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Abstract. The proliferation of high-content microscopes (∼ 32 GB for
a single image) and the increasing amount of image data generated daily
have created a pressing need for compact storage solutions. Not only is
the storage of such massive image data cumbersome, but it also requires
a significant amount of storage and data bandwidth for transmission.
To address this issue, we present a novel deep learning technique called
Guided U-Net (GU-Net) that compresses images by training a U-Net
architecture with a loss function that incorporates shape, budget, and
skeleton losses. The trained model learns to selects key points in the
image that need to be stored, rather than the entire image. Compact
image representation is different from image compression because the
former focuses on assigning importance to each pixel in an image and
selecting the most important ones for storage whereas the latter encodes
information of the entire image for more efficient storage. Experimental
results on four datasets (CMATER, UiTMito, MNIST, and HeLA) show
that GU-Net selects only a small percentage of pixels as key points (3%,
3%, 5%, and 22% on average, respectively), significantly reducing stor-
age requirements while preserving essential image features. Thus, this
approach offers a more efficient method of storing image data, with po-
tential applications in a range of fields where large-scale imaging is a
vital component of research and development.

Keywords: Compact Image Representation · Guided U-Net · Budget
Loss · Shape Loss · Skeleton Loss · Storage Efficient

1 Introduction

Rapid advancement in digital technology has led to an exponential increase in
the data generated daily. With the availability of the internet, social media, and
smartphones, people are generating a considerable amount of digital content
like texts, images, audio, and video. The sheer volume of data generated is quite
large, with estimates suggesting that humans create and consume around 328.77
million terabytes of data daily and 120 zettabytes of data every year, with videos
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accounting for over half of internet traffic 1. Even a single image from the domains
like microscopy, nanoscopy, telescope, and satellite can generate a very large
amount of data, similar in the orders of magnitude to the amount of data used
by humans in a year. Specifically, the latest advancements in microscopy, like
the CNI v2.0 microscope[15], can generate a single image of up to 32 gigabytes
(Table 1). In contrast, multiple images in a z-stack or a time-series video can
exceed a terabyte. Table 1 cites more such cases.

Table 1: Illustration of storage requirements for different microscopic data
Type of cell organelle Microscope Image dimension Size of image

Deconvolutional 2048× 2048 8.38 MB
Mitochondria OMX 1024× 1024 2.09 MB

Confocal 512× 512 0.52 MB
RCM scan 2048× 2048 8.38 MB

Vesicles, Lysosomes Deconvolutional 2048× 2048 8.38 MB
Confocal 100× 100 0.02 MB

Membrane / Cytoskeleton for Actin Deconvolutional 2048× 2048 8.38 MB
or Microtubule Epiflourescent 2048× 2048 8.38 MB

Liver Tissue CNI v2.0 10240× 10240 ∼ 32000 MB

.

Storing and analyzing such large-sized data pose significant challenges to the
scientific community, particularly in the field of biological sciences, where high-
quality microscopy provides crucial information for potential breakthroughs in
medical science. As we continue generating such voluminous data, a few of the
concerns, but not limited to, that may arise in the future are as follows.

– Storage issue: One of the primary reasons for the inefficient storing of
increased amounts of data is the requirement of expensive storage space.
Traditional data storage methods, such as on-premise devices, can quickly
become cost-prohibitive as data volumes increase. Thus, organizations may
require to invest in buying storage from options like cloud storage, which can
pose an extra cost to AI-driven products. Moreover, these increased numbers
of data centers, in turn, convert these solutions into less sustainable and
environmentally unfriendly ones.

– Energy consumption: Another issue with storing large amounts of data is
the energy required. Data centers, which store massive amounts of data, are
some of the largest energy consumers in the world. More data means more
use of energy to store.

– Data transmission cost: The increased volume of data means an increased
number of bits to transmit while sending data from one device to another.
This scenario will consume more time and hence cost.

1 https://explodingtopics.com/blog/data-generated-per-day
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Overall, storing data in its original form is resource-intensive and ill im-
pacts the environment. Thus, developing strategies for storing data using their
compressed representation is vital to retrieve essential information only when
required. By the term compressed representation of a datum (say, D), we mean
here storing it with less memory (say, D′), i.e., memoryUsage(D′) ≪ memo-
ryUsage(D). However, in the present work, we try to tackle this imminent prob-
lem in the premise of images. The work aims to represent images with fewer
pixels while preserving their shape after kernel-based image reconstruction. In-
tuitively, to achieve the goal, we have tried to represent an input image (say,
I with dimension H × W ) by selecting its key points. Let the method select
m (≪ H ∗W ) number of key points. The key points can be stored as x and y
coordinates, costing 2∗m. We can construct a new image (say, O with dimension
H ×W ) by setting the key points, and then by employing kernel-based convolu-
tion, the I can be reconstructed. Lowering the value of m, we can achieve more
storage efficiency.

In this paper, we propose a deep learning-based method for the compressed
representation of an image. Please note that we have restricted ourselves to
gray-scale images. Our method involves training a deep neural network (U-Net
architecture[11]) to learn a compressed representation of images aiming to pre-
serve the overall shape of the image. During model training, we apply point
spread function (PSF) kernel-based image reconstruction from the set of selected
points that are required to remember. The model is guided by three different
losses, viz., budget, shape, and skeleton, and thus we call this model Guided
U-Net (GU-Net). GU-Net can effectively reduce the storage requirement for an
image to store.

2 Related Studies

The current work deals with representing image data in a compressed way while
aiming to preserve their shapes. Some similar approaches are boundary-based
representation, skeletonization, edge-based representation, and the like. Skele-
tonization is a popular approach for compact representation since it uses the
least number of pixels. Hence, we discuss some state-of-the-art skeletonization
approaches ranging from classical to deep learning.

2.1 Classical Approaches

Several conventional approaches exist for generating the skeleton of an image.
Here, for simplicity, we discuss four well-known classical approaches. The thin-
ning algorithms are one of the most popular approaches for skeletonization.
Thinning refers to removing pixels from a component’s boundary in an image
until obtaining single pixel width. Some popular thinning methods proposed
by Zhang et al. [17], Guo et al. [7], and Rosenfeld [12] relied on a set of rules
to remove pixels to form the skeleton iteratively. However, thinning algorithms
are sensitive to noise, and they may produce multiple skeletons or break the
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connectivity of the object in the image. The Medial Axis Transform (MAT) [6]
is another popular approach for skeletonization. The MAT is a mathematical
representation of the central axis of an object. It is obtained by estimating the
Voronoi diagram of the object boundary. The MAT has the advantage of pre-
serving the connectivity of the object in the image and can handle noise well.
However, generating the Voronoi diagram can be computationally expensive, es-
pecially for large-sized microscopy and nanoscopy images/videos. Morphological
operations, such as erosion and dilation, are primarily used in morphological
skeletonization. The morphological skeletonization algorithm involves iterating
a set of morphological operations until a skeleton is obtained. Methods following
this approach have the advantage of being implementation friendly and can han-
dle noise to some extent. However, the resulting skeleton may be thicker than
the skeleton obtained by other methods. Distance transform that computes the
distance of each pixel in an object from the object boundary is also used to
obtain the skeleton of an object by finding the points where the distance func-
tion is maximized. Distance transform-based skeletonization has the advantage
of being fast and efficient. However, it may not preserve the connectivity of the
object in the image and is susceptible to noise.

2.2 Deep Learning Approaches

Recently researchers have been focusing on designing deep-learning methods to
extract the skeleton from an image. It treats the problem as either a pixel-to-pixel
classification or an image-to-image translation. In both cases, a deep learning-
aided segmentation protocol is used. A few deep learning-based methods dealing
mentioned problem are discussed here. DeepSkeleton [14] proposes a multi-task
learning framework that simultaneously learns the object skeleton and the ob-
ject’s scale at each pixel. The method is based on holistic edge detection that
produces a set of side outputs used to refine the object skeleton at different
scales. This framework consists of two key components: a Scale-associated Deep
Side Output (SDSO) and a multi-task loss function. The SDSO module uses
a series of convolutional layers to extract features at different scales from the
input image. The multi-task loss function combines a skeletonization loss and a
scale estimation loss, which jointly optimize the network to produce high-quality
skeletons at multiple scales. It can be used on natural images. PSPU-SkelNet [2]
uses three U-Net architectures for extracting point clouds from a given shape
point cloud. The authors also introduce a novel loss function called the Sym-
metric Chamfer Distance (SCD) loss, which considers the extracted skeleton’s
accuracy and completeness. The SCD loss is defined as the average distance
between each point on the Ground Truth (GT) skeleton and its nearest point
on the predicted skeleton, and vice versa. SkelGAN [9] tries font skeletonization
using a modified U-Net structure and a PatchGAN discriminator. The authors
also proposed a novel loss function called the skeleton consistency loss, which
encourages the generator to produce skeletons that match the structure of the
input font image and have consistent topology and connectivity. In work [1], the
authors used MAT to generate the skeleton from a binary image. This algorithm
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first computes the MAT of the object, and then the skeleton is obtained by
pruning the MAT based on a set of criteria, such as the degree of curvature and
the distance of points from the boundary of the object.

The aforementioned approaches focus primarily on skeleton generation from
natural or binary images. It is noteworthy to mention that our focus is not on
generating the skeleton of an image but on obtaining a compact representation
of an image from where we can regenerate the image using some simple but
effective convolutional operator. Thus, our representation might differ visually
from the actual skeleton but the regenerated images look similar to the actual
image. This discussion is clear from the images shown in Fig. 1. In this figure, we
showcase the problem associated with skeleton-based (see Fig. 1) or edge-based
(see Fig. 1) reconstruction when employed on an epifluorescent mitochondria
images. This figure also contains output from the current method (see Fig. 1).

Fig. 1: Visual comparison of (A) original image taken from UiTMito [13] against
reconstructed images obtained by employing PSF-based reconstruction from the
compact representations generated using (B) our method (SSIM score= 0.9766)
(C) skeletonization [7] (SSIM score = 0.9516) (D) edge detection [5] (SSIM score
= 0.9040)

3 GU-Net: Detailed Description

In this section, we introduce GU-Net, a semi-supervised deep learning model
used for shape-preserving compact representation of 2D data. We consider 2D
data as a set of points in Euclidean space, and GU-Net suppresses data points
while trying to maintain the original shape. A crucial aspect of our method is
the ability to reconstruct the original data from its compact version. We employ
our reconstruction technique (see section 3.3). We use the U-Net architecture as
a base segmentation network to segment an image into a set of points. However,
we incorporate three loss functions to constrain the segmentation process: the
skeleton loss encourages the model to select points near the skeleton of an in-
put object; the shape loss guides the model to generate images with persistent
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shapes; and the budget loss controls the number of selected points, which the
user specifies. Fig. 2b shows the overall architecture of the proposed method.

(a) Overall working procedure of the proposed method

(b) Used U-Net architecture with associated loss functions

Fig. 2: Proposed GU-Net architecture that accepts an image and generates its
compact representation

3.1 Base Segmentation Network

The segmentation network used in GU-Net shares many similarities with the U-
Net architecture [11]. Specifically, the up and down sampling components remain
unchanged, while modifications have been made to the input feeding mechanism
and the loss function. The selection of the U-Net model for this problem is
based on its resilience in diverse applications that require accurate segmentation
of images, such as biomedical image analysis. The strength of this architecture
lies in its ability to generate high-resolution output images while maintaining the
spatial information of the input image. This feature makes it particularly useful
in object detection and recognition tasks, where preserving object boundaries is
crucial. Moreover, the U-Net architecture can handle various input sizes and is
computationally efficient, making it suitable for real-time applications.

During model design, instead of providing binary masks as labels to the U-
Net architecture, we provide the skeleton of the input images generated by the
method proposed by Zang et al. [17] as segmentation GT for the network. Such a
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setting encourages the network to select key points near the skeleton of the input
image. One can feed the edges to the network as GT images, but such a setting
will lead to selecting more key points. In addition to this, three loss functions
(discussed in subsection 3.2) have been designed here to guide the network to
select better key points.

3.2 Loss Functions

It has already been mentioned that GU-Net is guided by three different loss
functions: skeleton loss, budget loss, and shape loss. Here, we discuss these loss
functions.

(a) Shape loss (b) Skeleton loss

(c) Budget loss

Fig. 3: Computation of different loss functions used in this work

Given an image I, output image O is generated by a segmentation network
M (here GU-Net) and is represented by Eq. 1.

M(I) = O(∼ I) (1)

Skeleton Loss: The skeleton loss guides the GU-Net to choose key points from
the neighbour of the skeleton. The skeleton of the training images is provided
to the GU-Net as a segmentation GT. Given an input image I, the skeleton S
is calculated using Zhang’s algorithm. The BCE loss is then calculated between
O and S (see Eq. 2).

Lskel(O,S) = −W ∗ [S · log(O) + (1− S) · log(1−O)] (2)
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Budget Loss: The budget loss works towards minimizing the number of se-
lected key points from I. The number of selected pixels in O is calculated by
binarizing O using a global threshold value. Given threshold t, binarized version
Bo of O is calculated using Eq. 3.

Bo(x, y) =

{
0, if O(x, y) ≤ t

1, otherwise
(3)

During model training, t = 0.3 is set. Thus, n =
∑∑

Bo(x, y) is the number
of selected key points in O. Next, we calculate the L1 norm (see Eq. 4) between
n and a small integer n′, user input representing the selected key points.∑

Bo = Lbudget = |n− n′| (4)

Shape Loss: The shape loss is an essential component of our method that aims
to preserve the shape of the input image when reconstructed. This loss serves as
a counterbalance to the budget loss and helps create a compact representation
resembling the input image. We use a predefined convolutional filter to generate
O to achieve this. For this purpose, Bo is convolved by a 5×5 kernel to create the
reconstructed version (say, Ro). By spreading the effect of a pixel to its neigh-
boring area, we ensure that the semblance of the original image is maintained.
Next, we then calculate the Structural Similarity Index Measure (SSIM) based
loss between Ro and I (see Eq. 5) to ensure that the restored image attains a
close resemblance to I.

SSIM(Ro, I) = Lshape =
(2 · µRo

µI + c1) · (2 · σRoI + c2)

(µ2
Ro

+ µ2
I + c1)(σ2

Ro
+ σ2

I + c2)
(5)

In Eq. 5, µRo
, and µI represent the pixel sample mean of Ro, and I re-

spectively while standard deviations of all pixel intensities present in Ro, and
I are represented by σRo , and σI respectively. Also, σRoI is the covariance be-
tween Ro and I. c1 = k1L

2, c2 = k2L
2 are two variables to stabilize the division

with a weak denominator where L is the dynamic range of pixel values while
k1 = 0.01, k2 = 0.03 are two constant values.

3.3 Method of Reconstruction

To reconstruct the actual image from compact representations generated by GU-
Net, we use a simple but efficient PSF kernel. We convolve this kernel with Bo

to generate the Ro. However, we use two more kernels: the Gaussian kernel, and
the Mean kernel to test the effectiveness of our choice i.e., the PSF kernel. A
comparative result is shown in Fig. 4, which visually ensures the effectiveness of
the use of the PSF kernel in the reconstruction process.
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Fig. 4: Illustration of reconstruction process with varying kernels applied on a
sample image taken from the UiTMito [13] dataset

4 Result and Discussion

In this work, we have designed GU-Net, which tries to generate the compressed
representation of an input image. We have evaluated its performance on four
diversified datasets to test its effectiveness. Notably, GU-Net is trained only on
one dataset, and the trained module generates the compressed representation
on other datasets. We have provided qualitative as well as quantitative perfor-
mance. Additionally, we have performed some classification tasks to test how
the reconstructed images behave.

4.1 Database Description

The datasets in use are described here. Two handwritten (digit and word images)
and two fluorescence microscopy datasets are considered for testing GU-Net’s ap-
plicability almost on contrasting domains. MNIST [16] is a well-known dataset
of handwritten digits widely used to benchmark different classification prob-
lems. The dataset consists of 70,000 images of handwritten digits, each of which
is grayscale and has a resolution of 28× 28 pixels. The images are labeled with
their corresponding digit. CMATERdb2.1.2 [3] (CMATER) is a handwritten
Bangla word recognition dataset. It contains handwritten words representing 120
popular city names of the state of West Bengal, India. Each city name has 150
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different handwritten samples. In short, this database is used for 120 class clas-
sification problems, primarily used for holistic word recognition purposes [10].
The UitMito dataset [13] is a collection of fluorescence microscopy images of
live cells stained with a mitochondrial-specific fluorescent dye. The dataset con-
tains 1000 2D grayscale images, each with a resolution of 1024 × 1024 pixels,
and was captured over 1000 seconds. The dataset is split into a training set
of 800 images and a test set of 200 images. The 2D HeLa [4] (HeLa)dataset
consists of fluorescence microscopy images of HeLa cells that have been stained
with organelle-specific fluorescent dyes. The dataset includes images of 10 or-
ganelles, including DNA (nuclei), endoplasmic reticulum (ER), cis/medial Golgi
(Giantin), cis Golgi (GPP130), lysosomes (Lamp2), mitochondria, nucleoli (Nu-
cleolin), actin, endosomes (TfR), and tubulin.

4.2 Model Training

For training the model, we use the MNIST dataset. The model is trained on
the MNIST dataset. The training dataset was divided into the training and the
validation set. The training set consists of 50,000 images, and the validation
dataset consists of 10,000 images. The images are of size 28 × 28. The Adam
optimizer is used with a learning rate of 0.001. A batch size of 512 is used for a
total of 10 epochs. Here we present experimental results for the hyperparameters
used in the model training as shown in Fig. 5. We plot the RMSE and SSIM
scores corresponding to the hyperparametric setup: the pixel budget and the
pixel intensity threshold. As evident from Fig. 5a, we get the least RMSE at the
setup point (10, 0.3), and we also get the highest SSIM score at point (10, 0.3)
as shown in Fig. 5b.

(a) (b)

Fig. 5: Performance of the GU-Net in terms of (a) RMSE, and (b) SSIM scores
with varying hyperparameters marked as (pixel budget, pixel intensity threshold)

4.3 Results

We assess the performance of GU-Net both qualitatively and quantitatively. We
show some reconstructed images in Fig. 6. The figure shows that the proposed



Guided U-Net aided Efficient Image Data Storing with Shape Preservation 11

model can generate very close to the actual image while having less number of
key points that are needed to store the images for future use (see Fig. 4).

Fig. 6: Original (top) and reconstructed (bottom) images of the CMATER,
HeLA, and MNIST datasets (left to right)

For quantitative analysis, we use two different evaluation strategies. We
perform image-to-image comparisons and classification performance on recon-
structed images. We use root mean squared error (RMSE) and SSIM metrics
for image-to-image comparison. The results are shown in Table 2a. This table
shows the GU-Net’s performance with varying kernels used during the recon-
struction process on the top of selected key points. The threshold values are
chosen experimentally (results shown in Fig. 5). Using these threshold values,
significant compression is achieved as shown in Fig. 7a while still maintaining
high reconstruction similarity scores (see Table 2a). The total number of pixels
in the photos, expressed in bytes, was used to compute the storage needed for
the original photographs. The total number of pixels for the entire dataset was
then determined. We only record the key points’ coordinates in bytes for the
compressed picture representations. The full dataset is gone through this pro-
cess again. The dataset’s photos’ dimensions are stored in an additional 2 bytes.
These results ensure that the reconstructed images retain the crucial features of
the original images and the overall quality of the reconstructed images is closely
maintained.

We also use classification accuracy to test the quality of the reconstructed
images. Our goal does not involve generating the best scores for any particular
dataset. Instead we test how the classification performance is affected by the pro-
posed compressed representation of the images. We use a pre-trained EfficientNet



12 Banerjee et al.

Table 2: Quantitative comparisons of different compact representation methods

(a) GU-Net with varying kernels. Here GU-Net se-
lects keypoints and the mentioned kernels are used
in the reconstruction process. Th. represents the
threshold value used for selecting keypoints in GU-
Net. ↑, and ↓ represent larger, and smaller values
mean better result respectively.

Dataset Th. Kernel SSIM (↑) RMSE (↓)
PSF 0.7943 0.0628

MNIST [16] 0.5 Gaussian 0.8397 0.0621
Mean 0.8041 0.0742

PSF 0.9526 0.0256
UiTMito [13] 0.005 Gaussian 0.9431 0.0392

Mean 0.9448 0.0364

PSF 0.8344 0.0328
CMATER [3] 0.5 Gaussian 0.8267 0.0384

Mean 0.8139 0.0455

PSF 0.8885 0.0654
HeLA [4] 0.05 Gaussian 0.8592 0.0704

Mean 0.8517 0.0744

(b) GU-Net with other compact represen-
tation techniques

Dataset Method SSIM (↑) RMSE (↓)
GU-Net 0.8397 0.0621

MNIST Skeletonization 0.7926 0.1063
PSPU-SkelNet 0.7470 0.1501
Canny Edge 0.7922 0.1104

GU-Net 0.9526 0.0256
UiTMito Skeletonization 0.9393 0.0710

PSPU-SkelNet 0.9407 0.0705
Canny Edge 0.9388 0.0710

GU-Net 0.8344 0.0328
CMATER Skeletonization 0.7918 0.0648

PSPU-SkelNet 0.7974 0.0775
Canny Edge 0.7916 0.0783

GU-Net 0.8885 0.0654
HeLA Skeletonization 0.8337 0.1287

PSPU-SkelNet 0.8873 0.0916
Canny Edge 0.8034 0.1499

B0 [8] model for the classification tasks. The classification task is performed us-
ing both original and reconstructed images. This experiment was conducted on
MNIST, CMATER, and HeLa datasets, and the results are presented in Fig.
7b. The classification accuracy obtained on reconstructed MNIST, CMATER,
and UiTMito images has dropped by 1.66%, 2.41% , and 13.16% , respectively.
From Figs. 7a and 7b, it can be observed that in the case of HeLa dataset,
the model demonstrated relatively poorer performance compared to the other
datasets. The reason is that this dataset’s biological structures contain many
scattered points, leaving little room for ample reduction. Further, there is much
bleeding of labeling fluid around the cell organelles, leading to a less efficient
compact representation. Overall, our approach demonstrates promising results
across all four datasets, showcasing the effectiveness of our discussed method for
data compression, visualization, and preservation tasks.

4.4 Comparison with Other Compact Image Representation

To test the effectiveness of GU-Net aided image compact representation con-
cerning some existing image representation techniques, namely Skeletonization
[7], PSPU-SkelNet [2], and Canny edge [5], we choose the reconstruction ker-
nel that performs the best (see Table 2a) during the reconstruction process.
The performances of other existing methods and GU-Net are shown in Table
2b. Our method provides better SSIM and RMSE scores than traditional (i.e.,
Skeletonization and Canny Edge) and deep-learning-based (i.e., PSPU-SkelNet)



Guided U-Net aided Efficient Image Data Storing with Shape Preservation 13

(a) Pixel and storage reduction (b) Classification performances

Fig. 7: The comparison between compact representation and classification per-
formances. The UiTMito dataset is not applicable for classification tasks.

methods. Moreover, when considering the visual quality of the reconstructed
images (see Fig. 1), a noticeable distinction further supports our approach’s
efficacy.

5 Conclusion

In the present work, we develop GU-Net that selects key points to compactly
store an image. GU-Net uses budget, shape, and skeleton losses while using U-Net
architecture in the backbone. The effectiveness of the compact representation of
images using GU-Net has been evaluated on four datasets: MNIST, CMATER,
UiTMito, and HeLa. The visual and quantitative findings are promising. Despite
the success of GU-Net, there is still room for improvement. It has already been
observed that GU-Net fails to achieve similar results compared to others due to
the presence of scattered points. Therefore, fruitful techniques, at least an effec-
tive reconstruction process, need to be devised for images with ample scattered
points like HeLa in the future. GU-Net could be applied to more data to test
its generalization capabilities. Finally, the work can be extended to 3-channel
images in the future.
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