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Abstract 

Swath bathymetry, high resolution seismic and core data are analysed to describe the Late 

Weichselian and Holocene sedimentary processes and palaeoenvironment in Van 

Keulenfjorden, Spitsbergen.  

Bottom currents, the bathymetry of the fjord and the distance from sediment sources are the 

controlling factors for the sediment distribution as indicated by isopach maps. Sandur deltas 

at the mouth of tributary valleys cause repeated mass-transport along the slopes. Rapid 

postglacial isostatic uplift reactivated faults of the West Spitsbergen fold and thrust belt, 

which acted as pathways for thermogenic gas creating pockmarks. 

The results from this study confirm previous indications that an ice stream drained the Late 

Weichselian Barents Sea Ice Sheet through Van Keulenfjorden. The deglaciation of the 

fjord began ~11.2 cal. ka BP with a retreat rate of ~160 m a
-1

. A hiatus between 10.7 cal. ka 

BP and 7.0 cal. ka BP in the outer part of the fjord was most likely caused by bottom 

currents.  

Following a warm period between 10.7 cal. ka BP and min. 7.0 cal. ka BP increasing IRD 

content indicates slow but steady cooling. Glacial activity in the Holocene peaked at 2.8 

cal. ka BP, resulting in the deposition of morainal banks. Adjacent to these morainal banks 

two debris flow lobes were deposited. They are interpreted to be the product of two 

consecutive surges. This contradicts the conclusions of previous investigations, where the 

upper lobe is interpreted to be from the Little Ice Age. Since 2.8 cal. ka BP the glacial 

activity was relatively constant. The terminal position of the Nathorstbreen from 2.8 cal. ka 

BP was reached in the late 19
th

 century. While the work of this study was conducted 

Nathorstbreen surged and almost reached the front position from 2.8 cal. ka BP again. 
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1 Preface 

1.1 Objectives 

The objectives of this master thesis at the Department of Geology at the University of 

Tromsø are 

i) to establish a seismostratigraphy of the Late Weichselian to Holocene 

succession and compare it to recent research results from other fjords on the 

west coast of Spitsbergen. 

ii) to describe and interpret the assemblage of sedimentary processes and products 

in order to describe the sedimentary palaeoenvironment 

iii) to paste the entity of this study‟s conclusions into the bigger picture of the 

geoscientific research of Svalbard 

1.2 Project Affiliation 

This study was carried out between September 2009 and May 2011 at the Department of 

Geology, University of Tromsø (UiTø), Norway. It is part of the strategic university 

programme Sedimentary Processes and Palaeoenvironments on Northern Continental 

Margins (SPONCOM), funded by the Research Council of Norway. The overall goal of 

this program is to assess the changes in the physical environment of the seafloor and 

overlying water and ice in selected fjords and continental margins in northern Norway and 

West Spitsbergen during the last glacial – interglacial cycle.  

Glacial history is very important because of its close relationship to climate change. This 

relationship is not yet fully understood and needs more investigation 

(http://www.ig.uit.no/sponcom/). 

  

http://www.ig.uit.no/sponcom/
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2 Introduction 

2.1 Glacial History of Spitsbergen 

The West Spitsbergen fjord systems acted as pathways of fast-flowing ice streams that 

drained the Late Weichselian Barents Sea ice sheet (Mangerud et al., 1987, Landvik et al., 

1998, Landvik et al., 2005, Ottesen et al., 2005, Ottesen and Dowdeswell, 2006, Ottesen et 

al., 2007, Dowdeswell et al., 2008, Baeten et al., 2010a). The final deglaciation of the ice 

sheet at the shelf margin started around 17.9 cal. ka BP (thousands of calendar years before 

present). The retreat from that outermost position was rapid, but it was interrupted by a 

readvance to the mid-shelf shortly after 14.3 cal. ka BP (Elverhøi et al., 1995a, Svendsen et 

al., 1996). According to Mangerud et al.(1992) and Svendsen et al. (1996) shortly after 14.3 

cal. ka BP the glacier retreated from Bellsund to the fjord basins of Van Mijenfjorden and 

Van Keulenfjorden (fig. 2.1). 

 

Figure 2.1 Map of central Spitsbergen and the west coast, with Isfjorden trough and 

Bellsund. Indicated are ice marginal positions at various times, see legend (from Mangerud 

et al., 1992). 
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On the Norwegian coast a prominent glacial readvance in the Younger Dryas chronozone 

from c. 12.9 to 11.6 cal. ka BP (11.0 to 10.0 
14

C ka BP, thousands of radiocarbon years 

before present) is described (e.g. Mangerud et al., 1974, Plassen and Vorren, 2003). 

However, the local western Spitsbergen cirque glaciers are thought to have been smaller 

during the Younger Dryas than at the Little Ice Age maximum extent  (~1890 AD; 

Mangerud and Landvik, 2007). On the basis of lithological analyses Forwick and Vorren 

(2009) suggested that a period of a relative increase in sea-ice rafted debris and/or 

decreased iceberg rafted debris within stratified glacimarine sediments might reflect a 

Younger Dryas readvance. Recently, evidence from 2D seismic lines in form of sediment 

wedges and moraines correlated to a Younger Dryas readvance of ~25 km have been found 

in the Isfjorden area (Forwick and Vorren, 2011).  

The final retreat into the inner fjord systems, e.g. Van Keulenfjorden, Van Mijenfjorden, 

Tempelfjorden and Billefjorden, finished c. 10.9
 
cal. ka BP(Elverhøi et al., 1995a, 

Svendsen et al., 1996, Mangerud et al., 1998, Lønne, 2005, Forwick and Vorren, 2009, 

Baeten et al., 2010a). Before 10.9 cal. ka BP the isostatic uplift along the ice-free coast of 

western Svalbard was low (Landvik et al., 1987, Forman, 1990, Forman et al., 2004). After 

10.9 cal. ka BP the entire archipelago, especially on the west coast, emerged rapidly. It was 

therefore proposed that the glaciers on eastern Spitsbergen might have built up mass 

undergoing a Younger Dryas readvance synchronously to the Norwegian mainland glaciers, 

and thus withholding the uplift (Landvik et al., 1987, Svendsen et al., 1996). 

2.2 Holocene Palaeoclimate of Spitsbergen 

The Holocene climatic development is described by Birks (1991) based on a plant ecology 

study on mainly seeds and fruits. Between 9.0 and 4.0 cal. ka BP the climate was inferred 

to be similar to today‟s climate with at least 1.5 °C higher summer temperatures. The 

Holocene increase in summer temperature on Spitsbergen was independently backed up by 

thermophilous shells, Mytilus edulis (Salvigsen et al., 1990). Further research has shown 

that during this time glaciers were small or non-existent (fig. 2.2; Svendsen and Mangerud, 

1997). During this loosely defined Holocene Climatic Optimum most, if not all glaciers on 

the Norwegian mainland have been melted completely at least once (Nesje et al., 2005). For 
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Bjørnøya the Holocene Climatic Optimum lasted from ~11.2 cal. ka BP to 9.3 cal ka BP 

(Wohlfarth et al., 1995). Hald et al. (2004) and Forwick & Vorren (2009) suggest a cooling 

period after a marked warm period between 11.2 and 9.0 cal. ka BP at the West Spitsbergen 

margin and in Isfjorden, respectively.  

 

Figure 2.2: Time distance glaciation diagram for the valley glacier Linnébreen, western 

Spitsbergen, deduced from the stratigraphy in the downstream lake Linnévatnet (from 

Svendsen and Mangerud, 1997). 

From 4.0 to 2.5 cal. ka BP a colder climate is proposed (Birks, 1991, Svendsen and 

Mangerud, 1997). This colder period is not displayed in the SSTs (Hald et al., 2004). For 

the last 2.5 cal. ka BP the records show rather constant climatic conditions (Birks, 1991, 

Baeten et al., 2010a, Forwick et al., 2010).  

Ice rafted debris (IRD) is present during the whole Holocene sedimentary succession in 

Van Mijenfjorden, Isfjorden and tributary fjords indicating that central Spitsbergen has 
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never been entirely deglaciated during this interglacial period (Hald et al., 2004, Forwick 

and Vorren, 2009, Baeten et al., 2010a). 

2.3 Previous Investigations of the Study Area  

Bratlie (1994) focused on denudation rates and glacial activity in Van Keulenfjorden. The 

total Quaternary sediment succession comprises 120 to 230 ms of two-way-travel-time 

(TWT). If calculated with an average p-wave velocity of 1600 ms
-1

 this translates into 96 to 

184 m thickness (Bratlie, 1994). An AMS-radiocarbon date of a reworked shell fragment 

Portlandia arctica gave an age of 11160 ± 150 cal. ka BP (10263 ± 122 
14

C yrs. BP) from 

the north-western part of Van Keulenfjorden (Bratlie, 1994). Though the shell fragment is 

reworked this age indicates that glacimarine sedimentation started as early as c. 11.2 cal. ka 

BP in Van Keulenfjorden. This goes in line with the start of the postglacial sedimentation 

for Van Mijenfjorden at c. 11.30 cal. ka BP (Mangerud et al., 1992).  

In 1898 a topographic map was made in the Van Keulenfjorden area showing 

Nathorstbreen (the main tidewater glacier occupying the fjord head) terminating at the 

lateral moraines that flank the inner fjord (Hamberg, 1905 after Ottesen et al., 2008). A 

submerged morainal bank ridge crosses the fjord just beyond the western ends of the lateral 

moraines on land and is interpreted as the contemporary terminal moraine from the Little 

Ice Age. Within ~30 yrs. Nathorstbreen had advanced ~12 km and then retreated 3 km (fig. 

2.3). This strongly suggests a surge advance in the late 19
th

 century (Ottesen et al., 2008).  
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Figure 2.3:  a) calving front development map since the Little Ice Age of Nathorstbreen 

Glacier System reconstructed from maps and aerial photographs (Liestøl, 1977, Ottesen et 

al., 2008), b) aerial photograph of the calving front of Doktorbreen (left) and Liestølbreen 

(right) from July 2006. Note the strongly indented tidewater glacier front line, very much 

like those indicated on the map and the highly turbid water entering the fjord (from Ottesen 

et al., 2008). 

Furthermore, looped moraines are indicated at the southern side of the glacier tongue on the 

Hamberg map from 1898 (Ottesen et al., 2008), which provides additional evidence for a 

glacier surge (Meier and Post, 1969). Looped moraines are also visible on aerial 

photographs of currently quiescent tributaries of Nathorstbreen. They are especially clear 

on Doktorbreen verifying the surge-type characteristic of the tributary glaciers of the fjord 

head glacier front (Ottesen et al., 2008).  

On the basis of swath bathymetry in the inner basin of Van Keulenfjorden a variety of 

typical glacial morphologic features is described. In front of Nathorstbreen mega-scale 

glacial lineation (MSGL), eskers, De Geer moraines (annual recessional moraines) and 
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rhombohedral crevasse fill/squeeze ridges are identified (Ottesen et al., 2008). However, 

this assemblage of subglacial landforms was formed by the Little Ice Age advance, which 

was restricted to the inner basin of Van Keulenfjorden. This study focuses on the outer 

fjord basin. 

2.4 Physiographic Setting 

Spitsbergen is the largest island (~ 39.044 km²) of the Norwegian arctic archipelago of 

Svalbard and situated between 74° and 81°N and 10° and 35°E. The west coast is 

dominated by fjord systems facing the Norwegian Sea (fig. 2.4). 

 

Figure 2.4: Overview maps of the study area and map of Van Keulenfjorden. 
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Van Keulenfjorden is a ~40 km long and up to ~7.5 km wide E-W trending fjord on the 

south-western coast of Spitsbergen. It is subdivided into two basins by a large submerged 

moraine ridge (Ottesen et al., 2008). The catchment area of Van Keulenfjorden (~1270 

km²) contains 33 glaciers that account for a total ice volume of ~240 km³ (Hagen et al., 

1993).  

The five biggest glaciers are Nathorstbreen, Doktorbreen, Liestølbreen, Penckbreen and 

Zawadskibreen (Hagen et al., 1993) consisting of c. 82,5 % of the glaciated area and 

accounting for c. 90 % of the total ice volume in the Van Keulenfjorden catchment area. All 

of these five glaciers are known to be of surge-type (Hagen et al., 1993, Jiskoot et al., 2000, 

Sund et al., 2009). This influences the sedimentation of the fjord (Elverhøi et al., 1983, 

Solheim, 1991) and therefore has to be considered when reconstructing the 

palaeoenvironment and interpreting glacimarine and glacigenic sediments. 

The catchment area has an E-W decline in glaciation. In the east ~80 % is glaciated, while 

in the west ~50 % is glaciated (Dallmann et al., 1994). All the major glaciers of the 

catchment area are located in the eastern part. Near the fjord head mountain massifs 

(Arrheniusfjellet, 880 m; Dishøgdene, 1015 m; and Gloføykja 1115 m) are carved by 

numerous smaller glaciers, mostly originating in cirques (Dallmann et al., 1990).  

Numerous nunataks pierce the ice cover in the whole catchment area. The most prominent 

of those is in the central NW-SE trending mountain chain including the highest mountains 

(Beryeliustinden, 1205 m; Tittelberget, 1190 m; and Supanberget, 1100 m).  This mountain 

chain forms the ice shed between Recherchebreen and Penckbreen on the south-western 

side of Van Keulenfjorden (Dallmann et al., 1990).  

2.4.1 Geomorphology 

Fjords typically occur in so-called fjord belts along the mid to high latitudes on both 

hemispheres (fig. 2.5, Howe et al., 2010).  
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Figure 2.5: Map of fjords occurrence. Displayed are the Northern and the Southern Fjord 

Belt. From the two belts and higher latitudes fjords do occur. The main areas are labelled 

(after Syvitski et al., 1987, from Hambrey, 1994). 

Fjords are in general defined as steep-sided, deep, high-latitude estuaries, which have been 

or currently are being excavated or modified by land-based ice (Syvitski et al., 1987, 

Syvitski and Shaw, 1995, Howe et al., 2010). Fjords are immature, non-steady state 

systems, evolving on relatively short timescales (Syvitski and Shaw, 1995). The main 

sediment source for Svalbard regime fjords, such as Van Keulenfjorden, include 

subglacially derived material, subglacial meltwater runoff (e.g. from Nathorstbreen), 

icebergs and glacifluvial rivers (e.g. Ulladalen; Hambrey, 1994, Howe et al., 2010). 

The Svalbard regime of the fjords described by Hambrey (1994) states dynamic, grounded 

and slightly cold glaciers terminating in relatively shallow fjords (< 200 m; fig. 2.6). This 

classification fits well as Van Keulenfjorden is ~125 m deep at its deepest part, the glaciers 

are non-temperate and the tidewater glaciers in the catchment area are all grounded.  
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Figure 2.6: Sediment sources and processes operating in a fjord influenced by a grounded 

tidewater glacier (from Hambrey, 1994). 

Sills at the fjord mouth and between the inner and the outer basin affect the fjords‟ 

hydrography and therefore also the sedimentary, chemical and biological environment. The 

inner and outer basins of Van Keulenfjorden are ~4 km and ~7 km wide and ~15 km and 

~22 km long, respectively. Their maximum depth is ~70 m and ~125 m, respectively. 

2.4.2 Climate 

Spitsbergen is affected by the most distal parts of the North Atlantic Drift causing heat flux 

to the Arctic (Isaksson et al., 2005). Small changes in the drift (e.g. temperature of the 

seawater or current speed) can cause asymmetrically large climatic changes in Svalbard. 

From 1912 until present the mean annual temperature varied between -12.8 and -3.1 °C 

(fig. 2.7; Hanssen-Bauer, 2002). 
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Figure 2.7: Measured annual temperatures at Norwegian research stations in Svalbard 

(from Førland and Hanssen-Bauer, 2003). 

During the last 100 years air temperature is warming, however, trends over the last century 

are not statistically significant (Hanssen-Bauer, 2002, Førland and Hanssen-Bauer, 

2003).The measured annual precipitation at Longyearbyen airport varied between 83 mm 

and 317 mm (fig. 2.8).  

 

Figure 2.8: Measured annual precipitation at Longyearbyen airport (from Hanssen-Bauer, 

2002). 

Additionally, an annual precipitation map based on indirect measurements  shows the 

distribution of precipitation over Svalbard (fig. 2.9; Hagen et al., 1993). The map marks an 
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east-west decline with values as high as 1200 mm a
-1

 in the east and values around 400 mm 

a
-1

 in the west.  

 

Figure 2.9: Precipitation in Svalbard in mm a
-1

, based on indirect measurements (from 

Hagen et al., 1993). 

Northern and eastern parts of Spitsbergen are cooler due to cold polar air and drift ice. This 

creates a temperature gradient of ~2.5 °C per degree latitude from north to south during the 

winter months. In summer this temperature gradient is less (Isaksson et al., 2005). 

2.4.3 Oceanography 

The west coast of Svalbard is strongly influenced by the northward flowing West 

Spitsbergen Current (WSC), a rather complex, multipath, barotropic, warm and salty 

surface current consisting of Atlantic Water (AW) that follows the contours of the western 
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Svalbard shelf (fig. 2.10; Saloranta and Svendsen, 2001, Cottier and Venables, 2007, 

Piechura and Walczowski, 2009). 

Due to the heat transport of the WSC to the arctic the west coast of Spitsbergen is 

essentially ice free (Gascard et al., 1995). West of the WSC, the AW is separated from the 

cold and fresh polar waters of the Greenland Sea by a density front termed the Polar Front 

(Boyd and Dasaro, 1994). East of the WSC flows the cold arctic Coastal Current (CC), 

which originates in Storfjorden (fig. 2.10; Rasmussen et al., 2007).  

 

Figure 2.10: a) map of the Nordic seas and the Barents Sea showing major surface 

currents systems, b) detail map of the South Spitsbergen area showing mean position of the 

arctic front (from Rasmussen et al., 2007). 

Where the WSC and the CC meet, they form the Arctic Front of West Spitsbergen. The 

Arctic Front is a density front in the upper layer (c. 0 – 50 m). Below 50 m water depth a 

temperature-salinity front is present, a corresponding density front is missing (fig. 2.11; 

Saloranta and Svendsen, 2001).  
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Figure 2.11: a) CTD profile location in the Bellsund trough, the circle denotes the start of 

the profile, b) temperature (above) and salinity (below) profiles in the Bellsund trough, c) 

calculated density profile from the profiles of temperature and salinity in b) (from 

Saloranta and Svendsen, 2001) 

The CC is usually mitigating the AW‟s penetration into the fjords on Spitsbergen‟s west 

coast. However, if wind induced southward currents oppose the CC or if there is mixing 

between the two layers of AW and cold Arctic Water of the CC from the Storfjorden 

trough, the effect of AW entering the fjords of the west coast of Spitsbergen increases 

(Saloranta and Svendsen, 2001, Nilsen et al., 2008). 

The northward transport of warm and saline AW along the west Norwegian coast and 

Barents Sea shelf, though varying  in strength, was always present since the deglaciation of 

the Late Weichselian Barents Sea ice sheet (Rasmussen et al., 2007, Slubowska-Woldengen 

et al., 2008).  

The classic physical oceanographic setting for fjord water masses is a three layer 

arrangement for fjords with sills. This comprises a low salinity, warm surface layer, an 

intermediate layer at sill depth and a cold, high salinity bottom layer (Farmer and Freeland, 
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1983). In Svalbard even fjords without sills showed this three layer arrangement (fig. 2.12; 

Cottier et al., 2005, Nilsen et al., 2008).  

 

Figure 2.12: a) Salinity sections of CTDs and b) temperature sections of CTDs through the 

water column in Storfjorden in four consecutive years (from Skogseth et al., 2005), c) a 

CTD recorded on the 4
th

 of October in 2009 in central Van Keulenfjorden. Note the three 

distinctive layers in the water column in both Storfjorden and Van Keulenfjorden. 

However, the temperature profile differs. 

The upper layer is fresher, because of the input of four sources, i) tidal glacier ablation and 

calving, ii) direct precipitation on the fjord‟s surface, iii) melting of fast ice and iv) 

terrestrial, riverine outflow (Weslawski et al., 1995, Cottier et al., 2010). The intermediate 

layers usually derive from advected water masses external to the fjord. They are often 

heavily altered by mixing with on-shelf adjacent waters. In Spitsbergen‟s west coast fjords 
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the intermediate water layer is most likely to be of water derived from AW (Skogseth et al., 

2005, Nilsen et al., 2008). The AW has probably mixed to some extent with shelf waters 

before entering the fjord, which can be the reason for the cooler and fresher condition 

(Cottier et al., 2010). The source of deep water in Svalbard fjords is either sea-ice formation 

and brine releases or AW that has undergone intense cooling during winter (Skogseth et al., 

2005, Nilsen et al., 2008). The described stratification within Arctic fjords varies 

seasonally. The classic layered arrangement, as depicted by fig. 2.12, will mostly be fully 

developed during summer. Wind mixing and intense cooling breaks down the stratification 

in winter. Sea-ice formation and brine releases initiate convective overturning thus 

contributing to further mixing of the layers (Cottier et al., 2010). 

2.4.4 Glaciology 

About 60% of Svalbard is covered by a variety of glacier types, including ice caps, ice 

fields, outlet glaciers, piedmont glaciers and cirque glaciers. Ice shelves do not exist at 

present (Hagen et al., 1993). 

The thermal structure of most Svalbard glaciers is polythermal, meaning that the glacier 

comprise both cold (below pressure melting point) and warm ice (at pressure melting point; 

Hagen et al., 1993, Benn and Evans, 2010). The glaciers in the catchment area of Van 

Keulenfjorden have an equilibrium line altitude (ELA) between 310 m.a.s.l. (Liestølbreen) 

and 480 m.a.s.l. (Steenstrupbreen; Hagen et al., 1993). 

Svalbard is one of earth‟s surge-type glacier clusters (fig. 2.13 and tab. 2.1; Jiskoot et al., 

2000). Estimations of how many of the glaciers on Svalbard are surge-type range between 

13% (Jiskoot et al., 1998) and 90% (Lefauconnier and Hagen, 1991). This is a typical 

„absence of evidence is not evidence of absence‟ problem, especially when keeping in mind 

that the quiescent phases of Svalbard surge-type glaciers are particularly long, ranging from 

~50 years up to estimated 500 years (Benn and Evans, 2010).  
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Figure 2.13: Distribution of surge-type glacier over Svalbard (from Jiskoot et al., 2000). 

Among other areas the Van Keulenfjorden catchment area shows a high occurrence of 

surge-type glaciers. 

Digital Terrain Model (DTM) subtraction was used by Sund (2009) to survey glacier 

elevation changes in the Van Keulenfjorden catchment area. Negative elevation changes in 

upper Ljosfonn, a tributary of the Nathorstbreen Glacier System, were observed (fig. 2.14) 

and inferred to be early signals of a surge. In late 2008 Ljosfonn and subsequently 

Nathorstbreen began to advance. In October 2010 Nathorstbreen Glacier System‟s glacier 

front reached the 1936 AD position, (cf. fig. 2.3) and was in the last phase of surging in 

February 2011 and most likely still is. This is an advance of 11 km, referred to the mean 

2008 glacier front position (Sund et al., 2009, Sund and Eiken, 2010, Sund, 2011). 
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Table 2.1: Glacier in the Van Keulenfjorden catchment area. L/T expresses whether the 

glacier has a land based terminus (L) or a tidewater terminus. The source column indicates 

where the information on surge-type behaviour was taken from. H stands for Hagen et al. 

1993, J stands for Jiskoot et al. 2000 and S stands for Sund et al. 2009. 

Glacier L/T Source 

Surge- 

type 

Area 

[km²] 

  

Glacier L/T Source 

Surge- 

type 

Area 

[km²] 

Aurkollfonna L 
 

no 4,6   
 

Mjellfonna L 

 

no 2,1 

Berrklettbreen L 
 

no 2,5   
 

Nathorstbreen T J, S yes 368,9 

Charpentierbreen L H yes 4,3   
 

Penckbreen L J yes 118,0 

Doktorbreen T J yes 295,6   
 

Reidbreen L 

 

no 7,5 

Finsterwalderbreen L H yes 45,5   
 

Richterbreen L 

 

no 10,6 

Hassingbreen L 
 

no 2,3   
 

Ringbreen L 

 

no 9,6 

Hessbreen L H yes 6,2   
 

Siegerbreen L H yes 1,8 

Instebreen L 
 

no 6,1   
 

Sotryggfonna L 

 

no 1,5 

Langryggbreen L 
 

no 9,3   
 

Steenstrupbreen L 

 

no 32,0 

Liestølbreen T J, S yes 160,0   
 

Storvolbreen L 

 

no 3,2 

Märjelbreen L 
 

no 7,5   
 

Sysselmannbreen L J yes 32,8 

Martinbreen L H yes 7,2   
 

Tvillingbreane L 

 

no 6,6 

Midterhukbreen L 
 

no 1,2   
 

Venetzbreen L 

 

no 4,4 

     
  

 
Zawadskibreen T J yes 110,8 

 

 

Figure 2.14: Map of elevation changes on glaciers in Van Keulenfjorden’s catchment areas 

calculated by DTM subtraction. The negative changes in upper Ljosfonn were the first 

signs of the most recent surge of Nathorstbreen Glacier System (from Sund et al., 2009). 
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2.5 Geology 

2.5.1 Tectonic History 

Through time Svalbard was plate-tectonically moved with the Eurasian Plate from 

equatorial latitudes to its current position (fig. 2.15; Worsley, 1986).  

The Van Keulenfjorden area contains basement rocks of orogenic events of Proterozoic and 

Caledonian age, respectively (Dallmann et al., 1990). All Svalbard rocks that are old 

enough to have experienced the latter or both orogeneses are embraced by the term Hecla 

Hoek complex (Worsley, 1986). Only small outcrops of these rocks are exposed in the 

catchment area of Van Keulenfjorden (fig. 2.16). 

 

Figure 2.15: Simplified Phanerozoic stratigraphy of Svalbard. To the left is the 

palaeolatitude history of Svalbard (from Worsley, 1986).  
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The Palaeozoic and Mesozoic tectonic history of Svalbard is dominated by movements 

along the mostly N-S trending fault zones, e.g. Billefjorden Fault Zone. Especially 

subsequent to the Caledonian orogenesis, these block tectonics controlled the sedimentation 

during the Devonian to Early Permian (Dallmann et al., 1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Geological map of Van Keulenfjorden, B11G, Temakart nr. 15. The scale is 

1:100000 (from Dallmann et al., 1990), see next page. 
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Around the Jurassic/Cretaceous boundary a period of extension affected Svalbard. It is 

associated with Dolerite sill and dike intrusions throughout the archipelago. This event is 

regarded as the first effect of tensional tectonics that later led to the opening of the North 

Atlantic and the Arctic Oceans. The Palaeocene/Eocene tectonic period was dominated by a 

compressive force regime. This resulted in the formation of the West Spitsbergen fold and 

thrust belt (fig. 2.14; Dallmann et al., 1990). The fold and thrust belt‟s effects were 

strongest on the units in the western catchment area, where Carboniferous to Eocene strata 

are heavily folded. A foreland basin – the Central Spitsbergen Tertiary Basin – developed 

synchronously to the east of the fold and thrust belt (figs. 2.16 and 2.17; Dallmann et al., 

1994).  

 

Figure 2.17: Geological profile through the bedrock in Van Keulenfjorden area. The strata 

are folded and thrusted due West (left). For locations and legend see fig. 2.16 (from 

Dallmann et al., 1990). 

2.5.2 Bedrock Geology 

Geologically, the Van Keulenfjord area can be divided into two main structural units with 

NW-SE trending boundaries.  

Firstly, Hecla Hoek rocks crop out in small parts of the catchment area of Hessbreen, 

Finsterwalderbreen and Penckbreen in the south-western part of Van Keulenfjorden (fig. 

2.16). It is a basement high with pre-Devonian rocks that underwent the Caledonian 

tectonometamorphism. The Hecla Hoek complex consists mostly of carbonate rocks, 

phyllite and quartzite in the lower part, over which, with an unconformity contact, are thick 
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conglomerates followed by phyllite, carbonate and meta-igneous rocks. To the top lies a 

roughly 2000 m thick succession of Vendian tilloids (in 2004 the Vendian, from c. 635 to 

542 Ma, was renamed to Ediacaran by the International Commission on Stratigraphy, 

(ICS)). These rocks are low-grade metamorphic and record Caledonian deformation and in 

some cases of greater ages even Precambrian deformation (Dallmann et al., 1990). The 

rocks represent the Magnethøgda Sequence. They are of middle Proterozoic age (Dallmann 

et al., 1990). 

Secondly, in the fjord mouth area rocks of the Billefjorden-, Gipsdalen-, Tempelfjorden-, 

Sassendalen-, Kapp Toscana- and Adventdalen Group are partly tilted steeply in the fold 

and thrust belt (fig. 2.17). All together, these Late Palaeozoic to Mesozoic groups comprise 

a sediment package of at least 2800 m thickness. They contain mainly shale, siltstone, 

sandstone, red conglomerate, dolomite, limestone and chert (Hjelle et al., 1986, Dallmann 

et al., 1990, Harland et al., 1997). Structurally still belonging to the second unit there is the 

Van Mijenfjorden Group, mostly Palaeocene/Eocene of age. It fills the majority of the 

Central Spitsbergen Tertiary Basin. Its exposed thickness exceeds 1900 m, but an additional 

similar thickness has probably been removed by erosion (Manum and Throndsen, 1986). It 

is comprised of strata generally gently dipping to ENE with immature textures and 

compositions ranging from arkosic to lithic arenites and lith-arenites (Dallmann et al., 

1990, Harland et al., 1997). Most of the Nunataks in the eastern catchment area consist of 

these rocks. However, an uncertainty remains about the bedrock of the glaciers in that area 

(Hjelle et al., 1986, Dallmann et al., 1990, Dallmann et al., 1994). 

In addition, quaternary glacifluvial and moraine deposits hem the immediate coast line of 

most of Van Keulenfjorden (Dallmann et al., 1990). 
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3 Material and Methods 

3.1 Swath Bathymetry 

The swath bathymetry data was collected with R/V Jan Mayen in November 2009 using a 

Kongsberg Maritime Simrad EM 300 Multibeam echo sounder (Forwick, 2009). This is a 

hull-mounted system with up to 135 beams in the swath. Its range of operation lies between 

10 and 5000 m water depth. The nominal operational frequency is 30 kHz with an angular 

coverage of 150° (Anonymous, 2003). However, on R/V “Jan Mayen”, the maximum angle 

is reduced to 63° due to an ice-protection window. 

After data-acquisition the cleaning and processing of the data was performed using the 

software Neptune. Tidal artefacts were prevented by recalculating the depth values 

according to tidal data and simple conversions from Statens Kartverk (Norsk 

Sjøkartverket). Gridding and visualization were performed with the Interactive 

Visualization System 3D (IVS 3D) module Fledermaus v. 7.0. 

Nevertheless, the multibeam dataset contains artefacts. The most prominent artefact is an 

acquisition footprint throughout the whole survey caused by the penetration of the central 

beams into the soft seafloor sediments. This artefact is suppressed by using a shallow 

biased gridding algorithm in Fledermaus (fig. 3.1). However, the surface becomes rougher 

when using the shallow biased gridding algorithm. The following figures in this chapter are 

all gridded either with a shallow biased algorithm, a cell size of 15 m and the next 7 

neighbouring cells were weighed or with a weighted moving average algorithm, a cell size 

of 12 m and the next 3 neighbouring cells were weighed. Cell sizes of 15 m or 12 m, 

respectively, were chosen, although the resolution of the dataset may be higher at most 

places (~10 m).  Since the deeper places in the fjord have a worse resolution, the greater 

cell size prevents holes in the surface (fig.3.1). 
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Figure 3.1: Multibeam dataset example, a) the multibeam dataset was gridded with a 

shallow biased algorithm, a cell of 15 m and 7 weighted neighbouring cells. The random 

noise is more prominent, but the acquisition footprint artefact (red dashed lines) is weak. b) 

the multibeam dataset was gridded with a moving weighted average algorithm, a cell size 

of 12 m and 3 weighted neighbouring cells. The surface has a rather smooth appearance, 

but the acquisition footprint artefact (red dashed lines) is strong.  

3.2 Chirp Sonar 

The Chirp profiles were collected in November 2009 (Forwick, 2009). The Chirp system 

transmits selectable frequency modulated pulses, in essence “sweeping” through a range of 

frequencies between 400 Hz and 20 kHz. The sweeping creates a large bandwidth. Because 

the temporal resolution is proportional to the inverse of the bandwidth of the signal the 

Chirp Sonar achieves high resolution profiles (Hill, 1999). The long pulse length would 

decrease resolution drastically were it not for a digital compression filter that artificially 

shortens the pulse (Quinn et al., 1998). With the equipment and the digital support even 

weak layering in sediment can be detected with a high signal-to-noise ratio (Schock et al., 

1989). The profiles were imported into The Kingdom Software v. 8.5 after processing the 

navigation files (the location control) in GMT (Generic Mapping Tool). The Kingdom 

Software has a computational module that allows calculations with the data. This module 
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was used to calculate isopach maps from defined horizons on the 2D seismic lines. 

Essentially isopach maps which are derived from seismic lines are the two-way-travel-time 

(TWT) difference between two horizons described by 

              (1) 

Where HA stands for the lower, HB for the upper horizon and Δt for the TWT difference 

between the horizons. It was chosen to only interpolate between grid points with data for 

each horizon to avoid extrapolating too far. To ensure that data points are calculated only 

where both horizons have values a logic conjunction was used, given by   

                      (2) 

Where again HA is the lower, HB the upper horizon and tA of B are only the values of horizon 

HA, which horizon HB has a value for at the same horizontal position. In The Kingdom 

Software the same operation is denoted with 

                           (3) 

Where HA where B is the resulting horizon made by this operation in the software. The 

combination of formula 1 and 3 in The Kingdom Software is then given by 

  (          )  (          )        (4) 

Where ΔtAB is the TWT difference between horizons HA and HB, where both horizons have 

values. Formula 4 was used to calculate the isopach maps presented in chapter 5. 

3.3 Sediment Cores 

Two box, gravity and piston cores, respectively, were retrieved during a scientific cruise 

between the 2
nd

 and 8
th

 of July 2007 of R/V Jan Mayen (Forwick, 2007). The locations and 

further information are shown in table 3.1.  
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Table 3.1 Metadata taken from the cruise report (Forwick, 2009). *) value taken from 

measurements in the lab once the core was opened. 

Station Date Time 

[UTC] 

Location 

[°N] 

Location 

[°E] 

Water depth 

[m] 

Recovered depth 

[m] 

JM07-012-BC 07.05.2007 12:51 77°35.27’ 014°59.35’ 102 0.25* 

JM07-014-BC 07.05.2007 16:21 77°33.36' 015°35.56' 83 0.26* 

JM07-012-GC 07.05.2007 12:16 77°35.12' 014°59.95' 100 2.70* 

JM07-014-GC 07.05.2007 16:51 77°33.28' 015°35.83' 82 2.70* 

JM07-012-PC 07.05.2007 10:16 77°35.07' 015°00.73' 101 3.82* 

JM07-014-PC 07.05.2007 15:19 77°33.33' 015°35.29' 82 5.38* 
 

      

 

The box corer was used to retrieve undisturbed samples of the seafloor (50 cm x 50 cm). It 

was subsampled by pushing a plastic liner of 11 cm outer diameter by hand into the sample. 

The tube was cleaned, labelled and sealed off with caps on both ends before storing it in a 4 

°C cooling chamber.  

The gravity corer aboard R/V Jan Mayen contains a 6 m long steel barrel attached to a lead 

bomb of ~1.6 t weight. A plastic liner was pushed into the barrel and fixed with a core 

catcher and core cutter. After retrieval, the plastic liner was pulled out of the steel barrel, 

cleaned, and cut into ~1 m sections. All sections were sealed with caps, labelled and stored 

in a 4 °C cooling chamber. 

A piston corer is made for deeper penetration of soft sediment than the gravity corer. When 

the corer penetrates the sediment gravity is forcing the corer into the sediment. In addition 

to gravity, a piston produces suction in the metal barrel (~12 m long and attached to a lead 

bomb of ~1.6 t weight on R/V Jan Mayen) that gives the corer an extra force enabling the 

deeper penetration. After retrieval the samples were treated following the same procedure 

as for samples of the gravity corer. 
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3.4 Laboratory Work on the Sediment Cores 

3.4.1 Multi-Sensor Core Logger 

Prior to opening the cores were logged with a multi-sensor core logger (MSCL; by 

GEOTEK Ltd.). This device uses several non-destructive methods, namely γ-ray 

attenuation, magnetic susceptibility, p-wave velocity, p-wave amplitude and the diameter of 

the core, to determine physical properties of the core (see below for further explanations). 

For the measurements the core section is put on the sample guide rail and is transported 

forwards at pre-defined increments by a core pusher. A laser relay and a positioning sensor 

are coupled with the motor of the core pusher to form the position control system of the 

MSCL. The analysis devices are queued up behind the photoeletric relay at known 

positions to correlate the points of measurements (fig. 3.2; Anonymous, 1998). The 

measuring increment was set to 1 cm. 

 

Figure 3.2: Sketch of the Multi-Sensor Core Logger from the user manual. Some of the 

depicted measure devices were not used, i.e. natural gamma sensor, non-contact resistivity, 

magnetic susceptibility point sensor and line scan camera, because the devices were either 

not available or not applicable for whole cores. 
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3.4.1.1 γ-Ray Attenuation 

Radioactive 
137

Caesium in a thick lead mantle is emitting a narrow beam of γ-rays with 

energy at 662 keV. The photons pass through the core and are detected on the other side of 

the core. At this level of γ-ray energy the primary mechanism of attenuation is by Compton 

scattering, essentially causing a partial energy loss of the γ-rays (wavelength increase) 

whenever hitting an electron. This means that the amount of γ-rays detected is controlled by 

the number of electrons in the beam‟s way, which is dependent on the core diameter and 

the electron density of the core material. The diameter of the core is measured and the 

density of electrons and the density of a material are closely linked and therefore the bulk 

density of the core can be calculated from the γ-ray attenuation measurements 

(Anonymous, 1998). 

3.4.1.2 P-Wave Velocity System 

The p-wave velocity system measures three values at the same time, i) the time the 

generated p-wave pulse needs to travel through the liner plus sediment (travel time), ii) the 

thickness of the liner (travel distance), and iii) the amplitude difference between the 

produced p-wave and the detected p-wave. 

The system is equipped with p-wave transducers, which produce and record a short pulse of 

an ultrasonic p-wave making use of the normal and the inverse piezo-effect. The pulse 

propagates through the core and is detected by the receiving transducer. Pulse timing 

circuitry is used to measure the travel time with a resolution of 50 ns. The travel distance is 

measured within the same device with an accuracy of 0.1 mm. Experiments have shown 

that results within a ± 3 ms (1σ) window are achievable. The p-wave amplitude is used to 

detect decoupling between the transducers and the liner and the sediment and the liner. If 

any of the four couplings (transducer-liner, liner-sediment, sediment-liner, liner-transducer) 

is faulty the p-wave amplitude decreases significantly. The p-wave amplitude is expressed 

in percentage of perfect coupling. If the values for the p-wave amplitude are small the 

validity of the produced values for p-wave velocity is not given. 
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The diameter is measured as the distance between the active faces of the two p-wave 

transducers. In practice it is measured with reference to a known thickness (Anonymous, 

1998). 

3.4.1.3 Magnetic Susceptibility Loop Sensor 

The magnetic susceptibility loop sensor measures the bulk magnetic susceptibility of the 

core. The magnetic susceptibility is basically the potential of a material to be magnetized 

by an applied magnetic field. For maximum resolution the loop diameter should be 

minimally bigger than the core diameter. In this analysis the loop diameter is 12.5 cm and 

the core diameter is ~11 cm (~11.5 cm where the caps are sealing the ends of each core 

section). 

In the loop sensor an oscillator circuit produces a low intensity alternating magnetic field 

(565 Hz). Any material in the close vicinity to the sensor will cause a change in the 

oscillator frequency. The electronics of the sensor convert this pulsed frequency 

information into magnetic susceptibility values (Anonymous, 1998).  

3.4.1.4 Temperature Measurement 

The cores were stored in the lab (not the cooling room) at least one day prior to MSCL 

analysis, because some physical properties (e.g. p-wave velocity, magnetic susceptibility) 

are temperature dependent. For example, the p-wave velocity can change with ~3 m s
-1

 °C
-1

 

(Weber et al., 1997, Anonymous, 1998). A thermometer records the current room 

temperature for each measurement and it is assumed that the core temperature is identical to 

the room temperature. The temperature range during the measurement was less than 1 °C. 

This generates an inaccuracy error of < 2 ‰ (Anonymous, 1998).  

3.4.2 Opening of the Cores 

After measuring the physical properties with the MSCL, the cores liners were cut using a 

circular saw. Subsequently, the core material was split with an osmotic knife that was 

dragged from the bottom to the top of each segment. After the cores were split the section 



3 Material and Methods 

 

 

Philipp Kempf            32 

 

halves were labelled and packed in cling film and then put into a plastic tube which was 

sealed to prevent it from drying out. One split core was labelled for the archive, the other 

for labwork. 

3.4.3 X-Ray Photography 

X-ray photos of half-core sections were taken. It is physically very difficult to bundle or 

reflect x-rays. Therefore the x-ray source, the sample and the detector (film) form one axis. 

The x-ray photography is based on the attenuation principle and gives shadow pictures. The 

attenuation is dependent on the nuclei‟s atomic number and the number of nuclei in the ray 

path. Dropstones or macrofossils usually have a bright (highly attenuated) signal because of 

their high density, compared to the surrounding mud.  

A Philips™ Macrotank with a Be source, 5 mA current and 80 kV acceleration voltage was 

used. The exposure time varied between 1:40 min and 2:30 min, depending on the density 

results from the MSCL results. AGFA D7 film was used for all pictures. The radiographs 

were used to log internal structures, dropstones, bioturbation and fossils in the cores. 

3.4.4 XRF-Scanner 

The analytical method of x-ray fluorescence (XRF) scanning is non-destructive. The 

Avaatech XRF Core Scanner is equipped with a high resolution camera and a Rh target x-

ray tube. The detector is energy dispersive. The range of elements that can be analysed by 

this device reaches from Mg (Z = 12) to U (Z = 92) (Richter et al., 2006; 

www.avaatech.com). 

XRF spectrometry is based on ionization of atoms by x-rays or γ-rays. When an electron is 

ejected from one of the inner orbits the electronic structure of the atom is rendered unstable 

and an electron from an outer orbit falls into its place. In falling, the electron emits a 

specific amount of energy in form of photons depending on the energy differences between 

the involved electrons‟ orbits. The emission is element specific and is used for analysis 

(Beckhoff et al., 2006).  
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Prior to analyses, the sediment surface was flattened to perform the camera scan, after 

which the surface was covered with a 44 µm ultralene film. During measuring the sediment 

sample has to be covered to avoid contamination to the measuring chamber pressing on the 

surface.  

3.4.5 Sedimentological Logs 

A systematic description of the surfaces of the cores was carried out. This included 

observations of fossils, bioturbation, sediment colour (after the Munsell Soil Colour Chart), 

lamination, structures, layers of coarser grains and general comments, if needed (e.g. the 

occurrence of black mottles, vanishing after some time of oxygen exposure).  

3.4.6 Wet Sieving 

The cores were sampled approximately every 10 cm, while the sampling thickness was 

between 0,5 and 1 cm . Samples were freeze-dried to record the water content and to loosen 

up the intergranular bonds. Every sample was then sieved with a 2 mm (φ = -1) and a 63 

µm (φ  = 4) sieve. The residual sample (φ > 4) was collected in 2-liter glasses and dried at 

40 °C. Each of the fractions dry weight was recorded.   

3.4.7 Dry Sieving 

The grainsize fraction of -1 ≤ φ < 4 was dried and subsequently dry-sieved using sieves 

with mesh sizes of 1 mm (φ = 0), 0.5 mm (φ = 1), 0.25 mm (φ = 2) and 125 µm (φ  = 3), 

respectively, to get a higher resolution on the grainsize distribution in the sand fraction. 

3.4.8 Sedigraph 

Grainsize distribution of the φ < 4 fraction was analysed using the SediGraph 5100 analysis 

system from Micromeritics™. The sedigraph makes use of Stoke‟s Law, which correlates 

the particle diameter with the sedimentation velocity in a viscous liquid, i.e. water. In the 

analysis cell of the sedigraph, the transmitted x-ray intensity through a suspended sample is 
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measured over time intervals. The results are reported in equivalent spherical diameter and 

for the density of 2.675 g cm
-3

, since shape and density affect the sedimentation velocity.  

Prior to the measurement each sample is mixed with distilled water and with a drop of 

sodium hexametaphosphate (Calgon) solution to break the cohesive bonds of flocculated 

particles. 

3.4.9 Shear Strength Analysis 

A fall cone test was used for shear strength analysis. A cone with a known weight and a 

known apex angle penetrates the sediment as deep as the shear strength of the sediment 

allows it. The cone is magnetically held up and the tip just touches the sediment surface. 

When the magnet is released the cone is driven into the sediment by gravity. The 

penetration depth can be converted into shear strength given in kPa (kilo Pascal) using 

empirically elated charts for each cone. A cone of  60 g with a 60° apex angle and a 100 g 

cone with a 30° apex angle were used (Hansbo, 1957). 

3.4.10 Radiocarbon Dating 

3.4.10.1 Basic Principles 

The radiocarbon method is based on the decay of one atomic species (
14

C) into another 

(
14

N). The source of 
14

C is in the higher atmosphere, where cosmic ray neutrons interact 

with 
14

N-atoms from the atmosphere under loss of a proton (
13

C) and neutron capture to 

form 
14

C. These 
14

C-atoms behave chemically identical to the other two stable isotopes and 

connect with two oxygen atoms to form 
14

CO2.  

The CO2 is photosynthesised into plant material or will be dissolved in ocean water. 

Eventually the dissolved CO2 potentially becomes part of a CaCO3 skeletal element of a 

marine calcareous organism, thus finding its way into the biogenic circle of carbon. The 

amount of 
14

C that is stored in the global carbon reservoir remains approximately constant 

through time. Effectively a dynamic equilibrium is reached between the 
14

C-producing 

atmosphere and the 
14

C-storing ocean. Once an organism dies or once the calcareous shell 
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is built it becomes isolated from the permanent exchange of C-atoms.  The continuing 

decay of 
14

C is no longer matched by the constant balanced input. 

Under normal circumstances the limit of measurement of 
14

C activity is around 8 half-lives, 

being roughly 45 ka for the radiocarbon method (Bowman, 1990).  

3.4.10.2 Accelerator Mass Spectrometry (AMS) 

Accelerator mass spectrometry (AMS) analysis was performed at the Poznan Radiocarbon 

Laboratory (www.radiocarbon.pl). Though chemically identical the carbon isotopes differ 

in weight. This property is used to mechanically separate the 
14

C from its lighter fellow 

isotopes. The discrimination between 
14

C and 
14

N is achieved by the AMS making use of 

the differences of the ion‟s size (stripper, fig. 3.3).  

 

Figure 3.3: Schematic diagram of a tandem accelerator for the detection and measurement 

of the ratio of 
14

C-atoms in a carbon sample (Bowman 1990). 

3.4.10.3 Marine Reservoir Effects 

The fresh 
14

C supply for ocean waters takes place at the ocean-atmosphere boundary. At the 

sea surface the oceans have a modern 
14

C age. However, when water masses sink 
14

C 

decays without exchange with the atmosphere. Intermediate or deep water masses can 

therefore be seen as closed systems with regard to the 
14

C decay. Thus, the ocean water will 

have an apparent age, which is called the marine reservoir age. This aging effect can vary 

http://www.radiocarbon.pl/
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from a few tens of years to more than 1000 years (Ruddiman, 2001). The marine reservoir 

age varies in space and time, just as much as ocean currents are variable in space and time 

as well. This poses a difficulty, because the present-day reservoir age of the water may not 

represent an appropriate correction for the fossil of the radiocarbon dating analysis 

(Bowman, 1990). 

The Calib 6.0html software uses the average marine reservoir age of 400 years. Each 

marine sample has a locally specific reservoir age. The local deviation of the average value 

of 400 years is expressed by the ΔR value (http://calib.qub.ac.uk/calib/manual/). In this 

study all marine radiocarbon dates were treated as suggested by Bondevik and Gulliksen 

with ΔR = 105 ± 24 for the Svalbard region (Mangerud et al., 2006). 

In this study I have chosen to present all radiocarbon dates in cal. years BP (calendar years 

before present). This includes the dates from literature that are given in 
14

C years BP 

(radiocarbon years before present). “Present” means 1950 AD. This is due to the extremely 

increased production of 
14

C in association with atomic bomb drops in the USA and in Japan 

in 1945 and further tests thereafter. All radiocarbon dates from literature and those of this 

study were calibrated. The used calibration datasets were intcal09.14c and marine09.14c 

(Hughen et al., 2009, Reimer et al., 2009). 

http://calib.qub.ac.uk/calib/manual/
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4 Swath Bathymetry 

This chapter introduces the multibeam dataset that was acquired in November 2009 in Van 

Keulenfjorden. The large-scale morphology is presented before going into more detail on 

the smaller-scale morphologic features.  All smaller-scale morphologic features were also 

covered with chirp-sonar profiles. In chapter 5 the features are presented again and 

interpretations based on the morphology and on the internal structures will be given there. 

4.1 Large Scale Morphology and Bedrock Related Ridges 

Both the sill separating the inner and outer basins and the sill at the mouth of Van 

Keulenfjorden are ~30 m deep. The outer basin is up to 110 m deep and is characterised by 

shallower areas, mostly controlled by NW-SE oriented ridges (figs. 4.1a and 4.1b). Some 

ridges are broad with diffuse limits due to a relatively thick sediment cover, i.e. the ca. 5.5 

km broad shallower area on the northern side in the central part of the outer basin. Other 

ridges are relatively small and are sharply outlined, e.g. two ~300 m long elevations in the 

far north-western corner of the outer fjord basin (figs. 4.1a and 4.1b). The ridges are 

interpreted as bedrock related, because they strike in the same direction as the Mesozoic 

and Cenozoic bedrock from the West Spitsbergen fold and thrust belt (fig. 2.16; Dallmann 

et al., 1990), varying from NNW in the West to NW in the east (figs. 4.1a and 4.1b). The 

ridges delineate three sub-basins. 
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4.2 Short Linear Ridges 

Two small ridges, R1 and R2, are located in the central part of the outer fjord basin. They 

occur at 99 and 93 m water depth, respectively. The ridges are linear and oriented parallel 

to the fjord axis. The ridges are respectively 700 and 750 m long, 260 m and 280 m wide 

and 2 to 1.5 m high (fig. 4.2 and tab. 4.1). 

Table 4.1: Geometric data on the ridges observed on the multibeam dataset. 

Name Length 

[m] 

Width 

[m] 

Height 

[m] 

Water depth 

[m] 

Form 

R1 700 260 2 100 linear 
R2 750 280 1.5 95 linear 

 

These two ridges are interpreted to be subglacial features. The terminology for this 

particular feature is not precise. Glacial lineation ranges in scale from striation on rock 

surfaces to mega-scale glacial lineation. The processes involved also range from strictly 

erosive (Benn and Evans, 2010) to strictly depositional (Smith and Murray, 2009) as two 

end-members.  

The ridges lack the ratio of length to width and the overall size to be called mega-scale 

glacial lineation. Both ridges are within the scale-window of drumlins (Korkalainen et al., 

2007, Benn and Evans, 2010). However, the plan view shape and the absence of any other 

similar features are not entirely typical for drumlins as they are most often drop shaped and 

occur in assemblages, in so-called drumlin fields (Benn and Evans, 2010). The features in 

question have a positive morphology so the process is inferred to be mostly depositional. 

The descriptive term linear ridge will be used for this feature. 
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Figure 4.2: Above: Close-up angular view on the surface expression of a sedimentary body 

and the linear ridge. Below: Profile A-A* across the sedimentary body and profile B-B* 

across the linear ridge. 

4.3 Eskers 

Three ridges occur in the eastern part of the outer basin. Their shapes vary between straight 

to zigzagged, and continuous to beaded (figs. 4.1a, 4.1b, 4.3 and 4.4). The most prominent 

ridge, E1, is sub-parallel to the fjord axis, ~7.5 km long and 100 to 150 m wide (tab. 4.2). 

In the east this ridge is linear. There, it is covered with eleven mounds that are up to 12 m 

high. Towards the west it becomes sinuous and occasionally zigzagged. 
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Table 4.2: Geometric data of the eskers identified on the multibeam dataset. 

Name Length 
[km] 

Width 
[km] 

Height 
[m] 

Water depth 
[m] 

Orientation 
relative  
to fjord axis 

Form 

E1 7,5 150 1,5 - 14 77 - 96 sub-parallel 
linear, sinuous, 
zigzagged 

E2 2 130 1 - 2 92 transverse sinuous 

E3 1,3 110 1 - 7 60 sub-parallel sinuous 
  

Ridge E2 branches off from ridge E1. It is oriented transverse to the fjord axis and is more 

continuous and has a higher sinuosity. It is ~2 km long, 80 m wide and ~2 m high. Close to 

its southern end the ridge turns ~160° around towards east and can be followed for another 

~400 m (figs. 4.1a, 4.1b and 4.3). 

 

Figure 4.3: Above: Close-up angular view on the two eskers E1 (in the back) and E2 (in the 

front). Below: Profile A-A* along E1 and profile B-B* across E2. 
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Ridge E3 is ~1.2 km long and enters the fjord from the south in the vicinity of the 

glacifluvial delta in front of Finsterwalderbreen (fig. 4.4). The part closest to shore is 

oriented N-S, turning in the direction of the fjord axis (WNW) and then to NWN again. 

All three ridges are interpreted to be eskers. Though eskers are usually parallel or sub-

parallel to ice-flow direction there are documented cases of transverse eskers as E2 (Warren 

and Ashley, 1994, Benn and Evans, 2010). 

 

Figure 4.4: Above: Close-up angular view on the esker E3. Below: Profile A-A* across E3. 

4.4 Mass-Transport Deposits 

Three mass-transport deposits are identified. A ~4.5 km wide and >5 km long lobe with a 

generally constant surface dip of ~0.75°, L1, occurs in the eastern part of the outer basin 

(figs. 4.1a, 4.1b and 4.5). Pockmarks are spread over most of its surface. This deposit was 

interpreted as a debris flow lobe in front of the Little Ice Age morainal bank (Ottesen et al., 

2008, Forwick et al., 2009). 
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Figure 4.5: Above: Close-up angular view on the debris flow lobe, L1, in the east of the 

study area. Below: Profile A-A* along L1.  

On the northern side of the outer basin, a lobe is located in front of the glacifluvial delta at 

the mouth of Ulladalen (L2, figs. 4.1b and 4.6). It is roughly 1.5 km wide, >1.2 km long 

and has an uneven surface. The dip of the lobe is decreasing downslope giving the slope a 

concave character. The thickness of the lobe is difficult to estimate, because numerous 

small deposits are amalgamated with the regular fjord sedimentation, however, the lobe 

accounts for at least extra ~5 m sediment (cf. chapter 5). 

Table 4.3: Geometric data on the sedimentary lobes identified on the multibeam dataset. 

Name Length 

[km] 

Width 

[km] 

Water depth 

[m] 

Description 

L1 > 3 3,5 <35 - 80 pockmarks, several lobes 
L2 >1,2 2,2 <55 - 95 hummocky surface 
L3 >0,6 0,66 <68 - 86 two lobes, smooth 

surface 
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The third lobe (L3) is located ~2 km west of L2, south of Ullaberget. It is >650 m long, 

~700 m wide and at least 6 m thick. The surface is smooth (tab. 4.3 and fig. 4.7). The 

strong convex appearance points towards cohesive transport processes. Two depositional 

events were identified (outlined with black dots on fig. 4.7). 

 

Figure 4.6: Above: Close-up angular view on the mass-transport deposit lobe L2.Below: 

Profile A-A* along L2. Note the concave slope form.  

 

Figure 4.7: Above: Close-up angular view on the debris flow lobe L3. Below: Profile A-A* 

along L3. 
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4.5 Pockmarks 

Two clusters of circular, conical depressions occur in the fjord basin. Over 100 sharply 

outlined depressions occur in the first cluster, P1, which is located on top of the debris flow 

lobe, L1. Their diameters are ~50 m and they are ~1 m deep (fig. 4.5). These features will 

be discussed with help of chirp sonar profiles in chapter 5. 

The second cluster, P2, is located close to the sill at the fjord mouth. There, the depressions 

have diameters of 200 m to 300 m and depths up to ~6.5 m. Six depressions are well 

visible, whereas several less distinctive circular depressions occur in the vicinity. In general 

the P2-features are not sharp-crested (tab. 4.4 and fig. 4.8). 

Due to their geometry these features are interpreted to be pockmarks. 

Table 4.4: Geometric data on the two pockmark clusters identified on the multibeam 

dataset. 

Name Diameter 
[m] 

Water depth 
[m] 

Amount Description 

P1 ~50 <40 - 75 >100 sharp crested 
P2 ~150 95 - 105 6 (15) unsharp outlines 
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Figure 4.8: Above: Close-up angular view on the surface expression of the pockmarks of 

the P2 cluster. Below: Profile A-A across two of the depressions.  
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5 Chirp Sonar 

Thirty three chirp sonar profiles were collected simultaneously with the multibeam data. 

This resulted in a close-meshed chirp sonar survey (fig. 5.1). The chirp profiles will be used 

to describe seismostratigraphic units and to deduce sedimentary processes. 

5.1 Seismostratigraphy and Sedimentary Architecture 

A regional seismostratigraphy is established for Van Keulenfjorden based on acoustic 

attributes, signature and units geometry. Five horizons are defined (figs. 5.2 and fig. 5.3). 

The horizons follow generally strong reflections (R1 to R4 and the seafloor) that can be 

followed throughout almost the entire basin and they define four units termed Vk1, Vk2, 

Vk3 and Vk4. However, at some places the reflections are attenuated or get too close to one 

another making it difficult or impossible to define the horizon.  

From a sparker profile, taken in 1997, and from results presented from Bratlie (1994), a unit 

below Vk1 is defined as Vk0 (fig. 5.4). A summary of the unit and their seismostratigraphic 

properties is given in table 5.1.  

In the western part of the fjord there is an area with distinctively thinner strata above 

horizon R1. The internal reflections are very weak at the top and phase out completely 

below (fig. 5.5). The thinning is strongest in the sub-basin on the proximal side of the sill. 

From that area away to both east and west the post-R1 succession is thickening.  
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Figure 5.2: Sparker profile acquired in 1997. Deeper penetration into the fjords sediments 

reveals a seismic unit (Vk0, green opaque area) situated on the inside of the sill below the 

horizon described by the dark yellow line. The arrow indicates the location of the surface 

boundary of Vk0 that is visible on the multibeam dataset (cf. figs. 4.1a and 4.1b). 

Table 5.1: Overview of the characteristics of the seismostratigraphic units in Van 

Keulenfjorden. *) the maximum value in brackets accounts for the debris flow lobe L1. 

Unit 

Name 

Thickness 

range 

[ms TWT] 

Reflection 

Configuration 

Reflection 

Continuity 

Reflection 

Magnitude 

Reflection 

Abundance 

Lower 

Boundary 

Upper 

Boundary 

Vk4.2 0 - 9 (40)* parallel, even continuous high high concordant 
modern 

seafloor 

Vk4.1 0 - 15 parallel, even continuous high high 
gradual, 

concordant 
concordant 

Vk3 0 - 12 parallel, even continuous low high 

marked to 

gradual, 

concordant 

gradual, 

concordant 

Vk2 0 - 20 parallel, even 
weakly 

continuous 
very low very low 

marked,  

onlap to 

concordant 

marked to 

gradual, 

concordant 

Vk1 

no lower  

boundary 

on chirp 

parallel, even discontinuous high low 
marked, 

concordant 

marked, 

concordant 

Vk0 - transparent - low low 
marked, 

discordant 

marked, 

concordant 
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Figure 5.3: Above: Clean chirp profile 09JM-VanKeulenfd-002. Below: Horizon 

interpretations of the same section as shown above. The red line denotes the seafloor 

reflection, the orange line denotes horizon R1. The yellow area indicates the volume of 

strong thinning and transparent to chaotic signature. 

5.1.1 Unit Vk0 

Vk0 is the lowermost seismostratigraphic unit in the fjord above the Mesozoic and 

Cenozoic bedrock  (fig. 5.4 ; Bratlie, 1994). In most of the fjord it is a thin layer. It is 

assumed to be present in the entire fjord area, but it thins out beyond sparker seismic 

resolution in some places. In the east the unit thickens significantly to more than 50 ms 

TWT. The internal signature is transparent and chaotic with one faint reflector in its lowest 

part. The upper boundary is sharp. To the west Vk0 wedges out onto the sill. 
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5.1.2 Unit Vk1 

Vk1 is the lower most seismostratigraphic unit recorded by the chirp data. Its upper 

boundary is defined by horizon R1. The lower boundary is not identified on chirp profiles. 

On the sparker line the boundary is marked with a strong reflection. R1 is often the deepest 

chirp-recorded reflection in the study area. Where there are internal reflections in unit Vk1, 

the acoustic signature is characterised by discontinuous internal stratification. In a few 

places a maximum of three internal reflections beneath R1 can be identified. In other places 

Vk1 shows chaotic to transparent acoustic signature (figs. 5.3 and 5.6). Vk1 occurs in the 

entire fjord and overlays the Vk0 in the west (fig. 5.4) 

The topography of the upper boundary is often hummocky, but can also be smooth. 

Numerous small-scale hummocks with a wavelength of ~ 30 to 40 m and a vertical extent 

of ~ 2 ms TWT occur frequently. In addition there are some larger positive features that 

also can be identified on the present seafloor, e.g. the beaded esker E1 (fig. 5.6). Most of 

the landforms discussed in the previous chapter (chapter 4) originate from Vk1 or deeper, 

while the units above act as a drape (tab. 5.2). 

 

Figure 5.4: Chirp profile 09JM-VanKeulenfd-017. Note that horizon R4 divides Vk4 into 

the pre-L1 sub-unit Vk4.1 and the syn- and post-L1 sub-unit Vk4.2. The mounds of E1 

originate in or below unit Vk1. The light blue sign indicates the projected location of core 

site JM07-014 onto the profile. For location see fig. 5.1. The same feature’s surface is 

shown in fig. 4.3. 



5 Chirp Sonar 

 

 

Philipp Kempf            55 

 

Table 5.2: Geometric properties of some of the described features derived from chirp sonar 

profiles. 

Name Internal 
Signature 

Unit of origin Height surface 
[ms TWT] 

Height at lowest 
visible datum 

[ms TWT] 

Esker E1 
no internal 

reflections 

Vk1, or 

deeper 
9 15 

Esker E2 
no internal 

reflections 

Vk1, or 

deeper 
3 9 

Esker E3 
no internal 

reflections 

Vk1, or 

deeper 
6 10 

Lobes L1.1 and 

L1.2 
transparent Vk4.2 - - 

Lobe L2 
chaotic, 

transparent 

Vk3, Vk4.1  

and Vk4.2 
- - 

Lobe L3 transparent Vk3 12 28 

Pockmarks P1 chaotic, masked in L1.2 (Vk4.2) 2 - 

Pockmarks P2 
normal basin 

sedimentation 

Vk1, or 

deeper 
10 12 

 

All three eskers (E1, E2 and E3) on the multibeam dataset originate from unit Vk1 or 

deeper and the surface expression of the eskers have a strongly attenuated relative elevation 

change due to the draping sediments on top (figs. 5.6, 5.7 and 5.8). The original landforms 

of the eskers are steeper (tab. 5.2). The internal signature of these eskers cannot be 

determined, because of low penetration of the chirp data. 
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Figure 5.5: Chirp profile 09JM-VanKeulenfd-005 crossing esker E2. For location see fig. 

5.1. The same feature’s surface is shown in fig. 4.3. 

 

Figure 5.6: Chirp profile line 09JM-VanKeulenfd-014 in front of Finsterwalderbreen. The 

chaotic and disturbed architecture of the sediments is suggested to result from interfering 

processes (suspension fall-out, gravity-flows) on the glacifluvial delta in front of 

Finsterwalderbreen. Esker E3 is visible in the western part of the profile (see also fig. 4.4). 

Red dotted lines indicate bases of buried channels. For location see fig. 5.1. 
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The pockmark morphology on the seafloor is inherited from seismic horizon R1. The 

sediments above R1 show no sign of disturbance (fig. 5.9). This suggests that the last active 

phase of the pockmarks predates the sedimentation of Vk2. This fact also explains the 

smooth appearance of the P2 pockmarks on the swath bathymetry dataset (fig. 4.8). 

 

Figure 5.7: Chirp profile 09JM-VanKeulenfd-004 across two pockmarks of the pockmark 

field P2 (for location see figs. 4.1a, 4.1b and 5.1). The internal stratification of the 

sediments in the depressions shows no prominent sign of disturbance. The same feature’s 

surface is shown in fig. 4.8. 

5.1.3 Unit Vk2 

Unit VK2 is defined by the horizons R1 (base) and R2 (top; figs. 5.2 and 5.3). The unit 

occurs in the whole outer fjord basin. In most places the unit has a transparent acoustic 

signature with very few and weakly stratified parts. The isopach map (fig. 5.10) reveals that 

the unit is thinning above the bedrock ridges. The upper boundary of unit Vk2 is marked by 

a transitional but distinctive change in internal acoustic signature from transparent to less 

transparent and more acoustically stratified above.  
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Figure 5.8: Isopach map of unit Vk2. 

5.1.4 Unit Vk3 

Unit Vk3 is defined by the horizons R2 (base) and R3 (top). The internal reflection 

characteristics show weak, continuous stratification. It occurs in the whole study area and 

thins from the east towards the west (see isopach map, fig. 5.11). Compared to unit Vk2 the 

isopach map shows a more homogenous sedimentation rate throughout the basin. However, 

sediment supply from rivers draining through Ulladalen, as well as from 

Finsterwalderbreen and Penckbreen result in locally thicker accumulations. It should be 

noted that Davisdalen to the NE shows no increased sediment input during the same time 

interval between R2 and R3. The lower boundary of unit Vk3 is marked by the transition 

from transparent to weakly stratified signature. The upper boundary of Vk3 is a gradual 

change in magnitude of the stratifications indicated by R3.  

The internal structure of the lobe in front of Ulladalen in the NW is more complex. There 

sediment from the main basin is interrupted by several small sedimentary bodies with 

transparent, semi-transparent and chaotic internal signature (fig. 5.12). In addition, the 

modern channel and several buried channels occur on the cross-delta slope profile, the 

biggest of which are indicated on fig. 5.12. The additional sediment input from Ulladalen 

seems to have been highest above horizon R2. The interference of the deltaic sedimentation 

continues up to the seafloor.  
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Figure 5.9: Isopach map of unit Vk3. 

The debris flow lobe, L3, in front of Ullaberget in the north western area of the basin has a 

typical and distinctive lobe shaped outline on the swath bathymetry dataset. The lobe‟s 

internal signature is transparent. There are ~10 ms TWT of sediment covering the lobe (fig 

5.13).  The multibeam dataset reveals two lobes stacked on top of each other. The chirp 

profiles do not show this due to unfortunate seismic line location. 

 

Figure 5.10: Chirp profile 09JM-VanKeulenfd-026 crossing lobe L2 showing intense 

sediment deformation off the river draining through Ulladalen. Red dotted lines indicate 

channel-shaped palaeo-surfaces. The same feature’s surface is shown in fig. 4.6. For 

location see fig. 5.1. 
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Figure 5.11: Chirp profiles 09JM-VanKeulenfd-026 and 09JM-VanKeulenfd-023 across 

lobe L3. Chirp sonar line 09JM-VanKeulenfd-026 is more proximal than line 09JM-

VanKeulenfd-023. The same feature’s surface is shown in fig. 4.7. For location see fig. 5.1. 

5.1.5 Unit Vk4 

Unit Vk4 is the uppermost unit in the Van Keulenfjorden sediment succession. It is defined 

by the horizon R3 (base) and the present seafloor reflection, and it is existent in the whole 

fjord area. Like unit Vk2 and Vk3 it shows an east to west thinning trend. The internal 

acoustic signature is dominated by continuous, high magnitude reflections, which show 

little variation. The sediment thickness is regular with deviations only near the fjord sides, 

where mass-transport deposits interfere with the basin sedimentation. Unit Vk4 is 

subdivided into two sub-units called Vk4.1 and Vk4.2.  

5.1.5.1 Sub-Unit Vk4.1 

Unit Vk4.1, the lower of the two Vk4 sub-units, is defined by horizon R3 below and R4 

above. The horizon R4 was chosen in order to differentiate between the part of unit Vk4 

that accumulated prior to and subsequent to the deposition of debris flow lobe L1.  

Unit Vk4.1 shows a regular sedimentation pattern with increased sedimentation along the 

fjord sides originating from Ulladalen in the NW, Davisdalen in the NE, 

Finsterwalderbreen to the south and especially Penckbreen in the southeast. Thicker 

accumulations off Finsterwalderbreen and Penckbreen can be related to mass-transport 
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activity (figs. 5.8, 5.14 and 5.15). The basin sedimentation, which is mostly controlled by 

suspension fall-out and ice rafting from the tidewater glaciers at the fjord head, is disturbed 

by interfingering glacifluvial sediments. Small-scale debris flows and proximal and 

spatially limited suspension fall-out are added from the glacifluvial deltas (figs. 5.8 and 

5.15). 

 

Figure 5.12: Isopach map of unit Vk4.1. 

 

Figure 5.13: Chirp profile line 09JM-VanKeulenfd-012 in front of Penckbreen. The 

transparent to chaotic internal signature and complex architecture of the sediments is due 

to mass-transport input from the south. Red dotted line indicates channel-shaped buried 

surfaces. The green transparent overlay indicates a debris flow deposit. 
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5.1.5.2 Sub-Unit Vk4.2 

Unit Vk4.2 is defined by horizon R4 below and the present seafloor reflection above. Of all 

units it shows the most even distribution of sediment, with a thinning trend towards the 

west. Slightly increased sedimentation is shown from Ulladalen and Davisdalen (fig. 5.15). 

However, the most prominent features are the debris flow lobes L1.1 and L1.2 in the 

eastern part of the outer basin (figs. 5.2, 5.6, and 5.16).  

 

Figure 5.14: Isopach map of unit Vk4.2. 

The chirp profiles reveal that the lobe identified on the swath bathymetry data is underlain 

by another lobe and that both lobes are separated by acoustically stratified sediments (fig. 

5.17; Bratlie, 1994, Ottesen et al., 2008). The strata of the basin sedimentation at the lower 

boundary of the debris flow are truncated. The process of deposition of the debris flow was 

therefore partly erosive (fig. 5.18).  

Pockmark field P1 is situated on the debris flow lobes L1.1 and L1.2 and is displayed on 

the figures 5.2 and 5.17. It is difficult to determine the origin of the fluid escape structures, 

because of the masking effect of the features. Nevertheless it looks like the only part 

affected by fluid escape structures is the upper lobe, L1.2. 
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Figure 5.15: Chirp profile 09JM-VanKeulenfd-021 showing the two debris flow lobes, L1.1 

and L1.2. The same feature’s surface is shown in fig. 4.5. For location see fig. 5.1. 

The general pattern of the pockmarks of P1 is a ~100 m wide and ~5 ms TWT deep surface 

depression. Underneath there is usually a chaotic, high magnitude reflection cloud 

associated with strong masking effects below (figs. 5.17 and 5.18). These pockmarks are 

not a common feature on debris flow lobes. So there are no examples of other debris flow 

associated pockmarks from Spitsbergen fjords to relate to (cf. Plassen et al., 2004). 

 

Figure 5.16: Chirp profiles 09JM-VanKeulenfd-005 and 09JM-VanKeulenfd-018 showing 

examples of the pockmarks in pockmark field P1. The lower, erosive, boundary of the lobe 

L1.2 is indicated by the dashed pink line. The same feature’s surface is shown in fig. 4.5. 

For location see fig. 5.1. 
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6 Lithostratigraphy 

This chapter presents the collected sediment cores. Lithostratigraphic units will be 

introduced and complement to the geophysical data presented in the previous two chapters.  

The cores will be described in form of lithological core logs, grainsize distribution logs, 

physical property logs and XRF-scanner data logs.  

The sediment cores are divided into lithostratigraphic units that are defined by marked or 

transitional changes in one or more of the following parameters: grainsize, colour, internal 

structures or physical and chemical properties. The core locations and further information 

are shown in table 3.1 and figure 6.1. The lithological facies abbreviations stated on each 

core log are presented in table 6.1. The lithofacies code used for glacial sediments is 

modified from Evans and Benn (2004). The legend used in the logs is presented in figure 

6.2.  

 

Figure 6.1: Core locations indicated by the red dots. 

Several of the distinctive excursions of the graphs of physical properties occur at the core 

section boundaries. If there is reason to believe that a marked change in a graph is artificial 

then the marked change is chosen to be neglected in the description and interpretation. 
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Table 6.1: Overview of the lithofacies codes used in this study (adapted from Evans and 

Benn, 2004). 

Lithofacies Code 

f--- Fine 

c--- Coarse 

F Fine-grained, clayey-silty 

-m Massive 

-l fine lamination 

--p with intraclasts or lenses 

---(d) with dropstones (IRD) 
 

 
 

 

Figure 6.2: Legend for all core logs. 

6.1 Core Site JM07-012 

The core site JM07-012 is located close to the fjord mouth, ~2 km east of the Island 

Eholmen (fig. 6.1 and tab. 3.1). 

6.1.1 Box Core JM07-012-BC 

Core JM07-012-BC is 25 cm long and contains the lithological unit 12BC-1 (Fig. 6.3). 
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Figure 6.3: Colour image, colour codes and lithological log of box core JM07-012-BC. 

Note that the physical properties are not displayed, and a grainsize analysis was not 

performed, because the same sediments are found in the top of core JM07-012-GC. 

6.1.1.1 Unit 12BC-1 (25 – 0 cm) 

Core JM07-012-BC is composed of mud with gravel and pebble clasts (lithofacies Fmp (d); 

fig. 6.1, tab. 6.1 and tab. 6.2). A sandy lens occurs at ~8 cm depth. The sediment colour is 

dark grey (Munsell Soil Colour Codes (MSCC) 2.5Y 4/1.5 to 2.5Y 3.5/2). Shells and 

intense bioturbation occur (fig. 6.4). The differentiation between clay and silt cannot be 

made, because no sample of the box core was analysed by the sedigraph. 

 

Figure 6.4: Radiograph (left) and interpretation (right) of core JM07-012-BC between 0 

and 10 cm depth. Note that such well-preserved bioturbation is not found in other corse. 
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Table 6.2: Minimum and maximum values of the measured physical properties of all 

lithological unit. 

Unit 

Bulk Denisty 

[g cm-3] 

Magnetic 

Susceptibility 

(mass-specific) 

[m³ kg-1] 

Magnetic 

Susceptibility 

(volume-specific) 

[10-5 SI] 

P-Wave Velocity 

[m s-1] 

Shear-

Strength 

[kPa] 

Fractional 

Porosity 

[volume %] 

Water Content 

(Freeze Drying) 

[weight %] 

  min. max. min. max. min. max. min. max. min. max. min. max. min. max. 

12BC-1 1,577 1,738 2,528 5,799 4,180 9,951 1473,6 1514,9 - - 58,69 68,05 - - 

               12GC-3 1,240 2,210 3,849 25,015 6,358 15,851 1434,6 1559,0 6,25 49,70 31,35 67,65 21,08 33,48 

12GC-2 1,693 2,019 7,857 10,807 14,581 18,747 1498,8 1513,7 25,51 34,34 42,43 61,32 29,38 31,95 

12GC-1 1,010 2,172 3,714 10,128 3,750 18,070 1444,2 1660,8 8,80 34,53 33,52 60,02 13,85 31,97 

               12PC-3 1,612 1,964 9,418 14,554 14,204 26,421 1358,9 1546,3 19,74 33,72 45,57 66,00 22,61 31,72 

12PC-2 1,438 2,208 5,338 9,934 10,441 18,301 1326,7 1694,0 8,14 39,08 31,43 69,59 14,93 36,27 

12PC-1 1,623 2,042 3,128 7,751 3,491 14,491 1527,9 1559,0 13,65 24,69 41,11 65,37 23,63 26,25 

               14BC-1 1,524 1,760 3,156 6,863 5,084 11,698 1398,3 1514,0 - - 57,42 71,14 - - 

               14GC-2 1,607 1,789 4,160 5,800 6,334 10,335 1477,2 1510,3 - - 55,76 66,33 55,76 66,33 

14GC-1 1,674 1,871 3,798 8,036 2,379 12,115 1488,2 1533,1 - - 50,97 62,40 28,68 34,42 

               14PC-2 1,153 1,731 3,439 6,990 2,792 9,040 1338,2 1535,7 2,780 35,81 59,12 78,20 28,25 35,26 

14PC-1 1,530 2,019 2,670 21,214 3,068 39,262 1459,3 1600,1 20,27 37,28 42,40 70,75 22,36 27,89 

       

 

        

 

 

 

 

 

 

               



6 Lithostratigraphy 

 

 

Philipp Kempf            69 

 

6.1.2 Gravity Core JM07-012-GC 

Core JM07-012-GC is divided into three units, 12GC-1 to 12GC-3 (figs. 6.5, 6.6 and 6.7). 

The linear sedimentation rate model depicted on fig. 6.5 is described by tab.6.3. 

Table 6.3: Linear sedimentation rate model of core JM07-012-GC based on the 

radiocarbon dates with standard deviation values according to the standard deviations of 

the radiocarbon dates. 

JM07-012-GC 

depth 
[cm] 

sedimentation 
rate [mm a-1] 

0 - 76 0.79 ± 0.050 

76 - 225 0.25 ± 0.004 
  

6.1.2.1 Unit 12GC-1 (270 – 244 cm) 

Laminated silty clay with gravel and pebble clasts comprise unit 12GC-1 (lithofacies code 

fFl(d)) between 270 and 244 cm. The colour is dark to very dark grey (MSCC 2.5Y 3.5/1). 

For a summary of the physical properties see tab. 6.2. Neither macrofossils nor bioturbation 

were found in this unit. The real thickness of this unit is unknown, since it is the lowermost 

unit and only an upper, sharp boundary has been recovered (fig. 6.7). Shear-strength and 

magnetic susceptibility increase upwards (fig. 6.7 and tab. 6.2).  

 

 

Figure 6.5: Colour image, colour codes and lithological log of core JM07-012-GC with a 

linear sedimentation rate model based on the radiocarbon dates. The grey shadow around 

the sedimentation rate graphs accounts for the uncertainty in sedimentation rates based on 

the standard deviation of the radiocarbon dates. In the lower part the error bars are so 

small that they are barely visible (see next page). 
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Figure 6.6: Lithological log and grainsize distribution log of core JM07-012-GC. 
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Figure 6.7: Lithological log and physical properties of core JM07-012-GC. 
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Figure 6.8: Radiograph (left) and interpretation (right) of the interval between 240 and 

260 cm in core JM07-012-GC. Note the absence of lamination above the unit boundary. 

6.1.2.2 Unit 12GC-2 (244 – 208 cm) 

Unit 12GC-2 contains very weakly laminated mostly massive clayey silt with evenly 

distributed gravel and pebble clasts (lithofacies code cFm/l (d)). The colour of the sediment 

is a very dark greyish brown (MSCC 2.5Y 3/2). Black patches of sulphides derived from 

organic matter occur on fresh sediment surfaces. They oxidise and disappear after a few 

tens of minutes of air exposure. On radiographs layers of coarse grained material are visible 

(fig. 6.9). Shells, echinoid spicules and corals occur. At a depth of 225 cm a bivalve of the 

species Nuculana minut, was radiocarbon dated to 6920 ± 70 cal. yrs. BP (6540 ± 40 
14

C 

yrs. BP). The upper boundary is transitional and defined by lack of black sulphide spots and 

lack of lamination above. The lower boundary is a marked change in colour, shear-strength, 

grainsize and chemical composition (figs. 6.5, 6.6, and 6.7 and tab. 6.3). 
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Figure 6.9: Radiograph (left) and interpretations (right) of core JM07-012-GC between 

230 and 208 cm depth. The IRD is concentrated in two layers. 

6.1.2.3 Unit 12GC-3 (208 – 0 cm) 

The lithofacies code for this unit is cFm (d). Massive clayey silt is the dominant sediment 

type. Gravel and pebble clasts are common and evenly distributed.  The colour of the 

sediment is a very dark greyish brown (MSCC 2.5Y 3/2). Macrofossils (bivalves, 

polychaeta and snails) are common and bioturbation occurs. There is bioturbation with 

elongated burrow shape and with swiss cheese-like appearance (figs. 6.10 and 6.11). At the 

depth of 76 cm a snail of the family Turritelidae was radiocarbon dated to 960 ± 45 cal. yrs. 

BP (1520 ± 30 
14

C yrs. BP. 
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Figure 6.10: Radiograph of core JM07-012-GC between 99 and 89 cm depth. An example 

of a snail (not radiocarbon dated) is shown in the inset. 

 

Figure 6.11: Radiograph (left) and interpretation (right) of core JM07-012-GC between 63 

and 74 cm depth. Selected dropstones shell (fragments) and bioturbation are indicated.  

6.1.2.4 XRF-Data of Core JM07-012-GC 

The element composition, shown in form of Ca/Fe and Ca/Si ratios, changes markedly at 

the unit boundary from 12GC-1 to 12GC-2. Ca/Fe and Ca/Si ratios are generally lower in 

unit 12GC-1 and are more variable (fig. 6.12). Major excursions of the proxies are often 
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coincident with large dropstones or gravelly to pebbly layers. The Si/all ratio is calculated 

by dividing the counts for Si by the sum of all counts at that depth. It decreases 

significantly at the unit boundary between 12GC-1 and 12GC-2, but increases to the 

average level above and below the unit boundary. 

 

Figure 6.12: XRF-Scanner element ratios of core JM07-012-GC. Black arrows point at 

opposing excursions of the Ca/Fe and Ca/Si proxies, red arrow points at a non-opposing 

excursion. The blue arrows indicate the unit boundary between 12GC-1 and 12GC-2. 
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6.1.3 Piston Core JM07-012-PC  

Core JM07-012-PC contains a 382 cm thick sediment sequence. However, it should be 

noted that the upper ~2 m are missing (Forwick, 2007).  

6.1.3.1 Unit 12PC-1 (382 – 339 cm) 

The lithofacies code for this unit is fFm (d). Massive silty clay is the dominant sediment in 

the unit. Gravel and pebbly clasts are common and evenly distributed. The colour of the 

sediment is dark grey (MSCC 2.5Y 4/1). Macrofossils were not found. The upper boundary 

is transitional and it is defined by lamination in the unit above (figs. 6.13, 6.14, 6.15 and 

6.16). 

6.1.3.2 Unit 12PC-2 (339 – 28 cm) 

The unit is composed of strong to weakly laminated silty clay with relatively high amounts 

of gravel and pebble clasts (lithofacies code fFl (d)). The colour of the sediment is dark 

greyish brown to very dark grey (MSCC 2.5Y 3.5/1 to 2.5Y 4/2). Macrofossils were not 

found in the unit. The upper boundary is sharp and is defined by a marked change in colour, 

shear-strength, grainsize distribution and magnetic susceptibility. The lower boundary is a 

transition from massive sediment below to laminated sediments above (fig. 6.16). 
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Figure 6.13: Colour image, sediment colours and lithological log of core JM07-012-PC.  
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Figure 6.14: Lithological log and grainsize distribution log of core JM07-012-PC. 
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Figure 6.15: Lithological log and physical properties log of core JM07-012-PC. 
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Figure 6.16: Radiograph (left) and interpretations (right) of core JM07-012-PC between 

325 cm and 350 cm depth. A schematic bulk density and IRD gradation graph points out 

the layering of the sediment. Lamination is indicated with white dashed lines. 

6.1.3.3 Unit 12PC-3 (28 – 0 cm) 

The lithofacies code for this unit is cFl (d), indicating that weakly laminated clayey silt is 

the dominant sediment in the unit. Gravel and pebble clasts are common. The colour of the 

sediment is very dark greyish brown (MSCC 2.5Y 3/2). Macrofossils occur rarely (one 

brachiopod and a very small fragment of either a coral or a bryozoan). At a depth of 8 cm 

the brachiopod of the species Hemithris psittacea was radiocarbon dated to 6720 ± 60 cal. 

yrs. BP (6380 ± 40 
14

C yrs. BP). The lower boundary is sharp and is defined by a marked 

change in colour, shear-strength, grainsize distribution and magnetic susceptibility.  
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6.1.3.4 XRF-Data of Core JM07-012-PC 

The element composition, shown by the Ca/Fe and Ca/Si ratios, changes markedly at the 

boundary between unit 12PC-2 and unit 12PC-3. Ca/Fe and Ca/Si ratios are generally lower 

in unit 12PC-1 and 12PC-2 and are more variable (fig. 6.17). Major excursions of the 

proxies are recorded only in units 12PC-1 and 12PC-2. The frequency of the excursions of 

Ca/Fe and Ca/Si between ~125 cm and ~210 cm depth seems rhythmical. However, these 

cyclic variations were not observed in core logs, physical properties or radiographs. The 

Fe/Rb ratio in unit 12PC-3 is generally lower than in units 12PC-1 and 12PC-2 and shows 

little variation. 

 

Figure 6.17: XRF-Scanner element ratios of core JM07-012-PC. Black arrows point at 

peaks of Ca/Fe and Ca/Si. Blue arrow points at the boundary between 12PC-2 and -3. 
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6.1.3.5 Correlation between Cores JM07-012-GC and JM07-012-PC 

In the gravity core (JM07-012-GC) the most distinctive change is described from unit 

12GC-1 to 12GC-2. The sediment changes colour from 2.5Y 3.5/1 to 2.5Y 3/2 on the 

MSCC, the dominant grainsize changes from clay to silt. In addition sulphide spots as well 

as macrofossils become abundant in the upper unit. 

This change, described for the boundary between 12GC-1 and 12GC-2, is very similar to 

what is observed and described for the unit boundary between 12PC-2 and 12PC-3. Here 

also the colour shifts from 2.5Y 3.5/1 to 2.5Y 3/2 on the MSCC, the dominant grainsize 

changes from clay to silt and sulphide spots and macrofossils become abundant in the upper 

unit (fig. 6.5). 

All this suggests that the unit boundary between 12GC-1 and 12GC-2 and the unit 

boundary between 12PC-2 and 12PC-3 are essentially the same. An additional depth value 

of 216 cm must be added to the JM07-012-PC data to get the real depth. 

6.1.4 Deductions from the Core Data of Core Site JM07-012 

In the three cores JM07-012-BC, -GC and -PC exclusively glacimarine sediments were 

found. All units are interpreted to be comprised of suspension fall-out and IRD. 12PC-1 

and 12PC-2 (i.e. 12GC-1) have low shear-strengths which may indicate rapid 

sedimentation. This indicates a glacier proximal environment.  The units above are 

accordingly interpreted to reflect a glacier distal sedimentary environment with low 

sedimentation rates and lower relative IRD input. 

6.2 Core Site JM07-014 

The core site JM07-014 is located in the eastern parts of the outer Van Keulenfjorden basin. 

It is located directly in front (west) of the debris flow deposit, L1 (fig. 4.1b). 

6.2.1 Box Core JM07-014-BC 

Core JM07-014-BC is 26 cm long and contains the lithological unit 14BC-1 (Fig. 6.18). 
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Figure 6.18: Colour image, colour codes, lithological log of box core JM07-014-BC.  

6.2.1.1 Unit 14BC-1 (26 – 0 cm) 

The lithofacies code for this unit is Fm (d). It is composed of massive mud with scattered 

gravel and pebble clasts. The differentiation between clay and silt cannot be made, because 

no sample of the box core was analysed by the sedigraph. The colour of the sediment is 

very dark greyish brown to olive brown (MSCC 2.5Y 3/2 to 2.5Y 4/2.5). Macrofossils were 

not found.  

6.2.2 Gravity Core JM07-014-GC 

The 270 cm long gravity core JM07-014-GC is divided into the units 14GC-1 and -2 (figs. 

6.19, 6.20 and 6.21). 
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Figure 6.19: Colour image, colour codes and lithological log of core JM07-014-GC. 
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Figure 6.20: Lithological log and grainsize distribution log of core JM07-012-PC. 
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Figure 6.21: Lithological log and physical properties log of core JM07-012-PC. 
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6.2.2.1 Unit 14GC-1 (270 – 109 cm) 

Unit 14GC-1 contains strongly to weakly laminated silty clay with scattered clasts of gravel 

and pebble size (lithofacies code fFl(d)). The colour of the sediment is very dark greyish 

brown to dark olive grey (MSCC 2.5Y 3/2, and 2.5Y 4/2 to 5Y 3/2, respectively). One shell 

fragment was found. The upper boundary of the unit is sharp and defined by a marked 

change in wet bulk density and magnetic susceptibility (fig. 6.21 and 6.22). 

 

Figure 6.22: Radiograph (left) and interpretations (right) of core JM07-014-GC between 

102 cm and 117 cm depth. The change in bulk density is indicated on the right by the red 

line. Below the red line the radiograph is slightly brighter. 

6.2.2.2 Unit 14GC-2 (109 – 0 cm) 

Unit 14GC-2 is the uppermost unit of the core. It is composed of laminated mud, ranging 

from silty clay (lower part) to clayey silt (upper part) with scattered gravel and pebble 

clasts (lithofacies code c/fFl(d)). The colour of the sediment is very dark greyish brown to 

dark grey (MSCC 2.5Y 3/2 to 5Y 4/1). Macrofossils were not found.  
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6.2.2.3 XRF-Data of Core JM07-014-GC 

Though lithologically there is very little change in the core JM07-014-GC the ratios 

between Ca/Fe and Ca/Si vary strongly. The proxies of Ca/Fe and Ca/Si are most often in 

phase, however two distinctive excursions at depth ~65 cm and ~140 cm show opposing 

Ca/Fe and Ca/Si peaks.  Both excursions are coincident with a significant drop in Si/all (fig. 

6.23). 

 

Figure 6.23: XRF-Scanner element ratios of core JM07-014-GC. Black arrows point at 

opposing excursions of the Ca/Fe and Ca/Si proxies.  
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6.2.3 Piston Core JM07-014-PC 

Core JM07-014-PC is 538 cm long. It is divided into the units 14PC-1 and -2. The linear 

sedimentation rate model for this core is ambiguous, because the radiocarbon dated shell at 

125 cm depth (2710 ± 40 cal. yrs. BP) is supposedly older than the one dated at depth 168 

cm (2650 ± 60 cal. yrs. BP). Usually if a radiocarbon dated shell is older and further up in 

the core than another one, it is assumed to be reworked. However, the single standard 

deviations of the two radiocarbon dates are overlapping (red area in fig. 6.24). Therefore 

both dates are assumed to be valid radiocarbon dates with an inaccuracy due to the limits of 

precision of the dating method and two different sedimentation rates are introduced in the 

linear sedimentation rate model at the depths in question (tab. 6.4 and fig. 6.25). 

 

 Figure 6.24: Comparison between the two overlapping calibration curves from core 

JM07-014-PC. Grey colours show the older date, orange colours show the younger date. 

Red area shows the overlap of both dates with their single standard deviation. 
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Table 6.4: Linear sedimentation rate models for core JM07-014-PC based on the 

radiocarbon dates with standard deviation values according to the standard deviations of 

the radiocarbon dates. 

JM07-014-PC Model 1 
 

JM07-014-PC Model 2 
depth 
[cm] 

sedimentation 
rate [mm a-1] 

 

depth 
[cm] 

sedimentation 
rate [mm a-1] 

0 - 125 0.46 ± 0.01 
 

0 - 168 0.63 ± 0.01 

125 - 368 34.71 ± 18.69 
 

168 - 368 16.67 ± 10.13 

368 - 532 27.33 ± 12.15 

 

368 - 532 27.33 ± 12.15 
 

6.2.3.1 Unit 14PC-1 (538 – 88 cm) 

The lithofacies code for this unit is fFm (d) (fig. 6.25, 6.26 and 6.27). Massive, and in the 

upper parts also weakly laminated, silty clay is the dominant sediment. Gravel and pebble 

clasts occur. The colour of the sediment is very dark grey (MSCC 2.5Y 3/1 to 2.5Y 3/1.5). 

Bivalves and snails were found. Four snails of the species Cylichna alba were radio carbon 

dated. One from 532 cm depth to 2840 ± 60 cal. yrs BP (3180 ± 35 
14

C yrs BP), one from 

368 cm depth to 2780 ± 45 (3115 ± 35 
14

C yrs. BP), one from 168 cm depth to 2650 ± 60 

(2970 ± 30 
14

C yrs. BP) and the other one from 125 cm depth with an age of 2710 ± 40 cal. 

yrs BP (3025 ± 35 
14

C yrs BP). The upper boundary of the unit is based on the changes in 

physical properties. The onset of a decrease in shear-strength and wet bulk density and the 

onset of an increase in fractional porosity define the transitional unit boundary between unit 

14PC-1 and 14PC-2. Lamination is exclusively observed on the split-core surface.  

 

 

 

Figure 6.25: Colour image, colour codes, and lithological log of core JM07-014-PC, as 

well as linear sedimentation rates. The grey/blue (model 1)/red (model 2) shadows around 

the sedimentation rate graphs accounts for the standard deviation of the radiocarbon dates 

(see next page).  
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Figure 6.26: Lithological log and grainsize distribution log of core JM07-014-PC. 
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Figure 6.27: Physical properties log of core JM07-014-PC. 
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6.2.3.2 Unit 14PC-2 (88 – 0 cm) 

Unit 14PC-2 is composed of laminated silty clay with scattered gravel and pebble clasts 

(lithofacies code fFl (d). The sediment colour is very dark grey to dark olive grey (MSCC 

2.5Y 3/1 to 5Y 3/2). Fossil bivalves and snails are abundant. The uppermost part is heavily 

bioturbated. The bioturbation has a Swiss cheese-like appearance on the radiograph (fig. 

6.28). 

 

Figure 6.28:  Radiograph (left) and interpretations (right) of core JM07-014-PC between 0 

cm and 17 cm depth. The bioturbation is encircled in yellow. 

6.2.3.3 XRF-Data of Core JM07-014-PC 

The two proxies Ca/Fe and Ca/Si generally are in phase throughout the whole core, while 

Si/all has opposing excursions. A marked change in variability of the proxies occurs at 

~110 cm depth. Above this depth (fig. 6.29) the frequency of the excursions are 

significantly higher than below. There is also a distinctive excursion at ~90 cm depth, but 

this could be an artefact originating from the core section boundary. 

6.2.4 Deductions from the Core Data of Core Site JM07-014 

All sampled lithological units comprise glacimarine sediments. The immense change in 

sedimentation-rate in core JM07-014-PC is reflecting changes in the source area, most 

likely of glacial nature. Though the sedimentation-rate changes strongly, the sedimentary 
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products stay remarkably similar throughout the change, which is deducted from occurring 

lamination in core JM07-014-GC. Why there is lamination in core JM07-014-GC and none 

in core JM07-014-PC below ~88 cm depth is most likely due to the different sample 

methods of gravity and piston coring.  

 

Figure 6.29: XRF-Scanner element ratios of core JM07-014-GC. Black arrows point at 

changes in variability in the XRF-data.  
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7 Discussion 

This chapter begins with a correlation of the seismic and lithological data. The deduced 

sediment rates are compared to existing records before all observed sediments are discussed 

with regard to the involved processes. These three sub-chapters will lead to the discussion 

of the palaeoenvironment, including the palaeoclimate and deglaciation history. 

7.1 Correlation of the Litho- and Seismostratigraphy 

The litho- and seismostratigraphies provide the basis for correlating the cores of this study 

with each other, as well as for correlating the cores with the seismostratigraphy. 

Cores JM07-12 and JM07-14 were projected perpendicular onto the closest chirp profile 

(figs. 7.1 and 7.2). The core lengths are converted into seconds TWT using a p-wave 

velocity of 1600 m s
-1

, thus they can be displayed on the profile. This is a simplification, 

because the p-wave velocity varies with depth. The p-wave velocity is measured to be 

lower than 1600 m s
-1

 in the upper part of core (figs. 6.7, 6.15, 6.21 and 6.26). However, 

1600 m s
-1

 was chosen so that the data is comparable to literature (e.g. Elverhøi et al., 

1995b, Plassen et al., 2004, Forwick and Vorren, 2011).  

At core site JM07-012 the combined penetration depth of the two overlapping cores JM07-

012-GC and JM07-012-PC was considered. Here, the most notable change in seismic 

signature, horizon R1, is penetrated in the lower part of the core (fig. 7.1). Compared to 

observations in the lithostratigraphy this horizon is the same as the unit boundary between 

12GC-1 and 12GC-2 and between 12PC2 and 12PC-3, respectively (chapter 6.1.3.5).  

At least three, possibly up to six, marked reflections (one of which is horizon R4) are 

penetrated at core site JM07-014 (fig. 7.2). However, the impedance contrasts of the 

reflections cannot be precisely correlated to lithological observations due to the absence of 

lithological lamination. A tentative interpretation is that the uppermost strong reflection 

below the seafloor correlates to the unit boundary between 14GC-1 and 14GC-2 and 

between 14PC-1 and 14PC-2 (figs. 6.19 and 6.25), respectively. 



7 Discussion 

 

 

Philipp Kempf            98 

 

 

Figure 7.1: Chirp profile 09JM-VanKeulenfd-002 showing the location of JM07-012. For 

location see fig. 5.1. 

 

Figure 7.2: Chirp profile 09JM-VanKeulenfd-018 showing the location of station JM07-

014. For location see fig. 5.1. 

A correlation of the cores JM07-012-GC and JM07-012-PC has been done in chapter 

6.1.3.5. Here, the cores are correlated between the two core sites, JM07-012 and JM07-014.  
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The correlation between the litho- and seismostratigraphies (figs. 7.1 and 7.2) of the two 

core sites, JM07-012 and JM07-014, suggests that the cores show little overlap (fig. 7.3). 

Both core sites only share the seafloor as a common reflector and are correlated as depicted 

on fig. 7.3. Radiocarbon dates enable further correlation (chapter 7.2). 

7.2 Chronology  

Radiocarbon dates from core site JM07-012 suggest a hiatus at the reflector R1 (unit 

boundary of 12GC-1 to 12GC-2 and 12PC-2 to 12PC-3; fig. 7.4). Reasons for this hiatus 

will be discussed with more detail in sub-chapter 7.4.6.  

Whenever possible, radiocarbon dates from this study were used for interpolation. In the 

case of the upper age of the hiatus (fig. 7.4, 7010 cal. yrs. BP) extrapolation between both 

dates from core JM07-012-GC was used (960 ± 60 cal. yrs. BP and 6920 ± 60 cal. yrs. BP). 

The extrapolated age for this boundary is assumed to be valid, because the closest 

radiocarbon date (6920 ± 60 cal. yrs. BP) is only 19 cm of depth away.  Additional ages for 

the lower units are taken from various authors.  

The age for R1 (10660 ± 80 cal. yrs. BP) is taken from Hald et al. (2004), where this age is 

the lowest and oldest age above the deglaciation unit, which is comparable to Vk1. The 

ages for R2 and R3 are interpolated between the age from Hald et al. (2004) and the 

interpolated age for R4. The minimum age (11160 ± 150 cal. yrs. BP) for the boundary 

between Vk0 and Vk1 is taken from a reworked bivalve in a core in the north western part 

of the outer basin of Van Keulenfjorden (fig. 7.4; Bratlie, 1994). This bivalve is the oldest 

postglacial radiocarbon date for Van Keulenfjorden. The maximum age for the same 

boundary was taken from a glacier front position map in Mangerud et al. (1992) indicating 

that the glacier front  was still at the sill during that time (12.3 cal. ka BP; fig 7.4).  

In chapter 7.5 these inter- and extrapolated ages are used in the titles for time orientation. 
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Figure 7.3: Correlation of cores JM07-012-GC, JM07-012-PC, JM07-14-GC and JM07-

014-PC. 
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Figure 7.4: Chronology of schematic litho- and seismostratigraphic units defined in this 

study. 
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7.3 Sedimentation Rates 

Sedimentation rates from the cores JM07-012-GC and JM07-014-PC suggest large 

variations from ~6.9 cal. ka BP to the present even in a glacier distal environment (figs. 6.5 

and 6.25 and tabs. 6.4 and 6.5). The sedimentation rate trends of the two cores are opposed 

during the glacial advance (see chapter 7.4.4) related sedimentation around 2.7 cal. ka BP, 

but they have similar values for the last ~2.0 cal. ka BP.  

The sedimentation rates from core site JM07-012 and JM07-014 are comparable 

considering their position in the fjord system to other sedimentation rates derived from core 

data from Billefjorden and Van Mijenfjorden (fig. 7.5; Hald et al., 2004, Baeten, 2007). 

The sedimentation rates reflect the glacial activity in the catchment area (Elverhøi et al., 

1995a, Forwick and Vorren, 2009), since glacial erosion is among the processes producing 

highest sediment yield (Elverhøi et al., 1995b). 

 

Figure 7.5: Sedimentation rates of this study compared to results from Van Mijenfjorden 

(Hald et al., 2004) and Billefjorden (Baeten, 2007). 
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The isopach maps reveal varying sedimentation rates inside the fjord depending on the 

location and time (figs. 5.10, 5.11, 5.14 and 5.16). The average sedimentation rate at core 

site JM07-014 above horizon R1 (from 10660 cal. yrs. BP to present) is 2.33 mm a
-1

. This 

is up to an order of magnitude higher than sedimentation rates estimated for suspension 

fall-out and IRD for cores from outer Sassenfjorden and Billefjorden (Baeten et al., 2010b, 

Forwick et al., 2010). This high average sedimentation rate for a West Spitsbergen fjord 

can be explained by the proximity to the glacier. Additionally Van Keulenfjorden has a 

large catchment area with a high degree of glaciation (Hagen et al., 1993), which bears a 

large sediment input (Elverhøi et al., 1995b). 

7.4 Sedimentary Processes 

7.4.1 Sub- and Proglacial Processes 

Vk0 is the lowermost unit above bedrock. Vk0 is therefore suggested to be a till, because 

the Late Weichselian ice streams eroded almost all pre-Late Weichselian sediments (Hooke 

and Elverhøi, 1996). Additionally, if Vk0 were a unit of pre-Late Weichselian Age, then a 

Late Weichselian till layer would be missing or thin beyond resolution of the sparker 

seismic (sparker resolution ~1.6 m). Regional examples of tills beneath units reflecting Late 

Weichselian deglaciation, i.e. Vk1, have similar seismic characteristics (e.g. Svendsen et 

al., 1996, Forwick and Vorren, 2011).  

Vk0 is either a) built from material accumulation from sediment laden meltwater emanating 

from a subglacial conduit into a subglacial cavity, which may have formed through basal 

melting (cf. Boulton, 1982) or b) deposited similar to a push moraine or a lodgement till by 

bulldozing material forward, which becomes trapped in front of the sill and consequently 

accumulates mass towards the east. Other than a push moraine the till is wedged against sill 

(fig. 7.6).  

The internal acoustic signature of the Vk0-accumulation is generally transparent, but weak 

reflections occur sporadically towards the base of the unit.  This favours neither of the two 

explanations, since thrust faults are expected in a) similar to a lodgement till (cf. Ó Cofaigh 
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et al., 2011) or bedding structures in b) similar to a grounding zone wedge (cf. Noormets 

and Flodén, 2002).  

 

Figure 7.6: Explanatory sketch of the two inferred genetic hypothesis of unit Vk0. a) a 

cavity infill, b) the accretion of a till wedge and c) the observed result. 

Also deriving from Vk0 is the beaded esker, E1. While the low ridge connecting the 

mounds is a product of a sub- or englacial conduit infill, the mounds of E1 are proglacial 

sediments. When the glacier retreats a pre-existent conduit infill forms the esker. If the 

retreat is interrupted by a halt (or a minor advance) the existing conduit acts as source for a 

proglacial fan producing a mound if the halt lasts long enough and/or the sediment supply 

is high enough. Halts or minor advances in the glacier retreat can occur annually (e.g. Benn 

and Evans, 2010).  

7.4.2 Suspension Fall-Out 

Glacial meltwater provides the main sediment sources to the post-glacial Van 

Keulenfjorden sedimentary environment. 

Suspended sediment originates mainly from the Nathorstbreen glacier front, as well as from 

various tributary valley glacial rivers. At the polythermal tidewater glacier front, sub- or 
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englacial conduits are the pathways for sediment-laden meltwater to emanate into the fjord 

throughout the whole year (Svendsen et al., 2002). However, the meltwater input varies 

seasonally (Weslawski et al., 1995). 

The larger grainsize fraction is deposited in coalescent morainal banks in a proglacial 

position. The small grainsize fraction is transported in a hyper- or hypopycnal flow away 

from the glacier front forming a plume (Hambrey, 1994). An aerial photograph of a 

hypopycnal flow (overflow) in front of Doktorbreen and Liestølbreen is given in fig. 1.3b. 

Similar examples are recorded by aerial photographs in Rindersbukta (Van Mijenfjorden), 

Kollerfjorden and Mayersbukta (both tributaries to Möllerfjorden/Krossfjorden; 

Dowdeswell and Dowdeswell, 1989, Dahlgren, 1998). Such plumes can bear highly 

concentrated sediment loads of up to 500 mg l
-1

 (Elverhøi et al., 1983).  

From the fjord sides glacifluvial meltwater input contributes to the suspension fall-out in 

the fjord from late May to November (Weslawski et al., 1995). The westward thinning 

trend of units Vk3, Vk4.1 and Vk4.2 (figs. 5.11, 5.14 and 5.16) suggests that the majority 

of the sediment supply originates from the inner ford basin, i.e. the Nathorstbreen front. 

However, no westward thinning trend was observed in seismostratigraphic unit Vk2 (~10.7 

cal. ka BP to ~7.0 cal. ka BP; fig 7.4). Instead the topography controls the sedimentation 

with a thin succession on the ridges and a thicker succession in the sub-basins. This is 

inferred to be related to i) great distance from the sediment source suppressing the 

westward thinning trend and ii) strong bottom currents hampering the deposition on the 

ridges and favouring deposition in the sub-basins.  

7.4.3 Ice Rafted Debris (IRD) 

Plumes lose their suspension load exponentially with the distance from the source (Elverhøi 

et al., 1983, Ó Cofaigh and Dowdeswell, 2001). If a significant amount of icebergs is 

transported away from the glacier front quickly enough, icebergs may discharge their debris 

just as much proximally as they do distally (Dowdeswell and Dowdeswell, 1989). When 

that is the case, depletion of suspension fall-out creates IRD-enriched distal sediments 
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(Dowdeswell and Dowdeswell, 1989). This phenomenon is also observed between the two 

core sites of this study in form of lower IRD abundance at core site JM07-014 (cf. figs. 6.8, 

6.9, 6.10 and 6.11 with figs. 6.22 and 6.28).  

7.4.4 Mass-Transport Deposits 

Mass-transport deposits occur in various forms in Van Keulenfjorden. Most prominent are 

the two stacked debris flows (L1.1 and L1.2) that originate from the inner fjord basin sill. 

Mass-transport deposits are also found along the slope of Ullaberget and the talus of the 

sandur-delta fan (Krigström, 1962) at the mouth of Ulladalen, Finsterwalderbreen as well as 

Penckbreen.  

The mass-transport deposits in the lobes of L1.1, L1.2 and L3 are sharply outlined. Because 

of the convex shape of the talus and the transparent seismic signature, the lobes L1.1, L1.2, 

L3 and a lobe in the mass-transport fan in front of Penckbreen (fig. 5.15) are interpreted to 

be formed by cohesive debris flows (cf. Laberg and Vorren, 1995, Mulder and Alexander, 

2001). The convex morphology of the talus is produced when a cohesive debris flow comes 

to a halt. The transparent signature is due to the transport mechanism, which does not sort 

the material (Laberg and Vorren, 1995, Laberg and Vorren, 2000, Mulder and Alexander, 

2001, Plassen et al., 2004), and continuous reflectors are therefore unlikely to form.  

The debris flow lobes L1.1 and L1.2 are either formed a) synchronous or b) subsequently to 

the deposition of a terminal morainal bank. For synchronous formation a) the debris flows 

are initiated through pushing and steepening of the distal side of the morainal bank. In case 

of subsequent formation b) slope failure occurs and a slip plane would develop (fig. 7.7; 

Plassen et al., 2004).  
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Figure 7.7: a) Schematic block sketch of morphological elements and surge related 

sediment packages and two formation models, b) and c) of debris flow deposits adjacent to 

terminal morainal banks (from Plassen et al., 2004). 

Debris flows can have an almost erosion-free transport due to hydroplaning (Vorren et al., 

1998, Laberg and Vorren, 2000, Laberg and Vorren, 2003). However, a debris flow needs a 

high velocity to cause hydroplaning, which was most likely not reached in Van 

Keulenfjorden, as the debris flow deposits have a short run-out distance (~5 km in Van 

Keulenfjorden opposed to ~200 km in the Bjørnøya trough mouth fan; Laberg and Vorren, 

2000). Accordingly, the debris flow lobe L1.1 shows erosional truncation into the 

uppermost glacimarine sediments of seismic unit Vk4.1 (fig. 5.17). The debris is therefore 

assumed to have been slow. The reason for the strongly cohesive debris flows could be the 

mud dominated, almost sand-free, sediment mixture (cf. pers. comm. with A. Elverhøi from 

Dahlgren, 1998).  
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7.4.5 Glacifluvial Sediment Input from Tributary Valleys 

Small-scale glacifluvial fans occur at the mouth of Ulladalen, Finsterwalderbreen and 

Penckbreen. From chirp profiles debris flows and chutes/channels are inferred to be 

common (figs. 5.8, 5.12 and 5.15; cf. Prior et al., 1981, Bornhold et al., 1994). Associated 

with these channels are turbidity currents (Mulder and Alexander, 2001). However, a 

cohesive debris flow deposit is intercalated into Penckbreens sandur fan signature (fig. 

5.15; cf. chapter 7.3.4). This cohesive debris flow lobe was possibly formed the same way 

as discussed above for L1.1 and L1.2 as a result of major advance or surge of Penckbreen 

and the reworking of the incorporated proglacial sediments (fig. 5.15).  

The sedimentation of the sandur deltas obeys an annual rhythm of the extremely seasonal 

sediment input in the summer months with the yearly melt season (Weslawski et al., 1995, 

Svendsen et al., 2002). The high water flow energy regime during the summer meltwater 

peak allows transport of boulder-sized grains. Due to this seasonality and the fractionation 

process (clay and silt form a plume) the grainsize distribution of the fan sediments is 

assumed to be less muddy. The lower cohesion between the larger grains of the deltas and 

the high water flow energy regime is indicated by the irregular signature of surface and 

palaeosurfaces of the fan.  It is assumed that many small-scale gravity flows, i.e. turbidity 

currents and cohesionless debris flows, form the majority of the fan sediments, while chutes 

form erosional surfaces (figs. 5.8, 5.12 and 5.15; cf. Eilertsen et al., 2002). The plume 

sedimentation shifts to become the background sedimentation in that particular area. 

7.4.6 Hiatus 

A minimum age of 10660 cal. yrs. BP was inferred for the upper boundary of glacier 

proximal sediments (fig. 7.4). A time gap of ~4 ka in the sedimentary record between 

glacier proximal and glacier distal glacimarine sediments is indicated by the ages of 6920 ± 

70 cal. yrs. BP and 6720 ± 60 cal. yrs. BP in the cores JM07-012-GC and JM07-012-PC, 

respectively. This gap can either be explained by a) erosion or b) non-deposition. Erosional 

truncation could be interpreted on the chirp sonar profile (fig. 7.1). However, reworked 
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deposits are absent. Additionally, in both cores from core site JM07-012 the lithological 

unit boundary does not show traces of erosion. Therefore the hiatus is most likely a non-

depositional hiatus. 

The isopach map for the entire sediment succession above R1 indicates that this hiatus is 

regionally limited to the area of the core site with a ~1 km radius around it (red area on fig. 

7.12). Bottom currents providing a higher water energy environment may have prevented 

deposition. Gas seepage from the pockmarks, P2, may have enabled erosion in connection 

with bottom currents. However, the thinnest part correlates only partially with the most 

pronounced pockmarks (fig. 7.8) and the hiatus was previously inferred to be non-

depositional rather than erosional. Bottom currents are therefore proposed to be the major 

cause of this hiatus. This is supported by the observation from the sediment distribution 

during the same time (10.7 cal. ka BP to 7.0 cal. ka BP; fig. 5.10; chapter 7.4.2).   

 

Figure 7.8: Isopach map of the whole post-R1-succession. Note that the thinnest deposits 

occur in the vicinity of core site JM07-012. Blue circles indicate the most pronounced 

pockmarks of P2. 
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7.5 Deglaciation and Holocene Environment in Van Keulenfjorden 

7.5.1 Deglaciation from Shelf break to Fjord Mouth, from 17400 cal. yrs. BP to 

11260 cal. yrs. BP (10400 
14

C yrs. BP) 

A combination of conclusions from various studies including this study was used to create 

a time distance glaciation diagram for the Bellsund and Van Keulenfjorden area (fig. 7.9). 

The deglaciation of the Late Weichselian Barents Sea Ice Sheet from the shelf break west 

of Svalbard began at 17.9 cal. ka BP and the ice front reached the fjord mouth of Van 

Keulenfjorden at 12.3 cal. ka BP (10.5 
14

C ka BP; Mangerud et al., 1992, Elverhøi et al., 

1995a, Svendsen et al., 1996). Prior to 11.6 cal. ka BP Van Keulenfjorden acted as a 

pathway for fast-flowing ice draining the Barents Sea Ice Sheet (fig. 7.9; cf. Ottesen et al., 

2005, Ottesen et al., 2008).  

 

Figure 7.9: Time distance glaciation diagram for Van Keulenfjorden and Bellsund with 

data from various studies, including this study. 
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The lower boundary of Vk0 shows URU-like characteristics (URU = Upper Regional 

Unconformity) on airgun-seismic lines (fig. 7.10; Bratlie, 1994) and is therefore interpreted 

to be the boundary between Mesozoic and Early Cenozoic bedrock.  

 

Figure 7.10: Airgun profile through Van Keulenfjorden. Reflector “i” is the same as the 

lower boundary of unit Vk0. Note the angular unconformity between the steep reflections 

below and the horizontal reflections above horizon “i” (from Bratlie, 1994). 

All of the proposed scenarios in chapter 7.3.1 for the genesis of the lowermost seismic unit, 

Vk0 (fig. 5.4), include the unit being located beneath the fast-flowing ice of the Late 

Weichselian glaciation. Age control by radiocarbon dating on unit Vk0 is difficult, because 

samples would most likely give infinite radiocarbon age (cf. Hald et al., 2004). Vk0 is 

probably of Late Weichselian age because sediments of pre-Late Weichselian age were 

eroded by the last glaciation in Svalbard fjords (Elverhøi et al., 1995b, Hooke and Elverhøi, 

1996). However, the possibility of Vk0 being pre-Late Weichselian should not be entirely 

dismissed as there are records of pre-Late Weichselian soft sediment in Svalbard fjords 

(e.g. Mangerud et al., 1998).  

Bratlie (1994) concludes 11260 cal. yrs. BP as the upper boundary of Vk0. This goes in line 

with the results from other studies from Van Keulenfjorden and Van Mijenfjorden 

(Mangerud et al., 1992, Elverhøi et al., 1995a, Svendsen et al., 1996). The minimum age for 

a similar till unit in Isfjorden is 12.7 cal. ka BP (fig. 7.11; Forwick and Vorren, 2009, 

Forwick and Vorren, 2011). However, also here the till was deposited diachronously, and 
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the deposition terminated in the inner part of the fjord around 11.2 cal. ka BP (Forwick and 

Vorren, 2009). 

The linear ridges R1 and R2 observed on the multibeam data (figs. 4.1a and 4.1b) are 

inferred to be from the same age interval as unit Vk0, because both ridges are interpreted to 

be subglacially formed. These two ridges are the only traces of fast ice-flow in the outer 

Van Keulenfjord basin. However, traces of fast ice flow in form of mega-scale glacial 

lineation and lateral ice stream moraines were described for the Bellsund trough (Ottesen et 

al., 2005). 

The mounds of the beaded esker, E1, indicate that the glacier front halted during the retreat 

(Boulton, 1986, Warren and Ashley, 1994, Brennand, 2000). The mounds of the esker have 

an average distance between each other of ~160 m. Sets of small retreat moraines in 

Svalbard fjords are inferred to be De Geer moraines (annual recessional moraines) 

deposited during Late Weichselian deglaciation (e.g. Baeten et al., 2010a) and after the 

Little Ice Age (Ottesen et al., 2008). Retreat rates of 170 m a
-1

 for the Late Weichselian 

deglaciation in Billefjorden (Baeten et al., 2010a) and 90 m a
-1

 for the retreat in the inner 

basin of Van Keulenfjorden after the Little Ice Age extent (Ottesen et al., 2008) are 

suggested. Both De Geer moraines and the mounds are formed during periods of halts or 

minor readvances during glacial retreat. The values for the spacing of the mounds and those 

of De Geer moraines match, especially for the Late Weichselian retreat in Billefjorden 

(~170 m in Billefjorden, ~160 m in Van Keulenfjorden). Therefore it is proposed that 

similarly to De Geer moraines the mounds of E1 reflect annual deposition. Consequently 

the retreat velocity of the glacier front during the Late Weichselian through parts of Van 

Keulenfjorden is interpreted to be ~160 m a
-1

. If this retreat rate was constant for the entire 

retreat through the fjord, then the outer fjord basin would have been deglaciated in the 

course of 125 yrs.  

Retreat examples during the same time from Andfjorden, mainland of Norway, have lower 

retreat rates (Vorren and Plassen, 2002). However, the north Norwegian deglaciation in 

Andfjorden began with a rate of 310 m a
-1

 (from Egga II to Flesenmoraine), which is 
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comparable to the fastest modern retreats, e.g. 280 m a
-1

 for Jakobshavn Isbrae, west coast 

of Greenland (Knight, 1999, Vorren and Plassen, 2002). 

 

Figure 7.11: 3,5 kHz echo sounder profiles and the sketch of a lithostratigraphy from core 

JM98-845-PC from Isfjorden. The seismostratigraphy is very similar to the one found in 

Van Keulenfjorden, though the chronology may differ (from Forwick and Vorren, 2011). 

The chirp seismic profiles suggest that all three eskers (E1, E2 and E3) derive from unit 

Vk0. The eskers and the linear ridges are all subglacial landforms that are still visible from 

the last glacial in the outer basin. Their preservation and the absence of other subglacial 

features indicate that the glacier did not readvance into the outer basin during the Holocene 

(fig. 7.9).  

7.5.2 Deglaciation of Van Keulenfjorden, from 11260 cal. yrs. BP to 10660 cal. 

yrs. BP 

Seismic unit Vk1 was recovered in the cores JM07-012-GC and JM07-012-PC. The clast-

bearing mud with intercalated gravelly to pebbly layers are suggested to reflect a glacier 

proximal environment (cf. Forwick and Vorren, 2009). 

The acoustic stratification of Vk1 is due to frequent lithological changes. These frequent 

changes could be the result of strong spatial and temporal variations of a) mass-transport 

activity (cf. Powell, 1990, Powell, 2003), b) ice-rafting (Forwick and Vorren, 2009, 
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Forwick and Vorren, 2011) and c) suspended sediment supply (cf. Rachlewicz, 2009) or a 

combination of all three. 

Repetitive decreasing up-core bulk density and IRD cycles (fig. 6.16) could be caused by 

mass-transport activity (cf. Lowe, 1982), short-term changes in the glacial environment, 

iceberg dumping or sikussak formation (Syvitski et al., 1996).  

IRD occurs irregularly throughout the post-glacial succession. After a large drop in acoustic 

reflectivity at R1 the increasing seismic reflectivity in the sediments from R1 to the seafloor 

points towards increasing ice rafting and thus to increasing glacial activity in the catchment 

area. IRD in the cores occurs both scattered (fig. 6.16 lower part) and in layers (figs. 6.9 

and 6.16 upper part). An analysis with the aim to differentiate between sea-ice rafted debris 

and iceberg rafted debris was not performed. However, a nearly proportional abundance of 

sea-ice rafted debris and iceberg rafted debris occurs in Van Mijenfjorden during the entire 

Holocene (Hald et al., 2004). IRD is ubiquitous in the sediments in Van Keulenfjorden, 

which indicates that a tidewater glacier influenced the fjord system throughout at least the 

last 6920 cal. yrs. BP. It is likely that the tidewater glacier, i.e. Nathorstbreen influenced 

Van Keulenfjorden the entire Holocene, because tidewater glacier influence during the 

entire Holocene is also concluded from Billefjorden, Isfjorden and Van Mijenfjorden (Hald 

et al., 2004, Forwick and Vorren, 2009, Baeten et al., 2010a). 

Cyclic changes in the chemical composition are recorded in Vk1 of core JM07-012-PC. 

The three proxies Ca/Fe, Ca/Si and Si/all are used to indicate the origin of these cycles. The 

ratio of Ca/Fe is an inverse proxy for biogenic carbonate (Croudace et al., 2006). The ratio 

of Ca/Si is a proxy for total carbonate vs. detrital clay. The ratio of Si/all displays the 

relative amount of detrital clay.  

The four distinct cycles (fig. 6.17, black arrows) comprise high Ca/Fe and high Ca/Si peaks 

while Si/all does not show excursions at the same depths. This indicates increased inorganic 

carbonate content. This is probably due to a change in provenance. Calcareous bedrock is 

only found in the south-western parts of the catchment areas of Hessbreen, 
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Finsterwalderbreen and Penckbreen with the silicified carbonates of the Tempelfjorden 

Group and the carbonate and evaporitic rocks of the Gipsdalen Group (Dallmann et al., 

1990). Thus, the four large cyclic peaks and the occurring smaller peaks above are 

interpreted to represent high glacial activity from the three big southern glaciers. Possibly 

they reflect glacier surges or climatically induced glacial advances, which do not 

necessarily have to reach the fjord with a tidewater glacier front in order to influence the 

fjord sediments (Gilbert et al., 2002).   

The pockmarks, P2, close to the fjord mouth are associated with fluid flow during a period 

of rapid isostatic uplift after the deglaciation of the Late Weichselian Barents Sea Ice Sheet 

(Landvik et al., 1987, Forman et al., 2004, Forwick et al., 2009). Faults of the West 

Spitsbergen fold and thrust belt located beneath the pockmarks (Dallmann et al., 1990) may 

have been reactivated creating pathways for thermogenic fluids to migrate up through the 

sediment and escape at the seafloor. Examples of thermogenic gas-flow off the west coast 

of Spitsbergen and in Spitsbergen fjords, as well as fluid migration along tectonic 

lineaments have been described (e.g. Söderberg and Flodén, 1992, Knies et al., 2004, 

Forwick et al., 2009). Biogenic gas is excluded here as an explanation since there is no 

sediment below the pockmarks that can produce biogenic gas. Gas from the abundant coal 

beds on Spitsbergen is also excluded, because below the pockmarks there is exclusively 

Mesozoic (Janusfjellet, Kapp Toscana and Sassendalen Group) and late Palaeozoic 

(Tempelfjorden and Gipsdalen Group) bedrock, which are free of coal beds. Therefore it is 

concluded that it was thermogenic gas that can be accounted for the formation of the 

pockmarks P2. 
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Figure 7.12: Above: shoreline displacement diagrams of Svalbard reviewed in Forman et 

al. (2004). Below: the closest shoreline displacement diagram to Van Keulenfjorden is #14 

from Landvik et al. (1987). 
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Discontinuous, but marked acoustic stratification in glacimarine sediment in the pockmark 

depression above horizon R1 (fig. 5.9), absent dip decrease with depth of the pockmark 

morphology and the smooth surface expression indicate low activity or inactivity of the 

pockmark since at least 6920 cal. ka BP. The uplift and possible fault reactivation was most 

pronounced during the latest Weichselian and earliest Holocene, 11.0 
14

C ka BP to ~9.0 
14

C 

ka BP (fig. 7.12; Landvik et al., 1987, Forman et al., 2004). It is likely that the activity of 

the seepage of thermogenic fluids is proportional to the activity of the uplift and the 

associated reactivation. Therefore the pockmarks of P2 are relicts, because the uplift is 

strongly alleviated on the west coast of Spitsbergen since  ~9.0 cal. ka BP (8.0 14C ka BP, 

fig. 7.12; Landvik et al., 1987, Forman et al., 2004). 

 

7.5.3 Climatic Optimum in Van Keulenfjorden, min. 10660 cal. yrs. BP to c. 6750 

cal. yrs. BP 

This time interval is archived in unit Vk2 between the horizons R1 and R2. The 

acoustically transparent to semi-transparent sediment of unit Vk2 contains mostly 

glacimarine mud. The unit lies conformably on top of unit Vk1. The few reflections in Vk2 

(fig. 5.3) are interpreted to be caused by higher clast layers from sporadic ice-rafting events 

(fig. 6.9). These ice rafting events are associated with enhanced iceberg calving due to 

climatic changes or surges.  

Generally low acoustic reflectivity and very few layers of high IRD content indicate that ice 

rafting was reduced. Low ice rafting activity in Vk2 points towards a low glacial activity 

during the time after the glacier retreat into the inner basin. The front of Nathorstbreen was 

probably located far inside the fjord (fig. 7.9). Slightly warmer climate than today (Birks, 

1991, cf. Hanssen-Bauer, 2002) caused this climatically driven low glacial activity (cf. 

Hald et al., 2004, Forwick and Vorren, 2009, Baeten et al., 2010a, Forwick et al., 2010). 

The proxy ratio of Fe/Rb is used to display fractionation effects and therefore it often 

shows sedimentary process-based unit boundaries (Croudace et al., 2006, Rothwell et al., 

2006). The Rb is often used as baseline proxy, so that the marked changes in the Fe/Rb 
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ratio are expected to be caused by a change in relative Fe abundance. Fe/Rb values are 

generally higher in the units 12GC-2 and 12PC-3 than in the units 12GC-1 and 12PC-2 

(figs. 6.12 and 6.17). The lower  Fe/Rb ratio and decreased lamination in unit 12GC-2 (and 

12PC-3, resp.) indicates that sedimentary processes have changed during this transition. 

The sedimentary processes that formed 12GC-2 and above are suggested to be glacier distal 

suspension fall-out and ice rafting, while for 12GC-1 (and 12PC-2) proglacial mass-

transports are proposed additionally. A constant Fe/Rb ratio above this unit boundary (R1; 

fig. 7.3 and 7.4), suggests that suspension fall-out and ice-rafting dominated the 

sedimentation at the core site ever since. 

The suspended sediment input from the tributary valleys varies strongly. During the Vk3 

interval Davisdalen does not contribute much to the sediment input to the fjord as indicated 

by the Vk3 isopach map (fig. 5.11). During Vk4.1, however, the input from Davisdalen 

increased to the same level as e.g. Ulladalen or Finsterwalderbreen. This may be due to 

growing or re-emerging cirque glaciers in the area draining through Davisdalen in the early 

to mid- Holocene in the course of gradual cooling. 

At horizon R2 unit Vk2 gradually transitions into unit Vk3. This transition from non-

stratified to weakly stratified signature is interpreted to be caused by a larger amount of 

IRD in the sediment (cf. Forwick and Vorren, 2011). More ice rafting implies a higher 

glacial activity in the catchment area (Hald et al., 2001).  

Bottom currents are suggested to be the cause for a hiatus at core site JM07-012. Before the 

shoreline displacement of a total ~65 m since deglaciation (Forman et al., 2004) the sill at 

the fjord mouth of Van Keulenfjorden was less confined than it is at present. Water 

exchange with the shelf water masses is assumed to have been stronger. This may have 

caused increased bottom currents from shelf water masses entering the fjord. It is proposed 

that the process that caused the non-depositional environment was active after 7010 cal. 

yrs. BP in an attenuated form, because of absence of acoustic stratification where the 

succession is thinnest. One distinct reflector directly below the seafloor shows, this process 

is not active any more (fig. 5.5).  
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7.5.4 Cooling in Van Keulenfjorden, from ~6750 cal. yrs. BP to 2780 cal. yrs. BP 

The acoustic signature changes gradually from weak stratification within unit Vk3 to 

stronger stratification within Vk4.1. This is interpreted as further increase in ice rafting and 

an associated higher glacial activity during the deposition of unit Vk4.1. The sedimentary 

environment, however, remains the same in most of the fjord with a majority of the 

sediment being comprised of glacimarine mud. The Nathorstbreen glacier front, which is 

interpreted to be far inside the inner fjord basin during Vk2-time had advanced and was 

then situated further out in the inner fjord basin during the deposition of Vk3.  

The high-magnitude reflections in front of Finsterwalderbreen, Penckbreen and Ulladalen 

(figs. 5.8, 5.12 and 5.15) reflect lithological variations within coarse grained, glacifluvial, 

sandur deltas.  

The existence of cohesive debris flow deposits matches on-land observations, where a large 

surge was described for Penckbreen. For Finsterwalderbreen several glacial readvances to a 

close-to-shore position are recorded in multiple push moraines (Hart and Watts, 1997). A 

large terminal moraine ridge lies close (<2 km) to the modern shoreline (fig. 7.13). In 

addition geomorphologic traces of a large surge of Penckbreen are described from the 

terrestrial record (Hart and Watts, 1997). Surges of land-terminating glaciers can have 

strong influence on sedimentation in the fjord (e.g. Gilbert et al., 2002). 

The late onset of deltaic sediments in the fjord (above R2 and sometimes above R3) can be 

explained by little sediment supply during the early to mid-Holocene due to low glacial 

activity and the change in relative sea-level (fig. 7.13). Comparatively high relative sea-

level during the earliest Holocene forced the deltaic sedimentation to begin at a higher 

elevation and therefore further away from the present shoreline. After R2 (estimated 5.2 

cal. ka BP), when the delta prograded and the relative sea-level dropped, the deltaic 

sedimentation reached the present fjord basin.  
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The sediments correlated with unit Vk4.1 (fig. 7.3) contain high amounts of IRD.  This 

supports the interpretation of the chirp seismic, where Vk4.1 is in the upper part of a 

succession with increasing up IRD influence.  

 

Figure 7.13: Multibeam dataset of Van Keulenfjorden and the topography around it. a), the 

submerged terrain in violet during the early Holocene with a 25 m higher sea-level than at 

present. b) the mid Holocene sea-level 8 m higher than at present when the deltaic 

sedimentation reached the fjord and c) the present situation. The sea-level change values 

were taken from the shoreline displacement curve from Landvik et al. (1987). To the right 

is an explanatory sketch for the deltaic sedimentation. 
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7.5.5 Glacial Advances in Van Keulenfjorden, from 2780 cal. yrs. BP to present 

Shortly after 2840 cal. yrs. BP a large debris flow was deposited on the distal side of a 

morainal bank, which was deposited during a readvance of Nathorstbreen (Ottesen et al., 

2008). Whether this readvance was climatically induced or surge related cannot be inferred 

from the morainal bank or its adjacent debris flow deposit.  

Climatic cooling occurred on the west coast of Spitsbergen from 4.0 cal. ka BP to ~2.4 cal. 

ka BP (Birks, 1991, Svendsen and Mangerud, 1997, Hald et al., 2004). Build-up of ice-

mass in the accumulation zone was surely promoted by this change in climatic conditions. 

The cooling enabled the readvance at 2.8 cal. ka BP. This readvance may have been of 

surge-type, because analogue architecture and signature of surge related sediments are 

recorded from known surge events in similar environments (Plassen et al., 2004, Ottesen 

and Dowdeswell, 2006). 

Debris lobes on the distal sides of terminal morainal banks associated with glacial advance 

and/or surges during the Little Ice Age have been described from other fjords on 

Spitsbergen (Elverhøi et al., 1983, Plassen et al., 2004, Ottesen and Dowdeswell, 2006). In 

the study area it has been suggested that the debris flow lobe L1.2 originates from the 

morainal bank that was deposited from Nathorstbreen at the termination of a surge during 

the Little Ice Age (~1890 AD; Bratlie, 1994, Ottesen et al., 2008). However, the results 

from this study do not support earlier suggestions, and an alternative chronology for the 

formation of the lobes is proposed in the following paragraphs. 

The two radiocarbon dates at 125 cm and 168 cm depth in core JM07-014-PC provide ages 

of 2710 ± 40 and 2650 ± 60 cal. yrs BP, respectively (fig. 6.25). Both these dating samples 

are correlated to originate from above the stratified sediments dividing L1.1 and L1.2. This 

indicates that the upper lobe (L1.2) was deposited before 2710 ± 40 cal. yrs BP and 

therefore prior to the Little Ice Age. Even though the calving front of Nathorstbreen 

reached the moraine position during the Little Ice Age (Liestøl, 1977) no core data as of yet 

proves whether the debris flow was deposited during that time, or earlier. The stratified 
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layer dividing the two lobes is 2 ms TWT to 3 ms TWT thick (fig. 5.17), i.e. approx. 150 

cm. Sedimentation rates for core JM07-014-PC range from 16.67 ± 10.31 mm a
-1

 to 34.71 ± 

18.69 mm a
-1

 between 125 cm and 368 cm and 168 cm and 368 cm depth, respectively 

(fig.6.25 and tab. 6.4). This indicates that the time lag for the depositions of the two lobes 

was between 30 and 230 yrs. (the range of one standard deviation included using a 

Gaussian error propagation).  

All three main tributaries to the Van Keulenfjorden glacier front at present (Doktorbreen, 

Liestølbreen and Nathorstbreen) are surge type glaciers (Hagen et al., 1993, Jiskoot et al., 

2000, Sund et al., 2009). Therefore, it is reasonable to assume that the glaciers were also 

surge type glaciers during earlier periods of the late Holocene, when the climatic conditions 

were very similar to the present (Birks, 1991). The quiescent phases of surge cycles on 

Svalbard last between 50 to 500 years (Benn and Evans, 2010). The estimated time lag for 

the deposition of the two debris lobes, L1.1 and L1.2, fits into this Svalbard-surge cyclicity. 

It is therefore proposed that the two lobes were deposited during two subsequent surge 

cycles, where the first surge leading to the deposition of lobe L1.1 reached the maximum 

extent position shortly after 2.84 cal. ka BP (oldest radiocarbon date in the core), and the 

second surge terminated at a similar position depositing the upper lobe, L1.2, shortly after.  

The hypothesis that the upper lobe, L1.2, is from the Little Ice Age advance (cf. Bratlie, 

1994, Ottesen et al., 2008) should, however, not be dismissed entirely. If the radiocarbon 

dates from this study are from reworked shells then the sedimentation rates would have 

higher values for the upper part and lower values for the lower part and could favour the 

Little Ice Age origin. It should be noted that all four radiocarbon dates were measured on 

Cylichnia alba, which is known to live in the upper 3 mm of the sediment and feeds on 

benthic foraminifera (Thomson, 1988). Hence, the ages obtained from this species should 

be reliable. 

High sedimentation rates for core JM07-014-PC can be interpreted to result from mass-

transport deposition in addition to suspension fall-out and IRD. However, in the cores and 
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on the chirp profiles there is no evidence for mass-transport deposits or reworking 

processes.  

How many climatic conclusions can be drawn from glacial activity in the fjord basin and in 

the catchment area in a surge-type glacier environment is strongly dependent on the 

characteristics of the sedimentary signal. Signals with a short time period, i.e. < 500 yrs., 

for example the debris flow deposit in the fan in front of Penckbreen (fig. 5.15), are likely 

to be of surge origin. And as surges are not triggered by external climatic factors (Meier 

and Post, 1969, Kamb et al., 1985) the conclusions about the palaeoclimate should be 

tentative at most. However, if reoccurring surges (e.g. L1.1 and L1.2) or generally high 

glacial activity depositing IRD-rich layers (e.g. Vk4.2 or the lower part of lithological unit 

12PC-2, fig. 6.13) occur more frequently, then the deduction must involve a climatic 

indication. Accordingly, a climatic condition similar to the Little Ice Age (i.e. colder air 

temperature) is proposed for the period shortly after 2840 cal. yrs. BP. 

The continuous increase in reflectivity of the seismic units Vk2 to Vk4.2 applies also for a 

period greater than 500 yrs. and is therefore interpreted to reflect a slow, continuous 

increase in glacial activity since R2 (interpolated 6750 cal. ka BP), possibly in association 

with a decreasing equilibrium line altitude (ELA) due to lower air temperature and SSTs 

(Birks, 1991, Dahlgren, 1998, Hald et al., 2004). 

The Little Ice Age advance of the glaciers, in Van Keulenfjorden associated with a surge 

(Liestøl, 1977, Ottesen et al., 2008), is also a product of climatic change because the Little 

Ice Age is a climatic signal that has been recorded in other fjords on the west coast of 

Spitsbergen (Mangerud and Landvik, 2007). Therefore the cause cannot have been a 

regional one, e.g. exclusively a surge.  
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8 Summary and Conclusions 

Swath bathymetry, high-resolution seismic and core data from Van Keulenfjorden are 

analysed. An assemblage of landforms, five seismostratigraphic units as well as six 

different lithostratigraphic units are defined. They reveal the following about the Late 

Weichselian and Holocene sedimentary processes and palaeoenvironment (fig. 8.1): 

- Prior to 11.2 cal. ka BP, fast-flowing ice produced an up to 50 m thick subglacial 

sedimentary body (unit Vk0) on the proximal side to a fjord mouth sill. Vk0 rests on 

an erosional unconformity with Mesozoic and Early Cenozoic bedrock (fig. 8.1a).  

- During the deglaciation, between 11.2 cal. ka BP and 10.7 cal. ka BP (fig. 8.1b and 

8.1c), a beaded esker was formed in the central part of the fjord. Mounds on the 

esker indicate an annual retreat of ~160 m a
-1

. Assuming a constant rate of retreat 

the outer fjord basin was deglaciated in the course of ~125 yrs. 

- Strong isostatic uplift, associated with the rapid deglaciation, most probably 

reactivated faults in the West Spitsbergen fold and thrust belt. Reactivated faults 

created pathways for thermogenic gas seepage. The resulting pockmarks (P2) were 

active shortly after deglaciation and became inactive during the early Holocene 

(~7.0 cal. ka BP). It is proposed that the fluid flow is proportional to the rate of the 

uplift, which decreased strongly at ~8.0 cal. ka BP.  

- In the western part of the fjord a hiatus of ~4 ka is identified (fig. 8.1d). This is most 

likely the result of bottom currents that prevented deposition and possibly eroded 

sediments. The bottom currents weakened but remained active after the sill became 

more confined in course of the postglacial isostatic uplift (~8.0 cal. ka BP).  The 

sediment distribution with less sediment on ridges between 10.7 cal. ka BP and 7.0 

cal. ka BP is inferred to reflect the impact of bottom currents in the entire outer 

basin. 
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- High amounts of IRD in the sediment (units 12GC-1, 12PC-1 and 12PC-2) and 

acoustically discontinuous, stratified signature (seismostratigraphic unit Vk1) 

indicate glacier proximal condition between 11.2 cal. ka BP and 10.7 cal. ka BP. 

- Cyclic changes in chemical composition indicate repeatedly changing sediment 

provenance. Sediments were influenced by sediment supply from tributary valleys 

in the south during the deglaciation of the fjord.  

- Very weak to non-existent internal reflections in seismostratigraphic unit Vk2 

indicate low IRD content related to reduced glacial activity between 10.7 cal. ka BP 

and min. 7.0 cal. ka BP (fig. 8.1d). This reflects the warmest period in the Holocene. 

- Isopach maps of mid- to late Holocene seismostratigraphic units reveal a westward 

thinning trend and highly variable sediment input from tributary valleys. Both of 

which are related to meltwater plumes. 

- Sandur deltas at the tributary valley mouths supply the fjord with additional 

sediment. Channels/chutes indicate repeated mass-transports and sediment 

reworking. Cohesive debris flows and less cohesive and less concentrated gravity 

flows compose the assemblage of mass-transport processes at these fans. 

- Around 7.0 cal. ka BP glacial activity began to increase gradually and peaked at 

~2.8 cal. ka BP where two consecutive surges deposited two debris flow lobes 

adjacent to the terminal moraine (fig. 8.1e and 8.1f). Suggestions in Bratlie (1994) 

and Ottesen et al. (2008) that the upper lobe (L1.2) was of Little Ice Age could not 

be confirmed, though Nathorstbreen reached the same terminal position in ~1890 

AD (fig.8.1g). Both lobes are probably the result of surge advances. However, the 

climate promoted the necessary build-up of mass in the reservoir area of the glacier.  
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Figure 8.1: Summary of the glacial activity and the sedimentary processes and products 

from the Late Weichselian until the present in Van Keulenfjorden (continued next page). 
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Figure 8.1 continued. 
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