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Introduction 

Antimicrobials, use and resistance 

An antibiotic is a substance produced by or derived from certain fungi, bacteria, and other 

organisms, that can kill or inhibit the growth of other microorganisms (Levy 1992). They are 

widely used in the prevention and treatment of infectious diseases. The term antibiotic is used 

to refer to a drug that cures infections caused by bacteria, while an antimicrobial agent is a 

general term that refers to a group of drugs that includes antibiotics, antifungals, 

antiprotozoals, and antivirals. The first antibiotic, penicillin, was discovered by Alexander 

Fleming in 1928 when he observed that a common mold (Penicillum) produced a substance 

that lysed colonies of Staphylococcus spp. The first major development after the introduction 

of penicillin was ampicillin, which offered a broader spectrum of activity than either of the 

original penicillins. In the following decades, many new antibiotics with novel properties 

were discovered, including streptomycin, chloramphenicol, and tetracycline. Modification of 

already known antibiotics have led to several derivatives having different antimicrobial 

activities, pharmacokinetic properties, and resistance characteristics as compared to the older 

drugs (Levy 1992).  

A major problem in treatment of infectious diseases is the emergence of drug resistant 

bacteria. Antibiotic resistance is a property of microorganisms being able to survive exposure 

to antibiotic to which they were once sensitive. In clinical terms resistance is linked to failure 

of therapy. The basic quantitative measure of in vitro activity of antibiotics is the minimum 

inhibitory concentration (MIC). The MIC is the lowest concentration of an antibiotic that 

results in inhibition of visual growth under standard conditions (Rapp 1999). Antibiotic 

resistance widespread today seems to have been rare in the pre-antibiotic era. Hughes and 

Datta (1983) found little antibiotic resistance when screening Enterobacteriaceae strains 

collected in various parts of the world from 1917 to 1954. When a new antibiotic is 

introduced, many bacteria are initially susceptible, but resistance development is often 

observed after a short time. For instance, pathogenic strains of Staphylococcus aureus were 

susceptible to penicillin when it was widely introduced in 1944. By 1946, about 6% of S. 

aureus were resistant to penicillin, and by 1948, more than 50% were resistant (Barber and 

Rozwadowska-Dowzenko 1948). However, the first β-lactamase (R-factor) giving resistance 

to penicillin was reported already in 1940 (Abraham and Chain 1940). There is a great 

diversity among bacteria, and they do not share all of the same biochemical and physiological 
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pathways. Therefore, not all antibiotics are active against all bacteria and they are intrinsically 

resistant to one or more antibiotics. Intrinsic resistance refers to resistant microorganisms 

without any chromosomal mutation or the acquisition of plasmid carrying resistance factors. 

Inherent features of the bacterial cell prevent antimicrobial action, and these properties are 

typically species characteristics. An example is Pseudomonas aeruginosa, a Gram negative 

soil organism, which has an outer membrane with porins that hydrophobic antibiotics can not 

penetrate. The Gram positive Mycobacteria produce an unusual bilayer outside the 

peptidoglycan layer that function as an efficient barrier (Fig. 1) (Nikaido 1994).  

 

 

 

Fig. 1. Cell envelopes of bacteria. (Left) Most of the Gram-positive bacteria are covered by a 
porous peptidoglycan layer, which does not exclude most antimicrobial agents. (Middle) 
Gram-negative bacteria are surrounded by the outer membrane, which functions as an 
efficient barrier against many antibiotics. (Right). Mycobacteria produce an unusual bilayer, 
which functions as an exceptionally efficient barrier. From Nikaido (1994), reprinted with 
permission.  

 

In contrast to intrinsic resistance, acquired resistance emerges through mutation of 

existing DNA or acquisition of new DNA by horizontal gene transfer (Thomas and Nielsen 

2005). Horizontal gene transfer (HGT) is a process in which genetic material from an 

organism is transferred into a cell that is not its offspring. In bacteria, this can be done by 

transformation, conjugation, or transduction. Natural transformation is the stable uptake, 

integration, and functional expression of extracellular DNA from the environment into a 

recipient cell. Conjugative transfer is mediated by cell-to cell junctions and a pore through 
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which DNA can pass, although the nature of these structures remain elusive (Thomas and 

Nielsen 2005). Transduction is the bacteriophage-mediated transfer of both chromosomal and 

extra-chromosomal DNA from on bacterium to the other (Maloy et al. 1994). HGT is an 

important factor in evolution, enabling bacteria to acquire new characteristics. Chromosomal 

DNA acquired by HGT, that confers a selective advantage to the host, or mobile genetic 

elements that encode their own transfer and maintenance functions, have the potential to 

spread within a bacterial population (Thomas and Nielsen 2005; Babic et al. 2011). 

Environments where antibiotics are applied may be hotspots for HGT events, for instance in 

hospitals or animal husbandry (Fig. 2) (Schjørring and Krogfelt 2011).  

 

 

Fig. 2. Schematic presentation of the complexity of selection / development of antibiotic 
resistant bacteria in different known reservoirs. The possible routes of transmission 
throughout the environment of these resistant bacteria are suggested. The reservoirs where 
antibiotics are applied are also suggested as hotspots for horizontal gene transfer. AN: 
antibiotic treatment/pest control. From Schjørring and Krogfelt (2011), reprinted with 
permission.  

7 
 



 

Antibiotic use and overuse has been linked to the development of antibiotic resistance, 

by creating a selective environment for the resistant bacteria. Further, the use of antibiotic in 

one environment can lead to increased level of resistance in another, e.g. the antibiotic use in 

animal husbandry has an impact on the emergence of antibiotic resistance in human 

commensal bacteria. Microorganisms move easily between ecosystems: from humans and 

animals to soil and water and vice versa. Resistance genes by organisms in one ecosystem can 

easily be transferred among organisms in various ecosystems (Nwosu 2001; Smith et al. 

2002; Schjørring and Krogfelt 2011), as demonstrated in Fig. 2.  

The key question addressed in this dissertation was the prevalence of, and the 

directionality of emergence and dissemination of resistance. Does antibiotic resistance 

facilitated by HGT emerge first in anthropogenic environments and then spread to pristine 

environments? Or is it a naturally occurring trait in pristine environments that can transfer 

into clinically relevant microbes?  

 

 

Antibiotic resistance in soil  

Antibiotic resistance genes have been detected in a variety of soil and sediment 

environments (Andersen and Sandaa 1994; D'Costa et al. 2006; Allen et al. 2008; Demanèche 

et al. 2008; Chronáková et al. 2010; Donato et al. 2010; Yang et al. 2010). To see if there are 

lower numbers of antibiotic resistance genes from environments without anthropogenic 

influence compared to environments heavily affected by agriculture/urban activity, Pei et al. 

(2006) studied the quantity of resistance genes in river sediments from pristine locations to 

agriculture and urban sites. They found that the kinds and quantities of resistance genes 

detected at the pristine site were consistently lower than at the agricultural/urban sites. In 

contrast to this, Yang and colleagues (2010) investigated the prevalence of antibiotic 

resistance genes in soil from several locations. They found that there was not a significant 

difference between the pristine and agricultural sites. A study on ampicillin resistant bacteria 

in agricultural and prairie soil showed a higher prevalence of resistant isolates in the prairie 
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soil (54.4%-69.6%) than the agricultural soil (0.4%-8%), indicating that bacterial 

communities not disturbed by agricultural practices might present a higher degree of 

antibiotic resistance, either intrinsic or acquired (Demanèche et al. 2008).  

An explanation for the high level of antibiotic resistance in pristine soils is that the 

bacterial community is more exposed to soil microorganism producing antibiotics (Hansen et 

al. 2001; Anukool et al. 2004). The extent of antibiotic production in nature by soil organisms 

has been difficult to measure due to low levels of nutrients limiting growth and production. 

Lately, reports have been published, confirming that antibiotics are produced in soil at 

sufficiently high concentrations to inhibit growth in the surroundings of the producers 

(Hansen et al. 2001; Anukool et al. 2004). This may lead to development of antibiotic 

resistance mechanisms as a protection against the antibiotic-producing strains. Antibiotic 

resistance genes have been discovered in soil environments with minimal human induced 

selective antibiotic pressure. Allen and colleagues (2008) found a great variety of β-lactamase 

genes in remote Alaskan soil. These genes were distantly related to blaTEM genes detected in 

clinical settings. Resistance genes have also been detected in marine sediments. Tetracycline-

resistant gram-negative bacteria were found in four different marine sediments in 

Scandinavia. There were few resistant gene classes in unpolluted sediment and several 

determinant classes in polluted sediment (Andersen and Sandaa 1994). Resistance, including 

amoxicillin resistance genes, was also observed in pristine environments like miocene 

sediment excavated from a colliery (Chronáková et al. 2010).  

There has been an increasing level of antibiotic resistance genes in soil during the last 

decades. Knapp et al. (2010) investigated the abundance of 18 resistance genes in several 

soils in the Netherlands from 1940 to 2008. They found a significantly increase in the 

abundance of resistance genes from all classes of antibiotics tested, including blaTEM alleles 

giving resistance to ampicillin. The increase was notable for tetracycline resistance genes 

which were >15 times more abundant now than in the 1970s. The increase of antibiotic 

resistance is linked to the increasing amounts of antibiotics used in human medicine and 

agriculture. Agricultural use of antibiotic has shown to contribute to the spread of  antibiotic 

resistance genes (Nwosu 2001). For instance was it demonstrated that manure and manure 

with antibiotic added to soil increases the level of antibiotic resistance in the soil bacteria 

(Binh et al. 2007; Heuer and Smalla 2007). In another study, Demanèche and colleagues 

investigated the presence of resistant bacterial isolates in agricultural and prairie soil and also 
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detected several blaTEM genes in both environments. The blaTEM alleles detected in the soils 

differed from alleles isolated in clinics (Fig. 3).  

 

 

 

Fig. 3. Phylogenic relationship of blaTEM sequences isolated from medical origin and 
amplified from a transgenic corn field (Bt), a traditional corn field (M), and a prairie soil (S). 
Green shading identifies blaTEM sequences from the transgenic corn field. Black shading 
identifies blaTEM sequences from other origins. Red shading identifies the two blaTEM medical 
sequences that might originate from the environment. From Demanèche et al. (2008), 
reprinted with permission. 

 

D’Costa and colleagues performed a survey on spore-forming bacteria isolated from 

urban, agricultural and forest soils, screening 481 isolates against 21 antibiotics (D'Costa et al. 

2006). Every strain in the library was found to be multi-drug resistant. The antibiotics used for 
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screening included natural products, semi-synthetic derivatives, and completely synthetic 

compounds. They included agents introduced several decades ago and newly released 

products. The result from this study is most likely an underestimate because the cultivable 

bacteria represent only a fraction of the bacteria in soil. Metagenomic analysis of DNA 

extracted from savannah and orchard soils has shown the presence of antibiotic resistance 

genes, including determinants encoding resistance towards β-lactams, aminoglycosides and 

tetracycline (Riesenfeld et al. 2004; Donato et al. 2010).  

Taken together, the above studies demonstrate that some soils represent an important 

environmental resistome. Further enumeration of antibiotic-resistant bacteria and antibiotic 

resistance genes in various soil environments will be helpful in understanding the baseline and 

movement of antibiotic resistance between different ecosystems in response to environmental 

pressure (Yang 2010). Little is known about the occurrence of ampicillin resistance in Arctic 

soil environments. In this dissertation, we have examined the prevalence of blaTEM resistance 

genes in Arctic soils and sediments (paper I).  

 

 

Antibiotic resistance in the gastrointestinal tract 

Humans. The human gastrointestinal microbiota constitutes a reservoir of antibiotic 

resistance genes (Walker et al. 2001; Saenz et al. 2004; Baumgartner et al. 2007; Ehlers et al. 

2009; Shahid et al. 2009; Sommer et al. 2009; Bailey et al. 2011). Ampicillin resistance genes 

(blaTEM) have also been detected in the human microbiota (Ehlers et al. 2009; Sommer et al. 

2009; Bailey et al. 2011). Sommer and colleagues (2009) studied the resistance reservoir in 

the oral and the gut microbiota of healthy humans. They found a great variety of resistance 

genes, and most of the genes identified using culture-independent sampling were distantly 

related to antibiotic resistance genes so far detected in pathogenic isolates. On the other hand, 

most of the genes from cultivable isolates were closely related to resistance genes in 

pathogenic isolates, indicating an evolutionarily close relationship to the resistance genes 

harbored by clinical pathogens. In the commensal microbiota, they identified a blaTEM-1 gene 

variant that has been reported in pathogenic strains of Escherichia coli, Salmonella enterica, 
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Klebsiella pneumonia, Haemophilus parainfluenzae, Serratia marcescens, Pseudomonas 

aeruginosa, and Neisseria meningitidis isolated around the globe (Sommer et al. 2009).  

Other mammals. Antibiotic resistant E. coli have been isolated from faecal samples from 

domestic and wild animals, with domestic species carrying bacteria with resistance to the 

largest number of agents (Sayah et al. 2005). In pigs, resistance levels are known to be high. 

Lapierre et al. (2008) found that 83% of isolates from pigs were resistant to at least one 

antimicrobial agent. Resistance in one environment can influence the level of resistance in 

another. Bacterial isolates from wild animals that lived in close proximity to food animal 

agriculture were more likely to carry resistance to antimicrobials (Kozak et al. 2009). Possibly 

the wild animals were exposed to resistant E. coli isolates (and their genes) from livestock, or 

to antibiotics through contact with animal feed. Tetracycline resistance was the most common 

resistance in the wild animals. In the same study, 85% of the E. coli isolated from pigs was 

resistant to one or more antibiotics, and the most prominent type of resistance was towards 

tetracycline as was the case with the wild animals. Tetracycline is often the first-line 

antimicrobial in disease prevention and growth promotion in food animals. In rural England, 

90% of bacterial isolates from mice and voles were resistant to β-lactam antibiotics, with 

more than 50% showing β-lactamase activity (Gilliver et al. 1999). In contrast to these results, 

faecal bacterial isolates from moose, deer and voles in Finland had almost no resistance 

(Osterblad et al. 2001). Finland is not as densely populated as England, and the environmental 

impact from agriculture is less. Thus, the wild animals in the finish study might be less 

influenced by human activities than the wild rodents in England. 

Also in ruminants, antibiotic resistance has been observed. Sundset and colleagues 

(2008) isolated a reindeer rumen bacterium, Eubacterium rangiferina, able to tolerate and 

grow in the presence of the natural antibiotic usnic acid. Tetracycline (TetW) genes have been 

detected in whole rumen contents from free-ranging Svalbard reindeer and Norwegian 

reindeer fed a commercially produced pellet feed (M.A. Sundset, unpublished data). In 

healthy lactating dairy cows, ampicillin resistance was the dominant resistance type with 21% 

of E. coli isolated resistant to this substance (Houser et al. 2008). 

Despite an increased knowledge of the level of antibiotic resistance in the 

gastrointestinal tract of wild and domesticated animals and other environments outside 

clinical settings, little is known about antibiotic resistant microorganisms in the 

gastrointestinal tract of wild animals in the Arctic. Polar bears on Svalbard and seals in the 
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Greenland Sea are mammals which are likely to not to have been influenced by human 

activities, and thereby interesting subjects for an investigation of the prevalence of resistance 

determinants in their gastrointestinal tracts (paper II and III). 

 

Antibiotics 

Betalactam antibiotics / Ampicillin 

β-Lactam antibiotics belong to a broad class of antibiotics that includes penicillin derivatives, 

carbapenemes, monobactams, and cephalosporins. They are the most widely used group of 

antibiotics available. In 2009, the sales of veterinary antimicrobial agent approved for 

therapeutic use in animals in Norway amounted to 6,137 kg of active substance. The 

penicillins accounted for 47% of this, and the proportion has increased from 24% in 1995. No 

antibiotics have been used as growth promoters in animals in Norway since 1997 

(NORM/NORM-VET 2009). Total sales in 2009 of antimicrobial agents for therapeutic use in 

farmed fish were 1,313 kg of active substance and no β-lactam antibiotics were sold. This is a 

decrease of 98% from 1987, while the production of farmed fish increased from 55,100 tons 

to 940,000 tons in the same time period. The significant decrease has been mainly attributed 

to the introduction of vaccines against bacterial infections (NORM/NORM-VET 2009). The 

human consume of antibiotics for systemic use were 19.4 DDD (defined daily doses) / 1000 

inhabitants/day with penicillins accounting for 43%. The use of ampicillin has been stable 

over the last years, with 0.10 DDD / 1000 inhabitants / day.  

The β-lactam substances all contain a β-lactam ring necessary for their antimicrobial 

activity (Fig. 4). The β-lactam antibiotics are bactericidal. They act by inhibiting cell wall 

synthesis. β-Lactams act by binding to penicillin-binding proteins (PBPs) and thereby 

inhibiting the peptidoglycan synthesis; specifically, the transpeptidation reaction that cross-

links the peptide side chain of the polysaccharide peptidoglycan backbone. They also 

stimulate other endogenous enzymes that weaken the peptidoglycan layer (autolysins). The 

destruction of peptidoglycan leads to bacterial lysis, although the exact mechanism of killing 

is unsolved (Timbury et al. 2002).  
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Ampicillin is a β-lactam antibiotic that has been used since 1961 (Fig. 4). In addition 

to being active against most Gram-positive bacteria like the penicillins, ampicillin is also 

active against some Gram-negative bacteria like Haemophilus influenzae and E. coli.  

 

 

 

Fig 4. Chemical structure of ampicillin. The β-lactam ring is indicated in red. From 

www.freebase.com, reprinted with permission.  

 

There are three main mechanisms of antibiotics resistance, and the most widespread 

is the production of enzymes that degrade or modify the antibiotic. The other mechanisms 

are alteration of target site and altered permeability or forced efflux (Wilke et al. 2005).  

The most common cause of bacterial resistance to β-lactam antimicrobial agents is 

the production of β-lactamases (Livermore 1995), a family of enzymes that hydrolyzes the 

β-lactam ring, thereby inactivating the antibiotic molecule prior to binding with PBPs. More 

than 890 unique protein sequences for β-lactamases have been recorded (Bush et al. 1995). 

A variety of transferable genes encoding β-lactamases (bla) have been described in clinical 

environments including blaCTX-M, blaGES, blaHER, blaOXA, blaOXY, blaSED, blaSHV, blaSPM, 

blaVEB, blaVIM, and ampC alleles (Jacoby 2006). Among the most common bla genes is the 

blaTEM-1 gene, a representative of the blaTEM group that now consists of more than 180 

different alleles, all encoding different amino acid polymorphisms that extend their substrate 
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range (http://www.lahey.org/Studies/temtable.asp). The TEM-1 enzyme is, for instance, 

responsible for most of the ampicillin resistance seen in E. coli isolates (Sanders and 

Sanders 1992).  

The first TEM β-lactamases were discovered in an E. coli strain isolated in 1963 

(Datta and Kontomichalou 1965). In the past decades, an increasing prevalence of 

“extendedspectrum” β-lactamases (ESBLs), which inactivate a wider spectrum of β-lactam 

antibiotics, has been encountered (Jacoby and Medeiros 1991). Most ESBLs are produced 

by mutations in the blaTEM-1 and blaTEM-2 genes. The newer variants of the blaTEM alleles have 

only been found in clinical isolates and are likely emerging as a result of random point 

mutations and strong directional selection. Specific ampicillin resistance-encoding blaTEM 

alleles are also present in various bacterial cloning vectors such as the pUC series, and have 

been inserted in some transgenic plant cultivars including commercially used maize lines (e.g. 

event Bt176). In response to the development of β-lactamases, specific inhibitors have been 

developed to conserve the activity and extend the spectrum of any accompanying β-lactam 

drug against β-lactamase–producing microorganisms. 

β-Lactam antibiotics constitute the largest group of antibiotics used in human and 

veterinary medicine and β-lactamases are the most frequent cause of resistance towards these 

agents. The blaTEM enzymes are widespread in clinical and environmental settings and thus 

we expected these enzymes also to be prevalent in Arctic environments expected not to be 

influenced by human activities. We therefore sampled a range of Arctic environments and 

determined the prevalence of the blaTEM gene. 

 

Usnic acid 

The increase in antibiotic resistance and failure of treatment has stimulated a search 

for new agents, both developing synthetic agents and looking for natural substances. Usnic 

acid is a secondary component produced by several lichens, including Cladonia, Cetraria and 

Usnea, with an antimicrobial activity protecting the lichen against bacterial infections 

(Ingólfsdóttir 2002). Lichens are a symbiotic consortium of fungi and photosynthetic green 

algae or cyanobacteria (Cocchietto et al. 2002). A wide variety of phenolic secondary 

compounds are synthesized within their fungal component and typically deposited onto the 
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outer surface of hyphae rather than inside compartments of the cells (Romagni et al. 2000). 

Usnic acid is a protective metabolite functioning against UV radiation and as an anti-

herbivore. It was first described by the German scientist Knop in 1844 (Knop 1844). It is a 

yellow cortical pigment and occurs in two enantiomeric forms, (+) and (-), depending on the 

projection of the angular methyl group at the chiral 9b position (Fig. 5). The two enantiomers 

have different biological activities (Romagni et al. 2000). In addition, two other natural 

isomers, (+) and (-) isousnic acids also occur in lichens. Both enantiomers are active against 

Gram positive bacteria and mycobacteria. In vitro studies have shown the antimicrobial 

activity of usnic acid against clinical isolates of Enterococcus faecalis, Enterococcus faecium, 

and Staphylococcus aureus (Ingólfsdóttir 2002). Usnic acid is highly lipophilic, and can 

behave as a membrane uncoupler (Backor et al. 1997). It can pass through biological 

membranes and dissipate the proton gradient, disrupting the tight coupling between electron 

transport and adenosine triphosphate (ATP) synthesis. This forms the basis of its 

antimicrobial activity. In addition to the antibacterial activity, usnic acid has also antiviral, 

antiprotozoal, antimycotic, antiproliferative, and anti-inflammatory activities (Ingólfsdóttir 

2002).  

  

 

Fig. 5. Chemical structure of usnic (a) and isousnic (b) acid. From Guo et al. (2008), reprinted 

with permission. 
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The first recorded use of usnic acid is as an antimicrobial in traditional Chinese 

medicine, under the name Song Lo. It has also been used to treat pulmonary tuberculosis, 

fever, wounds, athlete’s foot and other dermal lesions. Further, it has been used in perfumery, 

cosmetics, sunscreen, toothpaste, shampoo and deodorants (Guo et al. 2008). Usnic acid has 

also been used as diet supplement for weight loss as it increases metabolic activity and 

reduces the sense of hunger. The problem with the supplement was the toxic property of usnic 

acid. There have been at least 21 reports of liver injury or failure, including one death, 

attributed to weight loss dietary supplement containing usnic acid (Guo et al. 2008). In 

addition to being toxic to humans, it is toxic to most animals. It was reported that intake of the 

lichen Xanthoparmelia chlorochroa caused the death of 400-500 elk (Cervus canadensis) in 

Wyoming (Roach et al. 2006). It has also been demonstrated that usnic acid is toxic to sheep 

at doses of 485 - 647 mg usnic acid / kg / day resulting in muscle damage and even death 

(Dailey et al. 2008). The mammals known to consume usnic acid containing lichens in large 

quantities are reindeer, musk deer and muskoxen (Green 1987; Ihl and Klein 2001; Sundset et 

al. 2010).  

Very little is known about what kind of mechanisms reindeer employ to cope with 

usnic acid. It has been indicated previously that the reindeer rumen microbiota can utilize 

usnic acid as a source of energy (Palo 1993). Recent studies by Sundset and colleagues (2010) 

showed no trace of usnic acid in fresh rumen contents collected from reindeer eating usnic 

acid containing lichen. This indicates that usnic acid is rapidly degraded and detoxified by 

rumen microbes. The mechanism by which this is achieved is still unknown, but this finding 

suggests that reindeer harbour rumen microbes that are resistant to secondary metabolite and 

even capable of metabolizing them (Sundset et al. 2010). In this thesis, we investigated a 

potential effect of usnic acid on the reindeer rumen microbiota. In order to identify possible 

resistant bacteria we screened reindeer rumen isolates for the ability to grow in presence of 

usnic acid. The results are presented in paper IV.   

 

Arctic environments 

The main focus of this thesis is antimicrobial resistance in Arctic environments (Fig. 6). We 

have investigated the prevalence of blaTEM alleles in soils/sediments and the gastrointestinal 

tract of seals and polar bears. These environments were selected because they have little or no 
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anthropogenic influence. Another Arctic animal, the reindeer, has the ability to tolerate and 

utilize usnic acid, a lichen substance that is toxic to most animals. We studied a potential 

effect of the natural antibiotic usnic acid on the rumen microbial flora of reindeer, and 

screened for usnic acid resistant bacterial isolates in the rumen. The following sections give a 

short introduction to the Arctic environments examined.  

 

Fig. 6. The Arctic region. The red line points out the border where the average temperature for 

the warmest month (normally July) is below 10°C, the green line shows the northernmost tree 

line, and the blue dotted line indicates the Arctic Circle. From Norsk Polarhistorie / Norsk 

Polarinstitutt (Norwegian Polar Institute) 2008, reprinted with permission. 
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The Arctic is a region located at the northern-most part of the earth (Fig. 6). The 

region was named after Arctos, which is Greek for bear, and the prominent constellation Ursa 

Major (great bear) points to the north pole star Arcturus. There is no general agreement on the 

geographical limits of the region. The area can be defined as north of the Arctic Circle (66° 

33'N), the approximate limit of the midnight sun and the polar night. Alternatively, it can be 

defined as the region where the average temperature for the warmest month (normally July) is 

below 10°C; the northernmost tree line roughly follows the isotherm at the boundary of this 

region. In the Arctic this isotherm encircles the Arctic Ocean and includes Greenland, 

Svalbard, parts of Iceland and most of the northern coast and all off lying island of Russia, 

Canada and Alaska (Fig 6) (Blix 2005).  

 

Soils and sediments 

Soil constitutes the major habitat of terrestrial microorganisms, and it is a complex and 

dynamic microhabitat. Microorganisms in soil are responsible for degradation of organic 

compounds and mineral cycling. Important plant polymers such as cellulose and lignin are 

degraded exclusively by soil microbes. Since carbon and nitrogen are the chief macro 

elements essential for all organisms, the soil microbes play an important role in cycling of 

these elements in the biosphere. Sediments are fragments of inorganic or organic material that 

has been deposited as a layer of solids by wind, water, or ice. When glaciers retreat, new 

terrestrial habitats are exposed, and microorganisms present have a key role in soil 

development, nutrient cycling and facilitating plant colonization (Schütte et al. 2010). 

Bacteria comprise the bulk of the biomass and chemical activity in sediments. They are well 

suited to their role as sediment chemists, as they are the right size and have the required 

metabolic versatility to oxidize the organic carbon in a variety of different ways (Nealson 

1997).  

Higher number of bacteria occurs in the organically rich surface layers than in the 

underlying mineral soils. Particularly high numbers of microbes occur in association with 

plant roots. Microbial diversity in soil ecosystems exceeds, by far, that of eukaryotic 

organisms. One gram of soil may harbour up to 1010 microorganisms. We also find high 

numbers of bacteria in arctic soil and sediments, ranging from 108 to 109 per gram. In 
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permafrost sediments, 107-109 cells per gram sediment were found, and in subglacial 

environments, 106-109 cells per gram has been detected (Sharp et al. 1999).  

The bacterial diversity in soils and sediments in Arctic environments is high, despite 

the extreme environmental conditions. However, we have limited insight to the soil and 

sediment microbial diversity as a large proportion of the bacterial taxa are unlike those 

previously described. Schütte et al. (2010) found that more than 70% of 16S rRNA sequences 

in samples from the foreland of Midtre Lovénbreen at Svalbard could not be classified into a 

genus. Torsvik et al. (1996) calculated the presence of about 4,000 different bacterial 

genomes per gram pristine soil whereas 7,000 genomes in marine sediments, by taking the 

average genome size of soil bacterial isolate as a unit.  

 

Polar bear 

Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem. They have 

a circumpolar distribution and are closely associated with sea ice, which they use as substrate 

for both hunting and movement (Mauritzen 2002). In winter and spring they are commonly 

found in the shore fast ice with deep snow drift, the floe edge, and areas of moving ice with a 

large degree of ice cover (Blix 2005).  

Polar bears were heavily hunted during the first half of the 20th century all over the 

Arctic. Through the 1950s and 1960s, there was an increase in the recorded number of polar 

bears killed. The polar bears were completely protected in the Soviet Union from 1956, and in 

1973, the international “Agreement on the Conservation of Polar Bears” was signed (Prestrud 

and Stirling 1994). The world population of polar bears is currently believed to be about 

20,000-25,000 animals that can be divided into 19 subpopulations throughout the circumpolar 

Arctic (Aars et al. 2005). The Barents Sea subpopulation is one of these, inhabiting the 

geographic regions of Svalbard, the Barents Sea and Franz Josef Land. The size of this 

subpopulation is estimated to be approximately 2650 individuals (Aars et al. 2009).  

Polar bears are long-lived, late maturing carnivores that have relatively low rates of 

reproduction and natural mortality. They have a monogastric digestive system with a simple 

and relatively short intestine typical of a carnivorous animal, and with the caecum completely 

lacking (Larsen et al. 2004). Polar bears are mostly carnivorous and feed mainly on seals, 
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although white whale and narwhal carcasses, birds, bird eggs and carrion can be important 

food items during times of the year when seals are less available (Smith 1980; Gjertz and 

Lydersen 1986; Lowry et al. 1987; Smith and Sjare 1990; Rugh and Shelden 1993; 

Stempniewicz 1993; Donaldson et al. 1995). When feeding on seal blubber, they have a 

digestive efficiency of more than 90% (Blix 2005). In Svalbard, polar bear predation on 

reindeer on land has also been observed (Derocher et al. 2000). 

 

Seal 

The hooded seal (Cystophora cristata), the harbour seal (Phoca vitulina), and the grey seal 

(Halichoerus grypus) belong to the family Phocidae, which is one of three main groups 

within the suborder Pinnipedia (Fig. 7). Pinnipeds are fine-footed mammals which have 

derived from a common bearlike ancestor, diverging 25 to 27 million years ago into the 

presently known families. Members of the family Phocidae are called earless or true seals. 

They have a thick layer of fat which contributes to the streamlining of the body and reduces 

the costs of swimming, and provides insulation against the ice-cold arctic water as well as 

storage for periods of fasting during breeding and moult. They use their hind-flippers when 

swimming and have short front flippers which they use when moving on land (Blix 2005). 

Seals have a typical carnivorous gastrointestinal tract, consisting of a single stomach, a 

small intestine, a rudimentary caecum and a short simple colon (Olsen et al. 1996; 

Mortensson et al. 1998). The length of the small intestine differs greatly among different 

species (five to 25 times body length), but the reason for this is unknown (Mortensson et al. 

1998). The digestive tract of mammals harbours a complex microbial ecosystem with 

representatives from Bacteria, Archaea and Eucarya, playing a key role in the nutrition and 

health of the animal (Woese et al. 1990).  
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Fig. 7. Hooded, harbour and grey seal. The photo of hooded seals is by Erling S. Nordøy, and 

the other two are by Havforskningsinstituttet (Institute of Marine Research). All photos are 

printed with permission. 

 

Hooded seal 

The hooded seal (Fig. 7) is abundant in western and central regions of the Arctic and sub-

Arctic North Atlantic. They are named for the inflatable nasal sac occurring in sexually 

mature males. When inflated, it is a hood that covers the front of the face and the top of the 

head. Adult males measure about 2.6 meters and typically weigh between 200-360 kg, while 

mature females measure 2.2 meters and weigh between 150-250 kg. One of three major 

breeding sites is the Greenland Sea near Jan Mayen, where they gather together in late March 

for breeding and then reappear in the drift ice to moult in July. Between pupping and 

moulting, they make long individual trips away from the ice edge, mostly to open water. 

Sometimes, they visit coastal areas; the Faeroe Islands, Norway or Iceland (Folkow et al. 

1996). The diet of hooded seals consists of a variety of fish and invertebrates, including 

Greenland halibut, Atlantic argentine, redfish, herring, polar cod, squid, and crustaceans 

(euphausiids, amphipods) (Haug et al. 2000; Potelov et al. 2000; Tucker et al. 2009).  

 

Harbour seal 

The harbour seal, also known as common seal, is one of the most common seal species in the 

world (Fig. 7). They are the most wide ranging of the pinnipeds, and exist in northern parts of 
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the Pacific Ocean and the Atlantic Ocean, along the Norwegian coast, on Kola and the west 

side of Svalbard (Bigg 1981; Henriksen et al. 1997). In North Norway, the largest 

concentration is in Vesterålen, Nordland, where Haug and colleagues (1998) estimated an 

abundance of approximately 1000 seals in 1998. The harbour seal is more resident than e.g. 

the hooded seal. Harbour seals can be up to 2 meters long and weight between 50-170 kg, 

males being slightly larger than females. The diet composition of harbour seals may reflect 

differences in the prey species assemblages encountered in various habitats. In northern 

Norway, they eat mainly fish like saithe, cod, herring, and sculpin (Berg et al. 2002). The 

Norwegian coast is utilised for harvesting and farming marine resources. The harbour seals 

being a fish feeder foraging in coastal water may interact with local fisheries and fish farms, 

thereby being exposed to human activities (Henriksen and Moen 1997; Bjorge et al. 2002).  

 

Grey seal 

Grey seals (Fig. 7) are found only in the North Atlantic with three main groups located in the 

Northeast Atlantic, the Northwest Atlantic and the Baltic Sea. The Northeast Atlantic 

population is centred around the British Isles, ranging from Iceland, eastward along the coast 

of France, and north to Norway and the Kola peninsula (Bonner 1981). The systematic name, 

Halichoerus grypus, means the hooked-nose sea pig. The males grow to an average of 2.2 

meters in length and weigh about 220 kg, females reaching an average of 1.8 meters and an 

average weight of 150 kg. The population along the Norwegian coast consists of 5,800 to 

6,600 individuals with the largest abundance in mid Norway (Nilssen and Haug 2007). As is 

the case with harbour seals, grey seals have a resident nature and are exposed to human 

activities through interaction with local fisheries and fish farms. Their diet is dominated by 

fish like cod, saithe, sand eel, herring and catfish (Hammond et al. 1994; Mikkelsen et al. 

2002). Regional variations in diet may reflect variations and abundance and availability of 

potential prey. Adults feed on larger prey than younger seals (Mikkelsen et al. 2002).  
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Reindeer 

Reindeer (Rangifer tarandus) are highly adaptable ruminants that developed 15 million years 

ago (Randi et al. 1998; Mathiesen et al. 2005). They are widely distributed and numerous in 

the circumpolar north counting (Eurasia, North America, the Arctic islands of Scandinavia, 

Finland, the western region of Russia and in West Siberia ) counting approximately five 

million individuals (Banfield 1961). The reindeer belong to the cervidae family and include 

seven subspecies living in diverse habitats (Banfield 1961). Some subspecies migrate between 

summer and winter ranges like most of the Eurasian tundra or mountain reindeer (Rangifer 

tarandus tarandus), wild tundra caribou (Rangifer tarandus groenlandicus) and Alaskan 

caribou (Rangifer tarandus granti), while others, such as the reindeer on Svalbard (Rangifer 

tarandus platyrhynchus), live on the tundra all year round. 

Reindeer are grazing herbivores adapted to a seasonal variation in available nutrients 

in their forage. The summer diet consists of green plants and leaves with high nutritive value. 

The winter diet, especially on the Scandinavian mainland, is dominated by lichens and some 

wintergreen plants (Mathiesen et al. 2005). Lichens are an important source of carbohydrates 

but low in protein and minerals, and the reindeer are unique because of the ability to digest 

and utilize these (Nieminen and Heiskari 1989; Aagnes et al. 1995; Storeheier et al. 2002). 

Lichens play a significant role in nature almost everywhere they occur and form the dominant 

vegetation on approximately 8% of the Earth’s terrestrial surface, fundamentally influencing 

the growth and development of other plants and animals sharing the same environment (Nash 

1996; Brodo et al. 2001). The ruminant reindeer have a compartmentalised stomach-system 

where symbiotic rumen microorganisms take part in degradation of plant cell wall 

carbohydrates (Mathiesen et al. 2005).  
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Microbial diversity 

We find bacteria almost everywhere, in soil, sediments, gut, rumen, and sea; the main 

diversity of life is microbial. Even in habitats that seem incompatible with life, like Arctic ice, 

the Dead Sea and hot springs, microbes grow. Microbial diversity is the degree of variation of 

microbes within a given ecosystem. In some ecosystems, like the human gut, we have a 

greater knowledge about the microbiota. In others, like the gut of wild Arctic mammals, we 

know less. In microbial ecology, diversity can be determined using phenotypic or genotypic 

approaches.  

 

Fig. 8. Universal phylogenetic tree based on small-subunit rRNA sequences. Sixty-four rRNA 
sequences representative of all known phylogenetic domains were aligned, and a tree was 
produced using FASTDNAML. That tree was modified, resulting in the composite one 
shown, by trimming lineages and adjusting branch points to incorporate results of other 
analyses. The scale bar corresponds to 0.1 changes per nucleotide. From Pace (1997), 
reprinted with permission. 
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 Phenotypic diversity is related to the expression of genes under a given set of 

conditions. As most of the bacteria, especially in environmental samples, do not grow under 

laboratory conditions, only a minor part of the phenotypic diversity in a population can be 

observed. For example in soil, the population of colony forming bacteria is not representative 

for the total community as only 0.1-1% of the bacteria is cultivable (Torsvik et al. 1996). 

Genetic diversity measures the genetic composition in microbial communities independent of 

environmental conditions. Over three decades of molecular-phylogenetic studies, researchers 

have compiled an increasingly robust map of evolutionary diversification showing that the 

main diversity of life is microbial, distributed among the domains, Bacteria, Archaea, and 

Eucarya, suggested by Woese (1990) (Fig 8). The application of molecular-phylogenetic 

methods to study natural microbial ecosystems without the traditional requirement for 

cultivation has resulted in the discovery of many unexpected evolutionary lineages; members 

of some of these lineages are only distantly related to known organisms. 

 

Taxonomic classification 

Classification of life has for a long time been based on their phenotype, starting with Aristotle 

classifying all life as being plants or animals. Carolus Linnaeus lived in the 18th Century and 

created the familiar hierarchical classification scheme of life: kingdom, family, class, order, 

family, genus and species, based on phenotype. In the mid-19th century, Ernst Haeckel 

introduced a third kingdom for microorganisms, in addition to the two for plants and animals. 

A challenge was to classify microbes with little distinct morphology or shape. A revolution in 

microbial classification came with the work of Carls R. Woese in the 1970s. He proposed that 

variations in the sequences of DNA encoding ribosomal RNA (rRNA) in different organisms 

would provide information regarding evolutionary relatedness. Woese studied evolutionary 

relationships among microorganisms and in the process, he and colleagues discovered a split 

in the "prokaryotes". He originally thought that these were primitive organisms and called 

them the Archaea. So, rather than kingdoms of life, Woese argued for the three domains 

Eucarya, Archaea, and Bacteria (Woese et al. 1990), with a common ancestor (Fig. 8).  

Traditionally, biodiversity measures are based upon the species with binomial 

Liennaen names as the descriptive unit. The species concept is used in all branches of biology 

(de Queiroz 2005). Most biologists know the “the biological species definition” established by 
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Mayr in 1942: “species are groups of actually or potentially interbreeding natural populations, 

which are reproductively isolated form other such groups” (Mayer 1942). Species diversity 

can be expressed as species richness, which is an index (single number) expressing the ratio 

between the number of species and the number of individuals in a collection. Many diversity 

indices, like the Shannon index (Shannon and Weaver 1949), take into account both species 

richness and species abundance.  

The traditional species concept does not fit the bacterial world, and microbiologists 

lack a widely accepted theoretical species definition. One primary criterion for assigning 

bacteria to the same species is if their reciprocal, pair-wise DNA-DNA hybridization is ≥70%. 

In addition, all strains within a species must have a certain degree of phenotypic consistency, 

and species descriptions should be based on more than one type of strain (Achtman and 

Wagner 2008). Microbes with 16S rRNAs that are ≤98.7% identical are always members of 

different species, because such strong differences correlates with <70% DNA-DNA 

similarity. The opposite might not be true, and distinct species have been occasionally 

described with 16S rRNAs that are >98.7% identical. Even though not generally accepted, 

microbial ecologists typically assign 16S rRNA sequences that are >97% identical to the same 

species, and sequences with >93% identity are designated the same genus. The DNA-DNA 

hybridization concept, as most of the other concepts used today, includes methodological 

considerations.  

Horizontal gene transfer (HGT) has an important role in the evolution of microbial 

genomes and has been introduced as a disruptive force that challenges the species concept 

(Doolittle and Papke 2006). HGT is recognized as a major cause of antibiotic resistance since 

the 1960’s, e.g. there is evidence that resistance has been transferred to Staphylococcus 

aureus on more than 20 occasions (Grundmann et al. 2006). Studies on S. aureus and 

Streptococcus pneumoniae has revealed that HGT has facilitated acquired antibiotic resistance 

(Harris et al. 2010; Croucher et al. 2011). Other types of genes, like mobile genetic elements, 

plasmids and prophages, have also been widely disseminated by HGT. Genomic islands are 

often associated with HGT and can introduce complete metabolic pathways and hence rapid 

environmental adaption. With the exception of rapid acquisition antibiotic resistance, little 

evidence exists for recent, real-time evolution, due to frequent and ongoing HGT. Most 

horizontally acquired sequence changes are eventually lost, especially if they reduce fitness, 

and most genes introduced is transient and lost over evolutionary time and thereby not a 

27 
 



reason for turning down the concept of microbial species (Achtman and Wagner 2008). On 

the other hand, Dagan and Martin (2007) argue that at least 65% of prokaryote gene families 

has been affected by HGT during the course of evolution. 

There is a lack of knowledge about the prevalence of antimicrobial resistance genes in 

the gastrointestinal tract of Arctic mammals, and little is known about the bacteria inhabiting 

these environments. To increase knowledge of the diversity in the gastrointestinal tract of 

polar bears and Arctic and sub-Arctic seals, we have applied DNA sequencing and 

phylogenetic analysis to examine the microbiota in faeces and colon content from these 

animals.  
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Hypotheses and objectives of the study 

Hypotheses 

• Ampicillin resistance, encoded by blaTEM alleles, is prevalent in non-clinical bacterial 

populations in Arctic environments that have little or no human influence.   

 

• Polar bear and seals harbour a distinct, diet-dependent gastrointestinal microbiota that 

is distinct from currently described microbial diversity. 

 

• The natural antibiotic, usnic acid, has an effect on the reindeer rumen microbiota 

ecology, and the rumen harbour usnic acid resistant bacteria. 

 

Objectives 

• Determine the prevalence and allele diversity of blaTEM resistance genes in a range of 

environments, including soils and sediments (paper I), and the gastrointestinal tract of 

polar bear (paper II) and seals (paper III).  

  

• Describe the diversity of the main microbiota of polar bear (paper II) and seals (paper 

III).  

 

• Examine the effect of usnic acid on rumen bacterial diversity in reindeer, and screen 

for usnic acid resistant bacterial strains (paper IV). 
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Summary of papers 

Paper I 

The prevalence of blaTEM genes conferring ampicillin resistance (Ampr) in different soils was 

determined to clarify the environmental distribution of resistance determinants of major 

clinical importance. Samples were collected from 14 sites in New Zealand, mainland Norway, 

Svalbard, and 2 soil microcosms made of compost purchased in Italy. The Ampr bacteria 

represented 1.7-100% of the cultivable microflora with an average of 28%. Approximately 

1200 Ampr isolates were further analyzed. Although >50% of the resistant isolates were 

capable of β-lactam-ring (nitrocefin) degradation, none carried a PCR-detectable blaTEM gene. 

The proportion of blaTEM genes in the culturable Ampr isolates was <0.07%. The overall 

blaTEM gene prevalence was determined by blaTEM-specific PCR of DNA extracted directly 

from the environmental sample. DNA hybridization was performed on selected samples with 

a detection limit of ~11 blaTEM genes per PCR sample. Our analysis indicates that the 

prevalence of blaTEM carrying bacteria is <1 per 1000 to 100 000 bacteria in the samples 

analyzed. The study suggests that blaTEM genes are rare in soil environments, in contrast to 

their increasing prevalence in some clinical and commensal bacterial populations. The 

frequent observation of nitrocefin-degrading capacity among the sampled isolates suggests 

that other mechanisms conferring enzyme-mediated resistance to β-lactam antibiotics are 

widespread in Arctic and agricultural soil environments. 

 

Paper II 

Polar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding 

mainly on seals, and living closely associated with sea ice. Little is known of their gut 

microbial ecology and the main purpose of this study was to investigate the microbial 

diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E). In addition, the 

level of blaTEM alleles, encoding ampicillin resistance (Ampr), was determined. In total, ten 

samples were collected from ten individual bears, rectum swabs from five individuals in 2004 

and faeces samples from five individuals in 2006. A 16S rRNA gene clone library was 

constructed, and all sequences obtained from 161 clones showed affiliation with the phylum 
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Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as 

unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus 

Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 

1.6 × 106 colony forming units (cfu)/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g 

for the faeces samples. The proportion of Ampr bacteria ranged from 0% to 44%. All of 144 

randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of 

the ampr isolates from the rectal samples yielded positive results when screened for the 

presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of 

three total faecal DNA samples from polar bears. The bacterial diversity in faeces from polar 

bears in their natural environment in Svalbard is low compared to other animal species, with 

all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles 

were detected in contrast to their increasing prevalence in some clinical and commensal 

bacterial populations. 

 

Paper III 

Dominant colonic bacteria in wild hooded (n=9), harbour (n=1) and grey (n=1) seals were 

identified using 16S rRNA gene clone libraries (313 clones), revealing 52.7% Bacteroidetes, 

41.5% Firmicutes, 4.5% Proteobacteria and 1.0% Fusobacteria. Thirty (77%) of the 39 

phylotypes identified were novel, showing <97% sequence similarity to their nearest 

cultivated relatives. Mean colonic bacterial cell density, determined by real-time PCR, was 

high (12.8 log10 cells/g wet wt) for the hooded seals, while the number of methanogenic 

Archea was low (4.0 log10 cells/g wet wt). The level of ampicillin (Ampr) and tetracycline-

resistant (Tetr) isolates was investigated by cultivation. Aerobic Ampr isolates were only 

detected in colon contents from four hooded seals, whereas aerobic Tetr isolates were found in 

seven of the nine hooded seals. These data provide novel insight to the gut microbiota of 

Arctic and sub-Arctic seals living in the wild.  
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Paper IV 

The reindeer rumen microbiota have interacted with dietary lichens through millions of years 

of evolution, and recent data indicate that symbiotic bacteria in the reindeer rumen may have 

evolved mechanisms to resist and even detoxify secondary compounds such as usnic acid in 

lichens. Reindeer (n=3) were given ad libitum access to a concentrate diet supplemented with 

usnic acid for 17 days to examine the effect of this antibiotic phenolic compound on the 

rumen microbiota. Sampling was conducted before, during (days 9 and 17) and 8 days after 

the usnic acid supplementation. Denaturing gradient gel electrophoresis (DGGE) profiling and 

phylogenetic analysis of 16S rRNA gene sequences from the DGGE profiles were used to 

determine the effect of the usnic acid on bacterial diversity and to identify dominant 

phylotypes. Population densities of bacteria and methanogenic archaea associated with both 

the liquid and particle fraction of the rumen contents were estimated by real-time PCR. 

Furthermore, rumen bacterial isolates (n=65) were screened for resistance towards four 

different lichen acids (usnic, atranoric, fumarprotocetraric and lobaric acid). Two bacterial 

isolates, with 16S rRNA genes that had a 100% sequence identity to Pseudobutyrivibrio 

ruminis and 98% identity to Butyrivibrio hungatei, respectively, were found to be resistant to 

all four lichen acids, confirming that the reindeer rumen does host bacteria able to grow in the 

presence of these antibiotic secondary compounds. Representatives from four different phyla 

(Verrucomicrobiota, Bacteriodetes, Proteopbacteria and Firmicutes) were detected among 

the bacterial 16S rRNA gene sequences obtained from the DGGE gels. Bacterial numbers 

varied little between samples, ranging from 1.1 x 1011 to 9.8 x 1011 cells/g wet weight, while 

numbers of methanogenic archaea ranged from 1.5 x 109 to 2.1 x 1010 cell numbers/g wet 

weight independent of the supplementation of usnic acid. Furthermore, the DGGE profiles did 

not reveal significant effects of the usnic acid treatment on rumen bacterial diversity, 

suggesting that lichen secondary compounds may be rapidly degraded by rumen microbes and 

consequently do not influence the dominant populations of rumen bacteria. 
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General discussion 

Environmental resistance 

Ampicillin is a semisynthetic β-lactam antibiotic that has been commercially used on a 

global scale since the 1960s (Palumbi 2001). The most common resistance mechanisms 

towards ampicillin is the production of β-lactamases encoded by blaTEM alleles (Livermore 

1995).  

The key question addressed in this thesis work is the directionality of resistance 

emergence and dissemination. That is, is transferable antibiotic resistance emerging first in 

clinical and anthropogenic environments and then spreads to pristine environments, or is 

antibiotic resistance a naturally occurring trait in pristine environments that can transfer into 

clinically relevant microbes? Our tested hypothesis stated that there is a natural occurrence of 

blaTEM alleles in microbial populations localised in environments with little human influence. 

These blaTEM reservoirs could therefore contribute to resistance development in clinical 

settings.  

The important feature of pristine environments is that they are not subjected to major 

anthropogenic influences. An environment can be described as the totality of circumstances 

surrounding and organism or group of organisms, especially, the combination of external 

physical conditions that affect and influence the growth, development, and survival of 

organisms (www.thefreedictionary.com). Owing to the movement of antibiotics, and 

antibiotic resistance genes in the environments, e.g. on wind and feathers, maybe it is unlikely 

that any environment can be considered truly pristine (Kallenborn et al. 2007). However, 

environments have a various degree of human influence, from hospitals with a strong 

antibiotic selection pressure to the Arctic considered to be one of the last outposts of 

wilderness with minimal human influence on the ecology of the antimicrobial resistance. It 

seems likely that e.g. soil contain antibiotic resistant bacteria, even in the absence of human 

selection pressure, because many soils contain low concentrations of compounds that select 

for resistance. For example, soil may be rich with microorganisms that produce β-lactam 

antibiotics, such as penicillin and cephalosporins (Martin and Liras 1989).  

We found low levels of blaTEM alleles in the environments examined: Arctic soils and 

sediments, and the gut of polar bear and Arctic and sub-Arctic seals. This was the case even in 
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agricultural soil from Tromsø and compost made of household waste, the environments 

expected to have the most human influence. Four ampr isolates from polar bear rectal swabs 

carried blaTEM alleles. The isolates were identified as E. coli and the four alleles were 

identical and inserted in Tn3 transposons which are found in a wide variety of bacteria. 

Reports on antimicrobial resistance in Arctic environments are few, but resistance has been 

observed in Arctic birds. Eight percent of E. coli isolates were resistant and ampicillin 

resistance was one of the most frequent resistances observed (Sjölund et al. 2008). The 

mechanism of the ampicillin resistance was not examined. However, the birds in the region 

migrate from up to six different continents and thereby may have acquired drug-resistant 

bacteria during wintering or stop at lower latitudes. One E. coli isolate showed a resistance 

profile similar to a pattern common in clinical isolates supports the theory of introduction by 

migration and transfer of bacteria between birds (Sjölund et al. 2008). As described in the 

introduction, antibiotic resistant bacteria have been detected in a wide range of environments, 

including various soils, sediments, and animal gut. In remote soil in Alaska, antimicrobial 

resistance genes were detected through functional metagenomics. Allan and colleagues found 

diverse and ancient β-lactamases capable of conferring resistance to E. coli (Allen et al. 

2008). However, none of the Alaskan soil β-lactamases were related to the blaTEM alleles 

investigated in our study. In the polar bear rectal swabs, we detected ampr isolates with β-

lactamase activity that were blaTEM PCR negative. A study on bla genes in agricultural and 

non-agricultural (prairie) soil in France showed that the non-agricultural soil had higher levels 

of ampr bacteria (54.4% to 69.6%) than the agricultural soil (0.4% to 8.0%). The blaTEM 

alleles detected in the soil differed from alleles isolated in clinics. Two exceptions were 

blaTEM 116 and 157 which clustered together with the soil alleles, thus they may be of 

environmental origin (Fig. 3) (Demanèche et al. 2008).  

It is well known that resistant bacteria with transferable antibiotic resistance are 

present in the gastrointestinal tract of farm animals. Also in the gut of wild animals, bacteria 

with transferable resistance have been found (Rolland et al. 1985; Gilliver et al. 1999; 

Osterblad et al. 2001; Sayah et al. 2005; Rwego et al. 2008; Sjölund et al. 2008; Kozak et al. 

2009). It seems that the closer contact to human activities, the higher levels of resistance 

(Rolland et al. 1985; Rwego et al. 2008; Kozak et al. 2009). For instance, Kozak and 

colleagues (2009) found that bacteria isolated from wild small animals that lived in close 

proximity to food animal agriculture were more likely to carry resistance to antimicrobials 

than isolates from more natural environments. The same trend was observed between baboons 
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in their natural habitat with limited or no contact with humans and individuals living close to 

humans and daily contact with human waste (Rolland et al. 1985; Rwego et al. 2008). In rural 

England, 90% of bacterial isolates from mice and voles were resistant to β-lactam antibiotics, 

with more than 50% showing β-lactamase activity (Gilliver et al. 1999). In contrast to these 

results, faecal bacterial isolates from moose, deer and voles in Finland had almost no 

resistance (Osterblad et al. 2001). Finland is not as densely populated as England, and the 

load from agriculture is less. Thus, the animals in the finish study might be less influenced by 

human activities than the wild rodents in England. The trend that the closer contact with 

human activities increases the possibility of resistance is consistent with our findings of low 

levels of resistance in gut flora of polar bears and Arctic and sub-Arctic seals. Event though 

two of the seals in our study were captured close to the cost of northern Norway and we can 

not exclude an influence from human activities.  

Even though we detected low levels of blaTEM alleles in our study, some environments, 

like soil and gastrointestinal tract, are reservoirs of antibiotic resistant organisms and their 

associated genes, as describe above. A debate is going on whether these environmental 

reservoirs affect the pathogen microbiota. Most resistance genes in pathogen bacteria are 

acquired through horizontal gene transfer via mobile genetic elements as plasmids, and some 

of these plasmids have been found without antibiotic resistance elements before the 

antibiotics were introduced (Hughes and Datta 1983). During the large-scale antibiotic 

production era, more of these plasmids have become vectors of resistance genes. Despite the 

gaps in our knowledge, there are some indications of transfer of resistance genes from the 

environment to the clinic. As mentioned above, Demanèche and colleagues suggests that 

blaTEM-116 and blaTEM-157, which are found in clinical isolates, originate from the environment 

(Fig. 3) (Demanèche et al. 2008). Other scientists have found that the source of CTX-M, an 

extended-spectrum β-lactamase having a global negative impact on the treatment of infectious 

disease, is likely the environmental bacterial genus Kluvyera, particularly K. ascorbata and K. 

georgiana (Rodriguez et al. 2004). These examples link environmental resistance to the clinic 

and the strong anthropogenic selection pressure provide for a transmission and dissemination 

of resistance genes.   

In conclusion, we found low prevalence of blaTEM alleles in the soil, sediments and 

gastrointestinal tract of polar bear and seals, and this is in contrast to our hypothesis. 

However, we sampled only few environments and few animals were included. A screening on 
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a larger scale would give a better picture of the prevalence of resistance genes. We detected 

ampicillin resistant isolates showing β-lactamase activity (nitrocefin test). Thus, there might 

be other types of β-lactamases present, and functional metagenomic analysis of the samples 

could reveal the nature of these.  

 

Bacterial diversity 

In general, little is known about the microbiota of wild animals, and this is also the case in 

Arctic environments. The intestinal microbiota of Arctic mammals has rarely been examined 

for carriage of antimicrobial resistance genes, and little is known of these bacterial 

populations in general. We wanted to develop an understanding of the gastrointestinal 

microbiota of polar bear and seals. The polar bear microbiota consisted of members of the 

Firmicutes (Fig. 9) (Glad et al. 2010a). Another research group has looked for Clostridia 

perfringens isolates in faeces of polar bear on Svalbard, and they detected this species in 44% 

of the samples (Jores et al. 2008). Almost all clones in our study affiliated with the order 

Clostridiales, and the nearest relative (99.9% sequence identity) to the most abundant 

phylotype was Clostridium perfringens. In a study on captive polar bears, the faecal 

microbiota was found to be dominated by the facultative anaerobes Enterobacteriaceae and 

enterococci, and the Clostridium cluster I, that represents both Proteobacteria and Firmicutes 

(Schwab and Gänzle 2011). In Fig. 9, the findings in polar bear and seals are compared to 

human and pig intestinal microbiota. Most of the Firmicutes isolated from the human intestine 

were members of the Clostridia class (Eckburg et al. 2005).  
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Fig. 9. Pie charts showing the distribution of sequence or phylotype affiliation in the faeces of 
polar bear (Glad et al. 2010a), colon content of seals (average % of clone sequence affiliation 
from three species of seal) (Glad et al. 2010b), ileum, cecum and colon content of pigs (Leser 
et al. 2002), and multiple colonic mucosal sites and faeces of humans (Eckburg et al. 2005).  

 

The colon content from seals demonstrated a more diverse microbiota. The grey seal colon 

content was dominated by bacteria from the phylum Firmicutes (76%), the harbour seal of 

bacteria from both Firmicutes (50%) and Bacteriodetes (49%), and the harbour seals had a 

dominance of Bacteriodetes (68%). In Fig 9, the mean values of the percentage sequence 

affiliation for the three seal species are presented for comparative purposes. As discussed in 

37 
 



the paper, the limitations of this study is the small number of seals included (Glad et al. 

2010b). Our result are consistent with findings by Ley et al. (2008) that carnivore have a 

lower microbial diversity in the gastrointestinal tract than omnivore and herbivores. Ley and 

colleagues state that both phylogeny and diet influence the composition of the intestinal 

microbiota.  

When we compare the intestinal diversity data from polar bear with other bears there 

are some divergence. In the wild grizzly bear microbiota, both representative from the 

Firmicutes and Proteobacteria dominated. In captive grizzly bears, the Enterobacteriaceae, 

belonging to the Proteobacteria dominated. Even though placed in the order Carnivora, the 

grizzly bears living inland feed on plant material and only occasionally catch prey (Schwab et 

al. 2009). As members of Proteobacteria are well known to exist widely in the intestine of 

animals, we could have expected to find them in our study on polar bear as well. In giant 

pandas, also belonging to the order Carnivora, 13 phylotypes have been identified, and this 

low number is consistent with our results in polar bear. The phyla detected were the 

Proteobacteria (62%) and Firmicutes (38%) (Wei et al. 2007). The diet of the pandas is 

strictly vegetative, consisting of bamboo. However, they have a short (four times their own 

body length) and simple gastrointestinal tract that is characteristic of the carnivores. Most 

other herbivores have a more complex intestinal tract 10 to 22 times their own body length 

(Wei et al. 2007). Thus, it seems like the shared anatomy of the gut system of bears have a 

stronger influence on the composition of the intestinal microbiota than diet.  

 Our hypothesis was that polar bear and seals harbour a distinct diet-depending 

gastrointestinal microbiota. The phylogenetic analysis of the microbiota of faeces from polar 

bear does not support the hypothesis, as we detected only members of the phyla Firmicutes, 

order Clostridiales, which are prevalent also in the human gastrointestinal tract. Only 6% of 

the sequences were novel, showing <97% similarity to sequences representing the nearest 

cultivated relative. The low diversity can be linked to the small numbers of clones analysed, 

and a high throughput sequencing strategy would have revealed a higher diversity. Further, it 

seems like the anatomy of the gastrointestinal tract of bears has a stronger influence on the 

microbiota composition than diet. The seal colon content microbiota displayed a greater 

diversity then of the polar bear, the average distribution on a phylum level was similar to the 

one found in humans, even though there were differences between the seal species (Fig. 9). 
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81% of the sequences were novel, thus the seal microbiota were distinct from currently 

described microbial diversity.  

 

Effect of usnic acid 

Reindeer herding is affected by the global climate change as this influence the availability and 

quality of feed (Turunen et al. 2009). Current global climate models predict deeper snow 

cover, increasing rainfall, warm thawing and freezing cycles and a higher risk of ice layer 

formation on the soil and within the snow during the winter (Turunen et al. 2009). Developing 

appropriate methodologies for assessing the adaptive capacity, the vulnerability and the 

resilience of social-ecological systems to global changes remains a challenge (Tyler et al. 

2007). Access to different pasture habitats and the availability of different forage plants can 

greatly affect the growth rate and survival of reindeer. The predicted increase in UV-B 

radiation is also likely to increase concentration of phenolic compounds such as tannins in 

plants and usnic acid in lichens eaten by reindeer (Nybakken and Julkunen-Tiitto 2006; 

Turunen et al. 2009).  

A large and diverse microbiota such as the reindeer rumen may harbour microbes that 

can tolerate and detoxify plant secondary metabolites (Sundset et al. 2007; Sundset et al. 

2008; Sundset et al. 2009a; 2009b). Our hypothesis was that usnic acid has an effect on the 

rumen microbial ecology. Reindeer were fed usnic acid supplemented feed and the rumen 

microbiota was investigated by DGGE profiling, revealing no effect after 9 and 17 days of 

treatment. This might be due to a rapid degradation of the usnic acid in the rumen by bacteria. 

Sundset and colleagues (2010) did not detect usnic acid in the rumen short time after the 

reindeer had been eating usnic acid containing feed, which supports this theory. The presence 

of usnic acid resistant isolates in the reindeer rumen, as demonstrated in this study and by 

Sundset et al. (2008), indicates that the rumen microorganism in these animals have adapted 

mechanisms to deal with this antibiotic and toxic compound. Genome sequencing and knock 

out studies of bacteria capable of growing in presence of usnic acid can reveal the 

mechanisms involved in the detoxification process that allow the utilization of lichens as a 

diet for reindeer.  
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General conclusions 
 

This dissertation has sought to explore antibiotic resistance and bacterial diversity in Arctic 

environments, and the key question was the directionality of resistance emergence and 

dissemination. Our tested hypothesis stated that there is a natural occurrence of blaTEM alleles, 

encoding resistance to ampicillin, in microbial populations localised in environments with 

little human influence. However, we found low levels of blaTEM alleles in the environments 

examined. We know little about the microbes that constitutes the microbial environment in 

the gastrointestinal tract of wild Arctic animals. Studying the bacterial diversity in faeces of 

polar bear on Svalbard revealed an uncomplicated microbiota consisting of members of the 

phyla Firmicutes, order Clostridiales, with few 16S rRNA sequences being novel. The seal 

colon content microbiota displayed a greater diversity and was more distinct with 81% of the 

sequences being novel. The circumpolar reindeer has the ability to tolerate and probably also 

utilize usnic acid, a natural antibiotic found in lichen eaten by reindeer. We studied the 

potential effect of the usnic acid on the rumen microbiota of reindeer and the presence of 

usnic acid resistant isolates. No effect was detected by the methods used, which might be due 

to a rapid degradation of the usnic acid in the rumen by bacteria following intake. Rumen 

isolates that were able to grow in the presence of usnic acid were detected.  

We conclude that even though low levels of blaTEM alleles were detected in the Arctic 

environments examined in this thesis work, some environments (including soil and the 

gastrointestinal tract) have shown to be reservoirs of antibiotic resistant organisms and their 

associated genes. There is little knowledge about whether these environmental reservoirs 

affect the pathogen microbiota, but there have been some indications of transfer of resistance 

genes from the environment to the clinic. Antibiotic treatment is our primary method of 

treating infectious diseases, and more studies of the environmental resistance reservoirs are 

important to our future ability to fight infections.  
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