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GENERAL BACKGROUND  
Galen (AD 129 – 199/217), a Greek physician, anatomist and philosopher, 

and probably the best known physician of the Roman ancient times, thought 

that the liver was the main organ of the human body, arguing that it emerged 

first of all the organs in the formation of a fetus. He also thought that 

circulation was a double system of distribution, where the venous blood was 

created in the liver and the arterial blood in the heart, from where the blood 

was distributed to the rest of the body and was later regenerated in liver or 

heart (1). Although many of Galen’s theories have been proven wrong long 

time ago blood is in fact produced in liver during fetal life and the liver is 

indeed a vital organ with an extraordinary variety of functions.  

The liver may be viewed as the major chemical plant of the body and plays 

both the role as a producer and a garbage disposer. The producing activity 

includes synthesis of the major plasma proteins (e.g. albumin, proteins 

involved in coagulation, complement, and acute-phase reactions), as well as 

other pivotal molecules such as glycogen, cholesterol and urea (2). The liver 

also plays a central role in detoxification and drug metabolism (3), and is an 

important host defence organ. The phagocytic function of the numerous liver 

macrophages (Kupffer cells) is well described (2, 4-6). Another important, yet 

less well studied host defence function of the liver is the efficient removal from 

blood of unwanted self and foreign soluble macromolecules, such as waste 

products from connective tissue turnover, and various microbial constituents 

(7, 8). This function is mostly carried out by the endothelial cells that line the 

numerous capillaries (i.e. sinusoids) of the liver lobules. These liver sinusoidal 

endothelial cells (LSECs) are characterized by a very thin and perforated 

(fenestrated) cytoplasm, the expression of several high affinity endocytosis 

receptors, and a well developed endocytic apparatus (7-10). 

Despite the effective LSEC endocytosis of foreign material and endogenous 

waste products (reviewed in (8)) and other deleterious substances such as 

oxidized low density lipoproteins (LDLs) (11) via receptors (i.e. the mannose 

receptor (MR), scavenger receptors (SRs)) that are also regarded as major 

players in innate immunity (i.e. so-called pattern recognition receptors; PRRs) 
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the role of the LSEC as part of the immune system is still unclear, and 

information about the important scavenger function of these cells is not 

included in widely used textbooks in immunology,  cell biology, and physiology 

(12-14).  

The main focus of this thesis work was directed to gain more information 

about the expression and functions of PRRs in LSECs, and their possible 

roles in LSEC biology and host defence, as well as the effect of aging on the 

LSEC scavenger function. 

 

The microenvironment of the liver sinusoidal endothelial cell 

(LSEC) 
Approximately 80% of the blood that perfuses the liver enters via the hepatic 

portal vein that drains the intestine, pancreas and spleen. This blood is poorly 

oxygenated and rich in nutrients and may also contain toxins, bacteria and 

virus from the gut. In the liver lobules, the venous blood from the terminal 

branches of the portal vein mixes with well-oxygenated blood from the hepatic 

arterial branches and travels through the numerous sinusoids of the liver 

lobules before entering the central venules and hepatic veins, from where it 

drains into the inferior vena cava (15).  

The organization of the sinusoids varies within the hepatic lobule; near the 

portal venules and hepatic arterioles, the sinusoids are arranged in 

interconnecting polygonal networks, whereas further away from the portal 

venules the sinusoids become organized more as parallel vessels that 

terminate in central venules (15)(Fig.1). The liver sinusoids are narrow 

vessels (diameter approximately 5-7 µm (16)). Here the traffic between blood 

and the liver parenchymal cells (PCs; hepatocytes) occurs through the 

fenestrated endothelium and the subendothelial space of Disse.  
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Fig. 1: Scanning electron microscopy (SEM) image of a rat liver 

SEM image of a rat liver showing the structure of the classic liver lobule with a portal 
venule (PV), central venule (CV), numerous sinusoids (arrow) and parenchyma (*). 
Blood flows from the PV to the CV through the sinusoids Bar is 100 µm. (Micrograph 
kindly provided by Dr. Karen Sørensen). 

The PCs make up most of the liver cell volume (approximately 80%; 

measured in male Sprague-Dawley rats (17)) and represents the hepatic 

“chemical reactor” where most of the intermediary metabolic processes and 

synthetic reactions take place (2). 

The space of Disse is located between the endothelium and the PCs and is 

filled up with microvilli from the PCs and a loose matrix consisting of 

proteoglycans (e.g. heparan sulphate) and some proteins, including collagens 

type I, III, IV, laminin, and fibronectin (examined in human and mouse livers) 

(18-20). Stellate cells (SCs), which are the pericytes of the sinusoidal vessels, 

are also located in the space of Disse, whereas Kupffer cells (KCs) and 

different types of resident lymphocytes are normally located at the luminal 

aspect of the sinusoidal lining. The various populations of non-parenchymal 

!"#
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cells (NPCs) found in connection with the liver sinusoids (Fig. 2) will be 

presented in greater detail in the next paragraphs.  

 

 

Fig.2: Localization of the main cell types of the liver sinusoid 
Schematic drawing of the localization of parenchymal cells (hepatocytes; PC), liver 
sinusoidal endothelial cells (LSEC), Kupffer cells (KC), stellate cells (SC) and 
lymphocytes (i.e. natural killer cells; NK). 

  

The Kupffer cells (KCs) make up the largest population of macrophages in the 

body (approximately 20 % of total macrophages in young male C57BL/6 mice) 

(21) and constitute approximately 30% of the NPCs (measured in male 

Sprague-Dawley rats) (17). However, the relative and absolute numbers may 

vary between species and age groups (22). The KCs are located towards the 

sinusoidal lumen, either on top or in between the LSECs (23). Their most 

studied function is the removal of blood borne particulate material by 

phagocytosis (e.g. bacteria and bacterial components, red blood cells, 

complement components, immune complexes, and collagen fragments 

interacting with immune competent cells) (24-27). Many of these substances 

come directly from the gut and the KCs act like an effective filter cleaning the 

blood before it enters the general circulation. 

KCs express several receptors involved in phagocytosis, and several of these 

such as SRs are regarded as PRRs of the innate immune system. PRRs are 
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defined as a group of proteins that recognise special molecular patterns 

present in pathogens (pathogen-associated molecular patterns, PAMPs), e.g. 

lipopolysaccharide (LPS) from the wall of gram negative bacteria, 

unmethylated-CpG DNA from bacteria or virus, and flagellin from flagellated 

bacteria (28, 29). The PRRs can also recognize molecules from the host that 

are able to elicit an immune response, so-called alarmins or damage-

associated molecular patterns (DAMPs) (30, 31), such as heat-shock proteins 

(32) or hyaluronan fragments (33).  

The PRRs on KCs include many Toll-like receptors (TLRs 1 to 9) (34-36); this 

type of receptors will be presented more in detail later in the thesis. In 

addition, KCs also express several SRs, including SR class AI/II, which 

recognizes acetylated and oxidized LDLs, LPS and lipoteichoic acid (part of 

the gram positive bacteria cell wall) (37, 38), MARCO (in mouse) that 

recognizes Staphylococcus aureus inactivated bacteria and acetylated LDL 

(39) and SR-BI recognizing high density lipoproteins (HDL) (40). They also 

express Fcγ-receptors (FcγRs) that recognize IgG-immune complexes (41), 

complement receptors 1, 3 and 4 (CR1, CR3 and CR4) (42), and a galactose 

receptor, identical to the asialoglycoprotein receptor expressed by PCs (43, 

44).  

Of note, an important PRR, the MR, which is expressed on many extrahepatic 

macrophages, has been reported to be absent in human KCs (45) and to be 

expressed to a much lower extent in mouse and rat KCs than in LSECs (46, 

47).  

The KCs can also act as antigen presenting cells (APCs) and induce T-cell 

mediated responses, and like other macrophages they produce and release a 

wide range of molecules involved in host defence reactions (4);  e.g. 

activation via TLRs leads to production and release of proinflammatory 

cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), 

interleukin-6 (IL-6), and interferon-γ (36, 48). 

Stellate cells (SCs; also named Ito cells, or vitamin-A storing cells (49)) are 

specialized pericytes that are located in the space of Disse and extend their 
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processes to wrap around the endothelial wall. These SC protrusions react to 

chemotactic signals to generate a contractile force (50) that may regulate the 

diameter of the sinusoid lumen. This cell type represents approximately 1.4% 

of the liver cell volume (measured in Sprague-Dawley rats) (17). They are the 

main site of vitamin-A storage in the body (2, 23), and are thought to 

represent the main source of extracellular matrix components in the sinusoidal 

wall (e.g. collagen type I, III, IV, V and VI, hyaluronan, heparan sulphate, and 

fibronectin), as well as extracellular matrix degrading enzymes 

(metalloproteinases) (23, 49). The SCs also produce several growth factors 

and cytokines for instance transforming growth factors (TGFs), IL-6, IL-10 and 

platelet derived growth factor (49), and the cells have been intensely studied 

in connection with the development of liver fibrosis (51).  

The liver also contain several resident lymphocyte populations, which include 

NK cells (also called pit cells), NK T cells, naïve T-cells and B-cells (reviewed 

in (52)). These cells are located in the lumen of the sinusoid and extravasate 

to reach the parenchyma in inflammation (53, 54). Recently it was reported 

that LSECs present chemokines (CXCL12 and CXCL9) to CD4+ T-cells that 

enhance their transmigration (53). NK cells are the best studied of the 

resident liver lymphocytes, and constitute approximately 10% (in mice) to 30- 

50% (in rat, human) of the lymphocytes in healthy liver (5). They are cytotoxic 

granular lymphocytes that destroy tumor cells, viruses, intracellular bacteria, 

and parasites (55-57). Dendritic cells are also reported in liver, mostly located 

in the vicinity of central veins and portal tracts and not in direct contact with 

the sinusoids (58, 59). 

The different liver cells need to interact in order to function correctly, and 

communication occurs both through juxtacrine and paracrine signalling (60, 

61). For example it has been shown that LSECs require vascular endothelial 

growth factor (VEGF) produced by PCs (and/or SCs) to maintain their 

fenestrae (61). The PCs may also make direct contacts with cells at the 

luminal side of the endothelium, e.g. lymphocytes and KCs, through the LSEC 

fenestrae (2, 62).  
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LSEC localization, morphology and functions 

Localization and morphology  
Forty years ago, Eddie Wisse’s electron microscopy studies of perfusion fixed 

liver specimens from rat showed for the first time that a distinct type of 

endothelial cells lined the liver sinusoids. The cells had numerous open pores 

(fenestrae), and as opposed to most other types of endothelia, the cells did 

not rest on a basal lamina. The cells further contained many bristle-coated 

(now named clathrin-coated) micropinocytic vesicles and fewer mitochondria 

than most other cell types (10, 63) (Fig.3).  

Since these pioneering observations, fenestrated LSECs without a continuous 

basal lamina have been identified in several mammalian species (64-68), as 

well as in chicken (68) and bony fish (69). In general, the sinusoidal 

endothelium is very thin (150-175 nm in young humans (70)) and the 

fenestrae (approximately 100-200 nm in diameter) are arranged in groups 

named sieve plates. The fenestrae diameter and number per cell area vary 

between species, strains and age-groups (reviewed in (71)), as well as with 

the location within the liver lobule (66). Thus, the diameter of fenestrae in 

centrilobular regions are wider than in periportal regions (e.g. 174.6 ±1.0 vs. 

147.2 ± 0.9 nm, respectively, reported in rat, (66)).  

Although the LSECs represent only a small fraction of the total volume of liver 

cells (2.8% of the liver cells or 45% of the NPCs in Sprague-Dawley rats (17)) 

they have been reported to contribute to around 45% of the total mass of 

pinocytic vesicles in liver, and contain around 17% of the lysosomal volume of 

young adult rat liver (17). The cells contain numerous clathrin-coated pits and 

vesicles, a well-developed endocytic machinery (9, 72), and the specific 

activities of several lysosomal enzymes are higher in LSECs than in PCs and 

KC (73), suggesting that these endothelial cells are geared to effective 

degradation of endocytosed material.  
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Fig. 3: Transmission electron microscopy (TEM) image of rat liver sinusoid 
TEM image of a rat liver sinusoid showing parts of two parenchymal cells (PC), two 
sinusoidal endothelial cells (LSEC), and a stellate cell (SC). Some of the 
characteristical features of LSECs are labelled; fenestrae organized in sieve plates 
(inside the circle, which encloses a sieve plate in a tangentially cut part of an LSEC), 
thin endothelium with fenestrae (arrow points to a fenestra in a transverse section of 
an LSEC), coated pits (*), lysosomes (L), and endosomes (E).  

Sieve function 
The concept of the liver sieve was created at the same time as the LSECs 

were discovered (10, 74, 75). The presence of real holes in the endothelial 

cells, without a basal lamina forming a diaphragm underneath the cells, 

should allow a “free” traffic of substance between the blood sinusoids and the 

subendothelial space of Disse and the PCs.  

It is now well recognized that the fenestrations permit the passage of a wide 

range of solutes and substrates, such as albumin and other plasma proteins, 

chylomicron remnants and lipoproteins, into the space of Disse (76), but 

excluding bigger particles like chylomicrons and blood cells. In addition, blood 

cells are thought to massage the plasma fluid through the fenestrations by 

virtue of the fact that their diameter is greater than that of a typical liver 

sinusoid (liver sinusoid: 5-7 µm; red blood cell: 7.3 µm) (16, 66); either by   

“forced sieving” (believed to be caused by the red blood cells passing through 

the sinusoids) and/or by “endothelial massage” (due to the fact that white 
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blood cells are bigger than the sinusoidal diameter and less plastic than the 

erythrocytes) (66).  

The ultrafiltration of fluid through the fenestrae is thought to be especially 

important for the hepatic metabolism of lipoproteins (77, 78). Le Couteur et al 

have suggested that there is a link between the defenestration commonly 

associated with aging and impaired clearance of cholesterol rich chylomicron 

remnants in elderly people, increasing the risk for development of 

atherosclerosis (78).  

Fenestrae are dynamic structures, whose diameter and number vary in 

response to a variety of hormones (e.g. acetylcholine, adrenaline, 

noradrenaline, serotonin), drugs (e.g. cocaine, nicotine, ethanol), and toxins 

(e.g. LPS), or even to changes in the underlying extracellular matrix (reviewed 

in (67)). During disease conditions fenestrae are often lost; e.g. in rat 

endotoxin shock resulted in a 40% reduction in LSEC porosity (both size and 

number of fenestrae were affected) (79); mice infected with mouse hepatitis 

virus type 3 showed a decrease in the number of fenestrae (80), and 

development of liver fibrosis leads to a progressive loss of fenestrae 

accompanied by development of a basal lamina (81). LSEC defenestration is 

also observed in experimental melanoma and lung cancer liver metastasis 

mouse models (82).  

Studies of fenestrae dynamics have been hampered by the fact that their 

diameter is smaller than the resolution limit for light microscopy, excluding 

imaging of these structures in live cells. However, recent advances in light 

microscopy techniques such as three-dimensional structured illumination 

microscopy (83) to enhance image resolution appear to be very promising 

tools to reveal new structural and functional information about fenestrations 

and sieve plates.  

Scavenger function  
Over the last 30 years increasing knowledge has accumulated about the role 

of LSECs as scavenger cells, a task they share with cells of the mononuclear 

phagocyte system, such as the liver KCs (7). 
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This central function of the LSECs was discovered by the beginning of the 

1980s. In 1981 Fraser et al. reported that radio-labeled hyaluronan injected 

intravenously into rabbit disappeared from blood at great speed and was 

taken up almost exclusively by the non-parenchymal fraction of the liver cells 

(84). Two years later Eriksson et al. reported that the LSECs were responsible 

for this uptake (85). Today a wide range of macromolecules (Table I), 

including various connective tissue molecules, modified plasma proteins and 

lipoproteins, and microbial constituents like unmethylated CpG are known to 

be cleared from the circulation mainly by the LSECs (7, 8, 11, 86-89).  

To perform their scavenger function, LSECs carry a set of endocytosis 

receptors enabling the cells to clear all major categories of biological 

macromolecules that are not supposed to circulate. These receptors include 

SRs (38, 90-92), in particular stabilin-1 and stabilin-2 (92-94), the MR (95) and 

the FcγRIIb2 (96, 97). In addition, LSECs express other receptors that may be 

involved in endocytosis (reviwed in (98)). However the importance of these 

other receptors for the scavenger function of LSECs is yet to be shown. 

Interestingly, blood clearance and organ distribution studies of SR and MR 

ligands in species representing different vertebrate classes have shown that 

the LSECs of amphibia, reptiles, and birds exert similar scavenger function as 

LSECs in mammals. In phylogenetically older vertebrates, distinct populations 

of specialized endothelial cells with a corresponding scavenger function as 

the mammalian LSECs are carried in either heart (endocardium) (99-102) or 

in kidney (venous sinusoids) (103-105) of bony fishes or in specialized gill 

vessels of cartilagenous fishes and jawless chordates (7). Due to the fact that 

these endothelial cells are located in different organs, depending on the 

vertebrate class, a common name cannot be assigned to the cells based on 

organ location. Therefore the term “scavenger endothelial cell” has been 

introduced reflecting the very active scavenging activity performed by these 

cells. Of note, the clearance function of the scavenger endothelial cells and 

macrophages is complementary: scavenger endothelial cells (including 

LSECs) normally perform clathrin-mediated endocytosis of colloids and 

soluble substances, and are usually not phagocytic, whereas macrophages 
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are professional phagocytes and responsible for clearance of particulate 

material (7, 106). 
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Table 1: Ligands that are endocytosed by the mammalian LSEC 

Endogenous ligands Receptor Reference 

Hyaluronan Stabilin-2a (92, 107, 108) 

Chondroitin sulphate Stabilin-2a (109, 110) 

Nidogen SR (111)  

Heparin n.db (112) 

Serglycin SR (113) 

N-terminal propeptides of types I 

and III procollagen 
SR, stabilin-2 (92, 114, 115) 

Collagen alpha chains (types I, II, 

III, IV, V, XI) 
MRc (86, 116, 117)  

C-terminal propeptide of type I 

procollagen 
MR (117) 

Tissue plasminogen activator MR (118) (115) 

Lysosomal enzymes MR (87, 119, 120)e 

Salivary amylase MR (121) 

Soluble immune complexes FcγRIIb2 (122) 

Modified host molecules Receptor Reference 

FSA SR, stabilin-1, stabilin-2 (11, 123) 

AGE-albumin SR, stabilin-2  (stabilin-1d) (124, 125) 

Oxidized LDL Stabilin-1, stabilin-2  (126) 

Agalacto-orosomucoid MR (127) 

Ahexosamino-orosomucoid MR (127) 

Exogenous ligands Receptor Reference 

LPS TLR4 (128) 

CpG oligodeoxynucleotides SR (89)f 

Invertase MR (129) 

Mannan MR (130) 

Ovalbumin MR (95) 

Ricin MR (46)  

SR, Scavenger receptor; n.d, not determined; MR, Mannose receptor; FSA, 
formaldehyde-treated albumin; AGE, Advanced-glycation end product; Ox-LDL, 
Oxidized low-density lipoprotein; LPS, lipopolysaccharide.  
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aUntil 1999 it was thought that the LSEC carried a distinct hyaluronan receptor 
mediating endocytosis of hyaluronan and chondroitin sulphate. However, the 
purification and characterisation of this receptor (72, 92), revealed that it also 
mediated uptake of typical SR ligands and in 2002 the receptor got the official name 
stabilin-2 (94). 
bOie et al. (112) reported that the uptake of heparin was via an unidentified receptor, 
distinct from stabilin-2. 

.cUptake of collagen α-chains was previously thought to occur via a specific collagen 
receptor. This receptor was purified in 2007 (86) and found to be identical to the MR, 
which has distinct binding sites for mannose and collagen α-chains.  

dAGE-albumin affinity to stabilin-1 is tested in transfected cell lines only (131, 132). 
eReference 87: Paper II in this thesis. fReference 89: Paper I in this thesis. 

 

Endocytosis mechanisms in the LSEC 
Endocytosis is defined as the uptake of material into a cell by an invagination 

of the plasma membrane and its internalization in a membrane-bounded 

vesicle, and can be divided into pinocytosis (uptake of soluble material) and 

phagocytosis (uptake of particles) (133).  Pinocytosis can be further divided 

into several categories of uptake modalities, the most common being clathrin-

mediated endocytosis and caveolin-mediated endocytosis. Other types are 

macropinocytosis (bigger area of the cell membrane that ruffles, gets 

invaginated and closes again) or bulk-fluid endocytosis (not receptor-

mediated, involving small invaginations of cell membrane (134)). In the 

present thesis the term receptor-mediated endocytosis refers to clathrin-

mediated endocytosis. 

Many studies have shown that the LSEC is a cell type specialized for effective 

endocytosis; the are richly equipped with lysosomes and pinocytic vesicles 

(10, 17), and show high expression of proteins involved in clathrin-mediated 

endocytosis such as clathrin, α-adaptin, β-adaptin, Rab4, Rab5, Rab7 and 

rabaptin5 (9), as well as high specific activities of lysosomal enzymes (73, 

135). A recent study showed a unique net-like distribution of clathrin heavy 

chains, and tubulin, the building blocks of microtubules, in LSEC; this network 

partially colocalized with endosomal markers (136). The intracellular transport 

of endocytosed material was altered by nocodazole (disrupts microtubules), 

but did not influence ligand internalization or the recycling endocytosis 
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pathway, suggesting that intact and functional microtubule networks are not 

required for internalization and recycling (136).  

The LSEC uptake of soluble macromolecules depends mainly on clathrin-

mediated endocytosis (137). The internalization of ligand is rapid: the half-life 

for the surface pool of ligand-MR complexes has been measured to be only 

10-15 sec in freshly isolated rat LSEC cultures (95). Receptor-ligand 

complexes are brought to early endosomes via coated vesicles and primary 

endosomes (138). The ligands usually dissociate from the MR and SR 

receptors in the early endosomes, and the receptors recycle back to the 

plasma membrane (93, 95, 139, 140). Ligand-receptor complexes may also 

be recycled back to the cell surface, however the role of this recycling is not 

clear (95, 139). Interestingly, unlike the fate of ligands taken up via the MR 

and SRs, which are mostly uncoupled from their receptors in the early 

endosomes, immune-complexes internalised via the FcγRIIb2 in LSECs are to 

a large extent returned to the cell surface (96, 141). This leads to a slow net 

internalization of cell-surface bound ligand with a half time of internalization 

measured to be about 15 min as compared to < 1 min by the MRs and SRs 

(95, 141, 142).  

The traffic from early to late endosomes in LSECs is also a rapid process. By 

using antibodies to early endosome antigen 1 (EEA1; an early-endosomal 

protein involved in endocytic membrane fusion (143)) Hellevik et al. showed 

by immune electron microscopy that the endocytosed ligand (fluorescein 

isothiocyanate (FITC) labelled denatured collagen) left the early endosomes 

20 min after internalization in rat LSECs in vitro (144). The traffic of denatured 

FITC-collagen from late endosomes to lysosomes was markedly slower and 

only 53% of the ligand was measured in the lysosomes after 16 hours (144).  

This process goes markedly faster in vivo, and e.g. the presence of 125I-

labelled degradation products of 125I-labelled FSA (an SR ligand), was 

measured in blood 10 to 12 min after intravenous injection in mice (87). 

Intravenous injection of 125I-tyramine-cellobiose labelled ovalbumin (an MR 
ligand) in rats followed by subcellular fractionation of whole livers and immune 
electron microscopy of liver tissue showed ligand uptake in early endosomes 
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after 6 min and in lysosomes after 24 min (145, 146), whereas traffic of FSA 

to lysosomal compartments (analysed by subcellular fractionation of livers) 

was even faster, and took from 9 to 12 min (142).   

In LSECs, protein degradation starts already in late endosomes (144, 147-

149) and continues in lysosomes. Lysosomes were originally discovered in 

1955 by De Duve and his collaborators as organelles enriched in acidic 

hydrolases and potentially harmful to the cell (150). In addition to their crucial 

role in the endocytic pathway, lysosomes also are the terminal destination for 

cellular material subjected to autophagy and for secretory material targeted 

for destruction (reviewed in (151-154). 

Endo-lysosomal degradation is carried out by a number of acid hydrolases 

capable of digesting most endocytosed macromolecules. As mentioned 

before within the liver, the LSECs are the cell population with the highest 

specific activity of several lysosomal enzymes (73, 87, 135).  

Implications of endocytosis 
Besides waste clearance and uptake of nutrients, endocytosis is needed for 

several cellular processes, such as post-translational maturation of peptide 

hormones and antigen presentation (148) and signal transduction (155). 

In LSECs two important physiological functions may converge in the endocytic 

pathway; clearance of endogenous waste and host defence. The SRs and 

MRs, the two major types of endocytic clearance receptors of these cells (7, 

8, 86, 87) are also regarded as PRRs in the innate immune system (reviewed 

in (156, 157)).  

Interestingly, some of the metabolites that are produced by lysosomal 

degradation (i.e. glutamate and lactate) are reutilized. Glutamine is an 

important metabolic fuel for dividing cells, is hydrolized into ammonia and 

glutamate and is also the major nontoxic shuttle of ammonia in the urea cycle 

(158). Recently, studies in liver cell bioreactors showed that LSECs are 

important collaborators in the liver ammonia metabolism, producing more 

ammonia than the PCs (LSEC bioreactors produced 22.2 nM/hour/106 cells 
into the growth media while PC bioreactors produced 3.3 nM/hour/106 cells). 
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LSECs also released more glutamate than PCs (LSEC bioreactors: 32.0 
nM/hour/106 cells; PC-bioreactors: <7.0 nM/hour/106 cells). Furthermore, the 

metabolites released by the LSECs were used by the PCs; and it was 

suggested that one function of the high catabolic activity of the LSEC is to 

secrete high-energy metabolites to be used for mitochondrial ATP production 

by the PCs (159). A similar type of collaboration between highly endocytically 

active endothelial cells and metabolically active parenchymal cells has been 

described in the Atlantic cod (Gadus morhua) (160). The cod endocardial 

endothelial cells are specialized scavenger endothelial cells, analogous to the 

mammalian LSECs (7, 101, 102), secreting high-energy metabolites (acetate) 

that may be taken up by the underlying cardiomyocytes and used as an ATP-

source (160).  

However, degradation does not necessarily need to be the ultimate fate of the 

endocytosed products. In paper II, we hypothesized that the LSEC recruits 

lysosomal enzymes via MR-mediated endocytosis to maintain its high specific 

lysosomal enzyme activity and degradation capacity.  

 

LSEC endocytosis receptors 

Scavenger receptors  
In 1979 Brown, Goldstein and co-workers discovered a receptor, known today 

as the scavenger receptor type A (SR-A) (161) when they observed that 

acetylated LDL was taken up much more efficiently than native LDL by mouse 

peritoneal macrophages. Today the term SR denotes a structurally 

heterogeneous family of receptors that share the common property of 

recognizing a broad range of polyanionic molecules, including different types 

of modified LDLs (reviewed in (90, 162, 163)). Many different cell types 

express SRs, including monocytes and macrophages, smooth muscle cells 

and endothelial cells (90, 163-165). Macrophage uptake of oxidized LDL via 

SRs is thought to play a key role in the formation of foam cells in the arterial 

wall during atherogenesis (162, 166). 
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Due to the broad range of ligands recognized by these receptors, which 

includes surface constituents of Gram-positive and Gram-negative bacteria 

(167-169), and bacterial DNA oligonucleotides and plasmids (170), the SRs 

are considered part of the innate immune system where they function as 

PRRs (28, 164).    

The LSEC has been reported to express SRs belonging to class A (SR-A (38, 

91)), class B (SR-B1 and CD36 (91)) and class H (stabilin-1 and stabilin-2 

(92, 94)).  

SR class A: SR-A was the first SR discovered in the LSEC (38, 171) and is a 

type II transmembrane glycoprotein expressed on the plasma membrane 

which contains a scavenger receptor cysteine-rich (SRCR) domain and a 

collagenous domain in the extracellular part of the molecule (172, 173), and 

comes in two splice variants; SR-AI/II. The receptor is primarily expressed in 

macrophages but is also found in activated smooth muscle cells and 

endothelial cells (38, 174). It has been shown that SR-AI/II–deficient mice, 

compared to wild-type controls, are more susceptible to experimental 

infections with Staphylococcus aureus, Listeria monocytogenes and herpes 

simplex virus type-1 (175, 176). Disruption of the SR-AI/II gene in 

apolipoprotein E knockout (ApoE-/-) mice, which have high plasma values of 

cholesterol and develop severe atherosclerosis, lead to reduced formation of 

atheromatous plaques, indicating the involvement of this receptor in the 

development of atherosclerosis (176). 

The rate of blood clearance of intravenously administered acetylated or 

oxidized LDLs was the same in SR-A deficient and wild-type mice (176-178). 

Furthermore, there was no difference in the endocytosis (rate and capacity) of 

soluble SR-ligands (i.e. acetylated LDL, advanced glycation end product 

(AGE)-albumin, FSA) in LSEC cultures established from SR-AI/II knockout 

and wild-type mice (179, 180). These observations strongly suggest that 

receptors other than SR-A are involved in LSEC SR-mediated endocytosis.   

SR class B: CD36 is a transmembrane glycoprotein expressed on 

monocytes, macrophages, dendritic cells, adipocytes, smooth muscle cells, 

capillary endothelial cells, and platelets (reviewed in (181)). It is suggested to 
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be involved in the development of atherosclerosis, platelet activation and 

thrombus formation (156, 182). SR-BI/II (two different splice variants) is 

expressed on monocytes, macrophages, adipocytes, liver cells, and in 

steroid-producing tissues (183). In the liver, SR-BI is highly expressed in the 

PCs where it mediates selective HDL uptake by a mechanism distinct from 

the classical LDL receptor-mediated pathway (183). An important role for SR-

BI in the entrance of hepatitis C virus (HCV) has been suggested, but is 

debated (163). Studies in male Wistar rats also showed expression of this 

receptor in LSECs and KCs but the relative expression of SR-BI at mRNA and 

protein levels was much lower in the NPCs than in the PCs (91). CD36 

expression was also reported in LSECs by the same authors (91) but no 

quantitative comparison was done between the different liver cell types on 

protein level. CD36 expression is also reported in human LSECs by immune 

electron microscopy and immunohistochemistry at light microscopy level (184, 

185).  However, recently Li et al. reported no protein expression of CD36 in 

male Sprague Dawley rat LSECs, and the authors suggested that there may 

be species or strain differences in the expression of this protein (126). 

The most important SR on the LSECs has been suggested to be stabilin-2 

(92, 124), probably together with stabilin-1 (11, 93). 

SR class H: This class comprises stabilin-1 and the homologous protein 

stabilin-2 (94). Due to their isolation by different research groups at about the 

same time the nomenclature has been confusing: stabilin-1 is also known as 

FEEL-1 (fasciclin, epidermal growth factor (EGF)-like, laminin-type EGF-like, 

and link domain-containing scavenger receptor-1) (132) and Clever-1 

(common lymphatic endothelial and vascular endothelial receptor-1) (186), 

whereas stabilin-2 synonyms are FEEL-2 (132), HARE (hyaluronan receptor 

for endocytosis) (108) and the LSEC hyaluronan/SR receptor (92). 

Both stabilins are large type I transmembrane proteins with a similar overall 

structure. Stabilin-1 has an N-terminal extracellular region containing 7 

fasciclin domains, 16 EGF-like domains, 2 laminin-type EGF-like domains and 

1 X-link domain, a transmembrane region and a short cytoplasmic domain. 

The main structural difference between stabilin-1 and -2 is that stabilin-2 
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contains 15 instead of 16 EGF-like domains. Studies in mouse, rat, pig and 

human have shown that the two stabilins are expressed in sinusoidal 

endothelia of spleen, liver, lymph nodes, and bone marrow (45, 92, 166, 187, 

188). Stabilin-1 and -2 were also recently reported in bovine choriocapillaris 

endothelial cells (189). In addition, stabilin-1 is found in alternatively activated 

macrophages (94, 190), and in newly formed blood vessels (191), indicating a 

role of this receptor in angiogenesis.  

During embryonic development of mouse liver, stabilin-2 is expressed in all 

liver vascular endothelia early on and then becomes restricted to the liver 

sinusoids at embryonic day 19.5 (192). In the mature LSEC stabilin-2 is highly 

expressed on the cell surface and is also associated with pinocytic vesicles, 

whereas stabilin-1 appears to have a predominantly intracellular distribution 

but is also seen at the cell surface (11, 93). Both proteins are associated with 

clathrin, adaptor protein-2 and early endosomes, and cycle between the cell 

surface and endosomes (93, 140). 

Stabilin ligands: Hyaluronan is taken up via stabilin-2 only, by binding to the 

X-link domain, whereas stabilin-1 has a non-functional link domain. Other 

extracellular matrix components taken up by stabilin-2 include N-terminal 

propeptides of types I and III procollagen and chondroitin sulphate (8, 92, 

193).  

Both stabilins mediate the LSEC endocytosis of AGE-albumin (93), FSA and 

oxidized LDL (11) in LSECs. Studies in macrophages have shown that 

stabilin-1 also binds the glycoprotein SPARC (secreted protein acidic and rich 

in cysteine), a soluble non-structural component of extracellular matrix that 

plays a role in tissue remodeling, angiogenesis and wound healing (194), and  

SI-CLP (stabilin-interacting chitinase like protein) which is a chitinase-like 

cytokine sorted into late endosomes by stabilin-1 in macrophages (195).  

Stabilin-1 is also suggested to play a role in adhesion of lymphocytes and 

malignant cells to lymphatic endothelium and to support the migration of 

peripheral blood mononuclear cells and leukocytes through vascular and 

lymphatic endothelium (186, 196). The stabilins have further been reported to 
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mediate phagocytosis of apoptotic cell bodies in alternatively activated 

macrophages and stabilin transfected cell lines (197, 198). 

Endocytosis studies using primary cultures of LSECs have clearly shown that 

the stabilins mediate rapid internalization of various waste macromolecules 

that are too large to be filtered through the kidney glomeruli. If not rapidly 

eliminated from blood, it has been suggested that these molecules may 

accumulate in various tissues increasing the risk for vascular complications 

(199-201). Recently a large and thorough study was published about the 

effects of stabilin deficiency in mice (20). Single deletions in either Stab1 or 

Stab2 showed very few phenotypic effects including a slight increase in the 

collagen content in liver, mostly in the stabilin-1 knockout mice, and increased 

serum levels of hyaluronan in the stabilin-2 deficient animals. However, 

stabilin-1/-2 double knockout mice showed a significantly reduced life span 

compared to single knockouts and wild-type controls and developed mild liver 

fibrosis, as well as severe fibrosis in the kidney glomeruli. The authors 

suggested that proper hepatic clearance of potentially noxious agents from 

blood via stabilin-1 and stabilin-2 is necessary to maintain tissue homeostasis 

not only in the liver but also in distant organs. The same paper also 

introduced a new putative ligand for both receptors, namely growth 

differentiation factor 15 (GDF-15), which is a member of the TGF-β family, 

and the first cytokine found to be cleared by the LSECs. 

The mannose receptor 
The MR was first recognized in the late 1970s as a receptor involved in the 

clearance of endogenous glycoproteins with mannose in the terminal position 

of their carbohydrate side chains (202). The receptor displays three different 

ligand binding regions: i) an outer cysteine-rich amino-terminal domain, which 

recognizes specific sulphated sugars (203); ii) a fibronectin type II repeat 

which binds collagens (204, 205), and iii) a series of eight adjoining 

carbohydrate recognition domains (also named C-type lectin-like domains), 

that bind glycoproteins and glycolipids exposing D-mannose, L-fucose and/or 

N-acetyl-D-glucosamine in terminal position of their sugar side chains (206, 

207). 



 26 

The MR is expressed in most tissue macrophages, immature dendritic cells, 

mesangial cells in the kidney, tracheal smooth muscle cells and retinal 

pigment epithelium (reviewed in (208, 209)). In the liver this receptor is 

expressed predominantly – if not only – in the LSECs (45-47). 

The carbohydrates recognized by the MR are abundant on the surface of 

many bacteria, fungi, and some viruses, including the gp120 of human 

immunodeficiency virus (HIV) (210), lipoarabinomannan from Mycobacterium 

tuberculosis (211), capsular polysaccharides from Streptococcus pneumonia 

(212), and β-glucans in the cell wall of the fungal pathogens, Pneumocystis 

carinii (213) and Candida albicans (214). Several studies have therefore 

suggested a role for the MR in host defence ((204, 209, 213, 215). However, 

two studies in MR knockout (MR-/-) mice failed to show enhanced 

susceptibility to P. carinii and C. albicans infections (209, 215, 216); whereas 

an infection study with Cryptococcus neoformans showed a decreased life 

span and inability of the MR-/- mice to elicit a CD4+ T-cell response, 

suggesting that the receptor plays a nonredundant role in priming 

mannoprotein mediated CD4+ T-cell responses in vivo (217). Interestingly, 

shedding of soluble MRs by metalloproteinase-mediated cleavage of 

membrane bound MRs has been reported as a response to P.carinii and 

C.albicans infections (218). 

Whether MR is involved in antigen processing and presentation through the 

major histocompatibility complexes types I or II (MHC I and MHC II) is 

currently under discussion. In particular, there are contradictory reports as to 

whether the receptor-antigen complex travels through the endocytic pathway 

and is presented to the MHC proteins or if the MR just mediates the uptake of 

antigens to be presented but is not directly involved with the MHC proteins 

(208, 209). 

The MR, however, plays an important role in homeostasis of several 

glycoproteins (219) that are released to the body fluids during normal and 

pathophysiological tissue turnover. Ligands for the LSEC MR include tissue 

plasminogen activator (118, 220), neutrophil granulocyte-derived 

myeloperoxidase (221), salivary amylase (121), denatured collagen (86), and 
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C-terminal procollagen propeptide of type I and type III procollagen (PICP and 

PIIICP)(117) and lysosomal enzymes (87, 219). When injected into the 

circulation of laboratory animals, these soluble MR ligands are taken up 

almost exclusively in the LSECs.   

Recently it was shown that the clearance of denatured collagen occurs via the 

MR and not by a unique collagen-α-chain receptor as thought previously (86). 

Unlike mannosylated glycoproteins, denatured collagen binds to the 

fibronectin-like domain of the MR (205), and there is no cross-competitive 

inhibition of ligands for the different domains on the MR. This probably 

explains why it was believed for more than 20 years that LSECs carry a 

distinct collagen α-chain receptor in addition to the MR and SRs (8, 116, 222). 

The Fc gamma receptor IIb2 
Fc gamma receptors (FcγRs) recognize the Fc domain of immunoglobulin G 

(IgG) present on immune complexes. Four major classes have been identified 

(FcγRI-IV), each of them with several isoforms and widely expressed in cells 

of hematopoietic origin (reviewed in (223, 224)). LSECs express one of these 

receptors, the FcγRIIb2 (96). The receptor plays an important role in removing 

soluble IgG-immune complexes (97, 225-232). This receptor is also 

expressed on murine follicular dendritic cells (233), and in endothelial cells in 

human placental villi (234). It is worth noting that the LSEC is the only cell 

type in liver expressing FcγRIIb2 (96), making this receptor an ideal marker to 

distinguish LSECs from all other types of liver cells.    

Other endocytosis receptors in LSECs 
L-Sign (liver/lymph node-specific ICAM-3 grabbing non-integrin) also known 

as DC-SIGNR, CD209L or CLEC4M, is involved in recognition and uptake of 

virus, including HIV (235), HCV (236), and severe acute respiratory syndrome 

coronavirus (SARS-CoV) (237). The receptor is expressed in endothelial cells 

of the liver sinusoids, lymph nodes, placenta and lung (235, 238).  

LSECtin (liver and lymph node sinusoidal endothelial cell C-type lectin) is 

another protein from the same family as L-Sign. This receptor is expressed 

predominantly by sinusoidal endothelial cells of human liver and lymph (239) 
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but also on peripheral blood and thymic dendritic cells (240) and KCs (241, 

242). LSECtin has been suggested as an important receptor in the regulation 

of immune responses in liver where it has been shown to interact with L-Sign 

in response to HCV (243). LSECtin may also inactivate T-cell responses in 

this organ (241). The role of L-Sign and LSECtin in LSEC endocytosis is 

largely unknown. 

LRP-1 (Low-density lipoprotein receptor-related protein-1) is mainly 

expressed in PCs and macrophages but has also been reported in neurons, 

activated astrocytes, and fibroblasts (244). It recognizes a wide range of 

ligands, including lipoprotein particles containing ApoE (245, 246), urokinase-

type plasminogen activators, amyloid precursor protein (247)), and the tissue 

factor pathway inhibitor (247-249). Recently, Øie et al reported the finding of a 

functional LRP-1 in LSECs (250), however only around 10% of the LRP-1 

activity  in the liver was due to the LSECs. 

LYVE-1 (lymphatic vessel endothelial hyaluronan receptor-1) is a hyaluronan 

binding protein. The receptor is expressed in lymphatic vascular endothelium 

and sinusoidal endothelia of lymph nodes, liver and spleen (251-253), and is 

also reported in macrophages in malignant tumors (254), during the 

development of mouse kidneys (255), in human placenta (256) an in 

embryonic blood vessels (257). Initially, the role assigned to this receptor was 

the clearance of hyaluronan from lymph (253), but the receptor is also 

suggested to play an important role in development, wound healing and 

tumorigenesis (254, 255, 257-259). In liver the expression is restricted to 

LSECs (252, 260) and the LSEC expression has been found to be reduced in 

chronic inflammation, cancer and cirrhosis (252) (261). Of note, stabilin-2 is 

the major endocytic hyaluronan receptor in LSEC (20), and the relative 

contribution (if any) of LYVE-1 is unknown. 

 

Role of the LSEC in host defense 
The immune system can be grossly divided in two parts: i) the innate immune 

system, and ii) the adaptive immune system.  
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Innate immunity is an evolutionarily ancient part of the host defense 

mechanisms, and is present in both invertebrates and vertebrates. It includes 

a variety of mechanisms; mechanical and chemical barriers (e.g. epithelial 

barriers, mucus, antimicrobial peptides and acids), the complement system, 

and cellular responses such as phagocytosis and production of oxygen 

radicals (5). Several cell types are involved in innate immune responses; the 

most studied are macrophages, neutrophil granulocytes, dendritic cells, and 

NK cells.  

Adaptive immunity on the other hand has evolved quite recently in the 

evolution and is present only in vertebrates (28). Adaptive immunity is 

mediated by lymphocytes (T-cells and B-cells), and involves great variability 

and rearrangement of gene segments in response to antigens. The adaptive 

immune system can provide immunological memory of infection. In 

vertebrates, there is a great deal of cooperation between the innate and 

adaptive immune system, and cells of the innate immune system (e.g. 

macrophages and dendritic cells) are also involved in adaptive immune 

responses as APCs and as effector cells (28). 

 

The liver receives blood from the systemic circulation and the intestine, and 

the liver cells, primarily those lining the sinusoids are therefore exposed to 

many microbial antigens/products (mostly derived from intestinal 

microorganisms) (262). The liver has created a special immunological 

environment that allows it to not react to the great amounts of harmless 

microorganism from the gut, raising the hypothesis of liver tolerance. At the 

same time the liver responds to certain pathogens when it is required (263).   

The LSEC was until recently not regarded as a cell type involved in immunity, 

however, research over the last 2 decades has revealed that this cell type 

may play important roles both in innate and adaptive immunity, which will be 

discussed in the following chapters.  

In 1994, Matzinger proposed an alternative model to the classical idea of “self 

non-self” recognition; this model was called the “Danger Model” (264) 

proposing that APCs are activated by danger/alarm signals from cells injured 
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by exposure to pathogens, toxins and even to mechanical damage (264, 265). 

Cells that die via necrosis release their content to the exterior, and any 

intracellular product from these cells could potentially be a danger signal 

when released (reviewed in (265, 266)). The fact that LSECs are effective 

scavengers of potentially dangerous endogenous waste, as well as foreign 

material suggests a role of LSECs in innate immunity. 

Expression of pattern recognition receptors (PRRs) in LSECs 
SRs and MRs recognize self waste molecules (some of these molecules are 

able to elicit an immune response and are therefore called alarmins or 

DAMPs (30, 31)) as well as a number of common structures carried by 

microbes (PAMPs). These receptors are therefore considered to be PRRs, 

known to represent a central part of the innate arm of the immune system 

(267). Studies on human alveolar macrophages have demonstrated that MR-

mediated signalling leads to IL-8 production when the MR is activated 

together with TLR2 (268). The role of SR-A and SR-B as PRRs has been 

frequently dealt with in the literature, but so far very little is known about the 

role of stabilins as PRRs (163).  

TLRs are another important group of PRRs. The TLRs activate the innate 

immune system in response to molecules expressed by pathogens (viruses, 

bacteria, fungi and protozoa) (reviewed in (269, 270)) and to host molecules 

such as heat-shock proteins (271) and DNA (272). TLRs are expressed on 

various immune cells, including macrophages and monocytes (273, 274), 

dendritic cells (275), B cells (275) and subsets of T cells (276), and they are 

also reported in cells that have not been described as “classical” immune cells 

such as pulmonary epithelial cells (277), fibroblasts (278, 279) and endothelial 

cells in skin (280), liver (36, 89, 128), and human umbilical vein  

The TLRs are considered as link players between the innate and adaptive 

immune systems because upon activation they promote the selection of 

bacterial antigens for optimal presentation on MHC class II and/or production 

of co-stimulatory molecules and cytokines necessary for activation and 

differentiation of T-cells (28). So far, human and mouse share several 

functional TLRs1-9. Mice also have TLRs11-13, whereas TLR10 is selectively 



 31 

expressed in humans, however, the biological agonists of this receptor have 

not been found (281). Recently a paper was published where knocking down 

TLR13 in mouse embryonic fibroblasts by RNA silencing increased the 

susceptibility for infection with vesicular stomatitis virus (282).  

Table 2 presents biological agonists (immunostimulatory ligands) recognized 

by TLRs.  
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Table 2: Biological agonists for TLRs  

 
TLR Agonist Reference 

TLR1/TLR2 Triacyl lipopeptides (Bacteria and mycobacteria) (283) 

TLR2 Peptidoglycans (Gram+ bacteria) 

Porins (Neisseria sp.) 

Lipoarabinomannan (Mycobacteria sp.) 

Phospholipomannan (Candida albicans) 

Glucuronoxylomannan (Cryptococcus neoformans) 

T-GPI-mucin (Trypanosoma sp.) 

(284) 

(285) 

(286) 

(287) 

(288) 

(289) 

TLR3 dsRNA (virus) (290) 

TLR4 LPS (Gram- bacteria) 

Mannan (Candida albicans) 

Glucuronoxylomannan (Cryptococcus neoformans) 

Glycoinositolphospholipids (Trypanosoma sp.) 

Envelope proteins (HERV, RSV, MMTV) 

Heat-shock protein 70, hyaluronan fragment and 
fibrinogen (host molecules) 

(291) 

(292) 

(288) 

(293) 

(294) 
(295, 296) 

(271, 297, 
298) 

TLR5 Flagellin (flagellated bacteria) (299) 

TLR6/TLR2 LTA (Group B Streptococcus sp.) 

Zymosan (Saccharomyces cerevisiae) 

(300) 

(301) 

TLR7/TLR8 ssRNA (RNA viruses) (302) 

TLR9 Unmethylated CpG-DNA (Bacteria) 

DNA (HSV-1, MCMV) 

Host DNA 

(303) 

(304, 305) 

(272) 

TLR11 Profilin-like molecule (Toxoplasma gondii) (306) 

TLR13 Unknown (Vesicular stomatitis virus) (282) 

T-GPI-mucin, glycosylphosphatidylinositol-mucin; dsRNA, double stranded RNA; 
ssRNA, single stranded RNA; LPS, lipopolysacharide; HERV, human endogenous 
retrovirus; RSV, respiratory syncytial virus; MMTV, Mouse mammary tumor virus; 
LTA, lipoteichoic acid; HSV-1, herpes simplex virus-1; MCMV, mouse 
cytomegalovirus.  
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Before paper I of this thesis was published (89), only TLR4 had been reported 

in LSECs (128). 

Human TLR4 was first sequenced in 1998 together with four other TLRs 

(307), and has been found to be expressed in most organs, with the highest 

expression  in spleen (308). The receptor is expressed on the cell surface and 

binds LPS, in particular its lipid portion (lipid A) (309). TLR4 is responsible for 

most of the pathogenic phenomena associated with Gram-negative bacterial 

infection such as endotoxin shock (310). The mechanism by which TLR4 is 

activated is well studied, especially in macrophages (reviewed in (281)). The 

receptor cycles between the Golgi apparatus and the plasma membrane 

before the activation by LPS (311). LPS binds to TLR4, forming a complex 

also with the LPS binding protein (LBP), CD14 and MD2 at the plasma 

membrane and travels to the endosomes (312). This initiates the binding of 

myeloid differentiation protein 88 (MyD88) with the MyD88-adapter like or TIR 

domain-containing molecule (Mal/TIRAP) (313, 314). The binding results in 

the activation of transcription factor NFκB, which translocates to the nucleus 

and induce the production of proinflammatory cytokines. There is also other 

another pathway, where TLR4 moves into the early endosome and causes 

the binding of TRIF-related adaptor molecule (TRAM) and TIR-domain-

containing adapter-inducing interferon-β (TRIF). This results in the activation 

of the interferon regulatory factor-3 (IRF3) pathway (315) and the production 

of type I interferons (316), which are important antiviral and antibacterial 

cytokines.  

In Paper I of this thesis we report that TLR9 is also expressed in LSECs 

(discussed further in the General discussion), and a recent study (36) showed 

that murine LSECs produced TNF-α and IL-6 when treated with agonists for 

TLR2, TLR3, TLR4 , TLR6/2, TLR8 and TLR9 . 

Role of the LSEC in adaptive immunity 
The role of LSECs in adaptive immunity is not clear and not many studies 

have been performed.  
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One of the first studies that were performed on isolated LSECs indicated the 

expression of an Fc receptor in the cells (assessed by the formation of 

rosettes with red blood cells), however the presence of Ia antigen (today 

referred to as MHC II) or a CR3 was not detected. However the main focus of 

this paper was on KCs as antigen presenting cells (317). 

Nowadays the discussion is focused on whether LSECs acts as APCs, 

analogous to dendritic cells. Knolle and co-workers reported that LSECs, like 

dendritic cells express molecules that are necessary for antigen presentation, 

including MHC I and II and the co-stimulatory molecules CD40, CD80 and 

CD86 (318). The same group claimed that LSECs could take up antigen 

(ovalbumin) via the MR and stimulate CD4+ T-cell responses (319). This 

finding has been contradicted by Katz et al (320) who used another cell 

separation technique to make purified murine LSEC cultures (KCs and DCs 

were removed from the cultures by specific antibodies), and found that 

LSECs, in contrast to dendritic cells, had low or absent expression of MHC II, 

CD86, and CD11c. They found that LSECs could not induce proliferation of 

CD4+ or CD8+ T cells, and therefore concluded that LSECs alone are 

insufficient to activate naive T cells (320). Yet another later paper reported 

that primary murine LSECs (immunoselected using their expression of 

CD105, or endoglin) do express MHC class II and CD86, but not CD11c 

(321). 

The conflicts associated with the expression of MHC II in LSECs is further 

underlined by several earlier studies that failed to demonstrate this molecule 

on rat or human LSECs (106, 141, 322). Recently a master student in our 

group found that LSECs from mice did express MHC II as evidenced by 

immunoblotting and immunofluorescence on freshly isolated cells in serum 

free medium (323). 

The question is therefore still open as to whether LSECs (or subpopulations of 

LSECs) can act as true APCs. It is clear, however, that the LSECs have some 

important features in common with dendritic cells, which are linked to innate 

immunity such as high endocytic activity, expression of MR, SRs, FcγRIIb2 

and TLRs.      
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LSEC function in aging 
Several age-related changes have been documented in the liver, including 

reduced organ volume, accumulation of lipofuscin in PCs, diminished 

hepatobiliary functions, a shift in the expression of a variety of proteins (71, 

324), and impaired metabolic drug clearance (325).   

However, it was not until recently that age-related changes in the hepatic 

sinusoid were reported (326). Earlier studies in rat models have suggested 

few or no age-related morphological changes in the sinusoid (327). In 2001, 

Le Couteur et al reported a significant defenestration of the sinusoidal 

endothelium as well as increased endothelial thickness and partial depositions 

of basal lamina and collagen in the space of Disse in old F344 rats (326), and 

similar changes are now reported in C57BL/6 mice (22, 328), baboons (Papio 

hamadryas) (329), and humans (70). The term “pseudocapillarization” (78, 

326) was launched to differentiate the typical age-related sinusoidal 

morphology from the capillarization that occurs in liver fibrosis. Capillarization 

describes the transdifferentiation of the sinusoidal endothelium towards a 

continuous vascular endothelium resting on a basal lamina. However, it has 

been debated whether the pseudocapillarization is really different from the 

early stages in liver capillarization (60).  

Age-related changes in the hepatic sinusoid have been recently reviewed 

(71). In this respect results from studies on KCs are conflicting. Both an 

increase in the number of KCs (330) and a decrease in the volume density of 

these cells (331) have been reported, as well as an increased (22, 330), 

unchanged (332, 333) or decreased phagocytic and/or endocytic activity (334, 

335). Changes in SCs with aging have been more consistently reported in 

different species. These include an increase in the fat and in vitamin A content 

(22, 328), indicating that the cells are not activated as seen in fibrosis (49). 

The age-related changes in the LSEC ultrastructure are associated with 

altered but inconsistent expression of several cellular proteins. For example, 

the endothelial marker von Willebrand factor (vWf) (a glycoprotein involved in 
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hemostasis, and found in blood plasma, platelet α-granules, endothelial cells, 

and subendothelial connective tissue (336)) is not normally expressed in 

LSECs of healthy young liver sinusoids, but is upregulated in LSEC in old 

individuals (70, 326, 329, 337). Increased vWf expression with aging is also 

reported in endothelium in other vascular beds in humans (338). LSEC 

expression of caveolin-1 (a fundamental component of caveolae) was also 

found to be reduced at old age (337), and the authors suggested a link 

between this finding and the decrease in fenestrae associated with old age. 

However, mice deficient in caveolin-1 were found to have normal LSEC 

fenestration (339), contradicting this notion. Increased ICAM-1 expression 

(intercellular adhesion molecule-1, a glycoprotein involved in leukocyte 

adhesion (340)) was found in old C57BL/6 mice (22). In this study, increased 

leukocyte adhesion to the sinusoidal endothelium in old animals was also 

observed, indicating low-grade inflammation and endothelial dysfunction in 

the old liver. 

Recently the term "Inflamm-aging" (by Claudio Franceschi) (341) was 

launched to highlight the phenomenon that aging is accompanied by a low-

grade chronic, and systemic up-regulation of the inflammatory response and 

that the underlying inflammatory changes are common to most age-

associated diseases. Increased numbers of immune cell clusters in the liver 

parenchyma and increased level of inflammatory cytokines gene expression 

(342) have been reported in the livers of old  C57BL/6 mice. The authors 

suggested that the liver microenvironment of old animals allowed the 

formation of ectopic accumulations of lymphoid cells called “tertiary lymphoid 

organs” in chronically inflammed tissue (342). 

Little is known about the effect of aging on endocytosis per se, and only a few 

studies have addressed endocytosis in LSECs with aging (22, 333-335, 343). 

The in vivo capacity for uptake of 125I-colloidal (heat-aggregated) albumin in 

rat LSEC was reported not to be influenced by age (333). Others have 

reported a 53% reduction of the in vivo LSEC uptake of 3H-azoaniline-albumin 

in 22–24 months old rats compared with 6–8 months old rats (334), and an 

80% reduction of in vivo LSEC uptake of 35S-sulfanilate-azo-albumin in 28 

months old rats compared with 12 month rats (335). In the latter study, uptake 
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of 35S-sulfanilate-azo-albumin in LSEC after intravenous injections was also 

examined in 4 month old animals. Interestingly, the LSEC endocytosis of this 

molecule peaked at 12 months of age, whereas the uptake in 4 and 28 

months old rats was similar. Recently, in vivo microscopy was used to detect 

uptake of two fluorescently labeled SR ligands, AGE-albumin and FSA, in the 

LSECs following injections into the mesentery vein of four different age-

groups of C57BL/6 mice representing prepubertal (3.5 weeks), young adult (3 

months), middle-aged (14-15 months) and old animals (27 months) (22). The 

results indicated a gradual reduction in the endocytic function from young 

adult to old age, with the most pronounced reduction in centrilobular 

sinusoids.  

Two studies in rat report lysosomal enzymes activity in liver as a function of 

age; one showed increased levels of several lysosomal enzymes in both KCs 

and LSECs in old animals (344), whereas another study showed no clear 

general trend, with varying results for different enzymes (345).  

The possible pathophysiological effects of the structural and functional 

changes observed in the old liver sinusoid are not known. However, 

endothelial capillarization and pseudocapillarization have been suggested to 

impede the transfer of substrates, such as drugs and albumin, between blood 

and PCs (71, 76, 346). There is also some evidence that the altered liver 

sieve in cirrhosis and aging might contribute to hypoxia in PCs, thus providing 

an alternative mechanism for the apparent differential age-related reduction of 

oxygen-dependent phase I metabolic pathways (76). It has further been 

suggested that pseudocapillarization may contribute to age-related decreased 

liver clearance of chylomicron remnants, explaining partially the increased risk 

for development of atherosclerosis with age (78).  
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AIMS OF THE STUDY 
Effective removal of unwanted self and non-self molecules from blood is 

essential to keep the organism healthy. LSECs have been shown to 

effectively clear such macromolecules via receptor-mediated endocytosis. 

The cells express several high affinity endocytosis receptors, including the 

mannose receptor (MR), and several scavenger receptors (SRs), which are 

known also for their role as pattern recognition receptors (PRRs) in host 

defence. The present study aimed to further examine the expression and 

function of PRRs in LSECs, the role of LSEC endocytosis in initiating innate 

immune responses, and how aging may affect the important scavenger 

function of these cells.  Three sub-projects were designed to reach this aim: 

• As bacterial DNA have been found to be removed from blood very 

efficiently by the liver (347), we wanted to 1) examine the role of LSECs in 

blood clearance of unmethylated CpG oligodeoxynucleotides (CpG-ODNs, 

a TLR9 agonist), 2) examine if LSECs express TLR9, and 3) examine if 

CpG-ODN uptake in LSECs elicit an immune response by interacting with 

TLR9.  

• Due to the high endocytic activity of the LSECs, the cells need great 

amounts of lysosomal enzymes for efficient degradation of internalised 

material. The MR, besides recognizing mannose residues on 

microorganisms, also mediates endocytosis of lysosomal enzymes. Using 

an MR knockout mouse model we wanted to study whether the cells recruit 

lysosomal enzymes via this receptor and the effect of MR deficiency on 

LSECs catabolism.  

• Little is known about the LSEC endocytic activity at old age. We therefore 

wanted to study this by comparing endocytosis in cells from young and old 

individuals and examine how the endocytic capacity of the cells correlate 

with age-related morphological changes (e.g. defenestration). 
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SUMMARY OF PAPERS 

Paper I - Toll like receptor 9 (TLR9) is present in murine liver sinusoidal 

endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides 

 
Background and aim: Liver sinusoidal endothelial cells (LSECs) may 

represent an important interface between host and pathogens. They are 

known to be the main site of clearance of DNA ODNs from the circulation. 

Bacterial DNA and synthetic ODNs containing unmethylated CpG motifs 

activate cells of the innate immune system through interaction with TLR9. The 

aim of the study was to investigate if and how CpG-ODNs activate LSECs.  

Methods: A preparation of synthetic unmethylated CpG ODNs was used as 

TLR9 agonist. 125I-FITC-labelled CpG (0.1mg/kg) was injected into the tail 

vein of male Balb-c mice, and blood and organs were collected for anatomical 

distribution studies. FITC-CpGs (4 mg/kg) was injected intravenously to study 

the hepatic distribution by fluorescence microscopy. TLR9 expression was 

examined by immunolabelling of frozen liver sections, immunocytochemistry 

(ICC) of isolated LSECs and RT-PCR of LSEC mRNA. Expression of MyD88 

was examined by ICC and RT-PCR, and NFκB activation was studies by ICC. 

Production of cytokines (IL-1β and IL-6) was examined by ELISA. Endocytosis 

studies were performed in freshly isolated mouse LSEC cultures. 

Results: Liver was the main site of uptake of intravenously injected 125I-FITC-

CpGs. The circulatory t1/2 of the ligand was 4 min, indicating en effective 

uptake mechanism in this organ. FITC-CpG specific fluorescence was 

observed along the liver sinusoids, indicating uptake in LSECs. 

Immunolabeling for TLR9 also showed positive staining along the sinusoids. 

Expression of TLR9 in LSECs was confirmed by RT-PCR and ICC of isolated 

cells. Uptake of non-labelled CpGs in LSEC cultures resulted in activation of 

the transcription factor NFκB and secretion of IL-1β and IL-6. Cytokine 

production was inhibited by incubation of LSEC cultures with monensin and 

chloroquine, which blocks endocytosis receptor recycling and intracellular 

transport of endocytosed ligands, respectively, indicating that CpG was first 

taken up by receptor-mediated endocytosis and transported through the 
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endocytic pathway before it could bind to endosomally located TLR9. 

Incubating the CpG-treated cells with AGE-albumin, a well-known SR ligand, 

also abrogated the LSECs production of cytokines, strengthening this idea. 

Conclusions: The study showed for the first time the presence of a functional 

TLR9 in LSECs, which emphasizes the importance of these cells in the innate 

immune system of the liver. Uptake of CpGs via receptor-mediated 

endocytosis was necessary for TLR9-signalling. 
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Paper II - Liver sinusoidal endothelial cells depend on mannose receptor-

mediated recruitment of lysosomal enzymes for normal degradation capacity  

 

Background and aims: Liver sinusoidal endothelial cells (LSECs) are largely 

responsible for the removal of circulating lysosomal enzymes via MR-

mediated endocytosis. We hypothesized that LSECs rely on this uptake to 

maintain their extraordinarily high degradation capacity for other endocytosed 

material.  

Methods: An MR knockout (MR-/-) mouse model was used to test this 

hypothesis. 125I-cathepsin-D or 125I-FSA were injected intravenously in MR-/- 

mice and wild-type control mice and blood samples and tissues collected for 

examination of circulatory half-life and tissue distribution of ligands. 

Endocytosis experiments with radioiodinated or fluorescently labeled ligands 

were performed in purified LSEC cultures or NPCs from MR-/- and wild-type 

mice. The activity of five lysosomal enzymes, including cathepsin-D, was 

measured in LSECs and liver PCs, and cathepsin-D protein expression was 

examined by immunoblotting. 

 

Results: Circulatory half-life studies of 125I-cathepsin-D in MR-/- and wild-type 

mice showed a total dependence on the MR for effective clearance of 

cathepsin-D. Endocytosis studies in LSEC cultures confirmed this finding. 125I-

FSA, a ligand for the LSEC SRs, was used to study catabolism of 

endocytosed material in MR-/- and wild-type mice. When injected 

intravenously, the plasma clearance, liver uptake, and the starting point for 

release of degradation products to blood, were similar in both experimental 

groups, indicating normal endocytosis and intracellular transport of SR ligands 

in MR-/- mice. However, the rate of FSA catabolism in the liver of the MR 

deficient animals was reduced to approximately 50% of wild-type values. A 

similar reduction in intracellular degradation was recorded in LSEC cultures 

from MR-/- mice compared to wild-type controls. It was also found, in 

accordance with the previous result, that MR-/- LSECs had markedly and 

significantly reduced enzyme activities for four out of five lysosomal enzymes 

tested, i.e. cathepsin-D, α-mannosidase, β-hexosaminidase and arylsulfatase, 
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but not acid phosphatase, compared to wild-type controls. Immunoblot 

analysis showed that the content of pro-cathepsin-D relative to total 

cathepsin-D in wild-type LSECs was less than one-fifth of that in PCs, 

indicating lower endogenous lysosomal enzyme production in the LSECs.  

 

Conclusion: We conclude that LSEC depend on MR-mediated recruitment of 

lysosomal enzymes from their surroundings to keep up their high catabolism 

of endocytosed material.   
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Paper III - Age-related changes in scavenger-receptor mediated endocytosis 

in rat liver sinusoidal endothelial cells 

 

Background and aims: Liver sinusoidal endothelial cells (LSECs) play an 

important role in systemic waste clearance by effective endocytosis of many 

blood-borne macromolecules. However, little is known about how this function 

is affected by aging and how age-related morphological changes (e.g. 

defenestration) affect the endocytic capacity. We therefore aimed to study 

these questions. 

Methods: Endocytosis of 125I-labelled FSA was examined in freshly isolated 

LSECs from young and old F344/BN F1 hybrid rats. LSEC protein expression 

of stabilin-1 and stabilin-2 was examined by SDS-PAGE and western blotting 

of cell solubilisates, and the LSEC fenestration was measured by scanning 

electron microscopy (SEM). Ultrastructural changes in the old liver sinusoid, 

and the stabilin expression along the sinusoids was studied by transmission 

electron microscopy (TEM) and immunofluorescence microscopy of liver 

biopsies from young and old rats. 

Results: At low ligand concentrations (0.1 µg/ml) LSECs from both age 

groups showed similar uptake of FSA, but at all higher concentrations (1-

128µg/ml) cells from the old group showed a significant reduction in endocytic 

capacity (∼30% reduction at high ligand doses). LSECs protein expression of 

the two major SRs for FSA endocytosis, stabilin-1 and stabilin-2, and their 

staining patterns along liver sinusoids, were similar at young and old age, 

suggesting that other parts of the LSECs endocytic machinery are affected by 

aging. The old rats showed significantly increased thickness and reduced 

fenestrae numbers of the LSECs in vivo, but no increase in collagen or basal 

lamina deposits in the subendothelial space, as reported in inbred rats and 

other species. These findings suggest that endothelial changes precedes 

matrix formation in the development of age-related pseudocapillarization. 

When comparing the maximum endocytic capacity for FSA in vitro with the 

porosity (% fenestrated area/cell area) of LSECs isolated from the same 
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animal, we found no correlations between endocytic activity and cell porosity 

in either of the age groups. This indicates that reduced fenestration does not 

necessarily lead to reduced endocytosis although both parameters can be 

affected by aging. 

Conclusion: We report a significantly reduced LSEC endocytic capacity at old 

age. This could be of importance for old individuals subjected to increased 

levels of circulatory waste products. 
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GENERAL DISCUSSION 

LSECs express a functional TLR9: CpG-mediated TLR9 signaling 

is dependent on scavenger receptor mediated endocytosis 
As described in the General Background, LSECs have been suggested to 

play a role in host defence beyond the mere scavenging and catabolism of 

soluble macromolecules. In paper I, we present evidence that LSECs express 

a functional TLR9, and that signalling via this receptor is dependent on SR-

mediated endocytosis of the TLR9 agonist, unmethylated CpG ODN (89). 

Unmethylated CpG ODN was chosen as a ligand due to the immune 

stimulatory effects of its CpG domains. While vertebrate CpG dinucleotides 

are often methylated and not very frequent, viral and bacterial CpG 

dinucleotides are non-methylated and occur with a much higher frequency 

than in vertebrate DNA (348). The availability of synthetic CpG ODNs has 

opened up for the possibility to study if and how specific CpG sequence 

motifs, sugar, base or backbone modifications as well as secondary and 

tertiary structures may affect the immune modulatory effects of the CpG 

ODNs via TLRs (349).  Before we started our study, the CpGs uptake in liver 

had been reported (350), but possible effects on LSECs had not been not 

examined. 

TLR9, first described in 2000 (351), binds DNA and responds to bacterial and 

viral unmethylated CpG DNA by signalling via NFκB (352, 353). Studies in 

macrophages and dendritic cells have shown that TLR9 is normally located in 

the endoplasmic reticulum, and it is suggested that the internalization of CpG 

DNA induces the translocation of TLR9 to early endosomes where it binds the 

ligand and triggers the subsequent activation of downstream mediators (354). 

The endoplasmic reticulum UNC93B1 membrane spanning protein is 

recognized as a key player in TLR9 trafficking through its ability to bind 

strongly to the transmembrane regions of the nucleotide sensing TLR (355). 

However, the exact mechanism by which these proteins mediate the effects 

needed for proper TLR9 relocation and signalling remains unknown.  It has 

been suggested that the complex regulation of TLR9 signalling helps to 

separate the recognition of microbial and self nucleic acids and thus protect 
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the host from an inappropriate immune response (356, 357). After binding to 

its ligand, TLR9 activates MyD88 that is essential for initiating the TLR9 

signalling. MyD88 starts a cascade of phosphorylation resulting in the 

translocation of NFκB to the nucleous where induces the transcription of 

proinflammatory cytokine genes, including TNF-α, IL-6 and IL-12. TLR9 in 

macrophages and dendritic cells is also involved in antiviral responses by 

activating the interferon regulatory factor-7 (IRF-7), which then translocates to 

the nucleus to mediate the transcription of interferon-α-genes (reviewed in 

(356, 357)).  

In Paper I (89) we found that CpG ODN was taken up by the LSECs both in 

vivo and in vitro. We also showed that the cells express TLR9, as well as the 

downstream MyD88 and NFκB that are required elements in the signaling 

cascade to produce an inflammatory response. Incubation of LSEC cultures 

with CpG ODNs (5µg/ml) lead to NFκB translocation to the nucleus, as well as 

the production of IL-1β and IL-6. Taken together this indicates that the LSEC 

is an active player of the innate immune system.  

The liver uptake of CpGs should be taken into account when working with 

CpG ODNs as an adjuvant in vaccines, cancer therapies and others 

applications (358). The way of administration of drugs and vaccines that are 

ligands for LSECs should be chosen so as to surpass these cells and thereby 

obtain the desired effect in the target organ and not an unwanted response in 

the liver.  

Another novel finding in this study was that a well-known ligand for the LSEC 

SRs (i.e. AGE-albumin) could abrogate the response to treatment of LSECs 

with CpG ODNs, indicating that SRs were involved in this uptake. The main 

SR receptor for AGE-albumin in LSECs is stabilin-2, probably together with 

stabilin-1 (93, 124). It is known from a previous report using SR-A knockout 

mice that the liver uptake of CpG-ODN can proceed independently of SR-A 

(359), but because of the redundancy of SRs in the LSEC it is difficult to rule 

out the involvement of a receptor based on single-gene knockout mouse 

models. Another study in mice, using both SR-AI/II and MARCO gene 

knockout models, showed that both SR-AI/II and MARCO mediated 
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macrophage uptake of CpGs but that only uptake via MARCO triggered the 

production of  cytokines (i.e. IL-12) via the TLR9 pathway (360). In LSECs the 

SRs stabilin-1 and stabilin-2 are highly expressed, and have been suggested 

as the main SRs in these cells  (11, 92, 93, 179). Although we did not study 

the exact SR involved in the LSEC CpG uptake in Paper I, unpublished 

observations by Dr. Peter McCourt (Department of Medical Biology, University 

of Tromsø; personal communication) showed a high uptake of FITC-CpGs in 

HEK-293 cells transfected with either stabilin-2 or stabilin-1, suggesting that 

cells expressing these receptors (such as LSECs) take up CpGs via stabilins.  

Possible outcome of TLR9-signalling in LSEC 
The results of paper I were obtained in vitro, and the possible effects of the 

cytokines produced by the LSECs on other cells in the liver were not studied. 

However, both KCs (361), PCs (362) and SCs (363) respond to inflammatory 

cytokines. Signalling in liver is complex and only rudimentary understood, 

probably because the net effect of any cytokine depends on several factors 

such as timing, local environment and the presence of competing elements 

(i.e. soluble antagonist) (364). From previous studies, it is well known that IL-

1β acts mostly pro-inflammatory (reviewed in (365)) whereas IL-6 has both 

pro-inflammatory and anti-inflammatory properties. Although IL-6 is a potent 

inducer of the acute-phase protein response in liver, it may also down-

regulate the synthesis of IL-1β (364, 366, 367) and induce the synthesis of 

Interleukin receptor antagonist, IL-Ra, a soluble form of IL1 that competes for 

the IL-1 receptor in target cells (368). IL-1β responses are also strongly 

controlled by the serum levels of IL-Ra, which is measured to be around 

700pg/ml in healthy humans (369). Therefore the amounts of IL-1β produced 

to elicit an immune response need to be high enough to overcome this 

competition. 

Immune stimulatory molecules may also influence LSEC endocytosis. The 

endocytosis via SRs and MRs in rat LSECs was enhanced by TNF-α and Il-

1β stimulation in vitro (370).  This could enhance the LSECs ability to act as a 

sink for potential dangerous macromolecules, preventing them from reaching 

other organs.   
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Excessive activation of TLR signaling may cause tissue damage. Therefore, 

TLR signalling is strictly negatively regulated. To my knowledge, this has not 

been studied in LSECs. Also in other cell systems the literature on negative 

regulation of TLR9 is not overwhelming. Recently an ubiquitin-protein ligase, 

TRIAD3A, was found to suppress TLR9 immune responses by ubiqutinating 

the receptor, and thus marking it for degradation, in experiments done in cell 

lines overexpressing TRIAD3A (371). Interestingly, imiqimod (a non-biological 

ligand of TLR7) and R848 (a non-biological ligand of TLR7 and TLR8) were 

found to abrogate the interferon-α production initiated by specific types of 

CpGs in peripheral blood mononuclear cells isolated from healthy humans, by 

downregulating TLR9 mRNA production (372).  

 

LSECs depend on MR-mediated recruitment of lysosomal enzymes 
for normal degradation capacity 
In paper II we present evidence that the MR, which is regarded as an 

important PRR in macrophages and dendritic cells, is also needed for proper 

catabolic function in the LSECs by the recruitment of lysosomal enzymes (87).  

Animal model: To study the role of the MR in recruitment of lysosomal 

enzymes to LSECs, we used an MR-/- mouse model (kindly provided by 

professor M. Nussensweig, Rockefeller University). The gene for MR was 

knocked-down by introducing a reporter gene with a STOP codon at exon 1 

producing a much smaller mRNA that is not translated into protein (219). The 

MR-/- mice (C57BL/6 background) have an apparently normal phenotype and 

are fertile. However, they have enhanced blood levels of several lysosomal 

enzymes and some connective tissue turnover by-products (i.e. PICP, PIIICP) 

(219), indicating that this receptor is an essential regulator of serum 

glycoprotein homeostasis (219). 

Cathepsin-D, an aspartic protease (373) was used as a model ligand to study 

blood clearance, tissue distribution, LSEC endocytosis and production of 

lysosomal enzymes in cells from MR-/- and wild-type control mice. Lysosomal 

enzymes belong to the a group of endogenous macromolecules that express 
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mannose in terminal positions of their sugar side-chains. Cathepsin-D is 

synthesized in the rough endoplasmic reticulum as a pre-pro-enzyme, which 

is further processed into the mature two-chain form of cathepsin-D as it 

moves through the Golgi apparatus (374). In cell types other than LSECs, the 

transport of cathepsin-D from the Golgi to the lysosomes usually follows the 

classical mannose 6-phosphate receptor-mediated (M6PR)-route (374). 

Glycosylation patterns are used as signals to transport enzymes into the 

correct cellular compartment and the intracellular traffic of lysosomal enzymes 

is well studied (reviewed in (375)). Cathepsin-D is not only found in lysosomes 

but can also be secreted from cells and can be recovered in tissue stroma 

and plasma. In fact, plasma cathepsin-D is used as a prognostic marker in 

breast cancer as it has been shown that cancer cells that secrete this protein 

have a higher metastatic potential (374). It has also been shown that PCs 

secrete proforms of cathepsin-D (376).  

To study LSEC degradation of internalized material in MR-/- mice versus 

normal mice we used the SR ligand FSA that was taken up at equal rates in 

LSECs from both groups. This ligand has been reported previously to be 

rapidly cleared from blood almost exclusively by the LSECs (129, 142, 377) 

and in the present study we found no difference in rates of blood clearance of 

FSA in MR-/- and wild-type mice, suggesting that SR endocytosis is normal in 

MR-/- deficient mice. Furthermore, FSA is easy to work with in the laboratory: 

it is stable, easy to label with radioactive iodine and fluorochromes, and is 

effectively degraded in the endo/lysosomal pathway after uptake (123, 129, 

142, 179, 193). The degradation products are released into the blood or 

culture medium and can be measured  as the non-precipitable fraction after 

mixing with  trichloroacetic acid (86, 129). 

The main findings of this work can be summarized as follows: Cathepsin-D 

clearance was significantly slower in the MR-/-mice, and the enzyme was not 

recognized by LSECs isolated from these mice, indicating that the LSEC MR 

is essential for clearance of mannosylated lysosomal enzymes, as also 

indicated by the enhanced plasma levels of various lysosomal enzymes in this 

mouse model, reported by others (219).  In accordance with this finding the 

activity of 4 mannosylated lysosomal enzymes (cathepsin-D, α-mannosidase, 
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β-hexosaminidase, aryl sulphatase) but not the non-mannosylated acid 

phosphatase was markedly and significantly reduced in LSECs isolated from 

MR-/- mice.  A direct effect of the inability of the MR-/- LSECs to obtain 

lysosomal enzymes from their surroundings was seen as a 50% reduction in 

the catabolism (degradation) of FSA compared to wild-type controls: this was 

seen both in vivo after intravenous injection and in cultured LSECs. 

Interestingly the specific activities of the analyzed lysosomal enzymes, 

including that of cathepsin-D, were significantly higher in wild-type LSECs 

than in the corresponding PCs. This has also been reported in rat (73). 

However, the relative expression of pro-cathepsin-D versus mature cathepsin-

D in LSECs and PCs (analyzed by immunoblotting) showed a lower 

expression of pro-cathepsin-D in LSECs than in PCs. This finding strengthens 

our hypothesis that the high lysosomal activity of LSECs reflects uptake from 

the cell surroundings via MR rather than the novo synthesis by the LSEC. 

Lysosomal enzymes are stable proteins, which may retain their activity for 

several days after uptake in cells (378), and the MR-mediated recruitment of 

lysosomal enzymes to the cells represents an M6PR independent mechanism 

for transport of lysosomal enzymes to degradation compartments in the 

endocytic pathway.  

M6PR independent recruitment of lysosomal enzymes to cells has also been 

suggested in the kidney proximal convoluted tubules (379): Mice lacking the 

megalin receptor in these cells were defective in cathepsin-B activity, whereas 

tubuli epithelial cells in normal mice were able to take up cathepsin-B from the 

circulation (interestingly, only 10% of the injected dose reached the kidney).  

In addition cathepsin-B knockout mice were able to regain normal activity of 

the enzyme after one single injection of cathepsin-B (379).  

Paper II shows that the LSEC is not only a sink for elimination of unwanted 

waste products are eliminated: the cells are also a very effective and energy 

saving recycling station. 

The effect of aging on LSEC scavenger function 
In paper III (380) we were not only interested per se in the clearing functions 

of the cells, we also wondered if and how this function is affected at old age. 
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In this study we used a hybrid rat model (F344/BN F1 males) to study 

endocytosis of FSA in LSECs isolated from young and old rats. Compared to 

inbred strains (like F344 rats or C57BL/6 mice) hybrid animals have few 

diseases associated with high age, and are recommended for aging research 

by the guidelines of the National Institute on Aging (381). Thus the results 

obtained better reflects the effect of aging alone and not of diseases 

associated with aging. 

Our reason for choosing a rat model was also the higher number of LSECs 

needed for endocytosis capacity studies and parallel morphology studies 

(approximately 60-100 million cells/ rat liver compared to mice 5-10 million 

cells/ mouse liver). 

Comparing endocytosis in cells isolated from two age groups generated 

several methodological challenges: for example LSECs gradually loose their 

endocytic capacity in vitro (382, 383). Therefore cells used for this type of 

experiment had to be freshly isolated, and all experiments had to be started at 

exactly the same time point after plating: 2h were chosen since the cells were 

well spread and highly viable at this time. All methods and ligand handling 

procedures had to be strictly standardized. Cell culture purity had to be similar 

for young and old animals and was tested by SEM; an average purity of > 

97% was obtained in each group. Cell numbers were also assessed by SEM 

of parallel cultures to those used for endocytosis assays as this was found to 

be a more reliable procedure than cell protein for comparing uptake per cell. 

Control experiments in vitro showed that collagenase (same concentration 

and time as used in vivo during the dissociation of liver cells) had no effect on 

the ability of LSEC to endocytose 125I-FSA. 

The main finding of the paper was a marked age-related reduction in the 

LSEC capacity for FSA uptake when the ligand was added in increasing 

concentrations to the cultures, whereas endocytosis of FSA was similar in the 

two age groups at low doses (i.e. “trace amounts”; 0.1µg/ml). To my 

knowledge this is the first time that an endocytosis capacity study of LSECs 

has been carried out using optimal culture and experimental conditions. 

Similar studies carried out in the past i.e. the endocytic capacity of KCs and 
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LSECs for heparin (among other substances) was compared in (384) and the 

conclusion was that LSECs endocytosed these ligands several times more 

effectively than KCs.  These studies were performed in the presence of serum 

and with cells cultured for longer time (127, 384, 385), which are factors that 

may affect endocytosis negatively, as reported by Hansen et al. (193). They 

found that endocytosis of FSA in rat LSECs in vitro was inhibited 10-80% by 

serum (human, rat, bovine and fetal) in a dose dependent manner (193). The 

present study was therefore carried out under serum free conditions.  

In spite of the significantly (∼30%) reduced maximum endocytic capacity of 

LSECs isolated from old rats, the cells from the old animals still had a high 

endocytic activity compared to other endothelial cells. For example, after a 4h 

incubation with acetylated LDL (25 µg/ml) cultures of bovine aortic endothelial 

cells and capillary endothelial cells from bovine adrenal cortex, were reported 

to take up 1-2 µg ligand per mg cell protein (386). Human umbilical vein 

endothelial cells incubated with acetylated-LDL (50 µg/ml) or oxidized-LDL 

(100 µg/ml) for 6h showed uptake of 2.5 µg ligand protein per mg cell protein 

(387). Since we calculated uptake of FSA per cell and not per mg cell protein 

these results cannot be directly compared with our results presented in paper 

III. However, based on the reported mass (46 µg/million cells) of rat LSEC 

(73), uptake of FSA per mg cell protein during 2h incubation with 32µg/ml 

FSA (ligand concentration at the curve flattening point) was approximately 40 

µg/mg and 60 µg/mg, in the young and old rat LSECs, respectively. 

In accordance with previous findings in other species and other rat strains, the 

old F344/BN F1 rat livers showed increased thickening of the sinusoidal 

endothelium, reduced LSEC fenestration, as well as accumulation of large 

lipid droplets in SCs. However, no accumulation of basal lamina deposits or 

collagen was seen in the space of Disse from young to old age, suggesting 

that functional and structural changes in the endothelium precede the age-

related accumulation of extracellular matrix in the space of Disse reporterd 

observed in other studies (22, 326, 328, 329). We also made a morphological 

assessment of the isolated LSECs. Surprisingly we did not find a statistical 

significant difference in the number of the fenestrae, fenestrae diameter or 
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LSEC porosity (% area of fenestrae/area cell) between the age groups, other 

than a slightly less fenestrated phenotype in the old rat LSEC cultures (not 

statistically significant). This difference between the in vivo and in vitro 

observations may be explained in several ways: One possibility is that the 

isolation procedure selects the most active cells (given that fenestration is 

correlates positively with high cell viability), resulting in less differences 

between LSECs from young and old rats in vitro. O´Reilly et al (388) reported 

a small, but statistically age-associated difference in the diameter of fenestrae 

from cultured LSECs from F344 rats (in this case the cells were observed 18 

hours after isolation; compared to after 2 hours in our study). They suggested 

a selection of the best cells as a possible mechanism, but also mentioned the 

possibility that “hyperfenestration” might be an artifact of the culture due to an 

actin disruption or that other liver cells are needed for proper regulation of 

fenestration.  In our study, the average plating efficiency was approximately 

equal in young and old rats, so if we have selected the best cells in our study, 

we may rather have underestimated than overestimated the difference in 

endocytic capacity between the cells from the two age groups. 

When the LSEC endocytosis capacity data and porosity data per animal were 

compared, no relationship was found, neither between nor within the age 

groups.  This is not unexpected when taking a brief look at the vertebrate 

kingdom: e.g. in Atlantic salmon (Salmo salar) the LSECs are fenestrated (69) 

but does not have the scavenger function of the mammalian LSECs (104, 

105). Instead the scavenger endothelial cells of salmonid species are located 

in the kidney (104, 105).  

Immunohistochemistry of liver sections and immunoblotting of LSEC cultures 

indicated that the expression of the major SRs for FSA uptake, stabilin-1 (11) 

and stabilin-2 (93),  was not affected by aging. The endocytosis studies of 125I-

FSA also indicated that the internalized ligand was as effectively degraded in 

the old rat cells as in the cells from the young group, even at high ligand 

concentrations, suggesting that the lysosomal degradation capacity was not 

significantly affected by animal age. The high catabolic activity in the LSEC 

also at high age is in accordance with a previous study in rat comparing 

lysosomal enzyme activity in LSECs from old and young animals showing that 
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the activity of acid phosphatase, aryl-sulfatase B, β-galactosidase and 

cathepsin-D increased at old age (344).  

We proposed the hypothesis in paper III that the observed changed endocytic 

capacity might be due to the age-related increase in the thickness of the 

sinusoidal endothelium that is observed in many species in vivo (reviewed in 

(71))(380). Increased endothelial cell thickness may lead to a slow down 

(“traffic jam”) in the intracellular vesicle traffic. However, this hypothesis needs 

to be tested.  A search for the exact explanation(s) for the age-associated 

decrease in endocytic capacity was unfortunately too big a challenge to be 

completed under this PhD study; it would require both genomic and proteomic 

screening and validation of data.  Different receptors, as well as the different 

components of the endocytic machinery may as well be differently affected by 

aging.  

An important consequence of a decreased endocytic capacity of LSECs at old 

age might be seen first of all when the organism is challenged; e.g. in 

situations with massive trauma or massive tumor lysis as in chemotherapy 

treatment when there is a sudden increase in circulating debris due to 

massive cell death. Other challenges are chronically elevated blood levels of 

harmful modified substances (e.g. AGEs and oxidized LDLs) such as diabetes 

or cardiovascular disease. 
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CONCLUSIONS 
• The presence of a functional TLR9 in LSECs emphasizes the importance of 

these cells in the innate defense mechanisms of the liver 

 

• SR-mediated endocytosis is necessary to deliver the agonist (unmethylated 

CpG) to the TLR9 in LSECs 

 

• LSECs depend on MR-mediated recruitment of lysosomal enzymes from 

their surroundings to maintain their high degradation capacity 

 

• The LSEC capacity for endocytosis of a model SR ligand (FSA) was 

significantly reduced at old age  

• No correlation was found between LSEC endocytic capacity and cell 

fenestration, however, both properties can be affected by aging 

 

FINAL REMARKS 
The high endocytic activity of LSECs of unwanted molecules of foreign and 

self-origin is of major importance for the correct maintenance of the liver and 

for the body equilibrium of various macromolecules. In addition to a mere 

scavenging role of the LSECs the present study show that LSEC endocytosis 

is involved in regulation of liver immune responses by delivering ligands to 

TLR9, and is also necessary to maintain the very effective lysosomal 

degradation of endocytosed material that signify the physiological function of 

LSECs. However this function appears to be negatively affected by aging.  

The liver has a large reserve capacity, but under certain conditions such as in 

massive trauma or acute tumor lysis, which may lead to a rapidly increased 

burden of circulating waste/potentially dangerous material, a reduced 

endocytic capacity of the LSECs may have direct and serious effects on the 

health of the elderly.   
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