly sampled screening data.

The prediction algorithms provide estimates on the individual risk of 
cervical cancer development based on the information in the exam his-

tory of a woman. We represent a full exam history with the last exam 
at age 𝑡 as 𝐲𝑡 =

{
(𝑡𝑖, 𝜌𝑡𝑖

, 𝑥𝑡𝑖
)
}𝑡

𝑡𝑖=𝑡0
. Here, 𝜌 is the exam type and 𝑥𝑡 is 

the corresponding exam result. Note that the exam ages 𝑡0 ≤ 𝑡𝑖 ≤ 𝑡 usu-

ally vary considerably between the women. The two HMMs and MF 
algorithms are designed for more general applications than low grade 
management, expressing their risk estimates in terms of the posterior 
probabilities of exams result at 𝑡 > 𝑡. However, herein, we study only 
prediction estimates in scenarios where 𝑥𝑡 is a low grade result and we 
want to predict the result at 𝑡.

2.1.1. Hidden Markov model

We define the hidden Markov model (HMM) risk estimate as an exten-

sion of the method presented in [6], based on [14]. The HMM estimate 
approximates the posterior marginals for the next exam result based on 
an assumed underlying hidden state, indicating the latent risk of cervi-

cal cancer development. Compared to [6], we extend the method used 
to estimate the parameters for the risk estimator to account for more of 
the temporal variations in the parameters.

The HMM prediction estimate for having exam result 𝑥 at age 𝑡 > 𝑡

conditioned on the individual exam history up to 𝑡 is given by

𝑝(𝑥𝑡 = 𝑥 ∣ 𝐲𝑡) ∝
∑
𝜌𝑡

∑
ℎ𝑡

𝑝(𝑥𝑡 = 𝑥 ∣ ℎ𝑡, 𝜌𝑡)𝑝(𝜌𝑡 ∣ ℎ𝑡)𝑝(ℎ𝑡 ∣ 𝐲𝑡). (1)

We marginalize over the exam type and hidden state since this in-

formation is unknown in advance of the prediction. The probabilities 
𝑝(𝑥𝑡 = 𝑥 ∣ ℎ𝑡, 𝜌𝑡) and 𝑝(𝜌𝑡 ∣ ℎ𝑡) are obtained from [14]. We estimate 
the next hidden state conditioned on the exam history, 𝑝(ℎ𝑡 ∣ 𝐲𝑡), by 
marginalizing over the hidden states

𝑝(ℎ𝑡 ∣ 𝐲𝑡) =
∑
ℎ𝑡

𝑝(ℎ𝑡 ∣ ℎ𝑡)𝑝(ℎ𝑡 ∣ 𝐲𝑡). (2)

Here, 𝑝(ℎ𝑡 ∣ 𝐲𝑡) is the conditional predictive posterior distribution of 
being in hidden state ℎ𝑡 at time 𝑡. This estimate is initialized at time 𝑡0
as 𝑝(ℎ ∣ 𝑡0)𝑝(𝑥𝑡0

∣ ℎ𝑡0
, 𝜌𝑡0

), and recursively updated with

𝑝(ℎ𝑡𝑖
∣ 𝐲𝑡𝑖

) = 𝑝(𝑥𝑡𝑖
∣ ℎ𝑡𝑖

, 𝜌𝑡𝑖
)
∑
ℎ𝑡𝑖−1

𝑝(ℎ𝑡𝑖
∣ ℎ𝑡𝑖−1

)𝑝(ℎ𝑡𝑖−1
∣ 𝐲𝑡𝑖−1

). (3)

For (2) and (3), we need to estimate the hidden state transition probabil-

ities 𝑝(ℎ𝑡𝑖
∣ ℎ𝑡𝑖−1

) from the intensity parameters in [14]. The estimation 
method used in [6] does not account for temporal variations in the 
parameters. We therefore extend this approach herein by proposing ad-

justments to the prior estimates, described in Appendix B.

2.1.2. Hierarchical hidden Markov model

The hierarchical hidden Markov model (H-HMM) prediction algorithm 
builds on the model introduced in [9]. The H-HMM extends the HMM 
approach with the assumption that the screening population can be 
divided into two risk groups. These groups cover the women suscep-

tible to progressing from low grade via a high grade to cancer, and the 
women that will only regresses back to normal.
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The H-HMM prediction estimate is

𝑝(𝑥𝑡 = 𝑥 ∣ 𝒚𝑡) ∝
∑
𝜌𝑡

∑
ℎ𝑡

𝑝(𝑥𝑡 = 𝑥 ∣ ℎ𝑡, 𝜌𝑡)𝑝(𝜌𝑡 ∣ ℎ𝑡)𝑞(ℎ𝑡 ∣ 𝐲𝑡). (4)

Different from [9], here we marginalize also over exam types, as this 
information is unknown at prediction time. The form of (4) resembles 
(1), except that for the dependency on the two risk groups 𝑧 ∈

{
𝑧0, 𝑧1

}
, 

which yields

𝑞(ℎ𝑡 ∣ 𝐲𝑡) =
∑
ℎ𝑡

∑
𝑧

𝑝(ℎ𝑡 ∣ 𝐲𝑡, 𝑧)𝑝(ℎ𝑡 ∣ ℎ𝑡, 𝑧)𝑝(𝑧 ∣ 𝐲𝑡)

∝
∑
ℎ𝑡

∑
𝑧

𝑝(ℎ𝑡 ∣ 𝐲𝑡, 𝑧)𝑝(ℎ𝑡 ∣ ℎ𝑡, 𝑧)𝑝(𝐲𝑡 ∣ 𝑧)𝜋(𝑧).

We apply the procedure described in Appendix B also to estimate the 
conditional transition probabilities 𝑝(ℎ𝑡 ∣ 𝐲𝑡, 𝑧) from the intensity pa-

rameters in [9]. The predictive distribution of the model index 𝑝(𝑧 ∣ 𝐲𝑡)
is obtained from a prior estimate 𝜋(𝑧), which we treat as a hyperpa-

rameter. Specifically, we use 𝜋(𝑧1) = 0.8, in our numerical experiments 
in Section 3. We derive 𝑝(𝐲𝑡 ∣ 𝑧) and 𝑝(ℎ𝑡 ∣ 𝐲𝑡, 𝑧) using the well-known 
forward-backward algorithm, [9].

2.1.3. Matrix factorization

An alternative to the HMMs is the matrix factorization (MF) predic-

tion algorithm, which adapts the method presented in [6] to also utilise 
exam type information for risk estimation. Rather than assuming a fixed 
set of underlying states like the HMMs, the MF assumes the observed 
exam result is a potentially inaccurate measurement from a continu-

ously evolving and time-varying latent risk profile for each woman. 
The probability of observing exam result 𝑥𝑡 given the latent risk 𝜓𝑡

is assumed to take the relationship

𝑝(𝑥𝑡 ∣ 𝜓𝑡) = 𝑐𝑡 exp(−𝜃(𝑥𝑡 −𝜓𝑡)2).

Here, 𝑐𝑡 is a normalizing factor, and 𝜃 > 0 is a reliability parameter for 
the estimate, which we estimate from data, as described in Appendix C.

Here, we extend the probability of observing 𝑥𝑡 from 𝜓𝑡 to also de-

pend on the exam type 𝜌𝑡. The conditional probability of 𝑥𝑡 is thus 
decomposed as

𝑝(𝑥𝑡 ∣ 𝜓𝑡, 𝜌𝑡) = 𝑝(𝑥𝑡 ∣ 𝜓𝑡)𝑝(𝑥𝑡 ∣ 𝜌𝑡).

The estimates for 𝑝(𝑥𝑡 ∣ 𝜌𝑡) are taken from [14]. Since the true latent 
risk profiles are unknown, we use a hold-out set of 𝑁 exam histories to 
estimate a set of profiles 𝚿 that we use as proxies. We provide further 
details on how we estimate the risk profiles in numerical experiments 
in Section 3.2. Given 𝚿, the MF risk estimate is

𝑝(𝑥𝑡 = 𝑥 ∣ 𝐲𝑡,𝚿) ∝
∑
𝜌𝑡

𝑁∑
𝑛=1

𝑝(𝑥 ∣ Ψ𝑛,𝑡, 𝜌𝑡)
∏

𝑡

𝑝(𝑥𝑡 ∣ Ψ𝑛,𝑡, 𝜌𝑡). (5)

Compared to [6], we introduce in (5) a marginalization over the exam 
types, adjusting the risk estimate to measurement uncertainties.

2.1.4. Recurrent neural network

As an alternative approach we implement a recurrent neural network

(RNN) to predict the probabilities of regression and progression from a 
sequence of exam results [8]. That is, compared to the HMM, H-HMM 
and MF, the RNN outputs only the conditional probabilities of regres-

sion and progression. The input to the RNN consists of sequences with 
the age, the exam type and the corresponding exam result. In addition, 
we created an input feature from the time between exam results. Be-

sides a traditional RNN, we also implemented its gated variants (i.e. 
LSTM and GRU) and select the one that performs best on each respec-

tive dataset. In the following sections we simply will refer to them as 
RNN.

While an RNN is frequently used to model regularly sampled and 
fixed length sequences, the data from cervical cancer screening con-

tains variable length screening histories, with irregular time intervals 
between exam results. To handle the variable length histories, we used 
a packing approach, concatenating all histories and recording the in-

dices of the start and end of each sequence. Further details on how we 
develop the RNN is specified in Section 3.2 of numerical experiments.

2.2. Performance evaluation

To assess the ability of an algorithm to predict cervical cancer de-

velopment, we define an event as when a low grade result is followed 
by either another low grade, a high grade or a cancer result. The pre-

diction accuracy of the algorithms is evaluated in terms of their ability 
to predict risk estimates and to classify events.

Risk estimation The risk estimate of having or not having an event at 
age 𝑡 is derived from the conditional probability 𝑝(𝑥𝑡 = 𝑥 ∣ 𝐲𝑡) of having 
a normal result 𝑥. From our data we know whether or not an event 
occurs at 𝑡, and we use 𝜖𝑡 to represent the ground truth outcome, i.e., 
event or no event. The probability estimate for the correct outcome 𝜖�̂�

is thus

𝑝(𝜖�̂� ∣ 𝐲𝑡) =

{
1 − 𝑝(𝑥𝑡 ∣ 𝐲𝑡) if event at �̂�

𝑝(𝑥𝑡 ∣ 𝐲𝑡) if no event at �̂�.

To quantify the confidence and correctness in a risk prediction, we 
consider the probability margin of correctly predicting the observed 
outcome, as defined by the 𝛿 score

𝛿(𝜖�̂�) = 𝑝(¬𝜖�̂� ∣ 𝐲𝑡) − 𝑝(𝜖�̂� ∣ 𝐲𝑡). (6)

The 𝛿 score was first introduced in [3] with the interpretation that the 
model is confident about predicting the correct outcome if 𝛿(𝜖�̂�) ≈ −1, 
since 𝑝(𝜖�̂� ∣ 𝐲𝑡) ≫ 𝑝(¬𝜖�̂� ∣ 𝐲𝑡). Conversely, the model may be confident 
about predicting the incorrect outcome, in which case 𝑝(𝜖�̂� ∣ 𝐲𝑡) ≪ 𝑝(¬𝜖�̂� ∣
𝐲𝑡) and 𝛿(𝜖�̂�) ≈ 1. Finally, 𝛿(𝜖�̂�) ≈ 0 if the model is unsure about the out-

come, because 𝑝(𝜖�̂� ∣ 𝐲𝑡) ≈ 𝑝(¬𝜖�̂� ∣ 𝐲𝑡). This interpretation of the 𝛿 score 
provides insights into both the confidence and correctness of risk pre-

dictions.

To conclude whether an individual risk prediction is correct, we 
compare it to a predefined risk acceptance threshold −1 ≤ 𝜏 ≤ 1. That 
is, if 𝛿(𝜖) ≤ 𝜏 , we classify prediction 𝑝(𝜖 ∣ 𝐲) as correct. The total number 
of correct predictions for a given 𝜏 yields the sample coverage

𝜙𝜏 ∝ |𝛿(𝜖)∶ 𝛿(𝜖) ≤ 𝜏| .
Plotting 𝜙𝜏 ∈ [0, 1] over varying 𝜏 creates a sample coverage curve, il-
lustrating the distribution of algorithm confidence and correctness. A 
rapid incline in this curve for lower 𝜏 suggests confidence in predict-

ing the correct outcomes, while increasing 𝜙𝜏 for larger 𝜏 indicates less 
confident predictions. The area under the sample coverage curve (AUC), 
denoted Φ, yields an overall measure of algorithm performance in risk 
predictions. Choosing 𝜏 ∈ [−1, 1] gives Φ ∈ [0, 2], where higher Φ sig-

nify more accurate predictions.

Event classification The sample coverage provides only an aggregated 
estimate of algorithm accuracy. To assess the algorithm ability to pre-

dict events over time, we derive Kaplan-Meier (KM) curves from ob-

served events, 𝑆(𝑡), and the corresponding predicted events, �̂�(𝑡). To 
create �̂�(𝑡), we select a single risk threshold 𝜏⋆ from an exhaustive 
search to minimize the difference between the observed and the candi-

date predicted curves

𝜏⋆ = argmin
𝜏 ∫

|||𝑆(𝑡) − �̂�𝜏 (𝑡)
|||𝑑𝑡.

By comparing the KM curves visually, we can reveal time-varying trends 
in over-estimation and under-estimation of events.
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Fig. 1. Risk prediction over the Norwegian test set. Prediction algorithms are hidden Markov model (HMM), hierarchical HMM (H-HMM), matrix factorization (MF) 
and recurrent neural network (RNN). The area under the coverage curve is bounded to Φ ∈ [0, 2].

3. Numerical experiments

We compare four prediction algorithms based on a HMM, a H-HMM, 
MF and a RNN in a retrospective study predicting cervical cancer devel-

opment from a low grade exam result. The algorithms are derived and 
validated internally on data from the Norwegian cervical cancer screen-

ing population, and validated externally on data from the Estonian 
screening population. To indicate the overall risk prediction accuracy, 
we use the AUC of the coverage curve, Φ, and we use Kaplan-Meier 
(KM) curves to illustrate prediction performance over time (see Sec-

tion 2.2). Additional results on probability calibration and aggregate 
statistics on prediction performance are included in Appendix D and 
Appendix E (Tables 3 and 4), respectively. Confidence intervals around 
performance scores are obtained from ten bootstrap samples of the data.

3.1. Data

We use retrospective population-level datasets consisting of elec-

tronic screening records from the national programs for cervical cancer 
screening in Norway and Estonia. The Norwegian dataset spans from 
1992 and 2020, while the Estonian results are from 2005 to 2020.

Focusing on a low grade management application, we exclude all 
women without at least one low grade results from our analyses. This 
reduce the number of individuals from 2,072,333 to 366,030 in the 
Norwegian dataset, and from 372,386 to 15,038 in Estonian dataset.

From both the Norwegian and Estonian datasets, we excluded any 
women younger than 16 years old1 at the time of her first exam. More-

over, we excluded all women with less than four exam results in total, 
counting only results from cytology and histology exams. Summary 
statistics of the filtered datasets are provided in Appendix A, Table 2, 
and shows that the cohort we target in this study is slightly younger 
and have had more exams than the population average in Appendix A, 
Table 1. The fraction of low grades is larger in the filtered Estonian 
population, but both datasets contains similar proportions of events, as 
defined in Section 2.2.

1 The age of consent is 16 years old in Norway.

3.2. Internal validation on the Norwegian data

We used the publicly available parameters from [14] and [9] to 
derive the HMM and H-HMM algorithms.

Remark 1. Both the HMM and the H-HMM are derived from data that 
may overlap with the test data we selected from the Norwegian popu-

lation in this study. We had no way to determine which data had been 
previously used. Hence, our results from internal validation are subject 
to potential information leakage and should thus be interpreted with 
caution.

We randomly split the 366,030 Norwegian exam histories into 40% 
for training, 10% for validation and 50% for testing. Data splitting was 
performed before any pre-processing and model construction steps to 
avoid data leakage. Using the exam histories from the training set, we 
derive a set of latent risk profiles for the MF estimate, using the shifted 
weighted convolutional MF algorithm presented in [7]. The validation set 
was used to estimate thresholds for event classification, described in 
Section 2.2.

The training and validation sets were also used to optimize the RNN 
algorithm. It was trained with maximum 200 epochs with early stop-

ping for convergence, using the ADAM optimizer and the binary cross 
entropy loss [5]. Hyperparameter optimization was performed using the 
Tree-structured Parzen Estimator (TPE) with over 200 trial candidates. 
The hyperparameter search space included one to five hidden layers, 20
to 26 hidden units, from 0–50% dropout, learning rates from 0.0001 to 
0.1 and batch sizes from 24 to 29. The final RNN was a bi-directional 
LSTM with four hidden layers and two hidden units, 0.16% dropout, 
batch size 16 and learning rate of 0.0008.

In the following, performance statistics for risk and event prediction 
tasks are presented over the test set.

3.2.1. Risk prediction Norwegian data

We estimate the accuracy in event risk predictions by creating sam-

ple coverage curves, described in Section 2.2, and use the area under 
the curve, Φ, to compare algorithm performance. The coverage curves 
are plotted in Fig. 1.
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Fig. 2. Event classification over the Norwegian test set. Prediction algorithms are hidden Markov model (HMM), hierarchical HMM (H-HMM), matrix factorization 
(MF) and recurrent neural network (RNN). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

A rapid incline in the coverage curve for lower risk thresholds shows 
confidence in correct predictions, while a spike in the curve for higher 
thresholds suggest that the algorithms are confident in predicting the 
wrong outcome. Here, all prediction algorithms achieve similar per-

formance. A distinguishing feature of the H-HMM is separating the 
screening population into disjoint risk groups, which may be benefi-

cial to build confidence in the risk estimates as indicated by the slightly 
higher Φ score.

3.2.2. Event classification Norwegian data

To assess the ability of the algorithms to detect cervical cancer de-

velopment over time, we compare in Fig. 2 the KM curves derived from 
the test data and the corresponding algorithm predictions. We classify 
risk predictions with the thresholds 0.38, 0.076, 0.20 and 0.40 se-

lected for HMM, H-HMM, MF and RNN respectively. Smaller thresholds 
for H-HMM and MF can compensate for a tendency to underestimate 
the risk. Reliability curves illustrating algorithm calibration against the 
validation set are given in Appendix D. Error-based metrics for event 
classification performance on Norwegian test data is given in Table 3 in 
Appendix E.

Comparing the predicted and observed KM curves in Fig. 2 shows 
that the algorithms typically over-estimate the event rate for younger 
women and under-estimate the event rate for older women. The predic-

tions for younger women may be affected by including histories with a 
minimum of only two exam results. Some of the variability in the HMM 
and H-HMM curves stem from time in-homogeneous model parameters, 
but the estimation method used herein reduced the artefacts.

3.3. External validation on the Estonian data

To assess their generalization capacity, we apply the prediction al-

gorithms derived from the Norwegian data to data from the Estonian 
screening population for external validation. We randomly split the 
15,038 Estonian exam histories into a validation set of 10% to esti-

mate the risk classification thresholds, and we use the remaining 90% 
for performance evaluation.

3.3.1. Risk prediction Estonian data

We plot the sample coverage curves derived from risk predictions 
over the Estonian test set in Fig. 3, using the algorithms derived from 
the Norwegian data.

The Φ scores for external validation on the Estonian data strongly 
resembles the results from the internal validation on the Norwegian 
data (Fig. 1). However, the Estonian scores are in general slightly lower 
than for the Norwegian data, which is to be expected. While several 
outcomes can be predicted correctly in high confidence, an increased 
sample coverage for larger risk thresholds suggests that a distinct set of 
outcomes are harder to predict also in the Estonian data.

3.3.2. Event classification Estonian data

We also assess the ability of the algorithms to predict cervical cancer 
over time in the Estonian data in Fig. 4 and with to the Norwegian 
results in Fig. 2. Due to smaller sample size, the uncertainty profiles 
about the KM curves is larger here than for the Norwegian results.

To classify the Estonian risk predictions, we re-estimate the classifi-

cation thresholds using the validation set. We selected risk thresholds at 
0.39, 0.076, 0.20, 0.33 for the HMM, H-HMM, MF and RNN. Reliability 
curves illustrating algorithm calibration on the Estonian validation data 
are included in Appendix D. Error-based metrics for event classification 
performance on Norwegian test data is given in Table 4 in Appendix E.

The resemblance between the observed and predicted KM curves in 
Figs. 4 further suggest a capacity to generalize from the Norwegian data 
to predict the outcomes in the Estonian data. The trends observed for 
the Norwegian KM curves in Fig. 2 resembles the observed and pre-

dicted Estonian curves, where the event rate is slightly over-estimated 
for younger women and slightly under-estimated for older women.

4. Conclusion and future work

To reduce the high number of excessive exams in population-level 
cervical cancer screening, personalized risk prediction algorithms can 
be used to inform new guideline-based recommendations. Similarities 
in how these programs are implemented in European countries presents 
an opportunity to develop prediction algorithms generalizing to multi-
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Fig. 3. Risk prediction over the Estonian test set. Prediction algorithms are hidden Markov model (HMM), hierarchical HMM (H-HMM), matrix factorization (MF) 
and recurrent neural network (RNN). The area under the coverage curve is bounded to Φ ∈ [0, 2].

Fig. 4. Event classification over the Estonian test set. Prediction algorithms are hidden Markov model (HMM), hierarchical HMM (H-HMM), matrix factorization 
(MF) and recurrent neural network (RNN).

ple populations. To explore these opportunities, we conducted a cross-

population comparative study of prediction algorithms, assessing their 
abilities to predict cervical cancer development and to generalize across 
populations, using data from the Norwegian and Estonian cervical can-

cer screening programs.

The prediction algorithms were derived from the Norwegian screen-

ing data, which was also used to validate the algorithms internally, 
and we used data from the Estonian screening population for external 
validation. Our numerical result indicate a strong ability in the algo-

rithms to generalize from across populations. Although the algorithms 
did not achieve satisfactory discriminative performance, performance 
results from external validation are highly similar to internal validation 
results.

To further enhance the accuracy of the prediction algorithms, we 
recommend integration of additional data related to cervical cancer risk 
factors, such as HPV and smoking status. Including additional predictors 
may improve performance even for highly scarce screening data with 
few exam results per screening history.
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Summary points

Background knowledge:

• Integrating existing programs for cervical cancer screening with 
personalized risk prediction algorithms can enable more targeted 
screening and contrive preventive healthcare innovations.

• Algorithms developed for population-level cervical cancer risk pre-

diction have shown promising performance in internal validation 
on more homogeneous data, but their ability to generalize to exter-

nal populations remains to be assessed.

Contributions:

• This study examines the effectiveness of personalized prediction 
algorithms across different populations, using data from the Nor-

wegian and Estonian cervical cancer screening populations.

• Results from numerical experiments demonstrate the potential for 
generalizing risk prediction algorithms to external populations.
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Appendix A

Table 1 and Table 2 provide summary statistics on the Norwegian 
and Estonian cohorts before and after applying the filtering criteria de-

scribed in Section 2. Ethnic group information and socioeconomic status 
is not obtainable from the screening datasets in this study.

Appendix B

The HMM prediction algorithm presented in [6] is based on the time 
in-homogeneous HMM from [14]. The transition probabilities of this 
HMM are specific to disjoint age intervals. Specifically, the transition 
probability matrix 𝐆𝑘(𝑡) at age 𝑡 is derived from the transition inten-

sity parameters 𝐐𝑘 specific to the age interval 𝑘∶ 𝜏𝑘 ≤ 𝑡 < 𝜏𝑘+1. The 
approach to obtain the transition probabilities is based on the solution 
to the forward Komolgorov equations

𝐆𝑘(𝑡) =𝐆(𝑡0) exp(𝐐𝑘 × 𝑡). (7)

A common choice for the initial condition in (7), is 𝐆(𝑡0) = 𝐈 equal to 
the identity matrix. However, our preliminary experiments showed that 
𝐆(𝑡0) = 𝐈 produced discontinuities in the prediction estimates for 𝑘 > 0. 
One explanation for this observation is that the identity initial condition 
does not account for temporal dependencies between the age intervals. 
However, we found that adapting the initial condition to the specific 
age interval reduced variability in prediction estimates. Specifically, we 
use 𝐆𝑘(𝑡0) = 𝐈 for 𝑘 = 0, and for 𝑘 > 0 we defined

𝐆𝑘(𝑡0) =
𝑖∏

𝑗=1
𝐆(𝜏𝑗 ) =

𝑖−1∏
𝑘=0

exp(𝐐𝑘 × (𝜏𝑘+1 − 𝜏𝑘)).

This adjusts the initial condition to a specific age interval, and the esti-

mate for the adjusted transition probabilities becomes

𝐆𝑘(𝑡) =𝐆𝑘(𝑡0) exp(𝐐𝑘 × (𝑡− 𝜏𝑘)). (8)

In this paper, we use (8) to estimate the transition probabilities for both 
the HMM and the H-HMM.

Appendix C

The error model for the MF algorithm is based on a normal distribu-

tion with mean time-varying parameters Ψ and a variance 𝜎2 = 1∕(2𝜃). 
Let 𝐘 ∈ℕ𝑁×𝑇 be a matrix representation of 𝑁 screening histories over 
𝑇 time points, as described in [7]. The likelihood of the screening data 
is given by

𝑝(𝑌 ∣ 𝜃,Ψ) =
∏

(𝑛,𝑡)∈Ω
 (𝑌𝑛,𝑡,1∕2𝜃,Ψ𝑛,𝑡)

=
∏

(𝑛,𝑡)∈Ω

√
𝜃√
𝜋
exp(−𝜃(𝑌𝑛,𝑡 −Ψ𝑛,𝑡)2)

=
(

𝜃

𝜋

) |Ω|
2 exp

(
−𝜃

∑
(𝑛,𝑡)∈Ω

(𝑌𝑛,𝑡 −Ψ𝑛,𝑡)2
)

Here, |Ω| denotes the total number of elements (𝑛, 𝑡) ∈Ω. By taking the 
log of the likelihood we have
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Table 1

Summary statistics of Estonian and Norwegian cohorts.

Statistic Estonia (%) Norway (%)

Number of women 372386 100 2072333 100

Women with low grade 15038 4.0 366030 17.7

Age at first exam Min 16 16

Mean 44.5 36.5

Std 11.2 16.8

Max 101 103

Exam counts Min 1 1

Median 3 5

Max 37 50

Exam results Normal 1249176 95.0 12186340 93.1

Low grade 22463 1.7 635496 4.9

High grade 25689 1.9 264738 2

Cancer 17058 1.4 7875 0.1

Exam types Cytology 1232662 93.8 12795114 97.7

Histology 81724 6.2 299335 2.3

Table 2

Summary statistics of the Estonian and Norwegian cohorts after applying the filtering 
criteria described in Section 3.1.

Statistic Estonia filtered (%) Norway filtered (%)

Number of women 11810 321419

Number of events 4607 39.0 125093 38.9

Age at first exam Min 16.4 16.0

Mean 32.8 29.5

Std 11.2 11.4

Max 87.7 89.9

Exam counts Min 4 4

Median 7 10

Max 28 50

Exam results Normal 61131 71.7 2726952 78.2

Low grade 18178 21.3 585242 16.8

High grade 5479 6.4 164325 4.7

Cancer 428 0.6 2192 6.3

Exam types Cytology 76390 89.6 3332798 95.8

Histology 8826 10.4 145913 4.8

ln𝑝(𝑌 ∣ 𝜃,Ψ) = |Ω|
2

(log𝜃 − log𝜋) − 𝜃
∑

(𝑛,𝑡)∈Ω
(𝑌𝑛,𝑡 −Ψ𝑛,𝑡)2

= 𝑙(𝜃).

By standard means of maximum likelihood estimation, we apply the 
derivative to 𝑙(𝜃) and solve for 𝑑𝑙∕𝑑𝜃 = 0, which yields the MLE esti-

mate

𝜃⋆ = |Ω|
2
∑

(𝑛,𝑡)∈Ω(𝑌𝑛,𝑡 −Ψ𝑛,𝑡)2
.

Appendix D

Fig. 5. Reliability curves illustrating the prediction algorithm calibration level against the 5a Norwegian and 5b Estonian validation sets.
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Appendix E

Table 3

Error-based metrics for event classification performance on Norwegian test data. Con-

fidence intervals were estimated from ten bootstrap samples over the test set.

Score HMM H-HMM MF RNN

Accuracy 0.587 ± 0.001 0.586 ± 0.001 0.576 ± 0.001 0.636 ± 0.001

Balanced accuracy 0.525 ± 0.002 0.514 ± 0.001 0.526 ± 0.002 0.569 ± 0.001

Sensitivity 0.346 ± 0.003 0.305 ± 0.002 0.381 ± 0.003 0.376 ± 0.002

Specificity 0.705 ± 0.001 0.723 ± 0.001 0.672 ± 0.001 0.762 ± 0.002

ROC AUC 0.546 ± 0.001 0.540 ± 0.001 0.534 ± 0.002 0.622 ± 0.001

Brier loss 0.546 ± 0.002 0.540 ± 0.001 0.534 ± 0.002 0.621 ± 0.001

⋆: Receiver operating characteristic

Table 4

Error-based metrics for event classification performance on Estonian test data. Confi-

dence intervals were estimated from ten bootstrap samples over the test set.

Score HMM H-HMM MF RNN

Accuracy 0.537 ± 0.006 0.556 ± 0.004 0.545 ± 0.004 0.624 ± 0.006

Balanced accuracy 0.499 ± 0.006 0.520 ± 0.004 0.512 ± 0.004 0.597 ± 0.005

Sensitivity 0.358 ± 0.009 0.384 ± 0.009 0.391 ± 0.008 0.490 ± 0.009

Specificity 0.641 ± 0.005 0.656 ± 0.004 0.634 ± 0.004 0.703 ± 0.007

ROC⋆ AUC 0.496 ± 0.007 0.513 ± 0.005 0.509 ± 0.006 0.651 ± 0.006

Brier loss 0.495 ± 0.007 0.513 ± 0.005 0.509 ± 0.006 0.651 ± 0.006

⋆: Receiver operating characteristic
9
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